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ABSTRACT

Modeling and Simulation of High Frequency Surface Waves in Bounded Plasmas

1 Introduction

Our Berkeley Plasma Theory and Simulation Group (PTSG) has been studying bounded
plasmas and plasma devices since about 1981, in which the behavior of the plasma at the edge
plays a major role. PTSG has published many journal articles in this area. We also have
generated a suite of plasma device codes now in world-wide use by many others, who have
published something approaching 100 journal articles, using our codes. Our plasma PIC-MCC
codes are available free on the web from http://ptsg.eecs.berkeley.edu

This report contributes detailed theory and simulation for high frequency (electron) waves
that may propagate along the plasma edge, with perturbations in the potential and density
in the sheath and pre-sheath regions. A brief summary comes first. The report then begins
with Chapter 1 of David Cooperberg’s thesis (his title is the Abstract above) which provides an
extensive history of the area, followed by his Chapters 2, 3, 4, and 5 as journal articles, plus a
short Chapter 6 on future research. That is, this report is Dr. Cooperberg’s thesis.

2 Yet to come

In the next year or so, succeeding Parts II, III, IV..., chapters from more Berkeley Ph.D.
theses, will be published, also as ERL reports, including low frequency edge waves (at ”ion
frequencies” ), with additional results on coupling to both the high and low frequency edge waves.



There also will be some work on pure electron plasma waves oscillating near and propagating
along electron emitters, with attention to both noise and stability, magnetized and not.

3 Acknowledgment of Support

We are very grateful for continual support from ONR, dating from 1977, for most of this
work, and for the continued support of Dr. Charles Roberson at ONR for ”plasmas at the edge”,
both near-neutral and non-neutral. David Cooperberg was an ONR ASSERT student. Futher
support came from ONR Contract N000014-97-1-0241.



SHEATH WAVES, UNMAGNETIZED
David J.Cooperberg, Charles K. Birdsall

EECS Department, University of California, Berkeley CA 94720-1770

Plasmas bounded with metal walls have sheaths at their edges near the walls, along which electrostatic
(and electromagnetic) waves may propagate. We build on a long history of dielectric-bounded plasma
waves, e.g., relating transverse (or series) resonances to cut-off frequencies of our sheath waves. We present
kinetic simulations (PIC-MCC), confirming: the dispersions; the edge (surface) waves perturbed densities
and potentials are largest at the edge (with the perturbed fields of the asymmetric modes penetrating the
bulk at small values of k); those of the body waves are largest in the body. Physically, the two sets of waves
are guided along their respective regions.

We also drive edge waves sufficiently strongly to cause electron heating producing ionization of the
background gas, which maintains a plasma discharge. The heating profiles and density scaling of these
resonant surface wave discharges differ markedly from the well known capacitive, inductive, and wave-
coupled discharges.

First, using warm electrons and fixed ions (matrix sheath), electron surface waves in a plasma slab
bounded by metal walls have been analyzed and detected. (See Ref 1.) Second, a more realistic model is
used, with warm electrons and ions, free to seek equilibrium, creating a nonuniform self-consistent density,
with sheaths, presheaths, and bulk regions, still between metal walls. (See Ref. 2.) For both models,
dispersions and eigenfunctions of electrostatic, asymmetric and symmetric, surface and body waves, are
obtained from a linearized Viasov theory. These are then verified with PIC simulations in 2d3v. Propagation
of surface and body waves occur analogous to those found in dielectric bounded plasmas, such as Trivelpiece-
Gould waves. The lowest frequency asymmetric surface wave, a dipole-like mode, has a cutoff at the series
resonance (infinite admittance), also called the lowest frequency Tonks-Dattner or Herlofson resonance; these
are followed by higher order surface wave modes, with higher frequency cutoffs. The highest frequency modes
are body waves, with Bohm-Gross like dispersion. Collisionless damping is also found and observed.

. Third, a plasma with argon neutrals, ions and electrons between two parallel metal plates, is driven (in
PIC-MCC 1d3v simulations) by an RF voltage source, with sufficient strength to just maintain a discharge.
The minimum required externally applied voltages (near series resonance, with frequencies from 110-470
MHz) were on the order of the electron temperature (a few eV), with correspondingly low plasma potentials
(a few 10’s of volts). At 470MHz and a pressure of 10 mTorr, the peak, central, electron (and ion) density
was 7.2 €10 cm-3. (Extrapolation to drive at 2450 MHz indicates a peak density of 113 cm-3.) The argon
neutral gas pressures were 2-300 mTorr.The diode (gap) impedance was observed to be nearly resistive (as
expected at or near resonance). The EEPF’s, electron heating profiles, and scaling laws are found to be
different from the more common capacitively, inductively and wave-coupled discharges. The self-tuning of
the discharge, needed to maintain resonance, is described. See Ref. 3.

Lastly, using a fully electromagetic 2d3v PIC-MCC code, a plasma is created and sustained by resonant
surface waves in a metal bounded cavity 2 by 8 cm at a drive frequency of 150MHz (vacuum wavelength of
2m), applied with a set of antennas (along one of the longer walls) phased to produce a standing wave. See
Ref. 4.
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Abstract

Modeling and Simulation of High Frequency Surface Waves in Bounded Plasmas
by

David Jefirey Cooperberg
Doctor of Philosophy in Physics

University of California at Berkeley
Professor Charles K. Birdsall, Chair

“For many years plasma simulations were focused on the behavior of the bulk of
the plasma, as there are many oscillations, waves, instabilities, and transport problems [to
study] in the bulk... For many such models, periodic boundary conditions were acceptable,
essentially ignoring boundaries.”[1]. In the past decade accurate modeling of bounded
plasma has advanced considerably motivated in part by a need to describe edge transport
in fusion devices and in part by a desire to model DC, RF, and microwave discharges which
are commonly used in plasma-assisted materials processing.

In the work presented here, we shall make a careful examination of an intrinsic
property of bounded plasmas. Specifically, we will be studying a set of high frequency
(electron) waves which propagate at the boundary of metal bounded plasmas. It will be
shown that their existence and behavior requires an accurate model of the plasma edge and
sheath regions.

This work has two main objectives. The first is to clarify the structure of these
waves. While there has been considerable experimental and analytic work on electron
surface waves in dielectric bound plasmas, there has been little or no investigation of the
surface modes in a metal bound slab. Part of the reason for this is that metal bound
plasmas are less accessible for some experimental techniques which include wave excitation
and detection schemes (typically done with antennae positioned outside the dielectric bound
plasma) and partly because it may have been believed that the electric fields of surface waves
in metal bound plasmas would be shorted out by the conducting boundaries close to the
plasma. This is not the case, as will be demonstrated. It is also hoped that this use of



simulation in the study of electron surface waves will further our general understanding of
these waves in both metal and dielectric bound plasmas.

Our second objective is to study how these natural modes may be used to sustain
a plasma discharge suitable for plasma processing. Current “surface wave plasmas” are
produced in glass tubes with short-gap excitation[2]. Our analysis of surface waves in planar
metal bounded plasma slabs enables us to demonstrate, through simulation, new types of
surface wave sustained discharges which may operate at low pressures with low sheath
potentials and may be scalable to large areas without compromising plasma uniformity.

This study of surface waves in metal bound plasmas also leads to speculation
as to the use of such waves in controlling the plasma edge (and possibly the bulk). The
application of microwave power at the plasma edges may be used to excite these surface
modes and enhance plasma heating there. The effect might be enhanced plasma uniformity
in traditional capacitively and inductively coupled discharges.

This work relies heavily on particle-in-cell simulation with Monte-Carlo collisions
(PIC-MCC)|[1,3,4] of unmagnetized, bounded 2d3v plasmas. Among the benefits of the
PIC-MCC scheme are an adherence to first-principles, which allows a wide range of kinetic,
non-linear, non-equilibrium, and non-local behavior to be accurately modeled, and an ease
of collecting virtually any diagnostic that could be desired (at any and all positions in
phase-space). The accuracy provided by PIC-MCC is of particular importance to this work
because of a desire for an accurate representation of sheaths, non-linear effects, and kinetic
effects such as Landau damping, stochastic heating, and wave-particle interactions. Also
accurate modeling of the electron energy probability function (EEPF) is desired since the
EEPF is known to depart from Maxwellian in low pressure discharges|5] [6].

An outline of this work is as follows. Chapter 1 presents an overview of past and
current work on electron surface oscillations and waves in bounded plasmas. In Chapter 2
we initiate our study of waves in the metal bound slab using a matrix sheath model. A
linearized Vlasov treatment for this model is derived and compared to simulation. Next
a more realistic model for the plasma and sheath is developed in Chapter 3. The result
is the identification of a new set of surface modes which exist only in the non-uniform,
thermal, bounded plasma. We then move from the study of surface wave characteristics to
a study of surface wave sustained discharges. In Chapter 4 we consider the 1d3v plasma
which is sustained at the series resonance frequency (which will be shown to be the cut-off
frequency for the main asymmetric surface wave). The 2d3v surface wave sustained slab
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will be treated in Chapter 5.
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Chapter 1

Brief History of Electron
Resonances and Surface Waves in

Bounded Plasmas

Plasmas bounded by conducting or dielectric walls provide regions near the plasma
edge in which the permittivity, ¢, changes sign. This sign change takes place at the
plasma/dielectric interface in the dielectric bounded case, at the plasma/sheath interface
for a uniform metal bounded plasma with a matrix sheath, and at some intermediate point
inside the plasma (where the local plasma frequency equals the excitation frequency) for
non-uniform plasmas. A consequence of this sign change in € is the introduction of sur-
face wave modes. The field strength in these modes is greatest at a point near the plasma
boundary and decays exponentially away from this point. One dimensional simulations of a
plasma slab show: () plasma oscillations at high frequencies (w 2 wpe), associated with the
bulk; and (b)resonances (main or series, and secondary or Tonks-Dattner) on the order of
but less than wp, associated with the edges. Two dimensional simulations of a plasma slab
similarly show modes associated with the bulk and waves which propagate along the walls
(in §) which are localized in the edge (analogous to Gould-Trivelpiece and Tonks-Dattner
waves in a plasma column). The resonances found in 1d are the cut-off frequencies (k, = 0)
in 2d. Evidence of the series resonance in a parallel plate discharge is demonstrated by the
measurement of plasma impedance which approaches a pure resistance when driving at or
near feries = fpe(25/L)'/? (where s is the sheath width and L is the total system width).



In 2d thermally excited waves can be detected via spectral analysis and also can be driven
to sustain a plasma. Before proceeding with a further description of the current work on
surface modes found in the metal bounded slab, we present a history of the experimental
and theoretical advances made in understanding high frequency surface waves in bounded
plasmas, and advances in the area of surface wave produced plasmas.

1.1 Detection and Analysis of Surface Waves
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Figure 1.2: Sketch of scattered field
intensity

Figure 1.1: Schematic of experiment to
detect electron resonances in a plasma
column.

Electron resonances in bounded plasmas have been studied and observed for some
time. In 1931 Tonks[9][10] studied the fields scattered by a plasma column and found that
the scattered field versus plasma density exhibits multiple resonances (Figs. 1.1 and 1.2) with
a main resonance at w = wpe/v/2 and secondary resonances at lower densities. The main
resonance was re-derived by Herlofson(11] in 1951 in a study of résonant scattering from
ionized meteor tails. Herlofson further showed that only a single dipolar resonance existed
in the cold plasma limit in contradiction to observation. Later laboratory experiments
were performed by Dattner[12] in which he measured the electron densities at which the
secondary resonances occurred. These secondary resonances shall hereafter be referred to
as Tonks-Dattner resonances as is done in the literature. ‘

A cold homogeneous treatment of the plasma cylinder experiments describes only
the main (dipole) resonance. Vandenplas[13] outlines the research which eventually led to
a better theoretical model of the plasma cylinder which accurately predicted the Tonks-
Dattner resonances. The first analysis was performed for a uniform thermal plasma. A

formula for the resonances is then

w? = wl [l + 303, K2, (1.1)



where the discrete k;, are determined by enforcing a boundary condition of zero perturbed
flux at the cylinder wall. While a secondary spectrum is predicted, the spacing and loca-
tion of the resonances was in poor agreement with observation. The next addition to the
analytical work involved the inclusion of a plasma radial density profile[14][15][16]. The hot
non-uniform plasma was described by a linearized fluid calculation which included a scalar
perturbed pressure term. Good agreement with experiment was shown by Parker et. al.[15]
when a Tonks-Langmuir[17] model of the steady-state electron density was used. Here the
resonances may be understood as radial longitudinal standing waves confined in the region
between the plasma boundary and the cutoff radius where w = wpe(re). Gaigneaux and
Vandenplas[18] extended the work of Parker et. al.[15] by introducing new dimensionless
parameters and a general linear law permitting a prediction of the Tonks-Dattner resonance
spectrum over a wider ranger of plasma densities and also allowing for an independent mea-
sure of electron temperature.

The limits of applicability of the scalar perturbed pressure fluid treatment, which
has been successful in predicting the resonance spectrum, have been analyzed by Bald-
win([19). Baldwin showed that for afterglow plasmas with sufficiently slowly varying density
profiles the perturbed scalar pressure fluid treatment breaks down and one should apply a
kinetic treatment of the problem. The reason, in keeping with the idea that the resonances
consist of longitudinal waves trapped at the plasma boundary, is that the waves which are
launched at the critical point w = wpe(re) can become severely Landau damped as they
approach the outer wall. This is because the decreasing density leads to a decreasing phase
velocity for the longitudinal waves. The linearized Vlasov equation is solved by the tra-
jectory method for this case. The resonant particles responsible for Landau damping the
outward traveling wave are shown to partially reconstruct an inward traveling wave after
reflection by the plasma sheath potential. Proof of the validity of this analysis was offered
when it was shown that application of a weak axial magnetic field destroyed the resonance
spectrum[20]. Ignat[21] attempted to verify the analysis of Baldwin by comparing the pre-
dicted resonance spectrum to experiment on argon, helium, and neon afterglow plasmas;
however, the “flawed” calculation of Parker et. al.[15] yielded better agreement.

In addition to the experiments performed on plasma cylinders, a study of plasma
resonance probes which measured resonances at frequencies below wp, were explained in
terms of the “series resonance”[13, 22,23]. The “series resonance” results from the balanc-

ing of the probe capacitive sheath impedance with the bulk plasma’s primarily inductive



impedance, and is analogous to the main dipole resonance in a plasma cylinder.

The electron resonances found in a radially bounded plasma represent cutoffs for
waves which may propagate along the boundary wall. Trivelpiece and Gould[24] derived
dispersion relations for the cold plasma cylinder bounded by dielectric and metal with and
without an applied steady axial magnetic field. Modes with frequencies well below the
metal waveguide cutoffs and phase velocities much less than the velocity of light were han-
dled in the quasi-static limit. Analytic results were compared favorably with experimental
measurements. For zero applied magnetic field, particular attention is given to describing a
circularly symmetric mode as resulting from a perturbed peristaltic surface charge layer (see

Figs. 1.3 and 1.4). A more thorough quasi-static, T, = 0 treatment of the surface modes

Figure 1.3: Cross-section of col-
umn used in experiment to de-
tect electron resonances in a cylin-

Figure 1.4: Snapshot of electric fields and per-
turbed surface charge layer formed by peristaltic

drical, bounded plasma. (after perturbation of electron density about an equi-
Trivelpiece[7]) librium cylindrical (ion) density profile. (after
Trivelpiece[7))

on a bounded plasma column with zero axial magnetic field is provided by Trivelpiece[7).
Modes with m = 1 (dipole) angular variation are discussed. The cut off for this mode is
essentially the main resonance discussed earlier with a modification due to dielectric and
metal boundaries. A further result is that, for parabolic radial plasma density profiles,
the low frequency behavior of these surface waves may be accurately captured by replacing
wpe With its spatially averaged value. We shall refer to these surface waves which have
been derived in the T, = 0 limit as Gould-Trivelpiece modes as is commonly done in the
literature.

Two review articles[25][26] have been written about the cylindrical surface waves
(Gould-Trivelpiece modes). Topics including damping, methods for launching and detection,
linear dispersion as derived from fluid and kinetic calculations and measured by experiment,
and non-linear phenomenon, including second order interactions leading to the generation

of Tonks-Dattner waves, are discussed. Also an informative diagram is given[26] which



summarizes the regimes under which various simplifications may be made.

Computer simulation of surface waves has been performed by Decyk[27][28]. In
this work a measurement of the autocorrelation of the potential in electrostatic simulations
of a uniform thermal plasma slab bounded by vacuum were used to measure the dispersion
relation for two electron surface wave branches whose frequencies were below wpe. One was
symmetric and the other was asymmetric in the direction perpendicular to the boundaries.
Body waves with frequencies above wp, were also measured in these simulations. The
eigenfunctions and real w dispersion curves for these modes were derived from a warm fluid
calculation and plotted. The imaginary w part of the dispersion relation resulting from
Landau damping was measured and compared to the results of a kinetic Vlasov calculation
performed by Cheng and Harris[29).

The additional Tonks-Dattner resonances of a plasma column also represent cut-
offs for axially propagating surface waves as has been observed by O’Brien et. al.[30],
O’Brien[31}, Kerzar et. al.[32], and Kerzar and Weissglas[33] and others. In these works,
experimental measurements are compared with several theories which differ in the modeling
of the radial plasma density profile. A numerical solution is also found by extending the
method of Parker et. al.[15] to include axial propagation. Surprisingly, only fair agreement
seems to have been achieved. Only the first three azimuthally symmetric modes and first
two dipole modes were detected. Difficulty in detecting modes of higher angular depen-
dence and higher radial mode number was caused by coupling to lower modes, as well as
the higher damping present in higher modes.

Some kinetic modeling of surface waves has been performed which demonstrates
the effects of collisionless (Landau) damping. Atanasov et. al.[34] find the exact solution
of the linearized Vlasov’s and Maxwell’s equations for a bounded, homogeneous (to zeroth
order), hot plasma column under the condition of specular reflection at the plasma bound-
aries and azimuthal symmetry (the m=0 mode). The dispersion relation including a space
damping rate are obtained. A similar approach is taken by Dengra and Ballesteros[35] in
which the collisionless energy absorbed per electron is calculated. The omission of a radial
density variation severely limits the accuracy of these results.

Another phenomenon is theorized by Gradov and Stenflo[36] in their discussion of
linear cold bounded plasma slab. Here the authors describe resonant damping of surface
wave eigenmodes in a plasma slab with an edge density gradient. In their description, surface
waves excite a local Langmuir wave at some location near the plasma boundary where the



density is decreasing such that the local wpe equals the surface wave frequency and this
Langmuir wave continues outward (towards lower density) until it is Landau damped away.
The dispersion relation including the described damping and the time dependence of the

electric field at the point where wpe(rc) = w are derived.

1.2 Surface Waves to Sustain Discharges

The waves and resonances discussed above, which have been studied to further
the basic understanding of bounded plasmas, have also appeared in further work in which
excitation of these surface waves and resonances provides a mechanism for heating and
sustaining piasma discharges. A detailed review of early efforts on resonance-sustained,
radio frequency gas discharges is given by Taillet{37]. In this work the enhancement of the
RF electric field in a planar capacitively driven discharge is emphasized. A simple model
of a collisional homogeneous plasma slab in between two sheath regions in which n, = 0 is
developed from previous theoretical work summarized by Vandenplas[13]. Justification for
extending the results to inhomogeneous plasmas was based on a variational calculation of
Crawford and Kino[38] and cited in Vandenplas[13], which showed that the plasma density
could be replaced by the average plasma density in an expression for the internal fields at
resonance. Taillet’s analysis assumes that the resonance enhanced field strength remains in
the linear regime while still providing sufficient electron heating to sustain the plasma. A
relation, which equates the ohmic power absorbed by the plasma electrons to the energy
lost due to ionization, excitation, and diffusion, characterizes the discharge. It is shown that
stable and unstable equilibria exist. Some experimental results given by Taillet[37] include
measurement of the plasma electric field using electron beam probing. The electric field is
observed to be approximately 10 times greater in magnitude than the vacuum field and the
phase of the field in the plasma bulk is opposite to that at the plasma edge. Measurements
of the plasma profile deduced from photometric data along with density measurements
taken from a Langmuir probe were used to further verify that the discharges were indeed
operating at the series resonance. Some effects associated with electronegative gases were
also discussed.

Further investigation of resonance sustained discharges was performed by Messiaen
and Vandenplas[39]. This work examined the nonlinear behavior of a cylindrical mercury
DC discharge plasma inserted across a waveguide operating at 2.7GHz. Several interesting



results were obtained for high incident microwave power. One result was that the plot
of reflected power versus density exhibited a broadening of the peaks to include plateau
regions indicating a tendency for the plasma to remain in a resonant state. Another result
was that for sufficiently high incident power the plasma could be sustained in the absence
of the dc current. In this case, the power absorbed was measured to be independent of
the incident power. Also the plasma density observed when the discharge was maintained
by the incident HF power was found to be nearly the same as that associated with the
resonance observed at low incident power (when the plasma was maintained by the DC
current). The conclusion is that the plasma is resonance sustained. A final interesting
result is that when the incoming field energy is decreased below a certain minimum the
plasma jumps to a lower density which was considered to result from coupling to the next
higher Tonks-Dattner resonance.

In a later work Messiaen and Vandenplas[40] reported on resonantly sustained rf
plasmas in a spherical cavity. For moderate rf power the system was determined to be in a
linear resonant state with density far above the critical density (defined by wpe(re) = wry)
which is characteristic of a geometric resonance associated with a bounded plasma. The
density was found to depend heavily on the frequency and only slightly on the power level
of the exciting signal since detuning occurs to maintain the resonant state.

