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DECIDABLE HYBRID SYSTEMS

GERARDO LAFFERRIERE, GEORGE J. PAPPAS, AND SERGIO YOVINE

ABSTRACT. One of the most important analysis problems of hybrid systems is the reacha-
bility problem. State of the art computational tools perform reachability computation for
timed automata, multirate automata, and rectangular automata. In this paper, we extend
the decidability frontier for classes of linear hybrid systems, which are introduced as hybrid
systems with linear vector fields in each discrete location. This extension is important given
the applicability of linear vector fields in control systems. This result is achieved by showing
that any such hybrid system admits a finite bisimulation, and by providing an algorithm that
computes it using decision methods from mathematical logic.

Keywords: Hybrid systems, reachability, decidability, bisimulations, o-minimality

1. INTRODUCTION

Technological advances in computation and communication allow the control of large scale,
multiagent, and concurrent systems, like automated highway systems, air traffic management
systems, manufacturing, and robotic systems. These systems posses continuous dynamics,
which model the physical process to be controlled, and discrete dynamics, which model decision
logic as well as communication and synchronization among various agents. The analysis and
design of such systems requires a new modeling paradigm which combines the more traditional
frameworks of differential equations and discrete event systems. A solution to this modeling
challenge is offered by hybrid systems.

Hybrid systems are roughly discrete event systems with differential equations in each discrete
location. There are various hybrid system models in the literature [3, 4, 5, 14, 15, 25]. One
modeling approach is to extend finite state machines to incorporate simple dynamics. This
approach has been pursued by the computer science community and has resulted in timed
automata [2], rectangular automata [1, 17], and hybrid input/output automata [24]. The above
modeling formalisms are usually equipped with well defined composition operators which
allow the parallel composition and synchronization of various systems. These formalisms are
typically used as models of real time hardware and software systems. In the control community,
a variety of hybrid system models extend differential equations and control systems to capture
discrete decision logic, switching, and synchronization events [8, 9, 23, 27, 32, 40].

Large scale, concurrent systems like transportation systems, are safety critical. Safety is
typically encoded as an undesirable region of the state space. As a result, one of the most

important problems for hybrid systems is the reachability problem which asks whether some
1
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unsafe region is reachable from an initial region. For purely continuous systems, the reachabil-
ity problem is known to be a very difficult problem with a few exceptions. Optimal control [41],
game theoretic [34], and other [13, 33] approaches have been used to calculate reachable sets
for some systems. For purely discrete systems, one of the most successful methods is model
checking which essentially explores all possible system trajectories. The lack of structure of
purely discrete problems makes computational approaches to model checking inevitable. This
lack of structure is also embedded in hybrid systems, and, as a result, the reachability prob-
lem for hybrid systems is extremely difficult. In addition, analytical methods, even though
conceptually appealing and insightful, will require the use of computational methods in order
to be applicable to complex hybrid systems with large number of discrete states.

In order to tackle the complexity of the reachability problem, we adopt a computational point
of view. Therefore, in this paper, we are interested in solving the reachability problem for
hybrid systems by computational methods. However, computational algorithms for systems
with infinite state spaces are always in danger of never terminating. This makes the issue of
decidability, which guarantees termination of the algorithm, a very important one. The main
contribution of this paper is to show that the reachability problem is decidable for a new and
important class of hybrid systems.

The main tool for obtaining classes of hybrid system for which the reachability problem is
decidable, is given by the concept of bisimulation [26]. Bisimulations are simply reachability
preserving quotient systems. If an infinite state hybrid system has a finite state bisimulation,
then checking reachability for the hybrid system can be equivalently performed on the finite,
discrete, quotient graph. Since the quotient graph is finite, the algorithm will terminate. If in
addition, each step of the algorithm can be encoded and implemented by a computer program,
then the problem is decidable.

The first decidability result of this kind for hybrid systems was obtained in [2] for timed au-
tomata, which are finite state machines with clock dynamics. This was extended to multirate
automata [1], as well as initialized rectangular automata [18, 29] which at each discrete loca-
tion contain constant rectangular differential inclusions of the form z € [a, b]. Based on these
results, computational tools like KRONOs [11] and HYTECH [16] have been built for auto-
matic verification of timed, and rectangular hybrid systems. In [18], various relaxations of
these models were shown to be undecidable, and this lead to speculations that the decidability
frontier for the reachability problem had been reached.

Unfortunately, the above decidable classes of hybrid systems have limited modeling power
for most control applications, where systems with complicated continuous dynamics are fre-
quently encountered. In this paper, we extend the decidability frontier to capture classes of
hybrid systems with linear dynamics in each discrete location. The importance of this paper is
immediately clear given the wide applicability of linear systems in control theory. In addition,
this result is achieved by using new mathematical and computational techniques which will
have broader benefits to control theorists and practitioners. In particular, the very recent no-
tion of o-minimality [37] from model theory is used to define a class of hybrid systems, called
o-minimal hybrid systems. In [20, 21], it is shown that all o-minimal hybrid systems admit
finite bisimulations. In order to make the bisimulation algorithm computationally feasible,
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- we use the framework of mathematical logic as the main tool to symbolically represent and
* manipulate sets. The main computational tool for symbolic set manipulation in this context
is quantifier elimination. Since quantifier elimination is possible for the theory of reals with
addition and multiplication [6, 31, 42], we either find or transform subclasses of o-minimal
hybrid systems which are definable in this theory. This immediately leads to new decidability
results. In addition, the framework presented in this paper, provides a unifying platform for
further studies along this direction.

