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ABSTRACT

Modeling and Simulation of High Frequency Surface Waves in Bounded Plasmas

1 Introduction

Our Berkeley Plasma Theory and Simulation Group (PTSG) has been studying bounded
plasmas and plasma devices since about 1981, in which the behavior of the plasma at the edge
plays a major role. PTSG has published many journal articles in this area. We also have
generated a suite of plasma device codes now in world-wide use by many others, who have
published something approaching 100 journal articles, using our codes. Our plasma PIC-MCC
codes are available free on the web from http://ptsg.eecs.berkeley.edu

Tins report contributes detailed theory and simulation for high frequency (electron) waves
that may propagate along the plasma edge, with perturbations in the potential and density
in the sheath and pre-sheath regions. A brief summary comes first. The report then begins
with Chapter 1 of David Cooperberg's thesis (his title is the Abstract above) which provides an
extensive history of the area, followed by his Chapters 2, 3, 4, and 5 as journal articles, plus a
short Chapter 6 on future research. That is, this report is Dr. Cooperberg's thesis.

2 Yet to come

In the next year or so, succeeding Parts II, III, IV..., chapters from more Berkeley Ph.D.
theses, will be published, also as ERL reports, including low frequency edge waves (at "ion
frequencies"), with additional results on couplingto both the high and lowfrequency edge waves.



There also will be some work on pure electron plasma waves oscillating near and propagating
along electron emitters, with attention to both noise and stability, magnetized and not.

3 Acknowledgment of Support

We are very grateful for continual support from ONR, dating from 1977, for most of this
work, and for the continued support of Dr. Charles Roberson at ONR for "plasmas at the edge",
both near-neutral and non-neutral. David Cooperberg was an ONR ASSERT student. Futher
support came from ONR Contract N000014-97-1-0241.



SHEATH WAVES, UNMAGNETIZED

David J.Cooperberg, Charles K. Birdsall

EECS Department, University of California, Berkeley CA 94720-1770

Plasmas bounded with metal waUs have sheaths at their edges near the walls, a-lnng which electrostatic
(and electromagnetic) waves may propagate. We build on a long history of dielectric-boxmded plasma
waves, e.g., relating transverse (or series) resonances to cut-oflf frequencies of om sheath waves. We present
kinetic simulations (PIC-MCC), confirming; the dispersions; the edge (surface) waves perturbed densities
and potentials are largest at the edge (with the perturbed fields of the asymmetric modes penetrating the
bulk at small values of k); those of the body waves are largest in the body. Physically, the two sets of waves
are guided along their respective regions.

We also drive edge waves sufficiently strongly to cause electron heating producing ionization of the
backgroimd gas, which maintains a plasma discharge. The heating profiles and density scaling of these
resonant surface wave discharges differ markedly from the weU known capacitive, inductive, and wave-
coupled discharges.

First, using warm electrons and fixed ions (matrix sheath), electron surface waves in a plasma ^b
boimded by metal walls have been analyzed and detected. (See Ref 1.) Second, a more realistic model is
used, with warm electrons and ions, free to seek equilibriiun, creating a nonuniform self-consistent density,
with sheaths, presheaths, and bulk regions, still between metal walls. (See Ref. 2.) For both models,
dispersions and eigenfunctions of electrostatic, asymmetric and sjonmetric, surface and body waves, are
obtained from a linearized Vlasov theory. These are then verified with PIC simulations in 2d3v. Propagation
of surface and body waves occur analogous to those found in dielectric bounded plasmas, such as Trivelpiece-
Gould waves. The lowest frequency asymmetric surface wave, a dipole-like mode, has a cutoff at the series
resonance (infinite admittance), also called the lowestfrequency Tonks-Dattner or Herlofsonresonance; these
are followed higher order surface wave modes, with higher frequency cutoffs. The highest frequency modes
are body waves, with Bohm-Gross like dispersion. CoUisionless damping is also found and observed.

. Third, a plasma with argon neutrals, ions and electrons between two parallel metal plates, is driven (in
PIC-MCC ld3v simulations) by an RF voltage source, with sufficientstrength to just maintain a discharge.
Ihe miniTnum required externally applied voltages (near series resonance, with frequencies from 110-470
MHz) were on the order of the electron temperature (a few eV), with correspondinglylow plasma potentials
(a few lO's of volts). At 470MHz and a pressure of 10 mTorr, the peak, central, electron (and ion) density
was 7.2 elO cm-3. (Extrapolation to drive at 2450 MHz indicates a peak density of lel3 cm-3.) The argon
neutral gas pressures were 2-300 mTbrr.The diode (gap) impedance was observed to be nearly resistive (as
expected at or near resonance). The EEPF's, electron heating profiles, and scaling laws are found to be
different from the more common capadtively, inductively and wave-coupled discharges. The self-tuning of
the discharge, needed to maintain resonance, is described. See Ref. 3.

Lastly, using a fully electromagetic 2d3v PIC-MCC code, a plasma is created and sustained by resonant
surface waves in a metal bounded cavity 2 8 cm at a drive frequency of 150MHz (vacuum wavelength of
2m), applied with a set of antennas (along one of the longer walls) phased to produce a standing wave. See
Ref. 4.
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Abstract

Modeling and Simulation of High Frequency Surface Waves in Bounded Plasmas

by

David Je&ey Cooperberg

Doctor of Philosophy in Physics

University of California at Berkeley

Professor Charles K. Birdsall, Chair

"For many years plasma simulations were focused on the behavior of the bulk of

the plasma, as there are many oscillations, waves, instabilities, and transport problems [to

study] in the bulk... For many such models, periodic boundary conditions were acceptable,

essentially ignoring boundaries."[1]. In the past decade accurate modeling of bounded

plasma has advanced considerably motivated in part by a need to describe edge transport

in fusion devicesand in part by a desire to model DC, RF, and microwave dischargeswhich

are commonly used in plasma-assisted materials processing.

In the work presented here, we shall make a careful examination of an intrinsic

property of bounded plasmas. Specifically, we will be studying a set of high frequency

(electron) waves which propagate at the boundary of metal bounded plasmas. It will be

shownthat their existenceand behavior requiresan accurate modelof the plasma edge and

sheath regions.

This work has two main objectives. The first is to clarify the structure of these

waves. While there has been considerable experimental and analytic work on electron

surface waves in dielectric bound plasmas, there has been little or no investigation of the

surface modes in a metal bound slab. Part of the reason for this is that metal bound

plasmas are less accessible for some experimental techniques which include wave excitation

and detection schemes (typically done with antennae positioned outside the dielectric bound

plasma) and partly because it may have been believed that the electric fields of surface waves

in metal bound plasmas would be shorted out by the conducting boundaries close to the

plasma. This is not the case, as will be demonstrated. It is also hoped that this use of



simulation in the study of electron surface waves will further our general understanding of

these waves in both metal and dielectric bound plasmas.

Our second objective is to study how these natural modes may be used to sustain

a plasma discharge suitable for plasma processing. Current "surface wave plasmas" are

producedin glasstubes with short-gapexcitation[2]. Our analysis ofsurfacewaves in planar

metal bounded plasma slabs enables us to demonstrate, through simulation, new types of

surfece wave sustained discharges which may operate at low pressures with low sheath

potentials and may be scalable to large areas without compromising plasmauniformity.

This study of surface waves in metal bound plasmas also leads to speculation

as to the use of such waves in controlling the plasma edge (and possibly the bulk). The

application of microwave power at the plasma edges may be used to excite these surface

modes andenhance plasma heating there. The effect might beenhanced plasma uniformity
in traditional capacitively and inductively coupled discharges.

This work relies heavily on particle-in-cell simulation with Monte-Carlo collisions

(PIC-MCC)[1,3,4] of unmagnetized, bounded 2dZv plasmas. Among the benefits of the
PIC-MCC scheme are anadherence tofirst-principles, which allows a wide range ofkinetic,
non-linear, non-equilibrium, and non-local behavior to beaccurately modeled, and an ease
of collecting virtually any diagnostic that could be desired (at any and all positions in
phase-space). The accuracy provided by PIC-MCC is ofparticular importance to this work
because ofa desire for an accurate representation of sheaths, non-linear effects, and kinetic
effects such as Landau damping, stochastic heating, and wave-particle interactions. Also
accurate modeling of the electron energy probability function (EEPF) is desired since the
EEPF is known to depart firom Maxwellian in low pressure discharges[5][6].

An outline ofthis work is as follows. Chapter 1presents anoverview ofpast and
current work on electron surface oscillations and waves inbounded plasmas. In Chapter 2
we initiate our study of waves in the metal bound slab using a matrix sheath model. A
linearized Vlasov treatment for this model is derived and compared to simulation. Next
a more realistic model for the plasma and sheath is developed in Chapter 3. The result
is the identification ofa new set of surfece modes which exist only in the non-uniform,
thermal, bounded plasma. We then move firom the study ofsurface wave characteristics to

a study of surface wave sustained discharges. In Chapter 4 we consider the ld3v plasma
which is sustained at the series resonance frequency (which will be shown to be the cut-off

frequency for the main asymmetric surfstce wave). The 2d3v surface wave sustained slab
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will be treated in Chapter 5.
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Chapter 1

Brief History of Electron

Resonances and Surface Waves in

Bounded Plasmas

Plasmas bounded by conducting or dielectric walls provide regions near the plasma

edge in which the permittivity, 6, changes sign. This sign change takes place at the

plasma/dielectric interface in the dielectric bounded case, at the plasma/sheath interface

for a uniform metal bounded plasma with a matrix sheath, and at some intermediate point

inside the plasma (where the local plasma ficequency equals the excitation frequency^) for

non-uniform plasmas. A consequence of this sign diange in € is the introduction of sur

face wave modes. The field strength in these modes is greatest at a point near the plasma

boundary and decays exponentially away from this point. One dimensional simulations of a

plasmaslab show: (a) plasmaoscillations at high frequencies (u3 > cjpe)t associated with the

bulk; and (b)resonances (madn or series, and secondary or Tonks-Dattner) on the order of

but less than (jpe, associated with the edges. Two dimensionalsimulationsof a plasma slab

similarly show modes associated with the bulk and waves which propagate along the walls

(in y) which are localized in the edge (analogous to Gould-Itivelpiece and Tonks-Dattner

waves in a plasma colunm). The resonances found in Id are the cut-offfirequencies (ky= 0)

in 2d. Evidence of the series resonance in a parallel plate discharge is demonstrated by the

measurement of plasma impedance which approaches a pure resistance when driving at or

near /series = /pe(2s/L)^^^ (where s is the sheath width and L is the total system width).



In 2d thermally excited waves can be detected via spectral analysis and also can be driven

to sustain a plasma. Before proceeding with a further description of the current work on

surface modes found in the metal bounded slab, we present a history of the e3q>erimental

and theoretical advances made in understanding high frequency surface waves in bounded

plasmas, and advances in the area of surface wave produced plasmas.

1.1 Detection and Analysis of Surface Waves

(plane wave)

-«pa(k.r- «*))

MAAA
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Column

Figure 1.1: Schematic of experiment to
detect electron resonances in a plasma
column.
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Figure 1.2: Sketch of scattered field
intensity

Electron resonances in bounded plasmas have been studied and observed for some

time. In 1931 IbnksfSlflO] studied the fields scattered by a plasma colunm and found that

the scattered fieldversusplasma densityexhibits multiple resonances (Figs. 1.1and 1.2)with

a main resonance at a; = and secondary resonances at lower densities. The inAin

resonance was re-derived by Herlo£son[ll} in 1951 in a study of r^onant scattering from

ionized meteor tails. Herlofron further showed that only a single dipolar resonance existed

in the cold plasma limit in contradiction to observation. Later laboratory experiments

were performed by Dattner[12] in which he measiured the electron densities at which the

secondary resonances occurred. These secondary resonances shall hereafter be referred to

as Ibnks-Dattner resonances as is done in the literatme.

A cold homogeneous treatment of the plasma cylinder experiments describes only

the main (dipole) resonance. Vandenplas[13] outlines the research which eventually led to

a better theoretical model of the plasma cylinder which accurately predicted the Tbnks-

Dattner resonances. The first analysis was performed for a uniform thermal plasma. A

formula for the resonances is then

(1.1)



where the discrete kn are determined by enforcing a boundary condition of zero perturbed

flux at the cylinder wall. While a secondary spectrum is predicted, the spacing and loca

tion of the resonances was in poor agreement with observation. The next addition to the

analytical work involved the inclusion ofa plasmaradial density proflle[14][15][16]. The hot

non-uniform plasma was described by a linearized fluid calculation which included a scalar

perturbed pressure term. Goodagreement with experiment was shown by Parker et a/.[15]

when a Tbnks-Langmuir[17] model of the steady-state electron density was used. Here the

resonances may be understood as radial longitudinal standing waves confined in the region

between the plasma boundary and the cutoff radius where u) = (jJpe(re)' Gaigneaux and

Vandenplas[18] extended the work of Parker et al.[15] by introducing new dimensionless

parameters and a general linear law permitting a prediction of the Tonks-Dattner resonance

spectrum over a wider ranger of plasma densities and also allowing for an independent mea

sure of electron temperature.

The limits of applicability of the scalar perturbed pressure fluid treatment, which

has been successful in predicting the resonance spectrum, have been analyzed by Bald-

win[19]. Baldwin showed that for afterglow plasmas with sufficiently slowly varying density

profiles the perturbed scalar pressure fluid treatment breaks down and one should apply a

kinetic treatment of the problem. The reason, in keeping with the idea that the resonances

consist of longitudinal waves trapped at the plasma boundary, is that the waves which are

laimched at the critical point u = Upe{rc) can become severely Landau damped as they

approadi the outer wall. This is because the decreasing density leads to a decreasing phase

velocity for the longitudinal waves. The linearized Vlasov equation is solved by the tra

jectory method for this case. The resonant particles responsible for Landau damping the

outward traveling wave are shown to partially reconstruct an inward traveling wave after

reflection by the plasma sheath potential. Proof of the validity of this analysis was offered

when it was shown that application of a weak axial magnetic field destroyed the resonance

spectrum[20]. Ignat[21] attempted to verify the analysis of Baldwin by comparing the pre

dicted resonance spectrum to experiment on argon, helium, and neon afterglow plasmas;

however, the "flawed" calculation of Parker et al.[15] 3rielded better agreement.

In addition to the experiments performed on plasma cylinders, a study of plasma

resonance probes which measured resonances at frequencies below cjpe were explained in

terms of the "series resonance" [13,22,23]. The "series resonance" results from the balanc

ing of the probe capacitive sheath impedance with the bulk plasma's primarily inductive



impedance, and is analogous to the main dipole resonance in a plasma cylinder.

The electron resonances found in a radially bounded plasma represent cutofis for

waves which may propagate along the boundary wall. Trivelpiece and Gould[24] derived

dispersion relations for the cold plasma cylinder boimded by dielectric and metal with and

without an applied steady axial magnetic held. Modes with frequencies well below the

metal waveguide cutoffs and phase velocities much less than the velocity of light were han

dled in the quasi-static limit. Analytic results were compared favorably with experimental

measurements. For zero applied magnetic field, particular attention is given to describing a

circularly symmetric mode as resulting from a perturbed peristaltic surface charge layer (see

Figs. 1.3 and 1.4). A more thorough quasi-static, Tg = 0 treatment of the surface modes

Figure 1.3: Cross-section of col
umn used in experiment to de
tect electron resonances in a cylin
drical, boTmded plasma. (after
Trivelpiece[7])

Figure 1.4: Snapshot of electric fields and per
turbed surface charge layer formed by peristaltic
perturbation of electron density about an equi
librium cylindrical (ion) density profile, (after
Trivelpiece[7])

on a boimded plasma column with zero axial magnetic field is provided by Trivelpiece[7].

Modes with m = 1 (dipole) angular variation axe discussed. The cut off for this mode is

essentially the main resonance discussed earlier with a modification due to dielectric and

metal boundaries. A further result is that, for parabolic radial plasma density profiles,

the low frequency behavior of these surface waves may be accurately captured by replacing

Upe with its spatiadly averaged value. We shall refer to these surface waves which have

been derived in the Te = 0 limit as Gould-IVivelpiece modes as is commonly done in the

literature.

Two review articles[25][26] have been written about the cylindrical surface waves

(Gould-I^ivelpiece modes). Topics including damping, methods forlaunching and detection,

linear dispersion as derived from fiuid and kinetic calculations and measured by experiment,

and non-linear phenomenon, including second order interactions leading to the generation

of Tonks-Dattner waves, are discussed. Also an informative diagram is given[26] which



summarizes the regimes under which various simplifications may be made.

Computer simulation of surfiEu:e waves has been performed by Decyk[27][28]. In

this work a measurement of the autocorrelation of the potential in electrostatic simulations

of a uniform thermal plasma slab bounded by vacuum were used to measure the dispersion

relation for two electron surface wave branches whose frequencies were below ujpe. Onewas

symmetric and the other was asymmetric in the direction perpendicular to the boundaries.