This work on resonance sustained discharges was significantly advanced by Godyak(41].
A homogeneous model for steady-state low pressure rf discharges is developed[42] which is
used to predict the total impedance across a discharge gap. This impedance is taken to
be the sum of plasma, space-charge sheath, and stochastic (interaction with moving sheath
walls) impedances. The total impedance is then used in combination with an energy balance
equation to predict the internal properties of the rf discharge including the current-voltage
characteristic and the dependence of plasma density, and discharge voltages on applied
frequency. This analysis has been extended to the inhomogeneous plasma model which
results in the appearance of form factors and scaling factors which do not greatly effect
the qualitative behavior[41]. Godyak and Popov[43] conducted an experimental study of
resonant discharges to test theoretical predictions. Resonant discharges are maintained at
a theoretically predicted minimum applied voltage and resonant frequency. Scaling laws
including n o «® and s o w™!, where n is the peak plasma density and s is the average
sheath thickness, are verified.

The resonantly sustained plasmas that have been discussed so far are generally



confined in space due to their method of excitation (within some cavity or between elec-
trodes). This prompted Moisan to develop a device called a surfatron in which a plasma
column is sustained by a traveling surface wave launched from one end{44]. The launcher
surrounds a gas filled dielectric tube which contains the plasma. Reported operation occurs
over a wide range of neutral gas pressures and electron densities with the length of the
plasma being a function of input power. In a more recent work, Moisan and Zakrzewski[2)
give a review of the basic theory and various experimental designs for plasma sources based
on the propagation of electromagnetic surface waves. Devices operate from a few hundred
kHz to ~10GHz with density ranges from 10'°cm—3 to 103cm™3, tube radii from 0.5mm to
10cm, and neutral gas pressures from 10~°Torr to a few times atmospheric pressure. The
surfatron was the first of these plasma sources and has inspired a great deal of subsequent
research in the field.

Early studies of surface wave sustained plasmas focused on describing their axial
dependencies. A simple theory, derived by Zakrzewski et. al.[45], of the collisional atten-
uation was obtained by extension of the collisionless theory, and led to a good prediction
of axial attenuation of the surface wave fields when plasma density, electron collision fre-
quency, and tube dimensions are provided. Radial dependencies were neglected. Another
work by Glaude et. al.[46] furthers the analysis of weakly damped surface waves. In this
study, a plasma, which is homogeneous in the radial direction, undergoes ohmic heating
by the wave fields. After introducing a constant equal to the average energy absorbed per
electron (independent of wave power or axial position), and assuming that the power lost
at some axial position, z, is equal to the energy absorbed by electrons at that position, it is
shown that the plasma density undergoes nearly linear attenuation in the axial direction.
This is shown to be in agreement with experiment over the middle portion of the discharge
length. Conditions for discharge stability have also been worked out in the thin cylinder
approximation (cylinder radius < axial wavelength)[47). This thin cylinder approximation
is made in much of the work on surface wave plasmas.

More self-consistent modeling was introduced by Ferreira[48][49] and later by Aliev
et. al.[50][51]. A first effort[48) in the weak attenuation limit predicted the absolute value
and radial profiles for electron density, electron temperature, HF (high frequency) fields, and
excited atomic densities as functions of gas pressure, wave frequency, and pbwer absorbed.
The equations used include electron and ion continuity, electron and ion momentum transfer
with elastic electron-neutral collisions, power balance with local ohmic heating, and surface



wave electric fields which are determined from the homogeneous plasma approximation,
which is justified in the thin cylinder approximation since the radially averaged plasma
density can be used used[7]. To derive the radial electron temperature profile it is assumed
that the HF field is locally dissipated (i.e., neglecting heat conduction).

Later Ferreira extends his model to include axial variation[49]. This analysis differs
from that of Glaude et. al.[46] in that the assumption that wave power absorbed over a given
axial length be proportional to the number of electrons in that slice and independent of wave
power is unnecessary. This quantity is instead shown to be constant under certain operating
conditions. Finally, the model is extended beyond the thin cylinder approximation by
accounting explicitly for field boundary conditions with a radial plasma inhomogeneity[52).
Here, the radially inhomogeneous plasma is treated as a cold dielectric and the possibility
of local plasma resonances is not considered.

Another model of HF surface wave discharges put forth by Zhelyazkov and Ben-
ova[53] includes more carefully the thickness and dielectric constant of the containing vessel
which leads to more favorable agreement with experiment. When this model was applied
to an analysis of the dipolar(m=1) surface mode the interesting result was obtained that
a critical value for wR/c exists below which no plasma was likely to be sustained. This
phenomenon is observed by Margot-Chaker ef. al.[54] who attribute its cause to a stability
criterion[54](55] . ‘

In another work by Aliev et. al.[56], the axial structure of weakly damped surface
wave plasmas in both ambipolar diffusion and volume recombination regimes have been
expressed with similarity laws.

Since detailed information on the electron energy distribution function, EEDF, is
required to help determine transport properties and rates of atomic processes, there have
been several recent efforts to more accurately model the EEDF in surface wave plasmas by
solving the electron Boltzmann equation in various limits. All the studies discussed here
start by expanding the distribution function in spherical harmonics in v-space and then
truncating the series after the first two terms (Lorentz approximation). This is justified
when the electron-neutral mean free path is small compared to the spatial scales of the
EEDF. The distribution is then written as the sum of a large steady-state term and a
small rapidly varying term. The resulting equations are combined to give a solution for the
spherically symmetric steady-state portion of the distribution function[57].

An early work by Kortshagen et. al.[58] makes the further assumption that the
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distribution function may be written as a separate function of space and velocity. This
assumption requires sufficiently low plasma densities and sufficiently high gas pressures. The
thin cylinder approximation is made so that a uniform (across the radius) axial surface wave
field may be imposed, and an ambipolar field is derived from the radial density profile in a
diffusion controlled regime. Numerical solutions for argon are given but not compared with
experiment. Later work by Kortshagen and Schliiter[59] incorporated a Fokker-Plank term
in the electron Boltzmann equation to account for the effect of electron-electron Coulomb
collisions. In this work radial inhomogeneity is neglected for simplicity. The maintenance
field strength is self-consistently determined by solving a particle balance equation in the
thin cylinder approximation. The most noteworthy result is an increasing temperature at
low electron energies for an increasing ratio of electron density to neutral density. This
result is explained as the removal of a Ramsauer minimum induced tip in the EEDF at
low energies. This effect is also discussed by Godyak et. al.[5] as an explanation for their
experimental results in RF capacitive discharges.

In order to better model low pressure discharges, a non-local approach[60}[61] has
been adopted where the complete spatially inhomogeneous Boltzmann equation is solved.
This is better than the local approach previously discussed because at low pressure an elec-
tron heated at a certain position is not converted to an energy gain of the whole distribution
at that position[62].

A new electron heating mechanism has been described by Aliev et. al.[63] on the
basis of a non-local kinetic approach. This mechanism is predicted to play a significant role
in the maintenance of discharges at sufficiently low pressures(v < w where v is the total
electron collision frequency and w is the surface wave frequency). In a first calculation[63],
the existence of a region of enhanced radial electric field near the column boundary, at the
radius at which the local plasma frequency equals the applied frequency, is imposed as an
approximation to the self consistent fields. The location of the enhanced field is assumed
far enough from the sheath and of large enough spatial extent that the thickness of the
sheath may be neglected and that a specular reflection approximation can be made. This
enhanced field then undergoes a Cherenkov particle-wave interaction with the electrons
passing through it. The heating term results from a quasi-linear term given by the period
averaged product of the radially enhanced field and the v-space gradient of the perturbed
distribution function. The result is the generation of a hot tail in the EEDF.

This early work was followed by a self-consistent calculation{64}[65] which included
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a set of fluid equations for ion motion, the surface wave electric field equations, and a self-
consistent ambipolar field. The enhanced radial field is then self-consistently computed. The
spatially inhomogeneous Boltzmann equation is then solved in the non-local approximation
to give the EEDF. Numerical results for mean power absorbed per electron due to ohmic
and collisionless (quasi-linear) heating are given under varying discharge conditions.

The effect of the enhanced radial field in the limit of small electron mean free paths
(compared to spatial scale of the enhanced field) has also been studied[66]. The equations
of hydrodynamics are used to determine radial temperature profiles for both electrons and
ions. Here the energy gain in the resonance region results in an increase in the bulk part of
the EEDF rather than in a hot tail region.

The effects of collisionless (quasi-linear) heating on the axial structure of surface
wave plasmas has also been investigated[67](68][69] with pronounéed effects on the axial
plasma profile resulting at the ends of the discharge column. Surface waves damped pri-
marily through quasi-linear heating of the electrons at the end of a column discharge are
shown to decay linearly rather than exponentially along the propagation direction[70].

In addition to the traveling surface wave sustained cylindrical discharges discussed
so far there has been an effort to develop standing and planar surface wave sustained
plasmas. Some motivation for this effort comes from a desired plasma uniformity which can
be of use in laser sources and materials processing applications. Rakem et. al.[71] make a
comparison between a simple model and experiment[72] on a cylindrical standing surface
wave plasma where the far end of the column is shorted. For lengths less than some limit,
the density remains nearly constant (with some modulation due to the standing wave fields).
An argon ion laser was built based on this structure.

Nonaka[73] reports on new devices similar to the surfatron but with varying cross-
sections of which a rectangular one is of particular interest. A large area (up to 0.73m
x 1.72m) plasma is produced. Later analysis[74] of this planar surface wave source led
to determination of the axial density gradient in diffusion and recombination dominated
regimes and the electrostatic mode structure. The axial density gradient is predicted to be
less than in the cylindrical case.

Another planar microwave surface wave device consists of a dielectric wave guide
(18cm x 30cm) bound by metal and plasma on either side with a vacuum gap between the
dielectric and the plasma(75]. Microwave energy is fed into the dielectric waveguide, and
the fringing fields couple to and sustain the plasma. In the directions aligned with the
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plane of the dielectric, the plasma density is modulated about a nearly constant value by
the standing waves. In the perpendicular (to the dielectric) direction the measured electron
density rapidly decays. A simple model is presented based on a homogeneous plasma.

This concludes our review of past and present research on high frequency electron
surface waves and resonances primarily in dielectric bounded plasmas. In the following
chapters, we present a study, based on particle-in-cell simulation, of the nature of these
waves in metal bound plasmas and their application to sustaining plasma discharges.

An outline of this work is as follows. In Chapter 2 we initiate our study of waves
in the metal bound slab using a matrix sheath model. A linearized Vlasov treatment
for this model is derived and compared to simulation. Next a more realistic model for
the plasma and sheath is developed in Chapter 3. The result is the identification of a
new set of surface modes which exist only in the non-uniform, thermal, bounded plasma.
We then move from the study of surface wave characteristics to a study of surface wave
sustained discharges. In Chapter 4 we consider the 1d3v plasma which is sustained at
the series resonance frequency (which will be shown to be the cut-off frequency for the
main asymmetric surface wave). Results including the scaling of plasma density and sheath
width with ﬁequency, discharge gap impedances, electron energy distributions and heating
profiles will be given and compared with theory. The 2d3v surface wave sustained slab
will be treated in Chapter 5. The 2d3v surface waves are excited in an asymmetric and
hybrid fashion with different current loop antennae configurations. Comparisons are made
between simulation results and theoretical predictions for the wave dispersion relations and
eigenfunctions.
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Chapter 6

Suggestions for Future Research

It is my hope that the work presented here will inspire future research in the area
of high frequency surface wave sustained plasmas, including further modeling efforts as well
as laboratory based experiments. Future simulation may be aimed at extending the results
presented here to higher frequencies, higher plasma densities, larger volumes, and to the
many different gases used in plasma processing. This will require more refined computa-
tional techniques and greater computing power along with development of a collision model
for each new gas-phase chemistry. Of particular interest would be an understanding of the
maximum attainable plasma densities, and the EEDFs and uniformity of the plasmas at
these densities.

The development of an analytic model which might predict the EEDF's and electron
cooling effects observed here would also be of particular interest. It is believed that a solution
to the inhomogeneous Boltzmann equation in a non-local limit (at low gas pressures) may
lead to the desired results. It is suggested that further simulation be used to help validate
such a model. '

Finally there is a wealth of laboratory work to be performed based on the en-
couraging simulation results presented here. An investigation of surface wave launching
schemes which are able to sustain uniform plasmas over large areas is of particular interest.
Both slow and fast wave coupling should be investigated. Also metal and dielectric bound
plasmas might be considered.
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Electron surface waves in a metal bound plasma slab have been detected and analyzed In this work
it is shown that the presence of a matrix sheath between the central quasineutral region and the metal

-walls allows for the propagation of surface waves analogous to those found in dielectric bound
plasmas. Measurements of the dispersion relations and eigenfunctions of asymmetric and
symmetric, electrostatic, surface, and body ‘waves are made via particle-in-cell simulation of a
plasma slab with sheaths. The plasma slab has finite temperature electrons and fixed ions of uniform
density. The sheaths consist of electron free, fixed, uniform ion regions (“‘matrix sheath’’) of
thickness ~Ap, . A linearized Vlasov theory is developed for comparison with the simulation. It is
shown that the long wavelength approximation (kA p.<1) is not valid even for long wavelengths in
the propagation direction. Collisionless damping of both surface and body waves is measured which
compares well with theoretical estimates. ' © 1998 Amencan Insmute of Phystcs

[SlO70-664X(98)03804-X]

L. INTRODUCTION

Surface waves on dielectric (glass) bounded-cylindrical
plasmas, known as Gould-Trivelpiece waves have been well
studied'? and are well characterized. Surface -waves have
also been studled in dielectric bounded plasma slabs by com-
puter simulation.? Surface waves in dielectric bound plasmas
are a continuing area of research in the field of high fre-
quency d;scharges where these waves are driven to sustain
plasma columns.* In past treatments, the effect of the plasma
sheath is typically neglected on the basis that the sheath scale
length, A p,, is much less than the typical scale length (depth
of penetration) of the surface wave.

In this work we will demonstrate that the sheath region
* between plasma and a metal boundary ‘can itself provide the
means for surface wave propagation. We shall refer to these
waves as “‘sheath waves’ to emphasize the importance of
the sheath. It is hoped that this investigation may lead to a
better understanding of sheath physics and to.applications,
such as bulk plasma-contro! via sheath mode excitation.

The structure of this paper is as follows. In Sec. Il we
describe the system which is the subject of our theoretical
and experimental stiidies. Our expenmental results are pro-
duced by particle-in-cell simulation® which is fully capable
of capturing the kinetic behavior of the 2d3v (two spatial
and three velocity components) bounded plasma since it op-
erates from first principles (i.e., solving Poisson’s equation,
and particle equations of motions). In Sec. Il we will de-
velop a kinetic theory for sheath waves. In Sec. IV simula-
tion results are presented and compared with theory. Conclu-
sions are made in Sec. V.

1. MODEL DESCRIPTION

A plasma slab model is used to study ‘‘sheath’® waves.in
metal bounded plasmas. We allow for two spatial dimensions
and three velocity dimensions. The absence of a means to

1070-664X/98/5(4)/853/9/$15.00

scatter energy into or out of the third velocity dimension will
have no effect on our results. The model includes a wall to

.wall uniform, immobile, neutralizing background of ions,

and thermal electrons loaded in the central region (Fig. 1).
The positively charged sheaths which exist between the
quasineutral plasma bulk and the grounded metal boundaries
are modeled as electron free regions (‘‘the matrix sheath’’
approximation). These sheaths are of thickness A, chosen to
be on the order of a few electron Debye lengths; they are
maintained by specular reflection of electrons at the distance,
A, from the walls. This model provides a detailed compari-
son of w(k,)=w,(k,)+iw(k,) and eigenfunctions in % as
measured in simulation and calculated from the linearized
Vlasov equation.

fil. LINEAR KINETIC THEORY.

" The kinetic theory presented here draws on the work of
Xu et al.’ who adapted the work of Cheng and Harris’ (in
which surface waves in a plasma slab bound by vacuum were
described) to include the presence of conducting walls and
positively charged sheath regions. We shall show that a key
approximation made by Xu has limited applicability and also
correct an algebraic error which appeared in his final result
for (k). New results for the imaginary part of the disper-
snon resulung from Landau damping are presented.

* As described above, the static sheaths of thickness A are
modeled as fixed, uniform ion layers with no electrons. The
sheaths are maintained by reflecting incident electrons back
inito the bulk plasma. We shall see that the presence of this
sheath layer allows a contrast with the Gould-Trivelpiece'
model for modes in a dielectric lined waveguide. We may
also contrast our work with that of Decyk,® who worked with
a fluid model in which A—®,

- -Combining the linearized Vlasov equation for the elec-
trons with the linearized Poisson’s equation enables the deri-

© 1998 American Institute of Physics
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FIG. 1. Schematic of plasma slab simulation.

vation of electrostatic sheath wave dispersion relations and
the eigenfunctions describing these waves. The quasistatic
limit is justified since the slow-wave results we will obtain
contain wavelengths much shorter than those in free space at
the same frequency; also, the dominant energies are kinetic
and electric. We assume herein that wave quantities may be
written as P(r,7)=p(x)e'®? ™", with k, real. We write
the governing equations for the perturbed quantities as:

6f(r,v,r)+ af(r,v,t)+_e__v¢ ) aF,,,(v)_O
at - DAk e
(1)
B ( m, )% -m
Fn=n(0)\ 7057, ) € kT, @
V2@P(r, )= — | fddv, 3)
€0

where e and m are the electron charge and mass, respec-
tively, F,, is an equilibrium Maxwellian velocity distribu-
tion, and @7 is the particular solution to Poisson’s equation.
The full expression for the perturbed potential is & =®?
+®", The zero-order steady-state potential which results
from the ion rich ‘‘matrix’’ sheaths plays no role in what
follows and need not be discussed further. Boundary condi-
tions for the potential are ®(x=0,y,1)=®(x=L+24A,y,t)
=( (external short circuit). It is further required that ¢ and
d®/dx be continuous at the sheath edges, x=A, and x=L
+A. For the electron distribution, specular reflection leads
to the conditions ¥

f(x-_-A’y’UX’vy ,Uz !I)=.f(x=A!y_vx,vy lvz 't)‘ (4)

f(x=L+A,}’;U;,Uy 2 Uy ,t)=f(I=L+Aa)’_Ux-Uy ,Uz vt)-
(5)

To proceed, we assume the following forms of ¢(x) within
our system, :

#(x)=A sinh(k,x), 0<x<A, 6)
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q‘)(x) =Be(_k}‘(:_m)+Ce(-k?(L+A—x))

+ X

ky=nm/L=0

a(k,)cos(k(x—A)),

A<x<L+A (7)

@(x)=D sinh(k,(L+2A~-x)), L+A<x<L+2A. (8

In the central region, A<x<L+A, we have used

[--}

¢”(x)=k >

=N

a(kg)cos(ky(x—A)), ©)

where the k,=0 term must be multiplied by 0.5. This choice
is valid because of the specular reflecting boundary condition
which allows us to continue ¢” as an even function about
x=A and x=L+ A. The justification is that there can be no
distinction between a particle with x>A approaching x
=A(v,<0) and a ‘‘pseudoparticle’’ with x<<A approaching
x=A with v,>0. The ‘‘pseudoparticle’” will be incarnated
as the reflected original particle once it crosses x=A. A
similar argument holds for x=L+A.

Next we express the full solution in the central region
(A<x<L+A) as

d(x)= 2 , Blko)cos(ky(x=A)), (10)

ke=nmwi

where

Bk =a(k) + 23 [1—eHE cos(k,L)]

X[B+C cos(k,L)]. (11)

We proceed as in Ref. 7 by solving for the perturbed
distribution function, f(r, v,), by integrating over the unper-
turbed orbits. Substituting Eq. (1) into the expression for the
total time derivative of f(r,v,r) produces,

Df(r,v,1) Jf(r,v,t)+ af(r,vt) e
— v-

Dt ot Tt
af(r,v,1)
’ v
& vaey. )
T m (£.1)- dv
€ oo TV
+m Vo' (r) Froam (12)

Here ®%r) is the steady-state potential of the central,
quasineutral region, and V®°(r)=0. Second-order terms
have been dropped. If we assume the modes we are looking
for are damped [i.e., Im(w)<O], then we can integrate Eq.
(12),
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J‘w Df(r'(r,v,t"), v (r,v,t'),1')
' dr' ’
, Dt

=f(l‘, v,°°)—f(l‘, v,t)

OF (V' (r,v,t'))

® e
--f' dt ;V@(r (r,v,2'),t')- 70

(13)

Here r'(r, v,¢') and v'(r, (r,v,t") are the unperturbed trajecto-
ries and take the values r and v, fespectively at time ¢’ =1.
For specular reflection of electrons at x=A and x=L+A
and no other forces we can write,

x'(rut')=x"(x,v,.,1'), (14)
Y (rut)=y+u,(t'-1), (15)
y(nyt')=%y,, (16)
vy(r,ut')=v,, a7
y(r,vt')=v,, (18)

where x’(x,v,,¢’) is the integral of v} . We further simplify
Eq. (13) by noting that f(r, v,.0)—0 for damped waves. Af-
ter substituting Egs. (2), (10), and (14)-(18) into Eq. (13),
we have

dt—z

m g =na/L

A, v,t)-—— Bk e’ ) (19)

Fpu(v)
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Fou(v'(r,v,t"))(—k v, sin(k(x’ —A4))+ikyy,
X cos(k,(x'—A))). (20)

We need to evaluate terms which include the factors
cos (k(x'(x,u;,t")—A)) and v] sin(k(x'(x,u,.t')—A)). The
utility of expressing ¢(x) as a cosine series’ is demonstrated
when it is observed that

cos(ky(x'(x,u;,2") = A))=cos(k,((x— v, (t—1"))—A))
(21)
v, sin(k,(x’,(x,v.,2')—A))
=, sin(k((x—v(1—1")) - A)). (22)
With Egs. (21) and (22), making the variable change "=’
~1, we have

flrut)=- % B(k,)eEyy—wn

X 2 dt” i(k,vyl"-wl') (23)
=n1rll.
Fp(v)(=k,v, sin(k,((x+v,2")—A))
+ikyv, cos(k((x+v,2")—A))), - (24)

where we have taken advantage of the fact that F,(v')
=F,(|v']). The integral may be evaluated with the solution
for f(r,v,t) being

f(r. vt )—— B(k,)eitor=w

+i sin(k,(x=A))(kkyvv,—

In order to obtain the dispersion relation, we may now sub-
stitute Eq. (25) into Poisson’s equation (Eq. 3) and integrate
over velocity space. Before doing so, we note that the de-
nominator of Eq. (25) is an even function of v,, as is
Fpu(|v']), and we may drop odd terms in v, since they will
not contribute to the integral. Poisson’s equation, after some
algebra, then reduces to
2
2, 42 __¢ 3. (k- v)Fp(v)
(E+)alk)= = ok [ o 2im D
(26)

where we have used Eq. (9) for ¢”. The now recognizable
integral may be evaluated quickly. The result is

a(k,)=— (k) —'3— (l +4Z(2)

= ¢(kx)(1 - €(W,k)),
¢=ol|k|Jm J2kT,,

@n
Wpe= Vne?l €m,, vr,

where

k=nae (W—kyu +k v )(w—kyv,—k

kev,w— kyvyk 2Vs) ]

- [cos(k (x—A)) (K~ k,uw—Ek2d)

(25)

=\2kT,Im,, Z({) is the plasma dispersion function, and
€(w,k) is the dielectric constant for an infinite warm plasma,
given by

e(w,k)=1+ 7 [1+2Z(D)]. (28)

Next we enforce the boundary conditions, ¢(x) and
(8¢(x)/dx) continuous at x=A and x=L+A. We start by
inserting Eq. (11) into Eq. (27), with the result,

2k
d(k)= m [1-e~5E cos(k,L)]

X[B+C cos(k.L)], 29)

going into Eq. (7), the expression for ¢ in the center region.

