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Abstract

Learning Control of Complex Skills

by

Lara Sidonie Crawford

Doctor of Philosophy in

Biophysics

University of California at Berkeley

Professor S. Shankar Sastry, Chair

This dissertation presents a hieraxchical controller which can learn to perform com

plex motor skills. Humans routinely coordinate many degrees of freedom smoothly and

effortlessly to achieve complex goals. Moreover, we are good at learning new patterns of

coordination to produce new skills. Robots and artificial systems, on the other hand, typi

cally have difficulty with the kindsof behaviors that come most naturally to us. Skills such

as running, skiing, playing basketball, or diving involve complex nonlinear dynamics, many

degrees of freedom, and behavioral goals that can be difficult to specify mathematically;

goals such as "ski down the mountain without falling down" or "shoot a layup" must be

translated from linguistic requirements into dynamic system constraints. The focus in this

dissertation will be on the skill of platform diving, in which the diver's goal is to execute a

certain dive and enter the water in a fully-extended, vertical position. Controlling a simu

lated diver is a difficult problem for standard control and planning algorithms; conservation

of angular momentum gives the system dynamicsa nonholonomic constraint with nonlinear

drift.

In this dissertation, ideas from the fields of biological motor control and learning are

combined with new learning algorithms in the design of a hierarchical controller which learns

to dive. At the lower level of the control hierarchy, each degree of freedom in the diver's

joints is assigned a controller based on biological pattern generators for fast, single-joint

movements. These controllers contain neural networks, which are trained on data generated



by simulation. The higher level of the control hierarchy incorporates ideas from human

skill learning: to achieve a desired behavior pattern, a human learning a new skill uses

information from instructors and from watching other performers to build a mental model of

the task requirements, and then practices to refine the parameters of this behavioral model.

In the high-level controller, each dive is represented as a sequence of multi-joint synergies.

The controller learns initial estimates of the timing of these synergies from observational

data and then refines these estimates through Q-learning with repeated simulations.

Professor S. Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

One of the amazing successes of biological systems is their ability to learn to coordi

nate many degrees of freedom smoothly and efficiently to produce complex behaviors. In

particular, how humans learn to dance, ride a bicycle, or execute a dive has been a subject

ofpsychological research for many years. Robots andother artificial systems, however, have

traditionally had great difficulty with acquiring or manifesting these kinds of complex mo

tor skills, which often involve intrinsically complicated dynamics, the coordination of many

degrees of freedom, and behavioral goals which may be difficult to specify mathematically.
However, by combining recent advances in theories of biomotor control, better learning al

gorithms, and faster computers, artificial systems may now acquire some of these advanced

skills.

Oneof the problems in controlling or learning a complex skillis that the goal is a general

behavioral requirement, often expressed linguistically. Statements such as "don't fall offthe

bicycle" or "rotate through one and one-half somersaults while in the pike position" need

to be expressed analytically for learning and control in artificial systems. To represent

these goal statements mathematically, it is necessary to understand what the important

features of the skill being learned are, in a physical as wellas linguistic sense. Also, as these

behavioral goals do not deal with specific joint requirements, the controls that will achieve

a behavioral task description are often nonunique. The twin questions of what is controlled

and what is learned in human motion and skill acquisition have been addressed by many

researchers in many different ways over the last century, and some of their insights can be

useful in designing artificial systems.

The psychology literature has distilled three stages of motor learning, which remain



largely unchanged since first proposed by Fitts in 1962 [26]. First is the cognitive stage, in

which the task or skill is turned over in the mind, analyzed, and perhaps put into words. This

is the stage during which the input of a teacher can be effective. In the second associative,

or fixation, stage, the performer practices the skill, improving and growing more consistent

until errors are rare. In the final, or autonomous, stage, the performer continues practicing

the movement until it becomes automatic, and requires very little conscious thought. During

this stage, performance accuracy increases beyond the level at which errors can be detected,

and speed increases in tasksfor which it is important. The performance of the skill gradually

becomes more resistant to stress and outside disturbances. Also in the autonomous stage,

there often seems to be a corresponding shift in control to lower hierarchical levels; less high-

level feedback is used, and behavioral subskills are combined together and programmed as

a unit [26], [90].

Relatively little is known about the mechanism of any of the three learning stages,

however; much of the recent work in motor control and learning has focused on control, to

the detriment of learning (see [30] for a review). In the first, "learning by watching," stage

of skill acquisition, what information does the student extract from watching an expert

or from a teacher's instructions? What does the student refine in the later, "learning by

doing," stages? These questions are, at their foundation, questions of representation; how

are complex skills represented in the human motor system? The information extracted from

teaching examples is then the information most relevant to the skill representation. One

possibility is that the learner extracts the kinematics of the movement being performed,

as in motion capture. There are several arguments against this suggestion. For one, the

amount of information to store would be huge. In addition, a purely kinematic movement

representation is unwieldy; it is hard to see how it would be easily broken down into sub-

movements in the second stage of learning. Also, this representation leaves unanswered the

question of how the correct torques to produce the required kinematics are produced. For

example, in walking it is clear that everyone uses slightly different kinematics; you can rec

ognize a friend from a distance by the way he or she walks. Another possibility is that the
learner extracts some kind of scaled joint torque information from teaching examples. This

is also unlikely; it has been repeatedly shown in walking, for example, that even though

the kinematics are fairly similar for two different subjects or for the same subject from one

stride to the next, the joint torques and electromyogram (EMG) patterns are often different,

especially at the knee and hip [25], [77], [109], [108].



A more likely scenario is that the representation is in the form of a behavioral or

synergetic model, in which the controls are restricted to a parametrized family, producing

a stereotypical output behavior. This kind ofmodel meshes well witha hierarchical control

architecture; a controller at a given level of the hierarchy merely needs to output tuning

parameters for thecontrollers at thenext lower level. Such a control structure, while perhaps

making the system less flexible, simplifles the control andlearning problem tremendously by

reducing the number of possible controls and allowing them to be represented in a compact

way. Generalizing from known to new tasks also becomes easier, simply by combining

known synergetic structures in new ways with new coupling parameters. For example, in

running or walking, the motion of the center of mass has a similar form across subjects,

speeds, and terrains. In running, a spring-mass model for the stance leg explains mostof the

observable behavior. In walking, an inverted pendulum model for the stance leg is a good

description. Good discussions of locomotion biomechanics can be found in [25] and [64].

The variability of the joint moments can be explained by postulating a support moment

synergy. The muscles act together to produce a required support moment; the variation in

the joint moments themselves are required by the slight changes in joint angles. A second

synergy may act to balance the body's mass, and a third to place the swing foot. (See [25],

[109], [108].) Thus, in running and walking, the controls are organized to produce three

synergetic subgoals, which can be combined to produce the overall spring-mass or inverted

pendulum behavior. Different speeds or stride lengths, for example, can be achieved by

adjusting parameters within the three synergies, but the overall form of the controls does

not change. Raibert [80], [79] used these ideas of behavioral synergies to build extremely

successful running and hopping robots.

Other skills have been less studied than locomotion, but the results there tell a similar

story. Vereijken, et al. [102], showed that in an artificial slalom task, what the subjects

learned seemed to be the relative phasing between the periodic movements of the legs

and that of the slalom platform. This data points to the phase being a parameter in a

behavioral model of the coupling between the periodic leg motions and the periodic motion

of the platform. Similarly, in springboard and platform diving, divers say that much of

learning dives consists of learning the timing required between known submovements such

as the going into and coming out of a pike. A behavioral model of a dive would therefore

consist of a string of timed subbehaviors which combine to produce a desired topology: two

and one-half somersaults, or one and one-half somersaults plus a twist, for example.



The idea of parametrized, synergetic control strategies applies at every level down the

motor control hierarchy. For example, in multi-joint placement movements such as reaching

movements, the coupling between the joints is often done in a simple, straightforward man

ner involving few parameters; the relationship between the shoulder and elbow kinematics

in a reaching movement is fairly fixed, with only a few parameters such as the relative

scaling changing with different movement variants [48], [46], [47]. Another example, spinal

pattern generators, have long been known to be involved in many animals for such rhyth

mic behaviors as running, chewing, swimming, and breathing [35], [36], and, more recently,

similar control mechanisms have been postulated for fast, goal-directed, single-joint move

ments [34], [48], [103], [43], [44], [5]; see Sections 2.4-2.5. The role of pattern generators is

to produce stereotypical movements or control signals which can be varied through tuning

parameters signaled by higher levels in the control hierarchy. A behavioral control strategy

at a given level ofthe control hierarchy can be used as a module or subprogram at a higher
level of the hierarchy; thus, the balance synergy or the support synergy becomes part of

the walking behavior, multi-joint leg and arm movements combine to become the action

of going into the pike position in a dive, which in turn is part of the overall dive behav
ior, and pattern generators for single-joint movements are coupled together to produce the
multi-joint control synergy.

With a behavioral model for complex skill acquisition, "learning by watching" may

consist of determining the structure of the task in terms of a behavioral model and pro

viding an initial set of parameter estimates. Then, during the second learning stage, or
associative stage, the performer practices the skill to refine the parameter estimates. New

ways to parcel the skill into lower level behaviors, synergies, or patterns (sometimes also
called "movemes," in analogy to linguistical phonemes) may become clear during this stage,

simplifying the high-level control by moving the burden to lower levels [90]. This kind of
parceling may also involve thedevelopment ofan internal model for external task dynamics
[92]. During the third learning stage, or autonomous stage, the movement becomes more
and more automatic. The combination of parceling control to lower levels and making the

movements more automatic corresponds to a shift from closed-loop to open-loop control

(see Section 2.5).

In this dissertation, I focus on the skill of platform diving. As with all behavioral

goals, a student diver is not given a set of explicit desired trajectories to follow; rather,
the dive is described as a set of desired twisting and somersaulting rotations together with



a desired end configuration (enter the water in a fully-extended, vertical position) and
possible intermediate configurations (for a "pike" dive, the diver must go into the pike
position during the dive). To execute such a dive, the diver must put together a string

of lower-level behaviors, or patterns of coordination, with the right timing to achieve the

desired rotations and enter the water correctly. The lower-level behaviors are such multi-

joint actions as entering the pike position or executing the "throw" with the arms that will
convert somersaulting velocity into twisting velocity [27]. The diver learns what the string

of behaviors is from an instructor (for example, first throw, then pike, then come out of

the pike into the layout position); this information forms the basis of the behavioral model

for the dive. The diver can also get initial estimates of the timing of the various behaviors

by more teacher input or by watching other divers. The timing is then refined through

repeated practice.

The diving problem has intrinsically interesting dynamics as well as many degrees of

freedom to coordinate. After the diver has left the board, he or she is subject to angular

momentum conservation, which creates a nonholonomic constraint in the system dynamics.

The diver leaves the board with some initial (non-zero) angular momentum, so the system

has drift. The drift velocity depends on the configuration of the diver. Since the diver is

falling while executing the maneuvers, there is a predetermined length of time in which

controls can act. These features, combined with the behavioral nature of the goal, make

the diving problem a difiicult one for traditional control methods, as will be discussed in

Chapter 3.

Further background on motor control and learning from the biological and psychology

literatmre is provided in Chapter 2. Chapter 3 presents an analysis of the diving problem

and describes the implementation of the diver in simulation. The learning controller design

and the algorithms it uses are presented in Chapter 4, along with some simulation results.

Finally, Chapter 5 provides a discussion of the simulation results as well as various open

questions regarding the control design and the learning algorithms.



Chapter 2

Biological Background

Biological motor control systems have evolved over the millenia to be amazingly ef

fective, versatile, and adaptable. They are also, however, extremely complex, and are not

understood fully even at the lowest level of the control hierarchy, the muscles. In spite

of our lack of understanding, some principles have emerged in the study of biological sys

tems that are useful for designing improved artificial controllers. Much of the material in

Sections 2.1-2.3 is based on Brooks [21] and McMahon [64].

2.1 Motor Control Hierarchy

The motor control system in vertebrates is structured in a hierarchical manner. (See

Figure 2.1.) The limbic system provides the motivational impetus to start a movement.

This system, the seat ofemotions and biological drives, is essential for understanding the
requirements of the task at hand and thus for insightful learning. The sensorimotor sys

tem is typically divided into three hierarchical levels. At the highest level, the association
cortex, which is responsible for recognizing and attending to events and objects, creates

the general plan of the movement, and the motor cortex'provides specific tactics and di
rectional information for the execution of the movement. The motor cortex is organized

in a somatotopic map. Each area of the map seems to specify very simple movement or

muscle patterns in the corresponding part ofthe body [51]. In the middle level ofcontrol,
the cerebellum performs coordination and fine tuning ofdifferent components ofthe motor
plan based on reports from the somatosensory, vestibular, and visual systems. Some of the
most basic types of motor learning occur in the cerebellum. Also at the middle level are



Limbic system:
motivation

voluntary
loop

-150-200 ms

High level control:

Association cortex

Sensorimotor cortex

plan selection

Middle level control:

Cerebellum, basal ganglia
coordination, optimization,

guidance

long loop
-100 ms

Low level control:

Brain stem, spinal cord
program implementation

and regulation,
pattern generation,

reflexes

reflex loop
-50 ms

efference
copy

Sensory systems Muscle dynamics

World

Figure 2.1: Hierarchical structure of the motor control system.
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the basal ganglia, whose function is not fully understood; it is believed that they may act

to scale motor plans and to group sequences of actions into automatic programs (as in the

associative learning stage discussed in Chapter 1). They may also have a role in stabilizing

the motor control system [51]. At the lowest level of the control hierarchy, the spinal cord

implements the final motor command through the alpha motoneurons. Basic reflex loops

are made through the spinal cord, and central pattern generators reside there as well. At

the bottom of the hierarchy are muscles themselves (see Section 2.2) and the kinesthetic

sensors (see Section 2.3).

At each level of the hierarchy, information is fed back to higher levels. Neurons that

take information, usually control signals, down the hierarchy, are called eflFerents, while

those that send signals like sensory feedback up the hierarchy are called afferents. In one

particular type of feedback, one level of the hierarchy sends a copy of its commands to

the lower levels back up to higher levels. Feedback of this kind is called efference copy or

corollary discharge. Efference copy can be used as a control input to a model maintained

at the higher level; such a model can then anticipate the outcome of the lower-level actions

and thus alleviate the problem of slow feedback loops to some extent.

There are three main types of feedback loops indicated in Figure 2.1. The shortest of

these are reflex loops, in which sensory information is transformed in the spinal cord into

a reflexive motor command. From the sensory disturbance to the appearance of the motor

response, these loops take on the order of 50 milliseconds. One of the most basic reflexes is

the stretch reflex, in which stretching a muscle evokes reflexive contraction of that muscle.

The stretch reflex is the one tested by doctors when they strike the patellar tendon with

a mallet to stretch the quadriceps muscles. Reflexes will be discussed in more detail in

Section 2.3. An intermediate feedback loop through the middle level of the hierarchy gives

rise to motor output called a long-loop response or a functional stretch reflex. The output

from this loop takes on the order of 100 milliseconds to become apparent. The long loop

feedback path is used for motor set, the pre-setting of responses to postural disturbance.

The response can be set, for example, to compensate for an anticipated disturbance, and

thus can act functionally likethe stretch reflex. The outermost feedback loop is the slow loop

of voluntary responses. This loop provides feedback to the highest level of the hierarchy,

the cerebral cortex, and takes about 150 to 200 milliseconds to produce a motor output.

A more detailed discussion of the motor control hierarchy can be found in Brooks [21].
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Figure 2.2: The Hill muscle model, which consists of aforce generating element Fq, nonlinear
parallel and series elastic elements Kp and Kg, and a nonlinear damper B, which together
produce tension T.

2.2 Muscle Dynamics

Each muscle fiber in the body is innervated by an a-motoneuron. One motoneuron

can innervate many muscle fibers spread throughout the muscle; a motoneuron and all its

target fibers together are called a motor unit. When a pulse ofactivation travels down the
motoneuron axon and reaches the synapse, the neurotransmitter acetylcholine is released

into the synapse. The acetylcholine causes excitation of the muscle fiber membrane, which
in turn evokes a burst of force productioncalled a twitch. If the neuron transmits pulsesat a

high enough frequency, the twitches will overlap and begin to sum together. Iftheactivation
pulses arrive at a stillhigher frequency, the twitches will fuse together to produce a constant

force. When this occurs, the muscle is said to be tetanized.

In 1938, A. V. Hill developed a lumped-element model of muscle based on several

classic experiments in muscle dynamics [40] (see Figure 2.2). The model consists of a force

generating element in parallel with a nonlinear damper and a nonlinear elastic component

along with a second nonlinear elastic component in series with the otherelements. The time

history of the tension produced by the force generator (also called the active state) is not

specified by the model; filtered square steps or pulses are frequently used in simulations,

however. The Hill model, though it has several drawbacks, limitations, and inaccuracies,

is still widely used to model muscle, since it captures most of the major characteristics

of shortening muscle behavior and is easier to simulate than are other more mechanistic

models like Hiixley's 1957 model [50].

More detail about .muscle physiology and dynamics can be found in [64]. In this work,

however, all control actions will be performed at the level of joint torque or velocity.
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2.3 Sensors and Reflexes

There are several types of proprioceptors used by biological organisms to sense the

state of their muscles and joints. One of the most important is the spindle organs. The

spindles are "intrafusal" muscle fibers scattered among the regular, extrafusal fibers in the

muscle. The ends of the intrafusal fibers are attached to the muscle, so the spindle is

in parallel with the muscle fibers. The spindle's output is carried by la and II neurons.

The spindles sense the length and velocity of the muscle, and may also function as "event

detectors" because the la ending is most sensitive to the initial change in muscle length [3].

Spindles only respond to muscle lengthening beyond a certain spindle rest length, which is

set by 7-motoneuron inputs. This "fusimotor" system allows the spindles to maintain their

sensitivity at different muscle lengths.

The stretch refiex, mentioned in Section 2.1, depends on negative feedback from the

spindleorgans, sometimes called stretch receptors. The la fiber, carrying the spindle signal,

makes an excitatory synapse on the a-motoneuron innervating that muscle fiber. Thus, a

stretch of the muscle excites the spindles, which in turn excite the a-motoneuron, which

causes the muscle to contract. In order to avoid this refiex during voluntary movements,

a- and 7-motoneurons are typically coactivated so as to keep the spindle set point at the

current muscle length.

Another important proprioceptor is the Golgi tendon organ. These sensors are located

in series with the muscle, close to the muscle-tendon junction, and sense force. Their

output is carried by lb fibers to interneurons (required to change the sign of the signal)

which synapse on the a-motoneuron. This feedback loop, as well as the stretch reflex, is

shown in Figure 2.3. The a- and 7-motoneurons and the spinal interneurons all receive

control signals from higher centers.

The final proprioceptor type to be discussed here is the joint receptor. These receptors

are located in joint ligaments and sense joint angle. Each receptor has a preferred angle to

which it responds, so the joint angle is coded by the responses of a population of receptors.

An important feature of the lowest-level reflexive connections is reciprocal inhibition,

in which the stretch of one muscle inhibits the contraction of opposing muscles. Since each

type of neuron can make only excitatory or only inhibitory connections, interneurons are

needed to effect this inhibition. As shown in Figure 2.4, spinal interneurons, the mediators

of reciprocal inhibition, also receive descending control inputs. Reciprocal inhibition acts
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Figure 2.3: Block diagram of the stretch reflex and Golgi tendon organ feedback loops,
modified from Houk's [49] much-reproduced diagram of the motor servo. IN = interneuron
(note the change in signal sign); GTO = Golgi tendon organ.

as a negative feedback loop. When a-motoneuron activity causes the flexor to contract, for
example, the extensor is stretched. This stretch is sensed by the spindles in the extensor,

which excite the both the extensor a-motoneuron and the extensor interneuron through the

la fibers. The extensor interneuron has an inhibitory connection to the flexor a-motoneuron

and the flexor interneuron, which inhibits the extensor motoneuron. The effect of the

extensor stretch is thus both to excite the extensor and to inhibit the flexor.

Also shown in Figure 2.4 are Renshaw cells, a type of interneuron which act to pro

mote co-contraction (which normally occurs mainly in slow movements or small, accurate

movements) through negative feedback to the inhibitory interneurons. When the flexor

a-motoneuron is active, a collateral excitatory connection to the flexor Renshaw cell tends

to activate it as well. The Renshaw cell has inhibitory connections to both the flexor a-

motoneuron and the flexor interneuron; the former serves to decrease flexor activation, while

the latter releases inhibition of the extensor. The combination of these two effects is in

creased co-contraction of the flexor and extensor. The extent to which reciprocal inhibition

or co-contraction occur is modulated by the descending inputs.

Many other, more specialized reflexes exist to assist specified tasks. For example, the

placing reaction, in which a touch to the top of the foot provokes leg fiexion, helps avoid
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Figure 2.4: Reciprocal connections. The dotted lines represent descending inputs. Connec
tions ending in triangles are excitatory, while those ending in dark circles are inhibitory. IN
= interneuron; R = Renshaw cell. This figure is modified from Brooks [21].

tripping while walking.

2.4 Pattern Generators

Also at the spinal level resides another type of control mechanism, the pattern genera

tor. Pattern generators are groups of interconnected neurons that produce a stereotypical,

often periodic, output. This output can be modified or switched on and offby descending

controls from higher levels. As discussed in Chapter 1, pattern generators are an example of

a behavioral control structure; they simplify control for higher levels in the motor hierarchy,

which need only supply tuning parameters for the low-level pattern generators. Restricting

the final control output to the family of controls producible by the pattern generator also

solves the problem of choosing between nonunique controls for performing a task. The cost,

of course, is that restriction to a control family allows less flexibility; the controls chosen

may not be optimal for a specific task. Pattern generators have been identified in many

animals for rhythmic movements like breathing, walking, swimming, and chewing. (Reviews

can be found in [35] and [36].) Some typical pattern generators are shown in Figures 2.5

and 2.6.