Body waves with frequencies above Dpe were also measured in these simulations. The

eigenfunctions and real u dispersion curves for these modes were derived from a warm fluid

calculation and plotted. The imaginary u part of the dispersion relation resulting from

Landau damping was measured and compared to the results of a kinetic Vlasov calculation

performed by Cheng and Harris[29].

The additional Tbnks-Dattner resonances of a plasma colunm also represent cut-

ofiis for axially propagating surface waves as has been observed by O'Brien et a/.[30],

0'Brien[31], Kerzar et. a/.[32], and Kerzar and Weissglas[33] and others. In these works,

experimental measurements are compared with several theories which differ in the modeling

of the radial plasma density profile. A numerical solution is also found by extending the

method of Parker et. a/.[15] to include axial propagation. Surprisingly, only frdr agreement

seems to have been achieved. Only the first three azimuthally symmetric modes and first

two dipole modes were detected. Difficulty in detecting modes of higher angular depen

dence and higher radial mode number was caused by coupling to lower modes, as well as

the higher damping present in higher modes.

Some kinetic modeling of surface waves has been performed which demonstrates

the effects of collisionless (Landau) damping. Atanasov et. af.[34] find the exact solution

of the linearized Vlasov's and Maxwell's equations for a bounded, homogeneous (to zeroth

order), hot plasma column under the condition of specular reflection at the plasma boimd-

aries and azimuthal symmetry (the m=0 mode). The dispersion relation including a space

damping rate are obtained. A similar approach is taken by Dengra and Ballesteros[35] in

which the collisionless energy absorbed per electron is calculated. The omission of a radial

density variation severely limits the accuracy of these results.

Another phenomenon is theorized by Gradov and Stenfio[36] in their discussionof

linear cold bounded plasma slab. Here the authors describe resonant damping of surface

wave eigenmodes in a plasma slab with an edge density gradient. In their description, surface

waves excite a local Langmuir wave at some location near the plasma boundary where the



density is decreasing such that the local a;pe equals the surface wave frequen<y and this

Langmuir wavecontinues outward (towards lower density) until it is Landau damped away.

The dispersion relation including the described damping and the time dependence of the

electric field at the point where ufpe(rc) = ^ derived.

1.2 Surface Waves to Sustain Discharges

The waves and resonances discussed above, which have been studied to further

the basic understanding of boimded plasmas, have also appeared in further work in which

excitation of these surface waves and resonances provides a mechanism for heating and

sustaining plasma discharges. A detailed review of early efibrts on resonance-sustained,

radio frequency gas discharges is given by Taillet[37]. In this work the enhancement of the

RF electric field in a planar capacitively driven discharge is emphasized. A simple model

of a collisionai homogeneous plasma slab in between two sheath regions in which ne = 0 is

developed firom previous theoretical work siunmarized by Vandenplas[13]. Justification for

extending the results to inhomogeneous plasmas was based on a variational calculation of

Crawfordand Kino[38] and dted in Vandenplas[13], whichshowed that the plasma density

could be replaced by the average plasma density in an expression for the internal fields at

resonance. Taillet's analysis assumes that the resonance enhanced fieldstrength remains in

the linear regime while still providing sufficient electron heating to sustain the plasma. A

relation, which equates the ohmic power absorbed by the plasma electrons to the energy

lost due to ionization, excitation, and diffiision, characterizes the discharge. It is shown that

stable and unstable equilibriaexist. Some experimental results given by Taillet[37] include

measurement of the plasma electric field using electron beam probing. The electric field is

observed to be approximately 10 times greater in magnitude than the vacuum field and the

phase of the field in the plasma bulk is opposite to that at the plasma edge. Measurements

of the plasma profile deduced from photometric data along with density measurements

taken firom a Langmuir probe were used to further verify that the discharges were indeed

operating at the series resonance. Some effects associated with electronegative gases were

also discussed.

Further investigation ofresonance sustained discharges was performed by Messiaen

and Vandenplas[39]. This work examined the nonlinear behavior of a cylindrical mercury

DC discharge plasma inserted across a waveguide operating at 2.7GHz. Several interesting



results were obtained for high incident microwave power. One result was that the plot

of reflected power versus density exhibited a broadening of the peaks to include plateau

regions indicating a tendency for the plasma to remain in a resonant state. Another result

was that for sufficiently high incident power the plasma could be sustained in the absence

of the dc ciurent. In this case, the power absorbed was measured to be independent of

the incident power. Also the plasma density observed when the discharge was maintained

by the incident HF power was found to be nearly the same as that associated with the

resonance observed at low incident power (when the plasma was maintained by the DC

current). The conclusion is that the plasma is resonance sustained. A final interesting

result is that when the incoming field energy is decreased below a certain TniniTnum the

plasma jumps to a lower density which was considered to result from coupling to the next

higher Tbnks-Dattner resonance.

In a later work Messiaen and Vandenplas[40] reported on resonantly sustained rf

plasmas in a spherical cavity. For moderate rf power the system was determined to be in a

linear resonant state with density far above the critical density (defined by ufpe(rc) = ^r/)

which is characteristic of a geometric resonance associated with a bounded plasma. The

density was found to depend heavily on the frequency and only slightly on the power level

of the exciting signal since detuning occurs to maintain the resonant state.

This workon resonance sustained dischargeswas significantlyadvanced by Godyak[41].

A homogeneous model for steady-state low pressure rf discharges is developed[42] which is

used to predict the total impedance across a discharge gap. This impedance is taken to

be the sum of plasma, space-charge sheath, and stochastic (interaction with moving sheath

waUs) impedances. The total impedance is then used in combination with an energy balance

equation to predict the internal properties of the rf discharge including the current-voltage

diaracteristic and the dependence of plasma density, and discharge voltages on applied

frequency. This analysis has been extended to the inhomogeneous plasma model which

results in the appearance of form factors and scaling factors which do not greatly efifect

the qualitative behavior[41]. Godyak and Popov[43] conducted an experimental study of

resonant disdiarges to test theoretical predictions. Resonant discharges are mmntained at

a theoretically predicted minimum applied voltage and resonant frequency. Scaling laws

including n oc and s oc a;~^, where n is the peak plasma density and s is the average

sheath thickness, are verified.

The resonantly sustained plasmas that have been discussed so far are generally
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confined in space due to their method of excitation (within some cavity or between elec

trodes). This prompted Moisan to develop a device called a surfatron in which a plasma

column is sustained by a traveling surface wave launched firom one end[44]. The laimcher

surrounds a gas filled dielectric tube which contains the plasma. Reported operation occurs

over a wide range of neutral gas pressures and electron densities with the length of the

plasma being a function of input power. In a more recent work, Moisan and Zakrzews]d[2]

give a review of the basic theory and various experimental designs for plasma sources based

on the propagation of electromagnetic surface waves. Devices operate firom a few hundred

kHz to '̂ 'lOGHz with density ranges from lO^^cm"*^ to lO^^cm"*^, tube radii from O.Snun to

10cm, and neutral gas pressures from 10~®Torr to a few times atmospheric pressure. The
surfatron was the first of these plasma sources and has inspired a great dealof subsequent

research in the field.

Early studies ofsurface wave sustained plasmas focused on describing their axial

dependencies. A simple theory, derived by Zakrzewski et ol.[45], of the coUisional atten

uation was obtained by extension of the collisionless theory, and led to a good prediction

of axial attenuation of the surface wave fields when plasma density, electron collision fre

quency, and tube dimensions are provided. Radial dependencies were neglected. Another

work by Glaude ef. fll.[46] furthers the analysis of weakly damped surface waves. In this

study, a plasma, which is homogeneous in the radial direction, imdergoes ohmic heating
by the wave fields. After introducing a constant equal to the average energy absorbed per
electron (independent ofwave power or axial position), and a-ggiiTning that the power lost
at some axial position, z, is equal to the energy absorbed byelectrons at that position, it is
shown that the plasma density imdergoes nearly linear attenuation in the axial direction.

This is shown tobeinagreement with experiment over the middle portion ofthedischarge
length. Conditions for discharge stability have also been worked out in the thin cylinder
approximation (cylinder radius < axial wavelength) [47]. This thin cylinder approximation
is made in much of the work on surface wave plasmas.

More self-consistent modeling was introduced byFerreira[48][49] andlaterbyAliev
et. a/.[60][51]. A first effort[48] in the weak attenuation limit predicted the absolute value

andradialprofiles for electron density, electron temperature, HF (high frequency) fields, and

excited atomic densities as functions of gas pressure, wave frequency, and power absorbed.

The equations used includeelectron and ion continuity,electronand ion TnnTnPTif:iitn transfer

withelastic electron-neutral collisions, power balance with local ohmic heating, and surface



wave electric fields which are determined from the homogeneous plasma approximation,

which is justified in the thin cylinder approximation since the radially averaged plasma

density can be used used[7]. To derive the radial electron temperature profile it is assumed

that the HF field is locally dissipated (i.e., neglecting heat conduction).

Later Ferreira extends his model to include axial variation[49]. This analysisdiffers

fromthat of Glaude et a/.[46] in that the assiunptionthat wave powerabsorbed over a given

axial length be proportional to the number of electrons in that slice and independent of wave

power is unnecessary. This quantity is instead shown to be constant under certain operating

conditions. Finally, the model is extended beyond the thin cylinder approximation by

accounting explicitlyfor field boundary conditions with a radial plasma inhomogeneity[52].

Here, the radially inhomogeneous plasma is treated as a cold dielectric and the possibility

of local plasma resonances is not considered.

Another model of HF surface wave discharges put forth by Zhelyazkov and Ben-

ova[53] includes more carefully the thidmessand dielectric constantof the containing vessel

which leads to more favorable agreement with experiment. When this model was applied

to an analysis of the dipolar(m=l) surface mode the interesting result was obtained that

a critical value for uR/c exists below which no plasma was likely to be sustained. This

phenomenon is observed by Margot-Ghaker et. a/.[54] who attribute its cause to a stability

criterion[54][55]

In another work by Aliev et a/.[56], the axial structure of weaklydamped surface

wave plasmas in both ambipolar diffusion and volume recombination regimes have been

expressed with similarity laws.

Since detailed information on the electron energy distribution function, EEDF, is

reqiiired to help determine transport properties and rates of atomic processes, there have

been several recent efforts to more accurately model the EEDF in surface wave plasmas by

solving the electron Boltzmann equation in various limits. All the studies discussed here

start by expanding the distribution function in spherical harmonics in v-space and then

truncating the series after the first two terms (Lorentz approximation). This is justified

when the electron-neutral mean free path is small compared to the spatial scales of the

EEDF. The distribution is then written as the sum of a large steady-state term and a

small rapidly varying term. The resulting equations are combined to give a solution for the

spherically symmetric steady-state portion of the distribution function[57].

An early work by Kortshagen et a/.[58] makes the further assumption that the
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distribution function may be written as a separate function of space and velocity. This

assumption requires sufficiently low plasma densities and sufficientlyhigh gas pressures. The

thin cylinder approximation is made so that a uniform (across the radius) axial surfaice wave

field may be imposed, and an ambipolar field is derived firom the radial density profile in a

difiiisioncontrolled regime. Numerical solutions for argon are given but not compared with

experiment. Later work by Kortshagen and Schluter[59] incorporated a Fokker-Plank term

in the electron Boltzmann equation to account for the efiect of electron-electron Coulomb

collisions. In this work radial inhomogeneity is neglected for simplicity. The maintenance

field strength is self-consistently determined by solving a particle balance equation in the

thin cylinder approximation. The most noteworthy result is an increasing temperature at

low electron energies for an increasing ratio of electron density to neutral density. This

result is explained as the removal of a Ramsauer miniTniiTn induced tip in the EEDF at

low energies. This effect is also discussed by Godyak et a/. [5] as am explanation for their

e:q)erimental results in RF capacitive discharges.

In order to better model low pressure discharges, a non-local approach[60][61] has
been aulopted where the complete spatially inhomogeneous Boltzmamn equation is solved.

This is better than the local approach previously discussed because at low pressure an elec

tron heatedat a certadn position is not converted to am energy gainofthe whole distribution

at that position[62].

A new electron heating mechanism has been described by Aliev ef. a/.[63] on the
basis ofa non-local kinetic approach. This mechanism ispredicted toplay a significant role
in the mauntenance of discharges at sufficiently low pressures(2/ < w where v is the total

electron collision frequency and wis the surface wave frequency). In a first calculation[63],
the existence ofa region ofenhanced radial electric field near the column boundary, at the
radius at which the local plasma frequency equals the applied frequency, is imposed as an
approximation to the self consistent fields. The location of the enhanced field is assumed

far enough from the sheath and of large enough spatial extent that the thickness of the

sheath may be neglected and that a specular reflection approximation ^-a-n be made. This

enhanced field then undergoes a Cherenkov particle-wave interaction with the electrons

passing through it. The heating term results from a quasi-linear term given by the period

averaged product of the radially enhanced field and the v-space gradient of the perturbed

distribution function. The result is the generation of a hot tml in the EEDF.

Thisearlywork was followed by a self-consistent calculation[64}[65] which included
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a set of fluid equations for ion motion, the surface wave electric fleld equations, and a self-

consistent ambipolar fleld. Theenhanced radialfield isthenself-consistently computed. The

spatially inhomogeneous Boltzmann equation is thensolved in the non-local approximation

to give the EEDF. Numerical results for mean power absorbed per electron due to ohmic

and collisionless (quasi-linear) heating are given under varying discharge conditions.

Theefiect ofthe enhanced radial fleld in the limitofsmall electron mean free paths

(compared to spatial scale oftheenhanced fleld) has also been studied[66]. The equations
of hydrod3niamics are used to determine radial temperature profiles for both electrons and

ions. Here the energy gainin the resonance region results in an increase in the bulk part of

the EEDF rather than in a hot tail region.

The effects of collisionless (quasi-linear) heating on the axial structme of surface

wave plasmas has also been investigated[67][68][69] with pronounced effects on the axial

plasma profile resulting at the ends of the discharge column. Surfrice waves damped pri

marily through quasi-linear heating of the electrons at the end of a colunon discharge are

shown to decay linearly rather than exponentially along thepropagation direction[70].

In addition to the traveling surface wave sustained(^lindricaldischarges discussed

so far there has been an effort to develop standing and planar surface wave sustained

plasmas. Some motivation for this effort comes from a desired plasmauniformity which

be of use in laser sources and materials processing applications. Rakem et. a/.[71] maVA a
comparison between a simple model and experiment[72] on a q^lindrical standing surface

wave plasmawhere the far end of the column is shorted. For lengths less than some limit,

thedensity remains nearly constant (with some modulation due to the standing wave fields).

An argon ion laser was built based on this structure.

Nonaka[73] reports on new devices sinodlar to the surfatron but withvarying cross-

sections of which a rectangular one is of particular interest. A large area (up to 0.73m

X 1.72m) plasma is produced. Later analysis[74] of this planar surface wave source led

to determination of the axial density gradient in diffusion and recombination dominated

regimes and the electrostaticmode structiure. The axial densitygradient is predicted to be

less than in the Qrlindrical case.

Another planar microwave surfsu^ wave device consists of a dielectric wave guide

(18cm x 30cm) bound by metal and plasma oneither side with a vacuum gap between the
dielectric and the plasma[75]. Microwave energy is fed into the dielectric waveguide, and

the fringing fields couple to and sustain the plasma. In the directions aligned with the
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plane of the dielectric, the plasma density is modulated about a nearly constant value by

the standing waves. In the perpendicular (to the dielectric) direction the measured electron

density rapidly decays. A simple model is presented based on a homogeneous plasma.

This concludes our review of past and present research on high frequency electron

surface waves and resonances primarily in dielectric bounded plasmas. In the following

chapters, we present a study, based on particle-in-cell simulation, of the nature of these

waves in metal boimd plasmas and their application to sustaining plasma discharges.

An outline of this work is as follows. In Chapter 2 we initiate our study of waves

in the metal bound slab using a matrix sheath model. A linearized Vlasov treatment

for this model is derived and compared to simulation. Next a more realistic model for

the plasma and sheath is developed in Chapter 3. The result is the identification of a

new set of surface modes which exist only in the non-uniform, thermal, bounded plasma.

We then move from the study of surface wave characteristics to a study of surface wave

sustained discharges. In Chapter 4 we consider the IdSv plasma which is sustained at

the series resonance frequency (which will be shown to be the cut-off frequency for the

main asjrmmetric surface wave). Results including the scaling of plasma density and sheath

width with frequency, discharge gap impedances, electron energy distributions and heating

profiles will be given and compared with theory. The 2d3v surface wave sustained slab

will be treated in Chapter 5. The 2d3v surface waves are excited in an asymmetric and

hybrid fashion with different current loop antennae configurations. Comparisons are made

betweensimulation results and theoretical predictions for the wave dispersion relations and

eigenfunctions.
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Chapter 6

Suggestions for Future Research

It is my hope that the work presented here will inspire future research in the area

of high frequency surface wave sustsdned plasmas, including further modeling efforts as well

as laboratory based experiments. Future simulation may be aimed at extending the results

presented here to higher frequencies, higher plasma densities, larger volumes, and to the

many different gases used in plasma processing. This will require more refined computer

tional tedmiques and greater computing power along with development of a collisionmodel

for each new gas-phase chemistry. Of particular interest would be an understanding of the

ma-YiTniiTn attainable plasma densities, and the EEDFs and uniformity of the plasmas at

these densities.