The structure of this paper is as follows: In Section 2, we illustrate the concept of bisimulation
and the general bisimulation algorithm for transition systems. In Section 3, we introduce a
general class of hybrid systems and apply the bisimulation algorithm to transition systems
generated by this class of hybrid systems. After a brief introduction to mathematical logic and
model theory in Section 4, Section 5 transforms the reachability problem for various classes
of linear vector fields to a quantifier elimination problem in the decidable theory of reals as
an ordered field. This results in a computational bisimulation algorithm whose termination is
guaranteed in Section 6, where we rely on the notion of o-minimal hybrid systems for which
the bisimulation algorithm is guaranteed to terminate. Finally, Section 7 presents conclusions
and issues for further research.

2. BISIMULATIONS AND DECIDABILITY

A transition system T = (Q, X, —, Qo, QF) consists of a (not necessarily finite) set @ of states,
an alphabet T of events, a transition relation =C Q X £ x @, a set Qo C @ of initial states,
and a set Qr C Q of final states. A transition (q;,0,q;) €— is denoted as ¢; = go. The
transition system is finite if the cardinality of @ and — is finite, and it is infinite otherwise.
A region is a subset P C Q. Given o € ¥ we define the predecessor Pre,(P) of a region P as

(2.1) Pre,(P)={qeQ|3peP:q>p}

One of the main problems for transition systems is the reachability problem which can be
used to formulate many safety verification problems.

Problem 2.1 (Reachability Problem). Given a transition system T, is a state g5 € QF reach-
able from a state qo € Qo by a sequence of transitions?

The complexity of the reachability problem is reduced using special quotient transition sys-
tems. Given an equivalence relation ~C @ x @ on the state space one can define a quotient
transition system as follows. Let @/ ~ denote the quotient space. For a region P we denote
by P/ ~ the collection of all equivalence classes which intersect P. The transition relation
—.. on the quotient space is defined as follows: for Q;,Q2 € Q/~, Q1 =~ Q. iff there exist
q1 € @, and g, € @, such that ¢ = ¢;. The quotient transition system is then T/ ~=

(Q/ ~y B, e, QO/N) QF/ N)

Given an equivalence relation ~ on @, we call a set a ~-block if it is a union of equivalence
classes. The equivalence relation ~ is a bisimulation of T iff Qp,QF are ~-blocks and for
all 0 € ¥ and all ~-blocks P, the region Pre,(P) is a ~-block. In this case the systems T
and T/ ~ are called bisimilar. We will also say that a partition is a bisimulation when its
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induced equivalence relation is a bisimulation. A bisimulation is called finite if it has a finite
number of equivalence classes. Bisimulations are very important because bisimilar transition
systems generate the same language [17, 26]. Therefore, checking properties on the bisimilar
transition system is equivalent to checking properties of the original transition system. This
methodology therefore reduces the complexity of model checking algorithms.

Recently, the above bisimulation methodology has been applied to transition systems with in-
finite state spaces, and in particular to hybrid systems which combine discrete and continuous
dynamics. The main reason for doing this is that if T is a transition system with an infinite
state space and T'/ ~ is a finite bisimulation, then the reachability problem for hybrid systems
can be converted to an equivalent reachability problem on a finite graph. If, in addition,
this can be performed in a computationally feasible way, then one obtains classes of hybrid
systems for which the reachability problem is decidable. This approach has successfully re-
sulted in various decidable classes of hybrid systems, including timed automata [2], multirate
automata [1], and initialized rectangular automata [18, 29).

These results are based on the following geometric characterization of bisimulations [26]. If ~
is a bisimulation, it can be easily shown that if p ~ g then

Bl: peQriffge Qr,and p€ Qo iff ¢ € Qo
B2: if p 5 p' then there exists ¢’ such that ¢ = ¢’ and p' ~ ¢’

Based on the above characterization, given a transition system T, the following algorithm
computes increasingly finer partitions of the state space Q. If the algorithm terminates, then
the resulting quotient transition system is a finite bisimulation. The state space @/~ is called
a bisimilarity quotient.

Algorithm 1: (Bisimulation Algorithm for Transition Systems)

Set: Q/N‘: {QO) QFa Q \ (QO U QF)}
while: 3 P,P' € @/~ and o € T such that @ # PN Pre,(P') # P

set: P, = PN Pre,(P'), P, = P\ Pre,(P')
refine: Q/~= (Q/~ \{P}) U{P, P2}

end while:

In order for a transition system to have a finite bisimulation, the above algorithm must
terminate after a finite number of iterations. If, in addition, each step of the algorithm
is constructive, then the reachability problem for the transition system is decidable. This
requires that we have computational methods to represent sets, perform set intersections and
complements, check whether a set is empty, and compute Pre,(P) for any set P and any
o€

3. HYBRID SYSTEMS

In this paper, we focus on transition systems generated by the following class of hybrid systems.
Definition 3.1. A hybrid system is a tuple H = (X, X0, X, F,E,I,G,R) where
e X = Xp x X is the state space with Xp = {q1,...,qn} and X¢ a manifold.
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e Xo C X is the set of initial states.

e Xr C X is the set of final states.

e F: X — TXc assigns to each discrete location ¢ € Xp a vector field F(g, ).

e F C Xp x Xp is the set of discrete transitions.

e I : Xp — 2%c assigns to ¢ € Xp an invariant of the form I(g) C X¢.

e G : E — Xp x 2%c assigns to e = (q1,¢2) € E a guard of the form {q:} xU, U C I(q,).
e R: E — Xp x 2%¢ assigns to e = (q1,q2) € E a reset of the form {g.} x V, V C I(gp).

Trajectories of the hybrid system H originate at any (g,z) € Xo and consist of concatena-
tions of continuous evolutions and discrete jumps. Continuous trajectories keep the discrete
part of the state constant, and the continuous part evolves according to the continuous flow
F(g,-) as long as the flow remains inside the invariant set I(g). If the flow exits I(g), then
a discrete transition is forced. If, during the continuous evolution, a state (g,z) € G(e) is
reached for some e € E, then discrete transition e is enabled. The hybrid system may then
instantaneously jump from (g, z) to any (¢’,z’') € R(e) and the system then evolves according
to the flow F(q’,-). Notice that even though the continuous evolution is deterministic, the
discrete evolution may be nondeterministic. The discrete transitions allowed in our model are
slightly more restrictive than those in initialized rectangular automata [28, 29].

