

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ASSUWIE-GUARANTEE RULE

FOR CHECKING SIMULATION

by

Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani
And Serdar Tasiran

Memorandum No. UCB/ERL M99/13

10 March 1999

AN ASSUME-GUARANTEE RULE

FOR CHECKING SIMULATION

by

Thomas A.Henzinger, Shaz Qadeer, Sriram K. Rajamani andSerdar Tasiran

Memorandum No. UCB/ERL M99/13

10 March 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

An Assume-Guarantee Rule For Checking Simulation*

Thomas A. Henzinger Shaz Qadeer Sriram K. Rajamani Serdar Ta§iran

EECS Department, University of California at Berkeley, OA 94720-1770, USA
Email:{tah, shaz, sriramr, serdar}®eecs.berkeley. edu

Abstract. The simulation preorder on state transition systems is widely accepted as
a useful notion of refinement, both in its own right and as an efficiently checkable suf
ficient condition for trace containment. For composite systems, due to the exponential
explosion of the state space, there is a need for decomposing a simulation check of
the form P ^aQ into simpler simulation checks on the components of P and Q. We
present an assume-guarantee rule that enables such a decomposition. To the best of
our knowledge, this is the first assume-guarantee rule that applies to a refinement re
lation different from trace containment. Our rule is circular, and its soundness proof
requires induction on trace trees. The proofis constructive: given simulation relations
that witness the simulation preorder between corresponding components of P and Q,
we provide a procedure for constructing a witness relation for P -<3 Q- We also extend
our assume-guarantee rule to account for fairness assumptions on transition systems.

1 Introduction

In hierarchical verification, we need to check proof obligations of the form P Q, where
P and Q axe system descriptions and ^ is a preorder on systemdescriptions. The assertion
P -^Q holds if P describes the same system as Q, but possibly on a finer level ofdetail (or
equivalently, Qdescribes thesame system asP but possibly ona coarser level ofabstraction).
Forexample, P may be an RTL-level description of a pipelined processor, and Q may be an
ISA description ofthe sameprocessor. The assertion P ^ Q is therefore variously pronounced
as "P implements Q," or "P refines Q," or "Q specifies P," or "Q abstracts P."

Mathematically, a popular choice for the preorder ^ is trace containment In this case,
P Q asserts that every sequence of inputs and outputs that is possible for P is also
possible for Q (at the same time, the more abstract specification Q may allow some traces
that are not realized by the more concrete implementation P). Whilesimple and intuitive,
trace containment has several shortcomings.First, it is a practical impossibilityto checktrace
containment automatically forall but the smallest examples, because the check isexponential
in the number of states of Q if Q is nondeterministic(as specifications often are). Second,
in top-down design, if system description P fleshes out detail that is left open in system
description Q, there is a much tighter relation between P and Q than trace containment
would indicate; namely, each implementation state of P corresponds to a specification state
ofQ. This tighter relation is captured mathematically by the notionofa simulation relation.
Intuitively, Q simulates P iff, starting from the initial states and continuing ad infinitum,
every input-output pair of P can be matched by the same input-output pair in Q [Mil71].
Clearly, if Q simulates P, then every trace ofP is alsoa trace of Q. The converse is not true;
that is, simulation is a stronger requirement than trace containment. However, it has been
said that trace containment without simulation is more often than not due to coincidence
rather than systematic design (Kur94].

* This research was presented at the Second International Conference on Formal Methods in
Computer-aided Design, 1998.

While trace containment is defined globally, for input-output sequences of arbitrary
length, simulation is defined locally, by considering individual input-output pairs for all
states. It is this locality in the definition of simulation that leads to significant advantages.
First, if Q is claimed to simulate P, then a witness to this claim can be produced in the
form of a relation between states of P and states of Q, and the witness can be efiiciently
checked for correctness (the check is linear in the number of states of P and Q). Such wit
ness relations £u:e widely used in verification methods £ind tools, under various names like
homomorphisms (Kur94] and refinement mappings [AL91,Lyn96]. Second, even if no witness
is available, the existence of a simulation can be checked in polynomial time (the check is
quadratic in the number of states of P and Q). The number of states of a system, however,
depends exponentially on the size of the system description (note that n boolean variables
give rise to 2" states—this is the state-explosion problem). Thus, even algorithms that are
linear in the number of states are often infeasible in practice, and techniques have been
studied for dividing a given verification task into simpler subtasks.

