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1. Introduction

Ptolemy n is anenvironment that supports heterogeneous modeling and design ofconcurrent sys
tems. Its focus is on embedded systems, particularly those that mix technologies. It offers a unified
infrastmcture for modeling systems using a number of models of computation. A domain executes a
niodel ofa system with the semantics ofa particular model ofcomputation. Amodel of a system may
bedesigned using one domain, or it may choose touse several domains, hierarchically composed, to
achieve greater accuracy or efficiency.

The Communicating Sequential Processes (CSP) domain in Ptolemy n models a system as a net
work ofprocesses communicating with messages through unidirectional channels. Ifa process isready
to send a message, it blocks until the receiving process is ready to accept it. Similarly if a process is
ready toaccept a message, itblocks until the sending process isready tosend it.Thus the communica
tion between processes is rendezvous based as both the reading and writing processes block until the
otherside is ready to communicate. This model of computation is non-deterministic as a process can
be blocked waiting to send or receive on any number of channels. It is alsohighly concurrent due to
the nature of the model.

The applications for the CSP domain include resource management and high level system model
ing early in the design cycle. Resource management is often required when modeling embedded sys
tems, and to further support this, a notion of time has been added to themodel of computation used in
the domain. This differentiates our CSP model from those more commonly encountered, which do not
typically have any notion of time, although several versions of timed CSPhave been proposed[6]. It
might thus be more accurate to refer to the domain using our model of computation as the *'Tlmed
CSP" domain, but since the domain can be used with and without time, it is simply referred to as the
CSP domain.

This report is written to beas selfcontained as possible, butinvariably some details regarding how
it builds upon the infrastructure in the Ptolemy n kemel and actorpackages had to be omitted. For
more details on these aspects,and on PtolemyII in general,please refer to [13].
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2. Semantics of the Ptolemy n CSP Model

The modelof computation used in the CSP domain is based on the CSP model first proposed by
Hoare[7] in 1978. In this model, a system is modeled as a network of processes conununicating via
messages along unidirectional channels. This in the onlyway processes canconununicate, thereis no
sharedstate.The transferof message between processes is via rendezvous, which meansboth the send
ing and receiving of a messages from a channel are blocking: i.e. the sending or receiving process
stallsuntilthe message is transferred. Someof the notation usedhereis borrowed fromAndrews' book
on concurrent progranuning [1], which refers to rendezvous-based message passing as synchronous
message passing.

Process Networks (PN)[9] is a model of computation that has much in common with CSP. It also
consists of a network of processes communicating via message passing alongunidirectional channels.
However, in PN, each channel has an unbounded first-in-first-out (FIFO) queue at the receiving end,
so that the sending of messages along a channel is non-blocking. If there are no messages in theFIFO
queue, then thereceiving process stalls until a message is sentto thechannel. Thetwo models also dif
fer in that PN is determinate whereas CSP is non-determinate due to the conditional communication
constructs described below in section 2.2.

2.1 RENDEZVOUS

If a process is ready to send a message, it blocks until the receiving process is ready to accept it.
Similarly if a process is ready to accept a message, it blocks until thesending process is ready to send
it. Thus the communication between processes is rendezvous based as both the reading and writing
processes blockuntil the otherside is ready to communicate. Figure 1 shows thecase where one pro
cess is ready to send before theother process is ready to receive. Theconununication of information in
this way can be viewed as a distributed assignment statement.

The sending process places some data in the message that it wants to send. The receiving process
assigns the data in the message to a local variable. Of course, the receiving process may decide to
ignore thecontents of the message and only concern itselfwiththe fact thata message arrived.

Process A Process B

progress send(B, msg)

>

t

blocked

^ ^ ^ receive(A, var)
/ ' transfer of data / ~

\ \

\ \

FIGURE 1. Illustratinghow processes block waiting to rendezvous
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2.2 CONDITIONAL COMMUNICATION CONSTRUCTS

A lot of the expressiveness in the CSP model comes from the being able toperform nondeterrmn-
istic rendezvous. Nondeterministic rendezvous is basedupon guarded communication statements.

, A guarded communication statement has the form

guard; communication => statements;

The guard is only allowed to reference local variables, and itsevaluation cannot changes the state
ofthe process. For example it isnot allowed toassign tovariables, only reference them. The communi
cation must be a simple send or receive, i.e. another conditional communication statement cannot be
placed here. The statements part can contain any arbitrary sequence ofstatements, including more con
ditional communications.

If the guard isfalse, then the communication is not attempted and the statements are not executed.
If the guard is true, then the communication is attempted, and if it succeeds, the following statements
areexecuted. The guard may be omitted, in which case it is assumed to be true.

Thereare twoconditional communication constmcts builtupon the guarded communication state
ments; CBF and CDO. These are analogous to the if and while statements in most programming lan
guages. They should be read as "conditional if and "conditional do". Note that each guarded
communication statement represents one branch of the GIF orCDO. The communication statement in
each branch can be either a send or a receive, and they can be mixed freely.

2.2.7 CIF:

The form of a CDF is

CIF{

[]

[]

)

For each branch in the CIF, the guard (Gl, G2,...) is evaluated. If it is true (or absent, which
implies true), then the associated communication statement is enabled. If one or more branch is
enabled, then the entire constructblocks until one of the conununications succeeds. If more than one
branch is enabled,the choice of whichenabledbranch succeeds with its communication is made non-
deterministically. The successful conununication is carried out, the associated statements areexecuted
and the process continues. If all of the guards are false, then the process continues executing state
ments after the end of the CIF.

It is important to note that, although this constract is analogous to the common 1/programming
construct, its behavior is very different. In particular all guards of the branches are evaluated concur
rently, and thechoice ofwhich one succeeds does notdepend onitsposition intheconstract. Thenota
tion "[]" is used to hint at the parallelism in the evaluation of the guards. In a common if the branches
are evaluated sequentially and the first branch that is evaluated to true is executed. TheCIF constract
also depends onAe semantics of theconununication between processes, andcanthus stall theprogress
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of the thread if none of the enabled branches is able to rendezvous.

2.2.2 CDO:

The form of the CDO is

CDO{
G1;C1=>S1;

[]
G2;C2=>S2;

[]

}

The behavior of the CDO is similar to the CIF in that for each branch the guard is evaluated and the
choice of which enabled communication to make is taken nondeterministically. However the CDO
repeats theprocess of evaluating andexecuting thebranches untilall the guards return false. Whenthis
happens the process continues executing statements after the CDO construct.

2.2.3 Example using a CDO

An exampleuse of a CDO is in a bufferprocess whichcan both accept and send messages, but has
to be ready to do bothat any stage.The codefor this would look similarto that in figure 2. Notethat in
this case both guards can never be simultaneously false so this process will execute the CDO forever.

2.3 DEADLOCK

A deadlock situation is one in which none of the processes can make progress: they are all either
blocked trying to rendezvous or they are delayed (see the next section). Thus two types of deadlock
can be distinguished:

real deadlock - all active processes are blocked trying to communicate
timedeadlock- all activeprocessesare either blocked trying to communicate or are delayed, and
at least one processes is delayed.

2.4 TIME

In the CSP domain, time is centralized. That is, all processes in a model share the same time.