The development of an analytic model whidi might predict the EEDFs and electron

coolingeffectsobservedhere wouldalsobe of particular interest. It is believedthat a solution

to the inhomogeneous Boltzmann equation in a non-local limit (at low gas pressures) may

lead to the desired results. It is suggested that further simulation be used to help validate

such a model.

Finally there is a wealth of laboratory work to be performed based on the en

couraging simulation results presented here. An investigation of surface wave launching

schemes which are able to sustain uniform plasmas over large areas is of particular interest.

Both slow and fast wave coupling should be investigated. Also metal and dielectric bound

plasmas might be considered.
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Electron surface waves inametal bound plasma slab have been detected and aimlyzed. In work
itisshown that^epresence ofamatrix sheath between the central quasineutral region and the metal
walls allows for the propagation of surface waves analogous to those found in dielectric bound
plasmas. Measurements of the dispersion relations and eigenfimctions of asymmetric and
symmetric, electrostatic, surface, and body waves are made via particle-in-cell simulation of a
plasma slab with sheaths. The plasma slab has finite temperature electrons and fixed ions ofuniform
densiQr. The sheaths consist of electron fiee, fixed, uniform ion regions (''matrix sheath*') of
thickness • Alinearized Vlasov theory is developed forcomparison with thesimulation. It is
shown that the long wavelength approximation 1) isnot valid even for long wavelengths in
thepropiagation direction. Collisionless damping of both surface and body waves is measured which
compares well with theoretical estimates. © 1998American Institute of Physics.
[S1070-664X(98)03804-X]

I. INTRODUCTION

Surface waves on dielectric (glass) bounded-cylindrical
plasmas, knownas Gould—Trivelpiece waveshave been well
studied '̂̂ and are well characterized. Surface -waves have
alsobeenstudied in dielectric bounded plasma slabsbycom
puter simulation.^ Surface waves in dielectric bound plasmas
are a continuing area of research in the field of high fre
quency discharges where these waves are driven to sustain
plasma columns.^ In past treatments, the effect ofthe plasma
sheath is typically ne^ected on the basis that the sheath scale
length, , is much lessthan thetypical scale length (depth
of penetration) of the surface wave.

In this work we wiU demonstrate ^t the sheathregion
between plasma anda metal boundary can itselfprovide the
means for surface wave propagation. We shall refer to these
waves as "sheath waves" to emphasize the importance of
the sheath. It is hoped that this investigation may lead to a
better understanding of sheath physics and to applications,
such as bulk plasma control via sheath mode excitation.

The structure of this paper is as follows. In Sec. n we
describe the system which is the subject of our theoretical
and experimental sh^es. Our experimental results are pro
duced by particle-in-ceU simulation^ which is fully enable
of capturing the kinetic behavior of the 2d3v (two spatial
and three velocity component) bounded plasma since it op
erates from first principles (i.e., solving Poisson's equation,
and particle equations of motions). In Sec. m we will de
velop a kinetic theory for sheath waves. In Sec. IV simula
tionresults arepresented andcompared withtheory. Conclu
sions are made in Sec. V.

II. MODEL DESCRIPTION

A plasma slab model is used to study '.'sheath" wavesin
metalboundedplasmas. We allowfor two spatial dimenginnR
and three velociQr dimensions. The absence of a ini»anR to

scatterenergy into or out of the third velocitydimension will
have no effect on our results. The model includes a wall to
wall uniform, immobile, neutralizing background of ions,
and thermal electrons loaded in the central region (Fig. 1).
The positively charged sheaths wMch exist between the
quasineutral plasma bulk and the grounded metal boundaries
are modeled as election free regions ("the matrix sheath"
approximation). These sheaths are of thickness A, chosen to
be on the order of a few electron Debye lengths; they are
maintained by specular reflection of electrons at the distance,
A, fix)m the walls. This model provides a detailedconqiari-
son of (o{ky)-a>j{ky)+i(a^ky) and eigenfimctions in i as
measured in simulation and c^culated from the linearized
Vlasov equation.

III. UNEAR KINETIC THEORY

The kinetic theory presented here draws on the woric of
Xu etal^ who adapted the work of Cheng and Harris^ (in
which surface waves in a pl^ma slabboundby vacuumwere
described) to include the presence of conducting walls and
positively chargedsheath regions. We shall show that a key
approximation inade by Xu has limitedapplicabilityand also
correct an algebruc mor which appeared in his final result
for <a{ky). New results for the imaginary part of the disper
sion r^ulting from Landau damping are presented.

As described above, the static sheaths of thickness A are
modeled as fixed, uniform ion layers with no electrons. The
sheaths are maintained by refiectmg incident electrons back
into the bulk plasnia. We shall see fiiat the presence of this
sheath layer allows a contrast with the Gould-Trivelpiece^
model for modes in a dielectric lined waveguide. We may
also contrast ourwork with that ofDecyk,^ who worked with
a fluid model in which A—

Combining die linearized Vlasov equation for the elec
trons with the linearized Poisson's equation enables the deri-
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Sbeath(n,sQo.ne=0)

Sbeath^i =no. =0)

FIG. 1. 5»cbeniatic of plasma slab simulation.

vation of electrostatic sheath wave dispersion relations and
the eigenfunctions describing these waves. The quasistatic
limit is justified since the slow-wave results we will obtain
contain wavelengths much shorter than those in free space at
the same frequency; also, the dominant energies are kinetic
and electric. We assume herein that wave quantities may be
written as $(r,r) =^(x)c'*V~* '̂\ with ky real. We write
the governing equations for the perturbed quantities as:

df{r,v,t) e ^ 3F^iv)
+i;. — +—V<b(r,f)- — = 0,

dt drm dv

I —rrtfi?

V2<I>P(r,r)=— Ifd\
eo J

where e and m are the electron charge and mass, respec
tively, F„ is an equilibrium Maxwellian velocity distribu
tion, and is the particular solution to Poisson's equation.
The ftiU expression for the perturbed potential is <I> = d)^
+ The zero-order steady-state potential which results
from the ion rich "matrix" sheaths plays no role in what
follows and need not be discussed further. Boundary condi
tions for the potential are 4>(x=0,y,0 = ^(Jc=f' + 2A,y,/)
=0 (external short circuit). It is further required that <I> and
d^ldx be continuous at the sheath edges, x=A, and x=L
+A. For the electron distribution, specular reflection leads
to the conditions

f{x=A,y,V:,,Vy,v^,t)=f{x=A,y~Vj,,Vy,v^,t), (4)

f(x=L+A,y,V:,,Vy,v^,t)=f{x-L+A,y-Vjc,Vy,Vi,t).

To proceed, we assume the following forms of 4>(x) within
our system.

^(x)=A sinh(feyX), 0<x<A,

D. J. Cooperberg

+ 2 a{kx)co&{kxix-A)),
k.^nv/L—O

A<x<L+A (7)

<P{x)--D sinh(it/L+2A-j:)), L+A<x<L+2A, (8)

In the central region, A<x<L+A, we have used

2 a(k^)cos{k^{x-A)), (9)
kj^nv/L

where the term must be multiplied by 0.5. This choice
is valid because of the specular reflecting boundary condition
which allows us to continue as an even function about

X—A andx=L + A. The justification is that there can be no
distinction between a particle with x>A approaching x
= A(Vx<0) and a "pseudoparticle" withx<A approaching
x=A with V;j>0. The "pseudoparticle" will be incarnated
as the reflected original particle once it crosses x=A. A
similar argument holds for x=L+A.

Next we express the frill solution in the central region
(A<x<L+A) as

<^(x)= 2 0(/:x)cos(^^(x-A)),
k.^nirfL

where

2k
4>{k;)^aik^)+ cosik^)]

X[B+ C cosikJDl (11)

We proceed as in Ref. 7 by solving for the perturbed
distribution function, /(r, v, t), by integrating over the unper
turbed orbits. SubstitutingEq. (1) into the expressionfor the
total time derivative of/(r,v,r) produces.

Z>/(r,v,f) ^/(r,r,r)

<?/(r,v,r)

Vd>(r,r)
m

+ -V4»0(r)'
m

<?/(r,v,f) e
+ — Vd>(r,r)

dFmiv)

<?/(r,w,r)

Here d>°(r) is the steady-state potential of the central,
quasineutral region, and Vd>®(r) = 0. Second-order terms
have been dropped. If we assume the modes we are looking
for are damped [i.e., Im(K')<0], then we can integrate Eq.
(12).
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/: dt
Dt'

=/(r,i;,oo)-/(r,i;,f)

=- r^,' 1 V$(r'(r.w').«')-
Jt m v V » ' /. /

_ (13)
Here r'(r, vj') and t/(r, v,/') are the unperturbed trajecto
ries and take the values r and v, respectively at time t'=t.
For specular reflection of electrons at x=A and x=L+A
and no other forces we can write,

x'{r,v,t')=x'(xyv^,t'), (14)

y'(r,v,f')=;'+Vy(?'-/). (15)

v;(r,t;,r')=±i;,, (16)

Vy{T,v,t')=Vy, (17)

v;(r.tf,r')=v^, (18)

where *'(jc,v,,f') is the integral of wj. We fiirther simplify
Eq. (13) bynoting that/(r,i;,oo)—*0 for damped waves. Af
ter substituting Eqs. (2), (10^ and (14)-(18) into Eq. (13),
we have

2 (19)
XI g J t ffl kjf—nv/L

>yvy . "-yy

+i san{kx{x—A)){kjkyV,cVy—kjcVxW—kyVykxVg)'\.

In order to obtain the dispersion relation, we may now sub
stitute Eq. (25) into Poisson*s equation (Eq. 3) and integrate
over velocity space. Before doing so, we note that the de
nominator of Eq. (25) is an even function of as is
F„(|v'|), and we may drop odd terms inv, since they wiU
not contribute to the integral. Poisson's equation, after some
algebra, then reduces to

(l?,+l^)a{k,)=
€okT,

{k'v)F„iv)

w-k-v'
(26)

where we have used Eq. (9) for The now recognizable
integral may be evaluated quickly. The result is

1-^p(l+iZ(f))

= ^(k,)(l-€(iv,k)), (27)

where ^=ft>/|A:jVm,/2kr,, a>,,= VnP76^, uy
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F„(v'(T,v,t'))i-kj,v^ sin{kj,ix'-A))+ ikyv'y

Xcos(^^(x'-A))). (20)

We need to evaluate terms which include the factors
cos(k/x'(XyVji/)-A)) and v'̂ sin(kJpc'(x,Vjc/)-A)). The
utility of expressing 4>(x) as a cosine series' is demonstrated
when it is observed that

cos(A:,(x'(x,v,,r')-A))=cos(kjf((x-v,(f-/'))-A))

sin(/:,(x',(x,v,,f')-A))

= sin(M(x-v,(r-/'))-A)). (22)

With Eqs. (21) and (22), making the variable change t''=t'
—t, we have

/(r,w.O=-

« Too

X 2 (23)
kj=nvlL JO

F„(v){-k^v^ sin(A:,((x+v'')-A))

+ ikyVy cos(k,((x+ v^t") - A))), (24)

where we have taken advantage of the fact that FJity)
~^m(k'l)* integral may be evaluated withthesolution
for/(r,i;,r) being

(21)

(25)

—yjlkTglmgy Z(0 is the plasma dispersion function, and
6(0),/:) is the dielectric constantfor an infinitewarmplasma,
given by

2w^«(».«= I+ p^[i+fZ(f)]. (28)

Next we enforce the boundary conditions, <j>{x) and
{d<f>{x)ldx) continuous at x=A and x=L+A. We start by
inserting Eq. (11) into Eq. (27), with the result,

2k
[1 cos(i,t)]

X[B+C cps(k;jL)], (29)

going intoEq. (7), the expression for ^ in the centerregion.
Four equations in four unknowns. A, fi, C, and D result
fromenforcement of the boundary conditions. WithEqs. (6)
and (8), the sheath solutions, we find

B=±C, (30)

and
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D(w,k)

j ^ [1± cos(fc,L)] ,
'L

^ 2fcy [1± cos(/:j(L)]Xsin(t.5))•
_ (31)

InEq. (31) wemay notpull thelimit inside thesums on
the right-hand side as has been done elsewhere.' Instead, we
must evaluate the sums and then take the limit In doing so,
we are aided by the fact that each summand £q)proaches 0 as
k^—*co. This can beseen by examining the form of 6(k,cy)
as In order to evaluate the first term, we take advan
tage of the fact that

=Ums^o'̂ k s(kj:)sin(k^, where m is an arbi-
traiily large integer. We can then replace 6(k,a>) with its
asymptotic form as k;j—>o®. A similar argument for thesec
ond term shows that we can truncate that sum at some finite
upper bound which allows us toevaluate the limit. The final
result for the dispersion relation is

2k,
D(w,k)=tanh(ky^)+2

1

L k^€(w,k)
=0.

(32)

We have used the fact that €(a),k) is an even function of k,.

A. The limit |k|Xoe-<^1

In the long wavelength limit, kX^^^l, which we will
show later to be of questionable validity, the dielectric func
tion becomes

$(H-.k)=l-;;;5~2—IT—+ (33)

and the dispersion relation reduces to

Z)(w,ky)=tanh(kyA)

Te

(kyL\ ky JtL\
1

coth|—j--COth^-j
i rf'i

1-
w

pe

W

tanhl
kyL

asgiven by Xu etoL^ where

'J^=kl+- i I (wj^-w')

(34)

(35)

From Eq. (34) with the assumption tL> 1, which is reason
able for A'<^L, we arrive at

w
pe

-yl+roth| coth(kyA)
YkyXpe yj coth(kyA) j (36)X 1 +
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for the symmetric (in the perpendicular, x direction) mode
and

AS
w, =•

w pe

1+tanhf coth(kyA)

l + (32)
2 /

for the asymmetric (in x) branch. These results differ from
those reported by Xu etal.^ in the second term in parenthe
ses which, in the previous calculation, contained tanh(^)
factors instead ofcoth(kyA). This isnot insignificant because,
for example, one can readily deduce ,that the temperature
dependence of the asymmetric cutoffs (ky=0) is only cap
tured by the correct expression. Theoretical and observed
results will be included in the following section.

These relations represent symmetric and asymmetric
surface/sheath modes analogous to m=0 (azimuthally sym
metric) and m= 1 (dipole) Gould—Trivelpiece modes in a
dielectric lined cylindrical waveguide. The main difference,
aside from the slabconfiguration, is thatthe dielectric lining
has been replaced by a matrix sheath with thickness on the
order of • Inthe limit ky-»0, we find that the symmetric
(cutoff) frequency goes to zero and the asymmetric (cutoff)
frequency approaches

(38)

In the same limit, the frequency for the azimuthally symmet
ric Gould-Trivelpiece mode similarly tends to zero and the
dipoleGould—Trivelpiece mode becomes

<a

(0 =
pe

i/l+K,
b^—a^

(39)

for r^=0 (plasma radius a, dielectric radius b, dielectric
constant K^). We note that, in the limit a—»£?, Eq. (39) pre
dicts that the dipole cutoff tends to zero. As shown here for
the plasma slab, it is predicted that the presence of the
plasma sheath will provide a nonzero cutoff forthis mode. In
the opposite limit kyA, kyL^l, the two slab modes merge
and are represented by

(t)
pe

V5
(0 = 1+2 ky\j)f (40)

Similarly, for Gould—Trivelpiece modes, the dipole andazi
muthally symmetric modes both tendtoward

(t)

(0 =
pe

Vi+x."
(41)

In the semi-infinite slab limit, these modes resemble
those studied in simulations by Decyk^ (who describes the
gam<» slab model with a fiuid theory in the limit A-»") and
those studied theoretically byCheng and Harris.' Inthe latter
work, an expression for the Landau damping is given to be
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<"/=-"»>« Vl ^y^De

for kyL>\, but this expression is only valid for us in the
more restrictive limit /:yA> 1.Since werequire we
see that this violates the long wavelength approximation
used by Cheng and Harris,^Jherefore we can not expect to
see damping linear with ky. [For the same reason weshould
be skeptical about the limit taken in Eq. (40).]

B. The limit |ilc|X0e£l

It is of more interest to examine the regime for which

kXoe^^' This is because while we might have ky—»0, sig
nificantcontributions to the sum in Eq. (32) may come from
terms with k^K^t approaching unity. This is because the
eigenfimctions for the surface waves describing their depen
dence on the X, perpendicular, direction necessarily include
contributions from Fourier components given by 2ir/A
where we have chosen A to be a sheath thickness which is on

the order of a few X^^. When A'^X^^, there are significant
contributions to the plasma dielectric function [Eq. (28)]
fiom components where^(=:.(a)/v2kiYe))~ one must
evaluate Z, the plasma dispersion function, explicitly, in or
der to compute the dispersion relation. This has been done
numerically; results with and without the approximation
kk[)g<l will be shown. In the following section we shall
refer to results based on the long wavelength approximation
to Z as the *'approximate" solutions and results based on the
exact form of Z as the "exact" solution.