Four equations in four unknowns, A, B, C, and D resuit

from enforcement of the boundary conditions. With Egs. (6)

and (8), the sheath solutions, we find
B=*C,

and

(30)
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D(w,k)
) > 2k[1* cos(k.L)]
=ahf3("’ anh(k,A), 2 T e(w k)
2k, [1% cos(kL)] .
XSm(Ic 8+ _%1 _Pe_(T s(k,a)).

- (31)

In Eq. (31) we may not pull-the limit msxde the sums on
the right-hand side as has been done elsewhere.” Instead, we
must evaluate the sums and then take the limit. In doing so,
we are aided by the fact that each summand approaches 0 as
k,—. This can be seen by examining the form of e(k,w)
as k,—, In order to evaluate the first term, we take advan-
tage of the fact that hms_.oE,, S os(k,)sm(k,é)
—hms_,ozkx_ Lo s(k,)sm(k,b), where m is an arbi-
trarily large mteger We can then replace e(k,w) with its
asymptotic form as k,—. A similar argument for the sec-
ond term shows that we can truncate that sum at some finite
upper bound which allows us to evaluate the limit. The final
result for the dispersion relation is

1
i e(w,k)
(32)
We have used the fact that (w,K) is an even function of k, .
A. The limit |kj]A po<1

In the long wavelength limit, kAp, <1, which we will
show later to be of questionable validity, the dielectric func-
tion becomes

2k,
D(w,k) =tanh(k,8) + -L—

ky=nall=~o

wf,, 3w k 2w W
e(w.k)=l—-‘;2- 2—1'— l\/_—le;;— (33)

and the dispersion relation reduces to
D(w,k,)=tanh(k,A)

as given by Xu et al.® where

2=k 2w 2 _.2
= ’+§W(w”‘ w). ‘ (35)

From Eq. (34) with the assumption 7L> 1, which is reason-
able for A<L, we amive at '

X
—
+
N

x
<

>
]

~
~IE

) coth(k. A)) (36)
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for the symmetric (in the perpendicular, x direction) mode
and

‘\/1 +tanh( )coth(k A)
X ( 1+ g kA D,'\/ coth( %ﬁ) coth(k,A)) (37)

for the asymmetric (in x) branch These results differ from
those reported by Xu et al.® in the second term in parenthe-
ses which, in the previous calculation, contained tanh(k,A)
factors instead of coth(k,A). This is not insignificant because,
for example, one can readily deduce that the temperature
dependence of the asymmetnc cutoffs (k,=0) is only cap-
tured by the correct expression. Theoretxcal and observed
results will be included in the following section.

These relations represent symmetric and asymmetric
surface/sheath modes analogous to m=0 (azimuthally sym-
metric) and m=1 (dipole) Gould-Trivelpiece modes in a
dielectric lined cylindrical waveguide. The main difference,
aside from the slab configuration, is that the dielectric lining
has been replaced by a matrix sheath with thickness on the
order of Ap, . In the limit k,—0, we find that the symmetric
(cutoff) frequency goes to zero and the asymmetric (cutoff)
frequency approaches

[24 /37\,,1,)
W=y, —_2A+L(1+ ALl (38)

In the same limit, the frequency for the azimuthally symmet-
ric Gould-Trivelpiece mode similarly tends to zero and the

_ dipole Gould-Trivelpiece mode becomes

w= I (39)
b*+a
VI+K. —at

for T,=0 (plasma radius a, dielectric radius b, dielectric
constant K,). We note that, in the limit a— b, Eq. (39) pre-
dicts that the dipole cutoff tends to zero. As shown here for
the plasma slab, it is predicted that the presence of the
plasma sheath will provide a nonzero cutoff for this mode. In
the opposite limit k,A, k,L>1, the two slab modes merge
and are represented by

Wy, v3
w.—-lf—{ l+?k Apel- 40)
Similarly, for Gould-Trivelpiece modes, the dipole and azi-
muthally symmetric modes both tend toward

0= —pe . a 41)

VI+K,

In the semi-infinite slab limit, these modes resemble
those studied in simulations by Decyk® (who describes the
same slab model with a fluid theory in the limit A—) and
those studied theoretically by Cheng and Harris.” In the latter
work, an expression for the Landau damping is given to be




Phys. Plasmas, Vol. 5, No. 4, April 1998

2
w;= = Wp, \/—-1; k,)\pe ) (42)

for ky,L>1, but this expression is only valid for us in the
more restrictive limit £, A> 1. Since we require A~X\p,, we
see that this violates the long wavelength approximation
used by Cheng and Harris, Therefore we can not expect to
see damping linear with k, . [For the same reason we should
be skeptical about the limit taken in Eq. (40).]

B. The limit |k]A pe=1

It is of more interest to examine the regime for which
k\p.<1. This is because while we might have k,—0, sig-
nificant contributions to the sum in Eq. (32) may come from
terms with k. Ap, approaching unity. This is because the
eigenfunctions for the surface waves describing their depen-
dence on the x, perpendicular, direction necessarily include
contributions from Fourier components given by k,~2#7/A
where we have chosen A to be a sheath thickness which is on
the order of a few Ap,. When A~Xp, , there are significant
contributions to the plasma dielectric function [Eq. (28)]
from components where {(=(w/vZkvr,))~ 1, and one must
evaluate Z, the plasma dispersion function, explicitly, in or-
der to compute the dispersion relation. This has been done
numerically; results with and without the approximation
kXp.<€1 will be shown. In the following section we shall
refer to results based on the long wavelength approximation

to Z as the ‘‘approximate’” solutions and results based on the -

exact form of Z as the “‘exact’’ solution.

Of particular interest to later discussion is the value of w
for the asymmetric mode in the k,=0 limit. Assuming that
the long wavelength limit is valid (““approximate’’ theory),
Eq. (37) then reduces to [as previously demonstrated in Eq.
(38)]

[24 3% |
AS= * — »_e =
@r =% N385 ( I+ 2AL) Wers “3)

where w;, is known as the series resonance®~'" which results
from the balancing of the sheath capacitances and plasma
inductance. It should be noted that w,, may be much lower
than w,, when L/\p,>1. :

C. Modes near Wpe

Before leaving this model, we note that Eq. (32) also
predicts a number of modes grouped around the electron
plasma frequency. Using Eq. (34) and Eq. (35) for <0
(requiring w> w,,), we may derive an equation which deter-
mines 7 as a function of k,,
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. kL
] I+ 22— -1 °°“‘('2—)
=%, | eehlA) Jl+12(k§—72)+1+ ( i)
2

44)

This rather complicated expression describing symmetric
(upper) and asymmetric (lower) waves can be understood,
after examination, by noting that the roots, &, , for a given &,
have spacing of about 27/L. These roots describe a discrete
set of Bohm-Gross modes. The k,=0 cutoffs are cited in
other work!® as thermal resonances,

These resonances have been observed experimentally in
cylindrical plasmas'! to have greater spacing than is pre-
dicted from a uniform density plasma model. Since our com-
puter experiment is able to model accurately a uniform
plasma, we do not discover this discrepancy. However, in the
interest of more accurately understanding laboratory plas-
mas, in a later work we will consider the nonuniform plasma
slab. Significantly better agreement between theory and labo-
ratory observation of cylindrical resonance spectrum is dem-
onstrated by incorporating the effects of a nonuniform den-
sity profile as suggested by Parker, Nickel, and Gould.?

IV. SIMULATION AND RESULTS

Particle-in-cell (PIC) simulations have been made to
verify the calculations presented above. The first simulation
strictly followed the matrix sheath model used in the calcu-
lation. Immobile ions were loaded with uniform density
throughout the system, while mobile electrons were loaded
uniformly in an interior region, leaving electron free slabs of
thickness A next to each grounded boundary. In this electro-
static simulation, the electrons were specularly reflected at
the sheath—plasma boundaries (x=A and x=A+L) as in the
calculation.

The particle-in-cell code XPDP2 was used for these
simulations. This code has been adapted from XPDP1 (Ref.
13) to include a second spatial dimension which is taken to
be periodic. Various routines have been added to enhance
diagnostic output, including those needed for power spec-
trum densities. The grid spacings in X and y were chosen to
resolve A p, and the time step was chosen to resolve frequen-
cies Sw,, . The number of physical particles per computer
particle was kept small enough to ensure negligible self-
heating over the simulation run-time. Finally, the length of
the system in the propagating, y, direction was long enough
to ensure against finite grid ei’t'ectss affecting w(k,) over the
range of k, studied.

The sxmulauon model has L, -L+2A 20cm
=37\p,, L,=80cm, and A=~0.133 cm. Zero-order plasma
parameters in the central region are n.,=n;=1.0
X10m™, 0, =178x10°s"!, T,=40eV, X,
=0.0468 cm.
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4.98

Frequency (Hz) X (m)

FIG. 2. PSD of electrostatic potential showing |®(x)|? for the asymmetric
sheath wave (k,=0, series resonance). A metal wall is at x=0, and the
midplane is at x=0.01 m.

A. Dispersion relations

The dispersion relations were measured by sampling the
electrostatic potential in time and space. This signal was pro-
cessed by windowing the data' (in time and propagation
dimension, ) followed by taking discrete Fourier transforms
in these dimensions. After time averaging the resultant
transforms,'* one arrives at the power spectral density (PSD)
in frequency and k, of the electrostatic  potential,
|®(k,,w,x)|>. This gives us detailed information on the
structure of the signal in the perpendicular, x direction, for 2
given frequency and k, ; however, memory constraints limit
the number of k,’s for which this data may be kept. A
sample of the measured |®(k,,w,x)|* data for k,=0 is
shown in Fig. 2. In order to obtain dispersion information,
we need not record the mode structure in X. Instead we cal-
culate the power spectral density -of

LR+A

O (ky,w)= ; ®(x,y,t) FP(L+2A—x,y,1), (45)

where the F sign is for (a)symmetric modes. The result is
shown in Fig. 3 for the asymmetric branch.

The waves were thermally excited (i.e., small-amplitude)
and a measure of the peak and full width at half maximum
(FWHM) of the power spectral density |®(k, ,w)|* was used
to determine w(ky)=w,(ky)+im,~(ky). Figures 4 and 5
show simulation and theoretical results for real dispersion,
w,(ky), for the asymmetric and symmetric surface waves,
and first three body (Bohm-Gross) waves. The ‘‘exact”

FIG. 3. PSD of electrostatic potential showing dispersion relation for asym-
metric modes.
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FIG. 4. Dispersion relations for matrix sheath simulation showing the asym-
metric surface wave (lower) and asymmetric Bohm~Gross branches (upper).

theory shown in Fig. 4 refers to a numerical evaluation for
w, which allows for {~1 as previously mentioned. We see
that while there is a fair agreement between the measured
data and the approximate theory, the exact theory is far more
accurate in describing the sheath waves. In particular, we
find that the series resonance (cutoff for the asymmetric
sheath mode) predicted by the approximate theory differs
from the measured value by 1.2 times the thermal correction
predicted in Eq. (43). Put another way, if the approximate
theory were used to predict the electron temperature, one
would find T,= 19 eV compared to the chosen value of 4 eV.
One could alternatively adjust A to gain a better agreement.
The predicted value for A using the approximate theory
would be 0.184 cm compared to the chosen simulation value
of 0.133 cm.

B. Eigenfunctions, ¢(x)

We next discuss the eigenfunctions ®(x) associated
with the sheath and body modes. These eigenfunctions de-
scribing the transverse dependence of the (a)symmetric
sheath and body waves are plotted in Figs. 6-9 for different
values of k,. These plots were obtained from the
|®(k, ,w,x)|* PSDs (a sample output in Fig. 2) with back-
ground noise weakly dependent on frequency subtracted out.

» /} body
waves
8.1.0" x x 1 surtace
3 Q & wave
Es °
e
os | )
O experment
theory
x gxact theory
0.0&—

0.00 .10 020 030

FIG. 5. Dispersion relations for matrix sheath simulation showing the sym-
metric surface wave (lower) and symmetric Bohm—Gross branches (upper).



Phys. Plasmas, Vol. 5, No. 4, April 1998

—— tessurod
==== exact theo

Dres(X)

0.0 10 20

X(cm)

FIG. 6. Electrostatic potential perturbation, ®(x) (at series resonance,
k,=0). The position of the sheath plasma boundaries is also shown. Note,
the cusp at x=1.0cm in the measured data results from plotting a root-
mean-square (rms) signal and the potential should be thought of as smoothly
crossing zero at these points. The theoretical data have been plotted with the
same cusps to facilitate comparison.

Numerical solutions of the exact theory are shown for com-
parison. Figure 6 shows the potential structure at the series
resonance. The inferred electric field strength is nearly con-
stant in the plasma body and a factor (1—w2,/w?) down
from the strength in the sheaths. This is predicted by cold
theory. The detailed matching of solutions at the plasma-
sheath interfaces requires the exact warm kinetic solution.
The ®(x) for the first asymmetric (lowest frequency) body
wave is shown in Fig. 7 for k,=0. The associated fields are
largest in the body of the plasma. Figures 8 and 9 show the

symmetric eigenfunctions for the symmetric sheath mode

and the first body symmetric mode at k,=2w5/L,.

To check that we are in fact measuring a thermal exci-
tation, we can estimate the expected electrostatic field energy
stored in a mode to be ~kT,/2 by appealing to the equipar-

— metaured
acee gxact Hheo

D(X)

- D . o - - - o = "o =]

%0 s ) 5 20

X(cm)

FIG. 7. Electrostatic potential perturbation, ®,..(x) [the first, asymmetric,
Bohm-Gross (body) wave, k,=0]. Note, the cusps in the measured data
result from plotting a rms signal and the potential should be thought of as
smoothly crossing zero at these points. The theoretical data bave been plot-
ted with the same cusps to facilitate comparison. -
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FIG. 8. Electrostatic potential perturbation,
wave, k,=5(27)/8cm™').

®(x) [symmetric sheath

tition theorem. It is a straightforward matter to calculate
JdVE?/¢,, the electrostatic energy density associated with a
particular eigenmode, from the data in Fig. 2. This has been
done and the result is in reasonable agreement with the pre-
dicted value of kzT,./2 when one remembers that the real
temperature as derived from the mean particle energy must
be multiplied by the super-patticle size.

C. Collisionless damping

Our linear Vlasov theory ‘also contains results for the
collisionless damping of the sheath and body waves found in
our model.. The expression for col]xsnonless Landau damping
of these waves is

1
|
¢ — metured
! ~=== exact thec
1}
1
1
i
G0 | !
!
|
1
1
!
|
]
1
t
|
H )
t
!
nn ) " A o
00 (-1 10 15 20

X(cm)

FIG. 9. Electrostatic p nalpunnbauon.¢n(x)[theﬁm.symmwtc.
Bohm-Gross (body) wave, k,=5(27)/8 cm™"]. Note, the cusps in the mea-
smeddatamultﬁomplomngarmssxgmlandthepomualshouldbe
thought of as smoothly crossing 2ero at these points. The theoretical data
have been plotted with the same cusps to facilitate comparison.
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FIG. 10. Imaginary part of dispersion relations for the asymmetric surface
wave and the first asymmetric Bohm-Gross branch.

_ —Dy(w,.ky)
YD (w k)|
ow o,
zw _ﬂ__w ei(wnk)
k™ L k¥(E(w, k) +€(w, k)
= - _nT__ . €(w,Kk) )
6w k- L. K(e(w0k)+ e (0K) o

(46)

This expression is evaluated numerically and compared with
results from computer experiments in Fig. 10. No assump-
tions about ¢ are used in evaluating the plasma dispersion
function. The sheath wave damping is greater than the body
wave damping because of the lower phase velocity (higher

k,) components which are. present. Care has been taken to
ensure that the number of computer parncles per A De is large
enough to reduce the electron—electron Coulomb collision
frequency well below the measured damping. (PIC simula-
tion tends to minimize Coulomb collisions anyway, due to
the finite spatial extent of the particles.) Error in the experi-
mental measurements may be due to numerical fluctuations
and finite sampling periods. Also, the data windowing tech-
nique tends to broaden resonance peaks.

D. Sheath without specular reflection

A further computer experiment was run in which the
electrons and ions were initially given equal densities and
loaded uniformly throughout the system. Still, the ions were
immobile. After an initial transient in which electrons near
the boundaries leave the system (i.e., sheaths are formed) the
electron loss becomes negligible and surface/sheath waves
are detected. This experiment more accurately represents the
sheath dynamics of a laboratory plasma. Figure 11 shows the
average density profiles for the specular reflection and self-
consistent sheath experiments. Figures 12 and 13 show quall-
- tative agreement between the self-consistent sheath experi-
ment and the theoretical results based on specular reflection,
but also indicate significant quantitative differences. We
have chosen A for a best fit of Eqs. (36) and (37) to the
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FIG. 11. Time averaged electron number. density for self-consxstem and
matrix sheath computer expenmem

experimental data (A =0.075 cm). It should be noted that the
reasonable fit achieved is somewhat fortuitous since we have
pointed out the shortcomings of Eqs. (36) .and (37). Not
shown are results for the collisionless Landau damping in
this simulation. The damping of both body and sheath waves
was reduced from the respective values in the matrix sheath
simulation. We suspect that the loss of the *‘tail’’ electrons
whose £ directed energy exceeds the voltage drop across the
sheath is the cause for the reduced damping. The absence of
a distinct plasma/sheath boundary may also *‘smooth’ out
and decrease contributions to the ®(x) eigenfunctions from
higher (and more strongly damped) k;; components.
In a succeeding article, we will consider the effects of a
nonuniform plasma density and show that a new set of waves
can be observed.

FIG. 12. Dispersion :elanons for self-consistent sheaﬂ: simulation showing
the asymmetric surface wave (lower) and asymmetric Bohm-Gross
branches (upper). w,, is peak value.
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FIG. 13. Dispersion relations for self-consistent sheath simulzation showing
the symmetric surface wave (lower) and symmetric Bohm-Gross branches
(upper). w,, is peak value.

V. CONCLUSIONS

We have shown theoretically and experimentally (by
PIC simulation) that waves in a metal bound uniform plasma
with matrix sheaths can propagate in the quasineutral body
of the plasma as well as along the sheath plasma boundary.
The electric field energy for the former is localized to the
central region while the latter has stronger fields at the
sheath—plasma boundary. We have shown that the dispersion
relations for both real and imaginary « describing these
waves are well predicted by a linear Vlasov treatment and
that significant contributions to the surface wave modes are
made at kAp.=1. The eigenfunctions, ®(x), for various
points on the dispersion diagrams have been measured and
are also in good agreement with theory. When the matrix
sheath is replaced by a more self-consistent sheath model
(ions still immobile), the dispersion relations can be fit to the
theéoretical results presented.
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Electron surface waves in a nonuniform, metal bound, thermal plasma slab have been analyzed and
detected. Measurements of the dispersion relations of these waves, as well as the eigenstructure of
the perturbed electron density, reveal a spectrum of waves with frequencies above and below the
peak electron plasma frequency in the slab. These waves are analogous to the Gould-Trivelpiece
and Tonks—Dattner waves found in dielectric bound plasma columns. Measurements have been
made using particle-in-cell simulation of an argon plasma and are compared with linear fluid theory
in which the adiabatic approximation is made for the perturbed pressure. The presence of the metal

boundary leads to regions near the plasma sheaths in which the fluid theory breaks down; we
explore the differences between theory and measurement in this region. © 1998 American Institute

of Physics. [S1070-664X(98)03904-4]

I. INTRODUCTION

The model of a uniform plasma-with matrix sheaths,
developed in a previously submitted article,! provided in-
sight as to the behavior of ‘‘sheath sustained’’ surface waves.
However, it failed to describe the full range of surface modes
that we may expect to find in a self-consistent planar metal
bound plasma. In a manner similar to that of Parker et al>
in work on resonances in dielectric bound plasma columns,
we now allow nonuniformity in the unperturbed electron and
jon densities. This nonuniformity (in the direction perpen-
dicular to the walls) allows for a new set of surface modes
analogous to the secondary or Tonks—Dattner modes (asso-

ciated with transverse resonances) observed in dielectric

bound cylindrical dc discharges.*”
. The resonance spectrum associated with plasma columns
has been observed as early as 1931 by Tonks.*® A more
detailed investigation of these resonances, which included
data on the electron densities in the plasma column, was
performed by Dattner.'® Both authors detected a main dipole
resonance and higher resonances with frequencies found to
lie between that of the main dipole resonance and the peak
plasma frequency. These higher secondary resonances are
known as Tonks—Dattner resonances. Vandenplas'' outlines
the evolution of the theoretical efforts employed to explain
the observed resonance spectrum. A cold homogeneous fluid
calculation predicted the main dipole resonance (at @, /v2);
a warm homogeneous fluid model predicted additional reso-
nances, but with different spacing and location than observed
in experiment. Finally, good agreement was achieved by
Parker et al.>* with a numerical calculation based on a warm
inhomogeneous fluid model. Baldwin'? examined the valid-
ity of this fluid approach and developed an alternate kinetic
theory that was intended to represent better the Tonks-
Dattner resonance spectrum of afterglow plasmas, where r,,
®\p, (1, is the plasma radius).

