

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ALGORITHM FOR THE APPROXIMATIVE

ANALYSIS OF RECTANGULAR AUTOMATA

by

J. Preupig, S. Kowalewski, H. Wong-Toi and
T. A. Henzinger

Memorandum No. UCB/ERL M99/12

10 February 1999

AN ALGORITHM FOR THE APPROXIMATIVE

ANALYSIS OF RECTANGULAR AUTOMATA

by

J. Preupig, S. Kowalewski, H. Wong-Toi and T. A. Henzinger

Memorandum No. UCB/ERL M99/12

10 February 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

An Algorithm for the Approximative Analysis of
Rectangular Automata*

J. PreuBig^**, S. Kowalewski^*, H. Wong-Toi^, T.A. Henzinger^***

^ Dept. of Chemical Engineering, University of Dortmund, Germany.
^ Cadence Berkeley Labs, Berkeley, CA.

^ Dept. of EECS, University of California, Berkeley, CA.

Abstract. Rectangular automata are well suited for approximate mod
eling of continuous-discrete systems. The exact analysis of these au
tomata is feasible for small examples but can encounter severe numerical
problems for even medium-sized systems. This paper presents an analysis
algorithm that uses conservative overapproximation to avoid these nu
merical problems. The algorithm is demonstrated on a simple benchmark
system consisting of two connected tanks.

1 Introduction

Embedded systems consist of digital controllers operating in analog environ
ments. They are often used in safety-critical situations, such as for transporta
tion control or logic control for processing systems, where correct behavior is
essential. The interaction between the controller and its environment is hybrid,
in that it involves both discrete and continuous aspects of behavior. Numerous
models for specifying and analyzing such hybrid systems have been proposed:
see, for example, the volumes [2,10],

This paper is concerned with hybrid systems verification using automated
techniques. A system is modeled as a finite control graph augmented with real-
valued variables subject to differential inclusions [7]. This model is far too expres
sive for immediate automatic verification. Previously, we proposed the following
approach: given a complex hybrid system H, we construct a simpler abstraction
H', and then automatically analyze H' instead [7]. We require the abstraction
H' to be conservative, i.e. if H' is correct, then H is correct. Furthermore, the

An abbreviated version of this paper appeared in the Proceedings of the Fifth In
ternational Symposium on Formal Techniques in Real-time and Fault-tolerant Sys
tems (FTRTFT), Lecture Notes in Computer Science 1486, Springer-Verlag, 1998,
pp. 228-240.
Supported by the German Research Council (DFG) under grant Kol43G/3 in the
special program KONDISK ('Continuous-discrete dynamics of technical systems').
Supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER
award CCR-9501708, by the NSF grant CCR-9504469, by the DARPA/NASA grant
NAC2-1214, by the ARO MURI grant DAAH-04-96-1-0341, and by the SRC contract
97-DC-324.041.

abstraction must be amenable to automated analysis. Typically, this is achieved
by ensuring that the abstraction belongs to a restricted class of automata.

In previous work, we proposed that the abstractions H' be linear hybrid au
tomata [1], in which the continuous dynamics are given as constant polyhedral
differential inclusions. For these automata, reachable state sets can be repre
sented exactly using linear constraints, and generated automatically using the
model-checking tool HyTech [8]. Experience, however, shows that this subclass
of automata may be still too expressive, and hence too computationally expen
sive to analyze efficiently and robustly [11,12]. HyTech manipulates linear con
straints over n variables as sets of n-dimensional polyhedra using a polyhedral
library that performs exact computation over rationals stored using integers for
numerator and denominator [6]. However the geometric algorithms over poly
hedra require internal computations that quickly surpass the limits of integer
precision when presented with systems with nontrivial continuous dynamics.

