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Abstract

In this report we address a problem of Euclidean structure and motion recovery from image
sequences and propose a linear method for determining the Euclidean motion and structure
information up to a single universal sceile regardless of the projection model.

We formulate the problem in the "joint imagespace" and first review the existing multilinear
constraints between m-imagesof n-points using exterior algebraicnotation. It is wellknown that
the projective constraints capture the information about the motion between individual frames
and are used to recover it up to a scale. We show how the structural scale information which is
lost during the projection process can be recovered using additional Euclidean constraints and
propose a linear algorithm for obtaining compatible scales of the joint image matrix entries. We
discuss further issues dealing with the uniqueness of the recovery and occlusion.

The presented theory and algorithms are developed for both the discrete and differential case.
We outline how the approach can be extended for the hybrid case where for particular image
locations both optical flow information and corresponding points in the consecutive frames axe
available.

Key words: structure from motion, multi-frame, multilinear constraint, Euclidean invariant, dif
ferential case, hybrid case.

Introduction

The problem ofstructure and motion recovery from a image sequence has been in the mainstream of
computer vision research for several decades. The original approaches assumed calibrated camera
systems focused primarily on recovering structure and motion from two frames and wereformulated
as minimization problems of nonlinear objective function [12, 11]. Different instances of the
objective function represented different error metrics and consequently different parameterizations
of the problem. In case the solutions were initialized sufSciently close to the true optimum, these
approaches provided good results, but didfail starting witharbitraryguesses. Several natural efforts
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for obtaining reasonable initial estimates as well as understanding of proper parameterization of
the objective function improved performance of these of techniques [2, 23, 24].

Making simplifying assumptions about thecamera model, considering either orthographic [25] or
paraperspective model [19] led to a recasting of the motion and shape recovery problem, rendering
the problem as a linear one. This made the appealing linear algebraic techniques applicable to
the problem and opened an avenue for solving the problem in a multi-frame setting. The motion
and shape were extracted using factorization of the large measurement matrix. These efforts were
pursued with some hope that by increasing the number of measurements the quality of the recovery
process improves, attaining some "global optimum" over the extended sequence of frames. In spite
of the impressive results for certain types of scene configurations they fell short for the general
setting due to the use of approximate camera models. The techniques were consequently used for
providing initial estimates for the nonlinear optimization [2].

The interest in the active vision systems with changing intrinsic and extrinsic parameters ini
tiated an ascent of the uncalibrated methods and gave rise to many new algorithms for recovering
both structure and motion [10, 3, 32,13,17]. Within the uncalibrated setting the notionsof projec-
tive and affine structure recovery have been used with the justification that these representations
are suitable for certain types of tasks [20]. Another line of work explored the problem of cam
era self-calibration in the projective case making the Euclidean reconstruction from uncalibrated
cameras possible [14, 10]. The agenda of the uncalibrated case gave rise to the stratification of
various representations of the three-dimensional structures [4] as well as canonical representations
of the constraints between images. The m-frame, n-point motion and structure recovery problem
has been explored in the projective setting [28]. The existing projective constraints between im
ages have been characterized [6] and (linear) algorithmsfor projectivestructure recovery (structure
recovery up to arbitrary projective transformation) developed [29]. In this formulation additional
metric constraints which are nonlinear in their nature, can be used in order to recover the unknown
projective transformation.

We look at the problem of Euclidean structure and motion recovery from image sequences
assuming that intrinsic camera parameters are known. We formulate the problem in the 'joint
image space' and first review the existing projective constraints between m-images of n-points
using notations and techniques from exterior algebra. The projective constraints decouple the
motion information from the information about the structure of the scene and are used for motion

recovery from image measurements directly. In order to obtain the Euclidean structure we study
existing intrinsic and extrinsic Euclidean invariants which lead to constraints used for recovery
of unknown structural scales lost in the projection process. We propose a linear algorithm for
computing the motion and the structure up to a single universal scale and address issues dealing
with uniqueness of this recovery process and occlusion. We present a formulation of the problem
and the algorithm for the differential case and outline how the approach can be extended for hybrid
cases where for particular image locations both optical flow information as well as corresponding
points in the consecutive images are available.

1 Camera Motion and Projection Models

In this section, we represent the motion of a movingcamera as a 3D rigid body motion and introduce
the projection models we use for the later structure and motion reconstruction algorithm.

We flrst introduce some notation which will be frequently used in this paper (the notation is



consistent to that in Murray, Li and Sastry [18]). Given a vector p = (pi,P2)p3)^ € we define
p € so(3) (the space of skew symmetric matrices in by:

0 -P3 P2

P = \ P3 0 -pi
-P2 Pi 0

(1)

It then follows from the definition of cross-product of vectors that, for any two vectors p,q ^ R^:

pxq = pq. (2)

The camera motion is modeled as a rigid body motion in R^. The displacement of the camera
belongs to the special Euclidean group 5E(3), represented in homogeneous coordinates as:

SE{Z) = P)|p6K^iJ€ S0(3)| (3)

where 50(3) is the space of 3 x 3 rotation matrices (unitary matrices with determinajit -}-l). An
element g{t) in this group is used to represent the 3D translation and orientation (the displacement)
of the camera coordinate frame Ft at time t relative to its initial coordinate frame Ff^ at time to
(see Figure 1). By an abuse of notation, the group element g{t) serves as both a specification of

x(0) x(t)

Figure 1: Coordinate frames for specifying rigid body motion of a camera.

the configuration of the camera and as a transformation taking the coordinates of a point from Pi.
to Ft. Clearly, a transformation g is uniquely determined by its rotational part R € 50(3) and
translational part p € R^. So sometimes we also express g hy g ^ (R^p) as a shorthand.

It is convenient to represent a point q in the 3 dimensional Euclidean spacein the homogeneous
coordinates as

9= (gi,92,g3,l)^G

The set of all such points can also be identified as the subset of excluding the plane at in
finity, i.e. the plane consisting of all points with coordinates (9i,g2>93j0). Let q(t),t G R be
the coordinates of q with respect to the camera coordinate frame at time t. Then the coordinate
transformation between q(t) and q{to) is given by:

qit) = 9(t)(}{to)- (4)



In the 3 dimensional representation q = (91,^25 93)^ € the above coordinate transformation is
equivalent to:

q{t) = R{t)q{to)-\-p{t). (5)

Assume that the camera frame is chosen such that the optical center of the camera, denoted
by o, is the same as the origin of the frame. Then the image of a point q in the scene is the
point where the ray < o^q > intersects the imaging surface. A sphere or a plane is usually used to
model the imaging surface. They are called spherical projection and perspective projection
respectively. However, here we do not assume any specific property of the imaging surface: it could
be any smooth 2 dimensional surface with which any ray < o,q > intersects at only one point; or
in other words, it can be regarded as (part of) the 2 dimensional projective space We call this
type of imaging as projective imaging. The theory and algorithms to be developed will hold for
the most general cases of the projective imaging. However, orthographic projection is not a
case of the projective imaging hence it will not be studied in this paper.

Define the projection matrix P 6 to be:

/ 1 0 0 0 \

P = 0 1 0 0 . (6)
V0 0 1 0 /

In this paper we always use bold letters to denote image points. Then, in homogeneous coordinates,
the image x = (x,y, € R^ of g € R'* is given by:

Ax = Pq. (7)

where A€ R"*" encodes the (positive) depth information and we call Ato be the scale of the point q
with respect to its image x. For instances, A= 93 for perspective projection and A= J
for spherical projection. If the imaging surface has variable curvature, A can be more involved.

By Euclidean structure and motion from image sequences, we mean the problem
of reconstructing the Euclidean transformation g and the depth information Afrom the
image measurements x.

There are two fundamental transformations in vision: projection and Euclidean rigid body motion.
It is well known that motion recovery can be decoupled from the (Euclidean) structure by using
the epipolar constraints. However, the scale of the motion cannot be determined by using these
constraints alone. Further, when one wants to reconstruct 3D structure of the scene, i.e. the scale
for each 3D point, Euclidean constraints need to be exploited. In the following, we will study in
detail both projective and Euclidean constraints. We then show that these constraints can be used
to recover the Euclidean structure and motion up to a universal scale.

