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Abstract

Many machine vision applications, such as compression, pictorial database querying and
image understanding, often need to analyze in detail only a representative subset of the image
that may be arranged into sequence of loci called regions-of-interest, ROIs.

We have investigated and developed a methodology that serves to automatically identify such
a subset of aROIs (algorithmically detected ROIs) using different image processing algorithms
and appropriate clustering procedures. In human perception, an internal representation directs
top-down, context-dependent séquences of eye movements to fixate on similar sequences of hROIs
(human identified ROIs). In this paper we introduce our methoc’lology and we compare aROIs

with hROIs as a criteria for evaluating and selecting optimal bottom-up, context-free algorithms.

Some applications are discussed and defined.



1 Introduction

Eye movements, are an essential part of human vision because they must carry the fovea, and
consequently the visual attention, to each part of an image to be fixated on and processed
with high resolution. An average of three eye fixations per second generally occurs during
active looking; they are intercalated by rapid eye jumps, called saccades, during which vision
is suppressed. Only a small set of eye fixations, bROIs, human detected Regions-Of-Interest,
io usually required by the brain in order to recognize a complex visual i;lput .(Figure 1, upper
panels).

We have been studying and defining a computational model of this complex cognitive mech-
anism based on intelligent processing of digital images.

Image processing algorithms, IPAs, are usually intended to detect and localize specific fea-
tures in a digital image, analyzing for example, spatial frequency, .texture conformation or other
informative values of loci of the visual stimulus. Many algorithms have been proposed in the
literature and they might be classified into three principal approaciles; for a survey, see Haral-
ick [8] and Reed and Hans Du Buf [15). Firstly, structural approaches, based on an assumption
that images have detectable and recognizable primitives distributed according to some placement
rules; examples are matched filters. Secondly, statistical approaches, based on statistical charac-
teristics of the texture of the image; examples are co-occurrence matrices and entropy functions.
Thirdly, model approaches that hypothesize underlying processes for generation of local regions:
the images are analyzed on the basis of specific Darameters governing these generators; examples
are fractal descriptors.

For the purpose of our study, we have selected and adapted elements from this ta.?conomy in
an attempt to simulate certain aspects of human perception. .

Applying an IPA to an image means to transform that image into a new range of values



defining the corresponding algorithm parameter for each pixel. Local maxima in the trans-
formed image represert loci wherein that particular parameter is particularly accentuated and
they can, consequently, be used as a basis for identifying aROls, algorithmic detected Regions-
Of-Interest. Many local maxima may be generated by an image transformation: therefore a
clustering procedure is required to reduce the initial large set of local maxima into a final small
subset of aROIs (Figure 1, lower panels). |

aROIs and hROIs can be compared to each other, analyzing their spatial locations or struc-
tural binding, and temporal order or sequential binding. The result of these comparisons mea-
sures the hROIs prediction capability of an IPA together with its clustering procedure. Thus
our aim is explicit and our measures quantitative. The over-riding question is whether IPAs can
treat a image in a fashion similar to human sequential glimpses.

In the following section the experimental protocol to acquire eye movement data is discussed
in detail. Section 3 will be devoted to defining a list of IPAs from the above-mentioned taxonomy;
the clustering and sequencing issue is considered and explained in section 4. The computational
and statistical platform used to compare hROIs and aROlIs is introduced in section 5 with a par-
ticular emphasis on scanpath human characteristics; in section 6 the results of the comparisons

are discussed, and finally some applications are presented and defined in section 7.

2 Stimulus presentation and eye movement measurement

Computer controlled experiments present pictures and carefully measure eye movements using
video cameras [20, 21]. An infrared source light is projected towards the eye of the subject
generating a bright Purkinje reflection which is easy to track (Figure 2). An infrared video
camera is focused on one of the subject’s eye and the video image of the eye is digitized by

means of a framegrabber into a PC-Pentium 166, the eye tracking server, which tracks the



Purkinje reflection at a sampling frequency of 60 Hz. The subject is instructed to watch the
sequence of images, the visual stimuli, on a Silicon Graphics Indigo2 screen, the client stimulus
controller, which is socket-connected to the eye tracking server. The subject is seated in front
of the screen with his head secured onto an optometric chin-rest structure.

Prior to display of a visual stimulus, the subject is instructed to fixate on a sequence of nine
different calibration points shown in random order on the SGI screen: this calibration procedure
establishes a mapping between the location of the Purkinje reflection in the video image and
the direction of the subject’s gaze on the stimulus screen.

A fixation analysis algorithm is then applied to the eye movement data to distinguish rapid
saccades jumps (Figure 1, upper right panel, arrows) from location of ej}e fixations (Figure 1,
upper right panel, squares). The fixation algorithm analyzes the time derivative of eye movement
data in order to localize regions in the screen where the eyes slow down below a pre-defined speed
threshold (note eye movement sampling, Figure 1, upper left panel).

Seven different subjects were used during eye movement experiments. Fifteen different im-
ages were utilized: two Mars Terrain photographs;' a Chilean Desert overview; a éountry Land-
scape and Woman with Boy paintings; Leonardo’s Mona Lisa; a Cave Interior with ancient
horse-hunting art; After the Shower, a painting representing different figures in an interior coun-
try house and Madame, a female figure with a window in the background. We also used image
modifications of some of these stimuli, such as embossed effect or binary thresholding.

