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Abstract

Many machine vision applications, such as compression, pictorial database querying and

image understanding, often need to analyze in detail only a representative subset of the image

that may be arranged into sequence of loci called regions-of-interest, ROIs.

We haveinvestigated and developed a methodology that serves to automaticaJly identify such

a subset of aROIo (olgorithmically detected ROIs) using different image processing algorithms

and appropriate clustering procedures. In human perception, an internal representation directs

top-down, context-dependent sequences ofeye movements to fixate on similar sequencesof hROIs
9

(human identified ROIs). In this paper we introduce our methodology and we compare aROIs

with hROIs as a criteriafor evaluating and selecting optimal bottom-up, context-free algorithms.

Some applications are discussed and defined.



1 Introduction

Eye movements, are an essential part of human vision because they must carry the fovea. and

consequently the visual attention, to each part of an image to be fixated on and processed

with high resolution. An average of three eye fixations per second generally occurs during

active looking; they are intercalated by rapid eye jumps, called saccades, during which vision

is suppressed. Only a small set of eye fixations, hROIs, human detected Regions-Of-Interest,

io usually required by the brain in order to recognize a complex visual input (Figure 1, upper

panels).

We have been studying and defining acomputational model of this complex cognitive mech

anism based on intelligent processing ofdigital images.

Image processing algorithms, IPAs, are usually intended to detect and locaUze specific fea

tures in a digital image, analyzing for example, spatial frequency, texture conformation or other

informative values of loci of the visual stimulus. Many algorithms have been proposed in the

literature and they might be classified into three principal approaches; for a survey, see Haral-

ick [8] and Reed and Hans Du Buf [15]. Firstly, structural approaches, based on an assumption

that images have detectable and recognizable primitives distributed according to some placement

rules; examples are matched filters. Secondly, statistical approaches, based on statistical charac

teristics of the texture of the image; examples are co-occurrence matrices and entropy functions.

Thirdly, model approaches that hypothesize underlying processes for generation of local regions:

the images are analyzed on the basis of specific parameters governing these generators; examples

are fractal descriptors.

For the purpose of our study, we have selected and adapted elements from this taxonomy in

an attempt to simulate certain aspects of human perception.

Applying an IPA to an image means to transform that image into a new range of values



defining the corresponding algorithm parameter for each pixel. Local maxima in the trans

formed image represent loci wherein that particular parameter is particularly accentuated and

they can, consequently, be used as a basis for identifying aROIs, algorithmic detected Regions-

Of-Interest. Many local maxima may be generated by an image transformation: therefore a

clustering procedure is required to reduce the initial large set of local maxima into a final small

subset ofaROIs (Figure 1, lower panels).

aROIs and hROIs can be compared to eaoh other, analyzing their spatial locations or struc

tural binding, and temporal order or sequential binding. The result of these comparisons mea

sures the hROIs prediction capability of an IPA together with its clustering procedure. Thus

our aim isexplicit and our measures quantitative. The over-riding question is whether IPAs can

treat a image in a fashion similar to human sequential glimpses.

In the following section the experimental protocol toacquire eye movement datais discussed

mdetail. Section 3will be devoted to defining alist ofIPAs firom the above-mentioned taxonomy;

the clustering and sequencing issue is considered and explained in section 4. The computational

and statistical platform used to compare hROIs and aROIs is introduced in section 5with apar

ticular emphasis on scanpath human characteristics; in section 6the results of the comparisons

are discussed, and finally some applications are presented and defined in section 7.

2 Stimulus presentation and eye movement measurement

Computer controlled experiments present pictures and carefully measure eye movements using

video cameras [20, 21]. An infrared source light is projected towards the eye of the subject

generating a bright Purkinje refiection which is easy to track (Figure 2). An infrared video

camera is focused on one of the subject's eye and the video image of the eye is digitized by

means of a framegrabber into a PC-Pentium 166, the eye tracking server, which tracks the



Purkinje reflection at a sampling frequency of 60 Hz. The subject is instructed to watch the

sequence of images, the visual stimuli, on a Silicon Graphics Indigo2 screen, the client stimulus

controller, which is socket-connected to the eye tracking server. The subject is seated in front

of the screen with his head secured onto an optometric chin-rest structure.

Prior to display of a visual stimulus, the subject is instructed to flxate oh a sequence of nine

difierent calibration points shown in random order on the SGI screen: this calibration procedure

establishes a mapping between the location of the Purkinje reflection in the video image and

the direction of the subject's gaze on the stimulus screen.

Afixation analysis algorithm is then applied to the eye movement data to distinguish rapid

saccades jumps (Figure 1, upper right panel, arrows) froih location of eye fixations (Figure 1,

upper right panel, squares). The fixation algorithm analyzes the time derivative ofeye movement

data in order to localize regions in the screen where the eyes slow down below apre-defined speed

threshold (note eye movement sampling. Figure 1, upper left panel).

