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Abstract

As the gate oxide thickness is scaled down, charge thickness dueto quantization effects must

be considered in MOSFET intrinsic capacitance modeling for accurate circuit simulation. We

present a novel analytical charge thickness model from numerical self-consistent solution of

Schrodinger, Poisson and Fermi-Dirac equations. Based on the charge layer thickness model,

we develop a compact MOSFET intrinsic capacitance model which accounts for the charge

thickness throughout all operating regions of MOSFET's. Its universality and accuracy are

demonstrated with many technologies including TiN gate and Si0NyTa205 dielectric with

equivalent Si02 thickness of 18A. Extensive tests demonstrate significantly improved
computational efficiency and convergence properties over state-of-the-art compact MOSFET

capacitance models due to the inherent continuity of the model. This model has been

implemented as a new intrinsic capacitance model (Capmod=3) in the industry standard

BSIM3v3.2.
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1. Introduction

Physically accurate and computationally efficient modeling of MOSFET intrinsic

capacitance is becoming important for circuit design. This is because of the desire for

accuracy in circuit performance simulation, the need for a physical and predictive model for

statistical process modeling, and better convergence behavior.

Almost all the MOSFET capacitance models available in the circuit simulators today are

piecewise ones [l]-[6]. In these models, different sets of charge-voltage equations areused for

different regions of device operation, i.e. accumulation, depletion and inversion regions.

Unfortunately, this approach usually results in non-smoothness in capacitance-voltage (C-V)

characteristics near the threshold and flat-band voltages, and therefore poor fitting of

capacitance in the moderate inversion, where analog circuits are usually biased. The non-

smoothness is also believed to be a reason for non-convergence in transient circuit

simulations. While charge sheet models [7]-[9] using one single equation for all operating

regions guarantee continuity and smoothness of the capacitance, it adds computational

overhead because of the numerical iterations needed for the solution of the surface potential.

Similarly, models based on the surface potential formulations as proposed in [10]-[13] are

also continuous, but they are also computationally expensive. Furthermore and more

important, charge sheet models assume Boltzmann, instead of Fermi-Dirac, statistics and

ignore the non-zero thickness of the accumulation and inversion layers — an unacceptable

omission for thin-Tour CMOS technologies.

In other words, all of the MOSFET capacitance models reported so far [1]-[17] suffer

the inability to model all the significant physical phenomena for Tax ^ 7nm. These physical

effects include the polysilicon gate depletion and inversion layer charge quantization effects,

both of which significantly affect the C-V characteristics of CMOS devices [18]-[25]. It has

alreadybeen widely accepted that the polysilicon depletion is caused by the partial activation

of the dopant and/or insufficient doping in the polysilicon gate and consumes some of the

applied gate voltage, and the quantization effect causes the spatial charge disUibution to

spread deep (20A to lOOA) from the interface (therefore the charge sheet assumption fails).

Based on the numerical surface potential approach, the quantization effect on the surface

potential has been modeled through a correction for the intrinsic carrier density [26], where

the spatial charge distribution was not considered.
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We have demonstrated in the previous work [27], [28] that this finite charge thickness

(or average charge centroid) can not be ignored any more for the accurate modeling of charge-

voltage characteristics in scaled MOSFET's as illustrated in Figure 1. In this paper, we report

a complete, computationally efficient and accurate compact model (Charge-Thickness Model

(CTM)) for thin-oxide MOSFET intrinsic capacitance, including the finite charge thickness

from the accumulation through depletion to inversion regions as well as the polysilicon

depletion effects. The results of comparisons with measured data and BSIM3v3.1 [29] clearly

show the higher accuracy of this model in all regions of operation. Since no numerical

iterations are involved, application of this model in the circuit simulation reveals high

efficiency and robusmess. This model has been implemented as capMod=3 in BSIM3v3.2,

and is inherently continuous and smooth in all regions of operation. It should be noted that

since all the critical physical parameters, such as the threshold voltage and bulk charge

coefficient, are consistent with the DC model, this new model preserves the high scalability

and accurate modeling of the non-uniform doping, mobility degradation, velocity saturation

and drain induced barrier lowering (DIBL) effects that are characteristic of BSIM3.

