
 

 

 

 

 

 

 

 

 

Copyright © 1999, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



SYNCHRONOUS EQUIVALENCE FOR EMBEDDED

SYSTEMS: A TOOL FOR DESIGN EXPLORATION

by

Harry Hsieh, Felice Balarin and Alberto
Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/1

15 January 1999



SYNCHRONOUS EQUIVALENCE FOR EMBEDDED

SYSTEMS: A TOOL FOR DESIGN EXPLORATION

by

Harry Hsieh, Felice Balarin and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/1

15 January 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720



Synchronous Equivalence for Embedded Systems: A Tool for Design
Exploration

Harry Hsieh, University of California at Berkeley*
Felice Balarin, Cadence Berkeley Laboratories

Alberto Sangiovanni-VincenteUi, University of California at Berkeley

Abstract

Design exploration consists of analyzing several alternative
implementations of the "same" function to determine the
most desirable one. A fundamental question is whether an
"implementation" is consistent with the high-level specifica
tion or whether two implementations are "equivalent". In
this paper, we define synchronous equivalence for embed
ded systems that strongly resembles the concept of func
tional equivalence for sequential circuits. We then present
equivalence analysis algorithms that are of low polynomial
complexity. We show an example of application of the al
gorithms to a real-life design (a shock absorber controller)
and demonstrate that synchronous equivalence opens design
exploration avenues uncharted before.

1 Introduction

Current embedded system design practice is quite informal
and application specific. Designers often start with an in
formal requirement written in plain English, use "intuition"
to pick a particular interpretation of this requirement, and
write a so called reference (or golden) model in VHDL, Ver-
ilog, C or any other language that has an operational seman
tic and can be executed. The golden model is executed on a
computer to investigate whether it satisfies a set of require
ments including a match with the original informal speci
fication. A (candidate) implementation^ is then generated
through a combination of manual labor and often poorly
connected tools. The correctness cind optimality of the (can
didate) implementations are assessed with filtered simula
tion traces obtained from the reference model and from the
candidate implementation. This contorted and highly infor
mal design flow is very error-prone and does not promote
efficient design space exploration since the set of "correct"
implementations cannot be precisely identified.

'This author is supported by SRC contract DC-324-028
'An "implementation" may only be considered a candidate be

cause it may not be correct. The implementation in this context is
not generated through formal refinement. Some ad hoc manual pro
cedures are involved.

A fundamental point of clarification to improve the de
sign methodology is the formal definition of correctness. We
advocate the principle of "separation of concerns" in veri
fication, that is, we would like to verify functional correct
ness and timing independently. This principle is the basis of
the synchronous design methodology for sequential circuits,
where latches decompose the circuit into combinational is
lands. Signal are propagated from island to island when
an enabling input is given to the latches. The enabling in
put is periodic where the period is generated by a "clock".
Any design of the combinational islands ensuring that the
combinational circuits stabilize before the enabling signal
arrives at the latches, can be verified for equivalence paying
attention only to the Boolean functions computed by the
circuits irrespective of the propagation time. Timing can
then be verified independently by performing a worst-case
timing analysis and making sure that this bound is within
the clock cycle. This powerful approach can be extended to
higher level of abstraction as demonstrated by synchronous
languages [3]. Synchronous languages describe complex sys
tems consisting of interconnected modules each represented
by a Finite-State Machine model. Communication among
modules is synchronous. Both communication and compu
tation take zero time to perform. While very powerful, syn
chronous languages support a model of computation that
restricts the design space considerably because of the syn
chronous communication hypothesis.

In this paper, we would like to relax the "synchronous
hypothesis" by adopting a more generd model of compu
tation (the one supported by Co-design Finite State Ma-
chines(CFSM) [1]), while retaining the fundamental idea
of separation between timing and functionality. We will
establish a "functional" equivalence among a set of can
didate implementations of embedded system specifications.
Just as sequential circuit methodology abstracts away differ
ent gate delays among different implementations and enable
speed/area trade-off among functionally equivalent imple
mentations, we will abstract away the delays of embedded
system computational resources. We call this equivalence
relation Synchronous Equivalence.