Seven different subjects were used during eye movement experiments. Fifteen different im

ages were utilized: two Mars Terrain photographs; a Chilean Desert overview; a Country Land

scape and Woman with Boy paintings; Leonardo's Mona Lisa; a Cave Interior with ancient

horse-hunting art; After the Shower, apainting representing different figures in an interior coun

try house and Madame, a female figure with awindow in the background. We also used image

modifications of some of these stimuli, such as embossed effect or binary thresholding.

Visual stimuli were not only presented (for a duration of 4seconds, plus a double calibration

time of 18 seconds for each stimulus, before and after data acquisition) to the group of subjects

with several repetitions per person, but were also processed by all the IPAs described in the

next section.

Repetitions were achieved by asking subjects to repeat the experiments within afew days for



a total ofat least threesessions: in this way, consistency in the way each subject looks at specific

visual stimulus could be studied and compared with algorithmic performance. During one

experimental run, the complete sequence ofimages (each time in different order) was displayed

to the subjects.

3 Image processing algorithms, IPAs, used for identifying aHOIs

Theinformation content ofa generic image can beabstracted by difi'erent image parameters that

inturncan be identified by relevant IPAs. In this sense, applying algorithms to animage means

mapping that image into different domains, where for each domain, a specific set ofparameters

is extracted. After the image has been processed, only the loci of the local maxima from each

domain are retained; these maxima are then clustered in order to yield a limited number of

aROIs. The algorithms we studied are:

I —A", anrc-like mask of7x7pixels, positive along the two diagonals and negative elsewhere,

was convoluted with the image. We have also used different high-curvature mask convolutions,

for example the " <" -like mask whose definition is intuitive. The block size of 7x 7 (0.3 x 0.3

degree block) depends on image scaling.

^ symmetry, a structural approach, appears to be a very prominent spatial relation.

For each pixel x,y of the image, we define a local symmetry magnitude S(x,y) as follows:

S{x,y)= Y, «((»!. il),(s2,j2)) (1)
(»iJi).(»2,j2)€r(x,y)

where r(rc, y) is theneighborhood ofradius 7ofpoint a:, ydefined along the horizontal and verti

cal axis (r(3:,y) = (x - r,j/),..., {x,y),..,{x +r,y), {x,y - r),..., (x,j/ + r)) and s((ii,ji),(22,^2))

is defined by the following equation:

s{(iiJi)Ai2j2)) = Gc {d{(iuji),{i2j2))) \cos{ei-e2)\ (2)



The first factor Ga is a gaussian offixed variance, <7 = 3 pixels and d{-) represents the distance

function. The second factor represents a simplified notion of symmetry: and 62 correspond

to the angles ofthe gray level intensity gradient of the two pixels (ii,yi) and (22,^2). The factor

achieves the maximum value when the gradients of the two points au-e oriented in the same

direction. The gaussian represents a distance weight function which introduces localization in

the symmetry evaluation. Our definition ofsymmetry was consequently based ontheorientation

correspondences of gradients around the centered point [16]. Alternatively, a normahzation of

the axial quadratic moment couid be used instead to compute the symmetry transform [7].

3- W, adiscrete wavelet transform is based on apyramidal algorithm which splits the image

spectrum into four spatial frequency bands containing horizontal lows/vertical lows (U), hori

zontal lows/vertical highs (//i), horizontal highs/vertical lows (II) and horizontal highs/vertical

highs (hh). The procedure is repeatedly applied to each resulting low frequency band resulting

in amultiresolution decomposition into octave bands. The process of image wavelet decomposi

tion is achieved using pair of conjugate quadrature filters (CQFs) [25] which acts as asmoothing

filter (i.e. a moving average) and a detailing filter respectively (see for example [18]). We have

used different orders from the Daubechies Wdb and Symlet W^y family bases [5, 6] to define CQF

filters. For each resolution z, only the wavelet coefficients of the highs/highs hhi matrix were

retained and finally relocated into a final matrix HH (with the same dimension as the original

image) by the following combination:

HH =j2C(hhi) (8)
»=i

where n is the maximum depth of the pyramidal algorithm (n = 3in our case) and where C(-) is

a matrix operation which returns a copy of the input matrix hh by inserting alternatively rows

and columns of zeros.

4 - .F, a center-surround 7x7 quasi-receptive field mask, positive in the center and negative

6



in the periphery, was convoluted with the image.