Every hybrid system H generates a transition system T = (Q, X, =, Qo, @r) by setting @ =
X, Qo = Xo, Qr = Xr, £ = EU{7}, and == (U.cg —)U — where

Discrete Transitions: (¢,z) = (¢',z') for e € E iff (¢,z) € G(e) and (¢, z') € R(e)

Continuous Transitions: (q;,7;) = (g2,z2) iff ¢ = g, and there exists § > 0 and a
curve z : [0,0] — Xc with z(0) = z;, z(6) = z, and for all ¢t € [0,9] it satisfies
& — F(g,(t)) and z(t) € I(q,).

The continuous 7 transitions are time-abstract transitions, in the sense that the time it takes to
reach one state from another is ignored. Having defined the continuous and discrete transitions
5 and > allows us to formally define Pre,(P) and Pre.(P) for e € E and any region P C X
using (2.1). Furthermore, the structure of the discrete transitions allowed in our hybrid system
model results in

_fo  i#PNRE)=0
(3:1) Pre.(P )—{G(e) if PO R(e) # 0

for all discrete transitions e € F and regions P. Therefore, if the sets R(e) and G(e) are
blocks of any partition of the state space, then no partition refinement is necessary in the
bisimulation algorithm due to any discrete transitions e € E. This fact, in a sense, decouples
the continuous and discrete components of the hybrid system. In turn, this implies that
the initial partition in the bisimulation algorithm should contain the invariants, guards and
reset sets, in addition to the initial and final sets. This allows us to carry out the algorithm
independently for each location.
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More precisely, define for any region P C X and ¢ € Xp the set P, = {z € X¢ | (¢,z) € P}.
For each location S Xp consider the finite collection of sets

(3:2) Ay = {1(9), (X0)g: (XF)q} U{G(e), R(e)q | € € E}

which describes the initial and final states, guards, invariants and resets associated with
location g. Let S; be the coarsest partition of X¢ compatible with the collection A, (by
compatible we mean_that each set in 4, is a union of sets in S;). The (finite) partition S,
can be easily computed by successively finding the intersections between each of the sets in
A, and their complements. We define (g,S;) to be the set {{g} x P | P € S;}. These
collections (g,S,) will be the starting partitions of the bisimulation algorithm. In addition,
since by definition Pre,(P) applies to regions P C X, but not to its continuous projection P,
we define for Y C X¢ the operator Prey(Y) = (Pre,({g} x Y)),. The general bisimulation
algorithm for transition systems then takes the following form for the class of hybrid systems
that are considered in this paper.

Algorithm 2: (Bisimulation Algorithm for Hybrid Systems)
Set: X/~ =Uy(4,5,)
for: g € Xp
while: 3 P,P' € S, such that @ # PN Pre,(P') # P
Set: P, = PN Prey(P'); P, = P\ Pre,(P')
refine: S, = (S;\ {P})U{P, P}
end while:
end for:

It is clear from the structure of the bisimulation algorithm that, the iteration is carried out
independently for each discrete location. In order for the above algorithm to terminate, the
partition refinement process must terminate for each discrete location ¢ € Xp. It therefore
suffices to look at one continuous slice of the hybrid system at a time and see whether we can
construct a finite bisimulation that is consistent with all relevant sets of each location g as
well as with the continuous flows of the vector field F(g,-). Since we focus on each continuous
slice at a time, we will drop the g subscript from Pre,(Y’), which will be denoted from now
on by Pre(Y).

It is now clear that the decidability of the reachability problem amounts to solving the following
two problems.

Problem 1 (Computability): In order for the bisimulation algorithm to be computa-
tional, we need to effectively
1. Represent sets,
2. Perform set intersection and complement,
3. Check emptiness of sets,
4. Compute Pre(Y) of aset Y.
Problem 2 (Finiteness): Determine whether the bisimulation algorithm terminates in a

finite number of steps.
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- A natural platform for solving the above computational issues is provided by mathematical
logic where sets would be represented as formulas of first-order logic over the real numbers. In
the next section we introduce the necessary notions of mathematical logic and model theory
that will provide the means for representing and manipulating sets defined by first-order
formulas (Section 5) as well as for ensuring the termination of the algorithm (Section 6).

4. MATHEMATICAL LoGic AND MODEL THEORY

In this section we give a brief introduction to mathematical logic and model theory. The
reader is referred to [10] for more details.

4.1. Languages and formulas. A language is a set of symbols separated in three groups:
relations, functions and constants. The sets P = {<,+,—,0,1}, R = {<,+,—,,0,1}, and
Rexp = {<,+,—,,0,1,exp} are examples of languages where < (less than) is the relation, +
(plus), — (minus), - (product) and exp (exponentiation) are the functions, and 0 (zero) and 1
(one) are the constants.

Let V = {z,y, z, 9,21, . .. } be a countable set of variables. The set of terms of a language is
inductively defined as follows. A term @ is a variable, a constant, or F(6,,... ,0,), where F is
a m-ary function and 6;, i = 1,... ,m are terms. For instance, z — 2y + 3 and £ + yz2 — 1 are
terms of P and R, respectively. In other words, terms of P are linear expressions and terms of
R are polynomials with integer coefficients. Notice that integers are the only numbers allowed
in expressions (they can be obtained by adding up the constant 1).

The atomic formulas of a language are of the form 6, = 6, or R(6,,...,6,), where 6;,
i=1,...,n are terms and R is an n-ary relation. For example, zy > 0 and z° + 1 = 0 are
terms of R.