In this paper we will address the n-point m-frame problem:

Reconstructing the relative Euclidean transformations between m image frames and the
Euclidean coordinates for n points fixed in the world using their projections in the m
images.



We will discuss later how to generalize all the ideas to the differential case and hybrid cases.

Consider n points in the world with homogeneous coordinates with respect
to some inertial coordinate frame. To be consistent in notation, we always use the superscript
j £ Nof to enumerate different points. Each of the n points {q^}J-i has its corresponding
images xj, Xj,..., j <n, with respect to the camera frames at m different positions.
The subscript i is always used to enumerate the m camera frames. Denote the relative motion
(transformation) between the and frames as gki {Rki^Pki) € S£'(3),l < i^k < m; and
9i (RiyPi) is a shorthand for gi,i-i^i = 1,..., m (with gio = gi). Without loss of generality, we
may assume gi = I. Also, for 2= 1,..., m;j = 1,..., n, let Aj be the scale of the point with
respect to its image xj. From (7), we have:

/ AjxJ AjXi
Ajx^ AjX^

Aix:2m-^m

^2*2

i^mm /

/ P9i \
P9291

KP9m'"9l )

(8)

Then our goal is to reconstruct the relative motions scales {Aj}2:'ij=i from image
measurements {Xi}2i,i=i- simplify the notation, define matrices Y,X € and A€
to be:

Y=(Ajx^), X=(xJ), A=(AJ), l<z<m,l<i<7i.

The matrix X will be called image matrix, A the scale matrix and Y the scaled image
matrix. Imposing the positive depth constraint, the entries of the scale matrix A are always
positive. Define the matrices A € and Q GE'^^" to be:

(

A =

P91
P9291

\

(9)

\ P9m-"9l

Notice matrix A has four columns. We denote them as

A= (01,02,03,04)

with each column vector ak € E^, 1 < A: < 4. Matrix A only depends on the relative motions
between image frames. We will refer to the matrix A as the motion matrix. The motion matrix
is a natural generalization of the essential matrix in the 2-frame case. The matrix Q will be
called the coordinate matrix since it is just the collection of all the homogeneous coordinates of
3Dpoints. We will usethe convention that the last entry of the homogeneous coordinates is always
1. Hence the last row of matrix Q is always (1,..., 1).

Using the new notation, we can write equation (8) in shorthand:

A©X = AQ, (10)

where © means component-wise multiplication except that A} multiplies 3 rows. Unless otherwise
stated, we treat the matrix X and ^ as m x n (instead of dtn x n) matrices with x? € E^ and

as the entry, respectively.



Definition 1 Given an image matrix X, a scale matrix A with positive entries is called compat
ible with X if there exist a motion matrix A and a coordinate matrix Q such that A©X = AQ.

Then, if one can find a compatible scale matrix A for an image matrix X, the rows of the
equation (8) give:

(Ajxj. ,••••A?x?) = Pffi •• (11)

Let (jR, p) g= gi'•-gi and 1< j < n be the 3D coordinates of {q^}^-i^ we have:

(Ajxj, A?x?,..., A?x?) = •••>?")+?•

Inother words, foreach i = 1,..., m, the entries exactly give the 3Dcoordinates ofpoints
with respect to the i^^ frame. The n 3D points are then reconstructed up to some

Euclidean transformation g (R,p). Further, the relative motions hence can
be recovered from the motion matrix A, Therefore the problem of reconstructing Euclidean
structure and motion is really a problem of finding a compatible scale matrix A for a
given image matrix X. The main purpose of this paper is to show that under certain conditions
the compatible scale matrixAis unique up to a scale, and thereare efficient algorithms to compute
it.

2 Projective Constraints and Motion Recovery

In this section, we study constraints in the images which are invariant under projective transfor
mations, called projective constraints. Since these constraints are invariant under projective
transformation, they can only be used to recover the projective structure of the n points (Triggs
[29]), not the Euclidean structure. However, as we will soon see, these constraints decouple the
motion estimation problemfrom the (Euclidean) structure. The results to be presented here follow
from the work by Triggs and Faugeras et al [30, 28, 6]. However, as a briefreview of these theories,
we here give a simpler representation using exterior algebra (orGrsissmann algebra) notation,
and one will soon see, these results can also be easily generalized to the differential case and some
hybrid cases in later sections.

The projective constraints on multiple images of a point actually state a very simple fact:

The imageof a four dimensional vectorspace (i.e. the homogeneous space representing
all the 3D points) under a linear transformation is at most four dimensional.

Notice that each column of the scaled image matrix Y is in the four dimensional subspace of E^"*
spanned bythe four columns ofthe motion matrix A, i.e. ai,..., 04. Now for the i*^ image Xi € E^
of the point 9, we construct the vector x,- GE^"* associated to x,- byfilling zeros in components not
belonging to the i^^ image:

Xi = (0,..., 0,xf, 0,..., 0)^ € E^"", 1 < i < m.

We then have:



Theorem 1 (Projective Constraints) Consider m images {xi}g.i € o/ a point q, and the
motion matrix for the relative motions between image frames is A = (ai, 02,03,04) € Then
the associated vectors satisfy the following wedge product equation:

ai Aa2 Aas A04 AXi A... AX;n = 0- (12)

The wedge product equation (12) is an alternative way of saying that the vectors x,*, 1 < i < m are
in the four dimensional subspace of spanned by the vectors ai, 02? <23?

Proof: Let At,i = 1,... ,m be the scale of q with respect to its i^^ image Xj. By (8), the
vector y = span{ai,a25Ct3}G4}> i-e. y, 01,02,03,04 are linearly dependent. This
gives

ai A 02 A 03 A 04 A y = 0.

Without loss of generality, we may assume Ai = 1. Then, xi = y - YIIL2 Substituting this
back into the wedge product on the left hand side of (12), it yields:

fli A 02 A 03 A 04 A ~ A X2 A ... A x,n

= Oi A 02 A 03 A 04 A y A X2 A ... A Xm -

ai A02 A03 A04 A AfXt^ AX2 A...Ax„i
= 0.

Thus the wedge product constraint (12) holds. •

The above wedge product constraint is exactly the constraint given by Triggs [28]. It gives
constraints on the multiple images ofa single point. A^_jOfc Aj^i x,- is an element in (R^™),
the space of ail skew-symmetric elements in other words, the space of all (m -|-4)-
forms of R®*". So Aj^i x,- has the common form:

^ ^ >»m+4 (®»1 A... A ) (13)
1<*1<»2< •"<*m+4 <3m

where is astandard basis for R^"*. Notice that it has ^ independent terms.
By the wedge product constraint (12), all the coefficients /'s have to be zero. This gives the same
number of homogeneous constraints of degree m+4 in terms of the entries of ajk'sand x, 's. However,
since many of the entries of x,- are zeros, most of the homogeneous constraints will be trivial or
reducible.

Let each image point x,* = (a;j,y,-,z,). Then each x,- has three linearly independent terms:

Xi+i = ^t+iesi+i + yt+ie3t+2 + Zi+ie3i+3, i = 0,...,m-l.

The wedge product is just:

Afc=lOA: Af^i Xj = A'l^iak AJ^o^ (®t+ie3i+l + yi+1^3i+2 + •2^i+lC3t+3)- (14)



Notice that any non-trivial term contains at least one non-zero entry from each 5^-.
Further, any particular / is always multi-linear in all involved x,'s; if a non-trivial / depends
on exactly one entry from x,-, the involved entry of Xj can be reduced when considering / = 0.
Therefore, / = 0 only imposes constraints on x,- which has more than two entries showing up in
the same /. Grouping the m 4 indices: ii,... , into m non-empty sets, then the numbers
of elements in the sets have three types (up to a permutation of the m sets): (3,3,1,... ,1),
(3,2,2,1..., 1) and (2,2,2,2,1..., 1). Any term / of these three types of indices has respectively
two, three or four x,'s with more than two entries involved. The corresponding constraints imposed
by / = 0 are called bilinear, trilinear or quadrilinear constraints in the Xj's, respectively.