In the following, formulations for the polydepletion, finite charge thickness from the

accumulation through depletion to inversion regions, andbias-dependent surface potential due

to the bulk charge in the inversion region are presented and discussed in section 2, followed

by the charge equations and channel charge partitioning in section 3. In section 4, this new

model is compared with the measured data and BSIM3v3.1. Section 5 gives the evaluation of

the simulation performance and some discussions, followed by theconclusion of this work.

2. Physics and Modeling

2.1 Polysilicon gate depletion effect

The polysilicon gate depletion (or polydepletion) effect results in a voltage drop Vpoiy

across the polysilicon gate, thus reducing the gate capacitance. There are in general two

approaches to model Vp in compact MOSFET modeling: one is to include it in the threshold

voltage and the bulk charge factor [20], while the other is to replace the gate voltage with

an effective gatevoltage Vgse calculated by subtracting the polysilicon gatebandbending from

i.e. Vgse = Vgs - Vp [6]. Vp is dependent on the gate oxide thickness Tox, the voltage across

the oxide and the polysilicon gate doping concentration, denoted by A/p. By solving the
Weidong Liu 3



MOSFET Intrinsic Capacitance Model Considering Quantum MechanicEffectfor BSiM3v3.2

Poisson equation in the polysilicon under the depletion approximation [6], [21], Vgse can be

formulated as

Q£ .N" « p OX

/

where Vji, is the flat band voltage, and £ox are the dielectric constants of the silicon and

Si02, respectively, and <PsQ is the surface potential equaling twice the Fermi potential

(1)

2.2 Finite charge layer thickness model

The present model is a charge-based model and therefore starts with the DC charge

thickness, Xdc- Xdc is defined as jp{x)uix/jp(x)lx - Qualitatively, the charge thickness

introduces a capacitance in series with Cox as illustrated in Figure 2, resulting in an effective

Coxt Coxeff'

'oxeff

where C„„ =
DC

c c^ax^cen

^ox ^cen
(2)

Based on self-consistent solution of the Schrodinger, Poisson and Fermi-Dirac equations

[27], [28], we have developed a universal model for the finite charge thickness from the

accumulation to depletion region:

acde
( N

\-0.25

stA

2x10'
[cm] (3)

where Ldebye is the Debye length, MV/cm, Vi,, is the body bias

and acde is a fitting parameter with the default value of 1.Figure 3 shows that (3) agrees with

the numerical quantum simulations for different Tax and channel doping concentrations.

However, note that (3) can not be implemented directly in the code, since the very large

accumulation layer thickness is physically correct but numerically unacceptable due to

numerical overflow. An upper bound, Xmax> is therefore imposed for the accumulation and

depletion charge layer thickness:

v..=v..+v,fl, o ^debye (4)

Weidong Liu
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To smooth the transition from (3) to (4), we propose

^oc = -{(x„ +V^o +4<J,X_ ) (5)
where - X^-S, and 5 = lO'̂ Tox- (5) reduces to (3) for Vgs < {Vbs + Vfb) and (4)

forVgs>{Vbs-^yfb\

For the inversion region, the inversion charge layer thickness is proposed as

=n'#nv,ln 1+ exp

y ^ 1.9x10-^ [cm] (6)

I 2r„ J
where the second term in the denominator has the unit of MV/cm. Through Vjb in the above

equation, the model is applicable to hT or P"*^ poly-Si gates as well as any other future gate

materials. has the form

'Vg„-V^-voffcv'̂
noff-nv,

\ V

where n is the geometry and bias dependent subthreshold swing parameter [29], V/ is the

thermal voltage and noff and voffcv are model parameters which can be extracted from

measured data. becomes (Vgse - Vth - voffcv) when (Vgse - V,h - vqffcv) > 3noff-nVt and

rapidly drops to zerowhen (Vgse - Vih - voffcv) < -Snoff-nv,. Figure 4 shows that (6)can match

numerical quantum simulations very well over wide ranges of gate oxide thicknesses and

channel doping concentrations.