Of particular interest to later discussion is the value of a>
for the asymmetric mode in the ky=0 limit Assuming that
the long wavelength limit is valid ("approximate" theory),
Eq. (37) then reduces to [as previously demonstrated in Eq.
(38)]

(43)

where is known as the series resonance®"'® which results
from the.balancing of the sheath capacitances and plasma
inductance. It should be noted that <0^^ may be much lower
than a)pg whenL/k^g^ 1.

C. Modes near <ape

Before leaving this model, we note that Eq. (32) also
predicts a number of modes grouped around Ae electron
plasma firequency. Using Eq. (34) and Eq. (35) for 7^<0
(requiring (o><Opg)j we may derive anequation which deter
mines T as a function of k„.

tan

(42) -cot|i^
t|L
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iT| I Vi+l2(fcp7)-i
= T- taiih(A,A) . , H

coth

tanh

857

2

kyL
~

(44)

This rather complicated expression describing symmetric
(upper) and asynunetric (lower) waves can be understood,
afterexamination, by noting that the roots,k^, for a givenky
have spacing of about 2'jr/L. These roots describe a discrete
set of Bohm-Gross modes. The ky=0 cutoffs are cited in
other work'® as thermal resonances.

These resonances have been observed experimentally in
cylindrical plasmas" to have greater spacing than is pre
dicted from a uniform density plasma model. Since our com
puter experiment is i^le to model accurately a uniform
plasma, we do not discoverthis discrepancy. However, in the
interest of more accurately understanding laboratory plas
mas, in a later work we will consider the nonuniform plasma
slab. Significantly better agreement between theory and labo
ratory observation of cylindrical resonance spectrum is dem
onstrated by incorporating the effects of a nonuniform den
sity profile as suggested by Parker, Nickel, and Gould.'̂

IV. SIMULATION AND RESULTS

Particle-in-cell (PIC) simulations have been made to
verify the calculations presented above. The first simulation
stricUyfollowed the matrix sheath model used in the calcu
lation. Immobile ions were loaded with uniform density
throughout the system, while mobile electrons were loaded
uniformly in an interiorregion,leavingelectronfiree slabs of
thickness A next to each grounded boundary. In this electro
static simulation, the electrons were specularly reflected at
the sheath-plasma boundaries (x=A andx=A+L) as in the
calculation.

The particle-in-cell code XPDP2 was used for these
simulations. This code has been adr^ted finom XPDPl (Ref.
13) to include a second spatial dimension which is taken to
be periodic. Various routines have been added to enhance
diagnostic output, including those needed for power spec
trum densities. The grid spacings in x and y were chosen to
resolve X^^and the tiine step was chosen to resolve firequen-
cies ^(Opg. The number of physical particles per computer
particle was kept small enpu^ to ensure negligible self-
heating over the simulation nm-time. Finally, the length of
the system in the propagafiiig, y, direction was long enough
to ensure against finite grid effects^ Meeting 6>(ky) over the
range of ky studied.

The simulation model has Lx=L+2A=2.0cm
=yik^g, Ly=8.0cm, and A«0.133 cm. Zero-order plasma
parameters in the central region are Rf=n,= 1.0
XlO'^m-^
=0.0468 cm.

pe= 1.78X 10® s"', r,=4.0 eV, XDe
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Frequtnej (Bi)

FIG. 2. PSD ofelectrostatic poienual showing l<t(*)P for the asymmetric
sheath wave (*,,=0. series resonance). Ametal wall is at *=0. and the
rtudplane is at x^O.Ol m.

A. Dispersion relations

The dispersion relations were measured by sampling the
electrostatic potential in time andspace. This signal was pro
cessed by windowing the data''* (in time and propagation
dimension, y) followed by taking discrete Fourier transforms
in these dimensions. After time averaging the resultant
transforms,'̂ one arrives at the power spectral density (PSD)
in frequency and ky of the electrostatic potential,
|4)(ife^,a>,x)l^. This gives us detailed information on the
structure of the signal in the perpendicular, x direction, for a
given frequency and ky; however, memory constraints limit
the number of kyS for which this data may be kept. A
sample of the measured |<t>(A:y,a>,x)p data for ky =Q is
shown in Fig. 2. In order to obtain dispersion information,
we need not record the mode structure in x. Instead we cal
culate the powerspectraldensity of

L/2+A

^(ky,o))= 2 4>(x,y,f)^<&(L+2A-j:,y,/), (45)
' 0

where the + sign is for (a)symmetric modes. The result is
shown in Fig. 3 for the asymmetric branch.

Thewaves were theraMlly excited (i.e., small-amplitude)
and a measure of the peakand full width at half maximum
(FWHM) of the power spectral density |^> (1:^, a>) ^ was used
to determine a){ky) = ii>riky) + i(Oi(ky). Figures 4 and 5
show simulation and theoretical results for real dispersion,
(Driky), for the asymmetric and symmetric surface waves,
and first three body (Bohm-Gross) waves. The "exact"

8.11tE45
037

FIG. 3. PSD of electrost«ic potential showing dispersion relation forasym
metric modes.
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FIG. 4. Dispersion relations for matrix sheath simulation showing the asym
metric surface wave (lower) and asymmetric Bohm-Gross branches (upper).

theory shown in Fig. 4 refers to a numerical evaluation for
(tir which allows for 1 as previously mentioned. We see
that while there is a fair agreement between the measured
data and the approximate theory, the exact theory is far more
accurate in describing the sheath waves. In particular, we
find that the series resonance (cutoff for the asymmetric
sheath mode) predicted by the approximate theory differs
from the measured value by 1.2 times the thermal correction
predicted in Eq. (43). Put another way, if the approximate
theory were used to predict the electron temperature, one
would find Tg-19 eV compared to the chosen value of4 eV.
One could alternatively adjust A to gain a better agreement.
The predicted value for A using the approximate theory
would be 0.184 cmcompared to thechosen simulation value
of 0.133 cm.

B. Elgenfunctlons, ^(x)

We next discuss the eigenfunctions 4>(x) associated
with the sheath and body modes. These eigenfunctions de
scribing the transverse dependence of the (a)symmetric
sheath and body waves are plotted in Figs. 6-9 fordifferent
values of ky. These plots were obtained from the
|0(ifcj,,a>,x)t^ PSDs (a sample output in Fig. 2) with back
ground noise weakly dependent on frequency subtracted out.

FIG. 5. Dispersion relations for matrix sheath simulation showing the sym
metric surface wave (lower) andsymmetric Bohm-Gross branches (upper).
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<tU(x)

X(cm)

FIG. 6. Electrostatic potential perturbation, 4>ntts(J^) series resonance.
The position ofthe she^ plasma boundaries isalso shown. Note,

die cusp at x=: 1.0cm in the measured data results from plotting a root-
mean-square (rms) signaland the potentialshould be thoughtof as smoothly
crossing zero at diese points. The tfaeoredcaldata have been plotted with the
same cusps to facilitate comparison.

Numerical solutions of the exact theory are shown for com
parison. Figure 6 shows die potratial structure at the series
resonance. The inferred electric field strength is neariy con
stant in the plasma body and a factor (l-rup^cu^) down
fiom the strength in the sheaths. This is predicted by cold
±eory. The detailed matching of solutions at the plasma-
sheath interfaces requires the exact warm kinetic solution.
The d>(x) for the first asymmetric (lowest frequency) body
wave is shown in Fig.7 for ky=0. The associated fields are
largest in the body of the plasma. Figures 8 and 9 show the
symmetric eigenfimctions for the symmetric sheath mode
and the first body symmetric mode at ky=2iT5ILy.

To check fiiat we are in fact measuring a thermal exci
tation, we can estimate frieexpectedelectrostatic fidd energy
stored in a mode to be '^ksTgH by appealing to the equipar-

«»n,(X)

X(cm)

FIG. 7. Electrostatic potential perturbation, <^Rns(x) [the first, asymmetric,
B<dun-Gioss (body) wave, iky^O]. Note, die cusps in the measured data
result fiom plotting a rms si^ial and the potential should betfaou^ of as
smoothly ctr^sing zero at these points. The dieoretical data have been plot
ted with the same cusps to facilitate conqiarison.
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X(cm)

FIG. 8. Electrostatic potential peituibation, d>nm(x) [symmetric sheath
wave, jfc,=5(2ir)/8 cm"'].

tition theorem. It is a straightforward matter to calculate
/dVE^I6o, the electrostatic energy densiQr associated with a
particular eigenmode, from the data in Fig. 2. This has been
done and the result is in reasonable agreement with the pre
dicted value of ksTJl when one remembers fiiat the real
temperature as derived from the mean particle energy must
be multiplied by the super-particle size.

C. Collisionless damping

Our linear Vlasov theory ^o confrins results for the
collisionless damping ofthe ^eathand body waves found in
our model. The expressionfor collisionless Landau damping
of fiiese waves is

*«n.(X)

X(cm)

FIG. 9. Electrostatic potential perturbation. <&nBs(J^) [die dist. ^nunetric,
Brdun-Gross (body) wave, J;y=S(2n-)/8 cm"'].Note, the cusps inthe mea
sured data result firom plotting a rms signal and die potential should be
thought of as smoothly crossing zero at diese points. The theoretical data
have been plotted widi the same' cUSps to facilitate comparison.
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FIG. 10. Ttnaginaty pait ofdispoTsioii relations for die asyniinetnc surface
waveand the first asyininetric Btdun—Gross branch.

fi).=
^/(^r »^y)

dDr{<o^ky)
da)

„_nir_ €f(a)y,k)
L ~ (a}r ,k)+ef(0), »k))
nv

— 2r = -7- = -"
Cr(««>»k)

do) V""** L A:^(€^(<o,k) + cf(a),k))

(46)

This expiession is evaluated numerically andcompared with
results from computer experiments in Fig. 10. No assump
tions about Csrc used in evaluating the plasma dispersion
function. The sheath wavedamping is greater than the body
wave damping because of the lower phase velocity (higher

components which are. present Care has been taken to
ensurethat the numberof computer particles per is large
ftnniigh to reduce the electron—electron Coulomb collision
frequency well below the measured damping. (PIC simula
tion tends to ininmuze Coulomb collisions anjrway, due to
the finite spatial extent of the particles.) Error in the experi
mental measurements may be due to numerical fluctuations
and finite «;ampling periods. Also, the data windowing tech
nique tends to broaden resonance peaks.

D. Sheath without specular reflection

A further computer experiment was run in which the
electrons and ions were initially given equal densities and
loaded uniformly throughout the system. Still, the ionswere
immobile. After an initial transient in which electrons near
theboundaries leave the system (i.e., sheaths areformed) the
electron loss becomes negligible and surface/sheath waves
aredetected. This experiment more accurately represents the
sheath dynamics ofa labmatory plasma. Figure 11 shows tiie
average density profiles for the specular reflection and self-
consistent sheath experiments. Figures 12and 13 show quali
tative agreement between the self-consistent sheath experi
ment and the theoretical results based on specular reflection,
but also indicate significant quantitative differences. We
have chosen A for a best fit of Eqs. (36) and (37) to the
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FIG. II. Tune averaged electron number.density for self-consistent and
matrix sheath computerexperiments.

experimental data (A=0.075 cm). Itshould benoted that the
reasonable fit achieved is somewhatfortuitoussince we have
pointed out the shortcomings of Eqs. (36) and (37). Not
shown are results for the colitisionless Landau damping in
this simulation. The damping of bothbodyand sheathwaves
wasreduced from the respective values in the matrix sheath
simulation. We suspect that the loss of the "tail" electrons
whose Xdirected energy exceeds the voltage dropacross the
sheath is the cause for the reduced danqiing. The absence of
a distinct plasma/sheath boundary may also "smooth" out
and decrease contributions to the 4>(x) eigenfimctions from
higher (and more strongly damped) kg components.

In a succeeding article, we will consid^theeffects of a
nonuniform plasma densiQ^ andshow that a new setof waves
can be observed.

a40

FIG. 12. Dispersion lelafions self-ctmsistent sheath simulaticm showing
the asynunetric surface wave (lower) and asynunetric Bohm-Gross
brandies (upper). is peakvalue.
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040

FIG. 13. Dispersion relations for self-consistent sheath simulation showing
the qnnmetiic surfue wave Oower) and symmetric Bohm-Gross branches
(upper). a>p« is peak value.

V. CONCLUSIONS

We have shown theoretically and experimentally (by
PIC simulation) that wavesin a metalbounduniformplasma
with matrix sheaths can propagate in the quasineutral body
of the plasma as well as along the sheath plasma boundary.
The electric field energy for the former is localized to the
central region while the latter has stronger fields at the
sheath-plasma boundary. We have shown that the dispersion
relations for both real and imaginary to describing these
waves are well predicted by a linear Vlasov treatment and
that rignificant contributions to the surface wave modes are
made at k\Qg^l. The eigerifunctions, 0(x), for various
points on die dispersion diagrams have been measured and
are also in good agreement with theory. When the matrix
sheath is replaced by a more self-consistent sheath model
(ions still immobile), thedispersion relations canbe fit to the
th^retical results presented.
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Electron surface waves in anonuniform, metal bound, thermal plasma slab have been analyzed and
detected. Measurements of the dispersion relations of these waves, as well as the eigenstructure of
the perturbed electron density, reveal aspectrum of waves with ftequencies above and below the
peak electron plasma firequejicy in the slab. These waves are analogous to the Gould-Tnvelpiece
and Tonks-Datmer waves found in dielectric bound plasma columns. Measurements have been
made using particle-in-cell simulation of an argon plasma and are compared with linear fluid theory
in which the adiabatic approximation is made for the perturbed pressure. The presence of the metal
boundary leads to regions near the plasma sheaths in which the fluid theory breals down; we
explore the differences between theory and measurement in this region. ©1998American Institute
ofPhysics. [S1070-664X(98)03904-43

I. INTRODUCTION

The model of a uniform plasma with matrix sheaths,
developed in a previously submitted article,^ provided in
sight astothebehavior of "sheath sustained" surface waves.
However, it failed to describe thefiill range of surface modes
that we may expect to find in a self-consistent planar metal
bound plasma. In amanner similar to that of Paricer et al?^
in work on resonances in dielectric bound plasma coluituis,
wenow allow nonuniformity in theunperturbed electron and
ion densities. This nonuniformity (in the direction perpen
dicular to the walls) allows for a new set of surface modes
analogous to the secondary or Tonks—Datmer modes (asso
ciated widi transverse resonances) observed in dielectric
bound cylindrical dc discharges.^^

Theresonance spectrum associated with plasma colunms
1^ been observed as early as 1931 by Tonks.®*' A more
rffttaileri investigation of these resonances, which included
data on the electron densities in the plasma colunm, was
performed by Datmer.*' Both authors detected a main dipole
resonance and higher resonances with frequencies found to
lie between that of the main dipole resonance and the peak
plasma firequency. These higher secondary resonances are
known as Tonks—Datmer resonances. Vandenplas** outlines
the evolution of the theoretical efforts employed to explain
theobserved resonance spectrum. Acold homogeneous fluid
calculation predicted the main dipole resonance (at a)p^/v5);
a warm homogeneous fluid model predicted additional reso
nances, butwith different spacing and location than observed
in experimenL Hnally, good agreement was achieved by
Parker et al.^ with a numerical calculation based on a warm
inhomogeneous fluid model. Baldwin*^ examined the valid
ity of this fluid approach and developed an alternate kinetic
theory that was intended to represent better the Tonks-
Datmer resonance spectrum of afterglow plasmas, where r^
>^De (fw is the pjaisma radius).

The Tnain dipole resonance represents the ky=0 cutoff
for the dipole Gould-Trivelpiece surface wave*® and is

1070-664X/98/5(4)/862/11/$15.00

analogous to the series resonance in a metal bound plasma
slab, which is the A:y=0 cutoff for the asymmetric sheath
wave.* In addition to themaindipole resonance, experiments
have shown that the Tonks-Datmer resonances are also cut
offs for electrostatic surface waves that propagate along the
colunm axis.^"'

It is the goal ofthis work toinvestigate the spectrum of
electrostatic surface waves that can be found in the unmag-
netized metal bound plasma slab. We will use the previous
studies of the resonance spectrum and waves in dielectric
bound plasma columns to assist in pur work. Our use of
metal boundaries, rather than dielectric boundaries used in
previous work, emphasizes the importance ofthe sheath re
gions in determining the nature ofthe observed waves. The

have often been omitted jBcom previous theoretical
treatments, where the dielectric boundary plays a more sig
nificant role in determining wave behavior. Additionally, in
this work we will analyze the validity of the fluid approach
and the assumption ofa perturbed scalar pressure asmade by
Parker et al.^ It is hoped that this investigation may lead to a
better understanding of sheath physics, and to applications
such as bulk plasma control viasurface wave excitation.