The main contribution of this paper is a numerically robust, specialized algo
rithm for computing (a supserset of) the reachable states of a subclass of linear
hybrid automata. The algorithm operates on rectangular automata [9], subject
to a few additional restrictions. In rectangular automata, the continuous dynam
ics must be defined using constant lower and upper bounds on the individual
rates of variables. Given an arbitrary hybrid system, it is often easy to obtain
a rectangular automaton as a conservative abstraction by bounding the rates of
each variable. The key to efficient analysis is to avoid HyTech's computation
over arbitrary polyhedra. Rather, sets of hybrid states are represented using
face-regions—convex hulls of sets of 2n rectangular faces of dimension n —1.
By restricting attention to rectangular faces, in which the continuous variables
are decoupled, one obtains simpler algorithms for computing sets of successors
states. The idea behind the algorithm is to determine, from a given reachable
face, the minimal and maximal times it may take to reach some extremal bound,
and to use this range of times to compute bounds on the new values of the vari
ables. The algorithm is exact for systems with two continuous variables. It is
inaccurate for higher dimensional systems, where it returns a superset of the
reachable states. Consider the example of a three-dimensional system with x
having rate i € [1,2], and both y and z having rate 1.The states that are reach
able from the origin and for which x <2 are 0 < x < 2 Ax/2 < y = z < x. But
this set is not definable using a face-region, and must be overapproximated by
one. Thus, the drawback of the algorithm is its inaccuracy: it leads to a further
approximation beyond that already inherent in translating the original hybrid
system into a rectangular automaton, c.f. following an approximation step to a
linear hybrid automaton, HyTech's algorithms over arbitrary polyhedra would
return, if successful, the exact reachable set of that linear hybrid automaton.

The benefits of our algorithm are two-fold: efficiency and robustness. The
simple structure of face-regions yields efficient algorithms for finding successor
states. Furthermore, the simplicity of manipulating rectangles versus arbitrary
polyhedra means that our algorithm can be made robust far more easily than

HyTech's algorithms for analyzing linear hybrid automata: rectangular faces
can be conservatively approximated using rounding in the appropriate direction.

In the next section, we review basic definitions and concepts related to rect
angular automata, and then introduce our algorithm in Section 3. In Section 4,
we demonstrate the algorithm on a simple two-tank example, and Section 5
contains conclusions and a short discussion of related work.

2 Rectangular Automata

We review basic definitions and concepts related to rectangular automata [9].

2.1 Syntax

Let Y = {yi,..., t/jfc} be a set of variables. A rectangular inequality over the
set y is an inequality of the form y,- ~ c, for some y^ G Y, some relation
~ and some rational c G Q. A rectangular predicate over Y is a
conjunction of rectangular inequalities over Y. The set of rectangular predicates
over y is denoted TZiY). We adopt the convention that for a boldfaced vector
a GIR*', its ith component is denoted by Oj. For a rectangular predicate <p over y,
let [[v?l denote thesetofpoints a GM''" for which (p is true when each y,- isreplaced
by a,- for each i. A set B is a rectangle if there exists a rectangular predicate (p
such that B = Iy>|. Given a rectangle B, let GQU {-00,00} denote
the bounds on the individual variables such that B =

A rectangular automaton A is a system (A'̂ , K, inv, flow, init, E, guard,
resetjvars, reset) consisting of the following components [9]:

Variables: A finite set X = {xi,..., x„} of variables.
Control modes: A finite set V of control modes.
Tnvflriant conditions: A function inv that maps every control mode to an

invariantcondition in7v(A'). Control of the automaton mayremainin a control
mode only when its invariant is satisfied.

Flow conditions: A function flow that maps every control mode to a flow
condition in 11{X), where X = {xi,...,x„} with x,- representing the first
derivative of x,- with respect to time. While control.remains in a given mode,
the variables evolve according to the differential inclusion specified by the
mode's flow condition.

Initial conditions: A function init that maps every control mode to an initial
condition in TZiX).

Control switches: A finite multiset E of control switches in V x V. For a
control switch {v,v'), we say that v denotes the source mode and v' the target
mode.