Visual stimuli were not only presented (for a duration of 4 seconds, plus a double calibration
time of 18 seconds for each stimulus, before and after data acquisition) to the group of subjects
with several repetitions per person, but were also processed by all the IPAs described in the
next section.

Repetitions were achieved by asking subjects to repeat the experiments within a few days for



a total of at least three sessions: in this way, consistency in the way each subject looks at specific
visual stimulus could be studied and compared with algorithmic performance. During one
experimental run, the complete sequence of images (each time in different order) was displayed

to the subjects.

3 Image processing algorithms, IPAS,' used for identifying aROIs

The information content of a generic image can be abstracted by different 'image parameters that
in turn can be identified by relevant IPAs. In this sense, applying algorithms to an image means
mapping that image into different domains, where for each domain, a specific set of parameters
is extracted. After the image has been processed, only th;a loci of the local maxima from each
domain are retained; these maxima are then clustered in order to yield a limited number of
aROIs. The algorithms we studied are:

1 — X, an z-like mask of 7x 7 pixels, positive along the two diagonals and negative elsewhere,
was convoluted with the image. We have also used different high-curvature mask convolutions,
for example the ” < ” -like mask whose definition is intuitive. The block size of 7 x 7 (0.3x0.3
degree block) depends on image scaling.

2 — &, symmetry, a structural approach, appears to be a very prominent spatial relation.
For each pixel z,y of the image, we define a local symmetry magnitude S(z,y) as follows:

'S($7y) = Z 3((1:1,j1),(i2,j2)) (1)

(11.1),(i2,52) €T (z,y)

where I'(z, y) is the neighborhood of radius 7 of point z, y defined along the horizontal and verti-
cal axis (P(ZB, y) = (.'I: -7, y)a ooy (xay)a (:B +7, y)a (:z:,y - 1‘), eey (IL‘, y+ T)) and s((i11j1)1 (i2:j2))

is defined by the following equation:

s((i1, 1), (42, 32)) = G, (d((31,51), (42, 52))) |cos(8; — 62)| (2)



The first factor G, is a gaussian of fixed variance, o = 3 pixels and d(-) represents the distance
function. The second factor represents a simplified notion of symmetry: 6; and 6, correspond
to the angles of the gray level intensity gradient of the two pixels (i, 71) and (é2,52). The factor
achieves the maximum value when the gradients of the two points are oriented in the same
direction. The gaussian represents a distance weight function which introduces localization in
the symmetry evaluation. Our definition of symmetry was consequently based on the orientation
correspondences of gradients around the centered point [16). Alternatively, a normalization of
the #xial quadratic moment couid be used instead to compute the symmetry transform (7).

3 — W, a discrete wavelet transform is based on a pyramidal algorithm which splits the image
spectrum into four spatial frequency bands containing horizontal lows/vertical lows (ll), hori-
zontal lows/vertical highs (lk), horizontal highs/vertical lows (i) and horizontal highs/vertical
highs (hh). The procedure is repeatedly applied to each resulting low frequency band resulting
in a multiresolution decomposition into octave bands. The process of image wavelet dec;)mposi-
tion is achieved using pair of conjugate quadrature filters (CQFs) [25] which acts as a smoothing
filter (i.e. a moving average) and a detailing filter respectively (see for example [18]). We have
used different orders from the Daubechies W,, and Symlet W, family bases [5, 6] to define CQF
filters. For each resolution i, only the wavelet coefficients of the highs/highs hh; matrix were
retained and finally relocated into a final matrix HH (with the same dimension as the original

image) by the following combination:

HI = 3" ¢i(hh) @

i=1
where n is the maximum depth of the pyramidal algorithm (n = 3 in our case) and where ((-) is
a matrix operation which returns a copy of the input matrix hh by inserting alternatively rows

and columns of zeros.

4 — F, a center-surround 7 x 7 quasi-receptive field mask, positive in the center and negative

6



in the periphery, was convoluted with the image.

5 — O, difference in the gray-level orientation, is possibly also analyzed in early visual
cortices (see also [10]). Center-surround orientation difference is determined first convoluting
the image with four Gabor masks of angles 0°,45°,90° and 135° respectively. For each pixels z, y,
the scalar result of the four convolutions are then associated with four unit vectors corresponding
to the four different orientations. The orientation vector &(z,y) is represented by the vectorial
sum of these four weighted unit vectors. We define the center-surround orientatior. difference

transform as follows:

O(.'l:, y) = (1 - 6(3:3 y) * ﬁl(ﬂ:, y)) " 5(.1" y) "" ﬁz(z’ y) " (4)

where 7(z, y) is the average orientation vector evaluated within the neighborhood of 7 x 7 pixels.
The first factor of the equation achieves high values for big differences in orientation between the
center pixel and the surroundings. The second factor acts as a low-pass filter for the orientation
feature.

6 — £, edges per unit area, is determined by detecting edges in an image, using the Canny
extension of the sobel operator [3] and then congregating the edges detected with a gaussian of
o = 3 pixels.