More recently, several investigators, including Gottlieb, Corcos, and Ageirwal (1989)

[34], Hannaford and Stark (1985) [37], Wadman, et al (1979) [103], and HoflFman and Strick
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Figure 2.5: A. Simplified representation of the pattern generator in the lobster stomato-
gastric ganglion, a well-understood system which controls the rhythmic movements of the
digestive tract, from [66]. Each circle represents a group of neurons of similar function.
The neurons in group 1 produce rhythmic output on their own, with a frequency that is
determined by descending controls, although such a pacemaker is not necessary for a group
of neurons like this to produce sustainable oscillatory output. All the connections shown
are inhibitory. B. Schematic of the phasing of the activity of these neurons in the lobster
system, adapted from [66].
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Figure 2.6: Bursting pattern of electromyogram recordings in the hindlimb of a decerebrate
cat walking on a treadmill, adapted from [36]. A decerebrate animal is one whose nervous
system has been transected at the level of the midbrain, and whose remaining motor func
tions are thus performed without the benefit of cerebral input. The output of the spinal
pattern generator can be observed much more clearly in this type of animal.
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Figure 2.7: Sketch of fast, goal-directed single-joint movements. The top diagram in each
column shows torques, the middle diagram shows velocities, and the bottom diagrams shows
positions. All plots aresketches based onelbow flexion datapresented in [34]. A. Movements
at three different speeds. B. Movements of three different distances, 18°, 36°, and 72°.
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(1986; 1990) [43] [44], have proposed similar low-level control mechanisms for fast, goal-
directed, single-joint movements. This type ofmovement exhibits a stereotypical double- or
triple-burst EMG trace (agonist, antagonist, agonist) as well as abell-shaped velocity profile
(see Section 2.5). Diagrams of examples of these movements are shown in Figure 2.7. In
general, the first agonist EMG pulse initiates the movement, the antagonist pulse provides
braking, and the second agonist pulse serves to clamp the movement [37]. The first pulse
is feedforward in nature, while the last two may have some feedback component involving

the proprioceptive systems discussed in Section 2.3, though the origin of these later two

pulses is still being debated [82], [52]. In some fast, goal-directed movements, in fact, the
third or even both the second and third EMG pulses may be absent; the reasons for this

are still not totally clear [52], [81], [65]. One model that has been proposed to encapsulate

the observations of many researchers and explain the control of these fast, single-joint

movements is that of Gottlieb, Corcos, and Agarwal [34]. Their controller generates such

movements by producing a pattern of rectangular activation pulses, which are thenfiltered

through themotoneuron pool and themuscles toproduce thejoint torque and theassociated
EMG signal. The issue ofwhether thepulses are feedforward orfeedback inorigin is ignored.
An appropriate movement would be produced by simply varying the heights and widths of
these activation pulses. Gottlieb, Corcos, and Agarwal and their colleagues ([34], [33], [48])
have described situations in which the biological controller for single-joint movements seems

to change the height of the first control pulse (varying the intended movement duration),
and others in which it seems to change the width (varying the load). Their work has also

extended to factors influencing the latency before the second, antagonist pulse (which seems

to vary with both load and movement duration), but less is known about the antagonist

pulse itself. Gottlieb [33] proposed a model for the agonist and antagonist pulse heights

Hag and Hanu pulse width W (for both agonist and antagonist), and antagonist latency

Tant (see Figure 2.8). The antagonist latency is expressed in terms of the movement extent
X, defined as D + kxJ (where D is the target distance and J is the inertia of the limb

plus load), and effort F, defined as kjUTe (where U is the perceived movement urgency,

a measurement between zero and one which is roughly related to desired movement speed.



agonist
activation

antagonist
activation

16

Figure 2.8: Diagram of the pulse parameters used in Gottlieb's pulseactivation model [33].

and Tg is the target size).

W = Wo + cqX

Hag — CagF{l —e )

Hant = CantF{l -

Tant = Tq +Ct-^

(2.1)

Note that the agonist and antagonist pulses share the same width. Gottlieb designed the

structure of Equations (2.1) based on experimental observations like those described above,

and indeed simulated movements using this model correlate relatively well with observed

data. One interesting feature that Gottlieb points out is the change in control strategy

over the range of X] for small X, the agonist pulse height is approximately proportional

to while for large X, the pulse height is approximately constant with respect to X.

A similar shift holds for the antagonist pulse height. Gottlieb interprets this strategy

shift as arising from the fact that there is a physiological minimum to the pulse widths

(given by Wq in the model); for movements of very short duration, then, it is necessary to

vary the pulse heights to achieve a wide range of movements. A control structure such as

Gottlieb, Corcos, and Agarwal's pulse activation model can be seen as a pattern generator

for fast, single-joint movements, as it produces a stereotypical output that can be modified

by parameters indicating the pulse heights and widths, or, at a higher level, descending

commands indicatingthe desired magnitudeand speed of the movement. This is the type of

pattern generator that will be incorporated into the hierarchical control design in Chapter 4.
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2.5 Motor Control and Learning

Although a great deal of headway has been made in understanding low-level motor

control and regulation, it is still unclear how the control works at higher levels. Bernstein,

a pioneer in cybernetics andmotor control (working in the 1930s-1960s), posed several basic
questions that arestillrelevant to motor control today (see [107]), including the issues ofhow

the motor control computations are organized in the brain, how these are translated into

muscle activation signals, and how so many degrees of freedom as are present in a human

are coordinated so smoothly. Though theories abound, much of the field, especially where

learning is concerned, is still in the descriptive stage. The psychology literature describes

several well-known "laws" of simple movements; many of these are summarized by Schmidt

[90]. For example, Pitts' law describes the logarithmic relationship between thedifficulty or
accuracy of a movement and the time t required to perform it; for simple target-touching

tasks, the law can be written as t = fci + ^2 logj (|^), where Ais the movement amplitude,
W is the width of the target, and A;i and k2 are constants [90], [34]. There are also known

exceptions to this rule. For example, in tasks requiring anticipation and timing, such as

hitting a baseball, the inconsistency in the movement duration t increases as t increases

and the movement velocity decreases; thus, in these tasks, faster movements are more

accurate [90]. Other rules include force-variability principles (as the force required for a

movement increases, so does the variability in that force) and impulse-variability principles

(which relate the movement endpoint variability to the amplitude of the movement and

the movement time). There are also features of movements that are typically observed; for

example, for fast, single-jointed movements, the velocity profile of the joint is a stereotypical

bell shape. For multi-joint movements, the point of greatest attention, such as the hand in

reaching movements, generally has a similar velocity profile [21], [52].

There are features of motor learning that have been widely documented as well. For

learning complex tasks, for example, there are the three stages discussed in Chapter 1: the

cognitive stage, during which teaching is effective; the associative, or fixation stage, during

which the learner gradually improves and becomes more consistent, and the autonomous

phase, when the task becomes automatic and no longer requires full concentration [90],

[26]. In infant motor learning, it has been observed that motor coordination is achieved at

the proximal joints first, and then progresses to the more distal joints [73]. As mentioned

in Chapter 1, there is also evidence that learning involves a shift from feedback toward
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feedforward control at multiple hierarchical levels. The outer feedback loop shifts downward

in the control hierarchy, with the performer relying more on proprioceptive information and

less on high-level sensory information such as vision [26], Also, subskills are combined to

form new, self-contained skills which are controlled as single units at the higher levels [90].

A decrease in the amount of feedback control over the course of learning has also been

observed at lower levels for many different skills, including pistol aiming, non-dominant

handwriting, dart throwing [73], slalom skiing [101], and walking in infants [99]. When

beginning to learn these skills, the novice's joint movements are usually highly correlated

or coupled with one another and quite stiff. As learning occurs, the joint motions become

less correlated and more relaxed (see also [26]).

Given these observations, and knowledge about the underlying physiology, there have

been several theories about motor control and learning that have been popular in the recent

literature. There have been many reviews of the trends in motor control and learning

research; a few can be found in [1], [72], [30], and [52] (Chapter 1). Though the approaches

seem somewhat opposed along several dichotomies, including central vs. peripheral, open-

loop vs. sensor-driven, programmed vs. emergent, and information processing vs. dynamics,

all the approaches are valid under some conditions, and can be partly reconciled if the

level of explanation is made clear and distinctions are made between regulation, control,

coordination, and learning issues. In particulsir, a cognitive, progrzimmed approach at the

higher levels of the control hierarchy combined with a more dynamic explanation at the

periphery may be able to draw many of the conflicting viewpoints into a coherent whole

(see also [30]).

Prom the information processing point of view, one idea that has been appealing for a

long time is the concept of a motorprogram. In this paradigm, an action is stored in mem

ory as a program, perhaps with some variables to be filled in at the time of implementation.

There have been differing opinions, however, on what variables are controlled in these pro

grams. A popular ideais that motor programs contain thephasing or relative time intervals

and relative force between different portions of a complex movement, so the movement can

be scaled in size by scaling the force (with the basal ganglia); thus, handwriting on paper

looks much the same as handwriting on a chalkboard, though completely different sets of

muscles are used [90], [21]. The program is defined in terms of the most important object

(for example, the writing implement), and complex movements may be broken into parts,

or segments, and controlled by subprograms [21]. Similarly, new skills can be learned by
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putting together known movements [90]; the mechanism for this is largely unknown.

Schemasare a similar concept. Schmidt [89] originallydefineda schema used to produce

movement as a function describingthe relationship between the control parameters and the

movement outcome. The term "schema" has evolved in the literature somewhat, so that it

may also mean a more complicated set of parametrized actions invoked by certain sensory

stimuli or called by other schemas much like a subroutine (for example, see [4]).

In complex skills with clear goals, such as maximum height jumping, maximum speed

pedaling, or posture regulation, it has been suggested that the motor control system ac

tivates its muscles in an optimal manner to achieve the goal (see [59] for a review). In

walking, an optimality criterion based on the muscle forces may be used to determine which

muscles are activated, and to what extent [77].

At lower levels, there is more data available, but there is still no agreement about

specific mechanisms for coordination and control; for example, how are the controls chosen

for a simple reaching movement, and why is the bell-shaped tangential velocity profile almost

always evident in these movements? One explanation is that the motor control system has

evolved to optimize a quantity such as total jerk in the movement, and the velocity profile

of the hand in reaching movements or the joint in single-joint movements is a consequence

of this optimization (see [5], [54]). To some extent, the joint torque profiles could even be

simply scaled by the control system to produce different movements with similarly scaled

velocity profiles at the hand [5]. Or, in order to coordinate the jointsofthe arm to produce a

nearly straight trajectoryat the hand, the control system may simply stagger and scale fixed

velocity profiles for the different joints, though it is unclear under what conditions a bell-

shaped tangential velocity profile would result at the hand [46], [47]. Another possibility

is that planning is done in terms of force, and that the bell-shaped velocity profile is a

byproduct of an underlying multi-joint torque-based coordination mechanism. One such

mechanism would be one based on rectangular activation pulses, similar to the pattern

generator for single-joint movements described in Section 2.4 [48]. In any case, the bell-

shaped velocity profile may ultimately be due to a combination of feedforward control and

low-level proprioceptive feedback mechanisms [37], [81], as mentioned in Section 2.4.

The prescriptive approach is not necessarily the best method of explanation, especially

at progressively lower levels of the control hierarchy. At the lowest level, descending controls

interact with the regulator composed of the fusimotor and Golgi tendon systems, as well

as the muscular dynamics (see [21]), as discussed in Section 2.3 and mentioned above with
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respect to the triple-burst EMG profile. More recently, some researchers have taken a
dynamical systems, bottom-up view, and have approached the problem in terms of the
interaction of the motor control system with the environment. In this view, motor control

involves setting the parameters ofthe muscle dynamics so that the desired movement is an
equilibrium configuration of the organism-environment system. Learning in this scenario
involves learning how the specified task dynamics relate to the environmental dynamics,
and adjusting the motor system dynamics accordingly. For example, in a reaching task,
if an external force field is imposed, the subject learns an internal model of the field and

compensates for it [92]. The model appears tobe inintrinsic coordinates rather inend-point
coordinates; Shadmehr and Mussa-Ivaldi [92] postulate that the model is built up ofa kind

of motor control basis functions. These basis functions are simple force fields representing

equilibria or other simple dynamic patterns; the end-point force is thus a function of the
limb position and velocity. Learning to perform reaching movements in an external force
field would entail adding compensatory basis functions to the normal reaching movement

model.

In complex skill acquisition, leairning can also beviewed asan adjustment inthe internal
movement dynamics to compensate for external dynamics. For example, ina task oflearning

to slalom on a specially-designed platform (mentioned in Chapter 1), the most important

variable in achieving the task (maximum amplitudeslaloming) is the relativephasebetween

the subject's forcing of the springloaded platform and the motion of the platform itself.
Learning this taskconsists ofidentifying the phase as the important variable, thenadjusting

it to maximize performance [102]. If the task does not involve new external dynamics, such

as that of bimanual rhythmic finger tapping at the same frequency and a specified phase,

the taskspecification itself may play the role ofexternal dynamics, with the naturalinternal

coupling relationships being adjusted to refiect the desired outcome [91]. The process of
identifying the important task variables andcouching the taskgoal in terms ofthe dynamics

isasyetpoorly explained bythisemergent dynamics approach; such questions may bebetter
addressed fi:om a more cognitive point of view.

The approach to motor control taken in this dissertation is the idea of a hierarchical

behavioral or synergetic control structure. As discussed in Chapter 1, a behavioral control

structure is one which restricts controls to members of a parametrized family, thus produc

ing stereotyped outputs but simplifying the control task for higher hierarchical levels. This
approach incorporates and generalizes many of the control and learning ideas presented in
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this section as well as the previous section. A synergetic control structure is in fact a kind

ofgeneralization ofthe notion ofa pattern generator (Section 2.4), which produces a stereo
typical output which can be tuned by descending controls. The dynamical systems view
that motor control consists ofsetting parameters in the muscle dynamics sothat the desired

movement is a system equilibrium can also be seen as an example ofa behavioral structure;

only particular parameters inthe dynamics can be varied, so the higher level control is sim
ply selecting among possible equilibria, thus specifying one ofa family ofpossible control
patterns. In particular, if the muscle dynamics can bespecified with a set ofmotor control
basis functions, as described above, setting the muscle dynamics simply means selecting

the coefficients of the linear combination of bases. The control mechanisms for multi-joint

reaching movements discussed above can also beviewed ina synergetic framework; whether
the planning is done in terms ofkinematics or force, the coordinating structure simply ad

justs a few parameters in a fixed coordination scheme to produce a stereotypical reaching
movement with a bell-shaped tangential velocity profile. The coordination scheme may be

as simple as adjusting coupling parameters between lower-level control mechanisms, such

as single-joint pattern generators, acting at each joint.

At a higher level, this coupling idea is similar to the dynamical systems approach to

learning complex skills, as described above for the finger tapping and slaloming examples.

In those examples, the learning mechanism simply learned the correct parameter, the cou

pling phase, for a control structure linking together lower-level controllers, in the case of
finger tapping, or an internal control mechanism with environmental dynamics, in the case

of slaloming. Motor programs and schemas for complex skills can also be viewed as be

havioral or synergetic control structures. Both involve predefined classes of motor actions

constructed for a specific task, but with some parameters allowing the task to be executed

differently depending on variations in goal or external conditions. Also, motorprograms and

schemas fit easily into a hierarchical context, with higher level programs passing parameters

to lower level subroutines, which can easily be recombined to make new skills. High level

skills often involve several major subroutines, running either in parallel or in series. In walk

ing or running, as discussed in Chapter 1, three subroutines run in parallel: the support,

balance, and swing control synergies [109], [108]. For the support moment synergy, the

muscles in the legs work together during the stance phase to keep the body from collapsing.

The level of activity in different leg muscles may vary considerably from stride to stride,

depending on small variations in the stride kinematics [25]. For the balance synergy, the
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muscles in the hips work to keep the torso upright. The swingcontrol synergy is responsible

for the swing and placement of the swing foot. These three tasks are somewhat independent,

though they must be phased correctly with respect to each other and to external feedback

such as ground contact. When combined together, these synergies produce the behavior

of walking or running. At the highest descriptive level, walking and running themselves

can be seen as behavioral control systems, with input parameters specifying such things as

speed and stride length, and stereotypical output behaviors that axe well described by an

inverted pendulum for walking and a spring-mass model for running. The slaloming task

can also be seen as the combination of two parallel subroutines, the forcing subroutine and

the external platform dynamics subroutine; there, as discussed above, it is the phasingthat

is the critical coupling parameter. Platform diving is an example of a complex skill that

involves subroutines running in series. For a one-and-one-half-somersault, full-twist dive,

for example, the diver must first execute a "throwing" maneuver to tilt his or her axis of

rotation, initiating the twisting movement, then enter the pike position, then exit the pike

into the layout position. In diving, the critical coupling parameter between these behav

ioral subroutines is the timing, which is the most important variable in learning to execute

a dive. The overall dive behavior can be viewed as a behavioral control system as well,

with inputs specifying the number oftwists and somersaults, for example, and stereotypical

output movements that fall into a well-defined class of behaviors.

A hierarchical behavioral control structure, as defined here, encompasses much of what

has been observed and proposed in the biological motor control and learning literature.

Synergetic control structures act to restrict the number of ways of achieving a particular

control goal, making the problem ofcontrolling many degrees offreedom (Bernstein's most

infamous problem) easier, and giving rise to invariant properties of the movement in the

process (see [93]). Synergies, pattern generators, and motor control basis functions all serve

as ways of simplifying the dynamics and restricting the options for the higher levels of
control, and may be put together by the higher levels to achieve many diflferent movements

(see, for example, [29], [59], [23]). The way in which different synergetic control structures
should be combined for a new skill can be learned during the cognitive stage; the synergetic

parameters can then be fine tuned during the later two stages of learning.
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Chapter 3

The Diving Problem

The skillof platform diving is an interesting one with which to test biologically-inspired

control strategies. The dynamics of the diver system are inherently complicated due to a

nonholonomic constraint with nonlinear drift, because it requires the coordination of a po

tentially large number of degrees of freedom, because the goal of the system is to achieve

a desired pattern of behavior rather than a specified trajectory or goal configuration, and

because the controls have a limited time (determined by gravity and the height of the

board) in which to act. The control goal for the diver problem is: given a fixed set of

initial conditions, execute a certain diving maneuver, such as a jackknife, a forward one-

and-one-half-somersault pike, or a forward one-and-one-half-somersault, full-twist dive, and

then enter the water in a fully-extended, vertical position. In general, the diving maneuvers

are specified by the manner of takeoff" from the platform, the number of somersaults and

twists of rotation, and sometimes internal configuration information. With the problem

specification used here, the platform takeoff is predetermined by the initial conditions. In

general, however, the platform takeoff can be facing away from the platform with forward

somersaulting rotation (forward), facing toward the platform with backward somersaulting

rotation (backward), facing away from the platform with backward somersaulting rota

tion (reverse), or facing toward the platform with forward somersaulting rotation (inward).

More complicated variants involving leaving the platform from a handstand position are

also possible. The diver's initial angular velocity is entirely about the somersault axis for

somersaulting dives; it can have a small component about the twist axis for twisting dives,

but most of the twisting velocity is achieved by executing a "throwing" maneuver with the

arms. The internal configuration information can specify that the diver must hold the pike
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arms

Figure 3.1: 2-D diver model, showing the shape space variables and overall orientation
variables. The central mass models the body, the upper one the arms and the lower one
the legs of the diver.

(bending at the hips and waist, with arms either out ("open pike") or holding onto the legs
("closed pike")) or tuck ("cannonball") position during the dive rotations. Thus, a forward
one-and-one-half-somersault pike dive consists of leaving the platform facing forward, exe

cuting one and one-half somersaults (Stt) of rotation in the forward direction while in the

pike position, and entering the water in a fully-extended (layout), vertical position. In the

control problem formulated here, the control task begins at the moment the diver leaves the

platform; the takeoff is incorporated into the fixed initial conditions. Not allowing the diver

to alter the initial conditions, the results of the takeoff from the platform, is an unrealistic

simplification, as the takeoff is actually one of the most important things real divers have

to learn.

3.1 Planar Diver Analysis

For an initial analysis, I have used a planar model of the diver. This two-dimensional

modelconsists of three linked rigidbodies, for a total of five degrees of freedom (Figure 3.1).

The planar model is sufficient for two-dimensional piking dives, such as the jackknife or the

forward one-and-one-half-somersault pike.
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The Xand z directions do not affect the control of the system except to determine when

the diver hits the water, so we can ignore them in the analysis. 62 and 9z are the shape
space variables of the diver system; they describe the internal structure of the rotating body.
9i is a position variable of the system describing the overall orientation of the diver. The
system has symmetry group S^\ that is, the Lagrangian is invariant under changes in 9i.
By Noether's theorem, then, we have a conserved quantity, namely the angular momentum
of the diver:

^ = 0=—— (3.1)
d9i dt d9i

and 11^ = a constant. Using the Lagrangian
061

L = (— + /3 cos 02 + 7 sin02 + ^cos 03 + esin03
2

+C cos(03 - 02) + 7/sin(03 - 02))01

+(a2 + /?cos02 +7sin02 + Ccos(03 —02) + 77sin(03 —02))0i02 (3-2)

+(a3 + 6cos 03 + esin 03 + Ccos(03 —02) + ^sin(03 —02))0i03

+(C cos(03 —02) + 77Sin(03 —02))02^3 +

we find that /i is of the form:

= [ai + 2/3 cos 02 + 27sin02 + 26 cos 03 + 2e sin03

+2C cos(03 —02) + 2r/sin(03 —02)]0i (3-3)

+[q2 + /3 cos 02 + 7sin02 + Ccos(03 - 02) + 7/ sin(03 —02)]02

+[03 + <5 cos 03 + esin03 + ( cos(03 —02) + 7/ sin(03 —02)]03

01

=: [6i(02,03) 62(32,^3) 63(02,33) ] 02

^3

=: b(02,03)0 (3.4)

where ai, 0:2, 0:3, /3, 7, <5, e, C, and rj are constants; their values in the model used are given

in Table 3.1. Conservation of fi, the angular momentum, is the single constraint for this

system. This constraint is not integrable; that is. Equation (3.4) is not equivalent to any

set ofalgebraic constraints on (0i,02,03). Nonintegrable constraints ofthis type are said to
be nonholonomic.

In order to express the diver kinematics as a control problem, we can dualize the con

straint (3.4) by considering the two-dimensional space ofvectors which annihilate b(02,03).



26

Parameter Value

mt 51.779
mi 27.694
ma 9.124
M = mf¥ mi + ma 88.597

3.290

1.992

la 0.323
jl. 0.004
ju -0.375
jax 0.047
jaz 0.190

0.043

-0.299

-0.012

a, -0.244
a, =/, + /, + /„ + + (? + j?. +
+m.(M-m.)(^2 + 11.234

a2 = /, + + i,') 3.732
a3=Ja+'̂ 'M""'°'(''x +°l)^ 0.812
P— {~jazh ~jax^x) -i" '̂ {~jlx^x ~jlzh) +mi{jixlx jlzh) 2.299
7=^{jaxlz - jaxlx) +^{hxlz " jlzlx) " mi{jixh " jlzlx) -0.343
^ [^—ji^dz —jlxO'x) "1" ~f^{.~3ax^x ~ jazO-z) "t" ma{jax^x 4" jaz^z) -0.645

e = - juGx) -h ^{jaxaz - Uz^x) - maijax^z - jazax) 0.058
C= n^^(-aA-aA) -0.207
r} = ^{aJx-axh) -0040

Table 3.1: Values of the parameters for the planar diver model, to three decimal places, mt,
mi, and ma are the masses of the torso segment, legs, and arms, respectively, in kilograms;
It, Ii, and la are the corresponding inertias, in kilogram meters squared, {jixjiz) and
(jaxjaz) are the coordinates of the leg and arm joints, respectively, in the zero position
(origin at the center of mass of the torso segment), in meters. {IxJz) and {ax,az) axe the
coordinatesof the leg and arm centers of mass with respect to their respective joints, again
in the zero orientation, in meters. These values were calculated from the three-dimensional
human model parameters given in Table 3.2.
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This space represents the directions in which the system could move instantaneously if ^

were zero. Since the diver's joint angles 62 and ^3 can be controlled directly, a convenient

choice of basis vectors for the null space of the constraint is

51(^25^3)

—h.
61

1

0

P2(^2>^3) =:
61

0

1

(3.5)

Note that 61 is always positive (see Table 3.1 and Equations 3.3-3.4). The system with

arbitrary y, can now be written with two joint controls ui and U2:

• 01" ' —h.
bi

.a|.o
1

1

* JL '
bi

02 = 1 U\ + 0 U2 + 0

. ^3 . 0 1 0 _

Pi(^2) ^3)^1 + P2(^2>^3)^2 +/(^25^3) (3.6)

The final term, f(62, ^3) is called the drift of the system; even when ui =U2 = 0, the system

(in particular, 6\) continues to evolve. Note that the drift is a nonlinear function of 62 and

P3. Since the Lie bracket [51,52] is given by

^ -61+61 f^)
[51,52]= 0 , (3.7)

0

it is clear that {51,52, [51,52]} spans the space (except at those isolated values of (02, ^3)

where the first entry in [51,52] is zero). The system is therefore locally controllable [76]

even without making use of terms of the form [/,5i], [/,52], etc., since the Lie bracket (3.7)

is the same as the drift direction.