Compositional techniques for dividing the verification task P into simpler subtasks
are guided by the structures of P and Q. If the refinement relation •< is interpreted as trace
containment, a number of compositional techniques are known. Specifically, if P = P1IIP2
and Q = Qi\\Q2, then in order to check P :< Q, it suffices to check both Pi :< Qi and
P2 ^ Qz- This compositional principle for trace containment is propositionally valid when
ever parallel composition corresponds to trace intersection (replace || by conjunction, and
-< by implication). Unfortunately, the compositional principle is often not helpful, because
Pi typically refines Qi only when constrained by an environment that behaves like P2,
and similarly, P2 may refine Q2 only when constrained by an environment that behaves
like Pi. Under certain modeling assumptions (namely, nonblocking and finite nondeter-
minism), the compositional principle can be strengthened to an assume-guarantee princi
ple [Sta85,CLM89,GL94,AL95,AH96,McM97]: in order to check P Q, it sufiSces to check
both Pi||(52 Qi and Q1IIP2 ^ Q2- Three observations about this proofrule are important.
First, the rule addresses the issue that the environment of Pi may have to be suitably con
strained in order to implement Qi, and similarly for P2. Second, the rule avoids reasoning
about the compound implementation P1IIP2, which typically has the largest of the involved
state spaces. Third, unlike the compositional principle, the assume-guarantee principle is
circular and therefore not propositionally valid—its proof requires induction on the length
of traces.

By contrast to the case of trace containment, if the refinement relation X is interpreted
as "is simulated by," then little is known about compositional techniques other than the fact
that the compositional principle remains valid whenever parallel composition corresponds
to the intersection of trees whose branches are traces (this is because Q simulates P iffevery
trace tree of P is also a trace tree of Q). In particulcir, it would be useful to have an assume-
guarantee principle for simulation, which, givenwitnesses for the two subtasks P1IIQ2 Qi
and Q1IIP2 Q2> lets us construct a witness for P ^ Q. In this paper, we show that
under the same modeling assumptions under which the assume-guarantee principle is sound
for trace containment, it is also sound for simulation. Second, we show how the compound
witness can be constructed from the witnesses for the subtasks. Third, we show that in
analogy to the case of trace containment, the assume-guarantee principle for simulation can
be extended to account for fairness assumptions in system d^criptions. As in the case of
trace containment [AL95,AH96].

We illustrate the assume-guarantee rule for simulation using an example. Figure 1 shows
Moore-machine specifications and implementations for a sender and receiver in a commu
nication protocol. Let us first consider the specifications of the sender {S') and receiver
{R'). Each state is labeled with outputs that are true in that state, and each arc is labeled
with conditions on inputs that need to be satisfied for the arc to be taken. A state with

02^
QS>~

•OS)
R' R

(a) Specification (b) Implementation

Fig. 1. Sender and receiver

no label means that no output propositions are true in that state, and an arc with no la
bel means that there is no condition on input propositions to take that arc. The initial
states s'o of the sender and Tq of the receiver are marked using arrows. The sender has one
output proposition, namely tnsg, which is true whenever a message is produced, and one
input proposition, namely ucfc, which is used to acknowledge the receipt of a message by
the receiver. The receiver has ack as its only output proposition and msg as its only input
proposition. The sender starts off at «{, and stays there for an arbitrary number ofsteps. It
nondeterministically produces a message by moving to Sj. Once in Sj, it is forced to move
to §2 one step. Then, the sender waits in $2 until it receives an ack. On receiving the ack
it goes back to Sq. The receiver starts at Tq and moves to r[on seeing a msg. It stays in
for anarbitrary number ofsteps and nondeterministically moves to 7*2. After acknowledging
at r2, the receiver moves back to rg in the next step.