2.3 Bulk charge induced bias dependent surface potential in inversion region

The classical condition for strong inversion is defined as the surface potential

^^^_jo=2^[30], and pinned at that value even when exceeds the threshold voltage Vth. In

reality, (ps varies with the gate bias even in strong inversion. This approximation is one cause

for the sharp turn in C-V around V,h in the modeled capacitance, which can give rise to

significant inaccuracies for analog circuit and low voltage/power designs, for which the

moderate inversion region (Vth ~ (Vth + 6v,) [31]) is of great importance.

Considering both the inversion charge and bulk charge (qa) layer thickness in the

inversion region, the surface potential <Ps can be written as

Weidong Liu 5
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(p —^DC'̂ inv ^bulk'̂ B
^si ^si

where Xdc is expressed by (6) and Xbuik is the bulk charge layer thickness. ^,„v can now be

formulated as

Qinv ~~^oxeff ' ~^8 )

where By solving the Poisson equation and assuming zero inversion

charge layer thickness, we propose an analytical formulation for as

(P5=Vf/n 2 ^mom-TV;
(10)

where yis the body bias coefficient and moin is a fitting parameter with a typical value of 15.

Note that (10) rapidly drops to zero for {Vgse - Vth) < -Snoffriv, as inversion disappears. Figure

5 shows that equation (10) agrees with the numerical quantum simulation results with

wom=15.

Figure 6 shows the comparison of the measured and modeled channel charge density qinv

as afunction ofVgs for a large NMOSFET with r„;(=40A and A/p=5.5xlO'̂ cm*^. The measured

qinv was obtained by numerical integration of the gate-to-channel capacitance Qc- The

excellent agreement between CTM qinv and data implies that CTM can potentially be used in

DC IV model.

3. Charge Formulation and Partitioning

In this section, we will introduce charge equations and inversion charge partitioning

which are essential to derive the total 16 capacitances. The physical effects described in

Section 2 will be considered. The capacitance will be shown to be inherently continuous and

smooth from the accumulation to inversion region in Section 4.

3.1 Equationsfor Accumulation Charge

In this region, the inversion charge Qinv is zero, and the gate charge Qq is mirrored in the

substrate as the accumulation charge Qacc near the silicon surface. Qacc is computed by

Qacc oxeffgbacc (li)

where Vgbacc is the effective gate-to-body voltage andgiven by

Weidong Liu 6
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gbacc

QBQ=-^^^oxeff -J*

2
Vo+i/Vo^+48„Vy,,l (12)

where Vq =^jb +^65 -^gse -^v and &=0.02V so that Vgbacc reduces to fy-^^bs -^gse)

the accumulation region ((v^^e and zero in other operating regions

2>.2 Equationsfor Depletion Charge

Under the depletion approximation, the bulk charge in the depletion region [31], [32]

can be obtained by solving the Poisson equation as

1IJl I (13)

where-Vgbacc and y'ls the body effect factor. approximately equal to zero in

the depletion region, is introduced in (13) so that Qbo can account for the V^j-independent

portion of the bulk charge in the inversion region. Note that (13) becomes zero in the

accumulation region.

3.3 Charge Equationsfor Inversion Region

Classical MOSFET modeling uses the assumptions of constant surface potential and

zero thickness of the inversion layer for the inversion regime. Instead, the inversion charge in

the linear region is proposed as

Qin. '=-V'Coxeff Jo (V-'P8-O.Vy)dy (14)
where a is the bulk charge coefficient considering geometry and body bias dependencies of

the bulk charge [29]. To express the integration upper limit in (14) in terms of Vds, dy has to

be replaced by dVy. dy is related to dVy by

dV.
dy =-^ (15)

The source-draincurrent Ids, consideringthe finite charge thicknesseffect, has the form of

=Wn^C„„j •(v,„ -<P5 -aV,)Ey (16)

where /% is the bias-dependent effective mobility [29]. Substituting (15) into (16) and

integrating from source to drain will permit solution to Ids-
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By combining (14)-(16) and performing integration, we can obtain the expression for