7 — N, entropy is locally calculated as Yiec fi log fi where f; is the frequency of the
i —th gray level within the 7 x 7 surrounding region of the center pixel and G is the local set of
gray levels. Local maxima defined by this factor emphasize texture variance.

8 — C, Michaelson contrast, is most useful in identifying high contrast elements, generally
considered to be an important choice feature for human vision. Michaeison contrast is calculated
as |(Lm ~ La) / (Lm + Lag)||, where £y, is the mean luminance within a 7 x 7 surrounding of
the center pixel and Ly is the overall mean luminance of the image. L,, was also used in our

study.



9 — %, the discrete cosine transform, DCT, introduced by (1], is used in several coding
standards as, for example, in the JPEG-DCT compression algorithm (see section 7). The image
is first subdivided into square blocks (i.e. 8 x 8); each block is then transformed into a new set of
coefficients using the DCT; finally, only the high frequency coefficients are retained to quantify
the corresponding block.

10 — L, the laplacian of the gaussian, is convoluted with the image.

4 Clustering and sequencing

The IPAs result in defining local maxima widely over the image; a clustering procedure is then
applied to reduce this large set of local maxima into the -ﬁnal small (n = 7) subset of aROIs.
Thus, the resulting string of aROIs were similar in number to human eye movement fixation
glances looking at similar images.

The initial set of local maxima is clustered by connecting local maxima and gradually in-
creasing the acceptance radius for joining them. During each step c;f the clustering process, all
local maxima less than a specific radius apart are clustered together (Figure 3). Each cluster
inherits the maximum value of its component points (local maxima): the locus of this highest
valued maximum for each cluster then also determines the locus of that cluster. Only that
maximum point is retained; all the other composing local maxima are deleted. The procedure is
repeated while increasing the acceptance radius at each step. The decision to end the clustering
process is set when only a pre-defined number n of clusters remain. The values of the remaining

clusters, ordered from highest to lowest, permits us to relate the sequence of clusters, aROlIs, to
sequences of human fixations.

Algorithm N was applied for example to a Chilean desert i)hoto (Figure 4, upper left panel)

and the initial set of local maxima (Figure 4, upper right panel) was then clustered (Figure 4,



lower left panel; partway through the clustering process). The final ordering is indicated by the
arrows connecting the cluster loci and superimposed on the original image(Figure 1. lower right
panel). Note the maximum valued locus for each cluster. No initial conditions are required for
the clustering. The overall procedure, implemented using sparse matrix representation, is fast
in execution, even for large images.

Other clustering procedures have been investigated. Changing the criteria to detect the
locus and the value of the clusters during each iteration can modify the previous procedure: for
example, the number of included local maﬁma could be used to affect the value of a specific
cluster. However, no significant disparities in the overall performance of our system have been
noted when different clustering procedures were compareél' to each other. Each of our IPAs, of
course, contributes the intensity of its selected parameter in finding the local maxima and thus
the §alues of resulting clustered aROI domains. This may be quite intuitive; it is the nature
of the processed image (i.e. the IPA used), more than the clustering procedure useci for the
identification of the final aROISs, that most influences the final distribution of aROISs (Privitera
et al., in preparation).

If we had used only IPAs and not the clustering procedure, we could have selected, say, the
seven highest local maxima directly and defined them to be the aROIs. Those selected aROIs
however, might be much more closely spaced. Thus the clustering procedure is actually an
eccentricity-weighting procedure, where even lower local maxima that are eccentrically located

may finally be selected to form an aROI.

5 Comparing and sorting procedures

The aROI loci selected by our different IPAs and those loci defined by human eyes movement

fixations, hROIs, can be compared. In this section we describe the statistical and computational



platform we have been using for these comparisons (see also [14]). We also introduce the scanpath

theory.

5.1 Comparison of two set of ROIs

Comparison of final clusters of ROIs began with taking two.sets of ROIs (Figure 5, middle,
upper and lower panels) and clustering tl.ese two sets using a distance measure derived from
a k-means p;g—evaluation. This evaluation determined a region for calling coincident any ROIs
that were closer than this distance and non-coincident for ROIs that were further apart than
this distance; the distance was about two degrees and similar in size to human foveal spans for
moderate visual acuity. All the coincident ROIs (named- joined-ROIs) ‘were labeled with the
same alphabetic character (Figure 5, right panel) and they then enabled a similarity metric, Sp,
to determine how many ROIs two algorithms (as in the example shown in Figure 5, see also
the processed image in the left panels), or two humans, or an algorithm and a human have in
common; the final value was normalized based upon string length. The individual sources of the
elements, that is the original ROIs, used in these final interactive steps are preserved as circles
and squa.res' (Figure 5, right panel) to illustrate the procedure.

As mentioned above, ROIs are ordered by the value assigned by the IPA or by the temporal
ordering of human eye fixations in a scanpath. Then, the joined-ROIs can finally be ordered into
strings of ordered points. Here, (Figure 5), we have for example: stringe = abcfef fgdc and
strings = afbf fdcdf. The string editing similarity index S; was defined by an optimization
algorithm [20] with unit cost assigned to the three different operations deletion, insertion and
substitution.

Our compa.rigons yielded two different indices of similarity which tells how closely two set of

ROIs resemble each other in locus, Sy, and in sequence, S; (see the "toy” diagrams on Figure
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6). For the example illustrated above (Figure 5).we have: Sp=1and S; =0.34.