The main dipole resonance represents the k,=0 cutoff
for the dipole Gould-Trivelpiece surface wave' and is

1070-664X/98/5(4)/862/11/$15.00

analogous to the series resonance in a metal bound plasma
slab, which is the k,=0 cutoff for the asymmetric sheath
wave.! In addition to the main dipole resonance, experiments
have shown that the Tonks—Dattner resonances are also cut-
offs for electrostatic surface waves that propagate along the
column axis.*~ .

It is the goal of this work to investigate the spectrum of
electrostatic surface waves that can be found in the unmag-
netized metal bound plasma slab. We will use the previous
studies of the resonance spectrum and waves in dielectric
bound plasma columns to assist.in our work. Our use of
metal boundaries, rather than dielectric boundaries used in
previous work, emphasizes the importance of the sheath re-
gions in determining the nature of the observed waves. The
sheaths have often been omitted from previous theoretical
treatments, where the dielectric boundary plays a more sig-
pificant role in determining wave behavior. Additionally, in
this work we will analyze the validity of the fluid approach
and the assumption of a perturbed scalar pressure as made by
Parker et al.3 It is hoped that this investigation may lead to a
better understanding of sheath physics, and to applications
such as bulk plasma control via surface wave excitation.

We will present a fluid theory here and compare the
results with those of particle-in-cell (PIC) computer
simulations.'* These simulations enabled the measurement of
the wave dispersion relations and the structure of the surface
waves (spatial variation) in the linear regime by the same
means employed in our companion paper.' A description of
the model is given in Sec. IL. A linearized fluid theory is
presented in Sec. IIL In Sec. IV the PIC (particle-in-cell)
simulation is discussed and, in Sec. IV, results from both
theory and simulation are presented and analyzed. Conclu-
sions are made in Sec. VL

il. MODEL DESCRIPTION

The undriven, 2d3v (two spatial and three velocity com-
ponents), thermal, plasma slab bound by conducting

_© 1998 American Institute of Physics
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FIG. 1. Schematic of the plasma slab simulation.

grounded planes will be the subject of our theoretical analy-
sis and PIC simulations (see Fig. 1). The x direction is per-
pendicular to the walls and the y is the propagation direction
(parallel to the walls). The two species plasma consists of
argon ions and electrons. Both species are mobile and warm.
The steady-state plasma density is self-consistently deter-
mined from simulation by applying an electric field in the
unresolved spatial dimension (z) with a strength inversely
proportional to the plasma density averaged in X and y. This
model is equivalent to fixing a dc discharge current in Z since
we also include a background of neutral argon atoms to
model electron—neutral collisions. The use of a Monte Carlo
collision algorithm,'® which models electron elastic and in-
elastic collisions, ionization, ion elastic collisions, and
charge exchange, then allows a self-consistent dc discharge
to form. This model allows for the formation of self-
consistent electron density profiles (Fig. 2) and sheaths along
the metal walls. The inelastic collision frequency is taken to
be v=(n,o(v)v)=1.2¢7<w,,, which is low enough to al-
low approximating this plasma as ‘‘collisionless’’ in our the-
oretical analysis. The presence of inelastic collisions causes
some decrease in the electron energy probability function
(EEPF) at higher energies (>12eV), as seen in Fig. 3,
which displays the EEPF (from simulation) in each dimen-
sion. A more pronounced effect is the depletion of the elec-
tron population at the highest v,, which results from the
highest-energy (in x) electrons escaping to the walls. How-
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FIG. 2. Electron and ion density profiles averaged in the time and axial ()
direction. Also shown is the electron density predicted by a Maxwell-
Boltzmann distribution at T,=6.02 eV (L,=2.0 cm~78\p,).
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FIG. 3. Electron energy probability functions (EEPFs) in each velocity di-
mension. Also shown is the EEPF resulting from a Maxwellian distribution
at T,=6.02eV.

ever, since the plasma is nearly Maxwellian out to ~15eV
(the ionization energy), we shall consider the EEDF to be
well represented by an isotropic Maxwellian at T,
=6.02 eV={m,v?)/3 (also shown in Fig. 3). Care is taken to
subtract the drift velocity along the Z direction before com-
puting the average kinetic energy. A plot of the electron
density profile predicted by assuming a Boltzmann distribu-
tion at T,,=6.02 eV is shown to be in excellent agreement
with the measured value (Fig. 2).

We have shown that the electrons in our computer ex-
periment can be approximated as collisionless and Maxwell-

. ian, as desired. However, it would have been more desirable

to maintain a lower electron temperature, since this would
have further minimized the effect of depletion of the EEPF at
high energies. The electron temperature in our dc discharge
is self-consistently determined by (i) the neutral gas pressure,
which unfortunately could not be further increased without
loss of our collisionless assumption; and (ii) the discharge
width (in £), that coald not be increased without the loss of
computational efficiency. A compromise was reached in
choosing these parameters.

lll. LINEARIZED FLUID THEORY

The model described above forms a self-consistent
sheath with a nonuniform density profile (Figs. 1 and 2).
This system can.be compared to the results of a linearized
fluid calculation similar to that of Parker et al,> who de-
scribed transverse resonances in an inhomogeneous thermal
plasma column. We extend their analysis to include waves '
propagating along the wall in a plasma slab.

We will find main symmetric and antisymmetric modes
that are analogous to azimuthally -symmetric and dipole
Gould-Trivelpiece'® waves in a dielectric bound plasma col-
umn, as well as secondary branches analogous to those stud-
ied by O’Brien et al.,*® Kerzar et al.,5" and others. The ob-
served cutoff (k,=0) frequencies for these waves appear to
result from standing longitudinal waves that are trapped in a
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surface layer defined by a metal boundary on one side and
some critical distance inside the plasma at which the local
plasma frequency equals the wave frequency.? Exponential
decay of the mode is expected beyond this critical distance,
toward the interior of the plasma. (These descriptions will be
supported by the simulations in Sec. V.)

We proceed with the linearized fluid model as follows.
First we write the electron density, fluid velocity and scalar
pressure, and the electrostatic potential as the sums of
steady-state and perturbation terms,

"¢=neuf(x) +'TI ’ v¢=ve0(x) +vl »

1)
P=Peo(x)+51 ’ ¢=¢0(x)+a;l ’

where the first-order terms are of the form ¥,
=¥, (x)e% =" The function f(x) represents the normal-
ized steady-state electron density profile, which equals unity
at the slab center and decreases monotonically toward the
plasma boundaries. Here f(x) is determined self-consistently
by allowing the particles in our computer experiment (simu-
lation) to reach an equilibrium. This approach is in contrast

to the calculation by Parker ez al..> who utilized an analytic

approach for finding f(x), using the model of Tonks and
Langmuir.!® Since we are looking for solutions with @
< wpeg, We approximate the fons as an infinitely massive
species. Therefore, we do not need to consider the ion dy-
namics in the analysis that follows. (The simulation used
argon ions with M ,/m,=73 800.) The steady-state ion den-
sity, nm(x), is derivable from Poisson’s equation using
®o(x) and n,of (x).

Next we insert these linearized expressions into the elec-
tron continuity, electron momentum, and Poisson’s equa-
tions, producing a set of zeroth- and first-order equations.

The resulting zeroth-order equations are

V{1 oof (X)Veo(x)]=0, @
m.n eof (X )[Veo(x ) -V ]veO(x )

= —en ,of (x)V@o(x) — Vpo(x), G))
Vzd’o(x)=‘%[nio(x)‘nenf(x)], @)

where m, is the electron mass and e the signed electron
charge. The quasistatic limit is justified since the slow-wave
results we will obtain contain wavelengths much shorter than
those in free space at the same frequency. Collision terms
have been dropped with the assumption that V<.

“In order to obtain an equation for the potential, ®o(x),
we proceed by assuming an isotropic, isothermal zeroth-
order velocity distribution that allows us to write '

vp eo(x ) = knTeoV n ¢0f (x ) . . (5)

Since there is a v,, drift in our model, we consider our analy-
sis to take place in the rest frame of the plasma. Since there
is no variation in Z, our final solution will have no Z depen-
dence and we are free to apply the result in the lab frame.
Inserting Eq. (5) into Eq. (3) produces ~
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mcnc(lf(x)[vw(x) : V]Veo(x)

= —en,of (x) VOo(x) — kpTeoV 1 eaf (x)- (6)
Dividing through by m,, n.0, and f(x) leaves
v v
[Vea8)- ¥ Iva)= = o Vo)== 7o

where we have used v§w= 2kgT.o/m,. For the one-
dimensional variation of zeroth-order quantities considered |
here, v,o=v.o%, and Eq. (7) becomes
2
1 e vr, .
= v2o(x) = = — [@o(x) ~ Po(xme) ]~ == W (x)]
2 m, 2
: ®
(where xp;q marks the midplane of the slab). In the limit
v2(x)<vZ  In[f(x)). which is easily achieved for the pro-
files and temperatures of interest, we may set the term on the

left-hand side to zero. We may then simplify Eq. (6), leading
to

ksTeo Vf(x)

V®o(x)=- —-eL' 7@ ©)
which is the governing equation for ®o(x), with f(x) ob-
tained from simulation.

The first-order equations are

— i+ nof (X)V V) + 7V V() +V0(x) - Vi

+¥,-Vn,of (x)=0, (10)
— iwm n oof (X)F + m o o f (O (F1 -V )Veo(x) '

+[eo(x)- V1T }+m [0 co(x) - V10 o(x)

= —-en,af(x)VzI;l'— er'ﬁV(Do(x)— Vb1, . (11)
vzas,:‘-:;'a-,. R (12)

Second-order terms have been dropped. .

We now proceed to obtain an equation in ®;(x). We
begin by eliminating the terms including v.o. We can do so
with the same assumption v2(x)<€v7  In[f(x)] used previ-
ously, along with the assumptions J,v o(x)/@<1 (which
roughly states that the electrons may not drift a substantial
fraction of the length of the system in a wave period) and
Vo0(x) 0,015/ (V120), Veo(x)dx; /(A w)<1 (which roughly
states that the drift velocity must be much less than the phase
velocity of the wave in the perpendicular, £ direction). Ac-
tually, v, may be estimated from the ion flux (in x) through
the system that is not zero (as in the infinite mass limit), but
varies from zero at the midplane to some value on the order
of n;ou3=n,oJkBT,olm,- at the sheath edge. The ion flux
must be equal to the steady-state electron flux,
1 .of (X)V 0(x), in order to preserve charge. This equality can
be used to estimate v o(x) from which the soundness of the
limits taken above is supported.

We also need to choose some approximation (a closure
scheme) in order to evaluate the last term on the right-hand
side of Eq. (11). We chose, as is regularly done for an un-
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magnetized collisionless plasma, the adiabatic approximation
where the heat flux vector is set to zero. In this case it has
been shown® that [for p.o=n,of (x)kgT.q, v.o=0])

6n 1 knT,o d

(Vp;), 3kpTeo 5= axl io ktg.j.k E

an,,
(""eof(x) L4275, Uik n;:(x)

j

+neaf(x) 7“‘) ] (13)
.

This expression can be simplified somewhat, given our 2d3v
model in which U lies in the x-y plane and that the zeroth-
order electron density is only a function of x. The resulting
expression is

(V51)=3kgT o Viiy + kl::eo {[2 3n,;:(x) v,
+25, 2 1 i) 2
ale 301 F]
x(??f 3:)]“ o |
(-W(x) Sl % )y] (14

This equation is still prohibitively complex. If we define
L(x)~'=4 In[nof(x)Vax and assume L(x) to be of the order
of the slab thickness, except in the plasma sheath region, we
may greatly simplify Eq. (14) with the further assumptions

that (i) o,,<0,,, which is roughly equivalent to requiring.
that axial variations (in §) occur over a longer wavelength .

than in the perpendicular (x) direction (nearly one dimen-
sioual); and that (ii)

L(x) T‘T>l (15)
(the variation of the waves in X must be on a scale much
smaller than the slab thickness). In this limit we simply have

(Vh)= 3ksT¢ovn1 N (16)

In the sheath region, the scale length, L(x), of the
steady-state density profile is no longer on the order of the
slab thickness, but on the order of the electron Debye length,
and Eq. (15) may not hold if the perturbation wavelength in
the sheath region is too large. We examine the validity of Eq.
(15) when analyzing our results (Sec. V). -

Finally, after dmppmg terms with v,o(x) and makmg the
adiabatic assumption for 5, we use Egs. (10), (12), and (9)
in the divergence of Eq. (ll) to produce an equation in P, ,

v 2
v2v2¢,——( ff(’;) V|2, + [vkp, -;—f(x)
L1 (V)
v( 5 )vhp, T V- vE=0. ()
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After using our assumption, &, =®,(x)e/*»” %9, we then

obtain
7'®,(x) o 0*®,(x)
ax* Yy gx*®

X(ang(x) 2 6'<I>,(x))+[ 1

Cax Y ax yxf,,(w,,,o

+S®, (x) - (a‘f (x))

f(x)

f(x))

1 (6J(x)) (62<1>1(x)
v ox \ f(x) ax*

1 af(x) o®(x)
- YAp Ox ox

This fourth-order differential equation [Eq. (18)] is
solved numerically in order to produce the dispersion rela-
tions and the eigenfunctions ®(x) for the range of electro-
static waves existing in the frequency range w,;, V. <
Sw,,,o. In Eq. (18), Wpeo and ch [Eq. (18)] are defined as
their values at the midplane.

In order to obtain numerical solutions, we need appro-
priate boundary conditions. We assume that solutions have
either even or odd symmetry about the midplane. First, we
require that-the penurbed electron current density in the X
direction, .

kﬁ@;(x))

=0. (18)

: iwmgl;(x)sfiwmeleln-,of(x)v,,w

= "eof(x) l( )"'knTeoeo
' Pd(x) ., . \af(x)
( 2 "54") ol

o PO . ayx)|
“3kaTeo€o( - axls k3. ‘;x )

(19)
vanishes at thé boundaries. This requirement is equivalent to

assuming specular reflection of the perturbed electron current

density at the plasma boundary (metal wall). Second, we
require that the potential must be zero at the grounded walls.
We are now able to solve Eq (18) for ®j(x) to wnhm an
arbitrary constant. -

‘We consider the solution of either the even or odd mode
to be the linear combination of two modes giving ®,(x)
=0 at the wall. The two modes chosen for the even (odd)
solution have either the zeroth (first) or second (third) deriva-
tive of ¢ (xmp,m) set to a constant with all other deriva-
tives set to zero, in order that the numerical solution of Eq.
(18) may proceed from Xmigpan. toward the wall. These con-
ditions are met only at discrete values of w/w,.q, whichare
located by finding the zeros of the perturbation current den-
sity (Eq. (19)] at the wall (as derived from the numerical
solutions described above) versus w/wp,q.

We end our theoretical analysis with a further discussion
of the limits of its applicability. In addition to the restrictions
associated with neglecting electron drift and reducing the
perturbed pressure [Eq. (13)] to a manageable form, we also
must examine the limits of the adiabatic approximation and
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the restrictions imposed by linearity. It has been pointed out
by Baldwin'? (for afterglow plasma columns, where the elec-
tron Debye length is especially short), that the fluid represen-
tation breaks down, since k,Ap, (k, being the local wave
vector perpendicular to the column axis and to the walls) can
approach and exceed unity. Beyond this point, the waves are
heavily Landau damped and the adiabatic approximation
breaks down. In our slab model there is also a region (typi-
cally within the sheath) where, due to a decreasing n,qf (x),
k. \p. can approach unity and the adiabatic fiuid model will
be violated. However, since in this study we focus on the
steady-state discharge with T,,~6 eV, the length over which
kApe~1 is small, as will be discussed further in Sec. V, and
we are able to use the fluid theory.

Our assumption of linearity further imposes the restraint
that (V.v,+v,,/L)/w<1, as can be derived from the lin-
earized continuity equation. This roughly indicates that the
perturbation velocity is much smaller than the local phase
velocity and the bounce velocity Lw. The linearized momen-
tum equation further requires that v, <v2/[V In(n)]

The dispersion (@ vs k,) and eigenfunctions (in x) will
be shown in the next section, compared with results from
simulation (which has far fewer assumptions and approxima-
tions).

IV. SIMULATION DESCRIPTION

.. The particle-in-cell code XPDP2'” was used for the
simulation of the 2d3v plasma slab described in Sec. IL. The
simulation time step, A¢, is chosen to resolve frequencies up
to the peak electron plasma frequency. The grid spacing in £
is chosen to resolve the electron Debye length so that the
sheaths and Landau damping are well resolved. The slab
thickness (in ) is chosen to be 2 cm and the periodic length
(in y) is 8 cm. A standard leap-frog particle advance is used
along with a bilinear particle and field weighting scheme and
a Poisson solver that reduces to a tridiagonal matrix solver.!¢

330
FIG. 4. Dispersion relations for asymmetric modes, giving wave frequency as a function of the wave number in the propagating dimension (). A main

(lowest frequency) and secondary branches with w<w,, are shown. Body modes with w>w,, are also shown. Here w,, is defined as the peak value. The
cutoff (k,=0) for the main surface wave is known as the series resonance.

The physical parameters describing the plasma slab
simulation include peak electron density n,=5.1
X10¥ m™, electron temperature Te=(2/3)(mv?/2)
=6.02 eV, Debye length at the midplane Ap,=0.0255 cm,
slab thickness (equal to wall spacing) L,=2.0 cm=78\p,,
plasma midpotential V;4=39.5 V, and peak electron plasma
frequency wp.o=(27)6.41X 10® rad’s.

Figures 4 and 5 show the theoretical and experimental
results for the dispersion relation w(k,) of symmetric and
asymmetric modes, whose frequencies lie below and above
w,.. The experimental measurements are obtained from
peaks in the power spectral density, |®(k, , )|, in the same

1.5 ™

0.15

0.05

020

'Sﬁ“l

FIG. S. Dispersion relations for symmetric modes giving the wave fre-
quency as a function of the wave number in the propagating dimension ().
A main (lowest frequency) and secondary branches with @< w,, are shown.
Body modes with > w,, are also shown. Here w,, is defined as the peak
value.
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FIG. 6. The sample output for the power spectral density (PSD) of the
asymmetric charge density perturbation | p(x,f.k,=0)|*. The normal modes
are clearly differentiated from the noise (metal wall at x=0 m; midplane at
x=0.01 m).

fashion as described in a previously submitted article.' These
peaks are generated by thermal (particle) fluctuations; the
full width at half-maximum is measured and taken to be
approximately equal to the electron—neutral collision fre-
quency. Higher “‘body’’ modes are only weakly detected be-
cause the summing technique employed in deriving
|CIJ(k),,m)|2 poorly detects potential signals with zero cross-
ings (other than at the midplane). A more sophisticated
scheme could have been employed; however, these higher
modes are well known and are not the focus of our study.

In addition to the dispersion relations, we have measured
the eigenmode structure, n,(x), of these waves. The results
are derived from | p(ky,r.u,x)lz, the power spectral density
(PSD) of the charge density. A sample output of
|p(k, ,w,x)|? is given for the odd modes at k,=0 in Fig. 6.
The waves are easily identified by the enhanced signal at
discrete frequencies that coincide with those found from
|®(k,,w)|*, and arise from thermal fluctuations. The elec-
tron density perturbation at the frequency corresponding to a
particular wave mode, at a given k,, is derived from these
PSD measurements by subtracting a background noise signal
(proportional to the steady-state electron density profile)
from the |p(k, ,,x)|* signal. The constant of proportionally
has a frequency dependence that might be determined explic-
itly, but in our results we have chosen the value necessary to
ensure that the perturbation amplitude goes to zero at the
midplane. This fitting is reasonable for all but the highest
symmetric mode, which may have a significant perturbation
at the midplane. For these modes the proportionality constant
may be alternatively determined by fitting the detected signal
minima as closely as possible to zero amplitude. In the above
discussion, we have made the assumption that, for the fre-
quencies of interest ~w,,, the contribution to the PSD of
the charge density from ions is negligible so that the charge
density PSD represents the electron density PSD (multiplied
by the electron charge).

Additional measurement of |v,,(k,,w,x)|* has been
made; the data provides verification of the theoretical bound-
ary condition requiring that the perturbed flux to the walls
equal zero.

The signal detection scheme described here is realizable
because PIC simulation allows the fine spatial detail in elec-
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FIG. 7. The local wave number and local Landau damping for the main
asymmetric mode and the last detected asymmetric Tonks—Dattner mode
(long-wavelength limit, k,=0, metal boundary at x=0m). Negative
(k:\p)?* corresponds to exponential decay into the plasma, at x>x. .

tron density and electrostatic potential to be measured accu-
rately and nonintrusively. This provides distinct advantages
over laboratory experiments that require launching and de-
tecting antennae that require exciting waves to higher ener-
gies and can allow for coupling to extraneous signals. For
example, in the work of O’Brien’ on slow wave measure-
ments in a plasma column, waves were launched and de-
tected with a variety of azimuthally symmetric and dipole
antennae. Phase coherent detectors were used to measure the
axial wave number. However, coupling to unwanted symme-
tries and closely spaced neighboring Tonks—Dattner modes
severely limited the range of detectable wave phenomenon.
As a final consideration, the metal bound plasma slab studied
in this work cannot easily be studied in the laboratory in the
same fashion as the dielectric bound plasma cylinder since
the coupling from outside the plasma volume is not possible.