CDO{
(roomin buffer?); receive(input, beginningOfBuffer) => updatepointer to beginning of buffer;

[]
(messages in buffer?); send(output, endOfBuffer) => updatepointer to end of buffer;

}

FIGURE2. Example of how a CDO might be used in a buffer
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referred to as the current model time. Each process can only choose to delay itself relative for some
period from the current model time, or a process can wait for time deadlock to occur at the current
model time. Even though a process can be aware of the current model time, it should not choose to
wait until the current model time reaches some value as the model time could change while it is wait
ing.It both cases, a process is saidto be delayed.

When a process delays itself for some length of time from the current model time, it is suspended
until time has sufficiently advanced, at which stage it wakes up andcontinues. If the process delays
itselfforzero time, thiswill have no effect andtheprocess willcontinue executing. Anexample of the
use of time in this manner can be seen below in section 7.2.

Aprocess can also choose todelay itsexecution until the next occasion a time deadlock isreached.
The process resumes at the same model time atwhich itdelayed, and this isuseful asa model can have
several sequences ofactions at the same model time. The next occasion time deadlock is reached, any
processes delayed in this manner will continue, and time will not be advanced. An example ofusing
time in this manner can be found in section 8.2.

Hme may be advanced when all the processes are delayed or are blocked trying to rendezvous,
and at least one process isdelayed. If one ormore processes aredelaying until a time deadlock occurs,
these processes are woken upand time isnot advanced. Otherwise, the current model time isadvanced
justenough towake upat least one process. Note that there is a semantic difference between a process
delaying for zero time, which will have noeffect, and aprocess delaying until the next occasion a time
deadlock is reached.

Note also that time, as perceived by a single process, cannot change during its normal execution,
only atrendezvous points orwhen the process delays. Aprocess can be aware of the centralized time,
but it cannot influence the current model timeexceptby delaying itself. Oneof reasons behind using
this model for time is given in 10.1. The choice for modeling time was in part influenced by Pam-
ela[S], a run time library that is used to model parallel programs.

2.5 DIFFERENCES FROM ORIGINAL CSP MODEL AS PROPOSED BY HOARE

The model ofcomputation used by the CSP domain differs from the original CSP[7] model intwo
ways. First, a notion of time has been added. The original proposal had no notion of time, although
there have been several proposals for timed CSP[6]. Second, asmentioned insection 2.2, it ispossible
to use both send and receive inguarded communication statements. The original model only allowed
receives toappear in these statements, though Hoare subsequently extended their scope toallow both
communication primitives[8].

One final thing to note is that in much of the CSP literature, send is denoted using a "!", pro
nounced "bang", and receive is denoted using a "?", pronounced "query". This syntax was what was
used in the original CSP paper[6] by Hoare. Forexample, the languages 0CCAM[2] and LOTOS[3]
both follow this syntax. In the CSP domain inPtolemy n we use send and get, thechoice of which is
influenced by the desire to maintain uniformity of syntax across domains in Ptolemy n thatuse mes
sage passing. This supports the heterogeneity principle in Ptolemy n which enables the construction
and interoperability ofexecutable models that arebuilt under a variety ofmodels ofcomputation. Sim
ilarly, the notation used in the CSP domain forconditional communication constructs differs from that
commonly found in the CSP literature.
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3. Software infrastructure

3.1 MODELING IN PTOLEMY n

In Ptolemy n an executable model consists of a top-level CompositeActor with an instance of
Directorand an instance of Managerassociated with it. The manager provides overall control of the
execution (starting, stopping, pausing). Thedirector implements the semantics of themodel of compu
tation that governs the execution of actors contained by the CompositeActor.

The actors in the CompositeActor are connectedto Relations via Ports. A relationconnects one or
more ports together. A particular collection of actors connected to each other through ports and rela
tions is calleda topology. The choiceof the actors, the directorcontrolling themand howthey are con
nected defines what the model will do.

An actorunder controlof a directormay be either an AtomicActory whichmeansit is indivisible, or
it may be a CompositeActor, in which case it too can have its owndirector and contain a new set of
actors. This is illustrated in figure 4(a).

Messagesare passedbetweenactorsalongrelations.A relationhas a width, greaterthan or equal to
one. The width of a relation is the number of data channels represented by it. A port may have any
number of relations connected to it, and the width of the port is defined to be the sum of the widths of
the relations connected to it. If the port is an inputport, it containsa set of receivers, one for each input
channel. The receivers containedby a port are determined by the directorcontrolling the model. A dia
gram illustrating howa message is transferred across a relation withone and twochannels is shownin
figure 4(b).

Obviously what has just been described is a very rough overview of the software infrastructure
providedby ftolemy II, though hopefully it is enough to allow the reader to understand the CSP mod
els whichare built on top of it. For a much more thoroughdescriptionof Ptolemy n in general see [13].

3.2 CSP DOMAIN

In a CSP model, the director is an instance of CSPDirector. Since the model is controlled by a
CSPDirector, all the receiversin the ports are CSPReceivers. The combinationof the CSPDirector and
CSPReceivers in the ports gives a model CSP semantics. The CSP domain associates each channel
with exactly one receiver, located at the receiving end of the channel. Thus any process that sends or
receives to any channel will rendezvous at a CSPReceiver. Figure 5 shows the static structure diagram
of the five main classes in the CSP kernel, and a few of their associations. These are the classes that
provide all the infrastracture needed for a CSP model.
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Ptolemy II Syntax OCCAM syntax

send 1

get 7

CDF ALT

CDC ALT wrapped in a while loop.

FIGURE 3. Comparison of syntaxes used in CSP domain and in OCCAM
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CSPDirector: gives a model CSP semantics. It takes care of starting all the processes and controls/
responds to both real and time deadlocks. It also maintains and advances the model time when neces
sary.

CSPReceiver: ensures that conununication of messagesbetween processesis via rendezvous.

CSPActor: addsthe notion of time and theability to perform conditional communication.

ConditionalReceive, ConditionalSend: used to construct the guarded communication statements nec
essary for the conditional communication constructs.

3.3 MESSAGES

All messages in Ptolemy IIare represented by Tokens. The data carried in a message isdefined by

D1: icca) dirccloi

send(0,t)

send(0,t0)-

send(l,t1).

receiver.put(t)

receiver.put(tO}
receiver.put(t1)

get(O) >

)r
i P2 E2

token t

,get{0). get(1)

token to, t1

FIGURE 4. (a) Example ofa topology illustrating the control of a modeland how the modelmay be
hierarchically composed, (b) Detailed view of a relation with one and two channels in Rolemy II.



the type of token used. The tokens available are shown in figure 6, though the user is free to develop
new token classes. For more information on the token classes refer to [13]. For most models the tokens
supplied should be sufficient.