The set of (first-order) formulas is recursively defined as follows. A formula ¢ is an atomic
formula, ¢, A ¢, =@, Vz : ¢, or 3z : ¢, where ¢, and ¢, are formulas, z is a variable,
A (conjunction) and - (negation) are the boolean connectives, and V (for all) and 3 (there
exists) are the quantifiers.

Examples of R-formulas are:

(4.1) VzVy:zy >0
(4.2) Jz:22-2=0
(4.3) Jw:zw?+yw+2=0

The occurrence of a variable in a formula is free if it is not inside the scope of a quantifier;
otherwise, it is bound. For example, z, y, and 2 are free and w is bound in (4.3). We often
write ¢(z;,...,Z,) to indicate that z,,...,z, are the free variables of the formula ¢. A
sentence of R is a formula with no free variables. Formulas (4.1) and (4.2) are sentences.

4.2. Models. A model of a language consists of a non-empty set S and an interpretation of
the relations, functions and constants. For example, (R, <,+,—,+,0,1) and (Q, <,+,—,-,0,1),
are models of R with the usual meaning of the symbols.
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Every sentence of a language will be either true or false in a given model. For instance, formula
(4.2) is true over R, but false over Q. Formulas that are not sentences may hold for some
assignments of values to the free variables but not for others. For instance, formula (4.3) holds
in R for the assignment (1,1,0) of (z,y,z) (i-e., the real number 0 is such that 02+ 0 = 0)
but not for (1,0,1) (i.e., there is no real number w such that w?+ 1 =0).

We say that a set Y C S™ is definable in a language if there exists a formula ¢(z1,... ,z,)
such that

Y ={(a1,--.,a.) € S™| d(ay,---,an)}
For example, over R, the formula z? — 2 = 0 defines the set {\/5, —\/5}

Two formulas ¢(z,,...,z,) and ¥(z),... ,2Zn) are equivalent in a model, denoted by ¢ =
%, if for every assignment (ai,...,a,) of (z1,...,Z,), #(ai,...,a,) is true if and only if
¥(ai,... ,a,) is true. Equivalent formulas define the same set.

Example 4.1. As an interesting example consider the vector field defined by the differential
equation

dr;

(4.4) £ =2
dt

-1

Let Y = {(v1,%2) € R? | ¢(v1,32)} be a R-definable set. Then, Pre(Y’), the set of all points
(z1,72) € R? that can reach a point (y;,y2) € Y following a trajectory satisfying (4.4) is also
R-definable: Pre(Y) = {(z;,72) € R? | ¥(z1,22)}, where

Y(T1,22) £ Ty Ty I oy, PRI AL 0Ay =21+ 2t Ay =20 — L.

Example 4.2. Consider now the linear vector field defined by
4z 2 0 I
& £]-[0a] 2

The set of points (z;,z2) € R? that can reach a point (y1,y2) in an R-definable set Y following
a trajectory solution of (4.5) is definable in Rexp: Pre(Y) = {(z1,22) € R? | ¥(z1,22)} where

W(x1,T2) 2 3y 3y 3t ¢y, y2) AT = 0A Y = 216% Ay = 206~

We will show in Section 5 that, in this case, this set is also R-definable, that is, there exists
an R-formula v(z;, ;) which is equivalent to ¥(z, z2).

4.3. Theories. A theory is a subset of sentences. Any model of a language defines a theory:
the set of all sentences which hold in the model. We denote by Lin(R) the theory defined
as the formulas of P that are true over (R, <,+,—,0,1), i.e., Lin(R) is the theory of linear
constraints (polyhedra). We denote by OF(R) the theory obtained by interpreting R over
(R, <,+,—,",0,1). In other words, OF(R) is the set of all true assertions about the set of real
numbers when viewed as an ordered field. The theory OFxp(R) is the extension of the ordered
field of real numbers with the exponentiation.
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4.4. Decidability and quantifier elimination. Given a theory, it is important to deter-
mine the sentences of the language that belong to the theory. Tarski [31] showed that OF(R)
is decidable, i.e., there is a computational procedure that, given any R-sentence ¢, decides
whether ¢ belongs to OF(R).

The decision procedure is based on the elimination of the quantifiers. Over R, every formula
#(z1,...,Z,) of R is equivalent to a formula ¥(zy,...,z,) without quantifiers. Moreover,
there is an algorithm that transforms ¢ into v by eliminating the quantifiers. For example,
formula (4.3) is equivalent to:

(4.6) 4zz2—-9y* <0

Notice that the assignment (1,1,0) of (z,y, z) satisfies (4.6) (i.e., —1 < 0) whereas (1,0,1)
does not (i.e., 4 £ 0).

Quantifier elimination implies that every R-definable set Y C R" is definable without quan-
tifiers. Moreover, the decidability of OF(R) implies that the algorithm for eliminating the
quantifiers also provides a computational procedure (that terminates in a finite number of
steps) for checking whether Y is empty: ¥ = {(y1,... ,¥n) € R* | ¢(¥1,... ,%2)} = 0 if and
only if the sentence Jy;...3yn : ¢(v1,... ,¥n) is equivalent to the (quantifier-free) formula
false. There are different methods to perform quantifier elimination, e.g., [6, 42]. All the
examples considered in this paper has been solved using the tool REDLOG [12].

Therefore, the theory OF(R) provides the means for representing sets as well as performing
boolean operations and checking for emptiness. All that remains in order to make the bisimu-
lation algorithm computational, is to compute Pre(Y’) for any definable set Y. The following
example illustrates how quantifier elimination can also be used for this purpose. The system-
atic way of computing Pre(Y’) using quantifier elimination for various classes of vector fields

is studied in Section 5.