We will present a fluid theory here and compare the
results with those of particle-in-cell (PIC) computer
simulations.*^ Thesesimulations enabledthe measurement of
the wave dispersion relations and the structure ofthe surface
waves (spatial variation) in the linear regime by the same
mp-flng employed in our compaiuon paper.* Adescription of
the model is given in Sec. H. A linearized fluid theory is
presented in Sec. IB. In Sec. IV the PIC (particle-in-cell)
simulation is discussed and, in Sec. IV, results from both
theory and simulation are presented and analyzed. Conclu
sions are made in Sec. VI.

II. MODEL DESCRIPTION

The undriven, 2d3v (twospatialand threevelocity com
ponents), thermal, plasma slab bound by conducting

862 ® 1998 American Institute of Physics
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FIG. 1. Schematic of the plasma slab simulation.

grounded planes will be the subject of our theoretical analy
sis and PIC simulations (see Fig. 1). The x direction is per
pendicular to the wallsand they is the propagation direction
(parallel to the walls). The two species plasma consists of
argon ions and electrons. Both species are mobile and warm.
The steady-state plasma density is self-consistently deter
mined from simulation by applying an electric field in the
unresolved spatial dimension (£) with a strength inversely
proportional to the plasma densityaveragedin x and y. This
model is equivalent to fixing a dcdischarge current in £ since
we also include a background of neutral argon atoms to
model electron-neutral collisions. The use of a Monte Carlo

collision algorithm,which models electron elastic and in
elastic collisions, ionization, ion elastic collisions, and
charge exchange, then allows a self-consistent dc discharge
to form. This model allows for the formation of self-

consistent electrondensity profiles (Fig.2) and sheathsalong
the metal walls. The inelastic collision frequency is taken to
be v={ngaiv)v)= l.2eK(Opg, which is low enough toal
low approximating this plasmaas "collisionless" in our the-
oreticid analysis. The presence ofinelastic collisions causes
some decrease in the electron energy probabili^ function
(EEFF) at higher energies (>12eV), as seen in Hg. 3,
which displays the EEFF (from simulation) in each dimen
sion. A more pronounced effect is the depletionof the elec
tron population at the highest Vx* which results firom the
highest-energy (in Jc) electrons escaping to the walls. How-

&0*»15

4jam*\S

Bettarannai

a020

FIG. 2. Electron and ion density inofiles averaged in die time and axial (y)
direction. Also shown is the dectron density predicted by a MaxweU-
Boltzmann distribution at 7,=6.02 eV cm^TSKo,).
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FIG. 3. Electronenergy probability fimctions (EEPFs) in each velocity di-
mensicm. Also shown is the EEPF resultingfrom a Maxwelliandistribution
at7,=6.02eV.

ever, since the plasma is nearly Maxwellian out to ~ 15eV
(the ionization energy), we shall consider the EBDF to be
well represented by an isotropic Maxwellian at Tgo
=6.02eV=(m^i;^)/3 (also.shown inFig. 3). Care is taken to
subtract the drift velodQr along the £ direction before com
puting the average kinetic energy. A plot of the electron
densiQr profile predicted by assuming a Boltzmann distribu
tion at T,o=6.02eV is shown to be in excellent agreement
with the measured value (Fig. 2).

We have shown that the electrons in our computer ex
periment can be ^proximated as collisionless and Maxwell
ian, as desired. However, it would have been more desirable
to maintain a lower electron temperature, since this would
have further minimized die effect of depletion of the EEPF at
high energies. The electron temperature in our dc discharge
is self-consistendy determined by (i) the neutralgas pressure,
which unfortunately could not be further increased without
loss of our collisionless assumption; and (ii) die discharge
width (in x), that coiild not be increased widiout the loss of
computational efficiency. A compromise was reached in
choosing these parameters.

111. UNEARIZED FLUID THEORY

The model described above forms a self-consistent

sheadi with a nonuniform density profile (Figs. 1 and 2).
This system can-be compared to the results of a linearized
fluid t^culation similar to tiiat of Parker et qL^ who de
scribed transverse resonances in an inhomogeneoiis thermal
plasma colunm. We extend their tmalysis to include waves
propagating along the wall in a plasma slab.

We will find main symmetric and antisymmetric modes
that are analogous to azimuthally symmetric and dipole
Gould-Trivelpiece*^ waves ina dielectric bound plasma col
umn, as well as secondary branches analogous to those stud
ied byO'Brien et Kerzar et oL^"^ and others. The ob
servedcutoff iky=Q) frequencies for these waves appear to
result from standing longitudinal waves that are trapped in a
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surface layer defined by a metal boundary on one side and
some critical distance inside the plasma at which the local
plasma frequency equals the wave frequency.^ Exponential
decay of the mode is expected beyond this critical distance,
toward theinterior ofthe plasma. (These descriptions will be
supported by the simulations inSec. V.)

We proceed with the linearized fluid model as follows.
First we write the electron density, fluid velocity and scalar
pressure, and the electrostatic potential as the sums of
steady-state and perturbation terms,

Ve=v^oW+Vi,

P=Peo(*)"'"^l» 4> =4>o(x)+^i,
(1)

where the first-order terms are of the form
Thefunction/(x) represents the normal

ized steady-state electron density profile, which equals umty
at the slab center and decreases monotonically toward the
plasma boundaries. Here fix) is determined self-consistently
by allowing the particles inour computer experiment (simu
lation) to reach an equilibrium. This approach is in contrast
to the calculation by Parker etoL^ who utilized an analj^c
approach for finding /(x), using the model of Tonks and
Langmuir.'® Since we are looking for solutions with a»
:Sct)pgQt we approximate the ions as an infinitely massive
species. Therefore, we do not need to consider the ion dy
namics in the analysis that follows. (The simulation used
argon ions with Mp^lmg-13 800.) The steady-state ion den
sity, n|o(^), is derivable from Poisson's equation using
^o(-*) and rigfjix).

Nextwe inserttheselinearized expressions into theelec
tron continuity, electron momentum, and Poisson's equa
tions, producing a setof zeroth- and first-order equations.

The resulting zeroth-order equations are

V-[n,</(*)T.oW]=0. (2)

fnengQf{x)[ygoix)-V]rgo(x)

= -eng^{x)W<^o{x)-Vpgoix),

\e\
V2<>o(x)= - -r Mx)-ngofix)l

where nig is the electron mass and e the signed electron
charge. The quasistatic limit is justified since theslow-wave
resultswe willobtaincontainwavelengths muchshorterthan
those in free space at the same frequency. Collision terms
havebeendropped with the assumption that

In order to obtain an equation for the potential, ^oix)t
we proceed by ayguming an isotropic, isothermal zeroth-
order velocity distribution thatallows us to write

(5)^Peoix)=k^TgoVngofix).

Since there is a drift in our model, we considerour analy
sis to place inthe rest frame of the plasma. Since there
is no variation in £, our final solution will have no z depen
dence and we are firee to tqiply the result in the lab firame.
Inserting Eq. (5) into Eq. (3) produces

(3)

(4)
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'nengQfix)[yeoix) •V]v^o(-'̂ )

=—engQfix)V^o{x) —k^Tgc^ngofix). (6)

Dividing through by /n,, ngQ, and/(x) leaves

« . "h V/(a:)[v«oW-"^]v,o(x)-- —V<I>o(x) 2 fix) '

where we have used Vj^-lk-^gQlnig. For the one-
dimensional variation of zeroth-order quantities considered
here, and Eq. (7) becomes

v\
OV^ix)= [<J>o('*)"'̂ o(*iiiid)] ^ ln[/(*)]
2 nig ^

(8)

(where Xnud marks the midplane of the slab). In the limit
^e^ix)<v\ In [fix)], which is easily achieved for the pro
files and temperatures ofinterest, we may set the term on the
left-hand side tozero. We may then simplify Eq. (6), leading
to

V^oix)^-

€o

kB^eO V/(X)
e fix)

which is the governing equation for 4>o(*)« with fix) ob
tained from simulation.

The first-order equations are ;

—iioiii+ngQfix)V •Vi+n1V •v^(x)+Vgo(-*) i

+v,.Vn,of(x)=0, (10)

—i(i}nigngQfix)yi+mgngQfix){(yi •V)v^o(*)

+[neo(-^) • iCn^oC*) •VjUeoC-*)

= —̂neof(jc)V^i~aniV4>o("*)~^Pi* (H)

(9)

(12)

Second-order terms have been dropped.
We now proceed to obtain an equation in Oi(x). We

begin by eliminating the terms including Veo- We can do so
with the same assumption hi[/Cx)] used previ
ously, along with the assumptions dxVgoix)/<a<l (which
roughly states that the electrons may not drift a substantial
fraction of the length of the system in a wave period) and
Veo(*)^xiMx^(^ijt<^)' ^eoix)^j^iKni<i>)'*^l (whlch roughly
states thatthedrift velocity must bemuch less than thephase
velocity ofthe wave in the perpendicular, x direction). Ac
tually, Vgo may be estimated from the ion flux (in x) through
the system that isnot zero (as inflie mfinite mass limit), but
varies firom zero at the mic^lane to somevalue on the order
ofnio«B=nioV*S'e^ ®^®2th edge. The ion flux
must be equal to the steady-state electron flux,
ngofix)Vgoix), inorder topreserve charge. This equality can
be used to estimate i>eo(*) soundness of the
limits taken above is supported.

We also needto choose some ^iproximation (a closure
scheme) in order to evaluate the last term on the right-hand
side of Eq. (11). We chose, as is regularly done for an un-
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magnetizedcollisionless plasma, the adiabatic approximation
where the heat flux vector is set to zero. In this case it has

been shown^ that [for PeQ=ng^{x)k^T^, WeO=0]

dfii knTgQ
(Vp,);=3iB7-rt^+ V —

i<t> k^ij,k dXk

X -rigofix)

dv+««(/(') "^l-
dXi

(13)

This expression can be simplified somewhat, given our 2d3i;
model in which v [ lies in the x-y plane and that the zeroth-
order electron density is only a function of x. The resulting
expression is

(Vp,)=3A:B7'eoVni +
10) dx *

„ ^igofix) d
+2wix —^—+neQf{x) —

dlTty dvijc
XI -"ofM -JiJ-+««/(•>:) "^ly (14)

This equation is still prohibitively complex. If we define
Lix)~^^d lb[n^x)ydx andassume L(x) to beof theorder
of the slab fiiiclaiess, except in the plasma sheath region, we
may greatly simplify Eq. (14) with the further assumptions
that (i) Uiy<Vixi which is roughly equivalent to requiring
that axial variations (in y) occur over a longer wavelength
than in the perpendicular (i) direction (nearly one dimen
sional); and that (ii)

V*Vi
(15)

(the variation of the waves in x must be on a scale much
smaller than the slab fiuckness). In this limit we singly have

(V/'i)—3A:B^eO^''i • (16)

In the sheafii region, the scale length, L(x), of the
steady-state density profile is no longer on the order of the
slab tbickness, but on the order of the electron Debye length,
and Eq. (IS) may not hold if the perturbationwavelengthin
the sheath region is too large. We examine the validity ofEq.
(15) vidien analyzingour results (Sec. V).

Hnally, after dropping terms with Vgoix) and making the
adiabatic assumption for , we use Eqs. (10), (12), and (9)
in the div^ence ofEq. (11) to produce an equation in<l>i,

1 I. to

y^De \ ^peO
-fix)
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After using our assumption, 4>i = Oi(x)e'^V we then
obtain

ix' 2*,—j

3 '^ydx'

1 e ldj{x)
y dx \ fix)

d^iix)
dx

1 5/(x) <?4>,(x) ^
"5 : :: =0.

y^De

1 ft)

-Ax)

(18)

This fourth-order differential equation [Eq. (18)] is
solved numerically in order to produce the dispersion rela
tions and the eigenfimctions4>i(x) for the range of electro
static waves existing in the frequency range cup,-, Vg<<o
^iOpgO' InEq. (18), ft)p«o ^<1 ^De (18)] are defined as
their values at the midplane.

In order to obtain numerical solutions, we need appro
priate boundary conditions. We assume that solutions have
either even or odd symmetry about the midplane. Hrst, we
require that the perturbed electron current densi^ in the Jc
dii^on,

i(omJixix)^-ia)mg\e\ngofix)vixix)

• d^iix)
=« «<Kj/(*) +l^BTgo€o

dx

d^^lix)
dj^

—3kBr^o^o

' '/ /(*)

^x

(19)

vanishes at thie boundaries.^,This requirement isequivalent to
assuming specular reflection of the perturbed electron current
density at the plasma boundary (metal wall). Second, we
require that the potential must be zero at the grounded walls.
We are now able to solve Eq. (18) for $i(x) to widiin an
arbitrary constant .

We consider the solution of either the even or odd mode

to be the linear combination of two modes giving $i(x)
=:0 at the wall. The two modes chosen for the even (odd)
solution have either the zeroth (first) or second (third) deriva
tive of OiCxgiidpiaae) Set to a constant with aU other deriva
tives set to zi»o, in order that the numerical solution of Eq.
(18) may proceed from ZgtidpUDc toward thewall. These con
ditions are metonlyat discrete values of ft)/a>p«o* which are
located by finding the zeros of the perturbation current den
sity [Eq. (19)] at the wall (as derived from the numerical
solutions described above) versus fti/ftip^o-

We end our dieoretical analysis wiA a further discussion
of the limits of its applicability. In addition to die restrictions
associated with neglecting election drift and reducing the
perturbedpressure[Eq. (13)] to a manageable form, we also
must examine the limits of the adiabatic qiproximation and
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FIG. 4. Dispersion relations for asynunetric modes, giving wave frequency as a function of the wave number in the propagating dimension (y). A main
(lowest frequency) and secondary branches with e><o)p, ateshown. Body modes widi arealso shown. Here oip, is defined as the peak value. The
cutoff(ky=0) for the mainsurface wave is known as the series resonance.

the lestrictions imposed by linearity. It has been pointedout
by Baldwin^^ (for afterglow plasma columns, where the elec
tron Debye length is especiallyshort), that the fluid lepiesen-
tation breaks down, since kAoe (^r being the local wave
vector perpendicular to the column axis and to the walls) can
^proach and exceed unity. Beyond this point, the waves are
heavily Landau damped and the adiabatic approximation
breaks down. In our slab model there is also a region (typi-
caUy within the sheath) where, due toa decreasing rigoflx),

can approach uni^ and the adiabatic fluid model will
be violated. However, since in this study we focus on the
steady-state discharge with TeO—6eV, the length over which

1 is small, as will be discussed further in Sec. V, and
we are able to use the fluid theory.

Our assumption of linearity further imposes the restraint
that (V*Vi+i;i,/L)/a)*^l, as can be derived from the lin
earized continuiQr equation. This roughly indicates that the
perturbation velocity is much smaller than the local phase
velocity and the bounce velocity Lea. The linearized momen
tum equation further requires that v i ln(n,)].

The dispersion (ti) vs ky) and eigen^nctions (in x) will
be shown in the next section, compared with results from
simulation (which has far fewer assumptions and approxima
tions).

fV. SIMULATION DESCRIPTfON

The particle-in-cell code XPDP2*^ was used for the
simulation of the 2d3v plasma slab described in Sec. n. The
simulation time step, Ar, is chosento resolvefrequencies up
to the peak electron plasma frequency. The grid spacing in x
is chosen to resolve the electron Debye length so that the
sheaths and Landau danq>ing are well resolved. The slab
thickness (inx) is chosento be 2 cm and the periodic length
(iny) is 8 cm.A standard leap-frog particle advance is used
along with a bilinear particle and field weighting scheme and
a Poisson solver thatreduces toa tridiagonal matrix solver.''*

The physical parameters describing the plasma slab
simulation include peak electron density n^o^S.l
X10'^m"^ electron temperature Te=(2/3)(mv^/2}
=6.02eV, Debye length at the midplane =0.0^5cm,
slab thickness (equal to wall spacing) L;c=2.0cm=78\D«,
plasma midpotential Vinid~39'^ V, and peak electronplasma
frequency (2^)6.41 X10® rad/s.

Hgures 4 and 5 show the theoretical and experimental
results for the dispersion relation *o(ky) of synunetric and
asymmetric modes, whose frequencies lie below and above
atpg. The experimental measurements are obtained from
peaks inthe power spectral density, |0(kp,a>)|̂ , inthe same

Sun theory
sitmdation

0.20

FIG. S. Dispersion relations for symmetric modes giving the wave fire-
quencyas a function of the wavenumberin theinopagating dimension (y).
Amain Qowest frequency) and secondary branches with &>< tjp,are shown.
Bodymodes-with a>>6>pg are also shown. Here is defined as the peak
value.
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FIG. 6. The sample ouq)ut for the power spectral density (PSD) of the
asymmetric charge density pemirbaiion \p{x,f,ky—0)\^. The normal modes
are clearly differentiated ffom the noise (metal wall at j;=0 m; midplane at
x=0.01m).

fashion as described in a previously submitted article.' These
peaks are generated by thermal (particle) fluctuations; the
full width at half-maximum is measured and taken to be
approximately equal to the electron-neutral collision fre
quency. Higher "body" modes are only weakly detected be
cause the summing technique employed in deriving
|<J>(ity,a»)|̂ poorly detects potential signals with zero cross
ings (other than at the midplane). A more sophisticated
scheme could have been employed; however, these higher
modes are well known and are not the focus of our study.