Returning to the dual constraint viewpoint, one can look at the diving problem as a

Pfaffian exterior differential system defined by the ideal generated by the codistribution /:

/ = {a},

a = bid9i + 62^02 + - ^dt

(3.8)

(3.9)

If we can convert this system into a standard chained form, sinusoidal or other steering
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methods that have been used for other systems can be applied (see Section 3.2). We have:

da = dbi Ad9i + db2 A d02 + ^^3 ^ (3.10)

= : /l3(^2j ^s) ^ ^^2 "h ^2(^2? ^3) d^3 + /il(^25 ^3) C^^2 A(i^3

= -2 (7 COS 02- p sin02 - ^ cos(03 - ^2) + Csin(03 - ^2)) dOi Ad02

-2 (ecos03 - <5 sin03 + r/cos(03 - 02) - Csin(03 - 02)) d0i Ad03

+2 (-77cos(03 —02) + Csin(03 - 02))d02 AdOs

da Aa = (^363 —/12&2 + ^1^1) d0i Ad02 Ad03 (3.11)

—/i3/i d0i Ad02 Adt —h2(Jb dOi A dO^ Adt —hi^ d02 A d03 Adt

= [2bi (-77 cos(03 - 02) + Csin(03 - 02))

+262 (ecos03 - <5 sin 03 + 77 cos(03 - 02) - Csin(03 - 02))

-263(7 cos02-/9 sin 02 - 77 cos(03 - 02)

+(^ sin(03 —02))]d0i Ad02 A d03

+2/14(7 cos02-/9 sin 02-77 cos(03 - 02)

+^ sin(03 —02))d0i Ad02 Adt

+2/4(e cos03 - ^ sin 03 + 77 cos(03 - 02)

-C sin(03 - 02))d0i Ad03 A dt

—2fi (-77cos(03 - 02) + Csin(03 —02)) d02 Ad9s Adt

(da)^Aa = 0 (3.12)

So, a has Pfaffian rank 1 (except at isolated points where da Aa = 0). In other words, the

derived flag for this system looks like

= {a} (3.13)

= {0}

as expected.

By Pfaff's theorem (see [76]), we can find local coordinates (2:1,2:2,23) so that

{a} = {d2:3 - Z2dzi}. (3.14)
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To do this, we would need to find two functions qi and q2 which satisfy

Then a can be written as:

da A a Adqi = 0

a A dqi ^ 0 (3.15)

a A dqi A dq2 = 0

dqi Adq2 ^ 0

{a} = {dq2 - sdqi} (3.16)

Using this coordinate system, the control system becomes:

= ui
dqi
dt

ft =
dq2 dqi
—— = S-r- =
dt dt

The solutions to Equations (3.15) are not unique. It is notable that for the diver system

qi = t is not a solution, so the system is not feedback linearizable (see [76]). Simple time-

scalings such as = t + h{62) or qi = t + h(6i) also fail, as do = 0i, = 62^ and qi = 0^.

The implications of this failure will be discussed in the next section.

3.2 Control Approaches for the Diver Problem

Although much work has been done recently on the control and steering of nonholo-

nomic systems, most of it has been for drift-free systems (those for which u = 0 is an

equilibrium point; for a survey, see [58]). Some specific cases with drift have been ad

dressed, for example, left-invariant systems on SO(3) and GL(n) ([17], [6], [104], [85]), but

very little work exists concerning general systems with drift. In the real world, systems

with drift are common. For example, bodies in free-fall with some initial angular momen

tum have drift. The diver is an instance of this kind of system. After the diver has left the

board, his angular momentum is conserved, but is generally not zero, leading to the drift

term derived above. While in the air, the diver can change the drift velocity by changing

his moment of inertia. He can also convert some of his somersaulting motion into twist

ing about the body's long axis by performing a "throwing" maneuver with his arms which
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shifts the body's angular velocity vector so that it is no longer aligned with the angular

momentum. (See Frolich [27] for an analysis of the physics ofvarious diving and trampoline

maneuvers, and [68] for an analysis of the falling cat, a similar, though drift-free, problem

in reorientation.)

3.2.1 Canonical Forms

Conventional techniques for controlling nonholonomic systems proved unsatisfactory

for the planar diver model. For example, the diver model is an asymmetric version of

the planar skater discussed in [105], which (when drift-free) can reorient itself arbitrarily

by moving its two arms sinusoidally and out of phase with each other, using the chained

form and the Pfaffian exterior differential system approach. Using the control system in

Equations (3.17) and assuming initial coordinate values of zero, the controls

ui = i4sina;t (3.18)

U2 = B COS (Vt

yield the behavior:

qi = —A cos u)t

s = Bsinojt (3.19)

, AT^ • 2 ^ (a sin2a;a,2 = su,dt =ABJ^ sm — j

Thus, at the end of each control period T, the directly controlled coordinates qi and s are

back at zero and the steered variable q2 has increased by This method of steering

with sinusoids has been used for other nonholonomic systems such as cars with trailers

and firetrucks as well ([71], [22], [100]), but these systems were all drift-free. The nonlinear

drift in the diver system complicates the exterior differential systems approach considerably.

As discussed in Section 3.1, for the diver problem it is not easy to find any solutions to

Equations (3.15), although one is guaranteed to exist by Pfaff's theorem. None of the simple

transformations that are commonly used are solutions to Equations (3.15), and variants on

these choices also failed to produce solutions. Any controls generated by this method of

course also cannot be guaranteed to produce a natural-looking (or even humanly possible)

movement.
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Another canonical representation for nonholonomic systems is the standard triangular

form discussed by Kawski [56], [57] for nilpotent systems (systems with finite-dimensional

Lie algebras in which all Lie brackets oforder higher than a certain integer are zero). The
representation canbe extended to systems which canbe made nilpotent through appropriate

feedback; this classof nilpotentizablesystemscontains the classofsystems that can be put in

chained form. Nilpotent or nilpotentizable systems can be made finitely discretizable using

a coordinate transformation, and are thus controllable using piecewise constant controls

[28]. A general approach to controlling nonholonomic systems with drift that arise from
Lagrangian systems withcyclic coordinates isexplored in [31]. Theapproach discussed there

also uses piecewise constant controls and takes advantage of the subtriangular structure of

the system.

3.2.2 Optimal Control

An attempt was also made to steer the diver using the optimal control techniques de

veloped bySastry and Montgomery in [87], which minimize 5 Jq but the resulting

equations were extremely complex and would have required numerical solution. The method

is as follows. In [87], Sastry and Montgomery derive coupled differential equations for the

optimal controls of a system of the form

using the Hamiltonian

i=l

/ m \ 1
H{x,u,p) =p^ I I+2

\i=l / t=l

(3.20)

(3.21)

where x is the vector of generalized coordinates and p is the vector of associated momenta.

For the m = 2 case, their result looks like:

U\ 0 p^lgiygi] Ui
+

-p^[/,5l]

U2 P^[P2,5i] 0 U2 -P^[/,P2]

Ui = -p^gAx)

P = "K P(pPs.W) +̂ P{P^92(X))
X = f{x) - g\{x){p^9i{x)) - g2{x){p^g2{x))

(3.22)
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For the diving system, from Equations 3.22 we get immediately that pi = 0, so = k

(since /, pi, and §2 are not functions of 0i). The Lie brackets with / are:

[f,9i] =

If^92] =

u a6i
862

0

0

803

0

0

(3.23)

[91,92] also lies in the Oi direction, as shown in Equation (3.7), so the equation for the

controls becomes:

4. (— b\ ^ —bo^ -h b^ uo502 01 502 "2503 -t- 01 503 J y-2ill

U2

k^i dbi
fcf 802
ka db\
fcij 803

with

8hi
803

A ||̂ (63U2 - /^) - 802

8b2

803

8b31^(62^1 - /x) - (1^63 + i^6i - i|6i)ui8b

^ = fW+9lW'^l+92{0)u2

P = To ||^(//- 62^1 - 63U2) + + §^^>1^2
(fi —62U1 —63U2) + ^biui + |||6iU2L 803

Ui = -p'̂ 9i{0)

0

8b2 8b3

(3.24)

(3.25)

Analytic approaches such as sinusoidal steering with the chained form or optimal con

trol have the drawback that, because of their complexity, the controls generated may not

provide any insight into the structure of the system. A further drawback is that these meth

ods require a full model of the controlled system to be known, a requirement that becomes

more onerous as the system becomes more complex, as is the full, three-dimensional diver

model. Finally, these methods do not address simultaneously the issues of required config

urations during the dive (such as the pike position) and of a required amount of time for

the dive execution. In systems with nonlinear drift, such as the diver, the controls cannot

simply be scaled to execute the movement in varying amounts of time. For the optimal

control approach, the amount of time is specified, but to include required intermediate

configurations, the time at which they are to be achieved must be known.
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3.2.3 Behavioral Approaches

Another approach to controlling a human performing a dive or other motor task is the

state machine method used in three-dimensional dynamic animation by Hodgins [41] for

running and by Wooten and Hodgins [110] for diving. Their system is based on the scheme
used by Raibert for running and hopping robots mentioned in Chapter 1 [80], [79]. The
dive or motor task is divided into segments (similar to the behaviors used here) which form

the machine states; within a state, the jointsare moved to a goal point with PD controllers.

Though they have achieved good results, especially when viewed as an animation task
rather than a control task, there are several drawbacks with their control method. Because

all the movements are produced with PD controllers, the motion is entirely feedback in

origin, which is unrealistic from a biological point of view, and may be partly to blame
for the slightly unnatural appearance of their running animations. Also, there are many

parameters in the controllers that need to be tweaked by hand, though recently they have
begun to apply simulated annealing methods to selecting the best parameter values for new
animated characters given the tuned values for a different character [42].

Another approach using an idea of a behavioral architecture is that of Brooks [20],
[18], who designed a robotic controller based on a subsumption architecture, in which each
lower level of behavior is subsumed into the next higher one. For example, a low-level

"stand up" behavior becomes part of the higher-level "simple walk" behavior [18]; signals
from the walk controller can replace internal signals in the standup machine to modify

its behavior to suit the higher-level goal. The controllers do not involve any dynamics;

rather, they are based on augmented finite state machines whose transitions can depend

on an input event or on a combinatorial predicate of the inputs. These controllers have

been successfully applied to a series of robots, most notably insectoid walking robots. The

subsumption controller is, in general, completely designed by hand; there is no learning

involved. There have been a few experiments in learning done by Brooks' group (see [19]),

in particular one in which an insectoid robot leaxned which behaviors to activate under

which sensory conditions to achieve forward walking [61], but, in general, the approach has

been to "evolve" the architecture by hand for the specific task.

Brockett's motion .control language [14], [15], in which a controller specifies a feedfor

ward control u (which can be an indexto a family of controls), a feedback matrix K, and a

time T for which the control pair should be active, can also be seen as a behavioral control
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structure. Symbolic, hybrid approaches based on this description have been used by many

roboticists (see Brockett's own paper [16] or [62], for example).

3.3 A Simple Learning Algorithm

A learning algorithm based on a behavioral control structure as described in Chapter 1

proved more promising than the analytical approaches for the planar diver ([24]). Even a

very simple learning algorithm can, if given a suitably structured space to search, find a
control law that will satisfy the control goal ofdriving the diver througha one-and-one-half-

somersault pike. This task can be viewed as the coordination and timing of two multi-joint

movements: entering the pike position and the exiting the pike into the layout position.

Each of these multi-joint movements can, in turn, be viewed as a coupling of single-joint

movements. Thus, the structure of the control family for the kinematic diving task was

chosen based on the velocity profiles typically observed in fast, single-joint movements. In

this type of movements, the limb involved typically has a single-peak velocity profile, as

discussed in Section 2.5; a Gaussian is a good approximation to this curve [47]. The control

structure used in the simple learning algorithm is thus based on parametrized Gaussian

velocity profiles:

ui =

A
U2 — -

The parameters that can be varied are given by

P =

> — o Oal

(t-Tl)
2 — p

A

P

Tl

T2 -Ti

where A is in radians per second and cr, ri, and T2 axe in seconds. Each entry in p was

restricted to a certain range; Pmax and Pmin are vectors of the maximum and minimum

allowed values, respectively.

To choose the best value for the parameter vector p, an algorithm based on gradient

descent was used. The error on a dive was defined as

£;(p) = (01 - 37r)^ + ^2 + (^3 - tt)^ + k{T2 + (t)^

(3.26)

(3.27)

(3.28)
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The last term, in which A: is a constant, provides a penalty for pulling out of the pike

too late, since finishing the piked rotations early is considered good diving style. There

axe thus four constraints to minimize, and four parameters to learn. The gradient descent

was preceded by N iterations with random paxameters, firom which the best parameter set

was chosen to initialize the descent. Each of the four parameters was uniformly distributed

within its allowed range. This technique served to staxt the descent algorithm in a favorable

region of the control space, thus shortening the training time and ameliorating the problem

of local minima to some extent. The algorithm began with:

Then, for each i < N:

Pi = random (3.29)

El = E(pi) (3.30)

Pi+i = random (3.31)

Pi+i = best(pi,pi+i) (3.32)

Ei+\ = E{pi+i) (3.33)

where best(pi, Pi+i) was determined by which vector had the lowererror measurement. For

i > N, the algorithm performed gradient descent with an estimated gradient S:

Sn = 0 (3.34)
{Ei-Ei.i){

iipi-p
mSi + Di+i

^ {Ei - Ei-i){pi - pi-i)

IlPi -Pi-ilr

>i+l —
m +1

EiST^^-W , .
Pi+i = Pi- HQ II + noise (3.37)

iPi+lll
Pi+1 = best(pi,pi+i) (3.38)

Ei+i = E(pi+i) (3.39)

S is a weighted average of past gradient measurements D, with more recent measurements

weighted more heavily so the algorithm can adapt to diflTerent regions of the control space,

m is thus a paxameter describing how long the memory of the estimate is. Each entry in S

was restricted to [—3000,3000]. W is a vector of scaling factors; W = (Pmax—Pmin)/40000.

Some uniformly distributed noise was added to the next parameter choice to avoid getting

(3.36)
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stuck at local minima or at a parameter maximum or minimum. The noise amplitude was

proportional to Ei and W. li Ei and pi stayed the same for too long, the constant of

proportionality was increased for one step, and in (3.38) Pi+i was always set equal to Pi+i

in order to move to a different region of the control space. When the error measurement

dropped below a cutoff value, the algorithm halted. In the simulations shown in Figures 3.2

and 3.3, N = 20, m = b, k = .0076,

Pmin —

0 ' 2.1 "

0.004 0.4
> Pmax —

0 0.4

0
. .

and the error cutoff was .00947. Since the gradient descent starts from the best of several

random iterations, the number of steps the algorithm takes to terminate varies widely.

A simulation of the dive produced with the learned parameters is shown in Figures 3.2

and 3.3. The simple learning algorithm presented here generates movements that are qual

itatively similar to those of human divers performing piked somersaults. The controls

were kinematic, for better comparison to the above, more traditional control methods; the

torques required to produce the controls (see Figure 3.2C) are the same order of magnitude

as torques humans can produce. The success of this kinematic behavioral control structure

suggested extending the idea to a more general, dynamic controller which would be able to

leaxn to control the fully three-dimensionaldiver with many degrees of freedom; this is the

learning controller presented in Chapter 4.

3.4 Three-Dimensional Diver Model

The three-dimensional diver model used in subsequent chapters has a large number

of potential degrees of freedom, but for simplicity the simulations only make use of ten

degrees of freedom in the joints: flexion at each hip and elbow and three degrees of freedom

at each shoulder (modeled with ZYZ Euler angles). The body orientation is modeled with

quaternions, which are converted into YXZ Euler angles to observe the tumbling rotations.

Agraphical representation ofthe model in the zero configuration is shown in Figure 3.4, and

the physicalparameters of the modelare shown in Table 3.2. The modeland simulations are

implemented with the Symbolic Dynamics, Inc.'sSD/FAST software [45] (which uses Kane's
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Figure 3.2: Simulation with control parameters chosen by the learning algorithm. A =
2.084866, = 0.004000, n = 0.152110, and t2 - n = 0.863879. A. 62 (solid) and 6^
(dashed). B. 62 (solid) and Oz (dashed). C. Leg (solid) and arm (dashed) torques required
to produce the movement. D. 9i with these controls (solid) and with the controls set to
zero (dashed).
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Figure 3.3; Frames from the simulation shown in Figure 3.2. The graphical human model
is from Viewpoint DataLabs.



Figure 3.4: Three-dimensional diver model in the zero configuration. The graphical model
is from Viewpoint DataLabs.

algorithm for implementing the dynamics). The integration tolerance for the variable-step
integrator is set to 10"^.

In biological systems, joint receptors can signal the nervous system when the joint is
nearing the limits of its range. In the diver simulation, these joint limits are modeled by

stiff springs and dampers. The joint ranges used are shown in Table 3.3. These limits keep

the shoulders within the range where the Euler angles are continuous. Note that the limits

for joints 4 and 5 (the Y Euler angle) are a bit inside the full tt range; this restriction is

necessary to avoid thesingularity in theEuler angles (because the boundary is modeled with

springs and dampers, and is therefore somewhat soft). The spring and damper constants

used for the jointlimitareboth 750; the torques produced by the joint limit servos arescaled
according to the inertiaofthe limb in its current configuration by being passed through the

inertial compensator described in Section 4.1.



40

Link Name Mass (kg) X (kg-m^) Center (m) Joint (m) DOF

0.7286 0.0000 0.0000

torso 29.2720 0.6319 0.0000 0.0000 6

0.3172 0.0000 0.0000

0.0301 0.0216 0.0124

head 5.8988 0.0334 0.0000 0.0000 0

0.0228 0.3853 0.3213

0.2272 -0.0095 0.0124

pelvis 16.6085 0.1809 0.0000 0.0000 0

0.1575 -0.3248 -0.2217

0.1545 -0.0289 -0.0048

thigh, right 8.3460 0.1591 -0.1056 -0.0990 1

0.0256 -0.5559 -0.4357

0.1545 -0.0289 -0.0048

thigh, left 8.3460 0.1591 0.1056 0.0990 1

0.0256 -0.5559 -0.4357

0.0553 -0.0860 -0.0805

calf, right 4.1617 0.0565 -0.1051 -0.0862 0

0.0073 -0.9341 -0.7689

0.0553 -0.0860 -0.0805

calf, left 4.1617 0.0565 0.1051 0.0862 0

0.0073 -0.9341 -0.7689

0.0016 -0.0591 -0.0875

heel, right 1.1703 0.0045 -0.1027 -0.0955 0

0.0040 -1.2287 -1.1848

0.0016 -0.0591 -0.0875

heel, left 1.1703 0.0045 0.1027 0.0955 0

0.0040 -1.2287 -1.1848

0.0001 0.0693 0.0409

toes, right 0.1689 0.0001 -0.1172 -0.0955 0

0.0002 -1.2584 -1.2646

0.0001 0.0693 0.0409

toes, left 0.1689 0.0001 0.1172 0.0955 0

0.0002 -1.2584 -1.2646
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Link Name Mass (kg) X (kg-m^) Center (m) Joint (m) DOF

0.0255 -0.0474 -0.0476

upper arm, right 2.7943 0.0252 -0.2205 -0.1640 3

0.0050 0.0098 0.1293

0.0255 -0.0474 -0.0476

upper arm, left 2.7943 0.0252 0.2205 0.1640 3

0.0050 0.0098 0.1293

0.0050 -0.0277 -0.0529

lower arm, right 1.2164 0.0054 -0.2504 -0.2571 1

0.0012 -0.2503 -0.1605

0.0050 -0.0277 -0.0529

lower arm, left 1.2164 0.0054 0.2504 0.2571 1

0.0012 -0.2503 -0.1605

0.0016 0.0102 -0.0156

hand, right 0.5511 0.0020 -0.2641 -0.2644 0

0.0005 -0.4485 -0.3636

0.0016 0.0102 -0.0156

hand, left 0.5511 0.0020 0.2641 0.2644 0

0.0005 -0.4485 -0.3636

Table 3.2: Physical parameters for the full diver model, to four decimal places, showing the
link name, mass in kilograms, inertia matrix (principal axes ofall links are aligned with the
global axes in the zero configuration) inkilogram meters squared, coordinates of the center
ofmass in meters, coordinates of the connecting joint in meters, and number ofdegrees of
freedom in the diver simulation. This model was generously shared with us by Professor
Hodgins at the Georgia Institute of Technology; her group determined these parameters
from anatomical density data and the Viewpoint DataLabs graphical model as described in
[110].

Joint Name DOF # Min Value Max Value

Right hip 0 -3.1416 0.0000

Left hip 1 -3.1416 0.0000

Right shoulder 2 -3.1416 0.0000

4 -3.0916 -0.0500

6 -3.1416 3.1416

Left shoulder 3 0.0000 3.1416

5 -3.0916 -0.0500

7 -3.1416 3.1416

Right elbow 8 -3.1416 0.0000

Left elbow 9 -3.1416 0.0000

Table 3.3: Joint limits for the 10 degrees of freedom in the diver model, in radians.
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Chapter 4

Learning Controller

There have been many learning controller designs proposed in the literature. These

range from engineering adaptive control approaches [86] and iterative learning approaches

for repetitive systems [69], [75] to detailed biological approaches such as the Adjustable

Pattern Generators modeled on the cerebellum [9]. Many fall somewhere in between these,

often with neural networks as part of the dynamic control structure, such as Nguyen and

Widrow's truck backer-upper [74] or Kawato's feedback error learning scheme, in which

the control changes from feedback to feedforward as the system learns [55] (see [2] for a

review). Recursive learning based on continuous, parametrized controls has been used with

radial basis functions to train a space robot with a nonholonomic arm [32], as well as with

a Jacobian estimate to optimize the design of a mechatronic system [78]. Approaches based

on learning through demonstration ("learning by watching") have been used with various

control structures for diverse problems; recent examples include pole-balancing [88] and

helicopter control [67].

The controller design presented here, shown in Figure 4.1, was inspired by the hi

erarchical, behavioral control structure used by biological systems to control their move

ment, as discussed in Chapter 2. The dives executable by the system are represented as

a parametrized class; the parameters specifying a particular desired dive then form the

input to the controller. The high-level coordinating controller coordinates between several

multi-joint behavioral synergies, learning the timing between them (see Section 4.2). The

multi-joint synergies themselves provide the tuning inputs for the low-level single-degree-

of-freedom (single-DOF) controllers, each of which plays the role of a pattern generator for

fast, single-joint movements (see Section 4.1). The coordinating controller and the single-
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DOF controllers all operate in the discrete time domain. The plant, a mechanical system,

operates in continuous time; the pattern generator structure in the single-DOF controllers

allows this simplification of the control representation and provides the link between the

two regimes.