Example 4.3. Consider the vector field defined in Example 4.1 and let Y = {(y1, ) € R? |
11 = 4 Ay = 3}. Then Pre(Y) = {(z1,22) € R? | ¥(z1,22)}, where

Y(T1,72) £ Ty e H:t>0An=4Ap=3Ay=0+2Ayp =12y~
FH:t>20AT+2t=4Az—t=3
—(4-21) =203~ 1,)
Ty +225-10=0A2,—-3 2> 0.

Note that in the above example, the Pre(Y) is an R-definable set, and by the decidability
of OF(R) the formula % is equivalent to a quantifier free formula. If we are to use the same
approach for Example 4.2, we immediately run into difficulty as the corresponding formula
for Pre(Y) is definable in OF ¢, (R). Tarski asked if the decidability result for OF(R) could
be extended to the theory of reals with exponentiation OF¢,(R) (the set of sentences of Rexp
that hold in (R, <,+,—,+,0,1,exp)). Such an extension is of great interest as the exponential
function allows us to describe the flows of linear vector fields. Though it is not known whether
OF ¢xp(R) is decidable, it has been shown in [36] that are there are formulas of this theory that
are not equivalent to a quantifier-free formula. In other words, OF.,(R) does not admit
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quantifier elimination. Even if quantifiers could be eliminated, there is no obvious algorithm
for deciding quantifier-free sentences in Rexp like %5 — e¢*~% — 2¢® = 0.

Nevertheless, in Section 5 we identify several subsets of R, where quantifiers can be elim-
inated and the resulting quantifier-free formula is in R, yielding a decision procedure. The
linear vector field of Example 4.2 falls into one of these subsets.

5. LINEAR HYBRID SYSTEMS

The goal of this section is to show how to compute Pre(Y) for sets Y definable in some
language. For subclasses of hybrid systems, like multirate automata and rectangular automata
[1], where the subsets of R" obtained by the application of the bisimulation algorithm are
polyhedral sets, i.e., sets definable in the language of linear constraints P, the computation of
Pre(Y) relies on the decidability of the theory Lin(R) via the elimination of the quantifiers.

In this section we identify several classes of hybrid systems with linear vector fields where the
ability of computing Pre(Y) depends on the decidability of OF(R).

Definition 5.1 (Linear Hybrid Systems). A hybrid system H = (X, X0, Xr,F,E,I,G,R)is
a linear hybrid system if

L4 XC =R".

e for each g € Xp the vector field F(g,z) = A,z, where 4, € Q**".

e for each ¢ € Xp the family of sets A; = {I(g), (X0),, (Xp)q} U {G(e)q, R(e);| e € E} is
definable in OF(R).

As indicated previously, having a computational bisimulation algorithm requires having a
procedure for computing Pre(Y) for a definable set Y for each discrete location g. Therefore,
we only need to investigate a single location and a single linear vector field F(x) = Az where
the subscript ¢ is dropped for notational convenience. In addition, since the invariant I(g) is
a definable set, there exists an R-formula I(z) such that I(g) = {z € R* | I(z)}.

Now let Y 2 {y € R* | P(y)}. Then we can write explicitly
Pre(Y) = {z€R*|Jy3t: P)At20Az=eAYyav :0<t <t = I(e™"y)}

In order to simplify the following presentation, we will assume that I(z) is true. In this case,
the above definition reduces to

(56.1) Pre(Y) = {z€R"|3y3t: P(y)At>0Az=ecy}

(5.2) = {z €R"[n(z)}

It will be clear from the following results that more complicated invariant sets can be dealt
with by the same techniques.

From equation (5.1), we have that Pre(Y’) is definable in the theory OFey(R), which does
not admit quantifier elimination. Our goal in this section is to transform formula n(z) to an
equivalent formula in OF(R), which is indeed decidable. Based on the eigenstructure of A, we
identify several classes of linear vector fields for which this transformation is feasible.
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5.1. Nilpotent matrices. We consider first the special case when the vector field is linear
with a nilpotent matrix A, that is, A = 0. Recall that nilpotent matrices can only have zero
as an eigenvalue. Another important property of nilpotent matrices is that we can express
e~*4 explicitly as a finite sum

n-—1 tk
(5.3) et = Z(—l)kHAk

k=0
Thus, the formula 7(z) can be rewritten as follows:

n-1
tk
7(z) £ JyI:Py)At>0Az= E (—l)kﬁAky
k=0

£ 3Jy: P(y) A plz,y)
Clearly, p(z,y) is an R-formula, and so is n(z), which implies that the following proposition
holds.

Proposition 5.2. Let F(z) = Az be a linear vector field and A € Q**" a nilpotent matriz,
and Y C R" definable in R. Then Pre(Y) is definable in R.

Therefore, based on the computational procedure for eliminating quantifiers in OF(R), we can
compute Pre(Y) for linear vector fields with nilpotent matrices. Note that nilpotent linear
vector fields capture integrators which are an extremely important class of linear systems.

Example 5.3. Consider the nilpotent linear vector field defined by

% 010 z
(5.4) ?‘} = 001]| - |z
-?xta- 0 00 I3

and consider the set Y = {(y1,2,y3) € R® | P(y1,72,ys)} where
P(yl,y2’y3) éyl =4/\y2 > 2/\y2 <4/\y3=5

Then Pre(Y) = {(z1, 2, z3) € R® | 5(z1,22,3)} where it can be easily checked that
n(z1,72,73) £ 3y g2 Jys 3t P(yr,y2,us) AL 2 0A
t2

z1=y1—ty2+—2—y3/\

Zy=Y2 —tyz A

I3=1Ys
Using REDLOG to perform quantifier elimination we get that 7(z,, z, z3) is equivalent to the
quantifier free formula

n(z1,To,23) = 22173 — T2 —8z3+ 16 > 0 A
27173 — 12 — 873 +4 < O A
z3—3=0A

(123 — 423 < 0V zo23 < 0)
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5.2. Diagonalizable matrices with rational eigenvalues. In this case we can write A =
TDT-! where D is a diagonal matrix with the eigenvalues of A along the diagonal and both
T and T! have rational entries. Then

e—tz\l

(55) e—tA = e—tT'DT'1 =T " T = [fz](t)]

e~ thn

where fi;(t) = S, aijre™ ™ with a;; € Q for all 4, j, k, and {)\:} are the eigenvalues of A.