In additionto the dispersionrelations, we have measured
the eigenmode structure, «i(x), of these waves. The results
are derived from.lp(fc^,a),jr)|̂ , the power spectral density
(PSD) of the charge density. A sample output of
\p{ky ,(i),x)\^ is given for the odd modes at ky=0 in Fig. 6.
The waves are easily identified by the enhanced signal at
discrete frequencies that coincide with those found from
|4>(ky,a»)|̂ , and arise from thermal fluctuations. The elec
tron density perturbation at the frequency corresponding to a
particular wave mode, at a given ky, is derived from these
PSD measurements by subtractinga backgroimd noise signal
(proportional to the steady-state electron density profile)
from the \p{ky,Q>,x)\^ signal. The constant ofproportionally
has a frequency dependence that might be determinedexplic
itly, but in our results we have chosen the value necessary to
ensure that the perturbation amplitude goes to zero at the
midplane. This fitting is reasonable for all but the highest
symmetric mode, which may have a significant perturbation
at the midplane. For these modes the proportionality constant
may be alternatively determinedby fitting the detected signal
minima as closely as possible to zero amplitude. In the above
discussion, we have made the assumption that, for the fre
quencies of interest —Wpe» the contribution to the PSD of
the charge density from ions is negligible so that the charge
density PSD represents the electron density PSD (multiplied
by the electron charge).

Additional measurement of \v[jfiky,(i),x)\^ has been
made; the data provides verification of the theoretical bound
ary condition requiring that the perturbed flux to the walls
equal zero.

The signal detection scheme described here is realizable
because PIC simulation allows the fine spatial detail in elec-

u. j. oooperoerg 867

Sheath

4* axvmmMrie mo6e{k.*01

FIG. 7. The local wave number and local Landau damping for the main
asymmetric mode and the last delected asymmetric Tonks-Dattner mode
(long-wavelength limit, ky=0. metal boundary at x=Om). Negative
(ik^Xi),)^ corresponds to exponential decay intothe plasma, at x>Xc.

tron density and electrostatic potential to be measured accu
rately and nonintrusively. This provides distinct advantages
over laboratory experiments that require launching and de
tecting antennae that require exciting waves to higher ener
gies and can allow for coupling to extraneous signals. For
example, in the work of O'Brien^ on slow wave measure
ments in a plasma column, waves were launched and de
tected with a variety of azimuthally symmetric and dipole
antennae. Phase coherent detectors were used to measure the
axial wave number. However, coupling to unwanted symme
tries and closely spaced neighboring Tonks-Dattner modes
severely limited the range of detectable wave phenomenon.
As a final consideration, the metal bound plasma slab studied
in this work cannot easily be studied in the laboratory in the
same fashion as the dielectric bound plasma cylinder since
the coupling from outside the plasma volume is not possible.

V. RESULTS

The theoretical and measured values for the dispersion
relations wfky) of asymmetric and symmetric electrostatic
waves shown in Figs. 4 and 5 represent surface waves with
(oKoipgQ and body waves with Q)>iOpeQ. While the spacing
and approximate location are well captured by the linearized
fluid theory described in Sec. IE, the theoretical results are at
consistently higher frrequencies than those of the observed
waves. We consider two possible reasons for the discrep
ancy.

The first is that the adiabatic assumption for the pertur
bation, which requires , breaks down near the
boundaries. Figure 7 shows the local wave number (ky=0)
in Xfor the first and fourth asymmetric modes. The adiabatic
assumption fails in the region where no longer
holds. In this region we can also expect significant Landau
damping; the local collisionless damping frequency, to,-, is
also plotted in Fig. 7. The local wave number in x and damp
ing rate are approximated by the long-wavelength limits.

^x^Dc('*) tOpeixY
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oidinate.

and

<0i

Mr
(x)

8

g(-3/2)g({l +3[*:^D,(*)]2}/2(*,Xd,(x)1)^ (21)

where Eq. (20) reduces to the dispersion relation for Lang-
muir waves, <Opg(x)^=ngof(x)eV(€omg) and Xi>(x)^
= €Qk^Tgo/[ngQfix)e^]. Figure 7 shows that the adiabatic
approximation is more severely violatedfor the higher reso
nances, yet our dispersion data shows a greater error in the
theory for the lowest modes.

The second reason offered for the error in the theory is
thatthe inequaliQ^ given by Eq. (IS) is not sufficiently satis
fied. The region of strongest variation in f{x) occurs in the
plasma sheath. Hgure 8 shows a plot of {^xlnl/(x)]}/
[dxln(i;i;c)] for the first and fourth asynunetric resonances.
The lower-frequency mode is shown to be morepoorly rep
resented byEq. (15). Thus, weconsider thesimplifications in
the fluid derivationmade by neglectingterms resulting from
theplasma inhomogeneity as the more likely source of error
in the theoretical dispersion relations.

The first syrmnetric andasymmetric branches (occurring
at lowest frequencies in Rgs. 4 and 5), which are present
even in the cold, uniform plasma model, provided that a
dielectric region exists between theplasma andmetal bound
ary, are known as the main surface wave branches and are
analogous to the m=0 and m= 1 (m equals the azimuthal
mode number) Gould—Trivelpiece surface modes in the
plasma cylinder andalso to the "sheath" modes in the uni
form plasma slab described in apreviously submitted paper,*
while the higher modes with ky=0 cutoffs below 0)-^ are
aruilogous to the propagating Tonks-Dattner modes.'*'

Next we discuss the results for the perturbed electron
density, ni(x). Rgures 9-16 show the theoretical and mea
sured values for the synunetric and asyrrunetric modes iden
tified in Rgs.4 and5 forfcyXD,=0 and/:yXD,=0.08. Theo-
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FIG. 9. The amplitude oftheelectron densiiy perturbation ofthe first (main)
asymmetric surface mode from a metal boundary (x=0 m) to themidplane
(x=0.01 m) ofthesystem. Theory andexperiment at twodifferent values of
kyare shown.

retical curves are computed at the frequencies of the
observed resonances rather than at the theoretical frequen
cies. Although theresolution of theexperiment is notas high
as the theoretical data (due to computational limits), the
agreement is satisfactory. We observe that the measured
eigenfimctions tendto oscillate morerapidly toward the edge
than the theoretical curves and this phase difference at the
wall is most pronounced for the first and second syrmnetric
and asymmetric branches. This observation is consistent with
the differences between the theoretical and measured disper
sion relations, which showed the largest disagreement at
these same two lowest modes, and may be attributed mainly
to an unjustified simplification of terms relating to the
plasma inhomogeneity.

The qualitative picture presented by Paricer etal? in
which Tonks-Dattner resonances are considered to represent
I .angmnir waves trapped between an overdense region and
theplasma boundary, is clearly illustrated by theni(x) data.
The critical point, x^, shown in Figs. 9-16 for the /:y=0
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modes, marks the location at which the oscillation frequency
equals the local plasma frequency. We expect a decaying
solution for $i(x) from this point toward &e center. From
Xg toward, the plasmaedge, a Langmuirwave may propagate
in X with the wavelength decreasing as the electron density
decreases. It is in this region that Baldwin'̂ correctly ques
tioned the validity of the fluid calculation and develops a
kinetic theoiy that allows for the kinetic effects of Landau
dampings as well as reflection from the sheath. He argued
that one can expect that, as the electron density approaches
zero at the wall, the propagating Langmuir wave will even
tually enter a region whae 1, and the kinetic effect
of Landau damping should take effect Baldwin suggested
that thi.s Landau riamping should have a more pronounced
effect in afterglow plasmassince the Xd« is greatly reduced
due to a decrease in TeO. Ignat^^ performed experiments in
which he attempted to verify the theoretical work of Bald
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win; however, the agreement betweenhis experimental data
and the Baldwin theory seemed to be worse than that ob
tained with fluid flieory. In our simulation, the violation of

is most significant for higher modes and occurs
only in a thin region starting near the plasma/sheath bound
aryandextending to thewall (see Fig. 7).Theplasma/sheath
boundary is defined as the point where the steady-state po
tential has dropped by k^Tgofl from its peak value (at the
center). Thispoint is experimentally determined in our simu
lation to be at 0.0031m= 12XDeo ®ither metal wall.
Eventhough the fluid theoiy breaks down in this region, the
waves are clearly shown to have a well-defined eigenmode
structure all the way to the metal wall (in Figs. 9-18), and
the resulting inaccuracy does not seemto interfere with the
qualitative results.
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We may make some crude estimations of the expected
effect of Landau damping, which is significant in a thin re
gion near the plasma walls. In Figs. 19 and 20 we have
crudely estimated theperturbation function, n i(x) of thefirst
and fourth asymmetric modes at ky=0 between the critical
point, Xf, and the wall by

^o!c(*)=S'''| J k^x')dx'+4i
and

where the phase, at x^ is chosen as a best fit to the mea
sured perturbation, k^ix) and a»,(x) are derived from Eqs.
(20) and (21), respectively. This representation neglects any
slowvariation in the waveamplitude, and further is not valid
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FIG. 17. The amplitude of the electron density perturbation of the first
asymmetric body mode fromthe metal boundary (x=0 m) to the midplane
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lation; Hi shown from theory) at twodifferent values of kyare shown.

nearx^. Reflection is also neglected. Still the resulting wave
form 4^esc(*) (at least for the higher modes) is in qualitative
agreement with the simulation and theoretical data. For the
fourth mode, the net damping of the wave after reaching the
wall is considerablygreater than for the first mode; however,
it is not severe enough to destroy the resonance. This analy
sis may help explain the success of the fluid theory. For the
highermodes we see that Landau dancing occurs in a finite
region in the x dimension determined by the steady-state
plasmadensity profile. This damping maybecomemoresig
nificant in higher Tonks-Dattner modes, which are not
present for the simulation parameters chosen. As described
by Baldwin, the resulting perturbation of the EEPF may
reflect off the sheath^® and interfere constructively or de
structively with the standing Langmuir wave.

The above discussion focuses on the one-dimensional
case. However, as is clear from our observed density pertur-
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FIG. 19. Approximate solutions for the cscillatoiy and evanescent partsof
thesolution for the main asymmetric branch (<;y=0).

bations, the addition of axial variation does not greatly alter
the picture of trapped Langmuir waves, provided kykjig is
sufficiently small. The axial variation gives the wave vector
of the trapped Langmuir wave a component in the axial di
rection.

Hgures 17 and 18 describe waves whose ky^O cutoff
frequencies are above the peak electron plasma frequency.
As a result, there is no region of evanescent behavior in
ni(x). We consider these modes to be bulk or body modes.
To further justify the distinction between surface and body
waves. Figs. 21 and 22 show the measured values of 4>i(x)
for the first five asymmetric and symmetric modes at ky
=0. The fields derived from these profiles are strongest at
the plasma edgefor the lowermodesand strongertoward the
central, bulk, region for higher modes.

VI. CONCLUSIONS

In this work we have analyzed and measured a spectrum
of thermallyexcited,electrostatic slow waves that propagate

FIG.20. Approximate solutions for the oscillatory and evanescent parts of
the solution for the last detected asymmetric Tonks-Datmer mode {ky
=0).
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FIG.21. Amplitude of the electrostatic potential peituibation for theasym
metric surface modes and first asymmetric body mode, ky^O.

along the edge of a nonuniform, thermal, metal bound
plasma. The plasma slab is represented by a dc discharge,
and is modeled self-consistently via fully l^etic, 2d3v PIC
simulation with Monte Carlo collisions. The measured dis
persion relations are in fair agreement with a linearized, sca
lar pressure, fluid calculation, although this representation is
shown to be invalid over a region of the slab near the plasma
sheaths.

Disagreement between the measured and theoretical re
sults, especially for the lower-frequency modes, is most
likely due to the approximations made in treating the plasma
inhomogeneity, wWch were used in orderto make the theory
more tractable.

We have shown that, for our simulation parameters
(7^0=6.02eV and Lx/Xd<=78), kinetic effects, which lead
to Tiinrifln damping, and the breakdown of the adiabatic ap-
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FIG. 22. AmpUmde of the electrostatic potential perturbation for the sym
metric surface modes and first asymmetric body mode,
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proximation near the plasmasheath (which has been made in
our fluid analysis), do not substantially degrade the useful
ness of the perturbed scalar pressure, fluid theory. The fluid
theory may be less accurate in describing higher Tonks-
Dattner modes that would appear at higher plasma densities
and lower electron temperatures (increasing since
the region over which Landau damping occurs will increase.
Future simulation in thi^regime might shed light on the
source of the apparent inaccuracy of Baldwin*s kinetic
theory.

Simulation at lower neutral pressures might also allow
for a direct measurement of the collisionless damping of
thermallyexcited surface modes by examining the linewidths
of the PSD measurements. For the neutral pressure and spe
cies chosen in our simulation, this effect cannot be observed.
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Abstract. The characteristics of series resonance sustained argon plasmas are
measured by particle-in-cell Monte Carlo simulation and analysed with various
theoretical mcdels. These measurements includedischarge gap impedance which
is shown to be nearly pure resistive, EEPFs, electron heating profiles, electric field
structure and electron density profiles over a range ofappli^ frequencies
(110-470 MHz) and neutral gas pressures (2-300 mTorr). The scaling laws, which
predictthe density and sheath width dependence on operating frequency as
and respectively, are verified. These resonant discharges are driven with low
applied voltages {'̂ Tg) and are shown to produce low-voltage plasmas. A heating
mode transition between a high-pressure collisional regime and a low-pressure
collisionless regime is discussed. Also the self-tuning of the discharges, needed to
maintain resonance, is explained.

1. Introduction

This study is directed toward the understanding of
resonantly sustained RF and high-frequency parallel-plate
discharges which are shown to exhibit attractive qualities
for materials processing. Conventional capacitively
coupled, parallel-plate RF discharges tend to require high
tqiplied voltages and/or high neutral pressures which make
them unattractive for some current fabrication processes.

The resonance exhibited by this metal bound plasma is
often referred to as the series resonance and arises from
the balancing of the capacitance of the sheaths with the
inductance of the .plasma bulk. The series resonance is
also the cut-off for a main asymmetric surface wave which
propagatesalong and near the metal/plasmaboundary [1,2].

It is observed via simulation that an ^plied signal of
fixed frequency can maintain a discharge whose densiQr
profile yields a seriesresonance near the applied frequency.
Since the plasma impedance rqjproaches a pure resistance
at this frequency, exceptionally low ^plied voltages can
be used by comparison with conventional capacitively
coupled discharges where the diode impedance is nearly
pure c^acitive.

A detailed review ofearly work on resonance sustained,
radio frequency gas discharges was given by Taillet
[3]. In this work the enhancement, at resonance, of
the RF electric field in a planar capacitively driven
discharge is emphasized. A single model of a collisional
homogeneous plasma slab between two sheath regions in
which the electron density, n, = 0, is developed from
previous theoretical work sununarized by Vandenplas [4].
Justification for extending the results to inhomogeneous
plasmas was based on a variational calculation of Crawford

0963-0252/98/0200964-18$19.50 (g)1998 lOP Publishing Ltd

and Kino [S], which showed that the plasma density could
be replaced by the average plasma density in an expression
for the internal fields at resonance. Taillet's analysis
assumes that the resonance enhanced field strength remains
in the linear regime while still providing sufficient electron
heating to sustain the plasma. A relation, which equates the
ohmic power absorbed by the plasma electrons to the energy
lost due to ionization, excitation, and diffusion characterizes
the discharge. It is shown that stable and unstable equilibria
exist when the discharge is driven with a constant-amplitude
RF voltage. Some experimental results given by Taillet
[3] include measurement of the plasma electric field using
electron beam probing. The electric field is observed to
be approximately ten times greater in magnitude than the
vacuum field and the phase of the field in the plasma bulk
is opposite to that at the plasma edge. Measurements of
the plasma profile deduced from photometric data, along
with density measurements taken from a Langmuir probe,
were used to verify further that the discharges were indeed
operating at the series resonance.

The study of resonance sustained discharges was
significantly advanced by the theoretical and experimental
work of Godyak [6]. A homogeneous model for steady-
state low-pressure rf discharges has been developed [7]
which is used to predict the total impedance across a
discharge gap. This impedance is taken to be the sum of
plasma, space-charge sheath and stochastic (interaction with
moving sheath walls) impedances. The total impedance
is then used in combination with an energy balance
equation to predict the internal properties of the rf
discharge including the current-voltage characteristic and
the dependence of plasma density and discharge voltages
on applied frequency. An important result is that the
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Figure 1. Schematic diagram of the simulation model.

Figure 2. Schematic diagram of the homogeneous model.
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Figure 3. Sketch of absorbed power as a function of
frequency. Stable operation (with respect to density and
electron temperature fluctuations) occurs at coappuea with an
extemal voltage source. Stable operation occurs at the
other intersection of Pat^ and Pioss with an extemal current
source.

plasma density is a double-valued function of the applied
voltage signal, and that a minimum applied voltage exists.
Experimental verification of this double-valued behaviour
was presented by Godyak and Popov (8]. In further
experiments by Godyak and Popov [9], resonant discharges
are maintained at a theoretically predicted minimum applied
voltage and resonant frequency. Scaling laws including
n (X and j/T, oc o)~f, where n is the peak plasma
density and ; is the average sheath thickness, are also
verified. The homogeneous analysis has been extended to
the inhomogeneous plasma model [9-11] which results in
the appearance of form factors and scaling factors which

Series resonance sustained plasmas

do not greatly effect the qualitative predictions of the
model.