5.2 Y-matrices and parsing diagrams

Similarity coefficients can be sorted and represented for the two measures, Sp and Ss in Y-
matrices (two huma.n subjects are for example compared and averaged for two different pictures,
Figure 7, upper panels; again in Figure 8 where we coﬁpue not different subjects but different
IPAs) and in parsing diagrams, (Figure 7, lower panels, for all the subjects). The parsing diagram
collects averages of these similarity coefficients: R, for repetitive scanpaths, same subject looking
at the same picture at different times; Local = L, different subjects same picture; Idiosyncratic
= I, same subjects different pictures; Global = G, different subjects différent pictures.

The most important distinction is that between Repetitive similarity, R, upper left box
(Figure 7, lower panels), and Global similarity, G, lower right box: the R value for human with
the S, measure, equals 0.64. This means that the string for repetitive viewing of the same
stimulus for the same subject have loci that were 64% within fixational or foveal range — this
represents continuing support for the scanpath theory, (see the following section).

For Global, all different subjects looking all different stimuli had an Sp value of only 0.28.
This number was somewhat different from the expected S, value of 0.21 based up on consider-

ation of a random model, Ra, (bottom box).

5.3 The scanpath theory

The scanpath has been defined on the basis of experimental findings. It consists of sequences of
alternating saccades and fixations that repeat themselves when a subject is viewing a picture.
Only ten percent of the duration of the scanpath is taken up by the collective duration of the
saccadic eye movements providing an efficient mechanism for traveling over the scene or regions

of interest; thus the intervening fixations or foveations onto hROQIs, have at hand ninety percent
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of the total viewing period (see [2, 24] and also section 2).

Scanpath sequences appeared spontaneously without special instructions to subjects and
were discovered to be repetitive: note the high R index in the parsing diagrams (Figure 7).
This repetitiveness suggested to Noton and Stark [11] that a top-dowif internal cognitive model®
controls perception and active looking of eye movements in a repetitive sequential set of saccades
and fixations, or glances, over features of a scene so as to check out and confirm the model [20].

Of course, the objective or task can affect the active looking of eye movements [27, 26).
Nevertheless, without any specific task instruction, for general viewing conditions, the high R
values in the parsing diagrams (Figure 7: 0.64 for Sp and 0.42 for S;) suggest that a very similar
set of representative regions of interest are sequenced and searched by the brain each time. A
considerable consistency is also reported by the high L values when different subjects look at
‘the same picture (Figure 7: 0.54 for S, and 0.28 for S;).

The strong consistency reported in human experiments, when no specific objectivé is given
to the subjects, means that only a specific restricted set of representative regions of the picture
is essential for the brain to perceive and recognize that picture. This representative set is similar
for different subjects, and this important characteristic brings us to the main scientific objective
of our work: whether it is possible to automatically identify this set by using IPAs.

Comparing aROIs with hROIs is the standard utilized to study and select which IPAs are
more successful in this objective; if a specific task is given, different hROIs may result, and

consequently, different algorithms may be selected from our collection [13].

'This internal cognitive model must, of course, approximate the external world; otherwise, perception would
not be possible. Thus, what we call an internal model and what is generally understood to be memory are two
very interrelated cognitive entities. It is beyond the scope of the present paper to go into detail about how this
model is created and organized in the brain; what is perhaps worth emphasizing here, is that internal cognitive

models often must match closely the visual stimuli inputs.
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5.4 Study of the ANOVA: ANalysis-Of-VAriance

In the following section, results from the aROIs vs. hROIs comparisons are presented and
discussed.

In order to better evaluate and interpret the final results, we also used an Anova, analysis-
of-variance. The Anova value is compared with a critical value F of Fisher distribution with
k — 1 degree of freedom in the numerator (where & is the number of a distribution that we are
comparing) and n — k in the denominator (where n is the total number of observation in the
k distributions). If the Anova test value is less than the F-Fisher critical value for an a level
of significance (for example, in this paper, & was set equals to 0.01), then it is possible to infer
that the two means are not different enough to come fro;n. different distributions; on the other
hand, if the Anova test value is greater than the F-Fisher critical value, this signifies that the
mea'ns likely come from different distributions.

Our standard format for presenting our data in the algorithms parsing diagram was as a
triplet; for example 0.33 (0.04, 18.7) with 0.33 equal to the mean value, 0.04 equal to +/-
the standard deviation, and 18.7 equal to the Anova test value. Our quantitative conclusions
presented in the result section below were strongly sustained by the relationship between Anow./a

test values and F-Fisher critical value (for @ = 0.01) of 7.5.

6 hROIs vs. aROIs comparisons

We were, of course, most interested in the several uses of our methodology on our data — to
analyze not only the capability of IPAs and clustering procedure to predict eye fixations, but also
the inter-relationships among algorithms. In this section, we present and discuss these different

results which derive from the comparison results.
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6.1 Relationships among IPAs

We wished to obtain as wide a variety of image processing algorithms as possible and to keep
small the coherence between pairs of image processing algorithms. Thus, our wide variety of
image processing algorithms would have independent actions on the images and they could serve
to identify aROIs for a variety of picture types, and for a variety of visual identification tasks
[13].