Guard conditions: A function guard that maps every controlswitch to a guard
condition in 7^(A'). Intuitively, the guard must be satisfied before the mode
switch can be taken.

For simplicity, we consider only nonstrict inequalities.

Resets: A function resei.vars that maps every control switch to an update set in
2^ , and a function reset that maps every control switch e to a reset condition
in 7^(A''). We require that for every control switch e and for every x G A',
if ar G resetjvars{e), then reset{e) implies x = c for some constant c, which,
by abuse of notation, will be denoted resei{e){x). Intuitively, after the mode
switch, the variables must satisfy the reset condition. Variables that appear in
the update set must be reset to the fixed value indicated by the reset condition.
Furthermore, all other variables must be unchanged.

2.2 Semantics

A configuration of a rectangular automaton is a pair (u,a) that consists of a con
trol mode V, together with a point a G IR". A configuration (v, a) is admissible
if a G l[int;(t;)]l. Let Config{A) denote the admissible configurations of A. A con
figuration (v,a) is initial if it is admissible and a G Let Inii{A) denote
the set of initial configurations of A. There are two kinds of transitions between
admissible configurations: jump transitions, which correspond to instantaneous
control switches, and flow transitions, which correspond to the variables contin
uously evolving while time elapses. For every control switch e G we define
the binary jump transition relation by (v,a) iff the following four
conditions hold: (1) e = (2) a ^ l9uard{e)l, (3) a' G |rese/(e)|, and (4)
for every x,- G X\reset.vars{e), Oi = a(-. For every nonnegative real 6 > 0 and for
every rectangular flow condition <p G TZiX), we define the binary flow relation

-^ipQ IR" XIR" over states in E" by a a' iff either (a) 6= 0 and a = a' or
(b) 5 > 0 and (a' —a)/6 G 1^1• From this, we derive a relation expressing the
flows of the automaton. For every nonnegative real 5 > 0, we define the binary

flow transition relation -^C Config{A) x Config{A) by (v,a) iff (1)
V= v', and (2) a —*flow{v) second condition states that the continuous
variables evolve at a rate consistent with the flow condition.

The transition relation —^a for the rectangular automaton A is (JegE ""*•
UU«6]B>o ^ trajectory is a finite sequence 9o, 9i > ••>9m ofadmissible config
urations such that 9o is an initial configuration, and 9,- -^a 9i+i for i = 0..m— 1.
A configuration is reachable if it appears on some trajectory. The set of reachable
configurations of A is denoted Reach{A).

2.3 Reachability analysis

Reachability analysis consists of determining the set of reachable configurations.
It is commonly used to validate the correctness of a system. Safety properties
intuitively assert that nothing bad happens during system execution. Violations
of safety properties can be expressed via a designated set of unsafe configura
tions. Safety properties can then be verified by performing reachability analy
sis and checking whether any unsafe configurations are reached. We review a
familiar procedure for computing Reach{A). We define the successor operator

Post : by Post{W) = PosiumeiW) U Postevt{W),
where Posiufnei '̂V) = {?' | 3g € VK36 € IR>o-9 ?'} Pos<cv«(^^) = W I
3qr € W.3e G E.q -^a 9'}- Let Pos/* represent the composition of i Post oper
ations. Then Reach{A) = (J^o Post\lnH{A)). Iterating Post until convergence
yields a semialgorithm for computing Reach{A). If the procedure terminates,
one obtains Reach{A), but in general, termination is not guaranteed.