While it is possible that some other equivalence relation
identifies a larger design space of functionally equivalent cir
cuits, Synchronous Equivalence lends itself nicely to simple
analysis procedures. We want to be able to figure out quickly
whether two implementations are synchronous equivalent to
each other. Synchronous equivalence relation divides the de
sign space into synchronous equivalence classes. Within an
equivalence class, different implementations represent differ
ent speed/cost trade-off. Equivalence analysis can be done



precisely through reachable state methods, or conservatively
(but more efficiently) through structural method. We will
derive efficient structural algorithms that can be used to
explore the design space effectively.

In the next section, we briefly review a formal model for
control-dominated embedded system design, CFSMs, that
provides a convenient representation of the design space. In
section 3, we present the synchronous equivalence relation
and associated definitions. In section 4, we show how syn
chronous equivalence can be checked by structural methods.
In section 5, we show some results of applying this methodol
ogy to a real-life industrial example. In section 6, we discuss
future directions.

2 Design Representation: Network of CFSMs

Embedded systems can be represented as networks of in
teracting Codesign Finite State Machines [l]. CFSMs are
Finite State Machines extended with side-effect-free com
putation on the transition edge. Like traditional FSM, the
transition is considered atomic: once a transition starts, it
must eventutdly carry on to the end before the next tran
sition of the same CFSM can start. The communication
entities between CFSMs are events, which may or may not
carry values. Events and their values are considered atomic
also. A CFSM can transition only when an input event has
"occurred".

Individual CFSM operates in a "locally synchronous"
fashion with its own clock. There is no a priori synchroniza
tion between CFSMs and aU the local clocks are completely
unsynchronized. This feature is necessary because different
resources can operate at widely different speeds. In order
for such "globally asynchronous" objects to communicate,
buffering is needed. We deal only with minimally required
one-deep buffer. Any extra buffering can be designed into
the CFSMs themselves. The local clock for each CFSM does
not have to be periodic. It is purely a signal for the com
pletion of previous transition and hence, the enabling of the
current transition. There is no a priori relations between
the local clocks and physical time.

With this model of computation, the designers can spec
ify their designs with minimal implied implementation at
tributes. At the "specification" level, designers specifies only
the structure of the design (i.e. number of CFSMs and I/O
of these CFSMs) and the local functions of the design (i.e.
transition and output relation of individual CFSM, along
with extended computation at the transition edges). Tools
exists to verify the design at this level. Since the represen
tation is highly abstract, the tools are either in the flavor
of syntax checker for the structure of the design or formal
verification tools for the properties of the design.

Implementing the specification involves allocating indi
vidual CFSMs to computation resources and assigning schedul
ing policy to shared resources. We call this high-level im
plementation process architectural mapping. Architectural
mapping has the consequences of refining the relationship
between the local clock and the physical time. If the CFSM
is to be implemented on a VLSI synchronous hardware, its
loccil clock will become periodic and the clock period will
equal to the synchronous hardware clocking. If the CFSM
is to be implemented on a processor, the local clock will not
have fixed period and will run at some multiple of the pro
cessor clock, depending on the execution delay of the tran
sition on that processor, which in turns depend on software
synthesis and scheduling. CFSMs on the same processor
resource need to be executed in mutual exclusion (possibly

with preemptive scheduling) while different processors and
dedicated hardware resources can be executed in a concur

rent manner.

Since local CFSM clocks are unsynchronized, a network
of CFSMs is inherently non-deterministic: for a fixed input
sequence, many system responses are possible (and they are
all equally valid). However, a mapped network is determin
istic: its response is unique for any fixed input sequence. In
fact, we extend the notion of architectural mapping to in
clude any set of rules that resolve non-deterministic choices
in a CFSM network (making it deterministic). To resolve
non-determinism, a mapping needs to specify two things;

• delays for potentially parallel activities: for two ac
tivities happening at the same time, we need to know
which one will finish first,

• scheduling: if two activities are enabled, we need to
know whether they will be executed in a particular
order, or perhaps in parallel.

For example, simulating a CFSM network (which necessarily
involves resolving non-determinism) is considered an archi
tectural mapping.