The coefficients of the Y-matrix (Figure 8, see also [14] for prelimix;ary results) indicated
the coherence between each pair of a selected group of algorithms as explained above. Enclosed
within a dashed box are two different group of algorithms: each group is internally characterized
by high S, similarity but cross-similarity between the tW(; groups is very low. For example, a
coefﬁcient value of 0.69 (Figure 8, left panel) between algorithms A and F demonstrated a
‘strong coherence between those two algorithms while the value of 0.15 (Figure 8, left panel)
between algorithms C and W, demonstrated a high independence. A string-editing similarity
coefficient of zero (Figure 8, right panel) between algorithms A aﬁd W;, represents complete
independence of two compared sequences. Note, that the coefficients for S (aROIs string-editing
similarity) were much lower than the coefficients for S, (aROI-loci similarity).

Our collection of algorithms could thus be sorted for similarities or for differences in gener-

ating aROls. This is of value in selecting algorithms for different tasks [13].

6.2 Parsing diagrams

Again, we gathered the crucial comparisons between algorithms and eye fixations together into
a parsing diagram (Figure 9). The ability of the algorithms (labeled A in Figure 9) to predict
eye fixations was demonstrated by the number in the upper right box, L, of the left panel, Sp.

The average for all the algorithms was 0.33.
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On the basis of this large number of measures between algorithms, images and subjects,
we may select a sub-group of algorithms (A* = Wy, £, O and S). For this selection, the Sy
similarity rose to 0.36 and the Anova test showed a considerable significance (27.0 related to the
F-Fisher critical value of 7.5). Two different examples of high S, values are shown (Figure 10:
hROIs left panels and aROIs right panels, aigorithms Lm, upper, and Wy, lower).

The global, G, S, value represented the average S, for algorithms applied to different images
and it could be considered a bottom anchor for Sp; a further bottom anchor was Ra, the random’
Sp, calculated for coincidence among randomly identified loci.

The S, parsing diagram shows little coherence even among all the algorithms providing
support of an earlier preliminary study, [23], that the IPAs and the clustering procedures we
used cannot predict sequencing of human eye movements.

We also selected four of the algorithms that seem to cohere (average Sp = 0.56) with the
human subjects for two particular images (After the Shower and Madame). This overall Sp
was further segregated to show each algorithm and each subject separately (Figure 11, upper
right box; subjects A,C,H,T and'algorithms X, S, Wy and F) so the variability can be judged.
Another coherence strengthens our overall result by documenting the strong S, indices among
these four selected algorithms; note the high average Sp, that equals 0.75 among these algorithms
(lower triangle). A third coherence (not shown) was achieved for the set of Mars terrain images
alone, and algorithms C, W;, and £ (average coherence between aROIs and hROIs was 0.43).

We might further improve eye fixation loci prediction by choosing other sets of structurally
different algorithms and combining these algorithms and the others used in this paper in some
optimal fashion. The overall result here is that IPAs in conjunction with the clustering procedure
can predict hROIs with appreciable average S, and with statistical significance. If we s;zlect some

of the algorithms on the basis of specific type of images, then this prediction is as good as the
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ability of one human to predict the fixation locations of another subject; the local, L, relationship
in our S, parsing diagrams equaled (Figure 7). Thus, our large collection of algorithms can
provide different selection policies both for different images and for different tasks [13].

Several subjects from our lab, extraneous to this project, have been asked to qualitatively
judge the distribution of aROIs over the pictures for all the algorithms and the pictures that
have been used in this study. In this way, an evaluation different and independent from the
Sp metric, could be taken into account in order to validate our results zad better interpret the
meaning of the coefficients reported in the tables. The subjects participating in the evaluation
were asked to analyze the aROIs for each algorithm and each picture and express a personal
valuation using three different grades: good, medium and bad. First, a total of 64% of aROls
were considered acceptable or good. Then, ordering these results for each algorithms and for
each image, we computed the correlation with the ordering generated by our S; metric. The
average correlation was quite high, around 0.7, and Anova analysis confirmed the rela,-tionship

between these human qualitative evaluations of aROIs and the Sp coefficients.

7 Some applications of aROIs

Certain computer vision applications might benefit from an apparatus that automatically identi-
fies regions of visual interest in a digital image. Some of these applications have been investigated
within the last few years in our lab.

Compensating for a variety of visual defects might be arranged by using idiosyncratic anatom-
ical information about the localized lesion for an individual patient. We are study.ing a head
mounted vision apparatus wherein important aROIs can be shifted so as to avoid the patient
scotoma or blinded area.

Internet communications usually have a bottleneck in image retrieval: pictorial databases
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occupy large amounts of disk memory, and image searching through the internet is usually
very-slow when the entire image has to be analyzed for all the images in the database. An
intelligent pictorial database querying system could be based on aROIs in the digital image.
The query can be formulated in terms of these regions, and the subsequent search implemented
only analyzing the aROIs associated to each image in the database. The smaller set of images
that match aROIs present in the query would eventually be sent back through the net (many
interesting alternatives are present in the literzture, see for example [17, 4] and the proceedings
corresponding to the second reference).