CSPDIrtetor

'^sctociBloclfd I int
'.aetonOalayad: M
•.avranflTkn*: doufal*

• I
•_inutiOaRtPandiog: boolt>n
• rtnm«<lenUnt)m>cl: bool»»n

fCSPDirectorO
«CSPD!rector(nafne: Stiing)
«CSPDtrector(name : String, ws: Woritspaee)
fgetCurrentThneO: double
4-8etCurrentTime(newTline; double)
4-setUntiined(value: boolean)
#_actorBlocl<edO
*_actorDelayed(delta: double, actor: CSPActor)
9 aetoiUnblockedn

1..1

CSPRecehrer

'_eontftionatR*eaiv»Waitbi9: beettm
'.eendWenaiSmdWaitbig: IwolMn
•.contabwr: lOPoct
•_gaIWaning: bod—n
'.putWaHbig: boolMui
•.othMPwacit; CSPActor
•.rondazvoutComplata: bootoan
'.abnulationPauMd: boolaan
•_tbnulatb>nFbiimad: booloan
• totcan:Tofc»n

0..n

controls

«-CSPRecelverO
*CSPReceiver(p: lOPort)
vgetO: Token
«i)ut(token: Token)
r^tContainerO : Nameable
44tasRoomO: txiolean
fhasTokenO: boolean
4-setContainer(paiont: lOPorl)
t'SetRnishO
^setPause(newVatue: Iwolean)
•.getOtherPaientO: CSPActor
b.isConditionalReceiveWaitingO: boolean
b_isCanditk)nalSendWaitbigO: boolean
b.lsGetWaitingO: boolean
b.isPutWaitingO: boolean
lll_sotConditionaIRecieve(v: boolean, parent: CSPActor)
lll_setCond!tk>na]Send{v: boolean, parent: CSPActor)

CSPActor

0..1

contains

"S"'

: teolMA

•_bfsnehMAc(Va: M
'.brsnchnSlockad: M
•_bninehMCMay*d: bit
•JmncKTiybig: bit
•_drt«yd: bool>«n
•_bit«cnalLock: Obiaet

.suoeasttuBnnch: bit
tlifxlLtet: lJnfc«dtJ»t

+CSPActorO
SPActor(w8: Woifcspace)

4CSPActor<cont: CompositaActor. name: String)
'tohooseBranchCbranches: CondHioitalBranchD): int
•KletayO
Ktolay(detta: double)
t'teiminateO
ll_branchBlockedO
V_branchFailed(branchNumt)er: int)
»_branchSucceeded(branchNumber: bit)
H.branchUnblockedO
b.contlnueO
_isBranchRrst(branchNumt>er: int): tioolean

releaseRfstftiranchNumber: mn
lOPort

j contabied

Icontains

0..n creates for conditional rendezvous

perfoims conditional rendezvous for 1..1

ConditlonatBranch

_aiva: Iwalaan
•_bfanchNuinbar: bit
•_guard: boolaan
•_parant: CSPActor
t.raoalvor: CSPRacaivar
|yoj«ari^Tojean_
tConditionalBr8nch(gu8rd: boolean, port: lOPort, branchID : int)
tgetlDO: bit
^etGuardO: boolean
+getParentO: CSPActor
+getReceiverO: CSPReceiver
+getTokenO: Token
♦isAIiveO:boolean
4-setAlive(value: boolean)
•_rtiedt^idWgiJJ^______^^

«-ConditionaIReceive(guard: boolean, port : lOPort, channel: bit, id : bit)
♦■lunQ

CondWonalSend
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*ConditionalSend(guard: boolean, port: lOPort, channel: bit id: int, t: Token)
♦•runft

FIGURE 5. Static structure diagram for classes in the CSP kernel.
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BooleanMatrixToken

BooleanToken

ComplexMatrixToken
ComplexToken
DoubleMatrixToken

DoubleToken

IntMatrixToken

IntToken

LongMatrixToken
LongToken
ObjectToken
StringToken

FIGURE 6. Tokens available In ptolemy.data package.
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4. Using the CSP domain in Ptolemy II

For a model to have CSP semantics, it must have a CSPDirector controlling it. This ensures that
the receivers in the ports are CSPReceivers, so all communication of messages between processes is
via rehdezvous. Note that each actor in the CompositeActorunder the control of the CSPDirector rep
resents a separate process in the model.

4.1 RENDEZVOUS

Since the ports contain CSPReceivers, the basic communication statements send(channel, token)
and get(channel) will have rendezvous semantics. Thus the fact that a rendezvous is occurring on
eveiy communication is transparent to the actor code.

4.2 CONDITIONAL COMMUNICATION CONSTRUCTS

In order to use the conditional communication constructs, an actor must be derived from CSPAc-
tor. There are three steps involved:

1) Create a ConditionalReceive or ConditionalSend branch for each guarded communication state
ment, depending on the communication. Pass each branch a unique integer identifier, starting from
zero, when creating it. The identifiers only need to be unique within the scope of that CDO or CBF.

2) Pass the branches to the chooseBranchO method in CSPActor. This method evaluates the
guards, and decides which branch gets to rendezvous, performs the rendezvous and retums the identi
fication number of the branch that succeeded. If all of the guards were false, -1 is returned.

3) Execute the statements for the guarded communication that succeeded.

boolean continueCDO = true;
while (continueCEKD) {

// step 1:
ConditionalBranchf] branches = new ConditionalBranch[#branchesRequired];
// Create a ConditionalReceive or a ConditionalSend for each branch

// e.g. branchesfO] = new ConditionalReceive( (guard), input, 0,0);

// step 2:
int result = chooseBranch(branches);

// step 3:
if (result = 0) {

// execute statements associated with first branch

} else if (result = 1) {
// execute statements associated with second branch.

} else if... // continue for each branch ID

} else if (result = -1) {
// all guards were false so exit CDO.
continueCDO = false;

} else {

FIGURE 7. Template for executing a CDO construct.
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boolean guard = false;
boolean continueCDO = true;

ConditionalBranch[] branches = new ConditionalBranch[2];
while (continueCDO) {

// step 1
guard = (_size < depth);
branches[0] = new ConditionalReceive(guard, input, 0,0);
guard = Csize > 0);
branches[l]= new ConditionalSend(guard, output, 0,1, _buffer[_readFrom]);

// step 2
int successfulBranch = chooseBranch(branches);

// step 3
if (successfulBranch = 0) {

_size++;
_buffer[_writeTo]= branches[0].getToken();
_wTiteTo= -H-.writeTo % depth;

} else if (successfulBranch= 1) {
_size—;

_readFrom = ++_readFrom % depth;
} else if (successfulBranch==-!){

// all guards false so exit CDC
// Note this cannot happen in this case

continueCDO = false;

} else {
throw new TerniinateProcessException(getName() + +

"branch id returned during execution of CDO.");
}

FIGURE 8. Code used to implement the buffer process described infigure.

Asample template for executing a CDO is shown infigure 7. The code for the buffer described in
figure 7 is shown in figure 8. In creating the ConditionalSend and ConditionalReceive branches, the
first argument represents the guard. The second and third arguments represent the port and channel to
send or receive the message on. The fourth argument is the identifier assigned to the branch. The
choice ofplacing the guard in the constructor was made tokeep the syntax ofusing guarded communi
cation statements to the minimum, and to have the branch classes resemble the guarded communica
tion statements they represent as closely as possible. This can give rise to the case where the Token
specified in a ConditionalSend branch may not yet exist, but this has no effect as once the guard is
false, the token in a ConditionalSend is never referenced.
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Theother option considered was to wrap thecreation of each branch as follows:

if (guard) {
// create branch and place in branches array

} else {
// branches array entry for this branch is null

}

However this leads to longer actorcodeandwhat is happening is notas syntactically obvious.
Thecode forusing a CIFis similar to thethatin figure 7 except thatthesurrounding while loop is

omitted and the case when the identifier returned is -1 does nothing. At some stage the steps involved
in using a CIF or a CDO may be automated using a pre-parser, butfor now the user must follow the
approach described above.