For simplicity, we refer to aU mapped specification as
implementations (thus a mapping to a simulator is also con
sidered an implementation). Therefore, checking two imple
mentations for equivalence may be used to verify that some
manual design optimizations did not alter the behavior, or
it may be used to verify a physical implementation versus
the "golden" (simulation) model.

3 Synchronous Assumption and Synchronous Equivalence

In this work we are making a key assumption (a restric
tion on the class of "acceptable" specifications) in order to
make efficient an<i]ysis possible. We believe that this class
includes many interesting examples, and that other speci
fications may be reduced to it by appropriate (manucd for
now) partitioning techniques.

Synchronous Assumption The operation of the design
is split into two alternating non-overlapping phases.
An interaction phase where the environment interacts
with the design and a computation phase where the
design performs computation.

The interaction phase followed by its associated computa
tion phase is called a "cycle". We will only consider speci
fication that satisfies synchronous assumption. The imple
mentation process must guaranteed to preserve it. This can
be done by a separate worst case timing analysis of the fla
vor of [2]. This analysis is to make sure the implementation
obeys synchronous assumption also.

Synchronous Equivalence Under the synchronous assump
tion, two embedded system implementations are syn
chronous equivalent if and only if for all possible input
traces the outputs of the implementations are the same
at the end of every cycle.

As long as the results (outputs of the network of CFSMs)
are the same at the end of the cycle, order of execution of
single CFSMs or even the parallel/serial nature of the com
putations do not matter. The former can lead to freedom in
scheduler selections while the latter can lead to freedom in
processor allocation. Note that this notion of synchronicity
is similar to the fundamental mode of operation of asyn
chronous circuits.



3.1 Related Work

Synchronous languages are a group of languages proposed
for automatic synthesis of embedded software [3]. Synchronous
languages have a unique notion of "synchronous scheduler",
the scheduler that defines correct behavior. This scheduler
is the result of the assumption of synchronous communi
cation among modules of the design. Our synchronous as
sumption is related to the "external" communication of the
design with the environment. Hence, there is an intrinsic
non-determinism in our specification that results in many
possible implementations that are functionally equivalent to
the specification.

Another methodology that utilizes synchronous assump
tion is synchronous data-flow: a powerful formalism for data-
dominated embedded systems geared toward simulation and
code synthesis for digital signed processors [5]. It exploits
the synchronous assumption at the interface between the
network and the environoment, while "blocking read" is re
quired of all components in the design so the behaviors are
the same (in Kahn's sense) independent of allocation and
scheduling.

In our framework, systems described by synchronous lan
guages can be seen as networks of CFSMs with a particular
architecturzJ mapping: the one defined by the synchronous
scheduler. Similarly, synchronous data-flow systems can be
seen as networks of CFSMs with an architectural mapping
that respects the blocking read property. While our method
can certainly be applied to check equivalence between these
and some other architectural mappings, we do not restrict
ourselves to them. We use equivalence analysis to tell us
whether any two architectural mappings are equivalent to
each other. Trade-off on timing and cost can then be per
formed on the "functionally" equivalent implementations.
In the next section, we show how synchronous equivalence
analysis can be performed efficiently.

4 Analysis of Synchronous Equivalence

The general equivalence checking of sequential systems is
very complex. We will devise powerful but conservative
heuristics for synchronous equivalence that are of low poly
nomial time complexity. Our algorithms will decide the syn
chronous equivalence between two given implementations
(network of CFSM plus architectural mapping) from the
same specification, assuming both of them satisfy the syn
chronous assumption. A separate timing analysis will be
needed, but we do not address that issue here.

We will first show that for some subsets of implemen
tations, synchronous equivalence wiU hold regardless of the
functions that is being implemented. This type of anal
ysis is "functionality independent". The complexity here
is constant. If two implementations do not belong to one
such subset, a more complex analysis need to be performed
in order to determine equivalence. We introduce "abstract
communication analysis" which can be applied to a large set
of implementations.

4.1 Functionality-Independent Synchronous Equivalence

The goal here is to identify subsets of implementations such
that if two implementations fall within one subset, they are
guaranteed to be synchronous equivalent. It is conservative
because even if two implementations do not fall within the
same subset as defined by these "algorithms", they may still
be synchronous equivalent.