4.1 Single-DOF Controllers

4.1.1 Design

A closeup of a low-level controller is shown in Figure 4.2. This controller is inspired

by Gottlieb, Corcos, and Agarwal's [34] model for a control method for fast, goal-directed,

single-joint movements, which can be seen as a pattern generator for these kinds of move

ments, as discussed in Section 2.4. Because of the many degrees of freedom and because

the desired dive is only specified by general, behavioral metrics, there may be many pos

sible control torque profiles that would achieve the goal. A pattern generator is one way

of restricting these control choices to torque profiles within a certain parametrized family,

making the control problem easier. As shown in Figure 4.2, the single-DOF controller is

made up of a control network, a decoder, an inertial compensator, and a filter.

The control network takes as input a vector [yd, ^o] = [^^d, ^d, ^o] ^ describing
the desired changein the DOF angle (a particular Euler angle, if the DOF is part of a multi-

DOF joint), the desired change in joint velocity, the desired movement duration, and the

current DOF velocity (sensory information available from the spindle organs in biological

systems). The output of the network is a vector in giving a parametrization of the control

torque profile. The torque profile family used is a filtered version of a two-rectangular-pulse

function, as shown in Figure 4.2. The control network thus provides the translation from

kinematics to dynamics, all in a discrete time regime, abstracting the dynamics out of

the control and learning problem; the controller network need not provide continuous-time

torque information directly. By restricting the torque to a parametrized family of functions,

the single-DOF controller defines a behavioral model for the allowed class of single-DOF

motions.
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Control Network and Decoder

Although the model for a control mechanism for biological fast, goal-directed, single-

joint movements proposed by Gottlieb, Corcos, and Agarwal and their colleagues ([34], [33],
[48]; see Section 2.4) describes the biological data fairly well, from the point of view of
the single-DOF controller, it has a few drawbacks. First, it does not allow for a change

in velocity from the beginning to the end of the movement; the limb velocity starts and

ends at zero. Second, the model contains four control parameters: the pulse width W,

the pulse heights Hag and Hanu and the antagonist latency Tanu plus the inertia J which
parametrizes the movement. These control parameters are functions of only three task

veiriables, the extent X, the effort F, and the target distance D\ thus, as control parameters

produced by this model do not span the space ofall possible controls, a randomly generated

control vector cannot necessarily be produced by the model. Since the physical system used

for the diver simulation is not identical to the human one to whichGottlieb fit his model [33],

using his model and parameters directly willnot necessarily result in reasonable movements

that span the desired range of behavior. In order to fit the controls to the dynamics

appropriately, though, some sort of data is required. Since simulating a random control

vector will not guarantee a control/outcome pair that is a valid sample for the Gottlieb

model, parameter fitting cannot be done with the diver system using this model.

The model adopted for the single-DOF controller is similar to the Gottlieb model but

has some major differences. First, as mentioned above, there are three controls for three task

variables, y = [0,0,T]. There is no latency in the onset of the antagonist activation pulse;

it begins as soon as the agonist pulse ends. The controller uses two modes of operation,

pulse-width modulation (PWM) and pulse-height modulation (PHM). PWM mode restricts

the heights of the agonist and antagonist pulses to be the same, while PHM mode restricts

the widths of the two pulses to be the same. The single-DOF controller chooses between

the two modes based on the desired duration of the movement; if the movement time

is above a cutoff, then PWM is used, and if it is below, PHM is used. Thus, for shorter

movements when less time is available for pulse width variation to be effective, the controller

has access to varying pulse height to achieve a wide range of movements, while for longer

movements, pulse width variation makes using large, variable pulse heights unnecessary.

This division is similar to Gottlieb's observation, discussed in Section 2.4, that different

control strategies are used for small and large A; for A < Xq, the pulse heights are roughly



47

proportional to X, and for X > Xq, the pulse heights are roughly constant with respect

to X (see Equations (2.1)). As mentioned in Section 2.4, Gottlieb attributes this effect to
the existence ofa physiological minimum achievable pulse width; for movements over short

distances it is necessary to vary the pulseheights to make a rangeof movements possible. In

Gottlieb's model, of course, the two pulses are always constrained to have the same width.

Samples of movements produced by the trained controller, demonstrating the two-pulse

controls as well as the bell-shaped velocity profiles, are shown in Figures C.7-C.5.

In PWM mode, the control vector output of the network gives the pulse width of each

of the two pulses, and the common pulse height ofboth; u = [pwi,pw2,ph] G . In PHM
mode, it gives the two pulse heights and the common pulse width; u = [phi,ph2,pw] G
The decoder translates this control vector into a two-pulse acceleration trajectory, a contin

uous time signal. Although innature these stereotypical torque profiles may be produced by

a combination of descending control and reciprocal inhibition, as discussed in Section 2.4,

here all these interactions are encapsulated in onefeedforward control plus feedback around

the desired trajectory to compensate for external torques and joint interactions not taken

into account by the single-DOF controller (see below). In both PWM and PHM modes,

the control representation u which will produce a particular yd is unique given a particular

00. This uniqueness can be verified algebraically for unfiltered pulses, or by examining data

sets produced using filtered pulses.

Filter and Inertial Compensator

The filter is analogous to the smoothing effect of the motoneuron pooland the muscles,

as discussed in [34]. The linear filter used in the single-DOF controller is given by the

transfer function

oi = 65.0, /? = 60.0 were chosen to provide the desired control flexibility and to give a

shape and rise time roughly similar to torque data from human arm movements. These

filtered pulses form a feed-forward acceleration signal, which will be scaled to become the

feed-forward torque.

The inertial compensator computes the moment of inertia for each DOF based on the

cmrrent positions of the joints and scales all the torque profilesaccordingly. The calculations

are simplified considerably by an approximation restricting the equations to joints on the
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same limb; the body to which the limb attaches is considered to be a fixed base, and the

other three limbs are ignored. In theory, the function of the compensator could be included

in the control network, but in practice, this would require adding too many inputs (the

current angles of all relevant degrees of freedom), as well as more hidden units, and the

network would be quite difficult to train. The equations used for calculating the mass

matrices as functions of the joint angles on a given limb (see [70]) are given by
n

= (4-2)
1=1

where the JiS are the body Jacobians for each of the n controlled degrees of freedom on the

limb and 0 is a vector of the angles of the degrees of freedom. The Mis are the generalized

inertia matrices for each link, which depend on both the link masses mj and their inertia

matrices Jf:

Mi =
mil 0

0 li
(4.3)

The torques output from the compensator for the limb, Tc, are then obtained from the

vector of desired accelerations, a^, coming from the summing junctions of all the single-

DOF controllers of the limb (see Figure 4.2):

Tc = M(0)ad (4.4)

A more detailed discussion of the inertial compensator equations is given in Appendix A.

All perturbations, multi-joint interactions not taken care of by the inertial compensator

(such as centripetal and Coriolis terms), gravity, and external torques are compensated for

by a feedback term. The filtered decoder signal specifies the desired acceleration of the

joint; using this signal, the current desired position and velocity are calculatedand used for

PD feedback. In a biological system, the actual position and velocity would be available

from the spindlefiber sensoryorgans for use in feedback (see Chapter 2). The PD constants

used were kp = kd = 75.0 for all degrees of freedom. The feedback signal is added to the
feedforward signal before they are passed through the inertial compensator.

4.1.2 Learning

As the control network is simply required to represent a static function / : -> ,

any of a number of modeling choices are possible, including neural networks (multi-layer
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perceptions) as well as approximators that are linear in their parameters, such as radial ba
sis function networks, wavelets, infinite support basis function representations like Fourier

series, and polynomial approximation. Neural networks have several advantages over the

other choices. The numberofparameters (weights) needed does not grow exponentially with

the number of inputs, unlike with the other methods, providing a compact representation

as well as fewer data points needed for parameter identification. The smooth, global ap

proximation provided by neural networks is a better representation for the functions being
approximated here than that given by the methods with local-support basis functions, such

as radial basis functions or wavelets [95]. The nonlinearities in the function that is being

approximated are much more easily approximated by neural networks than by polynomial
approximation. One major drawback of neural networks as compared to approximators

that are linear in their parameters is that training methods can only be guaranteed to find

local minima; in training the single-DOF controllers, however, this has not proved to be a

problem.

One of the most basic kinds of neural network, and the kind used in this work, is a

multilayer perception. This type ofnetwork consists ofseveral layers ofnodes, orunits, each
layer communicating with the nodes of the previous layer (or, sometimes, layers) through
weighted connections. The first layer ofthe network is called the input layer and the final
layer is the output layer; all the other layers are referred to as hidden layers. Each node (in
each layer other than the input layer) i receives a net input ni that is a linear combination

of the outputs, or activations Uj, ofall the nodes j it is connected to in the previous layer,
plus an internal bias. The coefficients of the linear combination are the network weights,
Wij. To simplify the equations, the bias can be represented as a connection from a node
whose activation is always 1, and therefore can be treated in the same manner as the other

weights. In the most standard architecture, a node isconnected to all nodes in the previous
layer. Thus, for a node i, and nodes j in the previous layer:

ni = ^^Wijaj (4.5)
3

The net input ofa node is passed through an activationfunction to determine the activation

of that node. Typical activation functions include a simple thresholding function (a, = 1

if rii > 6, otherwise a, = 0), a linear function, or a sigmoidal function. The networks

described here use a linear function (oj = n^) for the output nodes of the forward networks



(see below) and a sigmoidal function

1
ai = 1 + '

with ^ = .8, for all other units.
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(4.6)

Network Training

There are several ways to go about training a network for control. Agarwal [2] presents

a classification of the way neural networks are used in control. A brief, less general discussion

can be found in the work of Werbos [106]. In the network design presented here, the input

and output spaces are relatively low-dimensional, and the network is simply learning a

static function, so some form of supervised learning is the simplest choice. Prom there,

there are two possibilities for the training procedure: direct learning or indirect learning.

From an adaptive control viewpoint, these two choices correspond to the choice between

model reference adaptive control (direct) and a self-tuningregulator (indirect) [86]. In direct

learning, the simpler of the two, the network is trained on pairs ([yd>^o]5 u) of plant outputs
and the control inputs that produce them. The main drawback of this method is that the

error that is minimized is the error on the controls u, when what is desired is to minimize

the error on the final plant output y = [A0,A0,T] G in response to those controls.

Indirect learning, on the other hand, minimizes the error on y, but requires a second

network to approximate the action of the plant; this forward network must approximate

a function -> mapping [u, 0o] to y. The forward network is trained first on

([u,0o])y) pairs and is then used in the training of the inverse network. During training of
the inverse network, the error at the output of the forward, plant-approximating network is

propagated back through that network without modifying those weights, and the resulting

back-propagated error is used to train the inverse network. Using indirect learning has

another advantage: once the networks have been trained, the forward network can be used

to test whether a particular command ya (with thecurrent DOF velocity ^o) ispossible given
the range of controls available (see Figure 4.3). If the control u generated by the inverse

network is passed through the forward network to produce a predicted y, but ||y —yall

is large, the requested ya is likely to be outside the range of the available controls. This

consideration is important in the design presented here, where the boundaries of the output

space reachable by the available controls are not known, but the reachable space is known
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Figure 4.3: Diagram showing the relationships between the four trained networks that make
up the network controller.

to exclude a significant proportion of the possible [ydj^o]- All of these considerations led
toward the choice of an indirect learning method.

Feedforward neural networks of this type have been shown, by various methods, to be

capable ofapproximating a large class ofcontinuous functions from one finite-dimensional
space to another, as well as decision boundary functions, to arbitrary accuracy, given one
hidden layer ofunlimited size (see [12], [39] for discussion andlists ofreferences). Inaddition,

one-sided inverses of continuous functions can be approximated to arbitrary accuracy with

networks with two hidden layers and step activation functions [94]. There are some rules

of thumb available for the required size of the hidden layers with respect to the number of

data points and the approximation error (see [38], Chapter6, for example), but this choice
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is still often a matter of art more than science. In practice, hidden layers with more units

make for slower and more difficult training. By experimentation, it wasdetermined that the

forward networks could be adequately trained if they had two hidden layers of eight nodes

each; the inverse networks required two hidden layers of twelve nodes each. A single hidden

layer didnot train as well. Adding more hidden nodes failed to increase the accuracy of the
approximation considerably, trained more slowly, and required a larger trainingdata set to

generalize as well.

The total network error is given by the sum of the squared errors over all patterns and

all outputs:

p m p m p

where the subscript p indicates the training pattern, the subscript m indicates the network

output unit, tp^m is the target for output m in pattern p, Op^m is the actual output for

output unit m on pattern p, and ep,m is the output error for output unit m on pattern

p. To find the optimal network weights, this squared error equation must be minimized.

There is a family of methods available for least-squares minimization. Linear least-squares

methods, for systems in which the error e is linear in the approximator parameters, include

the traditional linear least squares using singular value decomposition as a batch method,

and recursive least squares, or the Kalman filter, an iterative method often used in adaptive

control. For nonlinear systems, such as neural networks, various gradient methods are

available, includingbasic gradient descent (either as a batch or iterative method), conjugate

gradients (a batch method), Newton's method, quasi-Newton methods, and the Gauss-

Newton method (batch methods), and the extended Kalman filter (an iterative method

similar to the Gauss-Newton method). Many of these methods (the Kalman filter and

extended Kalman filter, gradient descent, the Newton family) are similar in that at each

iteration, the approximator weights or parameters are updated along a direction —Gg"^,
where g is the gradient of E (or Bp, for iterative methods) with respect to the weights and

G is a matrix that modifies the direction of the gradient. In gradient descent, G is the

identity. In Newton's method, G is the inverse Hessian of E with respect to the weights.

In quasi-Newton methods, the Gauss-Newton method, and the extended Kalman filter, G

is an approximation of the Hessian inverse, as follows. In the linear problem,

^ H^llyp - yp.dlP =H - yp,d||̂ (4.8)
p p
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where <pp is a matrix whose columns are called regressor vectors. In this problem, the
Hessian is given by

p

In the Gauss-Newton method, the nonlinear errors Cp = yp ~ Yp.d linearized around the

currentparameter vector, yielding approximate regressor matrices 0p equal to the transpose

of the gradient of this error. Then, the inverse Hessian is approximated as (jZp ^p0p )
The extended Kalman filter is an iterative version of this linearization method which main

tains an approximation of the inverse Hessian called the covariance matrix. The quasi-

Newton family of methods, though batch methods, incrementally build up a more complex

approximation of the inverse Hessian over successive iterations, as will be described below.

More detailed discussions of these methods can be found in [11], [12], [60], and [39]. For

continuous time Kalman filtering in an adaptive control context, see [86].

Quasi-Newton Algorithm

For training the single-DOF networks, I have chosen a quasi-Newton algorithm [12],
[60]. Quasi-Newton algorithms are useful because, like Newton's method, they tend to
be faster than gradient descent, but unlike Newton's method, they do not require the
calculation and inversion of the Hessian matrix. Instead, as discussed above, quasi-Newton

methods maintain and update an estimate G of the inverse of the Hessian.

With a locally quadratic approximation to theerror surface as a function ofthe network

weights, the Hessian H is constant, and one obtains

g(w) = (w - (4.10)

where g(w) is the gradient at a particular weight vector w, w* is the weight vector at

the error minimum, and H is the Hessian evaluated at w*. To jump immediately to the

minimum at w*, as in Newton's method, one would simply use

w* = w - H"^g'̂ (w) (4.11)

From these equation one obtains what is known as the quasi-Newton condition on successive

weights:

w*:+i - w* = - (g^)'̂ ), (4.12)
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where g*' = g(w^). A quasi-Newton algorithm is one in which the approximation G of

the inverse Hessian fulfills this condition on the weight increments. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) procedure is a quasi-Newton algorithm with update rules:

= w'- a*G*(g'=)'̂ (4.13)

+ + (4.14)
p^v v^C^v

p =

V = - (g'")'̂
p G^v

^ p^v v'̂ G*^v
G is initialized to the identity.

The gradient g is calculated by the standard backpropagation algorithm (see, for ex

ample, [12]), as follows. From Equation 4.7, the elements of the gradient vector are given

d E
To simplify notation, we can calculate and drop the subscript p firom all of the network

quantities. Uj is the net input to unit i, o, is the activation of unit i, and Wij is the weight

from unit j to unit i.

dEp x Ooffi
-own own13 rn

dom dui
E m drii dwij

EdOm
'

m
drii

6iaj (4.16)

Si (4.17)
drii

mit

Si — ^ ^Cm

m

Si is computed for each layer recursively. For units in the output layer:

dom
drii
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where j'irii) is the first derivative of the activation function j{ni) with respect to its argu

ment. If 7(nx) = ) the standard sigmoidal function, then

Si = 5^em/?7K)(l-7("t))
m

= Pai{l-ai)^em (4.19)
m

For units i in the hidden layers, is computed from the 6kS of all units k in the next layer

toward the output:

m

dOm
2_^

m k

EJC
K

EX 50x
k

= ^<5fci(;H7'('̂ i) (4-20)
k

Again, with the sigmoidal activation function:

8i = /3ai(l - ai) ^ (4.21)
k

The coefficient a in Equation (4.13) is determined by performing a line search for a

minimum along the direction -G*^(g'')'̂ . One method for performing such a search is the

quadratic fit method [60]. This method has the advantage of not requiring calculation of
the gradient of the function E{a) to be minimized, but only calculation of the function
itself. Three initial points, oti, a2, and as, corresponding to diflferent values of a along the

search line, are chosen such that ai and as bracket a minimum (E{ai), Eia^) > E{a2)).

The corresponding values of the function, Ei = E(ai), are calculated. Then, approximating

the error surface along the search line as a quadratic function through the three points, one

obtains:

(4.22)



56

A guess at the location of the minimum of E along this line is obtained by minimizing this

quadratic function:

^ {<4 - ^1)^1 +(qI - +(Qi - c4)^3 23)
2[(a2 - az)Ei + (03 - (Xi)E2 + (ai - 0^2)^3]

This new point can then be used together with two of ai, 0:2, and as to generate an

improved quadratic. If E4 < E2, ot4 becomes the new middle point, and the new triplet

is (01,04,02) or (02,04,03), depending on whether 04 < 02 or 04 > 02. Otherwise, if

E4 > E2y 04 becomes a new end point, and the new triplet is (04,02,03), or (01,02,04),

depending again on whether 04 < 02 or 04 > 02.

Any of a variety of stopping criteria can be used to end the search algorithm; a simple

one, used in the network training here, is the percentage test. With this method, the

algorithm is halted when the coefficient o has been determined within a fixed percentage

of its true value. At each step in the algorithm, the value of o which yields the minimum

of J5, o*, lies between the two outer points, 01 and 03, and the estimate of a* is d = 02.

A simple bound on the percentage error is therefore given by

|d-o*| ^ max(o3-02,02-01) ^4)
O* Oi

The percentage cutoff used for stopping the line search in the neural network training was

.01. Details about the convergence properties of this line search algorithm can be found

in [60]. Note that, as discussed above, the quasi-Newton algorithm can be used for batch

learning only; to perform on-line learning on a pattern basis, a different method, such as

gradient descent, must be used.

To generate the initial triplet oi, 02, 03 for the quadratic fit method, a coarse search

along the line is performed as follows. oi is initialized to zero. Then, 02 is incremented

from 02 = 01 until E2 < E\. If such a point cannot be found within a fixed number of

steps (chosen as 10 here), 02 is reset to zero and the increment size (here initialized as

.1) is reduced by a factor of ten. Once 02 is fixed, 03 is incremented from 03 = 02 until

E3 > E2' Again, if such a point cannot be found within a certain number of steps (for

this second stage, ICQ was chosen), 03 is reset to 02 and the increment size is reduced by

a factor of ten. If, while attempting to initialize either 02 or 03, the size of the increment

drops below a cutoff (here, .00001), the triplet generation algorithm returns an error. In this

case, the quasi-Newton algorithm assumes that either a local minimum has been reached or,

more likely, the estimate of the inverse Hessian, G, is poor, yielding a bad choice of search
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direction. The latter is likely to happen near the beginning of the quasi-Newton descent.

When an error is returned, the descent algorithm takes a small step (a = .000001) along

a new direction (no longer equal to —Gg*^) whose components are randomly distributed

between -.5 and .5.

Data Set Generation

To train the control networks, a large data set was generated by simulating the effects

of randomly chosen control vectors lying within the ranges shown in Table 4.1. The initial

position of the controlled DOF was selected randomly from within its allowed range; all

other degrees of freedom were fixed at the zero angle (except for degrees of freedom 4 and

5 in the shoulders, which were set at -.1 to avoid the Euler singularities). The data sets

for DOF 2 are shown in Appendix B. The data, both input and output, were then scaled,

using a piecewise aifine transformation described below, to lie in [0,1], again using the ranges

shown in Table 4.1. The output y data ranges were chosen to delineate the values allowed

for yd selection. For the change in position A^, this scaling range is exactly twice the joint

range shown in Table 3.3, though the maximum values were not always achievable by the

allowed controls. Data samples in which the simulation ran up against the joint limits or in

which the change in velocity A0 was outside the preselected range of A9d were discarded.

The minimum and maximum T values as well as the control value ranges were selected to

produce torque profiles compatible with the biological data presented in [34]. The pulse

height ranges, of course, are scaled when they pass through the inertial compensator.

In order to indicate direction, the scaled range of the first control parameter (either pwi

or phi) is divided into two parts. Values in [0, .5) correspond to negative torque (or desired

acceleration) pulses, while values in (.5,1] indicate positive ones (a value of exactly .5 is

indeterminate). The second pulse is always interpreted to be in the opposite direction from

the first pulse. Thus, if pmin is the minimum unsealed value of the first control parameter

p, and Pmax is the maximum value, then the scaled value ps of p is given by:

ft = .5 + .5sgn(p) (4.25)
(Pmax Pmin,)

where sgn(p) = 1 for p > 0 and sgn(p) = —1 otherwise. The second control pzirameter is

scaled as:

ft =/IpI ~ (4.26)
iPmax Pmm)
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The final control parameter, as wellas and the three the resultant movement parameters,

are scaled as:

{P ~ Pmin)
Ps =

(Pmax ~ Pmin)

Because the pulse width values are larger for PWM than for PHM, the PWM regime

produces movements with larger T, as desired. The cutoff" value of Td which determines

whether a movement will be executed by PWM or PHM was derived from the generated

data sets and fixed at .29735 seconds (a scaled value of .421). In simulation, T is measured

as the time when the feedforward torque has decayed to 5% of its second peak value. (For

the single-DOF controller data generation and training, this criterion was checked every

.001 seconds; for the full dive simulations described in Section 4.2, large apparent forces

during the dive required that this criterion bechecked at every integration step.) The pulse

height ranges in both control schemes were chosen to make data generation easy without
much compromise in the range of ys produced. The largest pulse heights in the PWM

control mode were eliminated because they caused the simulation to run into the joint

limitsextremely frequently. Similarly, the smallest pulseheights in the PHM control mode

were eliminated because a combination of a large first pulse with a small second pulse, or a

small first pulse with a large second pulse, often resulted in the simulation running into the

joint limits or exceeding the preselected M range. The largest pulse heights were needed

in this mode to achieve the desired range of output behavior.