V. RESULTS

The theoretical and measured values for the dispersion
relations w(k,) of asymmetric and symmetric electrostatic
waves shown in Figs. 4 and 5 represent surface waves with
w<wp,o and body waves with w>w,.o. While the spacing
and approximate location are well captured by the linearized
fluid theory described in Sec. III, the theoretical results are at
consistently higher frequencies than those of the observed
waves. We consider two possible reasons for the discrep-
ancy.

The first is that the adiabatic assumption for the pertur-
bation, which requires w/k.>vr,, breaks down near the
boundaries. Figure 7 shows the local wave number (k,=0)
in x for the first and fourth asymmetric modes. The adiabatic
assumption fails in the region where k,Ap, <1 no longer
holds. In this region we can also expect significant Landau
damping; the local collisionless damping frequency, w;, is
also plotted in Fig. 7. The local wave number in X and damp-
ing rate are approximated by the long-wavelength limits,

k?\()_\/( Ca —1)/3 20)
xApelX)= wpe(x)i (
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FIG. 8. The region and degree of validity for Eq. (15) is illustrated for the
main asymmetric mode and the last detected asymmetric Tonks-Dattner
mode (k,=0). The solutions to Eq. (18) have been used to calculate the
ordinate.

and

[w]r 8 [kx)\De(x)]
X e(~32) {1 +3[kAp (DPM2AkeADOD | (21)

where Eq. (20) reduces to the dispersion relation for Lang-
muir waves, w,(x)’=n,f(x)e*/(eym,) and Ap.(x)?
= €gkpT, o/[n,of(x)ez] Figure 7 shows that the adiabatic
approximation is more severely violated for the higher reso-
nances, yet our dispersion data shows a greater error in the
theory for the lowest modes.
. The second reason offered for the error in the theory is
that the inequality given by Eq. (15) is not sufficiently satis-
fied. The region of strongest variation in f(x) occurs in the
plasma sheath. Figure 8 shows a plot of {d,n[f(x)Iy/
[8,In(v,,)] for the first and fourth asymmetric resonances.
The lower-frequency mode is shown to be more poorly rep-
resented by Eq. (15). Thus, we consider the simplifications in
the fluid derivation made by neglecting terms resulting from
the plasma inhomogeneity as the more likely source of error
in the theoretical dispersion relations.

The first symmetric and asymmetric branches (occurring
at lowest frequencies in Figs. 4 and 5), which are present
even in the cold, uniform plasma model, provided that a
dielectric region exists between the plasma and metal bound-
ary, are known as the main surface wave branches and are
analogous to the m=0 and m=1 (m equals the azimuthal
mode number) Gould-Trivelpiece surface modes in the
plasma cylinder and also to the ‘“‘sheath’ modes in the um-
form plasma slab described in a previously submitted paper,!
while the higher modes with k,=0 cutoffs below w . are
analogous to the propagating Tonks—Dattner modes.*"

Next we discuss the results for the perturbed electron
density, n,(x). Figures 9-16 show the theoretical and mea-
sured values for the symmetric and asymmetric modes iden-
tified in Figs. 4 and 5 for k,Ap,=0 and k Ap,=0.08. Theo-
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FIG. 9. The amplitude of the electron density permurbation of the first (main)
asymmetric surface mode from a metal boundary (x=0 m) to the midplane
(x=0.01 m) of the system. Theory and experiment at two different values of
k, are shown.

retical curves are computed at the frequencies of the
observed resonances rather than at the theoretical frequen-
cies. Although the resolution of the experiment is not as high
as the theoretical data (due to computational limits), the
agreement is satisfactory. We observe that the measured

" eigenfunctions tend to oscillate more rapidly toward the edge

than the theoretical curves and this phase difference at the
wall is most pronounced for the first and second symmetric
and asymmetric branches. This observation is consistent with
the differences between the theoretical and measured disper-
sion relations, which showed the largest disagreement at
these same two lowest modes, and may be attributed mainly
to an unjustified simplification of terms relating to the
plasma inhomogeneity.

The qualitative picture presented by Parker ez al.? in
which Tonks—Dattner resonances are considered to represent
Langmuir waves trapped between an overdense region and
the plasma boundary, is clearly illustrated by the n,(x) data.
The critical point, x., shown in Figs. 9-16 for the k,=0
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FIG. 10. The amplitude of the electron density perturbation of the first
(main) symmetric surface mode from the metal boundary (x=0m) to the
midplane (x=0.01 m) of the system. This mode has no k,=0 cutoff.
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FIG. 11. The amplitude of the electron density perturbation of the second
asymmetric surface (Tonks—Dattmer) mode from a metal boundary (x
=0 m) to the midplane (x=0.01 m) of the system. Theory and experiment
(In,| skown from simulation; n, shown from theory) at two different values
of k, are shown.

modes, marks the location at which the oscillation frequency
equals the local plasma frequency. We expect a decaying
solution for ®,(x) from this point toward the center. From
x, toward the plasma edge, a Langmuir wave may propagate
in X with the wavelength decreasing as the electron density
decreases. It is in this region that Baldwin'? correctly ques-
tioned the validity of the fluid calculation and develops a
kinetic theory that allows for the kinetic effects of Landau
damping, as well as reflection from the sheath. He argued
that one can expect that, as the electron density approaches
zero at the wall, the propagating Langmuir wave will even-
tually enter a region where k,Ap.=1, and the kinetic effect
of Landau damping should take effect. Baldwin suggested
that this Landay damping should have a more pronounced
effect in afterglow plasmas smce the Ap, is greatly reduced
due to a decrease in T,o. Ignat'® performed experiments in
which he attempted to verify the theoretical work of Bald-
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FIG. 12. The amplitude of the electron density perturbation of the second
symmetric surface (Tonks-Dattner) mode from the metal boundary (x
=0m) to the midplane (x=0.01 m) of the system. Theory and experiment
(ln,| shown from simulation; n; shown from theory) at two different values
of k, are shown.

D. J. Cooperberg 869

200412 Y -

1.00+12

0.06400 | -

-1.00412 |

Perturbed Electron Density (m™)

200412 + __

0.00& (mgn'oe 0.608 0.010

FIG. 13. The amplitude of the electron density perturbation of the third
asymmetric surface (Tonks-Dattner) mode from the metal boundary (x
=0m) to the midplane (x=0.01 m) of the system. Theory and experiment
(In;| shown from simulation; n, shown from theory) at two different values
of k, are shown.

win; however, the agreement between his experimental data
and the Baldwin theory seemed to be worse than that ob-
tained with fluid theory. In our simulation, the violation of
k\p.<1 is most significant for higher modes and occurs
only in a thin region starting near the plasma/sheath bound-
ary and extending to the wall (see Fig. 7). The plasma/sheath
boundary is defined as the point where the steady-state po-
tential has dropped by kpT.o/2 from its peak value (at the
center). This point is experimentally determined in our simu-
lation to be at 0.0031 m=12\p,o from either metal wall.
Even though the fluid theory breaks down in this region, the
waves are clearly shown to have a well-defined eigenmode
structure all the way to the metal wall (in Figs. 9-18), and
the resulting inaccuracy does not seem to interfere with the

‘qualitative results.
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FIG. 14. The amplitude of the electron density perturbation of the third
symmetric surface (Tonks-Dattner) mode from the metal boundary (x
=0 m) to the midplane (x=0.01 m) of the system. Theory and experiment
(Jn,] shown from simulation; 2, shown from theory) at two different values
of k, are shown.
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FIG. 15. The amplitude of the electron density perturbation of the fourth
asymmetric surface (Tonks-Dattner) mode from the metal boundary (x
=0 m) to the midplane (x=0.01 m) of the system. Theory and experiment
(Jn,| shown from simulation; n, shown from theory) at two different values
of k, are shown.
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We may make some crude estimations of the expected
effect of Landau damping, which is significant in a thin re-
gion near the plasma walls. In Figs. 19 and 20 we have
crudely estimated the perturbation function, n,(x) of the first
and fourth asymmetric modes at k,=0 between the critical
point, x., and the wall by

‘I’osc(x)=sin( J’xk,(x’)dx’ +A¢) (22)

and

Y gapl(x) = ¢~ I/ o e’ (23).

where the phase, ¢, at x, is chosen as a best fit to the mea-
sured perturbation, k,(x) and w;(x) are derived from Egs.
(20) and (21), respectively. This representation neglects any
slow variation in the wave amplitude, and further is not valid
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FIG. 16. The amplitude of the electron density perturbation of the fourth -

symmetric surface (Tonks-Datiner) mode from the metal boundary (x
=0m) to the midplane (x=0.01 m) of the system. Theory and experiment
(In,| shown from simulation; n, shown from theory) at two different values
of k, are shown.
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FIG. 17. The amplitude of the electron density perturbation of the first
asymmetric body mode from the metal boundary (x=0 m) to the midplane

(x=0.01 m) of the system. Theory and experiment (|=,| shown from simu-
lation; n, shown from theory) at two different values of k, are shown.

near x... Reflection is also neglected. Still the resulting wave
form ¥ .(x) (at least for the higher modes) is in qualitative
agreement with the simulation and theoretical data. For the
fourth mode, the net damping of the wave after reaching the
wall is considerably greater than for the first mode; however,
it is not severe enough to destroy the resonance. This analy-
sis may help explain the success of the fluid theory. For the
higher modes we see that Landau damping occurs in a finite
region in the X dimension determined by the steady-state
plasma density profile. This damping may become more sig-
nificant in higher Tonks—Dattner modes, which are not
present for the simulation parameters chosen. As described
by Baldwin,? the resulting perturbation of the EEPF may
reflect off the sheath'® and interfere constructively or de-
structively with the standing Langmuir wave.

The above discussion focuses on the one-dimensional
case. However, as is clear from our observed density pertur-

200412

100412 |

0.00400 |-

100412 1\ p -

Perturbed Electron Density (m™)

0.002 0.003 0.010

¢
x
iﬁb
§§

FIG. 18. The amplitude of the electron density perturbation of the first
symmetric body mode from the metal boundary (x=0m) to the midplane
(x=0.01 m) of the system. Theory and experiment (|»,| shown from simu-
lation: n, shown from theory) at two different values of k, are shown.
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FIG. 19. Approximate solutions for the oscillatory and evanescent parts of
the solution for the main asymmetric branch (k,=0).

bations, the addition of axial variation does not greatly alter
the picture of trapped Langmuir waves, provided k,Ap, is
sufficiently small. The axial variation gives the wave vector
of the trapped Langmuir wave a component in the axial di-
rection. .

Figures 17 and 18 describe waves whose k,=0 cutoff
frequencies are above the peak electron plasma frequency.
As a result, there is no region of evanescent behavior in
n,(x). We consider these modes to be bulk or body modes.
To further justify the distinction between surface and body
waves, Figs. 21 and 22 show the measured values of ¢,(x)
for the first five asymmetric and symmetric modes at k,
=0. The fields derived from these profiles are strongest at

the plasma edge for the lower modes and stronger toward the

central, bulk, region for higher modes.

VI. CONCLUSIONS

In this work we have analyzed and measured a spectrum
of thermally excited, electrostatic slow waves that propagate
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FIG. 20. Approximate solutions for the oscillatory and evanescent parts of
the solution for the last detected asymmetric Tonks—Dattner mode (k,
=0).
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FIG. 21. Amplitude of the electrostatic potential perturbation for the asym-
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along the edge of a nonuniform, thermal, metal bound
plasma. The plasma slab is represented by a dc discharge,
and is modeled self-consistently via fully kinetic, 2d3v PIC
simulation with Monte Carlo collisions. The measured dis-

. persion relations are in fair agreement with a linearized, sca-

lar pressure, fluid calculation, although this representation is
shown to be invalid over a region of the slab near the plasma
sheaths.

Disagreement between the measured and theoretical re-
sults, especially for the lower-frequency modes, is most
likely due to the approximations made in treating the plasma
inhomogeneity, which were used in order to make the theory
more tractable. :

We have shown that, for our simulation parameters
(T,o=6.02 eV and L,/\p,=178), kinetic effects, which lead
to Landau damping, and the breakdown of the adiabatic ap-
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FIG. 22. Amplitude of the electrostatic potential perturbation for the sym-
metric surface modes and first asymmetric body mode, k,=0.
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proximation near the plasma sheath (which has been made in
our fluid analysis), do not substantially degrade the useful-
ness of the perturbed scalar pressure, fluid theory. The fluid
theory may be less accurate in describing higher Tonks—
Dattner modes that would appear at higher plasma densities
and lower electron temperatures (increasing L,/\p,), since
the region over which Landau damping occurs will increase.
Future simulation in thjg regime might shed light on the
source of the apparent inaccuracy of Baldwin’s kinetic
theory. )

Simulation at lower neutral pressures might also allow
for a direct measurement of the collisionless damping of
thermally excited surface modes by examining the linewidths
of the PSD measurements. For the neutral pressure and spe-
cies chosen in our simulation, this effect cannot be observed.

ACKNOWLEDGMENTS

The author thanks Professor C. K. Birdsall for suggest-
ing the study, which has formed the basis of this paper, and
also for his continued encouragement and guidance. The
technical assistance offered by V. Vahedi in adapting
XDPD2 for this work is also greatly appreciated.

D. J. Cooperberg

This work was supported in large part by ONR-ASSERT
N100014-93-1-1389.

'D. J. Cooperberg, Companion paper Phys. Plasmas S, 853 (1998).

2J. C. Nickel, J. V. Parker, and R. W. Gould, Phys. Rev. Lett. 11, 183
(1963).

3], V. Parker, J. C. Nickel, and R. W. Gould, Phys. Fluids 7, 1489 (1964).

“B. O'Brien, R. W. Gould, and J. Parker, Phys. Rev. Lett. 14, 630 (1965).

5B. B. O., Jr., Plasma Phys. 9, 369 (1967).

SB. Kerzar, K. Abrahamsen, and P. Weissglas, Appl. Phys. Lett. 7, 155
(1965).

7B. Kerzar and P. Weissglas, J. Appl. Phys. 36, 2479 (1965).

81, Tonks, Phys. Rev. 37, 1458 (1931).

L. Tonks, Phys. Rev. 38, 1219 (1931).

104, Dattner, Phys. Rev. Lett. 10, 205 (1963).

P, E. Vandenplas, Electron Waves and Resonances in Bounded Plasmas
(Interscience, New York, 1968).

2D E. Baldwin, Phys. Fluids 12, 279 (1969).

3A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959).

MC. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simu-
lation (Adam Hilger, Bristol, England, 1991).

13V, Vahedi and M. Surendra, Comput. Phys. Commun. 87, 179 (1995).

61 Tonks and 1. Langmuir, Phys. Rev. 34, 876 (1929).

17y, Vahedi, G. DiPeso, T. D. Rognlien, and C. Birdsall, Phys. Fluids B §,
2719 (1993).

18D, W. Ignat, Phys. Fluids 13, 1771 (1970).

H. L. Berk, C. W. Horton, M. N. Rosenbluth, D. E. Baldwin, and R. N.
Sudan, Phys. Fluids 11, 365 (1968).



Plasma Sources Sci. Technol. 7 (1998) 86-113. Printed in the UK

Pll: $0963-0252(98)90951-3

Series resonance sustained plasmas
In a metal bound plasma slab

D J Cooperberg and C K Birdsall

Department of Electrical Engineering and Computer Science,
University of Califomia, Berkeley, Berkeley, CA 94720, USA

Received 22 August 1997, in final form 20 January 1998

Abstract. The characteristics of series resonance sustained argon plasmas are
measured by particle-in-cell Monte Carlo simulation and analysed with various
theoretical models. These measurements include discharge gap impedance which
is shown to be nearly pure resistive, EEPFs, electron heating profiles, electric field
structure and electron density profiles over a range of applied frequencies
(110470 MHz) and neutral gas pressures (2-300 mTorr). The scaling laws, which
predict the density and sheath width dependence on operating frequency as «}
and ;' respectively, are verified. These resonant discharges are driven with low
applied voltages (~7,) and are shown to produce low-voltage plasmas. A heating
mode transition between a high-pressure collisional regime and a low-pressure
collisionless regime is discussed. Also the self-tuning of the discharges, needed to

maintain resonance, is explained.

1. Introduction

This study is directed toward the understanding of
resonantly sustained RF and high-frequency parallel-plate
discharges which are shown to exhibit attractive qualities
for materials processing.  Conventional capacitively
coupled, parallel-plate RF discharges tend to require high
applied voltages and/or high neutral pressures which make
them unattractive for some current fabrication processes.

The resonance exhibited by this metal bound plasma is
often referred to as the series resonance and arises from
the balancing of the capacitance of the sheaths with the
inductance of the ,plasma bulk. The series resonance is
also the cut-off for a main asymmetric surface wave which
propagates along and near the metal/plasma boundary [1, 2].

It is observed via simulation that an applied signal of
fixed frequency can maintain a discharge whose density
profile yields a series resonance near the applied frequency.
Since the plasma impedance approaches a pure resistance
at this frequency, exceptionally low applied voltages can
be used by comparison with conventional capacitively
coupled discharges where the diode impedance is nearly
pure capacitive.

A detailed review of early work on resonance sustained,
radio frequency gas discharges was given by Taillet
(3. In this work the enhancement, at resonance, of
the RF electric field in a planar capacitively driven
discharge is emphasized. A simple model of a collisional
homogeneous plasma slab between two sheath regions in
which the electron density, n, = 0, is developed from
previous theoretical work summarized by Vandenplas [4].
Justification for extending the results to inhomogeneous
plasmas was based on a variational calculation of Crawford

0863-0252/38/020086+18319.50 © 1998 IOP Publishing Ltd

and Kino [5], which showed that the plasma density could
be replaced by the average plasma density in an expression
for the internal fields at resonance. Taillet's analysis
assumes that the resonance enhanced field strength remains
in the linear regime while still providing sufficient electron
heating to sustain the plasma. A relation, which equates the
ohmic power absorbed by the plasma electrons to the energy
lost due to ionization, excitation, and diffusion characterizes
the discharge. It is shown that stable and unstable equilibria
exist when the discharge is driven with a constant-amplitude
RF voltage. Some experimental results given by Taillet
[3] include measurement of the plasma electric field using
electron beam probing. The electric field is observed to
be approximately ten times greater in magnitude than the
vacuum field and the phase of the field in the plasma bulk
is opposite to that at the plasma edge. Measurements of
the plasma profile deduced from photometric data, along
with density measurements taken from a Langmuir probe,
were used to verify further that the discharges were indeed
operating at the series resonance.

The study of resonance sustained discharges was
significantly advanced by the theoretical and experimental
work of Godyak [6). A homogeneous model for steady-
state low-pressure 1f discharges has been developed [7]
which is used to predict the total impedance across a
discharge gap. This impedance is taken to be the sum of
plasma, space-charge sheath and stochastic (interaction with
moving sheath walls) impedances. The total impedance
is then used in combination with an energy balance
equation to predict the internal properties of the rf
discharge including the current—voltage characteristic and
the dependence of plasma density and discharge voltages
on applied frequency. An important result is that the

—
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Figure 1. Schematic diagram of the simulation model.

Figure 2. Schematic diagram of the homogeneous model.
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Figure 3. Sketch of absorbed power as a function of
frequency. Stable operation (with respect to density and
electron temperature fluctuations) occurs at wappies With an
external voltage source. Stable operation occurs at the
other intersection of Paps and Ppes with an external current
source.

plasma density is a double-valued function of the applied
voltage signal, and that a minimum applied voltage exists.
Experimental verification of this double-valued behaviour
was presented by Godyak and Popov [8]. In further
experiments by Godyak and Popov [9], resonant discharges
are maintained at a theoretically predicted minimum applied
voltage and resonant frequency. Scaling laws including
n « o} and 5/T.  w;;, where n is the peak plasma
density and s is the average sheath thickness, are also
verified. The homogeneous analysis has been extended to
the inhomogeneous plasma model [9-11] which results in
the appearance of form factors and scaling factors which

Series resonance sustained plasmas

do not greatly effect the qualitative predictions of the
model.

Here we use particle-in-cell Monte Carlo (PIC-MCC)
simulation [12] to continue the study of these resonantly
sustained discharges. This self-consistent method, which,
because it is based on first principles, is able to
capture kinetic and non-local effects which are difficult
to model with a fluid approach, has been used in
prior studies to model RF discharges which are used in
materials processing. For example, Vahedi et al [13]
shows excellent agreement between the electron energy
distribution functions (EEDFs) measured by Godyak er al
[14] and those produced by PIC-MCC simulation. Electron
heating profiles were also measured, showing enhanced
heating in the sheath regions. In another work, Vahedi e al
[15] verified the frequency scaling laws for capacitive RF
discharges using two-dimensional PIC-MCC simulation.
Surendra and Graves [16] used PIC-MCC simulation to
study RF glow discharges in helium over a range of
conditions. Their findings included the relative importance
of stochastic and ohmic sheath heating versus ohmic bulk
heating in different operating regimes, and the detection
of a hot-electron tail. The effects of secondary electron
emission are also investigated.

Our PIC-MCC simulation will focus on resonantly
sustained parallel-plate discharges (in argon) operated over
a range of frequencies and neutral gas pressures. In
this study we will present measurements of the steady-
state sheath potential, discharge gap impedance, scalings
of plasma density and sheath width with frequency, field
structure at the fundamental and higher harmonics, plasma
density profiles, electron energy probability functions
(EEPFs) both averaged and as a function of space and
time and electron heating profiles. We will compare with
Godyak's theory [6] and fluid theory [2] where possible.