^ — O, difference in the gray-level orientation, is possibly also analyzed in early visual

cortices (see also [10]). Center-surround orientation difference is determined first convoluting

the image with four Gabor masks of angles 0°,45®,90® and 135° respectively. For each pixels x, y,

the scalar result of the four convolutions aie then associated with four unit vectors corresponding

to the four different orientations. The orientation vector o(a;, y) is represented by the vectorial

sum of these four weighted unit vectors. We define the center-surround orientation difference

transform as follows:

0(x,y) = (1 - d{x,y) •m(x,y)) || o(x,y) |||| m(a;,y) || (4)

where m{x, y) is the average orientation vector evaluated within the neighborhood of7x7pixels.

Thefirst factor of the equation achieves high values for big differences in orientation between the

center pixel and the surroundings. The second factor acts as a low-pass filter for the orientation

feature.

6 - edges per unit area, is determined by detecting edges in an image, using the Canny

extension of the sobel operator [3] and then congregating the edges detected with a gaussian of

C7 = 3 pixels.

7 ~~ entropy is locally calculated as ]CteG /» ^^9 fi where /j is the firequency of the

i - th gray level within the 7x7 surrounding region ofthe center pixel and G is the local set of

gray levels. Local maxima defined by this factor emphasize texture variance.

8 —C. Michaelson contrast, is most useful in identifying high contrast elements, generally

considered to be an important choice feature for human vision. Michaelson contrast is calculated

+ where Cm is the mean luminance within a 7 x 7surrounding of

the center pixel and Lm is the overall mean luminance of the image. Cm was also used in our

study.



9 - "H, the discrete cosine transform, DOT, introduced by [1], is used in several coding

standards as, for example, in the JPEG-DCT compression algorithm (see section 7). The image

is first subdivided into square blocks (i.e. 8x8); each block is then transformed into a new set of

coefiicients using the DOT; finally, only the high frequency coefficients are retained to quantify

the corresponding block.

10 — the laplacian of the gaussian, is convoluted with the image.

4 Clustering and sequencing

The IPAs result in defining local maxima widely over the image; a clustering procedure is then

applied to reduce this large set of local maxima into the final small (n « 7) subset of aROIs.

Thus, the resulting string of aROIs were similar in number to human eye movement fixation

glances looking at similar images.

The initial set of local maxima is clustered by connecting local maxima and gradually in

creasing the acceptance radius for joining them. During each step of the clustering process, all

local maxima less than a specific radius apart are clustered together (Figure 3). Each cluster

inherits the maximum value of its component points (local maxima): the locus of this highest

valued maximum for each cluster then also determines the locus of that cluster. Only that

maximum point is retained; all the other composing local maxima are deleted. The procedure is

repeated while increasing the acceptance radius at each step. The decision to end the clustering

process is set when only apre-defined number nof clusters remain. The values of the remaining

clusters, ordered from highest to lowest, permits us to relate the sequence of clusters, aROIs, to

sequences of human fixations.

Algorithm Mwas applied for example to aChilean desert photo (Figure 4, upper left panel)

and the initial set of local maxima (Figure 4, upper right panel) was then clustered (Figure 4,

8



lower left panel; partway through the clustering process). The final ordering is indicated by the

arrows connecting the cluster loci and superimposed on the original image(Figure 4. lower right

panel). Note the maximum valued locus for each cluster. No initial conditions are required for

the clustering. The overall procedure, implemented using sparse matrix representation, is fast

in execution, even for large images.

Other clustering procedures have been investigated. Changing the criteria to detect the

locus and the value of the clusters during each iteration can modify the previous procedure: for

example, the number of included local maxima could be used to affect the value of a specific

cluster. However, no significant disparities in the overall performance of our system have been

noted when different clustering procedures were compared to each other. Each of our IPAs, of

course, contributes the intensity of its selected parameter in finding the local mavima and thus

the values of resulting clustered aROI domains. This may be quite intuitive; it is the nature

of the processed image (i.e. the IPA used), more than the clustering procedure used for the

identification ofthe final aROIs, that most influences the final distribution ofaROIs (Privitera

et al., in preparation).

If we had used only IPAs and not the clustering procedure, we could have selected, say, the

seven highest local maxima directly and defined them to be the aROIs. Those selected aROIs

however, might be much more closely spaced. Thus the clustering procedure is actually an

eccentricity-weighting procedure, where even lower local maxima that are eccentrically located

may finally be selected to form an aROI.

5 Comparing and sorting procedures

The aROI loci selected by our different IPAs and those loci defined by human eyes movement

fixations, hROIs, can be compared. In this section we describe the statistical and computational



platform we have beenusing for these comparisons (see also [14]). We also introduce thescanpath

theory.