2.4 Simple rectangular automata

A rectangular predicate (p is bounded if [[v?| is bounded. A rectangular automaton
is simple if the following two properties hold;

1. Its invariant, initial, flow, guard, and reset conditions are bounded.
2. For every control switch e = {v,v'), if [[inv(v)| = B = /7t=i..n[6P'",

and if pnu(i'')ll = B' = exists a variable
X,- G A' such that either
(a) (i) Xi G reset.vars{e), and (ii) the guard condition guard{e) implies Xi =

or Xf = and (iii) rese<(e)(a;,) G
(b) (i) X,- ^ reset-vars{e), and (ii) the ^uard condition guard{e) implies x,- =

6^"", and (iii) G 6^^"^ }, or
(c) (i) Xi ^ resetjvars{e), and (ii) the guard condition guard{e) implies x, =

and (iii) 67""^ G

The second condition states that guard conditions include tests for equality
for one of the variables' bounding values in the source mode's invariant. Further
more, if the variable is reset, then it is reset to a bounding value for the target
mode's invariant (condition 2a). Finally, if it is not reset, then its value in the
guard must be a bounding value in the target mode's invariant, (conditions 2b
and 2c).

Simplerectangular automata often arise naturally when approximating more
complex hybrid systems. In order to conservatively overapproximate the flow
field of nontrivial continuous dynamics, one may partition the state space into
rectangular blocks, and for each variable provide constant lower and upper
bounds on the flow within each block [7]. A control mode is split into several
control modes, one for each block of the partition. Crossing from one block in
the state space to another is modeled by mode switches among the blocks, with
the guards being tests for equality across common boundaries. For example, a
mode Vwith the invariant 1 < x < 3 may be split into two modes — vi with the
invariant 1 < x < 2 and vq with the invariant 2 < x < 3 — with mode switches
between them having the guard x = 2.

3 Approximative Analysis Algorithm

In this section wedefine an algorithm for the approximativereachability analysis
of simple rectangular automata. The algorithm is built on top of a conservative
Post operator and based on some other concepts that are defined first.

3.1 Face-regions

A face is a rectangular predicate with one dimension fixed to a certain value.
Our rationale for introducing faces is to use rectangular faces to represent non-
rectangular sets. Aface-region is a set {Fi,..., Fjk} whereeach F,- is a face. The
semantics of F is the convex hull over its k faces, i.e.
|FJ = convexhull{lFil,..., |Fjk|}. This is shown for an example in Fig.l where a
face-region F is represented by the two faces Fi and F2. In practice, the faces of
a face-region over n variables are derived from 2n constraints of the form x,- = /,•
or Xj = Uf. In the example, the face Fi corresponds to xi = 1 and the face Fo
to X2 = 7, with the empty faces for xi = 7 and X2 = 1 being omitted.

3.2 The operator Fos/*""''

Our algorithm is based on the fact that face-regions
are bounded by their faces. We present an operator

that takes a face F and a flow (p of the
variables and returns a conservative approximation
Posf^~^{F,ip) of the states for which Xd —h that
are reachable from F by following (p.

Let F be the face Ar=i(^r'" ^ ^ and let
(p be the flow condition in 7v.(A') defining the possible
rates of the x,- as ^ ^ We want

to compute a new face Ar=i(^r*" ^
defines the reachable states where xj**" = x^*^^ = 6.
The idea behind the operator is simple. We look at
the time that Xd needs at least and at most to reach
the bound 6 from its possible values in F and then see
how much the values of the other dimension's variables possibly change in these
times, thereby computing the new values for xj"*" and

So at first we compute an interval T = , imax] of the times in which Xd
can reach the bound b according to its current value and its possible rates. The
maximal time of the interval can also be set to the symbol Hnfinite^ to express
that a bound can be reached within any arbitrarily large amount of time. The
interval is empty if the bound b can not be reached at all. This is the case if b is
less than x^*" and no negative rate is possible or if 6 is greater than x^^"® and
no positive rate is possible. Formally:

Fig.l. Face-Region

T = if (6 < xS '̂" Ax^'" > 0) V(6 > xj*"^ Axr' < 0)

If T is not empty its interval bounds tmin and imax are given as follows.

if 6 < x^'" A Xj"" < 0

tmin — ^

lo 2"" < 6 < X2''"'if X

(6 < Air2"" < 0 A > 0)
infinite if V(6 > A > 0 Aif"" < 0)

V(x2"'" <h< Ai'S"" < 0 <

if (6 < A < 0)

if (6 > x^'" Ax2"" > 0).