These constraints given by the wedge product equation are invariant under projective transfor
mations of the n points. To see this, for any T € GL(4,R) the group of all 4 x 4 invertible real
matrices, let A' = AT~^ and Q' = TQ, we still have A O X = A'Q', The new wedge product
constraint given is just:

a'l Aa2A©3 A<14 AXi A... Ax„i
= det(T~^) •di Aa2 Aas A04 AXi A , Ax•m

Since det(r"^) / 0, this wedge product gives the sameset ofconstraints. This is also why we name
these constraints as projective constraints.

These projective constraints are natural generalization of the epipolar constraint for the 2-
frame case. Here we check that in the 2-frame case the above projective constraint indeed gives
the epipolar constraint. In the 2-frame case we have:

A
\ P9291 )

If gi ^ 0, define Q' = g\Q and A' = Ag^ Thus, without lossofgenerality, we may assumeg\ = /.
We then have:

HLD-
The wedge product constraint gives:

ai A...Aa4 Axi AX2 =det [I. ^ ^ )ei A...Aes =0.
\ U2 P2 0 X2 /

Then we have:

I " ^ n " n M=0\ R2 P2 0 -3^2 J V 0 P2 --R2XI X2 J

"«• det (P2i -•R2Xi,X2) = 0 <=> '^iR2P2^2 = 0.

Thus the projective constraint is exactly the same as the epipolar constraint in the 2-frame case.
Also, as pointed out by Triggs and Faugeras et al [28, 6] that the quadrilinear constraints are not
independent of the bilinear and trilinear ones. Thus, we do not need to consider quadri-linear
constraints. The bilinear and trilinear constraints then give a complete set of constraints for the
m images of a point. Notice that all the projective constraints only depend on the entries of the
motion matrix A, not the scalematrix Aat all. Given the matrix ofimage points X = (xj), one can
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use these projective constraints to recover the unknown motion parameters (entries in the motion
matrix A) up to a scale in the translational motion.

A big advantage of using the projective constraints is that motion is decoupled from structure.
Hence they can be used for motion estimation without knowing structure. For example, in the
2-frame case, one can use the epipolar constraint to recover the relative motion g between the two
image frames (with p up to a scale) ifone has eight pairs ofimage points: {(xi,X2)}|_i.

However, since projective constraint is invariant under projective transformation, it loses in
formation about the (Euclidean) metric. Therefore, they cannot give a unique recovery of the
translational motion nor the 3D structure. The recovery of structure can be done only up to an
arbitrary projective transformation (Triggs [29] and Hartley [8]). In the next section, we will study
invariant constraints in the Euclidean space under the Euclidean transformation, which will later
be used in algorithms for reconstructing the scale information.

Although the bilinear and trilinear constraints together give a complete set of constraints, for
motion recovery purpose, the bilinear epipolar constraints are already sufficient. The bilinear
epipolar constraints are also better understood and easier to use than the trilinear ones. Motion
estimation schemes based on epipolar constraints have been well established. Since most of the
motion estimation schemes using bilinear constraints only need (eight) image correspondences be
tween two image frames while those using trilinear ones require (seven) image correspondences
among three image frames [22, 7], algorithms based on bilinear constraints alone will be faster and
easier to implement. Therefore, in this paper, we only study the theory of reconstruction
based on using the bilinear epipolar constraints only. For a study and usage of the trilin
ear constraints for reconstruction purposes, one may refer to Shashua [22] and Hartley [7]. As a
summary of the above discussions, we write down all the bilinear epipolar constraints we have
on the image matrix X = (xj) of the m-frame n-point problem:

R^ipkt^k ~ 1<J < 71, 1< i < fc < m, (15)
where Qki ~ (jRjti, pjbi) represents the relative motion between the and frames.

Given n > 8 image correspondences in general positions, the relative motion between the k^^
and image frames can be determined by solving the MMSE problem:

3=1

Using the linear algorithm (Toscani or Faugeras [27]) or the nonlinear algorithm (Ma, Kosecka
and Sastry [16]), (Rki^Pki) can be recovered with pki up to a scale. From now on, unless otherwise
stated, we assume points considered sire always in general position such that the motion
recovery sdgorithms give a unique solution^. For a study of a degenerate case when the 3D
points are co-planar, one may refer to Faugeras [5].

3 Euclidean Constraints and Structure Reconstruction

From the preceding section, we see that the projective constraints do not depend on the scale
^ ~ structure nor the scale of the translational motion p. In order to recover the

^The motion estimation algorithm typiceilly determines {Rki,Pki) up to four eonbiguous solutions. Imposing the
positive depth constraint, there is only one compatible with the images.



scale information, one has to work in a metric space and exploit constraints associated to the
metric. In this section, we study all the Euclidean invariants and constraints for the n-point m-
frame problem under a unified framework. In this framework, one will see the reconstruction of the
structural scales and the (translational) motionscales are essentially the same problem. Conditions
for unique reconstruction of the structure and motion will be derived.

3.1 Euclidean Invariants and Constraints

For an n-point and m-frame problem, the n points and the m optical centers {o*}51i
determines the overall Euclidean configuration. Any Euclidean invariant relates to the relative
positions of n + m points as we will explain below.

From the motion recovery algorithms, the relative translational motion pfc,-, 1 < i^k < m among
the m image frames is only determined up to a scale. Denote the scale associated to pki as 7^,- €
for all 1 < i, k < m. Knowing the scale 7^,-, then gki ^ {Rki, JkiPki) gives the true Euclidean
transformation from frame to the k^^ frame. In particular, when k = i, the transformation is
just (/, 0) hence ju = 0 for all 1 < i < m.

Notice that each vector pki can be regarded as the "image" of the optical center o* with
respect to the k*^ image frame. We may identify the m optical centers as m new 3D points

= o* for 1 < i < m. Then the imagesof these m points with respect to the m image frames are
just 1 < «, ^, < rn. The scale of these image points are denoted by 1 < i,k < m.
These scales are exactly the same as the scales of translational motions jkii 1 < i,k < m. Then for
the m optical centers we have two equivalent representations:

0'

Pki

7ki

jTi+i
t 5

,n+i

1 < i < m,

1 < i,k < m,

A?"^*, 1 < i,k < m.

The left hand side is associated to the notion of motion and the right hand side is associated to the
notion of structure.

For all the n-\-m points we have the extended image matrix X 6 K3mx(n+m).

=H)::n=
x^

x:

0 Pi2

P21 0

Pml Pm2

Plm ^
P2m

0 )

Then the reconstruction is to determine all the scales in the extended scaled image matrix
Y G KSwixCn+m).

(. .\ m.n+m ( Ajxf
Ajxj A^xl

A?xr 0

I21P21

712P12

0

Am*m 7mlPml 7m2Pm2

yimPlm ^
72mP2m

0

Without loss of generality, we can always choose \\pki\\ = \\Pik\\ hence jki = 7ik- The "row"
(Ajxj)"^j" of the extended scaled image matrix Y gives the 3D coordinates of the n + m points

10



W}jir respect to the image frame. Each such a row reconstructs the 3D structure ofthe
overall n-point m-frame configuration up to a Euclidean transformation.

All the Euclidean invariants associated to the m-frame n-point problem are invariants related
to the quantities in the extended scaled image matrix ¥. These invariants give constraints on the
unknown scales The scales can then be reconstructed by solving the equations given
by these constraints. Notice that the special Euclidean group SE{3) is a semi-direct product of
50(3) and The subgroup is a normal subgroup ofSE(S) and acts transitively on E^ itself.
The basic invariants of E^ preserved under the action on itself is just the vector, i.e. the diflFerence
between the coordinates of two points in E^. Therefore, the invariants of E^ under the full group
action SE(Z) are the invariants of the space of 3 dimensional vectors under the group action 50(3).