Here we use particle-in-cell Monte Carlo (PIC-MCC)
simulation [12] to continue the study of these resonantly
sustained discharges. This self-consistent method, which,
because it is based on first principles, is able to
capture kinetic and non-local effects which are difficult
to model with a fluid approach, has been used in
prior studies to model RF discharges which are used in
materials processing. For example, Vahedi et al [13]
shows excellent agreement between the electron energy
distribution functions (EEDFs) measured by Godyak et al
[14] and those produced by PIC-MCC simulation. Electron
heating profiles were also measured, showing enhanced
heating in the sheath regions. In another work, Vahedi et al
[15] verified the frequency scaling laws for capacitive RF
discharges using two-dimensional PIC-MCC simulation.
Surendra and Graves [16] used PIC-MCC simulation to
study RF glow discharges in helium over a range of
conditions. Their findings included the relative importance
of stochastic and ohmic sheath heating versus ohmic bulk
heating in different operating regimes, and the detection
of a hot-electron tail. The effects of secondary electron
emission are also investigated.

Our PIC-MCC simulation will focus on resonantly
sustained parallel-plate discharges (in argon) operated over
a range of frequencies and neutral gas pressures. In
this study we will present measurements of the steady-
state sheath potential, discharge gap impedance, scalings
of plasma density and sheath width with frequency, field
structure at the fundamental and higher harmonics, plasma
density profiles, electron energy probability functions
(EEPFs) both averaged and as a function of space and
time and electron heating profiles. We will compare with
Godyak's theory [6] and fluid theory [2] where possible.

Of particular interest is a set of computer experiments
in which Pargon is variedwith a fixed (Or/- The mechanism
of electron heating is studied in these simulations. A
transition is seen between the low- (<100 mTonr) and high-
pressure regimes in which the time averaged Jeiearon • E
profile changes forms. In the high-pressure regime, these
^electron ' E profiles' are in agreement with a modified
fluid calculation [2] which includes an electron momentum
transfer collision term. At these higher pressures, the
plasma is well modelled by the collisional fluid equations
and the heating is ohmic.

At lower pressures, which are desirable for many
etching processes, the heating cannot be modelled as ohmic.
The electron heating profiles show a wavelike structure as
a result of the strong resonant surface wave fields located
at the plasma edge. These strong surface fields produce
a hot-electron population. Particle-wave interactions are
especially demonstrated by regions of negative heating. A
detailed study of the electron heating mechanism at low
pressure helps us determine and understand electron energy
distribution functions which are essential in determining
plasma composition.

This work is structured as follows. We begin, in
section 2, with a description of the Id3v model used to
study the parallel plate discharge at RF and high frequencies
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Figure 4. Time-averaged normalized electron densities for cases A-G of table 1.
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Rgure 5. Electron energy probabilityfunction (au) for cases A-G of table 1. Note the presence of a bi-Maxwellian
distribution at lower frequencies (which correspond to lower plasma densities) (Pagon = 10 mTorr).

(HP). Next, in section 3 we briefly review the theoretical
modelof Godyakand also the fluidmodelused to compare
with measured electron heating profiles and discharge gap
impedances. A brief discussion of discharge stability will
also be given. The results obtained from simulation are
presented in section 4. Further results and a discussion
of the electron heating at low pressures are given in
section5. Comparison with theory is made wherepossible.
Conclusions are presented in section 6.
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2. Simulation model

In this study an argon discharge (ld3v) is sustained by
tqiplying a RF (or HP) driving voltage. The steady-
state discharge which forms is shown to exhibit a series
resonance at, or near, the applied frequency. The
electrostatic PIC-MCC code, XPDPl [17], is used for this
study. This code allows for IdSv simulation of a plasma
with metal boundaries and an external driving circuit.
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Secondary emission is permitted in this code, but, for this
study, the secondary-emission coefficients have been set to
zero in anticipation of the low-voltagedischarges achieved
in which secondary emission is negligible.

The simulations incorporate a Monte Carlo collision
(MCC) paclcage [18] which allows for the self-consistent
formation of the discharge. The following reacdons are
included.

(1) e -HAr —• e -H Ar (momentum transfer)
(2) e + Ar —• e -FAr* (excitadon)
(3) e -I- At —• e + Ar"*" -he (ionizadon)

(4) Ar"^ + Ar —• Ar-f Ar"*" (charge exchange)
(5) Ar"*" -f Ar —*- Ar"*" Ar (scattering).

A schemadc diagram of our model is shown in figure 1.
The separadon between the metal plates, as shown, is

2.0 cm. The area of the discharge is chosen to be 2.0 cm^.
Wehavechosen to drivethe discharge withan ideal voltage
source for simplicity, although more sophisticated circuit
elements may be modelled. Neutral pressures reported on
vary from 2-300 mTorr. Applied frequencies range from
110-470 MHz; higher frequencies are computationally
expensive to model because of the smaller simulation time-
step needed and the resulting higher plasma densities which
require the use of more computer particles.

The simulation time-step is chosen to satisfy (OpgAt <
0.2 [19]. An explicit time integration is used since
frequencies near the electron plasma frequency must be
resolved. The simulation grid size is chosen to ensure
resolution of the plasma sheaths with A/>«/Aj: > 1.

In order to arrive at steady-state discharges, an initial
uniformly loaded plasma is used to start the simulation.
The initial density is chosen to be on the order of the
final (average) plasma density. This scheme, while not
easily duplicated in the laboratory, has the advantage (over
starting from zero plasma density) of decreasing the run
time needed to reach equilibrium and allows for the use
of an ideal voltage source operating at a fixed low voltage
(-r,).

3. Theoretical analysis

3.1. The homogeneous plasma model

We will discuss two theoretical models for the resonant
RF discharge, gaining insight from both. First we consider
the steady-state RF discharge theory developed by Godyak
[6] and Ueberman and Lichtenberg [20]. Here we will re-
derive some of the important results from this theory using
the homogeneous plasma approximation. A similar analysis
for the inhomogeneous plasma introduces form factors into
the results [6], which do not affect the qualitative behaviour.

The homogeneous model assumes uniform ions with
Q)^i cafp no electrons in the sheath regions and =
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Figure 8. Simulation results for the spatial dependence of the time averaged (DC), fundamental, and second-harmonic
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m = no in the central region (figure 2). Current is constant
through the discharge and is approximately equal to the
electron conduction current in the neutral region, with the
assumption

o> 2 \I/2
Pf

fi>:
» (»f) (1)

where is the electron momentum collision frequency,
and is equal to the displacement current in the sheath
regions. The inhomogeneous extension of the model makes
the same assumptions except that it allows for a nonuniform
equilibrium plasma density profile. The discharge gap
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impedance (neglecting low-frequency ion contributions), as
seen by the voltage source, is then

with

and

2(0)) =
^2

+ r
ieoAeo ia>A€o itoACp

2s d
+ •

io>A€o \<oA€p

I 0)(0)-lVm)J

^i.2(') = 5 ± u cos(o)r)

(2)

(3)

(4)
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Rgure 11. Magnitude of dischargegap admittance (case I, = 1.4 x 10^ Hz).

where 5i.2(r) describes the position of the sheaths at either
side of the discharge (figure 2) and a is the amplitude of
the sheath oscillations. Setting Z(co) = 0 defines the series
resonance (or current resonance, Y(o>) oo)

we need to know the electron temperature. Balancing the
outgoing particle flux with ionization gives the condition
[20]

2n,UBiTe)A = KiziTe)ngnoAd (6)

(7)?\»/2

0>sr = for v„ (5)

Using equation (2), one can readily express the power
supplied by the external voltage source as Re(V^/Z)/2.
Next, an expression for the power loss in the plasma is
needed,whichcan be equatedto the powersuppliedin order
to derive an expression relating the plasma density to the
applied voltage. To find the power absorbed by the plasma.

VizCTa)

UB(Te)

which determines the electron temperature (n^ is the plasma
density at the sheath edge; the sheath edge is defined
by the position at which the plasma potential drops by
kBTe/2 from the mid-potential; ub is the Bohm velociQr,
defined by ng is the neutral gas density, and
Vj2 Kiztig is the ionization frequency). A Maxwell-
Boltzmann distribution is assumed for the electrons. We

1

ngde~^^
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may then write an expression for the power loss as

Pioss = 2ensUBAST(Te) (8)

where Sr includes collisional losses and ionization loss
in the plasma bulk, and electron and ion kinetic energy
loss at the walls. Sr is independent of plasma density
provided nonlinear processes such as stepwise ionization
and recombination can be ignored. Balancing the supplied
power, Re(V^/Z)/2, with die power loss (n'oduces

1/2-

V„i„ is the minimum operating voltage which will sustain
the plasma and is dependent on discharge dimensions, TV
(through ub and Sr) and gas pressure (through Vm)- For
sufficiently high-i2 plasmas (i.e. low pressures) and low
applied voltages we find that the peak plasma density is
determined by the implied drive firequency and not the drive
amplitude. Note that when V = Vmin or Vm = 0, the
firequency is a> = Q>pe'>/2s/L s o),,.

As yet undefined is the time average sheath width, s.
A derivation by Godyak [6,7] is based on enforcing zero
time averaged conduction current through the sheath. This
is reasonable due to the symmetry of the driving signal and

the desire for a steady-state solution. To summarize, thewhere Vl, =
ed
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Rgure 15. Time-averaged electron energy probability
function (au), EERF, as a function of x from the midi^ane
(x s 0.01 m) to the wall (x s 0 m). The electron kinetic
energy in is Ex= /"eCVx - <Vx)f)^/2. The EEPF is shown
over three-orders of magnitude. (Experiment H.
P«port = 2mTorr.)
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Rgure 16. Time-averaged electron energy probability
function (au), EEPF. as a function of x from the midplane
(x = 0.01 m) to the wall (x = 0 m). The EEPF is shown
over four orders of magnitude. (Experiment K,
Paigon = 300 mTorr.)

(where = €okBTe/inoe^)) which, after substituting (4)
for si.2(/) and making the change of variable, 6 = cot^ leads
to

1/2J,=en^, and =-o«a (5^)"" ^^
(10)

where V^(r) is the voltage drop across a sheath. Poisson's
equation may be used to relate Vs{t) to 5i.2(^) with the
result that

ViuW = —(11)
€0

We may now write the time average conduction current
leaving either sheath as

p2n/a
0= / (1/(7/-F/x)

Jo

]• (13)

fTit/a r
enoug + etioUg

\2jttne / J
(12)

This equation has been evaluated numerically by Godyak
[6,7]. The result can be summarized as follows. As a -»• 0,
s approaches the DC sheath value, XDe(}Mfni/(23tme))y^.
At larger a, s asymptotes to a.

In the approximation s » o, we equate conduction
current and the driving current which produces

** d^i 2
I = —enoA—^ = enoAcDS sin(rur)

dr
(14)

Wth Z{a>sr) = VntnLealng^A fr^om equations (2)and (3),
we can solve for s. The result is

— e Vmin
s =

caVmnigLeo
(15)
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which may be inserted into our expression for the series
resonance to give

O)
12(eVaun/orVjnWl^ i\£\= tOpeyJ j- (16)

which produces the scaling law,

(17)

This is in contrast to the capacitively coupled RF discharge
scaling, n ~ (o^^.
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3.2. The Inhomogeneoiis fluid model

In the homogeneous model described above (and the exten
sion of this theory to account for plasma inhomogeneity),
theplasmais dynamically modelledas a cold fluid with di
electric constant given by equation (3). The sheath voltages
are also assumed large enough to completely expel elec
trons from the sheath regions, and the displacement current
in the plasma is considered negligible (which is justified for
(o (Ope). These approximations are of increased validity
when the equilibrium sheath width is much larger than the
undriven sheath width, because the region over which the
electron density drops to zero (on the order of a few koe)
can be neglected.
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These approximations, which helped lead to analytic
expressions for the cuiient-voltage characteristic and
various scaling laws, are not needed if we alternately
use a linearized fluid model of the inhomogeneous metal
bound plasma slab [2] which is similar to that used by
Parker et al [21] in describing the electron resonances of
dielectric bound cylindrical plasmas. This model allows
for surface fields to penetrate into the plasma md is most
useful when considoing sheath widths which are on the
order of a few Xoe- A derivation of this model is given
by Cooperberg [2] for the collisionless 2d3v plasma slab.
Here we include an electron collision term in the perturbed
electron momentum equation (and simplify to Id). This
leads to a modification of the governing equation for the

perturbed plasma potential, which becomes

V^V^d), - i ( .VIV^d)! - -5-V/. Vd>i
Y\fJ Y

+rj_
Vy^Dc \(ol^ )

where and Xoe ^ the peak electron plasma frequency
and peak Debye length, and / describes the steady-state
electron density i»ofile and can be modelled theoretically,
as by Parker etal [21], or obtained directly from simulation
[2]. The new expression for the electron current density

(18)
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perpendicular to the walls is

(ia> - v„)m^ii(x) s -(io) - v„,)me\e\ntXif{x)Ve\{x)

3+i(x) . . .. /a'+iW\3,/W
dx

—ZkBTfoeQ

+ kBTeo€o
/3^<l>,(x)\ Bgfjx]

V 3x2 )

(19)

where r^o is derived from 3Jbs7«o/2 = (m«v^/2). Setting
Ji(x = 0) equal to zero locates the normal modes of the
system.

Using these equations, we can solve numerically (as in
[2]) for the location of the series resonance by computing
the discharge gap impedance (equal to e<I>i divided by the
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displacement currenL at the wall), and for the eigenmode
structure and electron heating profiles associated with these
modes. Results from this calculation are presented in
section 4.

33. Stability

A main question is: how does the plasma adjust its
density and sheath width in order to achieve resonance
with Ae sqiplied signal? Here we present a qualitative
explanation for the stability and self-tuning as observed in
these resonant discharges. To start our discussion we point
out that in all simulations (to be presented in section 4), the
^plied voltage lagged the discharge current by between
10° and 25° in the steady-state. We also find that the



Figure 23. Snapshot ot the electron distribution function,
(eix. Vx. t = 0). for experiment H. fg is peaked at the centre
and decreases to zero at the edges.

Figure 24. Snapshot of the electron distribution function,
fgix. Vx. t = 7/8), for experiment H. 7 is the period of the
applied signal.
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Figure 25. Snapshot of the electron distribution function,
/e(x. Vx. t = 7/4), for experiment H.

driving frequencies are very close to the series resonance
as will also be shown in section 4. Examination of the
homogeneous model impedance ((2), section 3.1) and the
inhomogeneous fluid calculations described in section 3.2
indicates that the driving frequency must then be near but
slightly less than the series resonance. With this point
established we can quickly explain the stability of these
discharges.

To proceed we make the further argument that the
ion density profile (and also the electron profile under
the assumption of quasi-neuirality) can be described by

Series resonance sustained plasmas

••

Figure 26. Snapshot of the electron distribution function,
4(x. Vx. t = 37/8), for experiment H.

ambipolar diffusion for X/ L, where L is the width
of the system and X, is the mean free path of the
ions for ion-atom collisions, or at lower pressures by
a variable-mobility model or a Langmuir solution [20).
In each case the normalized density profile, n(x)/n„,j/.
is given as a function of only n„fuirai' TV 7}. 7}
can be approximated by the neutral temperature and Te
is determined by n„cutrai and discharge length as a result
of particle conservation [20]. The result we are after is
chat the steady-state normalized density profile. n(x)/n„ij.
is independent of the power absorbed by the plasma.
This means, for a discharge sustained by a fixed voltage
source in which Pahx « Re(Z~') (see figure 3), that
an increase (decrease), due to fluctuations, in absorbed
power will bring an increase (decrease) in nmid and, by
equation (5), a proportional increase (decrease) in<v,r (since
the geometric factor ^2s/L remains constant). Because
we have established (through measurement of the I-V
phase angle) that these discharges are being operated just
below the series resonance (see figure 3), the increase
(decrease) in (o,r is followed by a decrease (increase) in
the power dissipated in theplasma (since the resonance has
moved further from the drive frequency) which produces
a corrective decrease (increase) in result is a
discharge in stable equilibrium whose density is determined
by the driving frequency and (where Tf is determined
by the neutral gas pressure, size and shape of the system
[20]). If we had chosen to drive the discharge with a
fixed amplitude current signal, then the discharge would
be stable at frequencies just above the resonance since

cc Re(Z).
It should be mentioned that these discharges are also

stable to high-frequency fluctuations. The result for w^r
in the uniform density, thermal, matrix sheath model of
Cooperberg [1) is

n 2s+d

where s represents the sheath width and can be taken to
be a linear function of which shows that an increase
(decrease) in Tg leads to an increase (decrease) in Wjr as
before and consequently a stabilizing decrease (increase)
in Tg.