A suggestion was put forward by Stark and Ellis in 1981 [22] for video transmission to send
high resolution local ROIs alternately with the ordinary .résolution of the entire image. In this
way, subjects looking at the transmitted images would likely obtain an impression that the entire
image had been seen with very high resolution. Algorithms for detecting aROIs can be utilized
for automatically identifying these high resolution ROIs.

An extended version of the JPEG encoder, the Selective JPEG encoder, based upon on
aROIs, has been implemented in our lab. The JPEG image compression standard [12], uses the
Discrete Cosine Transform, DCT, of 8 x 8 image blocks followed by a lossy quantization and
loss-less entropy (Huffman) coding for each block. Quantization is usually performed by the

following division and rounding operation:

Ci=Lfi £Q:i/2]/Q: (5)

where 7 is one element of the 8 x 8 block; C; is the quantized coefficient, f; is the i — th DCT

frequency coefficient, and Q; is the corresponding quantizer factor. The + sign is the same as

the f; coefficient.
The quantizer factors are grouped into a quantizer factors matrix, Q = {g; : i = 1,...,64},

each factor corresponding to a specific DCT frequency, and they control the lossy compression
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level of the image: the bigger the factors in the matrix are, the more the blocks are compressed.
Hence, the more frequency information is lost: a quantization that is too coarse may eventually
produce the classical blocky effect.

In the standard JPEG baseline, the quantization matrix is usually standardized, with higher
coefficients corresponding to higher frequencies, and it is uniquely defined for all the blocks of
the image. Consequently the quantization cannot be differentiated over different regions of the
image. In our Selective JPEG baseline, the magnitude of the quantizer factors are adaptively

related to the distance from the set of aROIs by means of the following rule:

Q(z,y)i = QS (dmin(af'z v)) (6)

where dmin(z,y) is the minimum distance between the block 7,y in the image and the set of
aROIs. §(-) is a stepwise monotonic function equal to the unity for distance dp;n(z,y) that is
appropriately small and then increasing with the distance; Q; is the original standard quantizer
coeflicient.

The stepwise function S(-) can be tuned appropriately both in size é.nd in slope: we can
choose for example to have small high resolution regions and then gradually increase the quan-
tization in equation 6) in the periphery or define large high resolution regions and then strongly
increase the quantization in the periphery.

Algorithm O has been applied, for example, to a countryside photo and five aROIs have been
identified (Figure 12, upper panel). The Selective JPEG compression was then applied to the
image based on those identified aROIs where S(d(z,y)) = 2 for 0° < d(z,y) < 1°, degree of the
visual angle (note that also aROIs are slightly compressed); S(d(z,y)) = 250 for 1° < d(z,y).
The Selective JPEG compressed image (Figure 12, middle panel) can be compared with the
standard JPEG compression (Figure 12, lower panel) with the same amount of compression

(100:4): the visual appearance is much better with the Selective JPEG compression.
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Alternative solutions have been proposed in the literature (see for example [19, 9]): aROIs are
usually identified at the block level and severe discontinuities can appear for strong compression
rate even with selective quantization. Moreover, some of the proposed methods may not be
really JPEG-compatible. An interesting proposal is discussed in [28) where a fuzzy scheme is
used to determine important regions. Our method is based on a number of compact regions of
interest whose size and distribution over the image is based on and strongly inspired by human
eye movement studies. Indeed, the biological plausibility of our model results in an evidently

better qualitative impression of the compression.

8 Discussion

Oup method provides a precise task for the IPAs we have studied — to predict human scanpaths,
both loci and sequences of eye movement fixations or foveations. 'The method also provides for
quantitative measurements of prediction accuracy.

In this paper, we have validated that a constellation of IPAs used in conjunction with a
clustering procedure can predict, for Sp, the loci of human fixations. Our results indicate,
however, that the algorithms can not predict the sequential ordering, Ss, of the sub-features
used by a person.

The wide selection of algorithms gave us an opportunity to study the differences and sim-
ilarities in terms of the precise task we consider. These algorithm characteristics are of great
interest to us as indicators of the general nature of an picture and how either algorithms or
humans process it. We might need to provide weighting coefficients for the different algorithms
in order to optimize the prediction capabilities of the ensemble.

Our scale of similarity indices is anchored at the bottom both by the random, Ra, values

and by the global, G, values, that is for all subjects and algorithms and pictures. The top of
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the scale is anchored for human studies by the repetitive, R, value, the closeness of fit of a
single subject’s scanpaths to her scanpaths with the same picture at another time with the same
task instructions. Can we similarly use trivial modifications of the pictures to obtain repetitive
indices for the algorithm studies?

The clustering procedures we used require a good deal of thought and preliminary studies
have been reported in section 4. As we indicated above, the clustering procedure distributes
strings of aROIs in more eccentric locations than they would be in without the clustering pro-
cedure. This eccentricity asserted a positive effect on the similarity between aROIs and hROIs.

In summary, the methodology defined in this paper has been tested on a varied set of digital
images that ranges from portraits to landscapes and terrain images. A number of subjects were
used for the eye movement experiments. Finally independent subjective evaluations by naive
Subj‘ects in order further validated the results.

The overall results are very encouraging and we have started to define and implemeﬁt differ-
ent applications such as image retrieval from pictorial &ataba.ses. For use in image compression,
a Selective JPEG image compression encoder has been defined in more detail in the last section

of the paper.