It is worth pointing out that if most channels in a model arebuffered, it may be worthwhile con
sidering implementing the model in thePNdomain which implicitly hasanunbounded buffer on every
channel.

4.3 TIME

If a process wishes to use time, theactor representing it must derive from CSPActor. Asexplained
in section 2.4,eachprocess in the CSPdomain is able to delay itself, eitherfor some period from the
current model time or until the next occasion time deadlock is reached at the current model time. The
twomethods to callaredelay(double) and waitForDeadlock(). Recall that if a process delays itselffor
zerotimefrom thecurrent time, the process will continue immediately. Thusdelay(O.O) is not equiva
lent to waitForDeadlockO

If no processes aredelayed, it is alsopossible to set the model time by calling the method setCur-
rentTimefnewUme) on the director. However, this method can only be called when no processes are
delayed, as thestateof themodel may be rendered meaningless if the model time is advanced to a time
beyond the earliest delayed process. It is primarily for composing CSP with otherdomains, which is
explained below in section 10.1.

As mentioned in section2.4, as far as each process is concemed, time can only increasewhile it is
blocked waiting to rendezvous or when delaying. A process can be aware of the current model time,
but it shouldonly ever affect the model time by delaying its execution, thus forcing time to advance.
The method setCurrentTimefnewUme) should never be called from a process.

By defaulteverymodel in the CSP domain is timed.To use CSP withouta notion of time, do not
use thedelay(double) method. The infrastructure supporting time does not affect the model execution
if the delay(double) method is not used.
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5. Model setup and control

Thejob of the CSPDirector in controlling the model is two fold. First, it must create and start a
thread for each actor under its control. Each of these threads represents a process in our model. Second,
it is responsible for detecting and responding to both real and time deadlocks. It can also pause and
resume the model, and terminate all the processes when realdeadlock is detected.

5.1 STARTING THE MODEL

The director creates a thread for each actor under its control in its initialize() method. It also
invokes the initialize() method on each actorat this time.The director startsthe threads in its prefire()
method, and detects and responds to deadlocks in its fire() method. The thread for each actor is an
instance of ProcessThread, which invokes the prefire(), fireQ andpostfireQ methods for the actoruntil
it finishes or is terminated. It then invokes the wrapupO methodand the threaddies.

director.initializeO => create a thread for each actor

updatecountof activeprocesseswith the director
call initializeO on each actor

director.prefireO => start the processthreads=> calls actor.prefire()
calls actor.fireO
calls actor.postfireO
repeat.

director.fireO => handle deadlocks until a real deadlock occurs.

director.postfireO => return a boolean indicating if the execution of the model shouldcontinue for
another iteration

director.wrapupO => terminate all the processes => calls actor.wrapupO
decrease the count of active processes
with the director

FIGURE 9. Sequence ofsteps involved insetting up and controlling the model.

Figure 10shows the code executed bythe ProcessThread class. Note that it makes noassumption
about theactor it isexecuting, so it canexecute any domain-polymorphic actor aswell asCSPdomain-
specific actors. In fact any other domain actor that does notrely on thespecifics of its parent domain
can be executed in the CSP domain by the ProcessThread.

5.2 DETECTING DEADLOCKS:

For deadlock detection, the director maintains three counts:

•thenumber of active processes which are threads that have started buthavenot yet finished
•thenumber of blocked processes which is thenumber of processes that are blocked waiting

to rendezvous, and
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•thenumber of delayed processes which is the number of processes waiting for timeto
advance plus thenumber of processes waiting for time deadlock to occur at thecurrent model
time.

When the number of blocked processes equals thenumber of active processes, then real deadlock
has occurred and the fire method of the director returns. When the number of blocked plus the number
of delayed processes equals the number of active processes, and at least oneprocess is delayed, then
timedeadlock has occurred. If at leastone process is delayed waiting for timedeadlock to occurat the
currentmodel time, thenthe directorwakes up all suchprocess and does not advance time.Otherwise
the director looks at its list of processes waiting for time to advance, chooses the earliest one and
advances time sufficiently to wsdce it up. It also wakes up any otherprocesses due to be woken up at
the new time. The director checks for deadlock each occasion a process blocks, delays or dies.

For the director to workcorrectly, thesethreecounts need to be accurate at all stages of the model
execution, so when they are updated becomes important. Keeping the active count accurate is rela
tively simple, the director increase it when it starts the thread, and decreases it when the thread dies.
Likewise the count of delayed processes is straightforward: when a process delays, it increases the
count of delayed processes, and the directorkeepstrackof when to wakeit up. The count is decreased
when a delayed process resumes.

public void ron() {
try {

boolean iterate = true;
while (iterate) {

// container is checked for null to detect the termination

// of the actor,

iterate = false;

if ((Entity)_actor).getContainer() != null && _actor.prefire()) {
_actor.fire();
iterate = _actor.postfire();

}
}

} catch (TerminateProcessException t) {
// Process was terminated early

} catch (DlegalActionException e) {
_manager.fireExecutionError(e);

) finally {
try {

_actor.wrapup();
}catch (IllegalActionExeption e) {

_manager.fireExecutionEiTor(e);

)
_director.decreaseActiveCount();

}
}

FIGURE 10. Code executed by ProcessThread.run()
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However, due to the conditional communication constructs, keeping the blocked count accurate
requires a little more effort.For a basic send or receive, a process is registered as being blockedwhen
it arrives at the rendezvous point before the matching communication. The blocked count is then
decreased by one when the corresponding communication arrives. However what happens when an
aptor is carrying out a conditionalcommunication construct? In this case the process keeps track of all
of the branches for which the guards were true, and when all of those are blocked trying to rendezvous,
it registers the process as being blocked.When one of the branches succeeds with a rendezvous, the
process is registered as being unblocked.

5.3 TERMINATING THE MODEL:

A process can finish in oneof twoways: eitherby returning false in its prefire() or posthreO meth
ods, in which case it issaid to have finish^ normally^ orifitisterminated early by aTerminateProces-
sException being thrown. For example, if a source process is intended to send ten tokens and then
finish, it would exit its fire() method after sending the tenth token, and return false in its postfireO
method. This causes the ProcessThread, see figure 10, representing the process, to exit the while loop
and execute the finally clause. The finally clause calls wrapupO on the actor it represents, decreases
the count of activeprocesses in the director, and the thread representing the processdies.

A TerminateProcessException is thrown whenever a process tries to conununicate via a channel
whose receiverhas itsfinished flag set to true. When a TerminateProcessException is caught in Pro
cessThread, the finally clause is also executed and the thread representing the processdies.

To terminate the model, the director sets thefinished flag in each receiver. The next occasion a pro
cess tries to send to or receive from the channel associated with that receiver, a TerminateProcessEx
ception is thrown. This mechanism can also be used in a selective fashion to terminate early any
processes that communicate via a particular channel. When the director controlling the execution of
the model detects real deadlock, it returns from its fire() method. In the absence of hierarchy, this
causes thewrapupO method of thedirector to be invoked. It is thewrapupO method of thedirector that
sets the finished flag in each receiver. Notethat the TerminateProcessException is a runtime exception
so it does not need to be declared as being thrown.