Letusnow consider the implementations ofthe sender (5) andreceiver {R). IfS receives
an ack while at sg, it goes to an "error-state" Sg, from which it keeps sending messages
in every step. Such a behavior is not allowed by the specification S'. Thus, S' does not
simulate S. However, adter composing with the specification of the receiver, it is seen that
S II R' ds5', because no acknowledgments can be received by S while at sg. The relation
0s = {((so,r'(,),s{,),((si,r(,>,s'i), ((s2,ri),s^), ((s2,r^>,s'2)} is a witness to this simulation.
Similarly, R' does not simulate R, but S' ||R :<a R' with the relation Gr - {((sg,rg),rg),
((s;,rg),rf,), ((s^,ri),ri), ((s2,r2),r^)} as witness. In Section 3, we prove thatthe existence
ofsimulation relations from 5 || il' to 5' and from 5' || to il' is sufficient to conclude the
existence of a simulation relation X2 from 5 || i? to 5' || R', and give a procedure to construct
i?, from Gs and Gr. For our example, the witness simulation relation S2 is {((so, ro), (sg, rg)),
((si,rg), (s'l, Tg)), ({S2, n), (S2, T*!)). ((S2, ^2), (Sj, Tj))}.

For simplicity we use Moore machines (with local Streett conditions) to model systems.
Our results apply to other nonbloddng, finitely nondeterministic, receptive models such
as (Fair) Reactive Modules [AH96]. Section 2 defines Moore machines and establishes the
connectionbetweentrace-tree containment Jind simulation. In Section3 weprovethe validity
of the assumenguarantee rule for the simulation preorder and describe how the compound
witness simulation relation is constructed from the witnesses for the components. Section 4

defines simulation on fair Moore machines. The assume-guarantee rule for fair simulation is
proven in Section 5.

2 Simulation Relations on Moore Machines

Moore machines. A Moore machine is a tuple P = (S^, W) where

- is the set of states,
- is the initial state,
- is the set of input propositions,
- is the set of output propositions disjoint from
~ V{0^) is a function that labels each state with the subset ofoutput propo

sitions true in that state, and
- CS^ XVil^) X is the transition relation. We write R^{s,i,s') as shorthand for

{s,i,s')eR^.

We restrict our attention to Moore machines P satisfying the following two properties:

1. Nonblocking: For all s € and i C there exists a state r such that R^{s,i,t).
2. Finite nondeterminism: For all s G5^, i C and o C O'', there are at most a finite

number ofstates r such that R^{s, i,t) and L^{t) = o}

Run trees and trace trees. A (finite or infinite) tree is a set r C IN* such that ifxn Gr,
for X G IN* and n G IN, then x G r and xm e r for all 0 < m < n. The elements of r
represent nodes: the empty word e is the root of r, and for each node x, the nodes of the
form xTi, for n GIN, are the children ofx. The number ofchildren ofnode x is denoted by
deg{x). Atree r isfinite if r is a finite set. The depth ofa node t Gx isdefined inductively
as follows: (1) the depth of e is 0, and (2) if the depth of x G r is d, then the depth of
xn is d -t- 1. If r is finite, then the depth of r is defined as the maximum of depths over
all nodes of r. The nodes of r with no children are called leaves of r. A path p of r is a
finite or infinite set p C r of nodes that satisfies the following three conditions: (1) e Gp,
(2) for each node x Gp, there exists at most one n GIN with xn Gp, and (3) if xn Gp,
then XGp. Given a pair ofsets A and R, an {A, B)-labeled tree is a triple (r,A,<J), where
T is a tree, A: r —> A is a node labeling function that maps each node of r to an element
in A, and 5 : t x t —^ R is an edge labeling function that maps each edge (x,xn) of
T to an element in R. Then, every path p = {e,no,noni,...} of r generates a sequence
^(p) = •(^(€,no), A(no)) •(5(no,noni), A(noni)) •••in Ax (R x A)* UA x (R x A)*".