The difference between the and columns of the matrix Y are the representations of
the vector with respect to the m image frames. From the above discussion, all the intrinsic
invariants of the n-point m-frame problem are just the invariants associated to the {n-\-m) (n-hm-1)
vectors among these n-\-m points. Diflferent representations of the same vector with respect to
different image frames only differ by orthogonal transformations, i.e. elements in 50(3). The
following theorem. Theorem 2.9 from Weyl [31], characterizes all the invariants of orthogonal group
50(n).

Theorem 2 (Invariants of 50(n)) For a n dimensional real vector space, a complete table of
typical basic invariants of the orthogonalgroup consists of (1) the inner product < u,v> and (2)
the determinant of n vectors det[w^,..., u"].

According to this theorem, the set of all invariants is just the algebra generated by these two
types of basic invariants. In the 3 dimensional case, life is easier. The two basic types of invariants
are just: the inner product between two vectors and the determinant of three vectors. We then
have:

Corollairy 1 The set of all intrinsic invariants associated to the n-point m-frame problem is the
R-algebra generated by all the inner products between two vectors and determinants of three vectors
associated with the n-\-m points {q^}^-i and

In general, SE(Z) is just a subgroup of OL(4), hence the set of invariants of GL{A) is a subset
of that of SE(Z). In this sense, for the n-point m-frame problem, the set of all projective invariants
(constraints) is just a subset of all the Euclidean invariants (constraints). The study of projective
invariants is important, since it provides some constraints relevant to a particular problem: for
example, the motion recovery problem is elegantly decoupled from the structure by considering
the projective constraints only. On the other hand, projective constraints are not adequate for
structure reconstruction and Euclidean constraints need also to be exploited.

Notice all the constraints obtained by using these intrinsic Euclidean invariants will be either
quadratic (frominner products) or cubic (from determinants) in the unknown scales A's and 7's.
That is, there are no intrinsic Euclidean constraints which are linear in the scales.

In order to obtain linear constraints, one has to explicitly exploit the relative motions between
image frames. The obtained constraints will be called extrinsic Euclidean constraints. For
example, ioi 1 < i,k < m,l < j < n, the relation between the representations of the vector q^ —o*

11



in the and image frames are given by:

9ki*(q^ - o*) = gki(g^) - gki{o') ^ Rkii^^i - 0) = - AJ+*x2+*
^ i2fci(AjxJ - 0) = A^x^ - 7fc,7)fc,- c» A^x^ = iJfciAjxJ + 7jkiPA:i. (16)

This is just the Euclidean transformation of the ZD coordinates of the point between the and
frames. This constraint explicitly relies on the knowledge of Rki and pki (up to a scale).

From the above discussion, we have the following observations:

1. The problem of recovering the scales of motion is essentially the same as one of reconstructing
structural scales. The scales of motion and structure could (and should) be reconstructed in
a uniform framework.

2. There are only quadratic and cubic intrinsic constraints on scales. To obtain linear con
straints, one has to explicitly rely on knowledge of relative motion.

3. Although the general theory of invariants gives all the intrinsic invariants/constraints in the
scales, it does not directly give the conditions for uniqueness of the scale reconstruction.

4. There is redundancy in the set of all Euclidean constraints, as in the protective case. We will
want to pick a convenient but sufficient subset for reconstructing the scales.

These issues will be addressed in the following sections.

3.2 Conditions for a Unique Reconstruction

In this section, we study the problem: given the relative motions (l?fct,pjkt), 1 <i,k<m with p^j's
defined up to a scale, what are the conditions for the n-point m-frame problem to have a unique
reconstruction, i.e. a unique scale matrix A compatible with the given image matrix X. Notice
that the equation (8) is homogeneous, the scale matrix A can only be recovered up to a universal
scale. We then treat two scale matrices A' = cA, cr e R+ as equivalent; and wewill talk about the
uniqueness modulo this equivalence.

Definition 2 A configuration of the n-point m-frame problem is called critical if any of the vectors
0* —o^^l<i <k <m, i.e. the epipoles, lines up with any vector —o^^l < k < m^l < j <n.

Notice that, following this definition, zero translation always induces a critical configuration. The
set of all critical configurations is a zero-measure set of the overall configuration space; the set of non-
critical configurations is dense in the overall configuration space. For a non-critical configuration,
the two vectors pki and xj. are linearly independent for all 1 < i, fc < m,1 < j < n. In this case,
the structure can be reconstructed uniquely.

Theorem 3 (Sufficient Conditions for a Unique Reconstruction) Consider a non-critical
n-point m-frame problem. Given the relative motions (RkiiPki)A < i < k < m with pki^s de
fined up to a scale, for the image matrix X 6 of these n points in the rri image frames, its
compatible scale matrix A € is unique up to a scale.
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Proof: Suppose A' is another compatible scale matrix. Re-scale A' by A}/A'}. For this scale
matrix A', it suffices to prove that Aj = A'J. for all 1 < j < n and I < k < m. From the constraints
(16), for all 2 < A; < m, 2 < j < n we have:

•Rw(A}x} - Ajx^) = Ajxj - X{xl
fiM(A'}x} - A'JxJ) = A'ixJ - A'i4

After the rescaling, A} = X'\. Subtracting these two equations, we have:

(A'l - Ai)flwxJ = (Ai - A'J)xJ - (A^ - (17)

For the constraint (16), when i = 1, applying cross product with pki to both sides, it yields:

A^x^ Xpki = AjRfcjxj Xpfci,

A'ix{ Xpki = A'jRfcixJ Xpkv

Apply cross product with pki to both sides of (17) and use the above identities we obtain:

- A'i)(xjt Xpfci) = 0.

Since xj xpki ^ 0 because the configuration is non-critical, we have Aj - A'J = 0and (17) becomes:

(A'i - K)Rkixi = (A'i - A^)x{.

Bythe assumption ofnon-criticality, xj andpki are linearly independent. Since A^x^ = AjRfciXi-1-
TfcPfci we have Rkix^ and x^ are linearly independent. Therefore, A'̂ - = 0 and A'̂ - Aj = 0.
Combining with the previous result that Aj - A'j^ = 0, we have

A'{ = A{, 1< A; < m, 1<y< n.

That is A' = A. •

The scale matrix A is thus recovered up to a universal (positive) scale, say <t 6 With
respect to this scale, the scale of the relative translational motion is uniquely recovered through
(16):

JkPki = A^xi - X^Rkixi. (18)

Corollary 2 Consider the setup with assumptions of Theorem 3. The structural scales of the n
points and the scale of relative (translational) motions among the m frames are uniquely determined
up to a universal scale.

Combined with the motion estimation algorithms. Theorem 3 and Corollary 2 tell us that as
long as eight points and two image frames form a non-critical configuration, the compatible scales
of these points are uniquely determined, as is the scale of the relative motion between these two
frames.

Theorem3 givesa sufficient condition for the n-point m-frameproblem to havea uniquesolution.
This condition may be too restrictive in practice. We need to study the necessary and sufficient
conditions for the uniqueness. For a general n-point m-image configuration, it is reasonable to
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assume that for any point 9^, 1 < i < wthere are at least two image frames in which
is not critical. Otherwise, the camera simply translates along thestraight line determined by the
optical center and this point. There is no way to tell the distance ofsuch a point. A point q which
does not satisfy this assumption is called a singular point with respect to the m image frames
considered.

Definition 3 Two frames are called strongly connected if they both have images for at least
eight points in general positions which form a non-critical configuration with the two frames.

Definition 4 Connectedness is the smallest equivalence relation generated on the m frames by
the strong connectedness.

In the language of group theory, if the and frames are strongly connected, we treat it as
a 2-cycle (A;, z) in the permutation group 5m of the m image frames as m elements. Then the
connectedness relation is represented by the subgroup of 5m generated by all the 2-cycles that
represent strong connectednesses. For an instance, there is only one equivalence class if and only if
this subgroup acts on m elements transitively.