Qinv in the linear region as

Qinv ~ ^^^oxeff ^gtx "95

Qab - ^^^oxeff •
1-a

Vw,-

2„2
ds

a-'V

Similarly, the bulk charge in the linear region can be written as

Qb = ^ -(}-ay,)jy (18)
Qb can be divided into two parts: one is Vds independent denoted by Qbo and the other

component is a function of Vds called Qbs- Gaoisgiven by (13) where reduces to {Vgse-Vih -

voffcv) in the strong inversion region, while Qbs^^ formulated as

12|v-9,j

(17)

(19)

In order for (17) and (19) to be applicable in the saturation region, an effective Yds,

namely Vdsx, is used to replace Yds in both (17) and (19). Ydsx has the form of

-i fv, +^V,2 +48„l/^„, 1 (20)
^ \ )

where Vj = -^ds^^v ^dsx is equal to Yds in the linear region and Ydsat in the saturation

region. The saturation voltage Ydsat is proposed as

V-Vs
^dsai

a
(21)

3.4 Channel Charge Partitioning

Channel charge Qim (Eq. (17)) must be seperated into drain and source charge

components. There are three popular channel charge partitioning schemes, i.e. 50/50, 40/60

and 0/l(X) which are defined as the ratios of Qd (the drain terminal charges) to Qs (the source

terminal charges) in the saturation region. 50/50 partitioning is the simplest which assumes

the inversion charges are contributed equally from the source and drain nodes, and Qd and Qs

are written as

Weidong Liu

1 WLC,
Qs -Qo'̂ l^Qmv-- 2

oxeff
^gtx ~96 >

2w2a-'v
dsx

(22)



MOSFET Intrinsic Capacitance Model Considering Quantum Mechanic Effect for BSIM3v3.2

40/60 partitioning represents the most physical, under the quasi-static assumption, of the three

partitioning schemes in which the channel charges are allocated to the source and drain

electrodes by assuming a linear dependence as proposed by Ward and Dutton [2]. Qd and Qs

are obtained as the following

f/.. 4/.. .. iL. v.. N2 2,... S3l (23)
Qs^-

WLCoxrff
Qd

0/100 partitioning was useful in fast transient and high frequency small signal simulations to

suppress the drain current spikes byassigning all inversion charges in the saturation region to

the source electrode. With Vdsat in the form of (21) and following the procedure proposed by

Yang et al. [3], Qs and Qd can be formulated as

•[^H.-9^ -VsNfia+|(v -"PsXol'to)'

-9s)(aV^)'

Qs=-
WLCoxeff

«2i/2
a yji

Qd -
WLCoxeff

Weidong Liu

a'V'i

Qc can be obtained directly from the charge conservation principle. The MOSFET

intrinsic capacitance can be obtained by differentiating the terminal charges described above

with respect to the terminal voltages, which aredefined as

c, =Aj, 1^. (Aj =lfori =r,A,j =-\fori*j) (27)
where i andj represent MOSFET's four terminals.

4. Experimental Verification and Discussion

In this section, model validity and accuracy are first investigated using measured C-V

characteristics from many technologies and compared with a BSIM3v3.1 capacitance model,

Capmod2, which is acontinuous single-equation model but does not consider the finite charge

layer thickness and variable surface potential effects. Model overall performance is then

evaluated by simulating various devices under different bias conditions and at different

(24)

(25)

(26)
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temperatures. The measured data were obtained at lOOkHz, which is high enough to provide

good signal to noise ratio and low enough to suppress distributed RC effects. The model

parameters were extracted by BSIMpro [33]. Unless otherwise stated, those newly introduced

model parameters (i.e. acde, moin, noff and vqffcv) in the present model use their default

values in what follows.

Figure 7 shows that CTM can model very accurately the measured NMOSFET gate

capacitance Cggfor arbitrary Tox andpolysilicon andsubstrate doping concentrations.