5.1 Comparison of two set of ROIs

Comparison of final clusters of ROIs began with taking two.sets of ROIs (Figure 5, middle,

upper and lower panels) and clustering these two sets using a distance measure derived from

a k-means pre-evaluation. This evaluation determined a region for calling coincident any ROIs

that were closer than this distance and non-coincident for ROIs that were further apart than

this distance} the distance was about two degrees and similar insize to human foveal spans for

moderate visual acuity. All the coincident ROIs (named" jowed-RO/s). were labeled with the

same alphabetic character (Figure 5, right panel) and they then enabled a similarity metric, Sp,

to determine how many ROIs two algorithms (as in the example shown in Figure 5, see also

the processed image in the left panels), or two humans, or an algorithm and a human have in

common; the final value was normalized based upon string length. The individual sources ofthe

elements, that is the original ROIs, used in these final interactive steps are preserved as circles

and squares (Figure 5, right panel) to illustrate the procedure.

As mentioned above, ROIs are ordered by the value assigned by the IPA or by the temporal

ordering ofhuman eye fixations ina scanpath. Then, the joined-ROIs can finally beordered into

strings of ordered points. Here, (Figure 5), we have for example: strings = abcfeffgdc and

strings = afbffdcdf. The string editing similarity index Ss was defined by an optimization

algorithm [20] with unit cost assigned to the three different operations deletion^ insertion and

substitution.

Our comparisons yielded two different indices of similarity which tells how closely two set of

ROIs resemble each other in locus, Sp, and in sequence, Ss (see the "toy" diagrams on Figure

10



6). For the example illustrated above (Figure 5) .we have: Sp = I and Sg = 0.34.

5.2 Y-matrices and parsing diagrams

Similarity coefficients can be sorted and represented for the two measures, Sp and Sg in Y-

matrices (two human subjects are for example compared and averaged for two different pictures,

Figure 7, upper panels; again in Figure 8 where we compare not different subjects but different

IPAs) and in parsing diagrams, (Figure 7, lower panels, for all the subjects). The parsing diagram

collects averages of these similarity coefficients: R, for repetitive scanpaths, same subject looking

at the same picture at different times; Local = L, different subjects same picture; Idiosyncratic

= 7, same subjects different pictures; Global = G, different subjects different pictures.

The most important distinction is that between Repetitive similarity, i?, upper left box

(Figure 7, lower panels), and Global similarity, G, lower right box: the R value for human with

the Sp measure, equals 0.64. This means that the string for repetitive viewing of the same

stimulus for the same subject have loci that were 64% within fixational or foveal range —this

represents continuing support for the scanpath theory, (see the following section).

For Global, all different subjects looking all different stimuli had an Sp value of only 0.28.

This number was somewhat different from the expected Sp value of 0.21 based up on consider

ation of a random model, Ra, (bottom box).

5.3 The scanpath theory

The scanpath has been defined on the basis of experimental findings. It consists ofsequences of

alternating saccades and fixations that repeat themselves when a subject is viewing a picture.

Only ten percent of the duration of the scanpath is taken up by the collective duration of the

saccadic eye movements providing an efficient mechanism for traveling over the scene or regions

of interest; thus the intervening fixations or foveations onto hROIs, have at hand ninety percent

II



of the total viewing period (see [2, 24] and also section 2).

Scanpath sequences appeared spontaneously without special instructions to subjects and

were discovered to be repetitive: note the high R index in the parsing diagrams (Figure 7).

This repetitiveness suggested to Noton and Stark [11] that a top-dowiT internal cognitive model^

controls perceptionand active looking of eye movements in a repetitive sequential set ofsaccades

and fixations, or glances, over features of a scene so as to check out and confirm the model [20].

Of course, the objective or task can afiect the active looking of eye movements [27, 26].

Nevertheless, without any specific task instruction, for general viewing conditions, the high R

values in the parsing diagrams (Figure 7: 0.64 for Sp and 0.42 for Ss) suggest that a very similar

set of representative regions of interest are sequenced and searched by the brain each time. A

considerable consistency is also reported by the high L values when different subjects look at

the same picture (Figure 7: 0.54 for Sp and 0.28 for Ss).

The strong consistency reported in human experiments, when no specific objective is given

to the subjects, means that only a specific restricted set ofrepresentative regions of the picture

is essential for the brain to perceive and recognize thatpicture. This representative set is similar

for different subjects, and this important characteristic brings us to the main scientific objective

ofour work: whether it is possible to automatically identify this set by using IPAs.

Comparing aROIs with hROIs is the standard utilized to study and select which IPAs are

more successful in this objective; if a specific task is given, different hROIs may result, and

consequently, different algorithms may be selected from our collection [13].