There is also the option of abruptly terminating all the processes in the model by calling termi-
nateO on the director. This method differs from the approach described in the previous paragraph in
that it stops all the threads immediately and does not give them a chance to update the model state.
After calling this method, thestate of themodel is unknown andsothemodel should be recreated after
calling this method. This method is only intended for situations when theexecution of the model has
obviously gone wrong, andfor it to finish normally would eithertaketoo long or could nothappen. It
should rarely be called.

5.4 PAUSING/RESUMING THE MODEL

Pausing and resuming a model does not affectthe outcome of a particular execution of the model,
only the rate of progress. The execution of a model can be paused at any stage by calling the pause()
method on the director. This method is blocking, and will only return when the model execution has
been successfully paused. To pause the execution of a model, the director sets a paused flag in every
receiver, and the next occasion a process tries to send to or receive from the channel associated with
that receiver, it is paused. The whole model is pausedwhen all the active processes are delayed, paused
or blocked. To resume the model, the resumeO method can similarly be called on the director This
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method resets the paused flag in every receiver and wakes up every process waiting on a receiver lock.
If a process was paused, it sees that it is no longer paused and continues. The ability to pause and
resume the execution of a model is intended primarily for user interface control.
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6. Controlling communication between Threads

6.1 BRIEF INTRODUCTION TO THREADS IN JAVA

The CSP domain, like the rest of Ptolemy n, is writtenentirely in Java and takes advantage of the
features builtintothelanguage. In paiticular, theCSPdomain depends heavily on threads andon mon
itorsforcontrolling the interaction between threads. In anymulti-threaded environment, carehas to be
taken to ensure that the threads do not interact in unintended ways, and that the model does not dead
lock. Note deadlock in this sense is a bug in the modeling environment^ which is different from the
deadlock talked aboutbeforewhich mayor maynot be a bug in the model beingexecuted.

A monitor is a mechanism for ensuring mutual exclusion between threads. In particular if a thread
has a particular monitor, acquired in order to execute some code, then no other thread can simulta
neously have that monitor. If another thread tries to acquire that monitor, it stalls until the monitor
becomes available. A monitor is also called a locky and one is associated with every object in Java.

Code that is associated with a lock is defined by the synchronized keyword. This keyword can
either be in the signature of a method, in which case the entire method body is associated with that
lock, or it can be used in the body of a method using the syntax:

synchronized(object) {
// synchronized code goes here

}

This causes the code inside the brackets to be associated with the lock belonging to the specified
object. In either case, when a thread tries to execute code controlled by a lock, it must either acquire
the lock or stall until the lock becomes available. If a thread stalls when it already has some locks,
those locks arenotreleased, soany otherthreads waiting on those locks cannot proceed. Thiscan lead
to deadlock when all threads are stalled waiting to acquire some lock they need.

A thread canvoluntarily relinquish a lock when stalling bycalling object.wait() where object is the
object torelinquish and wait on.This causes the lock tobecome available toother threads. Athread can
also wake up any threads waiting on a lock associated with an object by calling notifyAll() on the
object. Note that to issue a notifyAll() onan object it isnecessary toown the lock associated with that
object first. By careful use of these methods it is possible to ensure that threads only interact in
intended ways and that deadlock does not occur.

6.1.1 Approaches to locking used in the CSPdomain

One of the key coding patterns followed is to wrap each waitQ call in a while loop that checks
some flag. Only when the flag is set to false canthe thread proceed beyond that point. Thus thecode
will often look like

synchronized(object) {

while(flag) {
object.wait();

}

}

Theadvantage to this is thatit is notnecessary to worry about what other thread issued thenotifyAll()
on the lock; the thread can only continue when the notifyAll() is issued and the flag has been set to
false.
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Another approach used is to keep the number of locks acquired by a thread as few as possible,
preferably never more than one at a time. If several threads share the same locks, and they must
acquire more than onelockat some stage, then the locks should always be acquired in the same order.
Toseehow thisprevent deadlocks, consider two threads, threadl andthread2t thatareusing twolocks
A and B. If threadl obtains A first, then B, and threadl obtains B first then A, then a situation could
arisewhereby threadl ownslockA and is waiting on B, and threadl owns lockB andis waiting on A.
Neither thread can proceed and so deadlock has occurred. This would be prevented if both threads
obtained lock A first, then lock B. This approach is sufficient, but not necessary to prevent deadlocks,
as other^proaches mayalsoprevent deadlocks without imposing thisconstraint on the program[10].

Finally, deadlock often occurs even when a thread, which already has some lock, tries to acquire
another lock only to issue a notifyAll() on it. To avoid this situation, it is easiest if the notifyAll() is
issued from a new thread which has no locks that could be held if it stalls. This is often used in the CSP
domain to wakeup any threadswaiting on receivers, for example after a pauseor whenterminating the
model. The class NotifyThread, in the ptolemy.actor.process package, is used for this purpose. This
class takes a list of objects in a linked list, or a single object, and issues a notifyAll() on each of the
objects from within a new thread.

The CSP domain kernel makes extensive use of the above patterns and conventions to ensure the
modelingengine is deadlock free. Howeverfor a much more thorough introductionto concurrent pro
gramming Java, a very good starting point is [10].

6.2 RENDEZVOUS ALGORITHM

In CSP, the lockingpoint for all communication between processes is the receiver. Any occasion a
process wishes to send or receive, it must first acquire the lock for the receiver associated with the
channel it is communicating over. Two key facts to keep in mind when reading the following algo
rithms are that each channel has exactly one receiver associated with it and that at most one process
can be trying to send to (or receivefrom) a channel at any stage. The constraint that each channel can
have at most one process trying to send to (or receive from) a channel at any stage is not currently
enforced, but an exception will be thrown if such a model is not constmcted.

The rendezvousalgorithm is entirelysymmetric for the put() and the get(), except for the direction
the token is transferred. This helps reduce the deadlock situations that could arise and also makes the
interaction between processes more understandable and easier to explain. The algorithm controlling
how a get() proceeds is shown in figure 11. The algorithm for a put() is exactly the same except that
put and get are swappedeverywhere. Thus it suffices to explain what happens when a get() arrives at a
receiver i.e. when a process tries to receive from the channel associated with the receiver.
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FIGURE 11. Rendezvous algorithm

When a get() arrives at a receiver, a put() is either already waiting to rendezvous or it isn't. Both
the get() and put() methods are entirely synchronized on the receiver so theycannothappen simulta
neously (only one thread can possess a lock at any given time). Without loss of generality assume a
get() arrives before a put().The rendezvous mechanism is basically three steps: a get() arrives, a put()
arrives, the rendezvous completes.
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(1) Whenthe get arrives it sees that it is first and sets a flag sayinga get is waiting. It thenwaitson
the receiver lock while the flag is still true, (2) When a put arrives, it sets the geiWaiting flag to false,
wakesup any threads waiting on the receiver (including the get), sets the rendezvousComplete flag to
false and then waits on the receiver while the rendezyoitsComplete flag is false, (3) The thread execut
ing the get wakesup, sees that a put has arrived, sets the rendezvousComplete flag to true, wakesup
any threads waiting on the receiver and returns thus releasing the lock. The thread executing the put
then wakesup, acquires the receiver lock, sees that the rendezvousis complete and returns.