Although the model equations were developed based on NMOSFET's, we found they

are equally applicable to the PMOSFET case. A buried channel PMOSFET is employed to

demonstrate the model validity and capability. Figure 8 shows as a function of Vgs but for

an n-type polysilicon gate (buried channel) PMOSNFBT with T„^75A and '̂p=1.5xlO"cm•^
The model indeed fits data smoothly and with high accuracy throughout the operating regions.

For p-type polysilicon gate (i.e. surface channel) PMOSFET's, when the channel surface is

inverted, the gate gets depleted. This is identical to and can be modeled similarly to the

NMOSFET case. But for the n-type gate (buried channel) PMOSFET's, the opposite is true:

the polysilicon is accumulated at the interface in the inversion regime and becomes depleted

when the silicon surface is accmulated. From the figure, the charge layer thickness and

polysilicon depletion effects are seen to be modeled correctly and accurately in buried channel

PMOSFET's as well.

The new model was also verified extensively for other trans-capacitance components of

both NMOS and PMOS transistors fabricated by several different technologies. For brevity,

we show in Figure 9 (a) and (b) examples of the gate-to-drain (Cgd) and gate-to-source (Q^)

capacitance versus the source drain voltage Vds under different Vgs for an NMOSFET with

T„s=45A. The model again shows relatively high accuracy, smoothness and, in particular,

accurate prediction of the transition from the linear to saturation region, demonstrating the

effectiveness of Vdsx and Vdsat formulations, where the parameter moin can be extracted from

CV data for even better fit of the slopes of the transition region.

The contribution of each physical effect described above is depicted in Figure 10, where

the measured and modeled gate-to-channel capacitance Cgc is plotted against Vgs. Only when

all those effects are accounted for, a good fit can be achieved as shown in the figure. Table 1

quantifies the simulation errors relative to the measured dataextracted from Figure 10for two

Weidong Liu 10
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typical values, which correspond to the moderate and strong inversion regimes. It is

apparent that ignoring any specific effect will result in appreciable discrepancies in either the

moderate inversion region or the strong inversion region.

Table 1

Quantification of Cgc errors in the moderate and strong inversion regions

when different physical mechanisms are considered as shown in Figure 10

Physical mechanism considered

Error percentage (%)

Moderate inversion

(V,^0.7V)

Strong inversion

(V,^2.0V)

CapMod=2 36.8 20.7

CTM without q>s 28.0 3.9

(Ps only 13.5 19.2

^^and polydepletion 7.8 7.3

CTM 1.9 -0.3

A more dramatic example of the universality of CTM is shown in Figure 11, where the

Cgg of a Si0N/Ta205/TiN NMOSreT with an equivalent T„x of IsA is accurately modeled
with CTM. Figure 12 shows the comparison of inverter delays for different technology

generations between CTM and classical non-CTM (capMod=2 of BSIM3v3.1) simulations.

As technology shrinks, the significance of CTM increases.

The model overall performance has been quantitatively evaluated at the device level for

various device dimensions and under extensive testing conditions as listed in Table 2. In the

evaluation, all the 16 Q/s except for Cdd. Cds, Css and C^^were investigated. The test results

are shown in Table 3, where the results for BSI3v3.1 Capmod2 are also given for comparison.

In Table 3 **total signals" means the total number of tests made for the 12 Q/s, "errorsignals"

stands for the number of tests where certain trans-capacitance has very small negative values,

"error points" is the total number of bias points where Qj shows small negative values, and

the error rate is the ratio of the error signal number to the number of total signals. The present

model performance is substantially improved overCapmod2.