1000 data points were generated for each DOF and mode (PWM or PHM) on the right

side of the body (the even numbered degrees of freedom). With fewer data points, the

trained nets did not generalize well, but more points did not improve generalization and

slowed down training. A second, disjoint set of 100 data points was also generated for each

DOF and mode for use in testing the network generalization. In generating the 1000-point

data sets, no points whose scaled first control value was within .001 of the discontinuity

(that is, in (.499, .501)) were permitted; this helped the networks train more efficiently,
eliminating constraints on their output near the discontinuity. For the 100-point test data

set, points whose first control value was within .01 of the discontinuity were eliminated.

Training Results

After the data sets were generated, the networks for each mode of each even DOF were

trained using the quasi-Newton method discussed above. First, the forward network was
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Parameter Range

AB

AO

T

[^min ~ ^maxi ^max ~ ^min]
[-6.9744,6.9744]
[.15,.5]

eo [-3.4872,3.4872]

pwi

PWM pw2
ph

[-.18,-.11], [.11, .18]
[-.18,-.11], [.11,.18]
[12,320]

phi
PHM ph2

pw

[-400,-60], [60,400]
[-400,-60], [60,400]
[.05,.11]

Table 4.1: Scaling ranges for network inputs and outputs. Each parameter value p was
scaled such that p, = P-Pm\j\ except for the first and second control parameters, as^ Pinax~Pmin , . . • j- J
discussed in the text. Angles are in radians, angular velocities are m radians per second,
times and pulse widths are in seconds, and pulse heights aie in radians per second squared,
the units of the desiredacceleration signal. The values ^min and 0max are those in Table 3.3.

trained until the total squared error, measured as - ^p,m)^ = 2X!lp-^p>
1000 scaled training data points was less than .08. Then the corresponding inverse network

was loosely trained using the direct method, using the error on the controls, until its total
squared error was less than .8. After this preliminary training, the inverse network was
trained using the indirect method, as described above, until its total squared error 2 Ep
was less than .08. The initial direct training was found to help the indirect training avoid

local minima.

The networks were considered adequately trained if three criteria were met:

1. The total squared error 2j^pEp on the disjoint test set of 100 data points was less
than .025 both for the forward net and for the inverse and forward nets combined

(error measured as J]p ||yp - yp.diP at the output of the forward net),

2. The total squaredoutput error produced by simulating the controls generated by the

inverse net for the 100 test data points was less than .025, and

3. The total squared output error produced by simulating the controls generated by the

inverse net for a newly-generated set of 100 test points (see below) was less than .05.

If the networks failed any of these tests, or if the indirect training of the inverse network

converged slowly or converged with an asymptotic error greater than .08, the training was
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refined by either further training the forward net to a smaller error cutoff (indecrements of

.02), further training theinverse net in the indirect method to a smaller error cutoff (also in
decrements of .02), or, in cases ofslow convergence or local minima in the indirect training,

further training the inverse net in the direct method to a smaller error cutoff (in decrements

of .2). If these refinements failed to produce adequately trained networks, the weights of
one or both of the networks were randomized and the process restarted.

These tests of the learned weights were done with all DOF angles randomized to lie

between 10% and 90% of their range. The starting position do of the controlled DOF was

adjusted witha heuristic algorithm to ensure that the simulation would not come up against

the joint limits. The heuristic made use of the desired angle change, A6d, and the proposed

control pulse heights and widths to determine the likely fined position of the DOF and likely

peaks in the angle trajectory that would violate the joint limits.

Table 4.2 shows the training and testing results for the single-DOF networks, and

Appendix C provides trainingerror convergence plots for the DOF 0, PHM networks, more

detailed plots of final training errors for the DOF 2, PWM mode network, and sample

movements produced by a few of the trained single-DOF controllers (see Table 3.3 for the

numbering of the degrees of freedom; DOF 0 is the right hip, and DOF 2 is oneof the Euler

angles in the right shoulder). Training the forward network generally took on the order of

one or two thousand iterations; training the inverse network generally took a few hundred

iterations of direct training followed by a few thousand iterations of indirect training. The

number of iterations required for indirect training to the cutoff error varied widely among

the different networks.

The third test of the trained networks involves newly generated data points, as men

tioned above. As not all possible inputs yd are achievable with the allowed controls, it is

useful to use the forward net as a test to determine whether a particular yd is feasible.

Since the inverse net uses sigmoidal outputs, any output from this net lies in (0,1) and is

thus a valid control, though outputs for which the first cdhtrol value lies within .01 of the

discontinuity, that is, within (.49, .51), may be unreliable. If the control generated by the

inverse net is passed through the forward net, the resulting output y can be compared with

yd- If the squared error ||y —yulP is greater than a certain cutoff, chosen here as .0015,
the proposed yd is rejected as being outside the range of the controls. Further, the yd is

also rejected if the heuristic described above for placing the initial DOF angle, Gq, fails to

find a 6o that is not likely to result in a joint limit violation during the movement. For the



Training Test Data New Data

Joint Mode Cutoffs Test Data (Simulated) (Simulated)

0 PWM .06, .08 .0065, .0103 .0137 .0332, 343 rejected

2 PWM .08, .08 .0077, .0079 .0180 .0250, 292 rejected

4 PWM .08, .08 .0099, .0089 .0180 .0294, 292 rejected

6 PWM .08, .08 .0137, .0096 .0178 .0304, 258 rejected

8 PWM .06, .08 .0068, .0058 .0113 .0260, 282 rejected

0 PHM .06, .08 .0188, .0063 .0087 .0225, 198 rejected

2 PHM .06, .08 .0079, .0095 .0140 .0282, 179 rejected

4 PHM .04, .08 .0051, .0080 .0093 .0199, 131 rejected

6 PHM .04, .08 .0165, .0106 .0106 .0252, 308 rejected

8 PHM .06, .06 .0045, .0180 .0191 .0294, 134 rejected
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Table 4.2: Training and testing data for the single-DOF controllers. The training cutoffs
are the total squared errors - ip,m)^ = '̂ T,p^P for the forward network and
for the combined inverse and forward networks (after indirect training, with error measured

^ IZp llyp ~ yp.diP) on the 1000 training data points. The next column, Test Data, gives
the total squared error for the forward network and for the two combined networks tested
on the 100-point test data set. The following column gives the error J]pl|yp - yp.dlP in
the output when the controls generated by the inverse network for the test data points are
simulated. The final column reports the error on 100 freshly generated data points which
were tested for feasibility by being passed through the forward network (see text). The
number of rejected ydS is also indicated. All errors are measured on scaled data.
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third test of each trained network, randomly generated yjs were tested for feasibility in this

manner; the controls generated by the network for 100 feasible points were then simulated.

The resulting errors are shown in the final column of Table 4.2, along with the number of

rejected yjs, and in the bottom plot of Figure C.4 .

Training was facilitated by noting that the corresponding networks for the left and

right sides of the body approximate the same functions, except for slight variations in the

arm adduction/abduction DOF due to the reversed infiuence of gravity, so only one set

of weights needs to be trained. The influence of gravity on the function modeled by the

trained networks is only slight because the feedback around the desired acceleration profile

largely compensates for gravity. Furthermore, any networks for which the y scalings are

the same approximate the same functions, except, again, for differing influences of gravity.

Training time was reduced for several of the degrees of freedom by initializing their training

with weights fi:om other degrees of freedom that had alreaxiy been trained: in both PWM

and PHM modes, the weights for degrees of fireedom 2 and 8 were initialized with the

trained weights from DOF 0. These networks needed some further training to achieve the

error cutoffs because the behavior of the networks near the discontinuity in the first control

parameter varies widely and is highly dependent on the particular data set used to train

the weights. Thus, when transferring weights from one network to another, first control

parameters in (.49,.51) were sometimes generated inaccurately, resulting in larger training

errors. This variability and inaccuracy near the control discontinuity is the motivation for

disallowing controls in (.49, .51), both in the network test described above and in the use

of the trained networks in the complete control system (see Section 4.2.1). The weights for

the odd degrees of freedom (the left side of the body) were copied from the corresponding

even degrees of freedom with no retraining.

4.2 Coordinating Controller

4.2.1 Design

A closeup of the coordinating controller architecture is shown in Figure 4.4. The hier

archical, behavioral design of this controller is motivated by the biological idea of multi-joint

synergies as subprograms in complex skills discussed in Section 2.5. Each dive is built out

of a series of parametrized multi-joint behavioral synergies. These synergies serve to coordi-
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Figure 4.4: Design of the coordinating controller.
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nate the single-DOF controllers to produce stereotypical multi-joint behavior patterns such

as "go into the pikeposition" or "execute the throwmaneuver." The coordinating controller

itself takes as input a vector s = [sd,Ss] containing the desired somersault and twist angles

for the dive, Sd = <j>td]^ plussensory information Sg = [<^5, </>t, p] describing the current

somersault and twist angles, the current time, and the cmrrent body posture. The body

position p is a binary vector with each value corresponding to the overall position achieved

by one of the multi-joint synergies. This simplification of the diver's state representation is

crucial to reducing the number of network inputs, at the cost of having only approximate

state information. The controller outputs tuning parameters v for the multi-joint syner

gies. In general, these tuning parameters could include such things as the desired tightness

of a pike or the speed with which the multi-joint synergy should be executed, but in this

implementation, the tuning parameter vector v contains only tg, the time to wait before

initiating the behavior; all other parameters in the multi-joint synergies are fixed. Only

one synergy can be active at a time; the controller switches among them, behaving like a a

timed state machine, with a different state machine (ordering of the multi-joint synergies)

for each type of dive.

Each multi-joint synergy takes as input the vector v = [tg] and outputs the control

specifications yd for all of the single-DOF controllers. The three behavioral synergies used

for the diver are "throw," "pike," and "layout;" each specifies a desired position for each

degree of freedom, as shown in Table 4.3. The desired final velocity is always zero. For a

given synergy, the desired movement times for all degrees of freedom are the same, as shown

in Table 4.3. Thus, all degrees of freedom should finish their movements simultaneously

in a multi-joint action. The 6d and Td values were chosen to be similar to values used by

human divers as well as feasible for the single-DOF controllers to execute. With the T cutoff

of slightly less than .3 seconds (see Section 4.1.2), the throw synergy is produced by the

PHM mode networks, while the others use PWM mode. These values are used, together

with the DOF angles and velocities at the start of the behavior, to compute the inputs

yd = to the single-DOF controllers. The high apparent torques present

during the dive make it necessEiry to stiffen the single-DOF PD controllers acting to achieve

the desired joint kinematics (see Section 4.1.1) to kp = 3750, kd = 3750. If the current

position and velocity of a DOF is close enough to the desired values (within .175 radians

and .75 radians/second, respectively), then the single-DOF controller is not invoked, but a

new PD controller {kp = 3750, kd = 750) centered at the desired position and zero velocity
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0 0 0 0.1 -7r.l-7r0 0 0 0

.26

.30 / .38
.32

Table4.3: Specification of the three behaviors usedin the coordinating controller. Each row
indicates the desired anglefor each degree of freedom (in radians) and the desired movement
time (in seconds) for one of the behaviors. The desired final velocity is always zero. The
pike behavior had two difierent desired durations depending on the dive being performed;
for the jackknife and the one-and-one-half-somersault pike, its Td was .38 seconds, and for
the one-and-one-half-somersault, full-twist dive, Td for the pike was .3 seconds. Degrees of
fireedom 0 and 1 correspond to the right and left hip, 2, 4, and 6 are the three Euler angles
in the right shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and 9 are the
right and left elbow. In the layout synergy, the angles for degrees of fireedom 4 and 5 were
chosen to be slightly greater than —tt to avoid the Euler singularities.

is activated. This same PD controller is active between multi-joint synergies, with set

points determined by the DOF angles at the end of the previous synergy. The yd values

are passed through each DOF's inverse network to select a control vector u, which is then

passed through the DOF's forward network to obtain an estimated outcome y. As for the

network test discussed in Section 4.1.2, if the error ||y -yalP > -0015 the ya is considered

unreachable. A dive being executed is aborted if such a bad request is made. A multi-joint

behavior is considered complete when each of the single-DOF controllers it has activated

have finished their movements.

The implementation of the control system described in this chapter learns to per

form three dives: a jackknife, a one-and-one-half-somersault pike, and a one-and-one-half-

somersault, full-twist dive. For the jackknife, the diver must execute a pike and enter the

water after a somersaulting rotation of tt radians (so <j>sd = tt, = 0). The pike position

involves bringing the legs up and the arms out to decrease the moment of inertia about the

somersaulting axis. For the one-and-one-half-somersault pike, the divermust executea pike

and enter the water with an overall somersault angle of 37r radians {^sd = Stt, <f)td —0).

Finally, for the twisting dive, the diver must first execute a throwing maneuver with the

arms to tilt the body's rotation axis (see [27]), perform a full 27r twist, then go into the

pike position, coming out at the end of the dive with 37r radians of somersault rotation

{4^sd ~ ^TT, (f)td = 27r).
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The dive simulation is started from a set of initial conditions that is fixed for each

dive. The body somersault angle (f)s is initialized to .175 radians, based on an inspection of

Olympic diving footage (described in more detail in Section 4.2.3), and the twist angle 4>t is

initialized to 0, for all dives. The initial joint angles for all dive types are shown in Table 4.4.

The hip angles (degrees of freedom 0 and 1) axe set to -.175 so that the legs start out

vertical. The initial angles for the one-and-one-half-somersault, full-twist dive correspond

to a position with the arms straight out away from the sidesof the body. The initial velocities

of all degrees of freedom are zero, except for the twisting dive, in which several degrees of

freedom start with ±3.4872 radians/second, the maximal velocities allowable; degrees of

freedom 0 and 1 start with a velocity of -3.4872 radians/second and degrees of freedom 4

and 5 start with a velocities of 3.4872 and -3.4872 radians/second, respectively. The initial

velocities for degrees of freedom 4 and 5 help the diver achieve a higher twist velocity with

the throw maneuver. The initial velocities for degrees of freedom 0 and 1 are required for

the single-DOF controllers to be able to produce the throw movement; they also help maice

the platform takeoff look slightly more natural. The initial vertical velocity of the center of

mass of the body is 3 m/s; this value was chosen to be consistent with the initial velocities

used by human divers. The vertical velocity, along with the initial height of the center of

mass, determines the time available for the execution of the dive before the diver hits the

water. The initial forward velocity of the center of mass of the body is .75 m/s, enough

so that the diver will not hit the board. The initial vertical position of the center of mass

varied among the dives since the initial joint positions varied (see Table 4.4). The vertical

position was chosen so that the diver's feet would start at a fixed position (on the diving

platform). The simulation time for each dive was determined based on the vertical distance

the center of mass must travel. This distance was equal to the initial vertical position of the

center of mass plus 10 meters (the height of the diving platform) minus the approximate

distance from the center of mass to the tips of the fingers in the layout position (a length

equal to 1.059 meters). This distance through which the center of mass must fall, together

with the initial vertical velocity, yielded dive times of 1.766 seconds for 9.989 meters for the

jackknife and one-and-one-half-somersault pike dives, and 1.764 seconds for 9.971 meters

for the twisting dive. The somersaulting angular momentum components for the dives were

set to 16 kg-m^ for the jackknife, 47 kg-m^ for the one-and-one-half-somersault pike, and

65 kg-m^ for the twisting dive. The twisting momentum component was zero for both the

jackknife and the one-and-one-half-somersault pike, but was set to 5 kg-m^ for the twisting
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0 1234 56789

jackknife
l| som. pike
11 som. full twist

-.175 -.175 0 0 .l-TT.l-TT 0 0 0 0
-.175 -.175 0 0 .l-TT.l-TT 0 0 0 0
-.175 -.175 -f f f -f 0 0

Table4.4: Initial angles for eachDOF foreachdive type. The hip angles (degrees of freedom
0 and 1) are set to -.175 so the legs start out vertical (see text). Degrees of freedom 0 and
1 correspond to the right and left hip, 2, 4, and 6 are the three Euler angles in the right
shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and 9 sure the right and left
elbow. For the jackknife and the one-and-one-half-somersault pike, degrees of freedom 4
and 5 are set to slightly larger than -tt to avoid the Euler angle singularities. All angles
are in radians.

dive. The desired end joint configuration is the same for all dives, with the angles of all

degrees of freedom being zero except for degrees of freedom 4 and 5, which are at —tt -f .1.

The desired final velocity of all joints is zero.

The coordinating controller is trained in two stages inspired by the stages of motor

learning discussed in Chapters 1 and 2. In the cognitive, "learning by watching" stage, a

diving student learns about the task goal and the behavioral structure of the task from

watching other divers and from instructor input. During this stage, the student also learns

an initial estimate of the coordination parameters v. For the coordinating controller, the

learning by watching stage consists of defining the dive's cost function (or functions; see

Sections 4.2.2-4.2.3), breaking up the dive into multi-joint synergies, defining the order in

which these synergies are to be activated, and learning a rough estimate of the coordina

tion timing ts required to produce the dive. In the second, "learning by doing," training

stage, which corresponds to the associative and autonomous learning stages in human skill

acquisition, the controller practices the dive to refine the coordination paxameters.

The internal structure of the coordinating controller is intimately tied to the algo

rithm chosen for implementing the "learning by doing" parameter refinement phase. This

algorithm, called Q-learning, is described in the next section; its implementation in the

controller network is discussed in Section 4.2.3.
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4.2.2 Reinforcement Learning Theory

The diving problem, whose solution requires a correctly-timed sequence of behaviors, is

well addressed in the framework of reinforcement learning. Reinforcement learning theory

is an adaptation of dynamic programming algorithms to the type of task faced by the

coordinating controller: the controlling agent must select an action based on the current

state of the system, and must, with little or no prior knowledge about the structure of the

problem or the probabilities of various outcomes of the control action, learn which actions

will lead to the largest rewards or smallest costs. The costs simply assign some value

to a state or transition rather than providing information about the correct choice, as in

supervised learning, and might be given only at the end of a complete movement iteration,

as in the diving example. The reinforcement learning algorithms presented in this section

are techniques for addressing the temporal credit assignment problem, the question of how

to assign credit among a series of control choices all contributing to the value of a delayed

outcome evaluation. Most of the following discussion is based on the presentation in [11].

The framework in which dynamic programming algorithms are applied is that of a

Markov decision process (MDP). An MDP is a generalization of a Markov process (a set of

states 5 with transition probabilities p(si,Sj), Si,Sj € S) in which the state transition prob

abilities are dependent on the choice of a control action v G V(si); that is, p = p(si, v,Sj),

or, to simplify notation, Pi,j{v)- In the dynamic programming framework, the state space

is discrete; for the diver problem, though, we have s = [Sd,Ss] = (a

combination of continuous and discrete components) and v = [tg] (a continuous variable),

as described in Section 4.2.1. Each transition Sj —> sj with action v is also assigned a

cost c(si,v,Sj), or, again to simplify notation, Cij(v). The basic dynamic programming

algorithms solve for J*: 5 -> M, the "value" or optimal cost-to-go function, which is the

minimal expected cost that can be accrued over a trajectory of states Sj starting in each

state Si:

J*{si) = minE
J=i

where /li: s v, s € «S, v 6 V, the function defining the choice of action in each state, is

called the policy, and 7, 0 < 7 < 1, is a discounting factor. Equation (4.28) is written

for an infinite-horizon problem, but finite-horizon problems (possibly with state-dependent

termination costs) can be considered in the same framework. In the dynamic programming

(4.28)
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framework, J* can be written as a vector, because the state space is discrete, and can

therefore be stored in a lookup table. J* must satisfy Bellman's equation

J*{si) = min E[cij(v)+7J*(sj)] (4.29)
v€V(si)

vev(si)"

This system of equations can be solved either directly or using the dynamic programming

update called value iteration:

J*^+i(si) = imn Vpij(v)(cij(v) +7J^(Sj)), (4.30)
vGV(si)"

Using this algorithm, J -y J* as k -r oo; J* is the unique fixed point of the Bellman

equation (4.29). The algorithm converges if the J{si) are updated synchronously (updates

are done for all Si simultaneously) or asynchronously (updates are done for one Si at a time),

as long as J(si) is updated infinitely often for each Si. Once J* is known, the optimal choice

of action in each state (the optimal policy), /i(si), is obtained by:

/2(si) = arg min y^Pt,j(v)(cij(v) +7 '̂(sj)) (4.31)
v€V{si)"

Policy iteration is a method for determining the best policy more directly. In this

technique, a policy fik' s v, s G «S, v € V is evaluated by solving for ,

Sj

either by solving this set of equations directly or by using value iteration. Then a policy

improvement stage is carried out, which selects the optimal action in each state based on

'̂=+i(si) = arg nain 5Zpi,j(v)(cij(v) +7- '̂'Msj)) (4.33)
v€V(si) "

The value of the new policy can then be evaluated, and the process repeated.

This algorithm will converge to an optimal policy fi*.

These dynamic programming algorithms all require complete knowledge of the system's

transition probabilities and costs. If an explicit system model is not available, as is typical

in reinforcement learning problems, but simulation is possible, one approach is to simulate
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many trajectories and use them to estimate the transition probabilities and costs. An

alternative, iterative approach to policy evaluation in the absence of an explicit model is

provided by the temporal difference family of methods. These methods, called TD(A), use

the trajectory-based update rule

00

= /*(Si) +o52(7AF"'<ij (4-34)
j=i

~ d-7"^ (sj+i) ~ (sj)

where 0 < A < 1 and a is a step size parameter. Note that this algorithm applies for a fixed

policy fjL\ Sj+i is the state reached in a simulated trajectory after //(sj) is applied, dj is called

the temporal difference, dj is an estimate of the error of the cost-to-go J(sj) based on the

simulated transition from sj to sj+i; the transition accumulated a cost of Cjj+i(//(sj)), and

after the transition, the current estimate of the discounted cost-to-go from the new state is

7J(sj+i). If the system is stochastic, dj is a random variable. The TD(A) algorithm replaces

knowledge of the transition probabilities with stochastic simulation of the trajectories, so

that the probability of a particular Sj+i and the dj it produces will refiect the system

transition probabilities. The updates in Equation (4.34) can be done in an offline manner

after the completion of an entire (finite) trajectory or in an online manner, one term at a

time, with updates after each state transition. In either case, TD(A) will converge to

with probability one, as long as each state is visited infinitely often (which requires infinite

restarts for finite-horizon problems) and the step size a is decreased at an appropriate rate.

Note that the extreme case of TD(A) in which A= 1, TD(1), is equivalent to using an

incremental update based on the actual cost of a simulated trajectory. Rewriting Equation

(4.34) we obtain:

oo

j'+'(Si) = (1 - a)J''=(Si) +a53y-c,j+i(M(Sj)) (4.35)
j=i

Versions for which A < 1 place less emphasis on information from later transitions. The

special case in which A= 0, TD(0), uses the update

J*+'(Si) =J"=(s,) +a(ci,,>,(M(Si)) +7J*(si+i) - J'=(si)) , (4.36)

which is equivalent to a stochastic approximation of Bellman's equation (4.29) applied to a

fixed policy.
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Once a policy has been evaluated in a model-free manner using TD(A), a policy im

provement step needs to be applied. Unfortunately, to improve the policy in the manner

suggested byEquation (4.33) a system model with known probabilities andcosts is required.