We now give an intuitive explanation of these formuleis. To compute T, we
first check on which side of the current values of Xd the new bound b lies. Three
cases are possible:

1. 6 < Xj*'": If no negative rate is possible, i.e. x^"" > 0, then T is empty.
So consider the case that a negative rate is possible, i.e. x^^'" < 0. The
maximal time is either ^infinHe\ if a positive or zero rate is also possible,
or else computed by using the slowest rate possible to clear the greatest
possible distance to b. The minimal time is computed by using the fastest
rate possible to clear the smallest possible distance to 6.

2. 6 > If no positive rate is possible, i.e. < 0, then T is empty. So
consider the case that a positive rate is possible, i.e. > 0. The maximal
time is either ^infiniie\ if a negative or zero rate is also possible, or else
computed by using the slowest rate possible to clear the greatest possible
distance to b. Again, the minimal time is computed by using the fastest rate
possible to clear the smallest possible distance to 6.

3. x^'" < b< xy^: In this case the bound bisalready part of the old face. So
we have tmin = 0. The maximal time is 'infinite', if a zero rate is possible.
Otherwise there are only positive or only negative rates and the maximal
time is computed using the slowestrate possibleto clear the greatest possible
distance to 6.

We use the computed interval T to compute the new bounds xj"'" and
^moar' other dimensions' variables that give the new face where x^*" =
^.mox' = If 7" is empty, then no face can be computed and Post returns an
empty face. Otherwise, let us first assume that the computation of tmax did pot
yield 'infinite'. To compute xj"'" we take the old xj"'" and subtract as much as
possible, if there are negative rates for x,-, or add as little as possible, if there are
only positive rates. To compute xj""® we take the old xj""^ and add as much-
as possible, if there are positive rates for x,-, or subtract as little as possible, if
there are only negative rates. Then we obtain:

xmin ^ j.mm . ^^ ifn < q

+ xr"-<min if i^dAxf">0
if i = d

.mtn

r • tmax if i d ^ > 0
^max' ^ J ^max ^ ^max . i d^ ij""' < 0

[6 if i = d

If imax h3s previously been found to be ^infinite\ then the computations with
imax also yield ±'infinite'. For the variable Xd, constant 6 € Q, face F, and flow
condition <p, we define the new face as

Posi''''=\F,^)= /\ < Xi < .
l<i<n

Considering the example in Fig.l, the operator could be used to compute the
face F2 from Fi. Let Fi = {xi = 1 A2 < xo < 5}, A = {2 < xi < 6 Axo = 7}
and (f —{iri = 1 A1 < X2 < 2). Then F2 = v?) with T = [1,5].

In two dimensions, the operator Posi '̂*~^ isexact. For anynumber of dimen
sions, the operator is conservative.

Lemma 1. Lei Xd be a variable and b a constant in Q. For every face F and
flow condition ip, the operator Post'̂ ^~^ computes a superset of the points at
which Xd = b that are reachable according to (p from the points given by F,

i.e. lPosi'̂ ''~^{F, v?)] 2 {x'|3x G|F]].35 € E>o.x x'} fl \xd =

Proof. We outline the proof. Assume x' satisfies Xd = b and there exists an x G

|F| and 6 G IR>o such that x x'. By a tedious check on the construction of
interval T in the definition ofthe Fos/®"'"'' operator, we see that 6 ET, and hence
by construction of the bounds x}"'"' and each x,- lies in [x '̂̂ 'jxj""®'].