Theorem 4 (Necessary and Sufficient Condition for Unique Reconstruction) For an n-
point m-image problem in a general configuration, the structure and the relative motion are deter
mined up to a universal scale if and only if the n points are non-singular and the m frames are in
a single equivalence class with respect to the connectedness.

Proof: The necessity is obvious since the relative motion between different equivalence classes
cannot be uniquely determined by the motion recovery algorithms (yet the 3D structure of the n
pointscanstill possibly be reconstructed upto an arbitrary Euclidean transformation), and singular
points have to be ruled out. We prove the sufficiency here. First useall stronglyconnected relations
to determine the relative motions, and then determine the structural scales of all the associated
image points and the scales of the translational motions between strongly connected frames. The
relative motion gki between any two frames is then uniquely determined by those known from
the strong connectednesses. Now only the scales of points which are not in any of the strongly
connected relations are not yet determined. Say the scale of point q^ is not yet determined. Since
it is non-singular, there exist two frames, say i^^ and frames in which q^ is not critical. Then
the vectors pki and are linearly independent. The equation:

= +TA:tPfct

uniquely determines the two scale and A^ since is already known now. Then the scales of
point q^ with respect to frame i and k are reconstructed, so are the scales with respect to other
frames. In fact, if a non-singular point has images in all of the m frames, it must be in one of the
strongly connected relations we have used above to determine gki- m

The proof also implies that we do not have to require that every point has images in all m
image frames. Occlusion is allowed as long as the point is non-singular in the frames in which it
has images. We thus have:

Theorem 5 (Reconstruction with Occlusion) For an n-point m-image problem with occlu
sion, the structure and the relative motion are recoverable up to a universal scale if and only if the
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n points are non-singular in the frames in which they have images and the m frames are in a single
equivalence class with respect to the connectedness.

Then one needs at least two (non-singular) images of a point q to reconstruct its (relative) 3D
scale. This theorem also implies that in the n-point m-frame setting, a lot of the image data is
actually redundant for determining the structural scales. One application of this theorem is that
one may reconstruct the 3D structure of an opaque object by taking pictures from all over the places
without knowing the position of the camera and worrying about the occlusion. The uniqueness is
guaranteed as long as connectedness between all the pictures is satisfied.

Theorem 3, 4 and 5 establish the basic theory of Euclidean structure and motion reconstruction.
In the absence of noise, they guarantee a unique solution of the motion matrix A and the scale
matrix A from the image X. In practice however, the image measurements X are always noisy, due
to quantization errors, thermal noise in the CCD array, or the errors in image correspondences. In
the next section, we will develop efficient algorithms for estimating the scale and motion matrices
from a noisy image matrix.

4 Algorithms

In this section, we study numerical algorithms for estimating the motion and scale matrices from
possibly noisy image matrices. For a given noisy image matrix X, it is possible that there is no
scale matrix A which is exactly compatible with it. In this case, we choose to pick an estimate of
A 6 which minimizes the mean squared error. We here propose several algorithms derived
from the reconstruction theory developed in the preceding sections.

4.1 A Preliminary Algorithm

For the n-point m-frame problem, consider the scaled image matrix:

/ A}x} Afx? AJxJ ^

Y =

V *** AIJ,x!l J\ 7J1 T7i m m m m /

The preliminary algorithm works for the case that the configuration between any two
consecutive frames (rows of the matrix Y) is not critical. The reconstruction can then be
done by recovering relative motions and scales only between pairs of consecutive frames (rows of
Y).

For 2 < i < m, suppose that the relative motion between the and the (i —1)*^ frames
is (i?t,Pt) with Pi defined up to a unknown scale 7, (note that Ri^pi and 7,- are shorthand for
Ri,i-uPi,i-i and 7,',t_i respectively), then from (16), we have the row scale constraints:

AjxJ = i?iAf_ixJ_i -I- jiPi Ajxj XPi = Aj_i (Ri^i_i) x pi

^ - Ajpfxj = 0.

Obviously row scale constraints determine relative scales Aj/Aj_j,2 < « < m,1 < y < n between
rows of the scale matrix A.
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Also from (16), we have the column scale constraints:

= 7r'pi

Then knowing the relative row scales Aj/AJ_ j and Aj''"^Aj^J, the column scale constraints determine
the relative scales A^^j/Aj_i, 2<i<m, l<j<n-l between columns of A. Notice the column
scale constraints are equivalent to:

A|xj' - Aj+'xj+i =iJi (A|_ixj_, - A|«xf?i') •
The left hand side and the right hand side are the expressions for the same vector with
respect to the (i - 1)'^ frame and the frame, respectively. The row and column constrmnts are
geometrically interpreted in Figure 2.

(R. P)

Figure 2: Geometric interpretation of rowand columnconstraints: the rowconstraint (forthe point
g^) is that the cross products (o^ —o^) x (g^ —o^) and (o^ —o^) x (g^ —o^) give the same vector with
the length proportional to the areaofthe triangle formed by (g^,o^, o^); the column constraint (for
the points g^ and g^) is essentially the fact that the length of the vector g^ —g^ is preserved under
the Euclidean transformation (jR,p) € SE(Z) i.e. different expressions for the vector g^ —q^ with
respect to different frames only differ by the relative rotation R € 50(3) between the frames.

For a given (noisy) image matrix X = (xj) € 1 < i < m, 1 < j < n, the Preliminary
Algorithm goes as follows:

Preliminary Algorithm:

• Compute the relative motion (iif,pi) between the (i —1)*'' and frames for 2 < i < to by
solving the MMSE estimation problem:

i2,€50(3),p,€S2 .

This can be solved by the nonlinear optimization algorithm on a Stiefel manifold 50(3) x
5^ (Ma, Kosecka and Sastry [16]) or by the linear algorithm (Toscani and Faugeras [27]).
Imposing the positive depth constraint, pick the only pair (i?»,Pi) which matches the image
data from four ambiguous solutions given by the foregoing motion recovery algorithms.

• Use the row scale constraints:

Ai_iP,jR,x^_i - XiPixj = 0, 2 < i < TO, 1 < j < n
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to solve for all relative row scales Aj/Aj_j,2 < i < m^l < j < n between consecutive rows of
the scale matrix A. They are well determined by the constraints since ^ 0 because the
configuration is not critical.

• Use the column scale constradnts:

[(A|+Va|+')x^+' -

to calculate the relative column scales Aj^j /Aj_j, 2< i < m, 1< j < n-1 ofthe scale matrix
A. This is well determined since the translation is always nonzero. We then have m estimates
for each relative column scale They should be the same in the absence of noise. A
reasonable estimate of the relative column scale between the {j + and column is the
mean:

1

=- E (AfVAj) , 1<i <n- 1.
t=l

• Set Aj = 1 and then the relative row and column scales calculated above uniquely determine
the scale matrix A.

• The translational motion 7ip,- is re-estimated by the mean:

TiPi
^ • 1J=1

• Recover the motion matrix A from (Ri,Pi)j 1 < i < m, the scale image matrix Y from X
and A. Then any row of Y reconstruct the 3D structure of the n points up to a Euclidean
motion and an overall scale.

Although the preliminary algorithm is conceptually simple, it has some major drawbacks:

1. it does not apply to the cases where the non-criticality between consecutive frames is violated;

2. (relative) structural scales are estimatedlocally and the overall estimation maynot be globally
optimal;

3. the structural scales and translational motion scales are estimated separately; this is not in
the spirit of our former observations, which reveal that the reconstruction of structural scales
and translational motion scales is essentially the same thing.

For example, difficulties occur when two consecutive rows form a critical configuration but
the overall configuration satisfies conditions given in Theorem 4. Also, when a point is singular
with respect to two consecutive frames, the corresponding row scale constraint is ill-conditioned.
Further, different rows of Y may give inconsistent reconstructions of the 3D structure of the n
points. Wethus need a version of triangulation (Hartley [9]) for the m-frame case, i.e. a consistent
reconstruction of the 3D structure using information from all m images.