If a model is available, of course, one may be able to use value iteration instead of TD(A);

problems exist, though, in which a simulation-based, incremental policy evaluation method

may still be desirable. In particular, trajectory-based incremental policy evaluation opens

up the opportunity for a variation on the policy iteration algorithm described above; the

policy update step can be performed before the policy evaluation algorithm (TD(A)) has

converged. The extreme case, in which fj, is updated every time the estimate of is up

dated, is sometimes called optimistic policy iteration. The optimistic TD(0) algorithm is

guaranteed to converge, but only specific variants of optimistic TD(1) are guaranteed to

converge. Standard policy iteration, in which the policy is only updated after the TD(A)

evaluation has converged, converges for all A.

An alternative model-free, simulation-based option for policy iteration is provided by Q-

learning. In analogy with the optimal cost-to-go function J*(si), we can define the optimal

Q-factor, Q*(si, v), as the minimum expected cost-to-go from state Si if action v GV(si) is

chosen. Then we have:

Q*(si,v) = E[cs.„s,^,{v)+jr{si+i)] (4.37)

J*(si) = min Q*(si,v)
vGV(si)

If the system model were known, basic value iteration could be performed on the Q-factors:

g'=+^(si, v) = ^Pij(v)(cij(v) 7 niin Q''(sj, V)) (4.38)
^ v'€V(sj)

The model-free Q-learning method is a simulation-based method analogous to TD(0):

Q^"^^(si,v) = Q^{si,v)+adk (4.39)

dk = Ci,i+i(v)-t-7( min g''(si+i, v')) - Q''(si, v)
\v'€V(8i+i) J

If every (si, v) pair is visited infinitely often and a is decreased appropriately, the Q-learning

algorithm will converge to Q*. Note that to guarantee that every (si,v) pair is visited

infinitely often, some exploration mechanism often has to be built into the action selection,

especially if the system is deterministic or nearly so; typically, instead of always picking the

V that minimizes Q*^(Si, v) (the greedy policy), a small proportion of the time a random v
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is selected. If the randomization is chosen such that the product of the state and action

spaces is fully explored, and the percentage of random control choices is decreased over

time, the Q-factors converge to Q* and the greedy policy converges to the optimal policy.

All of the preceding algorithms apply to J or <3 specified by a lookup table. A lookup

table representation is not always possible, however, in particular for large or continuous

state speices. In this case, the J or Q functions can be approximated by various means.

For example, a function approximator depending on a vector of parameters or weights w

can iteratively learn the optimal value or Q fimction. Variants of reinforcement learning

which use function approximators are sometimes called neuro-dynamic programming [11],

[10]. In the function approximator context, the TD(1) algorithm can be seen as a gradient

method for minimizing the squared error between and an approximator J(si,w) over a

simulated trajectory. We have:

E = (4.40)

aw
= |̂̂ (Si,w)(j(si,w)-J''(si))

or, for the online version:

aw
t \ 3=t

The TD(A) weight update for general A (the oflSine version, performed after the entire

trajectory has been simulated) is given by:

1=0 \ j=i
OO n J OO

= + (4.42)
1=0 j=i

dj = Cj-j+i(/z(sj)) + 7J'(sj+i,w^)-J(sj,w*^)

Only for A = 1 does this update actually correspond to an iterative minimization of the

squared error in Equation (4.40), however. For TD(0), the update looks like:

a 7wl=+l = (4.43)
z=0

W^"""^ =w'' +a^(sk, w^)4 (4.44)
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If the approximation architecture for J is linear in the weights w, the TD(A) iteration (both

the offline and online versions) will converge, under some assumptions on the simulation

method in addition to the usual requirements for a and state visitation. The limit of J may

depend on the value of A, though. With a nonlinear approximation architecture, TD(A)

cannot be proved to converge, and in fact may diverge. There have been some successes

with neiural network approximators, though; the most notable is Tesauro's TD-Gammon

backganunon player [97], [98].

Optimistic policy iteration can be performedwith function approximators, as well, but

its convergence propertiesaxe not well understood. In particular, convergence of the weights

w is not always accompanied by convergence of the policy /i. Again, these methods require

knowledge of the transition probabilities and costs.

Finally, Q-learning can also be performed with a function approximator Q(si,v,w).

The updates are similar to the TD(0) updates in Equations (4.43)-(4.44).

dQ
w— = w" -t- a 2_^

i=0

or, for online updating:

+a^ —(Si, Vi, w^)di (4.45)
i=0

+a^(Sk, vic, w'̂ )(ijt (4.46)
aw

In general, this algorithm cannot be guaranteed to converge, though there are results for

very restricted special cases.

More detailed discussions about dynamic programming, reinforcement learning, tem

poral difference algorithms, and neuro-dynamic programming can be found in [11], [96],
[84], [53], and [7].

4.2.3 Learning Implementation

In the diverproblem, although the dynamics are deterministic, we do not have a model

of the system available, so we are forced to use the Q-learning form of reinforcement learn

ing. The state vector s = [sd,Ss] is partially continuous, and the action vector v = [ts] is
continuous as well, so a function approximator is required. In the controller design shown

in Figiure 4.4, the coordinator network, a multilayer perceptron (a nonlinear architecture),

serves as an approximator or internal model of Q(s,v), the smallest dive cost that can

be accrued from state s with action v. A neural network is a reasonable choice for the
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coordinating controller, given the large number of inputs required; for feature-based meth

ods, like radial basis functions, the number of parameters is exponential in the number

of inputs. Neural networks have a more compact representation and also give a smoother

approximation, as mentioned earlier (Section 4.1.2).

Unfortunately, training one network on £ill three dives (jackknife, one-and-one-half-

somersault pike, and one-and-one-half-somersault, full-twist) proved very difficult. With

the input representation used here, the twisting dive and the two non-twisting dives tended

to interfere with each other. Various other representations were tested, but none seemed

to improve the situation. Thus, the controller was trained with two separate coordinator

networks, one for the jackknife and one-and-one-half-somersault pike dives and one for the

twisting dive. Each of these coordinator networks takes as input the state s = [Sd,Ss]

and action v = [<«] vectors and outputs the Q approximation Q(s,v,w). With separate

networks, some of the inputs in each network no longer carry any information is a

constant for each net, for example) but were retained so the two networks would have the

same inputs and so that possible future expansion of the dive set would be more straight

forward. Condensing the number of inputs for the two networks did not seem to improve

performance, in any case. It is possible that using a separate network for each behavior

within each dive might improve performance further; the Q function representations for the

pike and layout behaviors in the twisting dive coordinator network also sometimes interfered

with each other, although to a lesser extent.

Each coordinator network input is scaled to lie in [0,1] using an affine transformation

on the range shown in Table 4.5. Since there are only two body positions, corresponding to

completed multi-joint synergies, which can figure as inputs to the network, p has only one

element, p = [0] corresponds to the pike position, and p = [1] corresponds to the throw

position. Each of the two coordinator networks has two hidden layers containing 24 units

each. Significantly smaller networks did not train well. The output neuron in each net uses

a linear activation function, and the others use the sigmoid function in Equation (4.6).

At the end of a dive, the performance is assigned a cost:

C = .01 fcs(^s ~ <f>sd)^ + ^t(<^t —0t<i)^ + ^c<f>c + (^ ~
DOF

(4.47)

where (f)s is the somersault angle of the body, 4>t is the twist angle of the body, and (f>c is

the cartwheel (roll) angle of the body (which ideally should always be zero). The scaling



Parameter Range

4>$d [0,15.7]
(f>td [0,6.2832]
(f>s [0,15.7]
<f>t [0,6.2832]
t [0,2]
P [0,1]
V = [ts] [0,2]
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Table 4.5: Scalingranges for coordinator network inputs. Each parameter value was scaled
with an affine transformation so that the range shown in the table corresponds to [0,1].
Angles are in radians and times are in seconds.

constants were given the values ks = 100, kt = 25, kc = 25, and kr = 25. No costs

are assigned at any other step of the dive state machine. In general, this dive evaluation

could have other terms from penalties incurred by bad requests to single-DOF controllers

or failure to finish the dive, for example. Other forms of dependence on somersault and

twist error, for example, could be used, as well. Also, additional costs could be assigned at

intermediate stages of the dive. The cost function shown in Equation (4.47) is simply one

possibility that works as a reinforcement signal.

The action selector shown in Figure 4.4 uses the current Q function output by the

coordinator network to determine what action vector v to send to the next multi-joint

synergy. During learning, the selector chooses a random action some of the time, in order

to better explore the control space. When not choosing the action randomly, the action

selector picks the greedy action, the action which minimizes the coordinator network's

Q output. This minimization is performed using the quasi-Newton method described in

Section 4.1.2. For this application, of coiurse, it is not the weights in the network that

are being varied, but the vector v, to minimize the network output Q. The gradient ^ is
calculated using backpropagation; considering the output neuron, the activation of an input

neuron specifying a component of the action vector vj, and the neurons in the first hidden
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layer (labeled with the subscript«), we have

dQ _ do
dvj dvj

Edo drii
^ drii dvj

= (4.48)
i

S, = I; (4.49)
The definition (4.49) here is only different from the standard one in Equation (4.17) by a

factor of e, the error at the output unit. Thus, by simply defining the "error" at the output

unit to be 1, the same backpropagation algorithm as was used in Section 4.1.2 can be used

here to calculate g = ^- This gradient can then be used in the BFGS update formula,
Equations (4.13)-(4.14), applied to the action vector v instead of the network weights w.

The coefficient a is calculated by the line search algorithm described in Section 4.1.2. As

the Q function is likely to have multiple local minima as well as some fairly flat areas,

the function minimization is performed with 25 initial conditions for v = [tg] randomly

generated in E, and the best result is chosen. The flatness of the Q function also makes it

necessary to modify the line search algorithm slightly, so that if the absolute value of either

the numerator or the denominator in the expression for 04, Equation (4.23), is less than

10"^^, the new point 04 is chosen as Values smaller than this cutoff are too close

to the precision limit of the machine for 0:4 and the bound on the percentage error (see

Section 4.1.2) to be computed accurately enough.

Learning by Watching

As discussed in Section 4.2.1, the "learning by watching" stage of learning consists of

defining the dive's cost structure (in the MDP sense), defining the multi-joint synergies and

the order in which they are performed, and roughly initializing the choice of parameters v

sent to each multi-joint synergy. For the diver, this latter part of the "learning by watching"

stage consisted of initializing the network weights and thus Q. This initial training for each

coordinator network used a set of synergy timing data, shown in Table 4.6, obtained from

video of the 1996 men's and women's Olympic platform diving competitions. Although this

data was obtained by human estimation using a frame-by-frame examination of the video.
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in the future such "learning by watching" kinematic and timing data could be extracted

from video automatically [13]. As can be seen from Table 4.6, the Olympic divers showed

quite a bit of variation in the timing of their dives. Some of the variation is probably

due to differences in their initial angular momenta at takeoff; some is due to differences in

technique (the United States and Chinese divers used very different styles, for example).

Both men's and women's timing data was included to make a larger sample set. There

was only one jackknife example available, so the "learning by watching" training for that

dive was much less meaningful than for the others. The data in Table 4.6 is also fairly

noisy because the low frame rate of standard video (30 frames/sec) relative to the speed

of the divers' movements made it diflBcult to estimate the beginning and end times of the

multi-joint synergies.

The data were converted into two sets of positive (s, v) instances (one for the twisting

dive and one for the other two dives) and assigned Q values of 0. Then, for each dive spec

ification [(f)sdi 0td] position vector p, ICQ sets ofrandom values of4>s, (f>u smd v = [tg]
were generated. These negative instances were all assigned large positive Q values equal to

the square ofthe distance to the nearest positive point (restricted to the same [<^5d, (f)td] and
p) multiplied by5 for the twisting dive or by .1 for the jackknife and somersault dives. The

coordinator networks were then trained using the quasi-Newton method (see Section 4.1.2)

on the entire data set of positive and negative instances, to a cutoff total squared error of

.2 for the twisting dive or .1 for the jackknife and somersault dives. Figures 4.5-4.7 show

simulation frames of the resulting dives. The Olympicvideo data proved surprisingly good

for training the diver; with lower training cutoffs than these, the "learning by watching"

training was so effective that "learning by doing" was hardly needed. The more loosely

trained networks described here allowed the capabilities of the "learning by doing" stage to

be demonstrated.

The "learning by watching" training stage is essential for the diver problem. The

extreme nonlinearity of the Q function creates multiple local minima, even with only one

action parsuneter in which the Q-learning algorithm can get stuck. The "learning by

watching" Q initialization ameliorates this problem by restricting the search space to a

region that should be near the global minimum. Furthermore, the "learning by watching"

weight initialization gives the Q-learning algorithm something of a head start, so that it

requires many fewer iterations to converge than it would starting with randomized network

weights. Since the Q-learning algorithm requires time-intensive simulation for each iteration,



forward pike (jackknife)

Diver

pike

^end

layout

^start

Xiao .400 1.745 1.100

I5 somersault pike

Diver

pike

^end 0s

layout

^start

Clark

Guo

Fu

Vyguzova
Walter

.333 2.967

.433 3.142

.400 2.793

.400 3.316

.333 3.142

1.067

1.100

1.167

.967

.967

Platas

Tian

Akhmetbekov

Pichler

Timoshinin

Sautin

Jeffrey

.400 3.142

.333 2.356

.400 3.142

.333 3.142

.467 3.490

.367 2.793

.333 2.618

1.267

1.367

1.233

1.200

1.200

1.267

1.133

15 somersault 1 twist

throw pike layout
Diver '̂ end 4>s 4>t ^start ^end 0s ^start

Guo .367 1.571 1.571 .600 .900 6.109 1.067

Fu .233 1.047 1.571 .567 .867 5.760 1.033

Clark .467 1.920 1.920 .767 1.033 6.283 1.200

Jeffrey .467 1.745 3.142 .667 .933 5.236 1.267

Tian .467 1.920 1.920 .733 1.067 5.585 1.267

Xiao .333 1.222 1.396 .700 .967 5.061 1.433

Akhmetbekov .433 2.094 1.396 .700 1.000 5.934 1.200

Pichler .533 3.142 1.571 .767 1.000 5.934 1.200
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Table 4.6: Coordinator network initialization data obtained from Olympic men's and
women's platform diving video, istart and <end refer to start and end times of the specified
synergy, in seconds. and (f>t specify the somersault and twist angle at the end of the
synergy, in radians. Some divers performed their twists in a positive direction and some
in a negative direction; the values in the table have been normalized for positive twist. <f)t
values not specified in the table are zero for the jackknife and one-and-one-half-somersault
pike; (pt at the end of the pike in the twisting dive is 27r. The start time tstart for the first
behavior in a dive always was zero, and the initial angles were adways used as 05 = .175
and 0f = 0, as discussed in Section 4.2.1, though the start times and angles varied some
among the divers. The divers listed above the horizontal bar in the second and third tables
are women, and those listed below are men.

this advantage can be quite significant.

Learning by Doing

After the "learning by watching" initialization, the coordinator network refined its

modelof the Q function through "learning by doing." In this learningphase, the controller

tested choices of v through simulation and used the resulting costs to update the network

weights with the Q-learning algorithm.

In the "learning by watching" stage, the synergy activation sequence was fixed for each

dive. As discussed in Section 4.2.1, the controller behaves like a timed state machine as

it switches between the multi-joint behavioral synergies. The jackknife and the one-and-

one-half-somersault pike both use the sequence (pike, layout). The twisting dive uses the

sequence (throw, pike, layout). This state machine becomes the Markov decision process

underlying the Q-learning algorithm.

At each transition of the behavioral state machine, the controller's action selector uses

the coordinator network's model of Q to choose the parameter vector for the next synergy.

The coordinator network's approximation is updated at each transition as well. A fiow

chart showing the linked processes of action selection, simulation, and learning is shown in

Figure 4.8. At the beginning of a dive, at t = 0, the first synergy in the state machine is

initiated. This synergy uses the initial values of 9 and 6 for each DOF to determine the

inputs Yd for the single-DOF controllers. After the synergy has executed, the resulting

state Ss = is input to the coordinator network, and the action selector chooses

an action vector (possibly random) for the next synergy (see Figure 4.8). After waiting for

the amount of time specified by v = [^5], the new synergy uses the current 6 and 6 for each
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Figure 4.8: Flow chart showing the relationships between the processes of action selection,
simulation, and learning during the "learning by doing" stage.
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DOF to determine the new inputs yd for the single-DOF controllers. At any stage, if there

are no more synergies left for the dive being executed, the simulation simply continues

until the diver reaches the water. While waiting for a synergy's start time or after the

entire sequence of behaviors has been executed, the joints are held in position by the PD

controllers mentioned in Section 4.2.1. Each PD controller's set point is defined by the

DOF's position at the end of its previous movement.

The Q-learning algorithm is applied to the coordinator net at each transition between

synergies. The trajectories in the diver system axe finite, ending when the diver hits the

water, so the sum in Equation (4.45) is finite. With these short trajectories, no discounting

is needed, so 7 = 1. When one synergy finishes, the best action vector v is computed for

the next synergy, as described above. The Q value corresponding to this action vector is

then used to compute the temporal difference:

dk= min Q(Sk+i, v',w*^) - Q(sk, v,w^), (4.50)
v'ev(8k+i)

where Sk is the state at the beginning of the previous synergy and Sk+i is the state at the

start of the new synergy. If the synergy is the last in the dive, no new behavior is computed,

and the temporal difference is computed as:

4 = C - Q(sk,v,w'') (4.51)

where C is the cost assigned at the end of the dive (Equation (4.47)). If the temporal

difference dk is considered to be the negative of the pattern error e on the coordinator

network output neuron, with Ep = this error can be propagated back through the

network as described in Section 4.1.2 (Equations (4.16)-(4.21)) in order to calculate the

term = |^(sk,v,vf^)dk. In addition to the gradient term, itwas useful as an exploration
aid to add a small random component rj to the weights at each step. The weight update is

then:

- a|̂ (Sk, V, w^)dk +Tj (4.52)
The next action v is chosen by minimizing the Q function over all possible actions, as

described in Section 4.2.1, except for some percentage of actions which are chosen randomly.

The coordinator network for the jackknife and one-and-one-half-somersault pike dives

was trained over a total of 2905 dives (at each iteration, one of the two dives was randomly

selected for simulation and learning). The network for the twisting dive was trained over



# iterations a Vmax random v

90 .005 2.5 X 10"^ .25

965 .005 2.5 X 10-^ .25

650 .005 2.5 X 10-® .25

700 .05 2.5 X 10-® .25

300 .1 5.0 X 10-® .25

200 .05 2.5 X 10-® .10
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Table 4.7: Training schedule for the one-and-one-half-somersault pike and jackknife dives.
The first column gives the number of iterations, the second the learning rate a, the third
the maximum absolute value of the noise 77, and the fourth the fraction of the time random
actions v were selected.

# iterations a Vmax random v

210 .0001 2.5 X 10"^ .25

165 .00001 2.5 X 10-® .25

700 .00001 2.5 X 10-® .25

600 .00001 2.5 X 10"^ .10

Table 4.8: Training schedule for the twisting dive. The first column gives the munber of
iterations, the second the learning rate a, the third the maximiun absolute value of the
noise and the fourth the fraction of the time random actions v were selected.

1675 dives. The schedule of learning rates a, ranges of the noise term 77, and percentages

of random action choices are given in Tables 4.7 and 4.8, and the training results for the

three dives are shown in Figures 4.9-4.25. For a random action choice, the v = [tg] value

was chosen uniformly in [tl - .0005,4 + .0005), where 4 is the greedy action, the one that
minimizes Q. At each weight update, 77 was chosen uniformly in [—7y^lax5^max)•

The trained controller produces good dives; the "learning by doing" phase improved

significantly on the "learning by watching" phase. The twisting dive network training

seemed to rely more heavily on having a good "learning by watching" initializaton than did

the training of the network for the jackknife and one-and-one-half-somersault pike dives.

The twisting dive is more difficult to learn both because it involves a sequence of two

action choices rather than just one and because it involves transfers of rotational velocity

between the somersault and twisting axes; the behavior of the system is very nonlinear and

is sensitive to the time at which the diver comes out of the twist into the pike position.

At the end of the training, the action choices for all three dive types were still signif

icantly difierent from the optimal values, however. The controller learns the Q value very
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accurately at the current greedy action, but, even with large amounts of randomization

injected (both in the choice of v and in the weight update), does not seem to match this

level ofaccuracy for values of tg away from tf, and so is unable to finely locate the global
minimum. The top panel in Figure 4.20, for example, reveals that at the end of train

ing, after the temporal diflferences have converged to quite small values, randomized action

choices still sometimes yield smaller errors than the action that minimizes the trained Q.

This residual error is a reflection of the small final twist angle and velocity errors visible in

Figures 4.21 and 4.22. Similar final errors can be observed in the other dives, as well. This

phenomenon will be discussed further in Section 5.2.

The "learning by watching" initialization ensures that the Q-learning algorithm need

not learn values very far away from the global minimum, but higher accuracy in a region

around the greedy action is still necessary to achieve the smallest dive costs. Lower final

dive errors can sometimes be achieved by training the network to a smaller cutoff during

the "learning by watching" stage, as mentioned above; the dive error then starts out much

lower in the "learning by doing" stage and therefore tends to converge to a lower final error

more easily. In the twisting dive, the difficulty in achieving small dive costs is also partly

due to the nonlinearity of the diver dynamics mentioned above; small errors in the time for

pulling out of the twist into the pike tend to result in unstable rotation about the twist and

cartwheel axes, which is exacerbated later by going into the layout position (see Figure 4.7,

for example). In all three dives, the minimum achievable dive cost may also be limited by

the accuracy of the single-DOF controllers (including the effectiveness of the low-level PD

servos). These limitations could possibly be overcome through the use of global feedback,

but such feedback would be dfficult to design for a system with behavioral goals like the

diver, as will be discussed in Chapter 5.
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2000 2500

2000 2500

Figure 4.9: Training data for the jackknife dive. First plot: Dive costs, calculated as in
Equation 4.47. Second plot: Temporal diflferences at the state transition where learning
occurs (pike to layout). Third plot: Scaled action choices the time to wait before
executing the layout synergy). The unsealed tg values (times, in seconds) axe two times
the plotted scaled values. The iteration number on the horizontal axis indicates the total
number of jackknife and one-and-one-half-somersault pike trials; this figure and Figure 4.10
show interleaved learning trials.
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500

1 l/2-somer5ault pike cost

1 1/2-somersault pike temporal difference

1 1/2-somersault pike action choice

Figure 4.10: Training data for the one-and-one-half-somersault pike dive. First plot: Dive
costs, calculated as in Equation 4.47. Second plot: Temporal differences at the state transi
tion where learning occurs (pike to layout). Third plot: Scaled action choices (tg, the time
to wait before executing the layout synergy). The unsealed ts values (times, in seconds) are
two times the plotted scaled values. The iteration number on the horizontal axis indicates
the total number of jackknife and one-and-one-half-somersault pike trials; this figure and
Figure 4.9 show interleaved learning trials.
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Figure 4.11: Comparison of the jackknife somersault dives after the "learning by watching"
stage and after the full "learning by doing." The solid line indicates the somersault angle
for the jackknife after the full learning, and the dashed line is the somersault angle for
the somersault dive after the full learning; the dash-dot line is the jackknife after only
the "learning by watching" phase, and the dotted line is the somersault after "learning by
watching." All angles axe in radians.
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DOF 0 and 1

DOF 4 and 5

DOF 8 and 9

Figure 4.13: Body and joint angles (in radians) for the learned jackknife dive. The first
plot shows the somersault angle. For the other five plots, the solid line is the even DOF,
and the dashed line is the odd DOF. Degrees of freedom 0 and 1 are the right and left hip,
2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7 are the angles of
the left shoulder, and 8 and 9 are the right and left elbow. The horizontal axes are time, in
seconds.