3.3 An algorithm for approximative reachability £malysis

The algorithm described here makes use of the fact that the invariants in a con
trol mode of a rectangular automaton form a rectangular region. So, a reachable
face-region within the invariants can be represented by faces that lie on the in
variant's bounds. Let be a reachable face-region in a control mode v. Now
we want to compute the new F'' in another control mode k, for which there
is a mode switch from v. The algorithm performs an event-step evolution from
each face of F", checking the guard and possibly applying a reset operation to
compute each face F* lying on one of the faces of the invariant of k. Then the
algorithm does a time-step evolution from each F/ using the Post'̂ ^~^ opera
tor for each of the bounds defining the invariant of k, thereby computing F*'.
Being able to compute a successor face-region for a face-region, we can apply
standard fixpoint analysis to find the set of all reachable face-regions in a given
automaton.

We now give a more formal description of the algorithm. Let the invariant in
a control mode v be of the form < xj"°^). Let a region F be a
set of pairs (v, F) of a mode v and a face-regionF in v. The semantics of a region

8

R is a set of configurations defined by |/2| = {(v,a)|3(v,G R.a. 6 We
define Post{R) as follows:

P^i{R)= U P^ttime{v,P)UP^ievt{v,:F)

where

•PoS<t,„,e(v,:F) = {(v, (J)}

and

II I I /([(Bx,-G rese<_i;ars(e).((7Mard(e) AF))|1PosU„[v,F)= [J U{(t,| ^reseHe)Ainv(k) }>'•
ezzivMeEFey"

The way in which the operator Posttime is built on top of the conservative
operator for faces insures that it conservatively overapproximates Posinme-

Lemma 2. For all regions R, [[Fosi«tme(F)]] D Fos<ttme([[-R|).

The operator Posievt is exact, since it simply requires existential quantification
and intersection of faces with guards, reset conditions, invariants, and hyper-
planes of the form x = b.

Lemma 3. For all regions R, |Posieut(-^)l = Posievt(M).

The operator Post can be used in the procedure in Section 2.3 in place of
the exact operator Post. Since Posi{R) contains Posi{R), the resultant fixpoint
contains the set of reachable configurations.

Theorem 1. Lei A be a reciangular auiomaion, and lei the region Rinit repre
sent ike initial configurations of A, i.e. ^Rinii\= '̂>^ll(^)- fixpoint com
puted by Post from Rinit is a superset of reachable configurations of A, i.e.

[[IJ IJ PosV{Init{A)) = Reach{A).
0<i<oo 0<i<oo

3.4 Tighter approximations

The operator is exact in two dimensions. In higher dimensions, however,
it can compute vast overapproximations. Consider a box [0,2] x [0,2] x [0,4]
in the three dimensions x, y, and t. Let F/ = {0 < x 1 Ay = < = 0}
and ^ = {x = y = / = 1}. Computing Fr = Fos<^~"(F/, v?) results in
Ffl = {x = 2Al<y<2Al<<<2}. Now we divide theoriginal box according
to the hyperplanes x = 1and y = 1.Fig.2adisplays the partitionedboxprojected
on the planespannedbyx and y. From an initialface F/ the algorithmwould now
compute via Fi and F2 the face Fr = Post^~^{Post^~^{Post''~^{Fi,(p),(p),(p).
This Fr gives a vast overapproximation for the value of t. The faces are:

9

(a) Computation without splitting

0 Fj- F,* 1

(b) Computation using face split
ting

Fig. 2. Face splitting

F/: (0 < X < 1, y = f = 0)
^2: (1 < a; < 2,y = 1,0 < t < 2)

Fi: (x = 1,0< y < 1,0 </ < 1)
Fr: {x = 2,1 <y <2, ff<t <Z)

An attempt to solve this problem is face splHiing. The idea of face splitting is,
not to compute the successor faces from a whole face, but to split a face into
several parts, and then to compute the successors for these parts. In Fig.2b the
face Fj is split into two pieces Fj and Fj. Assuming the same partitioning as
before, this leads to a better approximation, namely the faces F^ and F^, instead
of Fr. The faces are:

F}-. (0.5 < X< l,y = / = 0)
F}-. (x = 1,0 < y < 0.5,0 < << 0.5)

Ff: (0 < X< 0.5,y= <= 0)
Fr. (x = 1,0.5 < y < 1,0.5< < < 1)

F}-. (1.5 <x < 2,y = 1,0.5<< < 1.5) Ff: (1 < x < 1.5,y= l,0.5<f < 1.5)
(x = 2,1 < y < 1.5,0.5 < i < 2) F^: (x = 2,1.5 < y < 2,1 < << 2.5)

Note that the same result could not be achieved by simply choosing a finer
grid. A finer grid may be useful to obtain rates that are better approximations
for the underlying differential equations but as we have shown in this example,
somewhat unintuitively, there are cases in which finer grids lead to worse overap-
proximations in the analysis procedure. However, the drawback of face splitting
is that it contributes to state explosion in larger systems.

4 Two-Tank Example

The analysis method is demonstrated on a small laboratory plant [12]. First, the
dynamics of the system are approximated by a rectangular automaton. Then this

(a) Scheme of the two-tank plant (b) Reachability analysis for the
two-tank example

Fig. 3. Two-Tank example

automaton is analyzed using the approximative analysis algorithm. The plant
consists of two tanks which are connected as illustrated in Fig.3a. The first
tank is fed by an inflow characterized by the parameter k\. The inlet stream
of the second tank is the outflow of the first one. The stream from tank 1 to
tank 2 depends on the difference between the tanks' liquid levels, the geometric
propertiesof the connecting pipe (characterized by parameter ^2) and its height
ka above the bottom of tank 2. The liquid level in this tank and the dimensions
of its outlet pipe (characterized by constant k4) determine the flow out of tank 2.
The resulting model for the dynamicsof the two tank levels is given by equation
(1), where x = (xi,a;2) is the continuous state vector of the system. Equation
(1) defines a flow x = f(x, ki,..., k^) which moves the system to an equilibrium
point Xg for all kj > 0, Xi > 0, and xi > X2 —k^.

ki —k2y/xi —X2 + ks
k^y/xi —Xo "b^3 —^4\/2?2

—k2^/^
k2\/X\ —k4y/x2

if X2 > i'3

if X2 < kz

A Matlab script was developed to generate an approximative rectangular
automaton of the dynamics given by (1) for arbitrary partition grids. By refining
the partition grid, arbitrarily accurate automata can be generated. The script
estimates upper and lower bounds for the derivatives of xi and xo in each par
tition cell by evaluating equation (1) for a finite number of grid points. While
the automata generated by this procedure are not conservative approximations,
they are sufficiently accurate for testing the approximative analysis algorithm
on realistic systems.

The Matlab script calls
HyTech to analyze the rect
angular automaton and then
graphically displays HyTech's
output of the reachable state
space. The finest grid we were
able to run on the exact ver

sion of HyTech can be seen

in Fig.3b. Using our approxi
mative algorithm for the anal
ysis more exact models with
much finer grids could be an
alyzed, as is shown in Fig.4.

The main purpose of our
example was the demonstra
tion of the approximation
technique. From the analysis
point of view, the example is
not very challenging, since simulation can achieve more accurate results rather
easily. The application of the algorithm to a more realistic example can be found
in [13].

Fig.4. Reachability analysis for the two-tank
example on a finer grid

5 Conclusion and Related Work

We have introduced an algorithm for the approximative analysis of rectangular
hybrid systems. Though the approximations are accurate in two dimensions, the
approximation technique seems to be of limited use in higher dimensions.