Of particular interest is a set of computer experiments
in which pgrgon is varied with a fixed w,s. The mechanism
of electron heating is studied in these simulations. A
transition is seen between the low- (<100 mTorr) and high-
pressure regimes in which the time averaged J.i.crron + B
profile changes forms. In the high-pressure regime, these
Jetectron + E profiles "are in agreement with a modified
fluid calculation [2] which includes an electron momentum
transfer collision term. At these higher pressures, the
plasma is well modelled by the collisional fluid equations
and the heating is ohmic.

At lower pressures, which are desirable for many
etching processes, the heating cannot be modelled as ohmic.
The electron heating profiles show a wavelike structure as
a result of the strong resonant surface wave fields located
at the plasma edge. These strong surface fields produce
a hot-electron population. Particle-wave interactions are
especially demonstrated by regions of negative heating. A
detailed study of the electron heating mechanism at low
pressure helps us determine and understand electron energy
distribution functions which are essential in determining
plasma composition.

This work is structured as follows. We begin, in
section 2, with a description of the 1d3v model used to
study the parallel plate discharge at RF and high frequencies
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Figure 4. Time-averaged normalized electron densities for cases A-G of table 1.
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Figure 5. Electron energy probability function (au) for cases A-G of table 1. Note the presence of a bi-Maxwellian
distribution at lower frequencies (which correspond to lower plasma densities) (Pegon = 10 mTor).

(HF). Next, in section 3 we briefly review the theoretical
model of Godyak and also the fluid model used to compare
with measured electron heating profiles and discharge gap
impedances. A brief discussion of discharge stability will
also be given. The results obtained from simulation are
presented in section 4. Further results and a discussion
of the clectron heating at low pressures are given in
section 5. Comparison with theory is made where possible.
Conclusions are presented in section 6.
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2. Simulation model

In this study an argon discharge (1d3v) is sustained by
applying a RF (or HF) driving voltage. The steady-
state discharge which forms is shown to exhibit a series
resonance at, or near, the applied frequency. The
electrostatic PIC-MCC code, XPDP1 [17], is used for this
study. This code allows for 1d3v simulation of a plasma
with metal boundaries and an external driving circuit.
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Secondary emission is permitted in this code, but, for this
study, the secondary-emission coefficients have been set to
zero in anticipation of the low-voltage discharges achieved
in which. secondary emission is negligible.

The simulations incorporate a Monte Carlo collision
(MCC) package [18] which allows for the self-consistent
formation of the discharge. The following reactions are
included.

(1) e+ Ar — e + Ar (momentum transfer)
(2) e + Ar —» e + Ar* (excitation)
(3) e + Ar — e + Ar* + e (ionization)

(4) Art + Ar —> Ar+ Ar* (charge exchange)
(5) Ar* + Ar — Ar* + Ar (scattering).

A schematic diagram of our model is shown in figure 1.
The separation between the metal plates, as shown, is

2.0 cm. The area of the discharge is chosen to be 2.0 cm?.
We have chosen to drive the discharge with an ideal voltage
source for simplicity, although more sophisticated circuit
elements may be modelled. Neutral pressures reported on
vary from 2-300 mTorr. Applied frequencies range from
110470 MHz; higher frequencies are computationally
expensive to model because of the smaller simulation time-
step needed and the resulting higher plasma densities which
require the use of more computer particles.

The simulation time-step is chosen to satisfy wp.At <
0.2 [19]. An explicit time integration is used since
frequencies near the electron plasma frequency must be
resolved. The simulation grid size is chosen to ensure
resolution of the plasma sheaths with Ap./Ax 2 1.

In order to arrive at steady-state discharges, an initial
uniformly loaded plasma is used to start the simulation.
The initial density is chosen to be on the order of the
final (average) plasma density. This scheme, while not
easily duplicated in the laboratory, has the advantage (over
starting from zero plasma density) of decreasing the run-
time needed to reach equilibrium and allows for the use
of an ideal voltage source operating at a fixed low voltage
~T).

3. Theoretical analysis

3.1. The homogeneous plasma model

We will discuss two theoretical models for the resonant
RF discharge, gaining insight from both. First we consider
the steady-state RF discharge theory developed by Godyak
(6] and Lieberman and Lichtenberg [20]. Here we will re-
derive some of the important results from this theory using
the homogeneous plasma approximation. A similar analysis
for the inhomogeneous plasma introduces form factors into
the results [6], which do not affect the qualitative behaviour.

The homogeneous model assumes uniform ions with
©%; < @}, no electrons in the sheath regions and n, =
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Figure 8. Simulation results for the spatial dependence of the time averaged (DC), fundamental, and second-harmonic
potential signal amplitude. A theoretical prediction, based on the fluid model (section 3.2) for the amplitude of the potential
signal at the fundamental frequency, is also shown (experiment C).

15000.0

<), E> (W/m')

A

~100000 750 0.005

0010 . 0.015 0.020
X (m)

Figure 9. Electron heating profile, J, - E (case H, Papon = 2 mTorr; and case |, Paron = 10 mTom).

n; = ng in the central region (figure 2). Current is constant
through the discharge and is approximately equal to the
electron conduction current in the neutral region, with the
assumption

wz 2 \1/2
> (l + 1’;—) m
wyy Wy

where v, is the electron momentum collision frequency,
and is equal to the displacement current in the sheath
regions. The inhomogeneous extension of the model makes
the same assumptions except that it allows for a nonuniform
equilibrium plasma density profile. The discharge gap
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impedance (neglecting low-frequency ion contributions), as
seen by the voltage source, is then

51 S2 d
Z@) = iwAeg + iwAey = iwAe,
25 d
=13 = @
iwAep  iwAe,
with
e =¢€|1— ——wg'—— 3)
P w(w —ivy)
and
512(t) =5 * acos(wt) @
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Figure 10. Electron heating profile, J, - E (case J, Pagon = 100 mTorr; and case K, pagon = 300 mTon).
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Figure 11. Magnitude of discharge gap admittance (case |, fs = 1.4 x 10® Hz).

where s) 2(z) describes the position of the sheaths at either
side of the discharge (figure 2) and a is the amplitude of
the sheath oscillations. Setting Z(w) = 0 defines the series
resonance (or current resonance, Y (w) — ©0)

Gl
Wsr = Wp —L-

Using equation (2), one can readily express the power
supplied by the external voltage source as Re(V2/Z)/2.
Next, an expression for the power loss in the plasma is
needed, which can be equated to the power supplied in order
to derive an expression relating the plasma density to the
applied voltage. To find the power absorbed by the plasma,

for v, — O. (&)}

we need to know the electron temperature. Balancing the
outgoing particle flux with ionization gives the condition
[20]

2n,up(T.)A = Ki:(Te)ngnoAd ©

) 1
us(Ty)  mpde 2 M

which determines the electron temperature (n, is the plasma
density at the sheath edge; the sheath edge is defined
by the position at which the plasma potential drops by
kpT,/2 from the mid-potential; up is the Bohm velocity,
defined by /ks7./m;; n, is the neutral gas density, and
Viz = Kin, is the ionization frequency). A Maxwell-
Boltzmann distribution is assumed for the electrons. We
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Figure 12. Phase of discharge gap impedance (case |, fs = 1.4 x 10° Hz).
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Figure 13. Magnitude of discharge gap admittance (case K, fy = 1.4 x 10° Hz).

may then write an expression for the power loss as
Pioss = 2ensupA€Ex(T,) ®

where &7 includes collisional losses and ionization loss
in the plasma bulk, and electron and ion kinetic energy
loss at the walls. &7 is independent of plasma density
provided nonlinear processes such as stepwise ionization
and recombination can be ignored. Balancing the supplied
power, Re (V2/Z)/2, with the power loss produces

2 x72 172
Zpe o L 1:1:1"1( v -1)
w? 25 w \VZ,

-0s 2
where V2, = de v,,,::L melr.

®
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Vimin is the minimum operating voltage which will sustain
the plasma and is dependent on discharge dimensions, T
(through ug and £r) and gas pressure (through vy,). For
sufficiently high-Q plasmas (i.e. low pressures) and low
applied voltages we find that the peak plasma density is
determined by the applied drive frequency and not the drive
amplitude. Note that when V .= Vi OF ¥y = 0, the
frequency is @ = Wpe/25]L = wyy.

As yet undefined is the time average sheath width, §.
A derivation by Godyak [6,7] is based on enforcing zero
time averaged conduction current through the sheath. This
is reasonable due to the symmetry of the driving signal and
the desire for a steady-state solution. To summarize, the
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Figure 14. Phase of discharge gap impedance (case K, fs = 1.4 x 10° Hz).

Figure 15. Time-averaged electron energy probability
function (au), EEPF, as a function of x from the midplane
(x =0.01 m) to the wall (x =0 m). The electron kinetic
energy in % is E, = My(vx — {Va))2/2. The EEPF is shown
over three-orders of magnitude. (Experiment H,

Pargon = 2 mTorr.)

conduction currents through the sheaths are

1
dd ) r (Vi) kaTe
2rm,
(10)

where V(z) is the voltage drop across a sheath. Poisson’s
equation may be used to relate Vi(r) to s512(z) with the
result that

Ji = éenglp and Je = enoup (

Vs () = -;-512 2(0). an

We may now write the time average conduction current
leaving either sheath as
W/

0= de(J; + Je)
0

2/ N2
= f dr [enou B+ enoug ( ] ) e"?.z(')/ﬁ»]
0 2rm,

(12)

.01
Ex(eV) X (m)
17870
Figure 16. Time-averaged electron energy probabxﬁty
function (au), EEPF, as a function of x from the midplane
(x = 0.01 m) to the wall (x =0 m). The EEPF is shown

over four orders of magnitude. (Experiment K,
pm =300 mTorr.)

(where A%, = €okpT./(noe?)) which, after substituting (4)
for 51.2(2) and making the change of variable, 8 = wt, leads

= f de[(zﬂm ) -[(i:l:aoos(e))’le,,l]. 13)

This equation has been evaluated numerically by Godyak
[6,7]. The result can be summarized as follows. Asa — 0,
§ approaches the DC sheath value, Ap.(In(m; /(27rm,)))'/2.

At larger a, 5 asymptotes to a.
In the approximation § = a, we equate conduction
current and the driving current which produces

I= —enoA%’-z- = engAws sin(wt) = Re (%) (14)

With Z(w,,) = vmmLeo/noe* A from equations (2) and (3),
we can solve for 5. The result is
€Vmin

s EVmin__ 1
$ wvym.Ley as
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Figure 17. Simulation results for the spatial dependence of the time averaged (DC), fundamental, and second-harmonic
potential signal amplitude (experiment H). The phases of these signals are nearly constant in x.
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Figure 18. Simulation results for the spatial dependence of the time averaged (DC), fundamental, and second-harmonic
electron density signal amplitude (experiment H). The phases of these signals are nearly constant in x.

which may be inserted into our expression for the series
resonance to give

Vmi 'm
© = wpe 2(eVmin/wVmm.Léo) (16)
L
which produces the scaling law,
n~wy. a7

This is in contrast to the capacitively coupled RF discharge
scaling, n ~ w?,.
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3.2. The Inhomogeneous fluid model

In the homogeneous model described above (and the exten-
sion of this theory to account for plasma inhomogeneity),
the plasma is dynamically modelled as a cold fluid with di-
electric constant given by equation (3). The sheath voltages
are also assumed large enough .to completely expel elec-
trons from the sheath regions, and the displacement current
in the plasma is considered negligible (which is justified for
® & wp.). These approximations are of increased validity
when the equilibrium sheath width is much larger than the
undriven sheath width, because the region over which the
electron density drops to zero (on the order of a few Ap.)
can be neglected.
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Figure 19. Total, ‘linear, and drift electron heating for experiment H. The total electron heating is calculated as (J, - E)q, the
drift heating is calculated as (J,): - (E)s, and the ‘linear’ heating is computed from a v-space integration of

(mov2/2)(e/m)(és-8f, /av), (see section 5.2).
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Figure 20. Local wavenumber, k (in the long-wavelength limit), and the associated linear Landau damping rates predicted
for Maxwellian distributions are plotted from the mid-plane (x = 0.01 m) to the wall (x = 0 m). (Experiment H.)

These approximations, which helped lead to analytic
expressions for the current-voltage characteristic and
various scaling laws, are not needed if we alternately
use a linearized fluid model of the inhomogeneous metal
bound plasma slab [2] which is similar to that used by
Parker et al [21] in describing the electron resonances of
dielectric bound cylindrical plasmas. This model allows
for surface fields to penetrate into the plasma and is most
useful when considering sheath widths which are on the
order of a few Ap.. A derivation of this model is given
by Cooperberg [2] for the collisionless 2d3v plasma slab.
Here we include an electron collision term in the perturbed
electron momentum equation (and simplify to 1d). This
leads to a modification of the governing equation for the

perturbed plasma potential, which becomes

v
vivig, - ! (-i . v) Vi, — 1y [V,
Y\ f Y

+[ 1 (m2 _ivaw )
Yhioe \0}, @heo

_1g. (Yi) ]vzq>, =0 (18)
Y f

where w2, and Ap, are the peak electron plasma frequency
and peak Debye length, and f describes the steady-state
electron density profile and can be modelled theoretically,
as by Parker et al [21], or obtained directly from simulation
[2]. The new expression for the electron current density
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Figure 21. Local wavenumber, k. (in the long-wavelength limit), and the associated linear Landau damping rates predicted
for Maxwellian distributions are plotted from the mid-plane (x = 0.01 m) to the wall (x = 0 m). (Experiment L.)
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perpendicular to the walls is

(i — V)M Ji (x) = —(i® — vm)m,leln.o f (x)ver (x)

_ .2 3®;(x) 32, (x)\ & f(x)
= e°neo f(x) o +kBT¢o€o( a2 ) I0)
3 x)
—SkBT,oeo( = ) (19)

where T is derived from 3kpZ.0/2 = (m.v%/2). Setting
Ji(x = 0) equal to zero locates the normal modes of the
system.

Using these equations, we can solve numerically (as in
{2)) for the location of the series resonance by computing
the discharge gap impedance (equal to ed; divided by the
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Figure 22. The time averaged ionization rate and electron density for experiment H (Pargon = 2 mTom).
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displacement current, at the wall), and for the eigenmode

structure and electron heating profiles associated with these
modes. Results from this calculation are presented in
section 4.

3.3. Stability

A main question is: how does the plasma adjust its
density and sheath width in order to achieve resonance
with the applied signal? Here we present a qualitative
explanation for the stability and self-tuning as observed in
these resonant discharges. To start our discussion we point
out that in all simulations (to be presented in section 4), the
applied voltage lagged the discharge current by between
10° and 25° in the steady-state. We also find that the



Figure 23. Snapshot of the electron distribution function,
f.(x. ve. t = 0), for experiment H. f, is peaked at the centre
and decreases to zero at the edges.
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Figure 24. Snapshot of the electron distribution function,
fo(X. vy. t = T/8), for experiment H. T is the period of the
applied signal.
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Figure 25. Snapshot of the electron distribution function,
fa(x. Vy. t = T/4), for experiment H.

driving frequencies are very close to the series resonance
as will also be shown in section 4. Examination of the
homogeneous model impedance ((2), section 3.1) and the
inhomogeneous fluid calculations described in section 3.2
indicates that the driving frequency must then be near but
slightly less than the series resonance. With this point
established we can quickly explain the stability of these
discharges.

To proceed we make the further argument that the
ion density profile (and also the electron profile under
the assumption of quasi-neutrality) can be described by

Series resonance sustained plasmas
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Figure 26. Snapshot of the electron distribution function,
fa(x. vy. t = 3T/8), for experiment H.

ambipolar diffusion for A; <« L, where L is the width
of the system and A; is the mean free path of the
ions for ion-atom collisions, or at lower pressures by
a variable-mobility model or a Langmuir solution [20].
In each case the normalized density profile, n(x)/nmia.
is given as a function of only nneurrar, Te and T;. T;
can be approximated by the neutral temperature and T,
is determined by nneurrar and discharge length as a result
of particle conservation [20). The result we are after is
that the steady-state normalized density profile, n(x)/nmid,
is independent of the power absorbed by the plasma.
This means, for a discharge sustained by a fixed voltage
source in which P o Re(Z™') (see figure 3), that
an increase (decrease), due to fluctuations, in absorbed
power will bring an increase (decrease) in fyy and, by
equation (5), a proportional increase (decrease) in w,, (since
the geometric factor J/25/L remains constant). Because
we have established (through measurement of the -V
phase angle) that these discharges are being operated just
below the series resonance (see figure 3), the increase
(decrease) in wy, is followed by a decrease (increase) in
the power dissipated in the plasma (since the resonance has
moved further from the drive frequency) which produces
a corrective decrease (increase) in np,;. The result is a
discharge in stable equilibrium whose density is determined
by the driving frequency and T, (where T, is determined
by the neutral gas pressure, size and shape of the system
[20]). If we had chosen to drive the discharge with a
fixed amplitude current signal, then the discharge would
be stable at frequencies just above the resonance since
Puh,v o Re (Z).

It should be mentioned that these discharges are also
stable to high-frequency fluctuations. The result for wy,
in the uniform density, thermal, matrix sheath model of
Cooperberg [1] is

[ 25 3
Wyr = Wpe m (1 + 23‘-1:;) = Wyr (20)

where § represents the sheath width and can be taken to
be a linear function of Ap,, which shows that an increase
(decrease) in T. leads to an increase (decrease) in wy, as
before and consequently a stabilizing decrease (increase)
in T,.
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Table 1. Varying wy, fixed neutral density. Parameters for computer experiments A-G. v (Hz) = 1077, (eV). V lags / by
less than 25° in cases A—G. Apamp (CM) = 1/330pgss (Torr) [20], k, =0, Ly =2 cm for experiments A~G. n,, f and Vi

represent peak time averaged values. Applies to figures 4-8.

fr Pargon Veoura N be Voe To P
Experiment (MHz) (mTorr) (V) {cm=3) MHz) (V) (V) (mWem2) Q@
A 110 10.0 2.5 7.2 x 108 241 26 34 1.9 7.5
B 120 10.0 2.5 1.0 x 10° 284 27 34 2.6 7.9
(o] 140 10.0 2.5 1.7 x 10° 370 27 2.9 3.6 8.9
D 200 10.0 25 6.2 x 10° 706 25 23 11 13
E 300 10.0 3 1.36 x 10° 1050 32 28 35 16
F 400 10.0 3 4.0 x 10" 1800 38 28 103 13
G 470 10.0 3 7.2 x 10 2420 39 3.0 180 14

Table 2. Varying neutral density, fixed wys. Parameters for experiments H=L. Ainmsp (€M) = 1/330pges (Torr [20), k, = 0. n,,
fre and Vnis represent peak time averaged values. v, and A, are the electron momentum collision frequency and mean free

path for electron—neutral collisions respectively.

e Pargon Veourco Mo fo Viie  Vm Ame Ty P
Exp. (MHz) (mTom) (V) {cm-3) (MHz) (V) (MHz) (cm (evV) (mWem™?) Q
H 140 200 34 8.2 x 10° 256 59 13 14 741 7.0 315
! 140 100 25 1.7 x 10° 370 27 30 38 29 3.44 16.3
J 140 100 38 3.0 x 10° 430 174 260 041 25 3.9 3.24
K 140 300 6.0 3.7 x10° 545 166 780 0.14 25 5.35 1.37
L 400° 2 4.6 20x10% 1270 66 13 13 68 989 40.9

2 Experiment L run at higher frequency and low pressure to assist in analysis of collisionless electron heating

(section 5).

4. Simulation results

In this section we show the results for several computer
experiments over varying frequencies and gas pressures in
which plasma discharges are resonantly sustained. In order
to ensure that the discharges are indeed at or near resonance,
we use the theoretical analysis in section 3 which predicts
that (for low pressures) the plasma is in a resonant state
when 2 minimum voltage, Vi, is applied. In order to
achieve this condition through simulation, a discharge is
first built up at V;y > V. The amplitude of the applied
voltage signal is then incrementally lowered until the
plasma extinguishes in order to find the minimum operating
voltage. Error associated with the finite decrement can be
estimated to lead measured values of V,,;, no more than
5% above the actual values.

4.1. Fixed argon pressure, varying frequency

A series of computer experiments at varying w,, and fixed
Pargon @re described in table 1 and figures 4-8. Some of
the notable features common to each of these discharges
are summarized here. Applied V lags I by less than 25°
so the impedance seen by the external circuit is essentially
resistive. Also, vy = 107T, (eV) Hz « w,s, where T,
is average kinetic energy of electrons. A mid-potential
Vmida ~ 10Vgurce > Vioniz. (15 V) is observed with
peak time-dependent potentials near the plasma boundaries
Voeask S 2Vimia (figure 8). Figure 8 also shows the
eigenfunction, ®(x), predicted by the fluid theory of
section 3.2. A partial reason for the differences between the
measured and theoretical profiles is the inadequacy of the
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fluid model to capture kinetic effects such as collisionless
damping as will be discussed in section 5. The scalings
n « o (figure 6), s « 1/w (figure 7) are followed.
An extrapolation to f;; = 2450 MHz produces n.pcax =
10'3 cm=3. The sheath widths are in the range of 10Ap,
to 20Ap, where Ap. is measured at the mid-plane. The
Debye length near the plasma edge is larger due to a
decreased plasma density. This characteristic allows for
field penetration into the bulk plasma which cannot be
neglected.

4.2. Fixed frequency, varying argon pressure

Another series of simulations was conducted in which
Pargon Was varied with a fixed w,s. The data are shown in
table 2. The discharge gap impedance and the mechanism
of electron heating are studied in these simulations. A
transition is seen between the low- (100 mTorr) and high-
pressure regimes. Figures 9 and 10 of the time averaged
Jetectron + E illustrate this transition. The ‘theory’ curve in
these plots is generated by modifying the fluid calculations
of section 3.2 to include an electron momentum transfer
collision term. At lower pressures, the electron heating
profiles show a wavelike structure as a result of the strong
resonant surface wave fields; .the low-pressure heating
cannot be modelled as ohmic. At higher pressures, the
plasma is well modelled by the collisional fluid equations
and the heating is primarily ohmic.