300

200

100

0

-100

-200

DOF 0 and 1

0.5 1

DOF 4 and 5

DOF 8 and 9

1.5

60

40

20

0

-20

-40

-60

DOF 2 and 3

l\
11
' 1 ,

ri' H Af--]
0.5 1.5

DOF 6 and 7

feedfonivatd and feedback torques for DOF 2

-50

-100

92

Figure 4.14: Torques (in Newton-meters) for the learned jackknife dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last plot
shows the total torque (solid), the feedforward torque (dashed), and the feedback torque
(both during and between movements; dotted) for DOF 2. Degrees of fireedom 0 and 1 are
the right and left hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7
are the angles of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal
axes are time, in seconds.
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Figure 4.15: Velocities (in radians/second) for the learned jackknife dive. In the first
five plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last
plot indicates which synergy is active at any given time: 0 represents the layout synergy, 1
represents the pike synergy, and 4 indicates the state machine has completed all the required
synergies. Degrees of freedom 0 and 1 are the right and left hip, 2, 4, and 6 are the three
Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and
9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.17: Body and joint angles (in radians) for the learned somersault dive. The first
plot shows the somersault angle, the dashed hne is the twist angle, and the dotted line is
the cartwheel angle. For the other five plots, the solidline is the evenDOF, and the dashed
line is the odd DOF. Degrees of freedom 0 and 1 are the right and left hip, 2, 4, and 6 are
the three Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left shoulder,
and 8 and 9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.18: Torques (in Newton-meters) for the learned somersault dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last plot
shows the total torque (solid), the feedforward torque (dashed), and the feedback torque
(both during and between movements; dotted) for DOF 2. Degrees of freedom 0 and 1 are
the right and left hip, 2, 4, and 6 are the threeEuler angles of the right shoulder, 3, 5, and 7
are the angles of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal
axes are time, in seconds.
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Figure 4.19: Velocities (in radians/second) for the learned somersault dive. In the first
five plots, the sohd line is the even DOF, and the dashed line is the odd DOF. The last
plot indicates which synergy is active at any given time: 0 represents the layout synergy, 1
represents the pike synergy, and 4 indicates the state machine has completed all the required
synergies. Degrees of freedom 0 and 1 are the right and left hip, 2, 4, and 6 are the three
Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left shoulder, and 8 and
9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.20: Training data for the twisting dive. The first set of plots shows the first 500
iterations, and the second set shows iterations 501 through 1675. Top plots: Dive cost,
calculated as in Equation 4.47. Second and third: Temporal differences at the two different
state transitions where learning occurs. Fourth and fifth: Scaledaction choices (tj, the time
to wait before executing the indicated synergy) at the two different state transitions. The
unsealed ts values (times, in seconds) are two times the plotted scaled values.
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Figure 4.21: Comparison of the twisting dive after the "learning by watching" stage and
afk'i till. f;;ll "Iv1 line indicates the somersault angle after the
full learning, and the dashed line is the twist angle after the full learning; the dash-dot line
is the soinersani- - nnii;., !•> watching" phase, and the dotted line is the
twist angle after "learning by watching." All angles are in radians.
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Figure 4.23: Body and joint angles (in radians) for the learned twisting dive. In the first
plot, the solid line is the somersault angle, the dashed line is the twist angle, and the dotted
line is the cartwheel angle. For the other five plots, the solid line is the even DOF, and the
dashed line is the odd DOF. Degrees of freedom 0 and 1 are the right and left hip, 2, 4,
and 6 are the three Euler angles of the right shoulder, 3, 5, and 7 are the angles of the left
shoulder, and 8 and 9 are the right and left elbow. The horizontal axes are time, in seconds.
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Figure 4.24: Torques (in Newton-meters) for the learned twisting dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The large sharp
spikes in the first plot are due to the joint limits (compare with Figure 4.23). The last plot
shows the total torque (solid), the feedforward torque (dashed), and the feedback torque
(both during and between movements; dotted) for DOF 2. Degrees of fireedom 0 and 1 are
the right and left hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7
are the angles of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal
axes are time, in seconds.
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Figure 4.25: Velocities (in radians/second) for the learned twisting dive. In the first five
plots, the solid line is the even DOF, and the dashed line is the odd DOF. The last plot
indicates which synergy is active at any given time: 0 represents the layout synergy, 1 rep
resents the pike synergy, 2 represents the throw synergy, and 4 indicates the state machine
has completed all the required synergies. Degrees of freedom 0 and 1 are the right and left
hip, 2, 4, and 6 are the three Euler angles of the right shoulder, 3, 5, and 7 are the angles
of the left shoulder, and 8 and 9 are the right and left elbow. The horizontal axes are time,
in seconds.
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Chapter 5

Discussion

The results presented in Chapter 4 demonstrate that the learning controller presented in

this dissertation is capable of learning to execute complex skills such as platform diving. In

general, the approach presented here is good for learning complexskillswhich have a known

goal, complicated or unknown dynamics, and known behavioral strategies for approaching

the task (cognitive or linguistic information is available). There are difficulties with this

approach, however, both in the representation and in the learning algorithms, and there is

still a long way to go in addressing skill acquisition problems in general.

5.1 Behavioral Representation

The behavioral representation that was used for the diver, at the level of the multi-joint

synergies ("throw," "pike," and "layout"), captured diving motions fairly well with only one

variable parameter, tg. There are, however, several drawbacks to this representation. First,

there are several other parameters in the representation that need to be defined by hand in

advance (see Table 4.3), such as the desired time Tj for each of the synergies and the desired

joint excursions AOd for each degree of freedom in each synergy. These could, of course, be

added as variables in the action vector v, but doing so would make the dive harder to learn.

In addition, technique varied somewhat among the Olympic divers; some of them made

some use of bending around the x-axis at the waist or pelvis, for example, which could be

included in the behavioral representation with the addition of an extra degree of freedom.

A more serious drawback is that, in order for the system to be a Markov decision

process, each behavior must end before the next one can be invoked; no blending of actions
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is possible. Also, the body position representation used in the controller design here, in

which the configuration of the diver is simply represented by the binary string p, renders the

system no longer strictly Markov, since all positions classified as a particular p do not have

exactly the same Furthermore, human divers can do small, corrective motions that do not

fit within any of the behavioral synergetic structures. Some of these motions involve more

flexibility (of the back, primarily) than is possible with a rigid body model. In particular,

the sensitivity to the time for leaving the throw position to enter the pike position seen

in the simulation implies that human divers must use some kind of postural stabilization

feedback, possibly with an anticipatory component, to ensure that the twist angle stays at

27r (that the angular velocity wet or i.s realigned with the angular momentum vector). In

addition to this stabilization, a human diver may have enhanced sensory feedback available

that better allows the diver to anticipate the right time to come out of the throw. It may

be possible to incorporate some of the repertoire of corrective movements and modifications

of the multi-joint synergies that human divers use to correct errors in the twist angle or

twist velocity (which should be zero after coming out of the throw) into the behavioral

synergetic framework by adding new synergies or by adding parameters to existing ones.

Any continuous, global feedback that may be used by divers would be difficult to incorporate

into the Markov decision process structure, however, as well as possibly being difficult to

formulate for a nonholonomic system without explicit path planning. Without such global

feedback, high-level disturbance rejection during the dive is limited to that provided by

the action selector, which takes into account the current state information vector Ss =

[0s,<^/, t,p] through the coordinator network's approximation of Q, but which operates

only at discrete times. There is, of course, some low-level disturbance rejection provided

by the PD feedback. Global feedback would also be useful in refining the dive produced by

the open-loop controller after "learning by doing" training, which may not quite reach the

optimal control parameters, as mentioned in Section 4.2.3.

Another issue is how the student extracts the behavioral representation from linguistic

information and from watching other performers during the "learning by watching" stage.

The student must somehow decide which of the visual information describes the most es

sential features of the movement. Linguistic instructions from a coach must be translated

into kinematic or dynamic constraints. For example, in the diver problem, the student

knows that he or she must begin coming out of the twist at such a time as to end up with

exactly 1-k twist rotation. It is not obvious how to incorporate this foreknowledge into the
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behavioral or cost structure. In the control design presented here, the simulation does not

learn the outcome of its timing choice until the end of the dive, and then this information

must propagate back through the intervening states. Acost proportional to {<f>t —27r)^ can
be assigned at the endofthe pike synergy, but doing sodoes not seem to improve learning,

and the controller still has no imphcit knowledge about the dynamicsof the dive. A human

knows in advance that, say, waitingfor 1.5 seconds beforecoming out of the throw into the

pike is always going to be too long, and will never try it; the controller, on the other hand,

has no such cognitive understanding and must try everything allowed withinthe behavioral

framework to know what choices will work. The cognitive understanding must therefore

be built into the behavioral framework. The "learning by watching" behavioral stage alle

viates this problem to some extent by initializing the Q function and thus restricting the

parameter search space.

5.2 Learning Techniques

Some of these drawbacks of the behavioral representation are intimately tied to the

limitations of reinforcement learning techniques. By requiring the Markov decision process

formulation, reinforcement learning restricts the behavioral representation to the sequential

state machine model, with all the problems inherent in that model, as discussed above. Even

with its drawbacks, the sequential state machine is a reasonable one for skills such as diving

that involve a series of subroutines. For other skills that involve simultaneous, parallel

subroutines, such as walking and running (see Section 2.5), bicycling, and windsurfing,

however, a Markov decision processrepresentation may not be as good a fit. In windsurfing,

for example, the dynamics of the wind and water and the control actions employed by

the surfer are much more naturally considered in continuous time than divided up into

discrete time chunks, especially as a large component of the problem involves dealing with

continuous, random disturbances. In bicycling, the parallel, coupled subroutines for balance,

steering, and pedaling are also essentially continuous actions. In walking and running as

well, although the three underlyingsubroutines can be implementedas a state machine (see

[80], [79]) or viewed in the context ofa return map, froma learningpoint ofview, some of the

subroutine parameters (possibly spring constants, for example, which are very important

in locomotion) might be better learned with a continuous-time technique. As mentioned

above, even in sequential skills like diving there can be overlap or blending between the serial
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control actions, as well as ongoing postural stabilization, so a more general, continuous-time

learning model which still addresses the temporal credit assignment problem that arises

when there are delayed rewards would be useful. Model predictive control, a method which

has been widely used in process control for both continuous and discrete time system models

(see [63], [83], [8]), bears a strong resemblance to reinforcement learning; an exploration

of the connection between these two approaches could be an extremely fertile area for

future research. A continuous-time reinforcement learning algorithm could also be useful

in exploring other issues in learning, such as why progressing from feedback control to

feedforward control during learning may be useful (see Section 2.5); in biological systems,

using feedback at the start of learning when the open-loop control is still poor serves to

protect the organism, but it may also perform other functions such as restricting the learning

to a useful region of the state space.

Within the reinforcement learning paradigm, convergence results have been hard-won

(see Section 4.2.2; [11]). For the diver problem, as mentioned in Section 4.2.3, because we

do not have a model of the state transitions and costs, we are required to use Q-learning

rather than, for example, TD(A). Because the state space is partially continuous, we must

use a function approximator rather than table lookup. These two factors, together with

the fact that the diver system is only approximately Markov, complicate the picture in

terms of convergence; there has as yet been no proof of convergence of a Q-like algorithm

when combined with a function approximator, except for very special cases. With function

approximators like neural networks that are nonlinear in their parameters, even TD(A) may

diverge; with Q-learning the situation is worse. In addition, nonlinear approximators are

susceptible to local minimum problems.

With Q-learning, particularly in a deterministic system like the diver, exploration be

comes a big issue as well. Exploration is required to ensure that the Q values of all po

tentially useful (s,v) pairs are being accurately modeled by the approximator; in a deter

ministic system, it is necessary to inject randomness into the choice of action to meet this

requirement. The scope of the required randomness is limited by the "learning by watch

ing" initialization, which eliminates extremely poor action choices from consideration, to

some extent. Even with randomness, however, the Q-learning algorithm with a network

approximator is prone to converge to a suboptimal choice of actions, as mentioned in Sec

tion 4.2.3. At each iteration, the algorithm improves the estimate Q at the (s,v) point

just visited. A neural network is a global approximator, so this adjustment aifects the Q
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estimate at all other points aswell, and thus moves theminimum oftheQ function. Asmall
weight adjustment can have quite a large effect on the location of the Qminimum and thus
on the greedy action. Even if small learning rates are used, updating the Q value at one
point distorts the shape of the approximation at neighboring points to some extent, and
the network tends to "forget" what it has learned about those points previously. Once the
temporal differences become small, the algorithm tends to get stuck at its current estimate

of the minimum, even though random action choices force the controller to sample nearby
points occasionally. Adding the small random component rj to the weight update improves

matters somewhat, but the algorithm still tends not to reach the lowest possible dive error.

This problem is similar to the requirement ofpersistent excitation in adaptive control, but
is exacerbated by the global nature of the network approximation. It is possible that using

much larger networks, perhaps with steeper activation functions, would help this problem
by allowing more neurons to contribute effectively to the Q estimate in each region. Also,
with a mechanism for global feedback, this limitation of the open-loop learning would be

less of a problem, as mentioned in Section 5.1.

The Q minimun., and thus the greedy action, do not necessarily travel toward the

true minimum at each step in the algorithm. The shape of the "learning by watching Q

initialization is thus quite important. Depending on its shape, the action choices may, at

the start of the "learning by doing" phase, head toward or away from the true optimal

values. If they head away from the optimum very much, the coordinator network may end

up in a suboptimal local minimum. In addition, since the Q minimum tends to stop moving

when the temporal differences get small, better final dive costs are usually obtained if the

estimated minimum starts out moving in the right direction. "Learning by doing" for the

controller is therefore different from human learning in that in order to start the Q-learning

algorithm near the best local minimum and moving in the right direction, fairly accurate

"learning by watching" initialization isrequired. Thehuman learning algorithm isobviously

much more sophisticated and is able to make use of a higher level of understanding; it can

therefore succeed with much rougher initial timing estimates.

5.3 Conclusion

Though there are several hurdles that need to be overcome in applying reinforcement

learning techniques to continuous, nonlinearproblemslike the diver, the approach is promis-
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ing. By using a behavioral control structure to simplify the control representation, the

learning problem is reduced to the relatively simple task of learning a set of parameters

at each hierarchical level. Thus, complex skills which are difficult or impossible to control

using conventional methods become feasible: the controller described in this dissertation

successfully learned to execute three different platform dives.

The ability of a controller to learn complex, natural skills has applications in dynamic

computer animation as well as robotics. In addition, the idea of a behavioral structure

together with learning algorithms can be used in an identification context, such as for

visual learning or gesture recognition. Eventually, a deeper understanding of machine and

robotic skill acquisition could lead to insights into human motor learning that would be

useful in sports training or rehabilitation contexts as well as theoretically.
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Appendix A

Inertial Compensator

The calculations for the inertial compensator are based on the product of exponentials

formulation for kinematics; see [70] for a full exposition. Each degree of freedom can be

described by a twist ^ GE®. The twist can be written

V

CxJ

(A.l)

where cj is the axis of rotation of the degree of freedom and v = —u x q, with q a point on

the rotation axis. ^ can be converted into an element ofse(3) through the"(cross product)
operator:

where w G so(3):

a; V

0 0

0 UJ2

a; = U}3 0 -U)i

—U)2 UJl 0

(A.2)

(A.3)

As mentioned in Section 4.1.1, the inertial compensator is greatly simplifiedby consid

ering each limb independently. For one arm, then, there are four degrees of fireedom: three

at the shoulder and one at the elbow (degrees of freedom 2, 4, 6, and 8 for the right arm

and 3, 5, 7, and 9 for the left). For the following discussion, these degrees of freedom will



be numbered one through four. The corresponding twists are:

Ci =

0 0 0

1
1

1

0 0 0 0

0 0 0

II

Xj

J 6 = J 6 =
J

0 0 0 0

0 1 0 1

1 0 1 0
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(A.4)

where

Xj

Vj are the coordinates of the elbow joint relative to the shoulder joint in the

^3 J

zero position. For the ith degree of freedom, the body frame Jacobian is given by

Ji= (A.5)

the instantaneous twist of the jth degree of freedom relative to the ith link, is

{] = Ad-.'„, Jj, (A.6)

where 9j is the angle ofthe jth degree offreedom and gi(0) is anelement ofSE(3) describing
the position and orientation of the link corresponding to joint i in the zero configuration.

The inverse adjoint operator corresponding to an arbitrary element g of SE(3), in homoge

neous coordinates.

g =

with R G S0(3) and p G is given by

Ad-^ =

R p

0 1

RT -RTp

RT

The exponential of a twist can be obtained as

gwfl Xv) -f (jju} '̂v9

0 1

(A.7)

(A.8)

(A.9)
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where I is the identity in and is the rotation matrix R 6 SO(3), which can be

obtained with Rodrigues' formula:

= I -I-{2; sin0 + Cj^{1 —cos0)

Finally, the mass matrix for the limb is given by

n

M(0) = ^j?'(e)AiiJi(e),
t=l

(A.IO)

(A.ll)

where n is the number of degrees of freedom in the limb, Mi is the generahzed inertia

matrix for the link corresponding to the ith degree of freedom, and 0 is a vector of the

angles of all the degrees of freedom. Mi takes the form

mil 0

0 Xi
(A.12)

where mi is the mass of the link corresponding to the ith degree of freedom and Xi is the

inertia matrix for that link. If the principal axes of the link are aligned with the global axes

in the zero position, this matrix is diagonal.

For the arms, there are four degrees of freedom: three Euler angles in the shoulder and

elbow flexion. Mi = M2 = 0, since the first three degrees of freedom are all part of the

same joint; the first two "links" are virtual. Using the equations above, tedious calculation

obtains:

-C2I/U + S2S3ZU czZu -yu 0

C2Xu + S2C3ZU —S3ZU Xu 0

-S2S3XU - S2C3yu szyu - czXu 0 0

-52C3 S3 0 0

S2S3 C3 0 0

C2 0 10

J3 = (A.13)



J4 =

(S2C3S4 - C2C4)y/

+5253^/

+S2<S3S4Xj

-5253(1 - CA)Zj

(C2C4 —52C354)xj

+ (C2S4 + 520304)2;/

+ (C2(1 - 04) + 520354)a:j

+ (5203(1 - O4) - 02S4)2j

-8283X1

—(52O3O4 + 0254)^/

+ 5053(1 - 04)Xj

+5253542;^

—52O3O4 — O254

8283

—S2C384 + O2O4

-S3S4yi + C3Z1

+C3S4Xj

-03(1 - C4)Zj

S3 84X1 — 83C4Z1

5354XJ

-53(1 - 04)2:j-

-C3X/ + 53042//

+03(1 - 04)Xj

+03542:^

53 C4

C3

S3S4

-C4yi

C4XI + 542:/

+Xj(l - O4)

-54^i

-542//

-84

04
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Zi - Zj

(A.14)

Xl "I" Xj

Xl

where Vu and Vl

. . .

are the coordinates of the center of mass of the upper and

1*

lower arm (plus hand), respectively, in the zero configuration, Vj are, as above, the

Zn3 J

coordinates of the elbow joint in the zero configuration, and c, and Si are the cosine and

sine, respectively, of the angle ofthe ith degree offreedom. All coordinates are with respect

to the shoulder joint.

Making use of the fact that

(^)A44J4(0) —J^i(^)A44iJ4i(0) + J^h(^)-^4hJ4h(^)» (A.15)

where the subscript I indicates the lower arm and the subscript h indicates the hand, we can

simplify calculation by making use of the diagonality of the inertiamatrices in the human
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model. Equation (A.ll) then becomes:

M = 3'i{e)M333{e) + 3l(e)M4i34\{0) + JjhW.A^4hJ4h(<9) (A.16)

M41 and A<4h axe written with respect to the lower arm and hand separately, and J4i(0)
and J4h(^) can similarly be obtained from Equation (A.14) using the coordinates of the
lower arm and hand individually.

For the leg limbs, no calculation is needed, as there is only one degree of freedom
involved, hip flexion. The mass matrices are therefore constant.
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Appendix B

Data Plots



0.2 0.4 0.6 0.8
pw1

• . *.. *•• V* *. %x:y I• • ". •
• • \ .» > .••• • • • •• •!•••

• ••• .*• \*\'f • ••*•*•. .'.l* •*
. • 'V • ♦ • V o
••••• :• \ ;*.;V •*.

;* V*.c *.•
• • - • .1 • • i.t •

0.2 0.4 0.6

pw1

^• ..r! • •••* • •••/•• • •••**.
• W- '• • '•••' v'
•• • -j- * t. .* •• ».

f.v . Wa /•. ».«. •> . -« * t.' .

0.8

0.6

0.4

\ ? . ». »*. .. • •
. ^ • •* '

vT'v. '•*!'*• . .
0.2 », V • *..

ph

117

0.8



\

jl.
»

V
'r

'{
*•

.

'**
•'

•V
*"

•
/*

•*
•.

V
*

H
.>

'
«

.i
-

j
}

•-

d
e
lt

a
th

e
ta

d
o

t
o

o
p

K
}

^
a>

V
j?

'A
*•

•

•
/w

'v
v

. .
•

••
•*

•

*
•-

.jP
uV

;*
.

•
•
♦
A
*
?
'
*
*

V
•

d
e
lt

a
th

e
ta

d
o

t
o

o
o

p
K

s
b)

bo

d
e
lt

a
th

e
ta

o
o b

)

•
w

«
♦

V
*

_

.
-

•?
•

*•
<

**
*

J
••

•
••

?*
..

\
•

.•
•

•/
.

•
/

*

*•
*.

V
s7

.
••

.
•;

'
*

.T
.-

L
"

*.
*

*
vV

^
V

fv
*\

t-S
c

C
d



IW
,«

»
•

A
'.

v

d
e
lt

a
th

e
ta

d
o

t
o

o
p

K
)

iu
b>

»
f*

*
*.

d
e
lt

a
th

e
ta

d
o

t

.
--

i'
V

*.
"

•*
'.

.w
v

*
:

J
'

'

•
:•

*
•

m
•
•
•
•

•
:

x
:

•
•
•
.•

•
•
..

•
•
<

c
»

•

d
e
lt

a
th

e
ta

d
e
lt

a
th

e
ta

•
V

*
A

"!
•'

'
F~

!

.
.