^This internal cognitive model must, of course, approximate the external world; otherwise, perception would

not be possible. Thus, what we call an internal model and what is generally understood to be memory are two

very interrelated cognitive entities. It is beyond the scope ofthe present paper to go into detail about how this

model is created and organized in the brain; what is perhaps worth emphasizing here, is that internal cognitive

models often must match closely the visual stimuli inputs.
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5.4 Study of the ANOVA; ANalysis-Of-VAriance

In the following section, results from the aROIs vs. hROIs comparisons are presented and

discussed.

In order to better evaluate and interpret the final results, we also used an Anova, analysis-

of-variance. The Anova value is compared with a critical value F of Fisher distribution with

k —1 degree of freedom in the numerator (where k is the number of a distribution that we are

comparing) and n - fc in the denominator (where n is the total number ofobservation in the

k distributions). If the Anova test value is less than the F-Fisher critical value for an a level

of significance (for example, in this paper, a was set equals to 0.01), then it is possible to infer

that the two means are not different enough to come from different distributions; on the other

hand, if the Anova test value is greater than the F-Fisher critical value, this signifies that the

means likely come from diff"erent distributions.

Our standard format for presenting our data in the algorithms parsing diagram was as a

triplet; for example 0.33 (0.04, 18.7) with 0.33 equal to the mean value, 0.04 equal to +/-

the standard deviation, and 18.7 equal to the Anova test value. Our quantitative conclusions

presented in the result section below were strongly sustained by the relationship between Anova

test values and F-Fisher critical value (for a = 0.01) of7.5.

6 hROIs vs. aROIs comparisons

We were, of course, most interested in the several uses of our methodology on our data —to

analyze not only the capability of IPAs and clustering procedure to predict eye fixations, but also

the inter-relationships among algorithms. In this section, we present and discuss these different

results which derive from the comparison results.
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6.1 Relationships among IPAs

We wished to obtain as wide a variety of image processing algorithms as possible and to keep

small the coherence between pairs of image processing algorithms. Thus, our wide variety of

imageprocessing algorithms would haveindependent actions on the images and they could serve

to identify aROIs for a variety of picture types, and for a variety of visual identification tasks

[13].

The coefficients of the Y-matrix (Figure 8, see also [14] for preliminary results) indicated

the coherence between each pair of a selected group of algorithms as explained above. Enclosed

within a dashed box are two different group ofalgorithms: each group is internally characterized

by high Sp similarity but cross-similarity between the two groups is very low. For example, a

coefficient value of 0.69 (Figure 8, left panel) between algorithms M and J- demonstrated a

strong coherence between those two algorithms while the value of 0.15 (Figure 8, left panel)

between algorithms Cand Wdb demonstrated a high independence. Astring-editing similarity

coefficient ofzero (Figure 8, right panel) between algorithms Af and Wsj, represents complete

independence of two compared sequences. Note, that the coefficients for Ss (aROIs string-editing

similarity) were much lower than the coefficients for Sp (aROI-loci similarity).

Our collection ofalgorithms could thus be sorted for similarities or for difierences in gener

ating aROIs, This is ofvalue in selecting algorithms for different tasks [13].

6.2 Parsing diagrams

Again, we gathered the crucial comparisons between algorithms and eye fixations together into

a parsing diagram (Figure 9). The ability of the algorithms (labeled A in Figure 9) to predict

eye fixations was demonstrated by the number in the upper right box, L, of the left panel, Sp.

The average for all the algorithms was 0.33.
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On the basis of this large number of measures between algorithms, images and subjects,

we may select a sub-group of algorithms {A* = Wd^, C, O and S). For this selection, the Sp

similarity rose to 0.36 and the Anova test showed a considerable significance (27.0 related to the

F-Fisher critical value of 7.5). Two different examples ofhigh Sp values are shown (Figure 10:

hROIs left panels and aROIs right panels, algorithms Cmt upper, and VWsy, lower).

The global, G, Sp value represented the average Sp for algorithms applied todifferent images

andit could be considered a bottom anchor for Sp\ a further bottom anchor was Ra, the random

Fp, calculated for coincidence among randomly identified loci.

The Ss parsing diagram shows little coherence even among all the algorithms providing

support of an earlier preliminary study, [23], that the IPAs and the clustering procedures we

used cannot predict sequencing of human eye movements.

We also selected four of the algorithms that seem to cohere (average Sp - 0.56) with the

human subjects for two particular images (After the Shower and Madame). This overall Sp

was further segregated to show each algorithm and each subject separately (Figure 11, upper

right box; subjects A,C,H,T and algorithms «S, and F) so the variability can be judged.

Another coherence strengthens our overall result by docum.enting the strong Sp indices among

these four selected algorithms; note the high average Sp, that equals 0.75 among these algorithms

(lower triangle). Athird coherence (not shown) was achieved for the set of Mars terrain images

alone, and algorithms C, Wsy and £(average coherence between aROIs and hROIs was 0.43).