Global State Pattern A complete characterization of the
state the implementation is in. It will includes state
information of all the componenets and values on all
the buffers, counters, and any other memory element.

Stabilization An implementation is stabilized if and only if
no change in global state pattern or output is possible
without the application of a primary input. A system
that satisfies the synchronous assumption stabilizes at
the end of a cycle.

A single primary input pattern can stimulate the design
and "generate" a sequence of global state patterns until sta
bilization is reached. A sequence of primary input patterns
(i.e. a primary input trace) "generates" a sequence of se
quence of global state patterns. A primary input trace also
generate a sequence of sequence of scheduling points.

Scheduling Point A scheduling point is a point in time
where some process finishes computation, or produces
some output. It is the point in time some "schedul
ing decision" need to be made. There are often many
scheduling points within a single computation phase.

Scheduling points are related to the behavior of the in
ternal modules of the design. When the implementation
is stabilized, the computation phase ends. The end of the
computation phase corresponds to a scheduling point.

Lemma 1 Given two implementations, A and B, of the
same specification, and an arbitrary input trace i =
{t'l, t2 i generatesa sequence ofsequences ofschedul
ing points {{oi,of,...1,{02,02,...],...} for implemen
tation A, and {{61,tf,. {62. ^>2. for imple
mentation B.
Let theglobal statepattern be{{Pf,Pf, •••}, {P2»Pi«•••}.—}
for implementation A,and {{Qj,Qf,...}, {Ql,Qh •••li •••}
for implementation B at the scheduling points. If

= QJJ*, for all integer m,n, A and B are syn
chronous equivalent.

Proof of Lemma 1 By definition, the implementation sta
bilizes at some scheduling point. Since P,5^ = QJJ* for
all scheduling points, they must also be the same at
all stabilizing points. In addition, an output can only
occur at a scheduling point. Since P" = QJT, output
patterns are the same between stabilizing points also.
Therefore, outputs are the same at the end of the cycle
(stabilization). Therefore, A and B are synchronous
equivalent.

Single processor implementations with the same schedul
ing decision and preemption policy are synchronous equiva
lent.

The following two theorems state that having the same
scheduling policy is sufficient for synchronous equivalence of
two single processor implementations".

Theorem 1 Any two single processor implementations with
the same non-preemptive scheduling policy are syn
chronous equivalent.

Proof of Theorem 1 Let any two single-processor imple
mentations of the same specification with the same
non-preemptive scheduling, be A and B. Given an ar
bitrary input trace, at start up, Pq = Qo because they
are specified by the initial state, initial output and the
environment. We can now proceed by induction.



• Base Case

PS = Ql
• Induction Hypothesis

Pi = Q'o
• Prove:

Because Pq = Qo. the same software scheduler
makes the same execution decision and execute
the same component, calculate outputs and next
state of that component corresponding to the next
scheduling point i + l. Since the output and tran
sition relation are identical for A and B, =

QS"'
At stabilization point j, Pj —Qj. The next scheduling
point Pj^.1 and Q®+i has the same pattern as the pre
vious scheduling point for all signals except a primary
input that has to be identical for both implementa
tions. Therefore Pj^i =
Therefore, Pn = QJT for any integer m and n. Due
to Lemma 1, all single processor implementations with
the same non-preemptive scheduling are synchronous
equivalent.

The same theorem can be easily extended to preemptive
scheduling.

Theorem 2 Any twosingle processor implementations with
the same preemptive scheduling policy are synchronous
equivalent, as long as multiple outputs on the same
transition are always emitted in the same order.

Proof of Theorem 2 Follows that of Theorem 1.

Theorem 1 and 2 indicate that once a scheduler is chosen,
the designer is free to optimize the individual processes and
the resulting implementation willstill be synchronous equiv
alent to the origind one. Also, implementation with dif
ferent processors (hence different delay characteristics) will
result in synchronous equivalent implementations as long as
the scheduler remains unchanged.

It is clear that, depending on the design specification,
two implementations with different scheduling can still be
synchronous equivalent. In the next section we try to extend
the reach of the analysis by further examining the structure
of the system.