Following the rendezvous, the state of the receiver is exactly the same as before the rendezvous
arrived, and it is ready to mediate another rendezvous. It is worth noting that the final step, of making
sure the second conununication to arrive does not retum until the rendezvous is complete, is necessary
to ensure that the correct token gets transferred.Consider the case again when a get arrives first,except
now the put returns immediately if a get is already waiting. A put arrives, places a token in the
receiver, sets the get waiting flag to false and returns. Now suppose another put arrives before the get
wakes up, which will happen if the thread the put is in wins the race to obtain the lock on the receiver.
Then the second put places a new token in the receiver and sets the put waiting flag to true. Then the
get wakes up, and returns with the wrong token! This is known as a race conditiony which will lead to
unintended behavior in the model.

6.3 CONDITIONAL COMMUNICATION ALGORITHM

There are two steps involved in executing a CIF or a CDO: first deciding which enabled branch
succeeds, then carrying out the rendezvous.

6.3.1 Built on top ofrendezvous:

When a conditional construct has more than one enabled branch (guard is true or absent), a new
thread is spawned for each enabled branch. The job of the chooseBranch() method is to control these
threads and to determine which branch should be allowed to successfully rendezvous. These threads
and the mechanism controlling them are entirely separate from the rendezvous mechanism described
in section 6.2, with the exception of one special case, which is described in section 6.4. Thus the con
ditional mechanism can be viewed as being built on top of basic rendezvous: conditional communica
tion knows about and needs basic rendezvous, but the opposite is not true. Again this is a design
decision which leads to making the interaction between threads easier to understand and is less prone
to deadlock as there are fewer interaction possibilities to consider.

which branch should succeed?

•ZJ
c rendezvous

FIGURE 12. Conceptual view of how conditional communication is built on top of rendezvous.
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6.3.2 Choosing which branch succeeds

The manner in which the choice of which branch can rendezvous is worth explaining. The choose-
BranchOmethod in CSPActortakes an array of branches as an aigument. If all of the guards are false,
it retums -1, which indicates that all the branches failed. If exactly one of the guards is true, it performs
the rendezvous directly and retums the identification number of the successful branch. The interesting
caseis when morethanoneguard is true. In thiscase,it creates andstartsa new thread foreachbranch
whose guard is tme. It then waits, on an internal lock, for onebranch to succeed. At that point it gets
woken up, sets a finished flag in the remaining branches and waits for them to fail. When all the
threads representing the branches are finished, it retums the identification number of the successful
branch. This approach is designed to ensure that exactly oneof thebranches created successfully per
forms a rendezvous.

6.3.3 Algorithm used by each branch:

Similar to the approach followed for rendezvous, the algorithm by which a thread representing a
branch determines whether or not it can proceed is entirely symmetrical for a ConditionalSend and a
ConditionalReceive. The algorithm followed by a ConditionalReceive is shown figure 13. Again the
locking point is the receiver, and all code concemed with thecommunication is synchronized on the
receiver. The receiver is also where all necessary flags are stored.

Consider three cases.

(1) a ConditionalReceivearrives and a put is waiting.
In this case, the branchchecksif it is the firstbranchto be readyto rendezvous, and if so, it is goes

ahead and executes a get. If it is not the first, it waits on thereceiver. When it wakes up, it checks if it
is still alive. If it is not, it registers that it has failed and dies. If it is still alive, it starts again by trying
to be the first branch to rendezvous. Note that a put cannot disappear.

(2) a ConditionalReceive arrives and a conditionalSend is waiting
When both sides are conditional branches, it is up to the branch that arrives second to check

whether the rendezvous can proceed. If both branches arethe first to tryto rendezvous, theCondition
alReceive executes a get(), notifies itsparent that it succeeded, issues a notifyAll() onthe receiver and
dies. If not, it checks whether it has been terminated by chooseBranch(). If it has, it registers with
chooseBranchO that it has failed and dies. If it has not, it retums to the start of thealgorithm and tries
again. This is because a ConditionalSend could disappear. Note that the parent of the first branch to
arrive at the receiver needs to be stored for the purpose of checking if both branches are the first to
arrive.

This part of the algorithm is somewhat subtle. When the second conditional branch arrives at the
rendezvous point it checks that both sides are the first to try to rendezvous for their respective pro
cesses. If so, then the ConditionalReceive executes a get(), so that the conditionalSend is never aware
that a ConditionalReceive arrived: it only sees the get().

(3) a ConditionalReceive arrives first.

It sets a flag in the receiver that it is waiting, then waits on the receiver. When it wakes up, it
checks if it has been killed by chooseBranch. If it has it registers with chooseBranch that it has failed
anddies. Otherwise it checks if a put is waiting. It only needs to check if a putis waiting because if a
conditionalSend arrived, it would have behaved as in case (2) above. If a put is waiting, the branch
checks if it is the first branch to be ready to rendezvous, and if so it is goesahead andexecutes a get. If
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it is not the first, it waits on the receiver and tries again.

6.4 MODinCATION OF RENDEZVOUS ALGORITHM:

Consider the case when a conditional send arrives before a get. If all the branches in the condi
tional-communication which the conditionalsend is a part of are blocked,then the process will register
itself as blocked with the director. Then the get comes along, and even though a conditional send is
waiting, it too wouldregisteritself as blocked. This leads to one too manyprocesses being registered
as blocked, which could lead to premature deadlock detection.

To avoid this, it is necessary to modify the algorithm used for rendezvous slightly. The change to
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FIGURE 13. Algorithm used to determine Ifa conditional rendezvous branch succeeds or fails
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the algorithm is shown in the dashed ellipse in figure 14.It doesnot affect the algorithm except in the
case when a conditional send is waiting when a get arrives at the receiver. In this case the process that
calls theget should wait on the receiver until the conditional send waiting flag is false. If the condi
tional send succeeded, and hence executed a put, then the get waiting flag and the conditional send
waiting flag should both be false and theactor proceeds through to the third step of therendezvous. If
the conditionalsend failed, it will have reset the conditional send waiting flag and issued a notifyAll()
on the receiver, thus wakingup the get andallowing it to properly wait for a put.

The same reasoning also applies to the case when a conditional receive arrives at a receiver before
a put.
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FIGURE14. Modification of rendezvous algorithm, section 6.4, shown in ellipse
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7. Demos and Examples

7.1 DINING PfflLOSOPHERS.

This implementation of the Dining Philosophers problem illustrates both time and conditional
communication in theCSPdomain. Five philosophers areseated at a table with a large bowl of food in
the middle. Between each pairof philosophers is onechopstick, and to eat, a philosopher needs both
thechopsticks beside him. Each philosopher spends his life in the following cycle: thinks for a while,
gets hungry, picks up one ofthe chopsticks b^ide him, then the other, eats for a while and puts the
chopsticks down on the table again. If a philosopher tries to grab a chopstick but it is already being
usedby another philosopher, then the philosopher waits until thatchopstick becomes available. This
impliesthatno neighboring philosophers can eat at the sametimeand at mosttwophilosophers can eat
at a time.

o o
o

o

= chopstick

= philosopher

FIGURE 15. Illustrationof the Dining Philosophers problem

The Dining Philosophers problem wasfirst dreamtup by EdsgerW. Dijkstrain 1965. It is a classic
concurrentprogranuningproblemthat illustrates the two basic propertiesof concurrentprogranuning:

Liveness. How can we design the programto avoiddeadlock, where none of the philosopherscan
make progress because each is waiting for someone else to do something?