We might further improve eye fixation loci prediction by choosing other sets ofstructurally

different algorithms and combining these algorithms and the others used in this paper in some

optimal fashion. The overall result here is that IPAs in conjunction with the clustering procedure

can predict hROIs with appreciable average Sp and with statistical significance. Ifwe select some

of the algorithms on the basis ofspecific type ofimages, then this prediction is as good as the

15



ability ofone human to predict the fixation locations ofanother subject; the local, L, relationship

in our Sp parsing diagrams equaled (Figure 7). T^s, our large collection of algorithms can

provide different selection policies both for different images and for different tasks [13].

Several subjects from our lab, extraneous to this project, have been asked to qualitatively

judge the distribution of aROIs over the pictures for all the algorithms and the pictures that

have been used in this study. In this way, an evaluation different and independent from the

Sp metric, could be taken into account inorder to validate our results and better interpret the

meaning of the coefficients reported in the tables. The subjects participating in the evaluation

were asked to analyze the aROIs for each algorithm and each picture and express a personal

valuation using three different grades: good, medium and'bad. First, a total of 64% of aROIs

were considered acceptable or good. Then, ordering these results for each algorithms and for

each image, we computed the correlation with the ordering generated by our Sp metric. The

average correlation was quite high, around 0.7, and Anova analysis confirmed the relationship

between these human qualitative evaluations of aROIs and the Sp coefficients.

7 Some applications of aROIs

Certain computer vision applications might benefit from an apparatus that automatically identi

fies regions of visual interest in adigital image. Some of these applications have been investigated

within the last few years in our lab.

Compensating for a variety ofvisual defects might be arranged by using idiosyncratic anatom

ical information about the localized lesion for an individual patient. We are studying a head

mounted vision apparatus wherein important aROIs can be shifted so as to avoid the patient

scotoma or blinded area.

Internet communications usually have a bottleneck in image retrieval: pictorial databases

16



occupy large amounts of disk memory, and image searching through the internet is usually

very slow when the entire image has to be analyzed for all the images in the database. An

intelligent pictorial database querying system could be based on aROIs in the digital image.

The query can be formulated in terms of these regions, and thesubsequent search implemented

only analyzing the aROIs associated to each image in the database. The smaller set of images

that match aROIs present in the query would eventually be sent back through the net (many

interesting alternatives are present in the literature, see for example [17, 4] and the proceedings

corresponding to the second reference).

A suggestion was put forward by Stark and Ellis in 1981 [22] for video transmission to send

high resolution local ROIs alternately with the ordinary resolution ofthe entire image. In this

way, subjects looking at the transmitted images would likely obtain an impression that theentire

image had been seen with very high resolution. Algorithms for detecting aROIs can be utilized

for automatically identifying these high resolution ROIs.

An extended version of the JPEG encoder, the Selective JPEG encoder, based upon on

aROIs, has been implemented in our lab. The JPEG image compression standard [12], uses the

Discrete Cosine Transform, DOT, of 8 x 8 image blocks followed by a lossy quantization and

loss-less entropy (Huffman) coding for each block. Quantization is usually performed by the

following division and rounding operation:

Ci = [fi±Qi/2\IQi (5)

where i is one element of the 8 x 8 block; Q is the quantized coefficient, /,• is the i - th DOT

frequency coefficient, and Qi is the corresponding quantizer factor. The ± sign is the same as

the fi coefficient.

The quantizer factors are grouped into a quantizer factors matrix, Q= {qi : i = 1,...,64},

each factor corresponding to a specific DOT frequency, and they control the lossy compression
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level of the image: the bigger the factors in the matrix axe, the more the blocks are compressed.

Hence, the more frequency information is lost: a quantization that is too coarse may eventually

produce the classical hlocky effect.

In the standard JPEG baseline, the quantization matrix isusually standardized, with higher

coefficients corresponding to higher frequencies, and it is uniquely defined for all the blocks of

the image. Consequently the quantization cannot bedifferentiated over different regions of the

image. In our Selective JPEG baseline, the magnitude of the quantizer factors are adaptively

related to the distance from the set of aROIs by means of the following rule:

~ Qi^iAmin{p^^yy) (6)

where djnin{3^,y) is the minimum distance between the block x,y in the image and the set of

aROIs. S(') is a stepwise monotonic function equal to the unity for distance dmin(x,y) that is

appropriately small and then increasing with the distance; Qi is theoriginal standard quantizer

coefficient.

The stepwise function S(-) can be tuned appropriately both in size and in slope: we can

choose for example to have small high resolution regions and then gradually increase the quan

tization inequation 6) in the periphery or define large high resolution regions and then strongly

increase the quantization in the periphery.