Figures 11-14 show the amplitude of the gap
admittance and phase of the gap impedance for experiments
I and K. The admittance is measured by measuring the
response to an applied, low-amplitude (Vprope K Viy),

_—
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Figure 27. Snapshots of J, - E’ (experiment H). The prime indicates that the average value has been subtracted from the

signal to facilitate analysis.

probe signal. The main (series) resonance and alternating
symmetric and asymmetric secondary resonances are
observed [2] as alternating maxima and minima in the
admittance plots. The theoretical curves are derived
from the fluid theory described previously. We could
also use equation (2) but that would require an accurate
determination of the sheath width which is difficult. The
series resonance is observed to be very closely matched to
the source frequency. The quality (as derived from the full
width at half maximum of the impedance spectrum) clearly
degrades with increasing neutral pressure.

The additional secondary or Tonks—-Dattner resonances
in the admittance (figures 11 and 13), which are located at
frequencies above w,, and below the peak w,,, may also be
used to sustain a plasma. Experimental work by Messiaen
and Vandenplas [22] shows that the secondary resonances
in a dielectric lined plasma cylinder can be used to sustain
a plasma.

5. Collisionless electron heating

5.1. Description and discussion

The density and sheath scaling laws predicted by Godyak
[6,7]) are in good agreement with our simulation, and
the measured wave eigenstructures and gap impedance
are in reasonable agreement with the inhomogeneous fluid
theory discussed in section 3.2. However, the actual
mechanism for electron heating (ochmic plus stochastic
in the (in)homogeneous model, and ohmic in the
inhomogeneous fluid model) is not sufficient to describe
the results observed in simulations.

Our computer experiments at low argon gas pressures
show spatial oscillations in the electron heating, J, - E, and
regions of electron cooling (figure 9) which we interpret as

_ resulting from particle-wave interactions which produce a
hot-electron population (figures 5 and 15). The adiabatic,

inhomogeneous fluid model and the (in)homogeneous
model are both inadequate for predicting the electron
heating profiles at low pressures which have been observed
here. This is because wave—particle heating is a kinetic
effect.

Electron heating profiles generated from PIC-MCC
modelling are reported by other authors [13,16,23]. In
these works, the conventional (high voltage, low frequency,
moderate neutral pressures 250 mTorr) capacitively
coupled discharges have been studied. The oscillation of
(J. +- E), at the edges, shown in figure 9 and also in
figures 19 and 29, is not observed in these earlier works.

There are two commonly cited mechanisms for electron
heating in parallel-plate discharges. The first is ohmic
heating which can be derived from a fluid model with a
collision term, or by assuming a plasma permittivity of the
form given in (3) in the cold (in)homogeneous model. From
these models, only positive time averaged electron heating
is predicted.

The second heating mechanism is stochastic heating
(20,24,25], which is often described as electron heating
resulting from collisions with a moving sheath potential
wall. In the early work [24], a slowly moving sheath
(compared to vr.) with w <« wp, was considered and an
effective collision frequency was derived. This effect was
incorporated into the (injhomogeneous model by adding
a stochastic resistance term into an expression for the
dnscha:ge gap impedance [7]. In more recent work,
solutions for fast- and slow-moving sheaths (compared to
Yrpermat) have been found [25]. In the work of Wood et al
[25] the model of Lieberman and Lichtenberg [20] is used to
describe the plasma in which the sheaths are considered to
be electron free so that the sheath/plasma boundary is sharp.
The case of Uspears ~ vr. is not directly handled. Also, in
the fast-sheath limit, the effect of electron cooling against
the collapsing sheath is not modelled. Such approximations
were necessary to obtain analytic results.
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Figure 28. The electron heating profile, J, - E(x), measured in experiment H is compared to a simplified expression for

quasi-linear heating derived in section 5.2.
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Figure 29. Total, Tinear’ and drift electron heating for experiment L computed as in figure 19 (N peax = 2 x 10%° cm=3,
Pamon = 2 mTorr). The slight asymmetry about x = 0 is likely due to an insufficient averaging interval.

In this study we find that the series resonant discharge
sustains a longitudinal wave which is bound by the
overdense central plasma region and the metal boundary
(for wave structures see figures 8 and 17). This resonance
can also be thought of as the cutoff (for propagation in a
direction parallel to the metal boundaries) of a propagating
surface (sheath) wave [1,2]. We think of these resonant
discharges as supporting standing surface waves in contrast
to the (in)homogeneous model in which the electron density
at the edges exhibits a sharply defined jump from zero to
a value prescribed by the local ion density, and the electric
field similarly drops sharply from a large sheath value to a
negligible bulk value, These waves appear partly because
the equilibrium sheath widths in our computer experiments
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are short, on the order of undriven sheath widths, and the
decay length of electron density and fields is not negligible.
The perturbed electron density is shown in figure 18 for a
representative discharge. The wavelength of the standing
wave decreases towards the walls and the phase velocity of
the standing wave (in either direction), which is associated
with the sheath velocity of the (in)homogeneous model, will
be ~Vpermar OVer some region. These observations suggest
that significant collisionless Landau damping may occur
in which particles may resonantly interact with portions
of the standing wave where the resonance condition (w —
kxvy = 0) is satisfied. Figures 20 and 21 show the
local wavenumber, &, (in the long-wavelength limit), and
the associated linear Landau damping rates predicted for



Maxwellian distributions. Since the wave amplitudes are
large (leading to large bounce frequencies) and the electron
distributions are observed to be highly non-Maxwellian, the
Landau damping (here considered linear, though present in
a nonlinear regime) is only meant to give a crude estimate
of the damping mechanism and rate. Since, in the case
of the series resonant discharges studied here, we have
Uphase =2 2@ [5 ~ Upermar (5 1s average sheath width),
and low sheath voltages and sheath widths are obtained (as
compared to the non-resonant discharge), we can think of
heating in a wave fashion rather than as a discrete moving
sheath wall with an electron free sheath which results from
larger applied signals and larger sheath width oscillations.
Although resonant electrons only see the standing wave for
roughly one wave period (half in each direction), the large
wave amplitude allows for significant perturbation of the
steady-state distribution.

The benefit of the wave approach is that it captures the
significant effects of electron cooling in a self-consistent
manner. In the stochastic model, electrons can be cooled
locally during sheath collapse by approximating the sheath
as a retreating potential barrier. In the standing surface
wave model, the electrons are accelerated and decelerated
by the surface wave resulting in a strongly perturbed EEPF
(figures 23-26). The perturbations at velocities toward
the walls undergo reflection and then interact again with
the surface wave fields. Inverse Landau damping can
then occur. This inverse damping may be responsible
for the time average electron cooling regions observed in
simulation at low pressure.

The electron bunches reflected by the sheath travel
towards the plasma bulk at approximately vy, (since the
Landau damping approaching the sheath had been strongest
at ~vr.). These bunches can lead to ‘anomalous’ currents
which fall out of phase with the surface wave fields since
the wave phase velocity increases as the plasma density
increases toward the bulk. This description is similar
to that given by Godyak and Piejak [26] in explaining
their measurements of current density and electric field in
an inductively coupled plasma (ICP). Godyak and Piejak
measured regions along the direction of electromagnetic
field propagation where the electric field and current density
become approximately 180° out of phase at low pressures
(electron mean free path less than skin depth). They
attribute this to an ‘anomalous skin effect” where currents
generated near the coil are translated into the plasma by
electron thermal motion. The capacitive system is more
complicated because density perturbations accompany the
current perturbations and self-consistently determine the
field structure. Also the EEPF can be severely non-
Maxwellian and higher harmonics are also not negligible.

The downside of the standing surface wave model is
the difficulty it presents in developing an analytic treatment
which accurately captures this collisionless damping. Also,
the internal fields are large enough to draw into question a
linear treatment of the problem.

A purely analytic model which captures the electron
heating (and steady-state EEPFs) is beyond the scope of
this paper. Instead we take advantage of simulation results
for the cycle averaged quantities, E(x,t) and F(x,v,?),

Series resonance sustained plasmas
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Figure 30. Snapshot of the electron distribution function,
fo(X, vy, 1), for experiment L. f, is peaked at the centre and
decreases to zero at the edges.

in drawing some conclusions about what approximations
might be made in developing such an analytic model.

5.2. Approximate theory for heating and cooling

First, we would like to verify that the electron heating
profiles can be derived from a Boltzmann model which
includes Landau damping. To do so we start from
Boltzmann’s equation,

AF(r,v, 1) oF(r,v,t)
+v-

ar ar
m ov

where S(F) represents all collisions. We write the total
distribution and electric field (understood to be a vector in
the & direction) as sums of steady-state and time varying
parts,

F=(F).+Ff E=(E), +é. (22)

The steady-state equation is then

a(F(T! 'th))r B(F(T' 'U. t))t

—— M ————
ar or

+£(E(1-' I))r . M
m v

+£(é(r.t)-w) = (S(F)). 23)
m av .

Solving for the perturbation f with the assumption of
linearity (f' & (F).) and further assuming that the
electron mean free path is longer than the scale length
of perturbation variation [27] (table 2 shows that, at low
pressures, the mean free path is indeed longer than the

system), we have

af (r,v,1) . a‘f(r'v'r)+f-é(r,z)- {F(r,v, 1)),

at ar m dv
Bf (r.v,1) _
v -

If we drop the (E);3f /dv term, we can solve for f in
terms of & and (F), and arrive at a typical expression for

+2E@, ), - 0. (24)
m
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the quasi-linear term in equation (23),

QL. term = i(é(,-, 1 - M)
m v .

o[ (dx' /2wy e e(x, 1) (F(x, v, 1))e
ikx o0
xe @ = vik) + °°)),

(25)

where we have reduced the equation to 1D in space. As a
first approximation one might assume {(F), « n(r) eV vk,
so we may perform the velocity integration. We use
the & n(r) and vy, determined by simulation. The
result is a spatially resolved, collisionless electron heating
term, which, when multiplied by m.v?/2 and integrated
over velocity space to produce an electron heating term,
does exhibit oscillations (regions of electron heating and
cooling, figure 28). However, the agreement with actual
heating profiles is poor. There are two reasons likely for
the discrepancy. First is use of a Maxwellian electron
distribution which is acceptable at high pressures (figure 16)
but not in agreement with the measured distributions at low
pressure (see figures 15 and 5). Second is the dropping of
the (E).3f /3v, term in arriving at (25).

An alternative numerical approach, in which we use
the & and § measured in simulation, allows us to solve
for the quasi-linear heating term directly. Of course, the
result is equivalent to the J, - E measured from simulation.
In order to determine whether an assumption of linearity
can be made, we can construct &; and f 1 (where the
subscript indicates the component oscillating at the applied
frequency) from the simulation data and again compute
the electron heating profile. Results of this calculation
are shown in figures 19 and 29, which show that J. - E
profiles are well modelled by the linearized & and f.
Further evidence that this resonant system remains in a
linear regime comes from measurements of the harmonic
signal strength of the electrostatic potential and electric field
(see figures 17 and 18) which indicate a small contribution
from the second harmonic. Signals at higher frequencies are
negligible. An analytic approach could be derived from first
principles with the linearized, inhomogeneous Boltzmann
equation and Poisson’s equation (given the steady-state
quantities F and E). This step is not attempted here.

Convincing evidence that strong collisionless Landau
damping is occurring is given in figures 23-27. (Note,
data for only one half period is shown because the electron
distribution function during the second half period is the
same except for a reflection across the midplane in x).
These figures show the time evolution of F(x, v,,?) and
electron heating, during a half wave period. Here, the
perturbation of F(x, vy, ¢) is clearly recognized as electron
bunches or beams which are accelerated and retarded by the
strong edge fields. At ¢ = 3T/8 (figure 26, T is the wave
period) the electron distribution function has two peaks (at
x = 0.0137 m) and the fast-moving reflected electrons
are cooled as shown in figure 27. The other regions of
electron cooling are due to electron expansion into the
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sheath regions. Not considered here are the possibility (for
low bulk collisionality, i.e., low pressure and low density)
of correlation effects associated with electron bunches,
which may have multiple interactions with the edge fields.
The frequency of bunches leaving the walls is equal to the
applied frequency.

A further simulation, listed as experiment L in table 2,
which has not been explicitly mentioned yet, was performed
at a higher frequency and plasma density while keeping
the same neutral pressure of 2 mTorr as experiment H.
This simulation shows that complex edge heating persists
at higher densities. The electron heating profile is given
in figure 29 and a snapshot of F(x, s, 1) is shown in
figure 30. Electron heating and cooling is again observed
at the edges, and electron bunching is found in F(x, vx, ).

With this understanding of the dynamics of the electron
heating in resonant discharges one might develop a non-
local approach [28-31] in order to solve Boltzmann’s
equation in the hopes of obtaining an analytic model for
(F);. This is an essential quantity in determining plasma
composition. Evidence of the non-local behaviour of the
low-pressure resonant discharge is shown in figure 22 which
shows the ionization rate in space to be more similar to
the electron density profile than electron heating profiles.
One might adapt the theory of Aliev et al [32,33] for
quasi-linear heating due to local resonances in a travelling
surface wave discharge with a dielectric boundary. In the
resonant discharges described in our work, the scale length
of the steady-state fields and resonant fields are similar (on
the order of the sheath thickness); hence, it is predicted
that this will require modification to Aliev’s theory in
modelling the series resonant discharge. Another point of
concern is the high degree of anisotropy (at low pressures)
in F(x, vy, vy, v;, #) (bunching is only observed in the &
direction along the electric field) which is not treated in the
cited works.

Before leaving our discussion of electron heating, we
comment on the quality factors, O, shown in table 2 (and
table 1). The quality factor, calculated for each resonant
discharge, is given by

2w storedemergy = @
~ T power dissipated  A®@fuhm

where T is the wave period. The energy density stored in
the resonant oscillation is taken to be

T
stored energy = f dt f dv(‘—°(s(x. 1) — E(x))?
(] Valume 2

2
+2 (e - Fx, v))) @6)

where bars indicate time averaged quantities. The power
loss is equal to the power supplied in the steady-state and is
computed from the time averaged VI across the discharge
gap.

We find, as can be expected, that Q approaches the
value w/vn, for increasing pressures, and is significantly
lower than w/v,, for lower pressures due to the enhanced
role of collisionless damping. Similar trends are seen
in transitions to stochastic heating for non-resonant
discharges [34].



6. Conclusions

Parallel-plate discharges have been sustained at the series
resonance. A nearly pure resistive load is seen by the
drive circuit. Power can then be supplied with low applied
voltages (2 and 3 volts) to sustain argon discharges with
sheath potentials ~107,. Peak time-dependent internal
voltages exceed this value. Densities up to ~1 x 10'! cm?
have been simulated (higher densities requiring extensive
computation time), with density increasing as the cube
of the drive frequency. Results are compared with
the predictions of various models with some success.
Discharge stability has been analysed.

Heating profiles ({(J. - E);(x)) at low pressures are
distinct from other discharges, exhibiting regions of heating
and cooling at the plasma edge. Heating mechanisms have
been analysed. EEPFs have been measured showing the
presence of a hot-electron tail at low pressures.
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Abstract. Standing electron surface waves have been used to naturally sustain a
plasma discharge. This work differs from previous studies of surface wave
discharges in that, here, we focus on surface waves excited in a metal bound
plasma slab which propagate along the plasma/sheath boundary and sustain a
discharge. Our ‘experimental’ results are obtained from electromagnetic
particle-in-cell simulations with Monte Carlo collisions of a 2d3v plasma. Results
are analysed for discharges operating over a range of frequencies, neutral gas

pressures and antenna design. .

1. Introduction

In early work [1-7] on resonantly sustained plasmas, the
region of plasma generation is generally confined in space
due to the method of excitation (within some cavity or
between electrodes) [8]. As an example, Fehsenfeld et al
[7] demonstrated a variety of microwave discharges in
which a plasma is sustained in a glass tube by inserting
the tube into a microwave cavity which is driven at one
of the cavity resonant frequencies. The enhanced cavity
fields start the plasma discharge after which the amplitude
of the fields adjusts due to the introduction of the plasma
load. The dimensions of the microwave resonant cavities
are limited by design criteria at a given operating frequency,
and are of the order of a few centimetres. These cavities
produce plasma volumes of the order of tens of cubic
centimetres. This limit prompted Moisan ez al to develop
a device called a surfatron in which a plasma column is
sustained by a travelling surface wave launched from one
end [8]. The launcher surrounds a gas filled dielectric
tube which contains the plasma radially, but the plasma
is not confined axially since the length of the discharge
is proportional to the input power. Reported operation
occurs over a wide range of neutral gas pressures and
electron densities. Devices operate from a few hundred
kHz to ~10 GHz with density ranges 5 x 10% cm™ to
a few 10" cm™3, gas pressures from 105 Torr to a few
times atmospheric, and radii from 0.5 mm to 10 cm. Since
these devices are electrodeless and can produce discharges
over large volumes, they have been utilized in materials
processing, ion sources, laser excitation, elemental analysis
and lighting.

In a more recent work [9] Moisan and Zakrzewski
give a review of the basic theory and various experimental
designs for plasma sources based on the propagation of
electromagnetic surface waves. The surfatron was the first
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of these plasma sources and has inspired much subsequent
research in the field. There also has been much theoretical
work done to understand better these plasmas, with efforts
mainly focusing on characterizing radial and axial profiles
of the fields and plasma properties. Some of the early
authors include Zakrzewski et al [10, 11}, Glaude et al {12],
Ferreira [13, 14] and Aliev et al [15, 16]. Recently, a new
mechanism of electron heating has also been described [17].

In addition to the travelling surface wave sustained
cylindrical discharges developed by Moisan, there has been
an effort to develop standing and planar surface wave
sustained plasmas. Some motivation for this effort comes
from a desire for plasma uniformity which can be of use in
laser sources and materials processing applications. Rakem
et al [18) make a comparison between a simple model
and experiment [19] on a cylindrical standing surface wave
plasma where the far end of the column is shorted with
a metal sleeve. For discharge (column) lengths less than
some limit, the density remains nearly constant along the
column axis (with some fraction of modulation due to the
standing wave). An argon ion laser was built based on this
structure.

Nonaka [20] reports on new devices similar to the
surfatron, but with various cross-sections of which a
rectangular one is of particular interest. A large area (up
to 0.73 m x 1.72 m) plasma is produced. Later analysis
[21) of this planar travelling surface wave source led to
determination of the axial density gradient in diffusion and
recombination dominated regimes and electrostatic mode
structure. The axial density gradient, although still linear
in the propagation dimension, is predicted to be much less
than in the cylindrical case.

Other efforts have led to the development of planar
standing surface wave sources. A planar microwave
standing surface wave device, developed by ‘Komachi
and Kobayashi [22], consists of a dielectric wave guide
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(18 cm x 30 cm) bound by metal and plasma on either
side with a vacuum gap between the dielectric and the
plasma. Microwave energy is fed into the dielectric guide
and the fringe fields couple to and sustain the plasma. In
the directions aligned with the dielectric plane, the plasma
density is modulated about a nearly constant value by the
standing wave. In the perpendicular (to the dielectric)
direction the measured electron density decays rapidly.
A simple model was presented based on a homogeneous
plasma.

Another source similar to that of Komachi and
Kobayashi [22] is presented by Nagatsu ef al [23]). A
planar source is operated at the end of a cylindrical cavity
in which a slotted waveguide antenna is used to couple
microwave power into a quartz window which separates
the plasma chamber from the siot antenna. A standing
surface wave pattern is observed in the optical emission
intensity of the plasma, and the eigenmodes of the system
are computed by Ghanashev er al [24]. The field strength
of the electromagnetic surface wave modes is observed to
decay into the overdense plasma in approximate agreement
with the plasma skin depth.

We may categorize the variety of plasma sources
discussed so far as follows. First, there are 1d metal
bounded plasma sources (such as the capacitively coupled
RF discharge) which can be operated at the series resonance
(cutoff for the main asymmetric planar surface wave).
There are cylindrical and planar dielectric bounded sources
operating from the RF to the microwave regime in
which both travelling and standing surface waves, which
propagate along the plasma edge, sustain the plasma.
Lastly, there are microwave sustained discharges in which
a dielectric bound plasma is sustained by the fields of
a resonant structure such as a cavity [7], a slow-wave
structure [25,26), a fast-leaky-wave structure [27] or a
dielectric waveguide [22,24]. In these latter devices the
plasma is only weakly coupled to the sustaining structure
and the plasmas are separated by open space or by
dielectric containing vessels from the microwave sources.
In other words, the sustaining structures (microwave cavity,
slow-wave structure, fast-leaky-wave source or dielectric
waveguide) in each of these sources is only weakly affected
by the presence of the plasma as described by Zakrzewski
and Moisan [28]. Because the structure of the applied
fields is largely independent of the plasma these devices
do not take full advantage of the normal surface modes of
the bound plasma where the plasma becomes nearly a pure
resistive load. Resonant excitation of these modes produces
large currents in the plasma for small applied fields.

Prior surface wave discharges were maintained in
dielectric bound columns. The surface waves associated
with metal bound plasmas, which have been analysed in
previous work [29, 30] have not been considered as a means
for sustaining a discharge. It may have been believed
that such waves would be shorted out by the presence
of conducting walls close to the plasma. This is not
the case, as demonstrated previously [29,30], because the
existence of the plasma sheaths enables surface slow-wave
propagation. This is in agreement with prior experimental
work by Napoli and Swartz [31] where detection of low-
frequency forward waves in a conducting cylinder filled
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with an annular plasma and a central solid dielectric
rod were explained by incorporating a sheath capacitance
between the conductor and the plasma in a planar plasma-
guide model.