An run tree T of P is a (5^,P(/^))-labeled tree such that A(c) = s^, and for
all edges (x,xn) we have R^(A(x),(J(x,xn), A(xn)). Note that for any depth, P has at least
one run tree, and possibly many. A trace tree T' = (r,A',(5) of P is a {V{0^),'P{I^))-
labeled tree such that there is a run tree ofT = (t. A, 5) ofP, and for every x Gt we have
Z-^(A(x)) = A'(x). For brevity we say T' = L^{T), and call T a witness to T'. See Figure 2
for an example.

Tree containment. Consider two Moore machines P = (S^,s^, /^, O^, R^) and Q =
{S^, s^, ,0^, ,R*^). We say that Q is refinable by P if (1) C O^, and (2) C

U O^.
Suppose Q is refinable by P. Let T = (r. A, 6) be a trace tree of P. We say that the

projection of T on Q is a trace tree [T]q = (r. A', 5') of Q, such that for all x Gt we have

' For simplicity, we consider Moore machines with single initial states. Our results apply ifthere are
multiple initialstates, as long as the initial states satisfy finite nondeterminism: for all oC O^,
there are only a finite numberof initial states s such that L^{s) = a.

0

So s{

Si 0 V '̂sg)
^ VN? ^

s, S2 0 {mss}yA^{acit} 0y «cfc}
(I) 52 So (^^)

Fig.2. (I) isan run tree for the Moore machine S in Figure 1, and (II) is the corresponding trace
tree

A'(x) = A(x) n and for all x,xn € r, we have S'{x, xn) = ((5(x, xn) UA(x)) n We say
that Q tree contains P if (1) Q is refinable by P, and (2) for every trace tree T of P, the
projection [T]q is a trace tree of Q.
Composition. The composition ofP and Q, denoted by P || Q, exists if n = 0, and
is defined to be the Moore machine K = {S^,s^ ,0^,R^) where

- 5^ = 5^ X
K _

— s

- = {I^\JI^)\ {O^ u o^),
- = 0''u0<5,
- L^((p, q)) = L^(p) UL^{q) for all (p, q) e , o o
- i2^((pi,gi),i,0>2,92» iff P^(pi,(i UL<3(gi))n/^,p2) andP<^(gi,(i UL''(pi))n/<3,g2)

for all {pi,P2)i (9i>92) € 5^ and i C .

The branching behavior of a Moore machine is characterized by its set of trace trees. Com
position of two Moore machines results in the intersection of the sets of trace trees for the
component machines.

Proposition 1. Consider two Moore machines P and Q such that the composition P || Q
exists. Then T is a trace tree of P \\Q iff (1) [T]p is a trace tree of P, and (2) [T]q is a
trace tree of Q.

Simulation. Consider two Moore machines P and Q such that Q is refinable by P. A binary
relation 0 C x is said to be a simulation relation from P to Q if and only if the
following three conditions hold:

1. (s^s^) 6 0.
2. For all (p, q) € 0, we have L^{p) n = L^{q).
3. For all (p, g) € 0 and for alii C andp e such that R^{p, i,p), there exists q £

such that R*^{q, (i UL^{p))n g) and (p,g) 6 0.

If such a relation 0 exists, Q is said to simulate P (written as P '^3 Q) with 0 as the
witnessing simulation relation. Further, if such 0 exists and (p,g) € 0, we say that state g
of Q simulatesstate p of P. It is well known that Q simulates P iff in a game of a protagonist
playing in Q against an adverseu^y playing in P, the protagonist can match every move of
the adversary by moving to a state with the same observation ad infinitum. It is also known
that each strategy in such a gcune corresponds to a trace tree, and consequently, simulation
is equivalent to tree containment.

Proposition 2. Consider two Moore machines P and Q. Then P disQ 'IffQ contains
P.