Moreover, z = e~*4y can be written component-wise as follows

n n
it
$i=§ a;jxe” *" ) y;
1

Jj=1 k=
n n
—Axt
=§ E aijky; | €77
k=1 \j=1

n
=Y valy)e ™
k=1
Therefore, n(z) can be rewritten as follows

n(z) £ Jy3t:Ply)At>0A /\xi = Z Yix(y)e !

i=1 k=1
£ 3y: P(y) Ap(z,y)
Since the formula for Y, P(y), is already in R, we will concentrate on studying ¢(z,y).
First we reparameterize the time ¢ to reduce the problem to integers in the exponent. More
precisely, for each k = 1,... ,n let dy denote the denominator of )\, and let dy = [] dx. We

assume that the \; are in reduced form, with positive denominators. Then dy > 0 and for
each k = 1,...,n we write 7y = A\xdp. Then we have that ¢(z,y) = pz(z,y) where

(5.6) vz(z,y) £ 3s:5>0A /\x,- = Z¢ik(y) e ke
i=1 k=1

Still, ¢z is an Reyp-formula. We consider a second formula {(z,y) which does not involve the
exponential function:

(5.7) ((z,y) = 32:0<z$1/\/\x,~=2¢ik(y) 2™

i=1 k=1

The following lemma holds.

Lemma 5.4. Formulas pz(z,y) and ((z,y) are equivalent.
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Proof. =. If pz(z,y) holds, then there exists s > 0 such that
n n
Azi=D tuly) e
i=1 k=1
Set z=e¢7%. Then 0 < 2 <1 and

Nzi=D tuly) 2™
k=1

=1
5o {(z,y) holds.
<. Conversely, if {(z,y) holds, then there exists z, with 0 < z < 1 such that

n n
/\-Ti = Z@”(?ﬁ Z™
i=1 k=1

By well known properties of the exponential function (continuity, monotonicity, and e® = 1,
e~ = 0) there exists s > 0 such that z = e™*. Then

n n
Azi=D tuly) e™
i=1 k=1

Hence, gz(z,y) = ((z,v). O
The third step eliminates negative polynomial powers. It consists of grouping the indices
1,...,n according to the sign of the corresponding eigenvalue. Let I* = {k | r, > 0},
I= ={k|r <0}, and I° = {k | r, = 0}. Consider now the following formula:

(5.8) v(z,y) £ 3w, Jw, :

w >0Aw, >0 Awyw =1
n

ANzi= Z Yir(y) wi* + Z Yik(y) wy™* + z Yir(y)
i=1 kel+ kel- kel

Clearly, v(z,y) is an R-formula. The following lemma holds.

Lemma 5.5. The formulas {(z,y) and v(z,y) are equivalent.
Proof. The equivalence is immediate from the change of variables w; = z, w, = 1/z. O

The combination of the above lemmas gives the following proposition.

Proposition 5.6. Let F(z) = Az be a linear vector field and A € Q*" a diagonilazable
matriz with rational eigenvalues, and Y C R* definable in R. Then Pre(Y) is definable in
R.

Proof. By the previous lemmas we have that 7(z) = 3y : P(y) A v(z,y) and v(z,y) definable
in R. ]
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Proposition 5.6 implies that we have a computational procedure for computing reachable
sets for diagonalizable linear vector fields with rational eigenvalues. As an illustration of
Proposition 5.6, consider the following example.

Example 5.7. Consider again Example 4.2. Let Y = {(y1,32) € R? | y1 = 4 A :th2 = 3}.
Recall that Pre(Y) = {(z1,22) € R? | ¥(z1,22)}. Applying the previous lemmas we have
that

Y(21,22) 2 I I IRy =4Ap=3At20Az; =ye* Ao = yoe
Jyy 3z 1 =4AyYp=3A0<2< IAZ, =112 2 ATy = Yoz
Iy Jyo FJwy Jwe :yy =4A YR =3Aw; >0 AW >0 Awwe =1
Ay = yrwi A2 = yows

= 1122-36=0Az2>0

5.3. Pure imaginary eigenvalues. In this case the matrix A is similar to a matrix in a
special block-diagonal form, a real Jordan form. First, the number of rows (and columns) of
A, is even. Second, there exist D and T such that A = TDT"!, T invertible, and D is block
diagonal with each block of size 2 x 2 and of the form

5

where b is the imaginary part of an eigenvalue of A. Moreover, if each eigenvalue is of the
form ir with r € Q, then the entries of D, T, and T~ are all rational.