Fairness. How can we design the program to avoidstarvation, where one of the philosophers
could make progress but does not because others always go first?

This implementation uses an algorithm that letseachphilosopher randomly chosewhich chopstick
to pickup first (via a CDO),and all philosophers eat and think at the samerates.Eachphilosopher and
each chopstick are represented by a separate process. Each chopstick has to be ready to be used by
either philosopherbeside it at any time, hence the use of a CDO. After it is grabbed, it blocks waiting
for a message from the philosopher that is using it. After a philosopher grabs both the chopsticks next
to him, he eats for a random time. This is represented by calling delay(double) with the random inter
val to eat for. The same approach is used when a philosopher is thinking. Note that because messages
are passedby rendezvous, the blocking of a philosopher when it cannotobtaina chopstick is obtained
for free.

Thisalgorithm is fair, as anytimea chopstick is not being used,andbothphilosophers try to use it,
they both havean equal chanceof succeeding. However this algorithm does not guarantee the absence
of deadlock, and if it is let run long enough this will eventually occur. The probability that deadlock
occurs sooner increases as the thinking times are decreased relative to the eating times.
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7.2 M/M/1

This demo illustrates a simple M/M/1 queue. It has three actors, one representing the arrival of
customers, onefor the queueholding customers that have arrived andhavenotyet beenserved, and the
third representing the server. Both the inter-anival times of customers and the service times at the
serverare exponentially distributed, whichof course is what makesthis a M/M/1 queue.

customers

arriving
buffer

w

FIGURE 16. Actors involved in M/M/1 demo

This demo makes use of basic rendezvous, conditional rendezvous and time. By varying the rates
for the customer arrivals and service times, and varying the length of the buffer, you can see various
trade-offs. Forexample if the buffer length is tooshort, customers may arrive that cannot bestored and
so aremissed. Similarly if theservice rate is faster than thecustomer arrival rate, then theserver could
spend a lot of time idle.

7.3 PAUSING M/M/1

This example demonstrates how pausing and resumption works. The setup is exactly the same as
in the M/M/1 demo, except that the thread executing themodel callspause() on the director as soonas
themodel starts executing. It then waits two seconds, as arbitrary choice, and then calls resumeQ. The
purpose of this demo is to show that the pausing and resuming ofa model does not affect the model
results, only its rate ofprogress. The ability topause and resume a model is primarily intended forthe
user interface.

7.4 SIEVE OF ERATOSTHENES

This demo illustrates changes to the topology during the execution of a model. It is explained in
detail in the section on topology changes, section 8.2.
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8. Changes to the Topology during the Execution of a Model

For some models it may be necessary to change the topology of the model during the course of
executing the model. Thisis supported in theCSPdomain, butonlyat specific pointsof the model exe
cution. In particular, changes to the topologyare only allowed at deadlockpoints.

When the director detects deadlock, real or timed, it then checks if any topology changes have
beenqueued with it. If one or more topology change hasbeenqueued, it carries themoutandcontin
ues. Notethat the result of a topology change mightremove an otherwise realdeadlock by introducing
new processes.

8.1 HOW TO WRITE AN ACTOR THAT USES TOPOLOGY CHANGES

The procedurefor making a topologychange is relatively straightforward. First the actor must cre
ate a TopologyChangeRequest object representing the topology change. Second, the request must be
queued with the directorby calling queueTopologyChange(). If the topologychangewill not affectany
channelsor ports the processis communicating with, thenthe processcan proceed. Otherwise the pro
cess should delay itself until the next occasion a time deadlock occurs by calling waitForDeadlock().
Then, whenthe process wakesup again, the directorwillalready haveperformed the mutation. This is
because topology changes get processed when a deadlock is detected, and any queued topology
changes are done before waking up delayed processes or advancing time.

The reason for delaying is that it is important that no process be waiting to rendezvousat a receiver
in a port affected by the topology change. When a port is affected by a topology change, it is likely that
it will abandon its old receivers and create new ones. This will leave the process trying to rendezvous
with a dangling receiver, which will eventuallycause the model to terminate early. To get around this
problem, it is necessary to delay the execution of any processes that may be affected by a rendezvous
until the next occasion a time deadlock occurs. For example in the CSPSieve process, each process
calls waitForDeadlockO immediately after queueing the mutation.

To create a TopologyChangeRequest, it is necessary to create a subclass that implements the
abstract method constructEventQueue(). This is most easily done using an inner class, normally in a
private method of the actor. The code in CSPSieve contains an example of this. The reason for using an
inner class with a method that creates the topology change is to avoid potential deadlocks. The idea
behind avoiding the deadlocks is that the topology changes only happen when the request is processed,
which is when the constructEventQueue() method gets invoked. Thus the topology changes are made
from within the thread that the director is running in, and not the thread running the process that
requested the change.

For a more detailed explanation of how changes to the topology are constructed and executed dur
ing the execution of a model, and the changes that are allowed, try reading the appropriate section in
the Ptolemy II design document[13].

8.2 SIEVE OF ERATOSTHENES EXAMPLE

This example implements the Sieve of Eratosthenes. It is an algorithm for generating a list of
prime numbers. It originally consists of a source generating integers, and one sieve filtering out all
multiplesof two. When the end sieve sees a number that it cannot filter, it creates a new sieveto filter
out all multiplies of that number. Thus after the sieve filtering out the number two sees the number
three, it creates a new sieve that filters out the number three. This then continues with the three sieve

26 of33 Ptolemy n



eventually creatinga sieve to filter out all multiples of five, and so on. Thus after a while there will be
a chain of sieves each filtering out a different prime number. If any number passes through all the
sieves and reaches the end with no sieve waiting, it must be another prime and so a new sieve is cre
ated for it.

. This demo is an example of how changes to the topology can be made in the CSPdomain. Each
topology change here involves creating a new CSPSieve actorand connecting it to theendof thechain
of sieves.
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FIGURE 17. illustration of Sieve of Eratosthenes for obtaining first six primes.
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9. Composing CSP with other domains

In Ptolemy the mixing of domains is achieved through the use of hierarchy. At any level of the
hierarchy, all theactors obey thesame semantics (model of computation), but inside any one of these
actors there may beanother domain using a different model of computation. The composition of CSP
with other domains hasnotyetbeen fully explored, buta considerable amount of theeffort involved in
designing the domain was aimed at ensuring smooth interaction between the CSP domain and other
domains. Inthis chapter I have placed some ofthethoughts that may beuseful incomposing CSP with
other domains.

9.1 CSP INSIDE ANOTHER DOMAIN

In thiscase, realdeadlock no longerendsthe model execution, butinstead maikstheendof an iter
ation onelevel up in thehierarchy. Thedirector transfers any tokens from theinside CSPdomain to the
outside domain. Control then retums to the outside domain, which continues its execution. Then when
fire() is called again on the CSPDirector it transfers any inputs from the outside domain inside and
continues until real deadlock is reached again.

The transferring of inputs from the outside domain and insidedomain shouldprobably be accom
plished using a separate TransferThread object. These threads would simply geta Token from the out
side domain, and send it to the channel inside the CSP model. This would be repeated until the thread
blocks because there are no more Tokens at the outside level, or when "enough" tokens have been
transferred. The director would create one of these threads for each channel that represents an input
fromone level up in thehierarchy. Thedirector thread will notblockas it is notperforming the rendez
vous directly.