3 Assume-Guarantee Rule for Simulation

Suppose we are given aspecification P' || Q'and animplementation P || Q, where P || Q' :<s P'
and P' II Q :<s Q'. Consider a specific state (p, q') of P || Q'. Suppose that thisstate is simu
lated by state p' of Further, suppose that there exists q such thatstate {p',q) of P' || Q
is simulated by state q' of P'. Then, it seems plausible (and indeed it is true, as we show
below) that state {p,q) oi P\\Q is simulated by state (p',g') ofP' || Q'. A difficulty arises
when state (p',q) of P' || Q is simulated bystate q" of P' that is different from q'. We then
examine the state (p,q") of P || Q' and find a state p" of P' that simulates it. We continue
by finding a state ofQ' that simulates state (p", q) of P' || Q, etc. In this way, if we reach a
cycle that includes p' and q', we are still able to show that state (p, q) ofP || Q issimulated
by state (p',q') of P' || Q'. Since our Moore machines have only single initial states, such a
cycleshould exist for the initial states, satisfying condition 1 for simulation relations. Finite
nondeterminism ensures that condition 3 for simulation relations is satisfied as well.

Theorem 1. Let P,Q,P',Q' be Moore machines such that P\\Q and P' || Q' exist. Sup
pose that P II Q' ^3 P' and P' ||Q Q' with witnessing simulation relations 6p and Gq
respectively, and every input ofP' || Q' is either an input or output ofP || Q. Then, we can
construct a simulation relation from P || Q to P' || Q'.

9n-l

Pn-l

"H9n—2

P2

Pi
=</'

/ /

P = Pa =Pn

Fig. 3. Figure demonstrating the definition of Q

Proof. Let 12 C(5^ x 5^) x (5^' x S^') be defined as follows: ((p, g), (p', g')) Gf2 iff there
exist p(„p'l,...,p; 6 5^' and gf,, gi,..., g^.j e S^' such that (see Figure 3)

• Po = K = P' and g^ = g', and
• for all0 < i < n, we have (1) ((p-,g),g,') € Gq, and (2) ((p,g|),pi+i) GGp.

We need to show that the conditions 1-3 of the definition of a simulation relation are satisfied
by Q. In the following (for 2 and 3), assume that ((p,g), (p',g')) G 12, i.e., there exist
Po>Pii •••>Pn ^ and qo,q'i,..., Qn-i ^ satisfying the conditions mentioned above.

1. Since Gp and Gq are simulation relations, we have {{s^, s '̂}, s^') eGp and ((s''', s*^), s* '̂) G
Gq. Let n = 1, p(, = p[= s^', and gf, = s^'. Then, ((s^, s<5), {s^\s<?')) e 12.

2. Since ((Po,g),go) GGq and Gq is a simulation relation, L^{q) nO^' = L '̂(g(,). Since
q'o = g', we have L^{q) n O '̂ = L '̂(g')- Also, ((p,g-),p-+i) GGp for all i from 0 to
n—\. Therefore, L^{p) n (pj+i) for all i from 0 to n. Since, pj, = pj, = p', we
have L^{p) n O '̂ = L '̂ip'). Hence, we get "Q((p, g)) n O^'"= L^'"<3'((p', g')).

3. Let 9), i, (Pj?)) for some (p,9) and i € V{I^" ^). Define i' —iU{p)U{q).
Clearly, i' includes all inputs ofthe machines P, Q,P' andQ'. In the following, whenever
we use i' as the input for some Moore machine K, the intention is to take the projection
i' n onto the set of inputs of K. We want to show that there exists ((p,g), {p\q'))
Gf? such that ^ ((p', q'),i' H , (p', q')).

• Since all machines are nonblocking, we have (Poj '̂jPo) for some p'q. Hence,
P'""^({Po,g),f',(Po.9))-

• The fact that ((po, g), go) € 0q implies that there exists some go such that (gf,, i', q'o)
and ((Po,g),go) G Oq-

• P*''(go, i', q'o) implies that R^" ^ ((p, go)) «'i (P) Qo))-
• ((P)9o))P'i) ^ 0p, therefore, there existsp'l such that (p'i)i')P'i) and ((p,go),p'i) €

0P

Repeating this process, we obtain Po,pi,P2, •••, and go) gjig2) ••• such that
• for all fc GIN, we have R^ (Poi '̂iPfcn) R^ (9o) '̂)9fcn)»
• for all j > 0, we have that {{p'j,q),^j) € 0q and {{p,q'j)tP'j+i) ^ ^p-