=^ . 1<i<m.
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4.2 Main Algorithm

The main algorithm to be proposed here is to estimate the structural scales and (translational)
motion scales altogether. Further more, we will consider triangulation among the m image frames
so as to obtain a consistent reconstruction.

To simplify the notation, we first assume the configuration between two consecutive rows is
non-critical and we will drop this requirement later on. Notice all the row and column constraints
used in the Preliminary Algorithm essentially comefrom the same constraints (16):

Ajxj = + 7,Pi, 2<i<m,l<j <71 (19)

In the absence of noise, the preliminary algorithm actually constructively proved that
the row and column constraints uniquely determine all the unknown scales up to a
universal scede, as do the constraints given by the above equations (19).

Notice that knowing {(H{,pi)}5l25 equations given by (19) are linear in both the structural
scales A's and the motion scales 7's. The estimation of these scales can be formulated as a standard
LLSE estimation problem. Arrange all the unknown scales in (19) into an extended scale
vector A:

Then all the constraints given by (19) can be expressed in a single linear equation:

MA = 0 (20)

where M is a matrix depending on {(RuPi)}^2 {*0£r,j=i- There are totally 37i(m-l) (scalar)
linear equations given by (19) hence M is a37i(m-l) x (mn+m—1). Since 3n(m—1) —(mn+m—1) =
(2n —l)(m —1) - n, as long as m, ti > 2, we have more equations than unknowns. Since in our
case n > 8, m > 2, the problem of solving Afrom (20) is usually over-determined. For (20) to have
a unique solution, the matrix M needs to have rank mn —

In the absence of noise, if consecutive pairs of rows are non-critical, the equations ^ven by (19)
uniquely determine all the unknown scales. In this case, the matrix M should have exactly rank
mn + m - 2 and the linear equation (20) has a unique (up to scale) solution for A (as previously
pointed out, the preliminary algorithm in fact gives a constructive proof for the uniqueness). In
the presence of noise, the LLSE estimate of Ais just the eigenvector of M^M corresponding to the
smallest eigenvalue. However, the obtained reconstruction Y may still suffer from inconsistency.
In order to triangulate among the m images, we convert the m images of each point -,1 < j < n
to the same image frame, say the last or the image frame by the Euclidean transformations:

Ajxj H-zj = + jmiPmi, 1 < z < m,l <j < n.

Then zj,l<i<m, l<j <nis the transformed image of the point from the image
frame to the image frame. However, the relative motions {RmiiPmi)^ I <i <m are usually not
estimated directly. They may be given in terms of relative motions between consecutive frames by:

m—1 m—1 77J—1

Rmi — Rk+h IfmiPmi —^ ^Rw^k+iyk+lPk+l —^ ^yk+lRmfk+lPk+l-
k=i k=i k=i
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Notice the expression for the term l<i<m-lis linear in 7;fe, i + 1 < A; < m. With
respect to the frame, we now have m copies of 3D coordinates for each point 9^, 1 < j < ni

m—1

(Z^,. ..,Zj,) = ^ 7fc+l^m,A+lPA:+l >•••»KAj •

In the absence of noise, due to the Euclidean transformation AmXm = i2mt Ajxj + jmiPmi^ all the
m copies of coordinates should be equal to each other:

zj = z^, 1< i < k< m,l < j < n. (21)

This gives an equivalent set of constraints to those given by (19). Notice that the transformed
images are still linear in the unknown scales A's and 7's. The constraints given by (21)
are therefore linear equations in terms of the unknown scales.

With respect to the frame, a reasonable estimate of the 3D coordinates of the point will
be the mean:

1 ^
z^, 1 < i < n.

^ t=l

We then have three equivalent sets of linear constraints on scales:

{Aw=Ai.ftxf.,+7.p.}SL-=i w=4}r=tr=i.=i ^ {^'=^or=u=r
Since these three sets of constraints are algebraically equivalent, if any one of them uniquely de
termines the scales, so will the other two. However, in the presence of noise, using different sets
of constraints will give different LLSE estimations. If we write all the linear constraints given by
{zf —z^ = 0}2:'i in matrix form:

MA = 0

then there exists a matrix W such that WM = M. In the presence of noise, M and M are
usually not singular. Then the eigenvectors corresponding to the smallest eigenvalues ofM^M and

= M'̂ W^WM may not be the same, hence minimization of |lMA|p and ||MA|p will give
different LLSE estimates of A.

For the purpose of triangulating the m images, it is natural to minimize the following objective
function:

n m

min V(A) = = IIMAf.

That is to minimize the Euclidean distances from the reconstructed m copies to their mean. Clearly,
this problem is also an LLSE problem and can besolved efficiently. Then the mean {z^}J„i gives
a unbiased reconstruction of the n points (with respect to the frame).

Notice that, in the above discussion, the assumption that consecutive pairs of image frames
are non-critical is really not necessary. The ideas apply to any configuration which satisfies the
uniqueness conditions given in Theorem 4. Below is the summary of the main algorithm.

Main Algorithm: Discrete Case
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• For 1 < i < k < m, check for the and frames if the conditions for the eight-point
motion recovery algorithms to have a unique solution are satisfied for the available image
correspondences. If so, recover the relative motion {Rki^Pki) as in the Preliminary Algorithm.
Recover at least m -1 (independent) relative motions such that all the m frames is in a single
connected class.

• With respect to the last imageframe, the image frame, solve the LLSEestimation problem

n m

min =
||A||=i

for all the available constraints. The solution is unique if and only if the matrix has a
unique smallest eigenvalue.

• Recover the scales of the translational motions and the scale matrix A from A. The scaled

image matrix Y is simply A 0 X. The triangulated structure estimate (with respect to the
frame) is given by

In this algorithm, the roles of projective and Euclidean constraints are very clear: the projective
constraints recover the motion up to a scale; the Euclidean constraints handle the scale information
(both for the structure and the motion).

4.3 Iterative Algorithm

One may have noticed in the above algorithm the close relation between motion and structure. In
fact, after obtaining the scaled image matrix Y, one can re-estimate both Rki and pki, I < i^k < m.
This is an MMSE estimation problem with the linear constraints:

A{x{ = Rki>4^i + Pki, I <hk <7n,l < j <n.

and the constraints R^^Rki = I- It can be solved as an optimization problem on the manifold
50(3) XR^. With the newly estimated relative motions, one can run the Main Algorithm again
and re-estimate the structural scales and translational motion scales. Keep repeating this procedure
until the difference between two consecutive estimates of the structure or the motion is small enough.
This is then a Gauss-Newton type iteration scheme and the goal is to search for a global optimal
structure and motion estimates. Once it converges, it will certainly give a better estimation than
the initial guess. Of course, this approach is computationally costly.

The above algorithm only needs to be slightly modified to work for the case with occlusion
(not like the factorization method). In a dynamic setting, like real-time vision, these algorithms
can also be adjusted to recursive versions.

5 Differential Case

The differential case is a limiting case of the discrete case. In this section, we study the differential
version of some of the constraints from previous sections. Some of these differential constraints
have already been used in computer vision to recover motion or structure.
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5.1 Projective Constraints and Motion Recovery

At time t = toj differentiating the equation (7) (m - 1) times, we obtain the equation for higher
order derivatives of the optical flow at one point:

( X

X

^(0

x(»n-2)

0

X

X

0 N
0

0

x/

( ( Pg \
A Pg

A(0
=

Pgii)

Pg{m-2)
^ p^(m-l) J

where c*• =^^̂ GZ"^ for 0<i<i<(m —1). The quantities x^*^, 0<«<(m —1) are the
order derivatives of the image point. If we define c*- = 0 for i < j, the entry (in fact a tuple)
of the first matrix in the aboveequation has the unified form 0 < < (m - 1). We may
define matrices U G B €

U= (c}x(*->)), B= {Pg% 0<i,j<{m-l). (22)

Let Uj GK®"* be the column of the matrix U and 6i,62,63,64 G be the four columns of the
matrix B. We then have the differential version of the Theorem 1.