The idea of computing reachable regions only from the bounds of the pre
decessor regions, instead of looking at the whole regions, is not new. It also
appears in [4,5], where the bounding edges of a region are 'bloated' outward
with an integration routine on the original differential equations of a system to
compute the edges of the successor region. Reachable sets may be represented by
a set of non-convex polyhedral 2-dimensional projections. The idea of 'bloating'
is referred to as 'face lifting' in [3j. The state space is partitioned a priori ipto
hypercubes, and a face is then 'lifted' to a successor region, by computing suc
cessors for all hypercubes associated with that face. The current methodology
uses a fixed partition which can lead to computational inefficiency. The authors
have also identified the problem of potentially large overapproximations during
the analysis.

There are a number of extensions that could be made to our algorithm.
Instead of allowing only rectangular bounds for the derivatives of continuous
variables the Post operator could also deal with differential equations. In a
different direction, the algorithm could be made accurate over higher dimensions
at the cost of increased computation. Each face could be represented as the
convex hull of a set of points instead of a rectangle. Then we could compute

12

the successor faces F' of a given face pointwise, i.e. to compute F' at Xd =
6, we collect from each point in F^ the successor points for which Xd = 6.
This would avoid unwanted overapproximation during the analysis. However,
from a computational standpoint, we confront two problems. First, we compute
redundant points, and have to minimize face representations (i.e. solve the convex
hull problem). Second, intersection with face invariants is no longer as efficient.

Acknowledgement. We thank Tiziano Villa for many helpful comments and
Olaf Stursberg for his help with the Matlab script.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. NicolUn,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

2. P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hybrid Systems IV.
Lecture Notes in Computer Science 1273. Springer-Verlag, 1997.

3. T. Dang and O. Maler. Reachability analysis via face lifting. In T.A. Henzinger and
S. Sastry, editors, HSCC 98: Hybrid Systems—Computation and Control, Lecture
Notes in Computer Science 1386,* pages 96-109. Springer-Verlag, 1998.

4. M.R. Greenstreet. Verifying safety properties of differential equations. In R. Alur
and T.A. Henzinger, editors, CAY96: Computer Aided Verification, Lecture Notes
in Computer Science 1102, pages 277-287. Springer-Verlag, 1996.

5. M.R. Greenstreet and I. Mitchell. Integrating projections. In T.A. Henzinger and
S. Sastry, editors, HSCC 98: Hybrid Systems—Computation and Control, Lecture
Notes in Computer Science 1386, pages 159-174. Springer-Verlag, 1998.

6. N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by
means of convex appro.ximation. In B. LeCharlier, editor, SAS 94-' Static Analysis
Symposium, Lecture Notes in Computer Science 864, pages 223-237. Springer-
Verlag, 1994.

7. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43(4):540-554, 1998.

8. T.A. Henzinger, P.H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Toolsfor Technology Transfer, 1(1,2):110-122, 1997.

9. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about
hybrid automata? In Proceedings of the 27th Annual Symposium on Theory of
Computing, pages 373-382. ACM Press, 1995. Full version to appear in Journal of
Computer and System Sciences.

10. T.A. Henzinger and S. Sastry, editors. HSCC 98: Hybrid Systems—Computation
and Control. Lecture Notes in Computer Science 1386. Springer-Verlag, 1998.

11. T. Stauner, O. Mfiller, and M. Fuchs. Using HyTech to verify an automotive
control system. In O. Maler, editor, HART 97: Hybrid and Real-Time Systems,
Lecture Notes in Computer Science 1201, pages 139-153. Springer-Verlag, 1997.

12. O. Stursberg, S. Kowalewski, I. Hoffmann, and J. Preufiig. Comparing timed
and hybrid automata as approximations of continuous systems. In P. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems IV, Lecture Notes in
Computer Science 1273, pages 361-377. Springer-Verlag, 1996.

13. T. Villa, H. Wong-Toi, A. Balluchi, J. PreuBig, A. Sangiovanni-Vincentelli, and
Y. Watanabe. Form<iI verification of an automotive engine controller in cutoff
mode. 1998. Submitted.

13

	Copyright notice 1999
	ERL-99-12