4.2 Abstract Communication Analysis

Duringa computation phase, there is no interaction between
the design and its environment. However, components of
the design do communicate events among themselves. For a
given component during a computation phase, its sequence
of executions consume a sequence of events at its input. This
is the local execution trace of that component. Grouping all
the local execution traces together we have the execution
trace for that computation phase. More formally:

Execution Trace Given some primary input trace, an ex
ecution trace is an ordered list of inputs for the execu
tion of each component of a particular implementation.

Examples of execution trace for the design of figure 1 are
shown in table 1. Three implementations are being consid
ered, a single processor with A at a higher priority than B,
a concurrent hardware implementation where A and B ex
ecute in parallel, and a single processor with B at a higher
priority than A. A "1" in the table indicates the presence
of an event and a "0" indicates the absence of an event.
Execution traces have the following property:

A
ol

B: if (i2) then emit (ml)

Figure 1: Example for Abstract Communication Analysis

B<A B==A B>A

E.T. M.E.T. E.T. M.E.T. E.T. M.E.T.

*1*2 B A B A B A B A B A B A

11 1 10 1 10 1 10 1 10 1 11 1 11

01 01 01 01

10 10 10 11

01 1 01 1 01 1 11

Table 1: Execution Traces and Maximal Execution Traces

Lemma 2 If execution traces from two implementations
are identical for aU possible input traces, then the two
implementation are synchronous equivalent.

Proof of Lemma 2 Since the ordered list of input are the
same and the outputs of the components and changes
in global state patterns must be the result of the exe
cutions of the components, they have to be the same
aJso. If output and global state patterns are the same
for all possible input traces, they have to be the same
at all stabilization points. The two implementations
are therefore synchronous equivalent.

This lemma suggests a simple algorithm for checking syn
chronous equivalence which is essentially exhaustive simula
tion. Exhaustive simulation is clearly not practical for all
but the most trivial designs. Instead, we generate a "sig
nature" that summarizes the execution traces. A "signa
ture" must have the property that, if two implementations
have the same signature, they must be synchronous equiv
alent. For implementations satisfying the proerty called
"order-monotonicity", we can easily obtain one such signa
ture called "maximal execution trace". It is maximal be
cause if an event is possible at some input at some point in
time due to. some particular execution trace, "event" will be
present in the maximal execution trace at that input at that
point in time.

Order Monotonicity Given any set of enabled compo
nents (i.e., of components that have an input to pro
cess), at any scheduling point, the addition of another
event can only enable components receiving this event
and cannot cause any component to change their pri
ority order.

Single processors with list scheduling or static priority
Scheduling and synchronous hardwareare allorder-monotonic.
Some dynamic priority scheduling may not be order mono-
tonic (e.g. the priority between A and B depends on whether
or not C is enabled). The following simple algorithm com
putes the maximal execution trace for order monotonic im
plementations.

Maximal Execution Trace The following procedure is used
to obtain maximal execution traces for order mono-
tonic implementations:



1. Existentially quantify both output and transition
relation of all components. The functions of the
components are effectively replaced by "OR" gates
where any input event can cause all output events
to be emitted.

2. Simulate with a single pattern of all-primary-input-
event-presence to obtain the maximal execution
trace.

The correctness of the algorithm hinges on the previous
lemma and the following theorem:

Theorem 3 If the maximal execution traces are the same
for two order monotonic implementations, their execu
tion traces are identical for all possible input traces.

Outline of Proof of Theorem 3 Due to the order mono-
tonic property, the maximal execution traces can be
thought of as actual traces padded with "dummy events"
which can not affect the "real" execution. In fact, it
can be shown that dummy events only add spurious
traces to go on top of the real traces. Therefore, if
maximal execution traces are the same, the real ex
ecution traces for both implementations have to be
identical also.

Table 1 shows all possible execution traces and maxi
mal execution traces. Since the maximal execution traces
are the same between implementations A<B and A=B, the
two implementations must be synchronous equivalent. If the
maximal execution traces are different, as it is between A>B
and A=B or A<B and A=B, we cannot conclude that the
implementations are not synchronous equivalent.

The complexity of this algorithm is quadratic in the num
ber of components. In fact, each component can be executed
no more than n times, where n is the number of components
in the design. This algorithm can only be applied to a design
with no loops in the connection among processes. We sug
gest a simple extension to deal with common loop structures
in section 6.