Algorithm O has been applied, for example, to a countryside photo andfive aROIs have been

identified (Figure 12, upper panel). The Selective JPEG compression was then applied to the

image based on those identified aROIs where S{d{x,y)) = 2 for 0° < d{x,y) < 1°, degree ofthe

visual angle (note that also aROIs are slightly compressed); S{d{x,y)) = 250 for 1° < d(x,y).

The Selective JPEG compressed image (Figure 12, middle panel) can be compared with the

standard JPEG compression (Figure 12, lower panel) with the same amount of compression

(100:4): the visual appearance is much better with the Selective JPEG compression.
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Alternative solutions have been proposed in the literature (see for example [19, 9]): aROIs are

usually identified at the block level and severe discontinuities can appear for strong compression

rate even with selective quantization. Moreover, some of the proposed methods may not be

really JPEG-compatible. An interesting proposal is discussed in [28] where a fuzzy scheme is

used to determine important regions. Our method is based on a number of compact regions of

interest whose size and distribution over the image is based on and strongly inspired by human

eye movement studies. Indeed, the biological plausibility of our model results in an evidently

better qualitative impression of the compression.

8 Discussion

Our method provides aprecise task for the IPAs we have studied —to predict human scanpaths,

both loci and sequences of eye movement fixations or foveations. The method also provides for

quantitative measurements of prediction accuracy.

In this paper, we have validated that a constellation of IPAs used in conjunction with a

clustering procedure can predict, for Sp, the loci of human fixations. Our results indicate,

however, that the algorithms can not predict the sequential ordering, Ss, of the sub-features

used by a person.

The wide selection ofalgorithms gave us an opportunity to study the diflferences and sim

ilarities in terms of the precise task we consider. These algorithm characteristics are of great

interest to us as indicators of the general nature of an picture and how either algorithms or

humans process it. We might need to provide weighting coefficients for the different algorithms

in order to optimize the prediction capabilities of the ensemble.

Our scale of similarity indices is anchored at the bottom both by the random, Ra, values

and by the global, G, values, that is for all subjects and algorithms and pictures. The top of
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the scale is anchored for human studies by the repetitive, Ry value, the closeness of fit of a

singlesubject's scanpaths to her scanpaths with the same picture at another time with the same

task instructions. Can we similarly use trivial modifications ofthe pictures to obtain repetitive

indices for the algorithm studies?

The clustering procedures we used require a good deal of thought and preliminary studies

have been reported in section 4. As we indicated above, the clustering procedure distributes

strings of aROIs in more eccentric locations than they would be in without the clustering pro

cedure. This eccentricity asserted a positive efiect on the similarity between aROIs and hROIs.

In summary, the methodology defined in this paper has been tested on a varied set of digital

images that ranges from portraits to landscapes and terrain images. Anumber ofsubjects were

used for the eye movement experiments. Finally independent subjective evaluations by naive

subjects in order further validated the results.

The overall results are very encouraging and we have started to define and implement differ

ent applications such as image retrieval from pictorial databases. For use in image compression,

a Selective JPEG image compression encoder has been defined in more detail in the last section

of the paper.
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FIGURE LEGENDS

Figure 1 - Computer and Human Processing

Comparing /luman identified Regions ofInterest, hROIs, (upper right) with olgorithmic identi

fied Regions of Interest, aROIs, (lower right). Note eye movement sampling, (upper left) and

local maxima in the processed image, (lower left).

Figure 2 - Measuring Eye Movements

The video image of the subject's eye is digitized by means of a frame-grabber and the bright

Purkinje refiection is tracked in x-y coordinates.

Figure 3 - Clustering Procedure: a Single Step

During each step of the clustering process, all local maxima less than a specific radius apart,

Dj, are clustered together. Then the highest valued maximum for each cluster determines the

locus of that cluster and all the remaining maxima are removed. The process continues while

increasing the acceptance radius Di at each step.

Figure 4 - Clustering Procedure: to Completion

Algorithm M was applied to a Chilean desert photo (upper left). The initial set of local max

ima (upper right) was then clustered using the defined iterative procedure (lower left: partway
#

through the process). The final ordering, superimposed on the original image, is shown in the

lower right panel; the maximum-valued locus for each cluster is inserted in the figure.



Figure 5 - ROIs Comparisons Procedures

Actions of each IPA yields a transformed image (left colunm) for two examples, S (upper), and

S (lower). Final aROIs in each image are ordered by value and connected by arrows in anal

ogy to eye movement sequences offixations (central column). The two set of aROIs are finally

combined (right panel) into a number ofjoined-ROls, further used to define distance measures

between the two sets.