We analyze the formula z = e~*4y in more detail. Assume D has diagonal blocks Dy, ... ,Dp,
(n = 2m). We can write

e—tD1
- - -1 -
etA=etTDT =T - T l.
e—tDm

In fact, for a matrix D = [—Ob 3] we have

—t bt) —sin(bt
et = [t ey

Therefore, we also get
e~ = [fi(t)]

with

fii () = Z aijk cos(Bxt) + bij sin(fit)

k=1
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- with a;jk, bijx, B € Q. The formula z = e~*4y can be written component-wise as follows

I; = Z—; (Z(aijk COS(ﬂkt) + bijk Sin(ﬂkt)) Yj

k=1
= Z (Z aijkyj) cos(fxt) + Z (Z bijkyj) sin(Gxt)
=1 \j=1 k=1 \j=1

- > i (y) cos(Bit) + Vi (v) sin(Bit)
k=1

Therefore, n(z) can be rewritten as follows:

n(z) £ Jy3t:Ply)At>0A N\zi=)_ i(y)cos(fet) + i (y) sin(Bit)

i=1 k=1
£ 3y: P(y) A p(z,y)
We now study the formula o(z,y). We start by reparameterizing t as before. That is, for each
k=1,...,nlet d; denote the denominator of §; and let dy = [] di. We assume that the Gy

are in reduced form, with positive denominators. Then dy > 0 and for each k =1,... ,n we
write 7, = Bxdp. Then we have that p(z,y) = ¢z where

(5.9) vz(z,y) £ Is:s>0A /\x,- = Zt/),‘-'k(y) cos(ris) + %5 (y) sin(res)

=1 k=1
The equivalence is obtained by using the change of variable ¢ = dps.

The following result will allow us to rewrite cos(rts) and sin(rs) in terms of cos s and sin s.

Proposition 5.8. For each integer m > 1 there exist homogeneous polynomials fn(z,y) and
9m(z,y) of degree m such that
cos(ms) = fm(cos s,sin s)
sin(ms) = gm(cos s, sin s)
Proof. We give a recursive definition. For m = 1 we set fi(z,y) = z and g,(z,y) = y. For
m > 1 the trigonometric identities
cos(ms) = cos(s) cos((m — 1)s) — sin(s) sin((m — 1)s)
sin(ms) = cos(s) sin((m — 1)s) + sin(s) cos((m — 1)s)
lead to the following formulas for f,, and g,
fm(2,9) = 2fm-1(2,Y) = Ygm-1(z, ¥)
9m(2,Y) = 2gm-1(2,y) + yfm-1(z, )

It is immediate from the formulas that f,,(z,y) will be homogeneous provided that both
fm-1(z,y) and gm-1(z,y) are homogeneous of the same degree. To conclude the proof we
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need to check that the degree of f,(z,y) and gm(z,y) is m. It is easy to show by induction
that one of the terms of fn(z,y) is ™. Moreover, it is also clear that one of the terms of
gm(z,y) is mz™ 1y, O

It is now clear that:
o(z,y) = 3s:s20A

n n
Nz =D ) firui(cos s, sign(re) sin 5) + ¥ (y)gir,) (cos , sign(r) sin s)
i=1 k=1
where fi,,| and g;,,| are the polynomials given in the previous proposition. Due to the peri-
odicity of both sin and cos we have that

o(z,y) = ¢z(z,y)
ds:0<s<2n A

n n
/\ z; = Z P2(Y) fire|(cOS 8, sign(rk) sin 8) + Y5 (¥)gir, (cos s, sign(r) sin s)
i=1 k=1
The importance of restricting s to a bounded interval (in this case [0,27]) will be clear in
Section 6. We define now a new formula:

(5.10)¢(z,y) 2 5 Fzn:2+2Z2=1A
n n
Az =D %) firai(=1,sign(re)z2) + ¥ (21, sign(re) z2)
i=1 k=1
The following lemma holds.
Lemma 5.9. The formulas p(z,y) and {(z,y) are equivalent.
Proof. The equivalence is shown by setting up z; = cos s, 2; = sins. O
The combination of the above lemmas give the main proposition which shows the desired

decidability result.

Proposition 5.10. Let F(z) = Az be a linear vector field and A € Q**™ a matriz with pure
imaginary eigenvalues of the form ir withr € Q, and Y C R definable in R. Then Pre(Y)
is definable in R.

Proof. By the previous lemmas we have that 7(z) = 3y : P(y) A {(z,y) with {(z,y) definable
in R. O

Proposition 5.10 implies that we have a computational procedure for the reachability problem
of linear vector fields with pure imaginary eigenvalues of the form ir with r € Q.

Example 5.11. Consider the linear vector field defined by
dzy 0 1 z
619 2] - [5a] - [2]
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and let Y = {(y1,%2) € R? | y1 = 4 Ay, = 3}. We have that:
NT,22) = I IH:in=4Ayp=3At20
ATy =1y cost— Yosint A za = ypcost + ypsint
= Syl3y23z1322:y1=4/\y2=3/\zf+z§=1
ANZy =122 — Yoyt AN T2 = Ya2o + 12
= 22 +12-25=0

We have presented above three classes of linear vector fields for which Pre(Y’) can be computed
for sets Y definable in OF(R). The computational results obtained in the section are now
summarized by the following theorem.

Theorem 5.12. Let H be a linear hybrid system where for each discrete location q € Xp the
vector field is of the form F(q,z) = Az where

o A e Q" is nilpotent or
e A € Q%" is diagonalizable with rational eigenvalues or
e A € Q"% has pure imaginary eigenvalues of the form ir, r € Q.

Then the reachability problem for H is semidecidable.

Thus, the bisimulation algorithm could be implemented for the above class of linear hybrid
systems without guarantee that it would ever terminate. If it happens that the algorithm
terminates, then we can compute the reachable regions of the hybrid system. In the next
section, however, we rely on very recent model theoretic concepts to guarantee termination
of the bisimulation algorithm. This is the last remaining piece to show decidability of the
reachability problem.

6. O-MINIMAL HYBRID SYSTEMS AND DECIDABILITY

In order for the bisimulation algorithm to terminate, the partition of the state space result-
ing from the bisimulation algorithm should have a finite number of equivalence classes. It
is therefore important that during the partition refinement process, the intersection of the
predecessor of an equivalence class with any other equivalence class has a finite number of
connected components. Such properties of definable sets is the topic of (geometric) model
theory that studies theories through properties of their definable sets. (see [19, 35] for general
background).