*1
••

•,
.♦

J»

•.
V

o



D

S 0.4

0.4 0.6

delta theta

0.4 0.6

delta theta

120

0 0.2 0.4 0.6 0.8 1
delta theta dot

Figure B.l: Plotsofthe 1000-point data set for DOF 2, PWM mode. A. Control parameters
and sensor input vq plotted against each other. These values were generated randomly;
portions of the space that do not appear in the data set cause the simulation to run into
the joint limits or to exceed the prespecified limits on AO (see Section 4.1.2). B. Control
parameters pwl and pw2 plotted against the y values AO, AO, and T. C. Control parameter
ph and sensor input vq plotted against the y values. D. y values plottedagainst each other.
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Figure B.2: Plots of the 1000-point data set for DOF 2, PHM mode. A. Control parameters
and sensor input vq plotted against each other. These values were generated randomly;
portions of the space that do not appear in the data set cause the simulation to run into
the joint limits or to exceed the prespecified limits on (see Section 4.1.2). B. Control
parameters phi and ph2 plotted against the y values A0, AO, and T. C. Control parameter
pw and sensor input uq plotted against the y values. D. y values plotted against each other.
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Figure C.l: Log (base 10) plots of the errors - ^p.m)^ = '̂ 12p^P of
0, PHM mode networks during training. Top: Forward network. The algorithm was run
to a cutoff error of .08 after 733 iterations, then reinitialized and run to a cutoff of .06.
Center: Inverse network, direct training phase. The algorithm was run to a cutoff error
of .08 after 176 iterations, then reinitialized and run to a cutoff of .06. Bottom: Inverse
network, indirect training phase. Error 2 Ep = ^p ||yp —yp,dll* The algorithm was run
to a cutoff error of .08.
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Figure C.2: Errors for the DOF 2, PWM mode networks after training. The top plot shows
the error of the forward net on all 1000 training data samples, and the bottom plot shows
the errors ||yp —Yp.dlP for the inverse net and the forward net combined (indirect training
method). The errors are calculated as J^rn(^p,m - tp,m)^ = 2jEp, measured on scaled data.
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Figure C.3: Errors for the DOF 2, PWM mode networks when tested on a 100-point test
data set. The top plot shows the forward net error, and the bottom plot shows the error
ll^p _ yp dip ofthe inverse net and the forward net combined. The errors are calculated as
Em(op,m - measured on scaled data.
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Figure C.4: Errors ||yp - yp,d|P for the DOF 2, PWM mode networks when controls
generated by the inverse networks are simulated. The top plot shows the errors for the 100-
point test data set, and the bottom plot shows the errors for 100 newly generated points
which were tested for feasibility by being passed through the forward network (see text).
The errors are calculated as X^^(op,m —̂p,m)^ = 2£7p, measured on scaled data.
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Figure C.5: A sample movement produced by the trained single-DOF controller for DOF
0 (right hip), PHM mode. The desired movement outcomes were A9ti = —1.885 (scaled
value of .2), A6d = 2.790 (scaled value of .7), and Td = .220 (scaled value of .2) seconds, uq
was -2.790 (scaled value of .1). The scaled control values selected by the control network
were phl=.174, ph2=.781, pw=.354. The actual movement outcomes were AO = —1.784,
AO —2.923, and T = .221. The initial angle for DOF 0 was -1.179. The angles for the other
degrees offreedom were chosen randomly, as discussed in the text. A. Torque, velocity, and
position ofDOF 0. B. Torques (inNewton-meters) for various degrees offreedom during the
movement. All degrees of freedom other than 0 were held at a fixed angle. C. Components
of the DOF 0 torque that were contributed by the feed-forward filtered pulses and the PD
feedback.
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Figure C.6: Asample movement produced by the trained single-DOF controller for DOF 2
(the first Euler angle in the right shoulder), PWM mode. The desired movement outcomes
were AOd = 2.513 (scaled value of .9), A9d = 1.395 (scaled value of .6), and Td = .360
(scaled value of .6) seconds, vo was -1.395 (scaled value of .3). The scaled control values
selected by the control network were pwl=.745, pw2=.377, ph=.431. The actual movement
outcomes were AO = 2.560, AO = 1.275, and T = .357. The initial angle for DOF 2 was
-2.752. The angles for the other degrees of freedom were chosen randomly, as discussed in
the text. A. Torque, velocity, and position of DOF 2. B. Torques (in Newton-meters) for
various degrees of freedom during the movement. All degrees of freedom other than 2 were
held at a fixed angle. C. Components of the DOF 2 torque that were contributed by the
feed-forward filtered pulses and the PD feedback.
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Figure C.7: A sample movement produced by the trained single-DOF controller for DOF 2
(the first Euler angle in the right shoulder), PHM mode. The desired movement outcomes
were AOd = 1.571 (scaled value of .75), A9d = 0 (scaled value of .5), and Td = .255 (scaled
value of .3) seconds, vq was zero (scaled value of .5). The scaled control values selected by
the control network were phl=.703, ph2=.413, pw=.649. The actual movement outcomes
were AO = 1.552, AO = —.00990, and T = .255. The initial angle for DOF 2 was -2.098. The
angles for the other degrees of freedom were chosen randomly, as discussed in the text. A.
Torque, velocity, and positionof DOF 2. B. Torques (in Newton-meters) for various degrees
of freedom during the movement. All degrees of freedom other than 2 were held at a fixed
angle. C. Components of the DOF 2 torque that were contributed by the feed-forward
filtered pulses and the PD feedback.



139

Bibliography

[1] B. Abernethy and W. A. Sparrow. The rise and fall ofdominant paradigms in motor
behaviour research. In J. J. Summers, editor, Approaches to the Study of Motor

Control and Learning. North-Holland, New York, 1992.

[2] M. Agarwal. Asystematic classification of neural-network-based control. IEEE Con
trol Systems Magazine, 17(2):75-93, April 1997.

[3] D. J. Aidley. The Physiology of Excitable Cells. Cambridge University Press, New
York, 1989.

[4] M. A. Arbib. The Metaphorical Brain 2: Neural Networks and Beyond. Wiley, New
York, 1989.

[5] C. G. Atkeson and J. MHollerbach. Kinematic features of unrestrained vertical arm
movements. Journal of Neuroscience, 5(9):2318-2330, 1985.

[6] J. Baillieul. Geometric methods for nonlinear optimal control problems. Journal of
Optimization Theory and Applications, 25(4):519-548, 1978.

[7] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81-138, 1995.

[8] B. W. Bequette. Nonlinear control ofchemical processes: A review. Industrial and
Engineering Chemistry Research, 30:1391-1413, 1991.

[9] N. E. Berthier, S. P. Singh, A. G. Barto, and J. C, Houk. Distributed representation of
limb motor programs in arraysof adjustable pattern generators. Journal of Cognitive

Neuroscience, 5(l):56-78, 1993.



140

[10] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview. In
Proceedings of the 34th IEEE Conference on Decision and Control, pages 560-564,

1995.

[11] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

[12] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York, 1995.

[13] C. Bregler and J. Malik. Tracking people with twists and exponential maps. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

1998.

[14] R. Brockett. On the computer control of movement. In Proceedings of the IEEE

Conference on Robotics and Automation, 1988.

[15] R. Brockett. Formal languages for motion description and map making. In Robotics.

American Mathematical Society, Providence, 1990.

[16] R. Brockett. Hybrid models for motion control systems. In Trentelman and

Willems, editors, Essays on Control: Perspectives in the Theory and its Applications.

Birkhauser, 1993.

[17] R. W. Brockett. Systems theory on group manifolds and coset spaces. SIAM Journal

of Control, 10(2):265-284, 1972.

[18] R. A. Brooks. A robot that walks; emergent behaviors from a carefully evolved

network. Neural Computation, 1:253-262, 1989.

[19] R. A. Brooks. The role oflearning in autonomous robots. In Proceedings of the Fourth

Annual Workshop on Computational Learning Theory, pages 5-10, 1991.

[20] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, RA-2(l):14-23, 1996.

[21] V. Brooks. The Neural Basis of Motor Control. Oxford University Press, New York,

1986.



141

[22] L. Bushnell, D, Tilbury, and S. Sastry. Extended goursat normal forms with applica
tions to nonholonomic motion planning. In Proceedings of the 32nd IEEE Conference

on Decision and Control, volume 4, pages 3447-3452, 1993.

[23] J. J. Collins and I. N. Stewart. Coupled nonlinear oscillators and the symmetries of
animal gaits. Journal of Nonlinear Science, 3:349-392, 1993.

[24] L. S. Crawford and S. S. Sastry. Biological motor approaches for a planar diver. In
Proceedings of the 34th IEEE Conference on Decision and Control, pages 3881-3886,
December 1995.

[25] C. T. Farley and D. P. Ferris. Biomechanics of walking and running: center of mass
movements to muscle action. Exercise and Sports Sciences Reviews, 1998. In press.

[26] P. M. Fitts. Factors in complex skill training. In R. Glaser, editor. Training Research
and Education. University of Pittsburgh Press, Pittsburgh, 1962.

[27] C. Frohlich. Do springboard divers violate angular momentum conservation? Amer
ican Journal of Physics, 47(7):583-592, July 1979.

[28] P. Di Giamberardino, S. Monaco, and D. Normand-Cyrot. Digital control through
finite feedback discretizability. In Proceedings of the IEEE International Conference

on Robotics and Automation, volume 4, pages 3141-3146, 1996.

[29] S. Giszter. Spinal movement primitives and motor programs-a necessary concept for
motor control. Behavioral and Brain Sciences, 15(4):744-745, 1992.

[30] D. J. Glencross, H. T. A. Whiting, and B. Abernethy. Motor control, motor learning
and the acquisition of skill: historical trends and future directions. International
Journal of Sport Psychology, 25:32-52, 1994.

[31] J-M. Godhavn, A. Balluchi, L. S. Crawford, and S. S. Sastry. Control ofnonholonomic
systems with drift terms. Automatica, to appear.

[32] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg. Radial basis function network
architecture for nonholonomic motion planning and control of free-flying manipula

tors. IEEE Transactions on Robotics and Automation, 12(3), June 1996.



142

[33] G. L. Gottlieb. Acomputational model of the simplest motor program. Journal of
Motor Behavior, 25(3):153-161, 1993.

[34] G. L. Gottlieb, D. M. Corcos, and G. C. Agarwal. Strategies for the control of
voluntary movements with one mechanical degree of freedom. Behavioral and Brain

Sciences, 12:189-210, 1989.

[35] S. Grillner. Locomotion in vertebrates: central mechanisms and reflex interaction.
Physiological Reviews, 55(2):247-304, April 1975.

[36] S. Grillner and P. Wallen. Central pattern generators for locomotion, with special
reference to vertebrates. Annual Review of Neuroscience, 8:233-261, 1985.

[37] B. Hannaford and L. Stark. Roles of the elements of the triphasic control signal.
Experimental Neurology, 90:619-634, 1985.

[38] S. S. Haykin. Neural Networks: A Comprehensive Foundation. MacMillan, New York,
1994.

[39] J. Hertz, Anders Krogh, and R. G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley Publishing Company, Redwood City, California, 1991.

[40] A. V. Hill. The heat of shortening and the dynamic constants of muscle. Proceedings

of the Royal Society of London, Series B, Biological Sciences, 126:136-195, 1938.

[41] J. K. Hodgins. Three-dimensional human running. In Proceedings of the IEEE Inter

national Conference on Robotics and Automation, pages 3271-3276, 1996.

[42] J. K. Hodgins and N. S. Pollard. Adapting simulated behaviors for new characters.

In Computer Graphics Proceedings, SIGGRAPH 97, pages 153-162, 1997.

[43] D. S. Hoffman and P. L. Strick. Step-tracking movements of the wrist in humans. I.
Kinematic analysis. Jouma/o/iVeuroscience, 6(11):3309-3318, 1986.

[44] D. S. Hoffman and P. L. Strick. Step-tracking movements of the wrist in humans. H.

EMG analysis. Journal of Neuroscience, 10(1):142-152, 1990.

[45] M. G. Hollars, D. E. Rosenthal, and M. A. Sherman. SD/FAST User's Manual,

Version B.2. Mountain View, CA, 1994.



143

[46] J. M. Hollerbach and C. G. Atkeson. Deducing planning variables from experimental
arm trajectories: pitfalls and possibilities. Biological Cybernetics^ 56:279-292, 1987.

[47] J. M. Hollerbach and C. G. Atkeson. Inferring limb coordination strategies from
trajectory kinematics. Journal ofNeuroscience Methods, 21:181-194, 1987.

[48] D. Hong, D. M. Corcos, and G. L. Gottlieb. Task dependent patterns of muscle
activation at the shoulder and elbow for unconstrained arm movements. Journal of

Neurophysiology, 71(3):1261-1265, March 1994.

[49] J. C. Houk. Regulation of stiffness by skeletomotor reflexes. Annual Review of Phys
iology, 41:99-114, 1979.

[50] A. F. Huxley. Muscle structure and theories of contraction. Progress in Biophysics,
7:257-318, 1957.

[51] M. Ito. Neural systems controlling movement. Trends in Neural Science, pages 515-
518, October 1986.

[52] M. Jeannerod. The Neural and Behavioral Organization of Goal-Directed Movements.
Clarendon Press, Oxford, 1988.

[53] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, 4:237-285, 1996.

[54] M. Kawato. Computational schemes and neural network models for formation and
control of multijoint arm trajectory. In W. T. Miller III, R. S. Sutton, and P. J.
Werbos, editors, Neural Networks for Control, pages 197—228. MIT Press, Cambridge,
MA, 1990.

[55] M. Kawato. Feedback-error-learning neural network for supervised motor learning.
In R. Eckmiller, editor. Advanced Neural Computers, pages 365-372. North-Holland,
Amsterdam, 1990.

[56] M. Kawski. Nilpotent Lie algebras of vectorflelds. Journal fur die reine und ange-
wandte Mathematik, 388:1-17, 1988.



144

[57] M. Kawski. Combinatorics ofrealizations ofnilpotent control systems. In M. Fliess,
editor, Nonlinear Control Systems Design 1992: Selected papers from the 2nd IFAC

symposium, pages 251-256. Pergamon Press, Oxford, 1993.

[58] I. Kolmanovsky and N. H. McClamroch. Developments in nonholonomic control prob
lems. IEEE Control Systems Magazine, 15(6):20-36, December 1995.

[59] W. S. Levine and G. E. Loeb. The neural control of limb movement. IEEE Control

Systems Magazine, 12(6):38-47, December 1992.

[60] D. G. Luenberger. Linear and Nonlinear Programming. Addisori-Wesley, Reading,

MA, 1984.

[61] P. Maes and R. A. Brooks. Learning to coordinate behaviors. In AAAI-90 Proceedings,

volume 2, pages 796-802, 1990.

[62] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. Languages, behaviors, and

motion control. International Journal of Robotics Research, 1998. to appear.

[63] D. Q. Mayne. Nonlinear model predictive control: Anassessment. In Chemical Process

Control-V, Proceedings of the Fifth International Conference on Chemical Process

Control, pages 217-231. American Institute of Chemical Engineers, New York, 1997.

[64] T. A. McMahon. Muscles, Reflexes, and Locomotion. Princeton University Press,

Princeton, 1984.

[65] H.-M. Meinck, R. Benecke, W. Meyer, J. Hohne, and B. Conrad. Human ballistic

finger flexion: uncoupling the three-burst pattern. Experimental Brain Research,

55:127-133, 1984.

[66] J. P. Miller. Pyloric mechanisms. In A. I. Selverston and M. Moulins, editors. The

Crustacean Stomatogastric System, pages 109-145. Springer-Verlag, Berlin, 1987.

[67] J. F. Montgomery and G. A. Bekey. Learning helicopter control through "teaching

by showing". In Proceedings of the 37th IEEE Conference on Decision and Control,

1998. To appear.

[68] R. Montgomery. Isoholonomic problems and some applications. Communications in

Mathematical Physics, 128(3):565-592, 1990.



145

[69] K. L. Moore. Iterative Learning Control for Deterministic Systems. Springer-Verlag,
New York, 1993.

[70] R. M. Murray, Z. Li, and S. S. Sastry. AMathematical Introduction to Robotic Ma
nipulation. CRC Press, Boca Raton, Florida, 1994.

[71] R. M. Murray and S. S. Sastry. Nonholonomic motion planning: steering using sinu
soids. IEEE TYansactions on Automatic Control, 38(5):700-716, May 1993.

[72] K. M. Newell. Motor skill acquisition. Annual Review of Psychology, 42:213-237,
1991.

[73] K. M. Newell, P. N. Kugler, R. E. A. Van Emmerik, and P. V. McDonald. Search
strategies and the acquisition ofcoordination. In S. A. Wallace, editor. Perspectives
on the Coordination of Movement, pages 85-122. North-Holland, New York, 1989.

[74] D. Nguyen and B. Widrow. The truck backer-upper: An example of self-learning in
neural networks. In W. T. Miller III, R. S. Sutton, and P. J. Werbos, editors. Neural

Networks for Control, pages 287-299. MIT Press, Cambridge, MA, 1990.

[75] D. H. Owens, N. Amann, and E. Rogers. Iterative learning control - an overview of
recent algorithms. Applied Math and Computer Science, 5(3):425-438, 1995.

[76] George J. Pappas, John Lygeros, Dawn Tilbury, and Shankar Sastry. Exterior differ
ential systems in control and robotics. In J. Baillieul, S. Sastry, and H. Sussmann,
editors. Essays on Mathematical Robotics, volume 104 ofIMA Volumes in Mathemat
ics and its Applications. Springer Verlag, New York, 1998. To appear.

[77] A. Pedotti, V. V. Krishnan, and L. Stark. Optimization of muscle-force sequencing
in human locomotion. Mathematical Biosciences, 38:57-76, 1978.

[78] A. C. Pil and H. H. Asada. Integrated structure/control design of mechatronic systems
using a recursive experimental optimization method. lEEE/ASME Transactions on
Mechatronics, l(3):191-203, September 1996.

[79] M. H. Raibert. Legged Robots That Balance. MIT Press, Cambridge, MA, 1986.

[80] M. H. Raibert and J. K. Hodgins. Animation of dynamic legged locomotion. Computer
Graphics, 25(4):349-358, July 1991.



146

[81] C. Ramos, L. Stark, and B. Hannaford. Time optimality, proprioception, and the
triphasic EMG pattern. Behavioral and Brain Sciences^ 12(2):231-232, 1989.

[82] C. F, Ramos, S. S. Hacisalihzade, and L. W. Stark. Behaviour space ofa stretch reflex
model and its implications for the neural control of voluntary movement. Medical and

Biological Engineering and Computing, 28:15-23, 1990.

[83] J. B. Rawlings, E. S. Meadows, andK. R. Muske. Nonlinear model predictive control:

A tutorial and survey. In D. Bonvin, editor. Advanced Control of Chemical Processes

(ADCHEM '94): IFAC Symposium, pages 185-197. Pergamon, Tarrytown, NY, 1994.

[84] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, Englewood Cliffs, NJ, 1995.

[85] A. Sarti, G. Walsh, and S. Sastry. Steering left-invariant control systems on matrix

Lie groups. In Proceedings of the 32nd IEEE Conference on Decision and Control,

volume 4, pages 3117-3121, 1993.

[86] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence, and Robustness.

Prentice Hall, Englewood Cliffs, NJ, 1989.

[87] S. S. Sastry and R. Montgomery. The structure of optimal controls for a steering

problem. In M. Fliess, editor. Nonlinear Control Systems Design 1992, pages 135-

140. Pergamon Press, Oxford, 1993.

[88] S. Schaal. Learning from demonstration. In M. C. Mozer, M. Jordan, and T. Petsche,
editors. Advances in Neural Information Processing Systems 9, pages 1040-1046,

Cambridge, MA, 1997. MIT Press.

[89] R. A. Schmidt. Aschema theory ofdiscrete motor skill learning. Psychological Review,
82(4):225-260, 1975.

[90] R. A. Schmidt. Motor Control and Learning. Human Kinetics Publishers, Champaign,

IL, 1982.

[91] Schoner and Kelso. A synergetic theory of environmentally-specified and learned

patterns ofmovement coordination: I. relative phasedynamics. Biological Cybernetics,

58:71-80, 1988.



147

[92] R. Shadmehr and F. A. Mussa-Ivaldi. Adaptive representation of dynamics during
learning of a motor task. Journal of Neuroscience^ 14(5):3208-3224, May 1994.

[93] J. F. Soechting. Elements of coordinated arm movements in three-dimensional space.
In S. A. Wallace, editor, Perspectives on the Coordination ofMovement^ pages 47-83.
North-Holland, New York, 1989.

[94] E. D. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE Transactions
on Neural Networks, 3(6);981-990, November 1992.

[95] G. Strang. Wavelets and dilation equations: A brief introduction. SIAM Review,
31:613-627, 1989.

[96] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[97] G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257-
277, 1992.

[98] G. Tesauro. TD-gammon, aself-teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215-219, 1994.

[99] E. Thelen. The development of leg coordination. In S. A. Wallace, editor, Perspectives
on the Coordination ofMovement, pages 259-281. North-Holland, New York, 1989.

[100] D. Tilbury, R. M. Murray, and S. S. Sastry. Trajectory generation for the A/'-trailer
problem using Goursat normal form. IEEE Transactions on Automatic Control,
40(5):802-819, May 1995.

[101] B. Vereijken, R. E. A. Van Emmerik, H. T. A. Whiting, and K. M. Newell. Free(z)ing
degrees of freedom in skill acquisition. Journal of Motor Behavior, 24(1):133-142,
March 1992.

[102] B. Vereijken, H. T. A. Whiting, and Beek. Adynamical systems approach to skill
acquisition. Quarterly Journal of Experimental Psychology Section A - Human Ex
perimental Psychology, 45(2):323-344, August 1992.

[103] W. J. Wadman, J. J. Denier van der Gon, R. H. Geuze, and C. R. Mol. Control of fast
goal-directed arm movements. Journal of Human Movement Studies, 5:3-17, 1979.



148

[104] G. Walsh, A. Sarti, and S. Sastry. Algorithms for steering on the group ofrotations.
In Proceedings of the 1993 American Control Conference^ volume 2, pages 1312-1316,

1993.

[105] G. C. Walsh and S. S. Sastry. On reorienting linked rigid bodies using internal motions.
IEEE Transactions on Robotics and Automation, 11(1):139-146, February 1995.

[106] P. J. Werbos. An overview of neural networks for control. In V. R. Vemuri, edi
tor, Artificial Neural Networks: Concepts and Control Applications. IEEE Computer

Society Press, Los Alamitos, CA, 1992.

[107] H. T. A. Whiting, editor. Human Motor Actions: Bernstein Reassessed. Elsevier

Science Publishing Company, New York, 1984.

[108] D. A. Winter. Coordination of motor tasks in human gait. In S. A. Wallace, editor,
Perspectives on the Coordination of Movement, pages 329-363. North-Holland, New

York, 1989.

[109] D. A. Winter. Human movement; A system-level approach. In M. A. Arbib, editor.

The Handbook of Brain Theory and Neural Networks, pages 472-477. MIT Press,

Cambridge, MA, 1995.

[110] W. L. Wooten and J. K. Hodgins. Animation of human diving. Computer Graphics

Forum, 15(1):3-13, March 1996.


	Copyright notice 1998
	ERL-98-53