Theorem 6 Consider the image x(t) G 0/ a point q under the camera motion g(t) G SE(d).
Thenfor the matrices U G and B G defined in (22), the column vectors G
R^"* of the matrix U and 6i,62>^3)&4 ^ R^"* of the matrix B satisfy the following wedge product
equation:

61 A 62 A 63A 64 A Ui A ... A Um = 0. (23)

This wedgeequation contains all the projective invariants associated with the motion of the image
of a single point. The proof is essentially the same as that of the Theorem 1. One would see
that most of the constraints given by the wedge product involve high order derivatives of the
optical flows or the structural scales. Due to numerical accuracy, they are not very useful for
reconstruction purpose. However, constraints involving the first derivative have been widely used.
These are simply the bilinear constraints on optical flows, which are a differential version of the
bilinear epipolar constraints in the discrete case.

Without loss of generality, we may assume g{to) = /. Then g has the twist form:

f do V \
''=(0 0j
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where w 6 is the angular velocity and u € the linear velocity. Then, in the case that m = 2,
the wedge product equation gives:

6i A...A64 Aui AU2 =det ^ ^ ^)ei A...Aee =0
<=> det ( „. . I = 0 det I . . ) =

\ Pg X X J \ u V X X J
Pg X
Pg X :)• 0 ^

/ 0 X M-
0 V X — Cjx X /

<=> del

-O- x^ux + x^vux = 0.

This is exactly the differential version of the epipolar constraint, or the bilinear constraint
(see for example Ma and Kosecka and Sastry [15]). This equation holds for all the n image points:

xP^vx^ + x^^vux^ = 0, 1 < i < w.

If one has n > S points in general position, the relative motion (a;, u) can be determined by
solving the MMSE estimation problem:

n

min V(a?, u) = (x^^vx^ + x^^vux^)'̂ .
w€R3,v€S2 ^ ^

Using the linear or nonlinear algorithms on x 5^ (Ma, Kosecka and Sastry [15, 16]), the motion
(w,v) can be recovered with u up to a scale.

5.2 Euclidean Constraints and Structure Reconstruction

As we have seen in the discrete case, the purpose of exploiting Euclidean constraints is to reconstruct
the scales of the motion and structure. In the differential case, the scale information is encoded
in A-', A-^, 1 < j < n for the structure of the n points, and 7/ G R"*" for the linear velocity v. The
differential version of the constraint (16) is just:

X^x^ + X^xP = a;(A-^x-^) +771; <=>> X^x^ + A^(x^ - c5x-^) —777; = 0, 1< j < 7i (24)

Known x,x,ti; and u, these constraints are all linear in A-^, V, 1 < j < n and 77. Also, if x*', 1 <
j < n are linearly independent of u, «.e. the feature points do not line up with the direction of
translation, these linear constraints are not degenerate hence the unknown scales are determined
up to a universal scale. As in the discrete case, we call a configuration critical if there is any

1 < i < which lines up with the translational direction v. In fact, this is the limiting case of
the critical configuration defined in the discrete case.

We can arrange all the scale quantities into a single vector A:

A= (A^..., A", A',..., A", e E^n+i

For n optical flows, Ais a 27i + 1 dimensional vector. (24) gives 37i (scalar) linear equations. The
problem of solving A from (24) is usually over-determined. As in the discrete case, it is easy to
check that in the absence of noise the set of equations given by (24) uniquely determine Aif the
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configuration is non-critical. As in the discrete case, we can write ail the equations in the matrix
form:

ArA = 0

with M € being a matrix depending on and {x^,Then in the presence

of noise, the LLSE estimate of Ais just the eigenvector of M^M corresponding to the smallest
eigenvalue.

Notice that the rate of scales {A-^}"_i are also estimated. This piece of information has been
ignored in most of previous structure from motion algorithms. However, it turns out to be a very
important piece of information. If we do the above estimation for a time interval, say then

we obtain the estimation \{t) as a function of time t. But the estimation of X(t) at each time t is
only determined up to an arbitrary scale. Hence p(t)X{t) is also a valid estimation for any positive
function p(t). However, since p{t) is multiplied to both A(t) and X(t). Their ratio:

r(t) = A(<)/A(t)

is independent of the choice of p{t) at each time t. Notice ^(InA) = A/A. Let the logarithm of
the structural scale Ato be y = In A. Then a time-consistent estimation A(f) needs to satisfy the
following ordinary differential equation, we call it the dynamic scale ODE:

y(t) = r(f).

Given y(to) = yo = A(fo)/A(fo), solve this ODE and and obtain y{t) for t € [to,f/]. Then the
time-consistent scale A(t) is simply given by:

X{t) = exp{y(t)).

Thus, all the scales estimated at different times are with respect to the scales at time to. One can
also normalize all the scales with respect to those at time t/ by setting the final value y(tf) and
then integrating the ODE backwards. Therefore, in the differential case, we are able to recover all
the scales as a function of time up to a universal scale. Notice that in particular the (relative) scales
of the translational motion v are fully recovered, which is very important to many applications in
mobile robot navigation. From the above discussion, we have a differential version of Theorem 4:

Theorem 7 (Uniqueness of Reconstruction: Differential Case) Consider a moving camera
and n > 8 points in general positions. If the configuration is non-critical for the time interval
(to^tf), then the Euclidean structure of the n points and motion of the camera as a function of time
can be reconstructed up to a universal scale.

In the differential case, the idea of triangulation is essentially the same: try to find a consistent
reconstruction of the Euclidean structure from all the structure estimated over time. However, it
is much harder to implement in a practical algorithm since it involves integration of the motion
(a;(t), u(f)) unless we have anestimation ofthetransformation g{t) ~ (i?(t),p(t)) from other sources.
The issue of estimating the velocity and the transformation together will be addressed in section 6
which deals with hybrid settings.

Main Algorithm II: Differential Case
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• At each time t € {to,tf), compute the motion (w, v) bysolving the MMSE estimation problem:

n

min V(u;, u) = (x^^vx^ + x^^vux^)^.
u;eR3,v€52 ^ '

J=1

This can be solved by the linear or nonlinear algorithms (Ma, Kosecka and Sastry [15, 16]).

• At each time t, solve the LLSE estimation problem

n

min V(X) = y"[A^xJ + X^(xP - - rjv? = \\MXf
11^11=1

for all available constraints from (24).

• Obtain A(t) as a function of t for t 6 [to>i/]- Calculate the ratio function r{t) = A/A and
solve the dynamicscale ODE to get y{t). Normalize all the scales in A(t) with respect to the
time-consistent scale A(t) = exp(t/(t)). Notice one only needs to do this for the scale of one
point, say A-^ {t). The structural scales of the n points and scales of the translational motion
v(t) are then reconstructed from the vector A up to a universal scale.

In practice, the ratio function r{t) may not be available for all the times t € One can
use some simple interpolation schemes to recover r(t), hence the time-consistent scale X{t). It is
up to the user to adjust the algorithm appropriately for the specific applications.

Comments 1 In both the discrete and differential cases, the proposed algorithms reconstruct both
the Euclidean structure and motion up to a single universal scale. These algorithms provide any
vision-based autonomous agent, for example an autonomous mobile robot, with complete infor
mation about its surrounding environment and its ego-motion relative to the environment. The
universal scale is not important since it only scales up or down the overall configuration space (as
a Riemannian manifold). All the intrinsic geometric (including metric) properties of the space are
preserved. In this sense, no information is really lost through a vision system.

6 Hybrid Reconstruction of Structure and Motion

We now study the cases where both point correspondences and optical flow measurements are
available. Such cases are referred to as hybrid. In practical systems the quality of the mo
tion/structure estimates naturally depend on the quality of the measurements. Large motions,
occlusions, reflectance variations, aliasing etc. alfect negatively the quality of the flow estimates as
well as the point correspondences. Therefore it is of interest to study the case when both types of
measurements are used for motion and structure estimation. In the following section we present
theoretical analysis of such scenario and propose corresponding algorithms.