SinceP' has the finitenondeterminismproperty, there exist a, 6 GIN with b> a such that
Pan = p'bn' Consider the statesp|,„,po„+i, -••,P(,„ € 5^ and q'anyQan+iy •••>̂ L-i ^ *
We know that for all an < i < bn, ((^i,g),gO G0q and {{p,Q'i)iP'i+i) ^ follows
from the definition off? that ((p,g), ip'an^Qan)) ^ ^ ((p')?'))®' C

4 Simulation Relations on Fair Moore Machines

Fair Moore machines. Consider a Moore machine P = {S^,s^,I^,0^,L^^R^). An
run of P is a finite or infinite sequence s = so ^ ®2 ^ **• such that so =
and R''{sk,ik+i,Sk+i) for all fe > 0. Theset of all finite runs of P is denoted by Let
5 = 52 Sn-I- Then the length of s, denoted by |s|, is n, and the A:th
prefix for 0 < k < n, denoted by s^, is so si S2 Sfc-i- If s is infinite, then
|s| is defined to bea;. Afairness constraint for P is a function that maps every infinite
run ofP to the binary set {fair, unfair}. Afair Moore machine V= {P,F^) consists of a
Moore machine P and a fairness constraint for P. A fair run of P is either a finite run
of P or an infinite run ? of P such that F^{s) = fair. A fair run tree of P is a run tree
(r. A, <5) ofP such that for every path p of r, the run P(p) of P is a fair run ofP. Afair
trace tree of P is a trace tree of P that is witnessed by a fair run tree of P.

In the following, we consider two fair Moore machines, P = (P, P^) and Q= (Q, P*^).
Fair tree containment and composition. Wesay that Q fair-tree containsP if (1) Q is
refinable by P, and (2) for every fair trace treeT ofP the projection [T]q is a fair trace tree
of Q. The composition of P and Q, denoted by P || Q, exists if P || Q exists, and is defined
to be the fair Moore machine K = {K,F^), where

-K = P\\Q,
- F^{s) = /air iffboth P^([?]p) = fair and P''((s]q) = fair, where [s]p is the projection

of s on P and [sJq is the projection of s on Q.

Proposition 3. Consider two fair Moore machines P and Q such that the composition
P II Q exists. Then T is a fair trace tree ofV \\ Q iff (1) [T]p is a fair trace tree ofV, and
(2) (T]q is a fair trace tree of Q.

Fair simulation. Suppose that Q is refinable by P. Intuitively, Q fairly simulates P
(HKR97] if there is a strategy in the simulation game that matches every fair run of V
with a fair run of Q. Formally, a simulation strategy k of Q with respect to P is a par
tial function from T'' x to 5^. If s = sq ^ Si ^ S2 ^ ... s„ G 27^, and

s' = Sq s'l -4 S2 6 27^, then the following three conditions sire
necessary for «;((s,s'» to be defined: (1) n = m -f 1, (2) for all 0 < A: < n, we have
L^{sk) r\0^ = and (3) for all 1< A: < m, we have (L^(sfc_i) Uzifc) r\I^ = It is
required that if a({s,t)) = s^, then n = L^(s;). Given a finite or infinite run
s = So -V Si S2 -^ ... of P, the outcome k[s] of the simulation strategy k is the finite or
infinite run s' =^s[, -^^s'l s'2 . of Qsuch that (1) |k(s][= |s|, and (2) for all A: >1,
we have s^ = K{sk+i, s'l^). A binary relation 0 C x is a fair simulation relation of V
by Q if the following three conditions hold:

1. (s^,s<?)G0.
2. Forall (p, q) € 0, we have L^{p) fl = L^{q).
3. There exists a simulation strategy « of Q with respect to V such that, if (p,g) 6 0 and

s = sq -A Si -4 S2 -4 ... is a fair run of P, then the outcome «;|s] = Sq Si S2 -^ ...
is a fair run of Qand k[s] 0-matches s (that is, (sfc, sj^) € 0 for all0 < A: < |s|). We say
that « is a witness to the fair simulation 0.