The search for such desirable finiteness properties of definable sets has lead to the notion of
o-minimality. While this concept applies to any theory, we consider here only theories over
the real numbers. Let £ be a language and Th(R) be a theory of the reals.

Definition 6.1. Th(R) is o-minimal (“order minimal”) if every definable subset of R is a
finite union of points and intervals (possibly unbounded).

The class of o-minimal theories is quite rich. Quantifier elimination implies that Lin(R) and
OF(R) are o-minimal. In addition, even though OF.,(R) does not admit elimination of



18 G. LAFFERRIERE, G. PAPPAS, AND S. YOVINE

quantifiers, it was shown in [43] that such thgory is indeed o-minimal. Another extension of
OF(R) is obtained by adding to R a symbol f for every function defined by

f(z) _ {f(a:) ifze[-1,1]"

0 otherwise

where f is a real-analytic function in a neighborhood of the cube [—1,1]* C R". The resulting
theory denoted OF,,(R) is then an extension of OF(R) which was shown to be o-minimal
in [38]. The theory OF,,(R) includes subanalytic sets as definable sets. For further discussion
on subanalytic sets see [7, 30]. For other extensions of OF(R) which are also o-minimal, the
reader is referred to [21]. Furthermore, geometric properties of o-minimal structures can be
found in [39] and the upcoming book [37].

The following table summarizes the o-minimal theories that are of interest in this paper along
with examples of sets and flows that are definable in these theories.

Table 1 : O-Minimal Theories

Theory | Model Definable Sets Definable Flows
Lin(R) (R,+,—,<,0,1) Polyhedral sets Linear flows
OF(R) (R,+,—,-,<,0,1) Semialgebraic sets | Polynomial flows

| OFan(R) | (R, +,—,-,<,0,1,{ /1) | Subanalytic sets | Polynomial flows
OF exp(R) | (R, +,—,,<,0,1,exp) | Semialgebraic sets | Exponential flows

Based on the notion of o-minimality, the concept of o-minimal hybrid systems is introduced
as hybrid systems whose relevant sets and flows are definable in an o-minimal theory.

Definition 6.2. A hybrid system H = (X, Xo, XF, F, E,I,G, R) is said to be o-minimal if
o X Cc= R".
e for each ¢ € Xp the flow of F(g,-) is complete (exists for all time).

e for each ¢ € Xp the family of sets Ay = {I(g), (X0)q, (XF)q} U {G(e)g, R(e)q | € € E}
and the flow of F(g,-) are definable in the same o-minimal theory.

For various classes of o-minimal hybrid systems, the reader is referred to [20, 21]. A very
important property of o-minimal hybrid systems is given by the following existential theorem.

Theorem 6.3. Every o-minimal hybrid system admits a finite bisimulation. In particular,
the bisimulation algorithm terminates for o-minimal hybrid systems.

Proof. In [20, 21]. 0O
We can now combine the semidecision result of Theorem 5.12 and the termination result of
Theorem 6.3 in order to obtain the desired decidability result.

Theorem 6.4. Let H be a linear hybrid system where for each discrete location ¢ € Xp the
vector field is of the form F(q,z) = Az where

o A € Q"™ is nilpotent or
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e A € Q**" is diagonalizable with rational eigenvalues or
e A € Q%" has purely imaginary eigenvalues of the form ir, r € Q.

Then the reachability problem for H is decidable.

Proof. All relevant sets of linear hybrid systems are by definition definable in OF(R) and
the flows of linear vector fields are complete. Therefore, given the semidecision result of
Theorem 5.12, all we have to show is that the flow of the linear vector field Az is definable
in an o-minimal theory. Then Theorem 6.3 would guarantee termination of the bisimulation
algorithm. If A is nilpotent then the flow is also definable in OF(R) which is o-minimal. If A is
diagonalizable then the flow is definable in OF¢yp(R) which is also o-minimal. If A has purely
imaginary eigenvalues, then the flow contains the functions sin and cos which are not definable
in any of the o-minimal theories of Table 1. However, o-minimality of the flow is only used
in the proof of Theorem 6.3 to show o-minimality of the Pre operator. Even though the flow
of this vector field is not definable, the Pre operator corresponding to these periodic flows is
still definable, as all we need is the restriction of sin and cos on [0, 27]. These restrictions are
indeed definable in OF,,(R) which is also o-minimal. O

Theorem 6.4 is the first decidability result in the area of hybrid systems that provides the
modeling expressiveness to capture relatively complex continuous dynamics. In addition,
Theorem 6.4 contains in it a purely continuous version of reachability analysis for linear
systems under state constraints, a problem which is known to be very difficult. As a result, its
potential application to analyze various realistic hybrid systems using computational methods
is significant.

7. CONCLUSIONS

In this paper, we presented a new class of hybrid system with a decidable reachability problem.
This new class is important as it captures classes of linear vector fields in each discrete location.
In addition, this extension is obtained using techniques from mathematical logic and model
theory. The mathematical machinery presented in this paper provides a natural and unified
platform for pursuing further research along this direction.

Issues for further research include the incorporation of linear vector fields with inputs in each
discrete location. This will allow to model significant modeling disturbances as well as provide
us with a framework for doing symbolic controller synthesis. Preliminary results along this
direction indicate very delicate nonresonance conditions between the control inputs and the
eigenvalues of the systems [22]. In addition, more complicated discrete transitions are also
of interest. For example, it is immediate that Theorem 5.12 could be easily expanded to
accommodate more complicated discrete transitions as long as there are constructive methods
to compute Pre.(P) for any discrete transition e € E. In particular, one could easily capture
identity reset maps which are important for various applications.

Another direction of research includes complexity analysis and reduction of the proposed
algorithms as well as their implementation into a computational tool whose kernel will be a
quantifier elimination engine.
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