Acknowledgements

We thank our sponsors for partial support:- NASA-Ames Research Center (Dr. Stephen Ellis), Fujita
Research (Dr. Ken Kawamura) and Neuroptics Corporations (Dr. .Kamran Siminou). Our colleagues in
the laboratory, Michela Azzariti for her indispensable statistical analysis; Ted Blackmon, Yeuk Fai Ho,
Veit Hagenmeyer, Yong Yu. Others have been generous in their advice — Irwin Sobel at Hewlett-Packard,
and at UCB, Jerry Feldman, CS, and David Brillinger, Statistics; also the anonymous refere‘es for their

incisive, constructive and motivating comments.

20



References

[1] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine tranform. IEEE Trans. Computer.,

23:90-3, 1974.

[2] T.A. Bahill and L.W. Stark. Trajectories of saccadic eye movements. Scientific American,

240:84-93, 1979.

[3] J. Canny. A computational approach to edge detection. JEEE Trans. on Pattern Analysis

and Machine Intelligence, 8(6):679-698, 1986.

[4] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Region-based image querying. In Proc.
IEEE Workshop on Content-Based Access of Image and Video Libraries, pages 42-9. IEEE

Comput. Soc. Press., Los Alamitos, CA, 1997.

[5] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl.

Math., 41:906-66, 1988,
[6] I. Daubechies. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.

[7) V. Di Gesti and C Valenti. The discrete symmetry transform in computer vision. Technical

Report 011-95, Laboratory for Computer Science (D.M.A.), University of Palermo, 1995.

[8) R.M. Haralick. Statistical and structural approaches to texture. Proc. IEEE, 67:786-804,

1979.

[9] A. Kundu. Enhancement of JPEG coded images by adaptive spatial filtering. In Proc.

International Conferencé on Image Processing, volume 1, pages 23-26. IEEE Comput. Soc.

Press., Washington, DC, 1995.

21



[10] E. Niebur and C. Koch. Control of selective visual attention: Modeling the “where” path-
way. In David 8. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances

in Neural Information Processing Systems, volume 8, pages 802-8. The MIT Press, 1996.

(11] D. Noton and L.W. Stark. Scanpaths in eye movements during pattern perception. Science,

171:308-11, 1971.

[12] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression Standard. Van

Nostrand, 1993.

[13] C.M. Privitera, M. Azzariti, and W.L. Stark. Autonomous image processing algorithms
locate regions-of-interest: the Mars Rover applicatiéﬁ. Tech. Repof’t, Electronics Research

Laboratory, University of California, Berkeley, (UCB/ERL M98/8), March 1998.

[14] C.M. Privitera and L.W. Stark. Evaluating image processing angorithms that predict reéions

of interest. Pattern Recognition Letters, 1998. (forthcoming to appear).

[15] R. T. Reed and J. M. Hans Du Buf. A review of recent texture segmentation and feature

extra.ctfon techniques. CVGIP: Image Processing, 57(3):359-72, 1993.

[16] D. Reisfeld, H. Wolfson, and Y. Yeshurun. Context-free attentional operators: the general-

ized symmetry transform. International Journal of Computer Vision, 14:119-130, 1995.

[17] E. Remias, G. Sheikholeslami, Z. Aidong, T. Fathima, and F. Syeda-Mahmood. Supporting

content-based retrieval in large image database systems. Multimedia Tools and Applications,

4(2):153-70, 1997.

(18] O. Rioul and P. Duhamel. Fast algorithms for discrete and continuous wavelet transforms.

IEEE Trans. on Information Theory, 38(2):569-86, 1992.

22



(19]

[20]

21]

(22]

[23]

24]

[25]

(26]

[27]

R. Rosenholtz and A.B. Watson. Perceptual adaptive jpeg coding. In Proc. International
Conference on Image Processing, volume 1, pages 901-4. IEEE Comput. Soc. Press., Lau-

sanne, Switzerland, 1996.

L. Stark and Y. Choi. Experimental metaphysics: The scanpath as an epistemological
mechanism. In W. H. Zangemeister, H. S. Stiehl, and C. Freksa, editors, Visual Attention

and Cognition, pages 3-69. Elsevier, Amsterdam, 1996.

L. Stark, Y. Choi, and Y. Yu. Visual imagery and virtual reality. In Visual Science.

Dordrecht, the Netherlands: Elsevier, 1996.

L. Stark and S. Ellis. Scanpaths revisited: Cognitive models direct active looking. In Monty
Fisher and Senders, editors, Eye Movements, Cognition and Visual Perception, pages 193-

226. Erlbaum Press, New Jersey, 1981.

L. Stark and C.M. Privitera. Top-down and bottom-up image processing. In Proc. of IEEE
International Conference on Neural Networks, volume 4, pages 2294-9. Houston, TX, June

1997.

L.W. Stark, W. Hoyt, K. Cuiffreda, R. Kenyon, and F. Hsu. Time optimal saccadic trajec-

tory model and voluntary nystagmus. Models of Oculomotor Behavior and Control, 1980.