6.1 Hybrid Case I

Suppose one point q is projected on all m image frames (in discrete positions) and its optical flows on
these frames are also measured. We refer to this case as hybrid case I. It is a natural combination
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(a "direct sum") of the discrete case and the differential case we studied in the preceding sections.
For this case, we have:

/ Xi 0 0 ••• 0 \ / Ai \ ( \
xi xi 0 • • • 0 Ai Pgi

0 • • • 0 x,„ 0 Am Pgm
\ 0 ••• 0 km ) ^ Am ) \ Pgm /

In general, gi^l <i <rn have the form:

- ( Cji Vi \ f RiUi RiVi \9i = =S 0 oj =V 0 0 j
Similarly, we define the matrices H 6 and C € to be:

H =

/ xi 0 0
xi xi 0

0 \
0

0

V 0

0 Xm 0
0 km /

C =

/ Pgi^ \
Pgiii

Pgm

VPgm^m )

Let hi € R®*" to be the column of the matrix H and ci,C2,C3, C4 be the four columns of the
matrix C. We then have the following result:

Theorem 8 For the hybrid case I, the vectors {hi}|^i and {ci}J_i defined as above satisfy the
following wedge product equation:

Ci A C2 A C3 A C4 A hi A ... A h2m = 0.

Obviously, this wedge product equation gives all the discrete projective constraints (bilinear, trilin-
ear and quadrilinear ones) given bythe wedge product in Theorem 1; it also gives all the differential
(bilinear) epipolar constraints we used in the differential case. Further, some new constraints are
given by this wedge product. These constraints involving both velocity {('^tj'^i)}i^i and transfor
mation {{RiiPi)}^i are called hybrid constraints. In fact all the constraints given bythe wedge
product equation are the same as that all the (2m+ 4) x (2m-}- 4) minors of the 6m x (2m -1- 4)
matrix (C,H) are degenerate (i.e. the determinant is zero). All the non-trivial constraints given
by these minors will be homogeneous equations in terms of the entries of {(x,-,x,)}g.i. According
to the structure of the matrix H, the degree of these homogeneous (hybrid) constraints is
from degree 2 to degree 8.

Without loss of generality, we will assume that consecutive frames are non-critical. Then the
homogeneous constraints above determine the motion {(it't, Ui)}g.i and {(i2t,pi)}^i transla-
tional motion and {pi}2:i up to unknown scales. In order to reconstruct the structural
scales and the scales of motions, one needs to use the following set of Euclidean constraints from
both the discrete case and the differential case:

X{xi - - jipi = 0, 2< i < m,l < j < n
X{x{ + X{ (k{ - cbixj) - riiVi = 0, 1< i < m, 1<y< n.
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As long as the discrete case and differential case respectively have unique solutions, the overall
hybrid case has a unique solution (up to a universal scale). The estimation is simply an LLSE
problem.

In particular, the scales of velocities at a particular time can be uniquely recovered with respect
to the transformation between the current image frame and a reference image frame. This is very
important for applications such as mobile robot navigation since a consistent estimation of the
displacements and velocities can be obtained. Notice that, in the image frame, we certainly can
measure optical flows for points which do not have projections in the other image frames at all.
Their structural scales can aJso be determined with respect to the same universal scale. Then the
occlusion is certadnly not a problem at all in the hybrid case I. In fact, if regarding the
optical flows as the limit of image correspondences between two image frames very close in time,
this is essentially another way of stating Theorem 5.

Notice that in the hybrid case I, the quantities {Ajjj-'i are not quite useful since we are not
measuring the optical flows in a continuous fashion. So one can get rid of them by applying cross
product with {xj}2;'ito the differential Euclidean constraints:

Ajxj + AJ (xj - - 7]iVi = 0 ^ - WixJ) XXj - 7]iVi Xxj = 0.

Then the number of states in the associated LLSE estimation problem can be reduced. This is
essentially the bilinear constraint used by some researchers in the structure from motion algorithms
using optical flow, see for example [23].

6.2 Hybrid Case II

For the hybrid case II, weconsider the situation that optical flows of n points are measured for the
whole time interval the correspondences of the n points between the initial (!*'*) and final
(2"'̂ ) image frames are also given. Essentially, for reconstructing the Euclidean scales, the hybrid
case II can use the same set of Euclidean constraints as hybrid case I (with the differential ones
over the whole time interval). The dynamic scale ODE is needed to recover the time consistency
of scales as in the pure differential case.

However, for estimating the motion (c«;(t), t;(t)) and the displacement (R(tf)iP(tj)) between the
two frames, instead of usingthe eight point motion estimation algorithms for each time t separately,
we can formulate it as a standard optimal control problem as follows.

Regard the velocities u = (w, u) 6 as the control inputs to the following dynamic system on
the Lie group 5£?(3):

g=gu, where «=̂ q q̂ •
Now define the final-state cost function:

and the Lagrangian:

^(s(t/)) = («/))'.
i=i

L(u, t) = ^ + WyV^v^ (25)
i=i
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where > 0 are weights for different measurements. Then the motion recovery prob
lem is naturally equivalent to an optimal control problem on the Lie group SE{Z) (see
[26, 21] for examples of optimal control on Lie groups): the optimal motion u* = is the
optimal control law for the dynamic system on SE(Z):

9 = 9^,

subject to the constraint on the final state 9{tf):

which minimizes the objective:

'tf

J(u{')) =<l>(g(tf)) + f L̂(u,t) dt.
Jto

The solution for this optimal control problem gives a more time-consistent estimation of the motion.
Many numerical algorithms exist for solving this type of optimal control problems (one can refer to
Bryson and Ho's [1] for a detailed discussion on these algorithms). Motion estimation schemeswhich
consider dynamic consistency are usually referred to as dynamic motion estimation schemes.
A more detailed study of this approach will be presented in another paper.

In the case that the image correspondences between the initial and final image frames are
not available, the above optimal control problem simply becomes one without a penalty on the
final state. The solution is still well determined. Notice that, by solving these optimal control
problems, one automatically obtains both the optimal velocity (a;(t),u(f)) and the transformation
s(t) (i?(t),p(t)) as a function of time t. As we mentioned in the differential case section, such a
g{t) can be used for triangulation purposes.

7 Conclusions and Discussions

In this paper, the problem of Euclidean structure and motion recovery from multiple frames is
thoroughly studied for the calibrated camera case. Two types of constraints are presented in this
paper: constraints on motion parameters and constraints on (Euclidean) structural parameters.
The algorithms for motion and structure recovery are naturally derived from these constraints. The
geometric intuitions associated with the problem are nicely revealed through the clean roles that
these two types of constraints have played in the proposed algorithms. Such geometric intuitions
usually are very elusive in the uncaJibrated camera case when the projective geometry is applied.
On the other hand, a better understanding of the uncalibrated case should be based on a better
understanding of the calibrated case, which is simpler but crucial.

Prom our experience, we notice that most vision problems, although difficult, are over deter
mined problems. That is, the existence of (unique) solutions is usually guaranteed, but there are
always much more equations than needed to solve the parameters. This is probably also the reason
why there are alwaysmultiple algorithms or approachesto solvethe same vision problem. However,
it is always hard to argue whether an approach is better or not. We believe a good approach not
only is based on a solid mathematical understanding but also is an approach which can be easily
applied to general cases. This is the reason we always study the discrete and differential (and even
hybrid) cases together.
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Notice that at least in the calibrated camera case, one does not need the projective geometry
framework at all. In fact, the Euclidean setup seems more suitable for the problem. Differential
geometric properties associated with the structure and motion recovery problem can be more easily
and clearly revealed. The study of the uncalibrated cameracasewithin this framework is currently
under way. We are also in the process of carrying out the experimental evaluation of the proposed
algorithms.
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