Figure 6 - Similarity Measures

Two sets of ordered ROIs (left) whose loci are widely separated: Sp low and S.s low. Two sets

of ROIs (middle) with closely matched loci, but whose ordered sequences are different: Sp high

and ^5 low. Two sets of ROIs (right) whose loci and ordered sequence are similar: Sp high, Sg

high.

Figure 7 - Y-matrices and Parsing Diagrams

Sp and Ss similarity indices for different subjects (or different algorithms) and for different pic

tures can be arranged in a Y-matrix (upper panels) with each value being the average of several

repetitions. Parsing diagrams, (lower panels), represent averages of these similarity indices in a

more collected and intuitive fashion.

Figure 8 - Coherence and Independence among IPAs

Cross-comparison values ofsix algorithms for two indices, Sp and Sg. Enclosed within the dashed

boxes are two different group of algorithms: each group is internally characterized by high Sp

similarity, but cross-similarity in Sp between groups is very low. Note that Sg values are very low.



Figure 9 - Parsing Diagrams for Comparing aROIs and hROIs

Crucial comparisons between algorithms and eye fixations are gathered in the parsing diagrams

(see text). Test of significance are made by comparing the Anova test value with the F-Fisher

critical value which is 7.5.

Figure 10 - Comparisons of hROIs and aROIs for Different Pictures

Two examples of good 5p-similarity between aROIs (right column: Cm upper, W^y lower) and

hROIs (left column). Fp = 0.62 and = 0.13, upper panel; 5p = 0.87 and = 0.13, lower

panel. Note low values ofSs indicating that string sequences could not beidentified by theIPAs.

Figure 11 - Coherence and Independence among Selected Algorithms

Y-matrixes for two particular images (After the Shower and Madame), a selected group ofal

gorithms, X, 5, Wdb and T and subjects, A,C,H,T.

Figure 12 - Selective JPEG compression based on aROIs

Five aROIs (arrows) were identified using 0\ aROIs were maintained at higher resolution by

the Selective JPEG compression. The Selective JPEG compressed image isshown in the middle

panel and a standard JPEG compression in the lower panel. Total compression was the same

in both examples; the visual fidelity is much higher with Selective JPEG compression.
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Y-MATRICES (partial: 2 subjects)

Sp Subject! Subject2

Pictl Pict2 Pictl Pict2

Slpl 0.65r0.38i 0.54l0.18g
Slp2 0.60r 0.3 1g 0.47l
S2pl 0.69r 0.33 ,
S2p2 0.58r

Ss Subject! Subject2

Pictl Pict2 Pictl Pict2

Slpl 0.40r 0.24, 0.31l 0.08g
Slp2 0.39r 0.13g 0.19l
S2pl 0.43r 0.21,
S2p2 0.24r

PARSING DIAGRAMS (complete: 7 subjects')

Same Different

Subjects

Repetitive
0.64

Local
0.54

Idiosyncratic
0.34

Global

0.28

Sp Random

0.21

Figure 7

Same Picture

Different Pictures

Same Different

Subiect Subiects

Repetitive Local

0.42 0.28

Idiosyncratic Global

0.21 0.16

Ss Random

0.04



Sp ffdb Wsy L N F C Ss Wdb W'sy L N F C

Wdh - lorsY" 0"37| 0.21 0.28 0.15 Wdb - '.6.yr' adsl 0.02 0.05 0.02

Wsy 0.39! 0.18 0.24 0.22 Wsy 0.09; 0.00 0.01 0.02

I, . 0.19 0.25 0.16 L - 0.01 0.01 0.05

N - JO.69 0.61! N - 10.23 0.22;

F
1 0.631 F • - 0.331

C - C •

Figure 8



Same plot.
R

1

L

A = 0.33 (0.04 18.7)
A* = 0.36 (0.01 27.0)

I G

DifFplots A = 0.20 (0.03 1.62)
A* = 0.17 (0.05 0.03)

A = 0.26 (0.05 6.16)
A* = 0.24 (0.05 4.16)

'Ra =

Algs vs. Algs Algs vs. Eye fixations

Same plot
R

1

L

A = 0.05 (0.01 3.31)
A* = 0.05 (0.01 2.21)

I G

DifFplot A = 0.03 (0.01 0.12)
A* = 0.02 (0.01 0.01)

A = 0.04 (0.01 0.44)
A* = 0.04 (0.01 0.32)

Sp

Ss

Ra = 0.04

Figure 9
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Figure 11

Sp A C H T X S W F

A 1 0.23 0.54 0.64 0.60 0.67 0.72 0.64

c 1 0.69 0.86 0.78 0.78 0.73 0.40

H 1 0.42 0.52 0.60 0.40 0.51

T 1 0.42 0.42 0.47 0.28

X 1 0.83 0.87 0.66

S 1 0.78 0.85

w 1 0,51
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