Weidong Liu 11
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Table 2

NMOSFET and PMOSFET sizes Biases

(Opposite signs for PMOS)

Temperatures (®C)

IV(pm) L(pm) 0-5.5V/0.1V step Min Nominal Max

Small Large Small Large Vg,:-1.0-5.5V/0.05V step

-55 27 1501.008 8.0 0.672 9.6 n,: 0, -5.5V

Table 3

Capmod2 New model

Total signals 384 384

Error points 3323 86

Error signals 68 3

Error rate (%) 17.7083 0.7813

5. Simulation Results and Comparisons

Not only does this model fit the measured capacitance accurately and show good

continuities, but also it gives the simulation results of sub-half CMOS circuits as expected and

demonstrates desirable simulation performance as well [34]. This received intensive and

extensive testing at many Compact Model Council member companies and no non-

convergence problems have ever been reported. As an example, for a logic book simulation,

the delay is decreased by about 2 percent and operational amplifier (Op Amp) roll off shows

about 0.1 decade sooner while its gain is maintained, as compared with BSIM3v3.1 capmod2

[34]. In the following, we will show some typical simulation results and make comparisons of

the simulation performance between this model and the capacitance models available in

BSIM3v3.1. All the newly introduced model parameters used their default values and 40/60

charge partitioning was used in all cases.

Transient simulation performance was evaluated with a typical 101-stage O.lSjim

CMOS ring oscillator (RO). simulated using this model and BSIM3v3.1 Capmod2. The gate

oxide thickness Tox was 42A and the polysilicon gate doping concentration Np was

6.0x10'̂ cm'̂ . The overlap capacitance [29] were also included in the simulation. The total

Weidong Liu 12
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CPU time and total iteration number are 693.02 seconds and 19673 for CTM, while the

counterparts for capmod2 are 637.27 seconds and 19758, respectively.

The simulation performance has been further investigated in both AC and transient

analyses of some CMOS circuits between this model and all BSIM3v3.1 capacitance models.

Table IV compares the run statistics for the AC analysis of a CMOS Op Amp. This model

takes less CPU time than capmod2. CapmodO is a long-channel model and its equations are

algebraically much simpler, resulting in the least CPU time. Table 5 shows the comparisons

of the run statistics of the transient analysis of a CMOS one-bit comparator. Again as in the

case of RO, this model requires the least number of total iterations due to the continuity in

charges and capacitance. Although this model contains more logarithmic and exponential

functions, the CPU time penalty, however, is only 9 percent when compared to BSIM3v3.1

capmod2.

TabeU

Run statistics comparison for the AC analysis of a CMOS Op Amp

between this model and BSIM3v3.1 capacitance models

Model CapmodO Capmodl Capmod2 New model

Total CPU time (s) 0.28 0.31 0.30 0.29

Load time (s) 0.02 0.02 0.02 0.02

Total iterations 16 16 16 16

Tabel 5

Run statistics comparison for the transient analysis of a CMOS one-bit comparator

between this model and BSIM3v3.1 capacitance models

Model CapmodO Capmodl Capmod2 New model

Total CPU time (s) 2.03 2.05 2.23 2.42

Load time (s) 1.42 1.42 1.64 1.80

Total iterations 676 656 657 625

Transient iterations 657 637 638 606

Transient time points 172 167 167 159

Rejected time points 21 19 19 16

Figure 13 (a) and (b) show respectively the gate currents for tum-on and turn-off

transients of a 0.1 Sum NMOSFET with Tn^2k simulated by this model and BSIM3v3.1

Weidong Liu 13
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capmod2. Capmod2 suffers oscillations in the gate current across the threshold voltage.

However, the new model exhibits stable gate currents in both turn-on and turn-off periods

because of the continuous capacitance, which should lead to better convergence behavior in

large circuit simulation.

6. Conclusion

An accurate compact model for MOSFET intrinsic capacitance has been presented for

ultra-thin Tox CMOS circuit simulation in both analog and digital applications. This model

considers the finite charge layer thickness due to quantization effects in all operating regions

and variable surface potential in the inversion region as well as polysilicon depletion. No

numerical iterations are used in the model. Extensive and intensive model tests reveals high

accuracy, good universality and high performance of the model with excellent convergence

properties. This model is inherently continuous and physics based. This model has been

implemented as a new capacitance model in BSIM3v3.2. It is anticipated that this model will

be the preferred capacitance/chargemodel in future CMOS circuit simulation.
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throughout accumulation and depletion regions.
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Figure 11. Universality of CTM is demonstrated by
modeling the Cgg of NMOSFET with
Si0N/Ta205/TiN gate stack.
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