Similarly, whenthe director is transferring outputsfrom the CSP model to the modelone level up
in the hierarchy, it also creates a TransferThread to perform the transfer. If the CSP model wishes to
transfer more than one message per iterationup the hierarchy, a CSPBuffer should be placed on each
outputchannel that transfers more than one message. This is to allow the process sendingto the output
channel to continue after sending the first message.

(a)

T

—^ 2

- — -• >
(b)

FIGURE 18. Exploded view of what a CSP subsystem might look like inside a composite
actor in another domain.

For example if a CSP domain inside a CompositeActor is represented by figure 18(a), then the
CSP model inside might have the form shown in (b). The dashed arrows show the transfer of inputs
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and outputsbetweenthe two levelsof the hierarchy.
Eachoccasion real deadlock occurs, it is guaranteed that no processes are delayed. Thisallows the

timefor theCSPmodel to be set,by thedirector one level up in thehierarchy, at the startof eachitera
tion. This should make composing CSPwith othertimed domains reasonably straightforward.

9.1.1 CSP within CSP

The CSP model of computation is not compositional. This means that composing several pro
cesses into a single process one level upinthe hierarchy may impact the semantics ofthe model execu
tion. To see this, consider two processes that each simply read an input, then send it on. This is shown
in figure 19. Ifastream ofmessages issent along the input channel ofprocess A, then itwill output the
same stream ofmessages on its output channel. No messages are sent along the input channel ofpro
cess B. Ifthe two processes are then composed asshown by the dashed box, and the composed process
reads altemately from the two input channels, then the behavior of the composed process will beto
block waiting for a message on the second channel, which isdifferent from that of the two processes
separately.

9.2 ANOTHER DOMAIN INSIDE CSP

Recall thateachactorin a CSPmodel is executed by a ProcessThiead, as shown in figure 10.Due
to the semantics of the CSP model of computation, the inside model is executed in parallel with the
other processes. This has implications for the availability ofTokens at the input ports ofthe model one
level down inthe hierarchy. If the inside model requires a certain setofTokens inorder to fire, it isup
to the director controlling the inside model to ensure this before it executes. This director is also
responsible for obtaining any Tokens at each CSPReceiver so that another Token could be sent to the
receiver if necessary. This ishow the inside domain acquires more than one Token on any given input
channel.
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FIGURE 19. Example showing how CSP Is not compositional
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10. Design decisions

In designing the CSP domain, many design choices had to be made. Below are some of the key
designdecisions that weremadeand the motivation for the implementation chosen.

10.1 TIME: DISTRIBUTED RELATIVE TIME VERSUS CENTRALIZED ABSOLUTE TIME

One of the keydecisions that had to be madewaswhatmodel of timeto use.The model used was
chosen primarily to make composing CSP domains with other timed domains possible. Since each
actor onlydeals withdelaysrelative to the currentmodeltime,or at the currentmodeltime, then, if no
actorsare delayed, the currentmodel time can be arbitrarily set. This workswellwith the notionof an
iteration in CSP which is when real deadlock is reached, i.e. when no actors are delayed. Thus the time
of a CSP subsystem could be set at the start of each iteration by the directorone levelup in the hierar
chy.

The model also has the added advantagethat it is relatively simple and easy to use. The only disad
vantage is that time is centralized and so all actions involving time must pass through the director.

10.2 CHOICE OF LOCKS USED AND LOCKING POINTS

The receiver is chosen as the locking point for all communications primarily for scalability.
Because the processes involved in a rendezvous lock locally on the receiver involved, the director con
trolling the model is not directly involved in mediating any rendezvous. If the director were involved,
then as the models became larger the performance would suffer as each rendezvous would have to be
carried out through the director. The receiver is a natural point for storing the flags involved in control
ling a conditional communication. Note that a rendezvous is completely separate from the notion of
time in the domain.

There are three primary lock types in use in the CSP domain: the director lock, of which there is
only one, a lock for each receiver, and an internal lock hidden inside each actor. The hidden lock sim
ply takes the place of locking on the actor for internal control mechanisms. The use of each of these
locks should not be visible when using the domain. The decision to use an internal lock for controlling
access to methods of CSPActor was made to avoid using any lock that the code in a user written actor
might use. In particular, the actor code should be able to lock on itself. If we had chosen to lock onto
the actor itself, as opposed to a hidden lock, then the model could deadlock if the actor code synchro
nized on itself.

10.3 MAKING ALL THE COMMUNICATION MECHANISMS SYMMETRIC

Aside from the fact that a Token is transferred or received in a rendezvous, the two actions are
symmetric, so I felt that the locking algorithms should also be. This also has the advantage of making
the algorithm easier to understand and less prone to unintended deadlocks as there are fewer interac
tions to consider. Similarly the choice of making the algorithm used in the guarded communication
threads symmetric is made to keep it as simple, understandable and as robust as possible.

10.4 CONDITIONAL COMMUNICATION MECHANISMS UPON RENDEZVOUS

The reason for building the conditional communication mechanism upon the rendezvous mecha-
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nism is that it is logically clearer what is happening when it is separated into two steps: first decide
which branch will rendezvous, then do the rendezvous. This also enables tracking down and removing
situations where false deadlocks could arise.

10.5 POINTS IN THE MODEL WHEN CHANGES TO THE TOPOLOGY ARE ALLOWED

The options considered for when to allow changes to the topology are either at deadlock points, or
as soon as the modelcan be paused. The reason for choosingto allowchangesto the topology only at
deadlock points is mainly that these points are intrinsic to the nature of the model. The state of the
model is well defined at these points: all processes are either blocked trying to communicate or are
delayed waiting for time to advance. For any execution of a model, the times at which time deadlocks
occur are the times at which topologychangesmay occur. This allowsfor a process to be created when
another process reaches some state, and the two processes will be continuing from the same model
time.

Pausing and resuming a model does not affect the outcome of a particular model run, only the rate
of progress. Thus if changes to the topology were allowed to happen immediately (as soon as the
model is able to pause), this would result in a new nondeterminism being introduced into the model.
For CSP we wish to keep all nondeterminism the result of the conditional communicationconstructs,
so topology changes are only allowed at deadlocks.
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11. Conclusion and Future Work

The CSP domain in Ptolemy n has been implemented using the concurrency support built into
Java. It builds upon the low level support Java ofTers to allow the user to design concurrent systems at
a much higher level of abstraction. A notion of time has been added to the classical CSP model to
enable modeling of systems where time is relevant, in particular embedded systems. Finally, the CSP
domain allowsthe topology of a model to changeduringexecution while still maintaining a consistent
state.

The compositionof CSP with other domains is important for heterogeneousmodeling of systems.
In particular it is envisioned that the CSP domain will be hierarchically composed in models where
resourcecontentionis a major concern.Some examplesincludeembeddedsystemswhere a numberof
functions share the same CPU, or in modeling client/server architectures.

The hierarchical composition of the CSP domain with other domains in Ptolemy n has not yet
been fully explored. However, much of the effort in designing the CSP domain was devoted to ensur
ing that the CSP domain could be successfully composed with other domains. It should make for some
very interesting research defining and exploring the semantics of these interactions. It is regrettable
that I did not have enough time to start exploringthis area. I believe the design and the algorithmsused
in the domain are sufficiently adaptable/clearthat the domain should be fairly easy to extend or modify
if necessary.
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