In this work we demonstrate a new type of plasma
source, in which standing surface waves in a metal bound
plasma slab are resonantly excited by an applied signal. The
fields from these standing surface waves are used to heat the
electrons which sustain the plasma. The work is performed
via particle-in-cell (PIC) simulation [32] of an argon plasma
in which a2 Monte Carlo collision algorithm [33] is used
to model collisions with neutrals. A set of computer
experiments have been performed with varying neutral
pressures, excitation frequencies and antenna designs in
order to characterize this type of source. Comparisons
can be made with the resonantly sustained RF discharge in
which RF power is applied at the series resonance (5,34]
which arises from the balancing of the capacitance of the
sheaths with the inductance of the plasma bulk in 2 1D
electrostatic model. Plasma density profiles, field structure,
electron heating profiles, steady-state plasma parameters
and electron energy probability functions (EEPFs) will be
presented. The proposed source has the projected benefit
of producing low-voltage plasmas in a wide range of gas
pressures and plasma densities. Also the planar, standing
wave configuration easily scales to large areas. Both of
these features are desirable for many materials processing
applications.

This work further introduces PIC simulation to the
study of surface wave produced plasmas (SWPs) and it
is hoped that this technique will provide added insight into
the characterization of these types of source. In section 2
we describe our model and show schematics of the two
different reactor configurations studied. Section 3 describes
the simulation techniques used to represent our model. The
results of several computer experiments (simulations) are
presented in section 4. Conclusions follow in section S.

2. Mode! description

In this work, we study the 2d3v (i.e. two displacement and
three velocity dimensions) metal bounded argon plasma
slab, which is sustained by standing surface waves. We
choose the propagation direction to be along y, and the
direction perpendicular to the slab to be £. We will consider
both the infinite (periodic in § and bound by metal walls in
%) slab, and the double-bounded cavity in which the slab
is bound by metal walls in both X and . The surface
waves are excited by varying amays of current loops of
infinitesimal thickness as shown in figures 1 and 2. These
designs have been chosen to excite an asymmetric surface
wave [29,30] in the doubly bound system (a symmetric
wave was not driven because of geometric constraints), and
a hybrid mode, in which both symmetric and asymmetric
modes are present in the system, which is periodic in
§. These models are each scalable to larger areas. The
antenna designs have been chosen primarily for the ease in
which they could be incorporated into our simulation code,
XPDP2 [35), and not on their realizability in laboratory
experiments. This idealization should not diminish the
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Figure 1. Schematic of 2D model bound in X and y for surface wave sustained discharge. Antenna current is given by
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Figure 2. Schematic of 2D model bound in % and y for surface wave sustained discharge. Antenna current is given by
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Figure 3. Peak antenna field, E¢(x, y), for double-bounded system (fs = 150 MHz, /souree = 700 A m™7),

results presented here. Several more realistic means of
coupling might be envisioned in which the characteristics
of the metal bound standing surface wave discharge are not
greatly altered.

For all simulations, the slab thickness (X) is 2 cm
and a length of 1 m in the unresolved (Z) dimension is
chosen for bookkeeping. The simulations bound in § are
8 cm long in that dimension. The simulations which are
infinite (and periodic) in § have a period of 1.6 cm. Argon
pressures vary from 2 to 100 mTorr. This range has been
chosen because 1D simulations have shown that a heating
mode transition takes place here [34] in which collisional or
ohmic heating at higher pressures gives way to collisionless
heating via wave—particle interactions at lower pressures. A
modest frequency range of 1.5 x 108-3.0 x 10® Hz is used

to investigate plasma density, and discharge scaling with
frequency. The standing, planar surface wave discharge
described here is not thought to be restricted to this pressure
and frequency range; however, simulation at higher argon
pressures and frequencies requires increasing computation;
runtimes on the workstations used for this work become
prohibitive.

3. Simulation

As previously mentioned, we use the PIC code XPDP2
[35], with a Monte Carlo scheme [33] for modelling
collisions with argon neutrals, for our study. This code
has been heavily modified to allow modelling of the planar
surface wave discharge. The main change has been the
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Figure 4. Peak antenna field, E;(x, y), for double-bounded system (fs = 150 MHz, /spurce = 700 A m™').
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Figure 5. Peak antenna field, E.(x, y), for system bound in £ and periodic in y (fy = 200 MHz, /soure = 350 A m™?).

addition of an electromagnetic field solver and a charge
conserving, particle current gathering routine [36] for both
the periodic and bound models (in §). The current gathering
is done simultaneously with the particle advance in order
to detect cell crossings and more accurately gather the
particle current. The switch from an electrostatic code
to an electromagnetic one was needed in order to self-
consistently couple the antenna fields to the surface waves.
We will see, however, that, since the surface waves are
slow waves with the wavelengths much smaller than that
of waves of the same frequency in vacuum, the wave
fields present in the steady-state discharge are primarily
electrostatic (irrotational) in nature and may be derived
from Poisson’s equation. However, at longer wavelengths
in § or at higher (microwave) frequencies not modelled
here (due to computational constraints), the waves would
require an electromagnetic description.

In order to improve computational performance, several
additional modifications to XPDP2 were made. They
include the subcycling of the electromagnetic field solver
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with respect to the electron particle push and gather,
and the subcycling of electrons with respect to the ion
pushing/gathering [32]. This is useful because the field
Courant condition requires that Ax/(cAt), Ay/(cAt) <
0.5 while particle Courant merely requires Ax/(vr.At),
Ay/(vr.Ar) < 0.5 and, since we are examining a non-
relativistic plasma, these conditions impose significantly
different constraints on the time step for field and
particle advance. Numerical instabilities, associated with
subcycling the fields, were eliminated with damping
schemes including the introduction of a small surface
impedance on the walls and a lag averaging scheme
[37] in the electric field advance. Divergence cleaning
was also implemented to further reduce error whereby
V - E = p/ep is periodically enforced to correct numerical
error in the field solver which relies on Faraday's law
and Ampere’s law to advance the fields in time without
explicitly enforcing Coulomb’s law.

The metal boundaries are taken to be nearly perfect
conductors and to absorb incident particles. Secondary
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Figure 7. Average electron density, n,(x, y) (in m~3), for double-bounded system.

emission is not implemented (which is acceptable for low
plasma potentials, Vplasma) although the code is capable of
secondary emission. In the periodic model, both particles
and electromagnetic fields which exit one end are injected
at the other end.

The following method is applied to produce the steady-
state discharges. A uniform plasma is loaded at t = 0
between the conducting boundaries with a density chosen
to be near the expected equilibrium value at the midplane
of the final steady state. A fixed current is applied to
the antennae throughout the simulation. After an initial
transient period of the order of several ion transit times,
a steady-state equilibrium is achieved provided the applied
antenna currents were sufficient and the initial density was
not too far from the final density. One need not start
the simulations with an initial density; however, a more
complex antenna circuit would have been necessary to
allow for the build-up of a discharge from breakdown.
After the stable discharge is formed, the applied current
(to the antennae) is incrementally lowered to a minimum
value below which the plasma extinguishes. The coarseness

of the current decrement provides some source of error in
the determination of the minimum; however, this method is
estimated to yield measurements of I,,;, no more than 15%
above the actual value. The existence of a minimum applied
current is analogous to the minimum applied voltage
observed by Godyak and Popov [38] and demonstrated in
simulation by one of the authors and a co-worker [34].

Much of the simulation output, which will be presented
in section 4, is produced by cycle averaging the signals
through one period of the applied signal.

4. Results

In presenting our results for surface wave sustained
discharges using the models described in section 2, it is
convenient to treat the surface waves as being electrostatic.
The fully electromagnetic simulation described in section 3
produces the vacuum antenna fields shown in figures 3-6.
For the frequencies of operation (150-300 MHz), the free
space wavelength is much longer than the dimensions
and wavelengths chosen for our discharges (i.c., the drive
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Figure 9. Amplitude of the electrostatic potential signal (in volts) at the fundamental (drive) frequency,
|®(x, ¥, ws = 150 MHz)| as measured by simulation, for double-bounded system.
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Figure 10. Average electron heating profile, (Jeisctren-E) (in W m~3), for double-bounded system.

frequencies are well below cutoff for the conducting parallel found to decay exponentially away from the antennae. At
plate system in the absence of plasma), and the fields are these frequencies, the surface wave modes present in the
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Table 1. Varying wy, fixed neutral density: parameters for various experiments, vp (H2) = 107 T, (eV). Ainm.rp, (€M)
~3.2pgas (MTor), Ky = 3.93 cm-', L, = 2 cm for experiments A-D. n,, fe and Vpusma fepresent peak time averaged values.

fsoure  Pargon Isourco Ny bo Te Vousma P
Experiment (MHz) (mTom) (Am™') (cm-3) MHz2) V) (V) w a

150 10.0 600 1.1x10° 300 33 21 041 23

200 10.0 350 22x10° 420 34 2t 0.77 38

A
B
Cc 250 10.0 300
D 300 10.0 260

5.1x10° 640 32 28 17 57
8.6x10° 830 32 25 27 10

Table 2. Varying neutral density, fixed wys: parameters for various experiments, Aionm.f.p.(CM) = 3.2Pgas {mTor),
k, = 3.93 cm~!, L, = 2 cm for experiments E~G. e, fo and Viuasma represent peak time averaged values. vy, and A, are the

electron momentum collision frequency and mean free path fo

r electron—neutral collisions respectively. (Experiments F and B

are identical.)
fsoucs  Pamgon lsourcs Do boo Vm Ame Te Voasma P
Experiment (MHz) (mTorr) (V) (cm-3) (MH2) (MH2) (cm) V) (V) w Q
E 200 2.0 600 22x10° 420 97 15 47 31 13 81
F 200 10.0 350 22x10° 420 36 34 34 21 077 3.8
G 200 100.0 290 34x10° 520 250 042 24 17 059 23
ky=2xlL,
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Figure 11. Theoretical dispersion relation for the main
symmetric and asymmetric surface wave for the plasma
density and electron temperature measured in
experiment B (table 1).

steady-state discharges are ‘slow waves’ with wavelengths
much shorter than those of light at the same frequency in
free space. The result is that the plasma responds nearly
electrostatically to the applied electrodynamic fields. As
evidence that our approximation is valid, we have observed
that the ratio of the (time and space averaged) perturbed
electrostatic (derived from Poisson’s equation) field energy
density to the perturbed electrodynamic field energy density
is 20.9 for all simulations. In order to study surface
waves at longer wavelengths in § or at higher frequencies
(achieved by varying the cavity and antennae design) one
must abandon the electrostatic approximation. Also, if
the free-space wavelength approaches the slab width in
%, the electrostatic approximation fails. As a further
comment, in the studies of travelling surface wave sustained
plasma columns, the axial wavelength of the surface wave

Figure 12. Theoretical eigenfunction,
o(x, k, = 21/1.6 cm™), for the plasma density and
electron temperature measured in experiment B (table 1).

varies as the plasma density decays and the electrostatic
approximation may be valid at the end of the plasma column
and invalid at the beginning since the axial wavelength
generally decreases with decreasing density.

We now proceed with a presentation and discussion of
our simulation results.

4.1. Case 1: bound in  and ¥

For this simulation (see figures 1, 3 and 4) two antennae
are driven by ideal current sources operating at 150 MHz
with peak current of 700 A m™" (the units reflecting a depth
in the unresolved 7 dimension). The antennae signals are
180 degrees out of phase in order to excite an asymmetric
standing surface wave in the plasma along y. The argon
neutral pressure is 10 mTorr. The average electron density
and the electrostatic potential in the steady-state discharge
are shown in figures 7 and 8. The time averaged peak
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Figure 13. Amplitude of the electrostatic potential signal (in volts) at the fundamental (drive) frequency,

|P(x, ¥y, wy =200 MHZ)| as measured in experiment B.

2.013

Figure 14. Amplitude of the electrostatic potential signal (in volts) at the second harmonic of the drive frequency,

|®(x, y. 2ws = 400 MHZ)| as measured in experiment B.
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Figure 15. Potential at t = 0.

density is 2.19 x 10" m™3 which leads to a peak plasma
frequency of 420 MHz. The DC peak potential is 28 V.
The electron temperature, defined as 2(KE)/3, is 3.4 eV.
The ratio of electrostatic electric. field energy density to
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Figure 16. Potential at t = T/8.

electrodynamic electric field energy density is 0.99. The
power supplied to the discharge, which is calculated from
an integration over volume of the time averaged J - E,
is 3.39 W (taking 1 m depth in Z). The amplitude of the
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Figure 17. Potential at t =27/8.

Figure 18. Potential at t = 37/8.

Figure 19. Potential at t =47/8.

standing surface wave is shown in figure 9. Reflection
at the y boundaries produces only small deviation from
perfect reflection in which the wave would exhibit purely
sinusoidal behaviour in ¥ (actually a standing surface wave
can also be seen along the § boundaries!). The potential
shown in figure 9 is in good qualitative agreement with the
fields predicted by the main asymmetric surface wave in a
metal bound plasma slab [29, 30].
The quality of the resonance is given by

0= 2 stored energy Wrf

T power dissipated ~ fwhm

Surface wave sustained plasmas
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Figure 20. Potential at t =57/8.
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Figure 21. Potential at t =67/8.
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Figure 22. Potential at t =77/8.

where T is the wave period. This can be computed with the
approximation that the RF stored energy density is given
by

%[E(x, . 1) = (B(x, y, 1))
+r‘n2‘e(ne(x.y.f)lv(x’y")|2
—(n.(x, y, )} [{v(x, y, 1)), [2)

which is integrated over space and averaged over time. The
power loss is given by the time averaged J - E integrated
over space. The result is a Q factor of 8.5. We note that
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Figure 23, Average electron heating profile, (Jex-Ex}. (in W m=3) at f = 300 MHz, p = 10 mTorr (experiment D).
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Figure 24. Average electron heating profile, (Jey-Ey) (in W m=3) at f = 300 MHz, p = 10 mTorr (experiment D).

wrr[v. = 26 (where v, is the electron—neutral collision
frequency ~ 36 MHz). The underestimate of the measured
0 may be due in part to the presence of collisionless heating
which increases the effective collision frequency.

Evidence of non-ohmic heating is shown in figure 10
in which the time averaged J, - E is plotted. There is
qualitative agreement with the heating profiles at similar
densities and pressures in 1D series resonance sustained
discharges [34]. The oscillatory pattern along the y
boundaries is thought to arise from a collisionless heating
mechanism. For further discussion of this phenomenon see
Cooperberg and Birdsall [34].

Before proceeding, it should be noted that a significant
potential signal in the discharge is observed at the
second harmonic of the applied frequency as in capacitive
discharges [39]. The ratio of the peak potential at the
second harmonic to the peak potential at the first harmonic
is ~0.4. The strength of this harmonic may be due in part
to coupling to higher (Tonks—Dattner) surface wave modes
[30]. Third and higher harmonics are not significantly
generated in this or subsequently described experiments.

BN

4.2. Case 2: bound in z, periodic in y

A series of computer experiments has been conducted
using the model having N phased antennae represented in
figure 2. Two sets of experiments were performed. In one,
the applied frequency is varied at fixed argon pressure. In
the other, the argon pressure is varied at constant applied
frequency. Before discussing these experiments, we briefly
discuss how the device pictured in figure 2 excited electron
surface waves.

The main electron surface modes in the non-
uniform, collisionless, thermal, metal bound plasma slab
are measured and analysed (in the linear regime) by
Cooperberg [29,30].  Applying the same numerical
techniques as in this previous work, and using an electron
temperature and steady-state density profile determined
from a representative surface wave sustained discharge
(identified as experiment B in table 1 and experiment F
in table 2), we find the linear fluid result for the dispersion
relations of the main symmetric and asymmetric surface
waves which are plotted -in figure 11. For k



3.93 cm™!, which is determined by our antennae structure,
the two modes occur at nearly the same frequency, f =
180 MHz, and they can be excited simultaneously. Note
the experimentally measured frequency, at k, = 3.93 cm™,
is f = 200 MHz, in reasonable agreement with the theory.
The potential perturbation resulting from the sum of the
Symmetric and asymmetric modes, as derived from the fluid
theory, is plotted in figure 12. A sinusoidal dependence
in § is not shown. This eigenfunction can be compared
with the experimentally measured amplitude of the potential
oscillating at the fundamental (applied) frequency in the
sustained discharge (figure 13). Reasonable agreement is
again achieved. The amplitude of the potential oscillating
at the second harmonic of the applied frequency is shown
in figure 14.

Now we discuss our first set of simulations in which
the neutral gas (argon) pressure is fixed at 10 mTorr
and the driving frequency is varied. At 10 mTorr the
electron mean free path is of the order of the system
“size and non-local heating may be assumed. Also for at
this pressure the argon discharge is in a diffusion regime
for charged particle losses. Results for these experiments
are summarized in table 1. Several conclusions can be
drawn from these data. First, we find that the peak
steady-state plasma potentials are nearly the same and
-of the order of 77,. We also find that the T, values
are nearly the same in these experiments. The applied
frequency is consistently less than the plasma frequency
associated with the peak plasma density located in the
central overdense region as is expected for electron surface
waves. The quality factor, O (computed from the ratio
of stored to dissipated energy described in section 4.1), is
less than is predicted by w,s/v. (where v, is the electron—
neutral collision frequency ~ 36 MHz). This error may be
due to additional dissipation through collisionless heating,
and, also, to poor antenna coupling. To explain the
decreasing Ini» we note that the electric field strength
generated by a current loop antennae in vacuum is xwl,
and, by analogy with 1D series resonant discharges [6, 34],
we expect the ‘minimum E field to be a function of
gas pressure and spatial dimensions, and not driving
frequency. )

Significant second-harmonic generation is again de-
tected for the experiments listed in table 1. The peak poten-
tial at the second harmonic is approximately 0.4 times the
peak at the applied frequency and our previous calculations
of @ must be considered as approximate.

Figures 15-22 show snapshots of the electrostatic
potential in the plasma over one period of the applied
signal (for experiment D). For the same experiment, the
electron heating in £ and y is shown in figures 23
and 24. The oscillatory behaviour of J. - E, on the
antenna side of the slab again shows qualitative agreement
with 1D .measurements [34). The oscillatory behaviour
of Jey - E, may be caused by collisionless heating in
the propagation direction (§). Similar, although less
pronounced oscillations, are observed in the J, - F of the
other experiments.

Finally, we have plotted w,s versus n.p.q in figure 25.
The data, over the limited frequency range measured, seems
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Figure 25. Peak electron density versus applied frequency.
The line represents Nepeex w3, Pegon = 10 mTorr.
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Figure 26. Electron densities averaged in y and time.
Sheath width decreases with increasing applied frequency,
Pargon = 10 mTorr.

to agree with the 1D prediction [6] that nepear X @3/
Also shown are the average electron density profiles in X
(figure 26) in which it is observed that the sheath width
decreases with increasing drive frequency. It is observed
that the variation of the steady-state electron density in ¥
is less than 2% for experiments A-D.

The second set of surface wave sustained discharge
experiments, in which frequency is fixed and neutral
pressure is varied, are summarized in table 2. The
data shows that electron temperature, 7., increases with
decreasing pressure as can be expected [39). Also the
quality factor is decreased at higher pressure as can be
expected due to a higher collision frequency. Q is lower
at 2 mTorr than at 10 mTorr which is not expected. A
possible explanation is weaker coupling to the antenna
fields since the plasma density profile varies with pressure;
however, more comprehensive simulation is needed to
clarify this seeming discrepancy. The ratio of the peak
amplitude of the electrostatic potential at the second
harmonic to that at the fundamental frequency is 0.58,
0.38, 0.19 for experiments E, F and G respectively. This
shows a decrease in second-harmonic generation for more
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Figure 27. Electron energy probability functions for varying

neutral pressure, f = 200 MHz. A hot-tail is present at the

lowest pressure.
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Figure 28. Electron densities averaged in ¥ and time.
Density asymmetry is visible at the highest pressure,
f =200 MHz.

dissipative systems.

Figure 27 shows the electron energy probability
function (EEPF) averaged over space for each experiment
(E, F and G). Experiment E (2 mTorr) exhibits a hot-
electron tail analogous to the lower-pressure 1D discharges
described in a previous article [34]. At the higher pressure
(experiment G, 100 mTorr) the tail is lost and, instead, we
see depletion of the distribution at higher energies, which
is presumably due to inelastic collisions.

Figure 28 shows electron density profiles averaged in
¥ and time. Again, variation of the steady-state electron
density function in ¥ is less than 2% in each experiment.
The increased density on the antenna side of the discharge
for the highest-pressure simulation (experiment G) may be
due to a shift from a non-local regime (long electron mean
free path) to a local one (short electron mean free path) as
indicated in table 2.

5. Conclusions

We have shown, via PIC-MCC simulation, that metal
bound planar plasma discharges can be sustained via
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standing surface wave excitation. Discharges in both
infinite (periodic) and bound slabs have been successfully
modelled. Low-voltage, low- (and moderate-) pressure
plasmas which exhibit uniform densities in the directions
parallel to the slab boundaries are produced.

The scalability to larger discharge areas, possibility
for operation at higher frequencies (leading to higher
densities), and ability to operate in a one-sided mode
where large surface wave fields and electron heating are
localized to one edge of the plasma slab, along with
the lack of complexity in the reactor design, give this
type of discharge promise for use in applications such as
materials processing. Also, since the plasma is completely
surrounded by conducting walls, there is no HF radiation
loss associated with dielectric or partially dielectric bound
HF sources. One can also speculate that excitation of
surface waves along the conducting containing boundaries
present in other types of plasma source may be used as a
secondary heating mechanism in order to modify or enhance
plasma density and uniformity.

Further simulation and computational speed-ups may
lead to efficient modelling of larger-area, higher-density
plasmas. Further simulations and laboratory experiments
are needed to perfect a more efficient wave exciting
mechanism. Also, the details of collisionless electron
heating mechanisms in two dimensions need further
investigation.
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