If such a relation 0 exists, Q is said to fairly simulate V, written V Q. We will state
some properties of fair simulation. First, since all finite runs are fair by definition, we have
the following proposition.

Proposition 4. Consider two fair Moore machines V = {P,F^) and Q = IQ,F^). If
'P :<s l^hen P :<g Q.

Analogous to the equivalence between simulation and tree containment, fair simulation can
be proved to be equivalent to fair tree containment (HKR97],

Proposition 5. Consider two fair Moore machines V and Q. Then V:<f Q iffQfair-tree
contains V.

5 Assume-Guarantee Rule for Fair Simulation

Let Safe{V) be the fair Moore machine obtained by replacing the fairness constraint of V
with the trivial fairness constraint that maps every infinite run to fair. We now present
the assume-guarantee proof rule for fair simulation. The same rule was proved for fair trace
containment in [AH96], with an essentially similar proof (we just use trace trees instead of
traces to get the proof below).

Theorem 2. Let P, Q, V and Q' be Moore machines such that P || Q and V || Q' exist.
Suppose that P || Safe{Q') P', P' || Q Q', and every input of P' || Q' is either an
input or output ofV || Q. Then, P || Q P' || Q'.

Proof. Let P = (P, F^), Q = {Q,F^),'P' = {P',F^), and Q' = {Q',F^). From Proposi
tion 4, we know that P || Q' P' and P' || Q Q'. Consequently, by Theorem 1 we know
that P II Q P' II Q'- Therefore, from Proposition 2, we get that P' || Q' tree contains P || Q.
Hence, if T is a trace tree of P || Q, then [T]p/1| q» is a trace tree of P' || Q'. It remains to
be proved that ifT is a fair trace treeofP || Q, then [T]p> yq, is a fair tracetreeofP' || Q'.

For notational simplicity, we omit explicit projections in the following. Suppose T is a
fair trace tree of P || Q. FromProposition3, T is a fair trace tree of both P and Q. Further,

we know that T is a trace tree ofP' || Q'. Thus, T is a fair trace tree of Safe{Q'). Again, by
Proposition 3, T is a fair trace tree of V|1 Safe{Q'). Since P 1| Safe{Q') :<f P', we conclude
(from Proposition 5) that T is a fair trace tree ofV'. Therefore, from Proposition 3, since T
us a fair trace tree of both V and Q', it is a fair trace tree of P' || Q. Since P || Q Q,,
T* is a fair trace tree of Q'. Finally from Proposition 3, since T is a fair trace tree of both
P' and Q', it is a fair trace tree of P' || Q'. .0

References

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proceedings ofthe 11th Annual Sym
posium on Logic in Computer Science, pages 207-218. IEEE Computer Society Press,
1996.

[AL91] M. Abadi and L. Lamport. The existence ofrefinement mappings. Theoretical Computer
Science, 82(2):253-284, 1991.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming
Languages and Systems, 17(3):507-534, 1995.

[CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In Proceed
ings of the 4th Annual Symposium on Logic in Computer Science, pages 353-362. IEEE
Computer Society Press, 1989.

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. The MIT Press, 1989.

[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. ACM Transactions
on Programming Languages and Systems, 16(3):843-871, 1994.

[HKR97] T.A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. In CONCUR
97: Theories of Concurrency, Lecture Notes in Computer Science 1243, pages 273-287.
Springer-Verlag, July 1997.

[Kur94] R.P. Kurshan. Computer-aided Verification ofCoordinating Processes. Princeton Univer
sity Press, 1994.

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In CAV 97:

Computer-Aided Verification, Lecture Notes in Computer Science 1254, pages 24-35.
Springer-Verlag, 1997.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proceedings ofthe
2nd International Joint Conference on Artificial Intelligence, pages 481—489. The British
Computer Society, 1971.

(Sta85] E.W. Stark. Aproof technique for rely/guarantee properties. In Proceedings of the 5th
Conference on Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Computer Science 206, pages 369-391.Springer-Verlag, 1985.

	Copyright notice 1999
	ERL-99-13