P.P. Vaidyanathan. Multirate System and Filter Banks. Prentice-Hall, Englewood Cliffs,

NJ, 1993.
A.L. Yarbus. Eye movements and vision. Plenum Press, New York, 1967.

W.H. Zangemeister, K. Sherman, and L.W. Stark. Evidence for global scanpath strategy in

viewing abstract compared with realistic images. Neuropsychologia, 33(8):1009-25, 1995.

23



[28] J. Zhao, Y. Shimazu, K. Ohta, R. Hayasaka, and Y. Matsushita. A JPEG codec adaptive
to the relative importance of regions in an image. Transactions of Information Processing

Society of Japan, 38(8):1531-42, 1997.

24



FIGURE LEGENDS

Figure 1 - Computer and Human Processing
Comparing human identified Regions of Interest, hROIs, (upper right) with algorithmic identi-
fied Regions of Interest, aROIs, (lower right). Note eye movement sampling, (upper left) and

local maxima in the processed image, (lower left).

Figure 2 - Measuring Eye Movements
The video image of the subject’s eye is digitized by means of a frame-grabber and the bright

Purkinje reflection is tracked in x-y coordinates.

Figure 3 - Clustering Procedure: a Single Step

During each step of the clustering process, all local maxima less than a specific radius apart,
D;, are clustered together. Then the highest valued maximum for each cluster determines the
locus of that cluster and all the remaining maxima are removed. The process continues while

increasing the acceptance radius D; at each step.

Figure 4 - Clustering Procedure: to Completion
Algorithm N was applied to a Chilean desert photo (upper left). The initial set of local max-
ima (upper right) was then clustered using the defined iterative procedure (lower left: pa.rtwé.y

through the process). The final ordering, superimposed on the original image, is shown in the

lower right panel; the maximum-valued locus for each cluster is inserted in the figure.



Figure 5 - ROIs Comparisons Procedures

Actions of each IPA yields a transformed image (left column) for two examples, £ (upper), and
S (lower). Final aROIs in each image are ordered by value and connected by arrows in anal-
ogy to eye movement sequences of fixations (central cc;lumn). The two set of aROIs are finally
combined (right panel) into a number of joined-ROIs, further used to define distance measures

between the two sets.

Figure 6 - Similarity Measures

Two sets of ordered ROIs (left) whose loci are widely separated: S, low and S; low. Two sets
of ROIs (middle) with closely matched loci, but whose ordered sequences are different: Sp high
and S low. Two sets of ROIs (right) whose loci and ordered sequence are similar: S, high, S

high.

Figure 7 - Y-matrices and Parsing Diagrams

Sp and S; similarity indices for different subjects (or different algorithms) and for different pic-
tures can be arranged in a Y-matrix (upper panels) with each value being the average of several
repetitions. Parsing diagrams, (lower panels), represent averages of these similarity indices in a

more collected and intuitive fashion.

Figure 8 - Coherence and Independence among IPAs
Cross-comparison values of six algorithms for two indices, Sp and S;. Enclosed within the dashed
boxes are two different group of algorithms: each group is internally characterized by high Sp

similarity, but cross-similarity in S, between groups is very low. Note that Ss values are very low.



Figure 9 - Parsing Diagrams for Comparing aROls and hROIs
Crucial comparisons between algorithms and eye fixations are gathered in the parsing diagrams
(see text). Test of significance are made by comparing the Anova test value with the F-Fisher

critical value which is 7.5.

Figure 10 - Comparisons of hROIs and aROIs for Different Pictures
Two examples of good Sp-similarity between aROIs (right column: £, upper, W;, lower) and
hROIs (left column). S, = 0.62 and Ss = 0.13, upper panel; Sp = 0.87 and S; = 0.13, lower

panel. Note low values of S; indicating that string sequences could not be identified by the IPAs.

Figure 11 - Coherence and Independence among Selected Algorithms
Y-matrixes for two particular images (After the Shower and Madame), a selected group of al-

gorithms, X', S, Wy, and F and subjects, A,C,H,T.

Figure 12 - Selective JPEG compression based on aROIs

Five aROIs (arrows) were identified using @; aROIs were maintained at higher resolution by
the Selective JPEG compression.. The Selective JPEG compressed image is shown in the middle
panel and a standard JPEG compression in the lower panel. Total compression was the same

in both examples; the visual fidelity is much higher with Selective JPEG compression.
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Y-MATRICES (partial: 2 subjects)

Sp | Subiect!  Subject2 Ss | Subjectl  Subject2
Pict] Pict2 Pictl_Pict2 Pict] Pict2 Pict] Pict2
sip1 | 0.655 0.38; 0.54; 0.18 Sipl | 0.40g 0.24; 031y, 0.08;
S1p2 0.60g 0.31G 047, S1p2 0.39% 0.13G 0.19,,
S2pl 0.69g 0.33 S2pl 0.43g 0.21
S2p2 0.58 S2p2 0245
PARSING DIAGRAMS (complete: 7 subjects)
Same Different Same Different
Subject Subjects Subject Subjects
Repetitive Local Same Picture Repetitive Local
0.64 0.54 0.42 0.28
Idiosyncratif  Global Different Pictures Idiosyncratid  Global
0.34 0.28 0.21 0.16
Sp Random Ss Random
0.21 . 0.04

Figure 7
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Figure 11
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