5 Experiments

We applied abstract communication analysis to a real-life
industrial design: a shock absorber controller [4]. The con
troller sets the shock absorbers' motors to appropriate ab
sorption levels according to inputs from steering wheel, ver
tical acceleration sensor, speed sensor, and battery voltage
sensor. The system includes over 200 binary latches. The
system includes over 200 binary latches, and it is thus not
amenable to formal verification without extensive manual
abstraction. A conservative analysis was performed mak
ing use of the synchronous equivalence checking algorithm
in a very short computing time and with negligible memory
occupation.

The system graph for this design is shown in figure 2.
We use abstract communication analysis algorithm to de
cide synchronous equivalence among the following five im
plementations:

1. Synchronous hardware.

2. Single processor with list scheduling: a,b,c,d,e,f,g,h.

3. Single processor with list scheduling: h,g,f,e,d,c,b,a.

4. Single processor with priority: a>b>c>d>e>f>g>h.

Figure 2: System Graph for Shock Absorber Controller.

impl execution ab c de fgh
1 1 1 1 001 1 10 11 1 10

2 010 01 10 10

3 100 01 10 11

4 01 11

2 1 1 1 111 1 11 11 1 11

3 1 1 1 001 1 10 11 1 10

2 010 01 10 10

3 100 01 10 11

4 01 11

4 1 1 1 111 1 11 11 1 11

5 1 1 1 001 1 10 01 1 10

2 010 01 10 01

3 100 01 10 01

4 01 10 10

5 01

6 10

7 01

8 10

Table 2: Maximal Execution Traces.

5. Single processor with priority: h>g>f>e>d>c>b>a.

We obtained the maximal execution traces for all five
implementations in table 2. The input patterns are recorded
from the top-most input on the graph to the bottom-most
one.

From a quick analysis of these traces, we concluded that
implementation 1 and 3 are synchronous equivalent. This
means that any synchronous hardware implementation and
any single processor implementation (with any delay char
acteristics) with the given list scheduling are synchronous
equivalent. If they both satisfy timing constraints, imple
mentation 3 may have a lower cost. Implementation 1 will
probably have better performance in terms of timing. We
can also conclude that implementation 2 and 4 are syn
chronous equivalent. This means that any single proces
sor implementation (with any delay characteristics) with
the given list scheduling and any single processor imple
mentation with the given static priority scheduling are syn
chronous equivdent also.

6 Summary and Future Direction

We have proposed a definition of functional equivalence for
embedded systems: synchronous equivalence. We also pro
posed a simple algorithm for evaluating equivalence that can
be applied to a large set of implementations.

The calculation of maximal execution traces can easily
be made less conservative. Instead of abstracting away all
functionality, one can abstract away only the state infor
mation of the components and leave everything else intact.



The generated symbolic trace remains correct. Preliminary
study has indicated that this type of extension is very useful
in dealing with request-acknowledge loops and other loops
of similar nature.

Another important direction is to increase the applica
bility of the abstract communication analysis to include ar
chitectures using more than one computational resources.
The key is in making the synchronization explicit among re
sources. A third direction is to deal with timing issues such
as the computation of worst-case execution time. This will
complement abstract communication analysis and possibly
make the synchronous approach as popular in the embedded
system domaiin as it is in the sequential circuit domain.

References

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, C. Paisserone, A. Sangiovanni-Vincentelli,
E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-
Software Co-Design of Embedded Systems: The Polis
Approach. Kluwer Academic Publishers, 1997.

[2] F. Balarin and A. Sangiovanni-Vincentelli. Schedule
validation for embedded reactive real-time systems. In
Proceedings of the Design Automation Conference, June
1997.

[3] G. Berry, P. Couronne, and G. Gonthier. The syn
chronous approach to reactive and real-time systems.
IEEE Proceedings, 79, September 1991.

[4] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecs ka,
L. Lavagno, K. Suzuki, and A. Sangiovanni-Vincentelli.
A case study in computer-aided codesign of embedded
controllers. Design Automation for Embedded Systems,
1(1-2), January 1996.

[5] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. IEEE Proceedings, September 1987.


	Copyright notice 1999
	ERL-99-1