D J Cooperberg and C K Birdsall

Table 1. Varying wrt, fixed neutral density. Parameters for computer experiments A-G. (Hz) as lO'To (eV). V lags / by
less than 25= in cases A-G. Xionmip (cm)l/330pgas (Torr) [20], ky = 0,Lx=2 cmfor experiments A-G. no, fpe and Vmkj
represent peak time averaged values. Applies to figures 4-8.

fit Pargon ^sourco no fpo VrrM To P

Experiment (MHz) (mTorr) (V) (cm-®) (MHz) (V) (V) (mW cm"®) Q

A 110 10.0 2.5 7.2 X 10® 241 26 3.4 1.9 7.5
B 120 10.0 2.5 1.0 X 10® 284 27 3.4 2.6 7.9
C 140 10.0 2.5 1.7 X 10® 370 27 2.9 3.6 8.9
D 200 10.0 2.5 6.2 X 10® 706 25 2.3 11 13
E 300 10.0 3 1.36 X 10^® 1050 32 2.8 35 16
F 400 10.0 3 4.0 X 10" 1800 38 2.8 103 13
G 470 10.0 3 7.2 X 10" 2420 39 3.0 180 14

Table 2. Varying neutral density, fixed ton. Parameters for experiments H-L Xionmfp (cm) as 1/330pp8s (Torr) [20], ky =0. n®,
fpo and Vmid represent peak time averaged values, vm and Xm are the electron momentum collision frequency and mean free
path for electrorMieutral collisions respectively.

fn Pargon ^sowoo no fpe Vnrin Xme To P
Exp. (MHz) (mTorr) (V) (cm-®) (MHz) (V) (MHz) (cm) (eV) (mWcm-®) Q

H 140 2.00 3.4 8.2 X 10® 256 59 13 14 7.1 7.0 31.5
1 140 10.0 2.5 1.7 X 10® 370 27 30 3.8 2.9 3.44 16.3
J 140 100 3.8 3.0 X 10® 490 17.4 260 0.41 2.5 3.9 3.24
K 140 300 6.0 3.7 X 10® 545 16.6 780 0.14 2.5 5.35 1.37
L 400® 2 4.6 2.0 X 10" 1270 66 13 13 6.8 98.9 40.9

^ ExperimentL run at higher frequency and low pressure to assist in analysis of collisionless electron heating
(section 5).

4. Simulation results

In this section we show the results for several computer
experimentsover varying frequencies and gas pressures in
which plasma discharges are resonantly sustained. In order
to ensure that the discharges are indeed at or near resonance,
we use the theoretical analysis in section 3 which predicts
that (for low pressures) the plasma is in a resonant state
when a minimum voltage, V„,„, is applied. In order to
achieve this condition through simulation, a discharge is
first built up at Vrf > Kj,r. The amplitude of the tqrplied
voltage signal is then incrementally lowered until the
plasmaextinguishes in orderto findthe minimum operating
voltage. Error associated with the finite decrement can be
estimated to lead measured values of V„ia no more than
5% above the actual values.

4.1. Fixed argon pressure, varying frequency

A series of computer experiments at varying otrf and fixed
Pargon ate described in table 1 and figures 4-8. Some of
the notable features corrunon to each of these discharges
are summarized here. Applied V lags I by less than 25**
so the impedanceseen by the external circuit is essentially
resistive. Also, v„ « 10^7; (eV) Hz «: (Orf, where Tg
is average kinetic energy of electrons. A mid-potential
Vfliw ~ iOVsouree > VJoi/z. (^15 eV) is obseived with
peak time-dependent potentials near the plasma boundaries
Vpeak ^ (figure 8). Bgiue 8 also shows the
eigenfiinction, <t>(x), predicted by the fluid theory of
section 3.2. A partial reason for the differences between the
measured and theoretical profiles is the inadequacy of the

fluid model to ctqrture kinetic effects such as collisionless
damping as will be discussed in section 5. The scalings
R a (figure 6), s oc I/(o (figure 7) are followed.
An extrapolation to fr/ = 2450 MHz produces ngpeak ^
10'̂ cm~^. The sheath widths are in the range of 10Ai>«
to lOXoe where kpg is measured at the mid-plane. The
Debye length near the plasma edge is larger due to a
decreased plasma density. This characteristic allows for
field penetration into the bulk plasma which cannot be
neglected.

4.2. Fixed frequency, varying argon pressure

Another series of simulations was conducted in which

Pargon was Varied with a fixed (Or/. The data are shown in
table 2. The discharge gap impedance and the mechanism
of electron heating are studied in these simulations. A
transition is seen between the low- (<100 mTorr) and high-
pressure regimes. Figures 9 and 10 of the time averaged
^electron *E illustrate this transition. The 'theory' curve in
these plots is generated by modifying the fluid calculations
of section 3.2 to include an electron momentum transfer

collision term. At lower pressures, the electron heating
profiles show a wavelike structure as a result of the strong
resonant surface wave fields; the low-pressure heating
cannot be modelled as ohmic. At higher pressures, the
plasma is well modelled by the collisional fluid equations
and the heating is primarily ohmic.

Figures 11-14 show the amplitude of the gtq)
admittance and phase ofthe g£q> impe^ce for expmments
I and K. The admittance is measured by measuring the
response to an applied, low-amplitude (yprobe Vg/),
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probe signal. The main (series) resonance and alternating
symmetric and asymmetric secondary resonances are
observed [2] as alternating maxima and minima in the
admittance plots. The theoretical curves are derived
from the fluid theory described previously. We could
also use equation (2) but that would require an accurate
determination of the sheath width which is difficult The
series resonance is observed to be very closely matched to
the source frequency. The quality (as derived from the full
width at half maximumof the impedancespectrum)clearly
degrades with increasing neutral pressure.

The additional secondary or Tonks-Dattner resonances
in the admittance (figures 11 and 13), which are located at
frequencies above(Ojr and below the peak mayalso be
used to sustain a plasma. Experimental work by Messiaen
and Vandenplas [22] shows that the secondary resonances
in a dielectric lined plasma cylinder can be used to sustain
a plasma.

5. Collisionless electron heating

5.1. Descriptioii and discussion

The density and sheath scaling laws predicted by Godyak
[6,7] are in good agreement with our simulation, and
the measured wave eigenstructures and gap impedance
are in reasonable agreement with the inhomogeneous fluid
theory discussed in section 3.2. However, the actual
mechanism for electron heating (ohmic plus stochastic
in the (in)homogeneous model, and ohmic in the
inhomogeneous fluid model) is not sufficient to describe
the results observed in simulations.

Our computer experiments at low argon gas pressures
show spatial oscillations in the electron heating, J, •JS7, and
regions of electron cooling (figure 9) which we interpret as
resulting from particle-wave interactions which produce a
hot-electron population (figures 5 and 15). The adiabatic.

inhomogeneous fluid model and the (in)homogeneous
model are both inadequate for predicting the electron
heating profiles at low pressures which have been observed
here. This is because wave-particle heating is a kinetic
effect

Electron heating profiles generated from PIC-MCC
modelling are reported by other authors [13,16,23]. In
these works, the conventional (high voltage, low frequency,
moderate neutral pressures >50 mTorr) capacitively
coupled discharges have been studied. The oscillation of
{Je ' E), at the edges, shown in figure 9 and also in
figures 19 and 29, is not observed in these earlier works.

There are two commonly cited mechanisms for electron
heating in parallel-plate discharges. The first is ohmic
heating which can be derived from a fluid model with a
collision term, or by assuming a plasma permittivity of the
form given in (3) in the cold (in)homogeneous model. Irom
these models, only positive time averaged electron heating
is predicted.

The second heating mechanism is stochastic heating
[20,24,25], which is often described as electron heating
resulting from collisions with a moving sheath potential
wall. In the early work [24], a slowly moving sheath
(compared to vje) with to ^ tOpe was considered and an
effective collision frequency was derived. This effect was
incorporated into the (in)homogeneous model by adding
a stochastic resistance term into an expression for the
discharge g^ impedance [7]. In more recent work,
solutions for fast- and slow-moving sheaths (compared to
^thermal) btive been found [25]. In the woric of Wood et al
[25] the modelofLieberman and Lichtenberg [20] is used to
describe the plasma in which the sheaths are considered to
be electronfree so that the sheath/plasmaboundary is sharp.
The case of Vsheath Vfe is not directly handled. Also, in
the fast-sheath limit, the effect of electron cooling against
the collapsing sheath is not modelled. Such approximations
were necessary to obtain analytic results.
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In this study we find that the series resonant discharge
sustains a longitudinal wave which is bound by the
overdense central plasma region and the metal boundary
(for wave structures see figures 8 and 17). This resonance
can also be thought of as the cutoff (for propagation in a
direction i^utallel to the metal boundaries) of a propagating
surface (sheath) wave [1,2]. We think of these resonant
discharges as supporting standing surface waves in contrast
to the (in)homogeneous model in which the electron density
at the edges exhibits a sharply defined jump from zero to
a value prescribed by the local ion density, and the electric
field similarly drops sharply from a large sheath value to a
negligible bulk value. These waves appear partly because
the equilibrium sheath widths in our computer experiments
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are short, on the order of undriven sheath widths, and the

decay length of electron density and fields is not negligible.
The perturbed electron density is shown in figure 18 for a
representative discharge. The wavelength of the standing
wave decreases towards the walls and the phase velocity of
the standing wave (in either direction), which is associated
with the sheath velocity of the (in)homogeneous model, will
be ^Vthermai over some region. These observations suggest
that significant collisionless Landau damping may occur
in which particles may resonantly interact with portions
of the standing wave where the resonance condition (a> —
kxVx = 0) is satisfied. Figures 20 and 21 show the
local wavenumber, kx (in the long-wavelength limit), and
the associated linear Landau damping rates predicted for



Maxwellian distributions. Since the wave amplitudes are
large (leading to large bounce frequencies) and the electron
distributions are observed to be highly non-Maxwellian, the
Landau damping (here considered linear, though present in
a nonlinear regime) is only meant to give a crude estimate
of the damping mechanism and rate. Since, in the case
of the series resonant discharges studied here, we have

Vphase ^ iTTto/s ~ U/Zifrmo/ is average sheath width),
and low sheath voltages and sheath widths are obtained (as
compared to the non-resonant discharge), we can think of
heating in a wave fashion rather than as a discrete moving
sheath wall with an electron free sheath which results from

larger applied signals and larger sheath width oscillations.
Although resonant electrons only see the standing wave for
roughly one wave period (half in each direction), the large
wave amplitude allows for significant perturbation of the
steady-state distribution.

The benefit of the wave approach is that it captures the
significant effects of electron cooling in a self-consistent
manner. In the stochastic model, electrons can be cooled

locally during sheath collapse by approximating the sheath
as a retreating potential barrier. In the standing surface
wave model, the electrons are accelerated and decelerated

by the surface wave resulting in a strongly perturbed EEPF
(figures 23-26). The perturbations at velocities toward
the walls undergo reflection and then interact again with
the surface wave fields. Inverse Landau damping can
then occur. This inverse damping may be responsible
for the time average electron cooling regions observed in
simulation at low pressure.

The electron bunches reflected by the sheath travel
towards the plasma bulk at approximately vrt (since the
Landau damping approaching the sheath had been strongest
at ^VTe). These bunches can lead to 'anomalous' currents

which fall out of phase with the surface wave fields since
the wave phase velocity increases as the plasma density
increases toward the bulk. This description is similar
to that given by Godyak and Piejak [26] in explaining
their measurements of current density and electric field in
an inductively co.upled plasma (ICP). Godyak and Piejak
measured regions along the direction of electromagnetic
fieldpropagation where the electric field and current density
become approximately 180° out of phase at low pressures
(electron mean free path less than skin depth). TTiey
attribute this to an 'anomalous skin effect' where currents

generated near the coil are translated into the plasma by
electron thermal motion. The capacitive system is more
complicated because density perturbations accompany the
current perturbations and self-consistently determine the
field structure. Also the EEPF can be severely non-
Maxwellian and higher harmonics are also not negligible.

The downside of the standing surface wave model is
the difficulty it presents in developing an analytic treatment
which accurately captures this collisionless damping. Also,
the internal fields are large enough to draw into question a
linear treatment of the problem.

A purely analytic model which captures the electfon
heating (and steady-state EEPFs) is beyond the scope of
this pap>er. Instead we take advantage of simulation results
for the cycle averaged quantities, £(x,f) and F(x,v,i),

Series resonance sustained plasmas

^11 j: 1

Figure 30. Snapshot of the electron distribution function.
4(x. Kit. t), for experiment L. 4 is peaked at the centre and
decreases to zero at the edges.

in drawing some conclusions about what approximations
might be made in developing such an analytic model.

5.2. Approximate theory for heating and cooling

First, we would like to verify that the electron heating
profiles can be derived from a Boltzmann model which
includes Landau damping. To do so we start from
Boltzmann's equation,

9F(r,v, r) dF{r,v,t)dFir,v,i) dF{r,v,t)
\-v

dt 9r

e 9f(r.v. r)+_£(r, 0 L L= s{F) (21)
m dv

where S{F) represents all collisions. We write the total
distribution and electric field (understood to be a vector in
the X direction) as sums of steady-state and time varying
parts,

F = {F)r + f E={E)r+e. (22)

The steady-state equation is then

= S(F)

9(F(r,r,f))r

-b-(£(r./))r
m

+—{e(r.i) •
m \

9(f(r.r,r))r

9r

9(F(r. u.f))T

dv

dfir,v,t)\ ^
dv 1.

= {S(F))r.

Solving for the perturbation /, with the assumption of
linearity (/ (F)r) and further assuming that the
electron mean free path is longer than the scale length
of perturbation variation [27] (table 2 shows that, at low
pressures, the mean free path is indeed longer than the
system), we have

9/(r,t7,f) 9/(r,u,f) , e ^ a(F(r,r,f)),
+ y +—c(r, r)

ot or m dv

e 9/(7*. V, t)
+-(£(r, t)h ' ^ ' = 0. (24)

m dv

If we drop the {E)xdf /dv term, we can solve for f in
terms of e and (F)r and arrive at a typical expression for
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the quasi-linear term in equation (23),

BfireL df{r,v,t)\

/)e'®'-l-CC)-a„l I dk

f)(F(x. v. t))r
xe

i(a) - Vxk)
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)),
(25)

where we have reduced the equation to ID in space. As a
first approximation one might assume (F)r cc n(r)e~'̂ /''r,,
so we may perform the velocity integration. We use
the €, n(r) and vre determined by simulation. The
result is a spatially resolved, collisionless electron heating
term, which, when multiplied by meV^/2 and integrated
over velocity space to produce an electron heating term,
does exhibit oscillations (regions of elecU'on heating and
cooling, figure 28). However, the agreement with actual
heating profiles is poor. There are two reasons likely for
the discrepancy. First is use of a Maxwellian electron
distribution whichis acceptable at high pressures(figure 16)
but not in agreement with the measured distributions at low
pressure (see figures 15and5). Second is the dropping of
the {E)rBf /dv, term in arriving at (25).

An alternative numerical approach, in which we use
the e and f measured in simulation, allows us to solve
for the quasi-linear heating term directly. Of course, the
result is equivalent to the Jg •E measured from simulation.
In order to determine whether an assumption of linearity
can be made, we can construct ei and /1 (where the
subscript indicates the component oscillating at the applied
frequency) from the simulation data and again compute
the electron heating profile. Results of this calculation
are shown in figures 19 and 29, which show that Jg • E
profiles are well modelled by the linearized e and /.
Further evidence that this resonant system remains in a
linear regime comes from measurements of the harmonic
signalstrength of theelectrostatic potential andelectricfield
(see figures 17and 18) which indicate a small contribution
firom the second harmonic. Signals at higher frequencies are
negligible. Ananalytic approach couldbe derivedfromfirst
principles with the linearized, inhomogeneous Boltzmann
equation and Poisson's equation (given the steady-state
quantities F and £). This step is not attempted here.

Convincing evidence that strong collisionless Landau
damping is occurring is given in figures 23-27. (Note,
data for only one half period is shown because the electron
distribution fiinction during the second half period is the
same except for a reflection across the midplane in x).
These figures show the time evolution of F(x, Vx,t) and
electron heating, during a half wave period. Here,- the
perturbation of F(x, u*.') is clearly recognized as electron
bunches or beams which are accelerated and retarded by the
strong edge fields. At r = 37/8 (figure 26, T is the wave
period) the electron distribution function has two peaks (at
X =: 0.0137 m) and the fast-moving reflected electrons
are cooled as shown in figure 27. The other regions of
electron cooling are due to electron expansion into the

-hcc

sheath regions. Not considered hereare the possibility (for
low bulk collisionality, i.e., low pressure and low density)
of correlation effects associated with electron bunches,
which may have multiple interactions with the edge fields.
The frequency of bunches leaving the walls is equal to the
applied frequency.

A further simulation, listed as experiment L in table 2,
whichhas not beenexplicitly mentionedyet, wasperformed
at a higher frequency and plasma density while keeping
the same neutral pressure of 2 mTorr as experiment H.
This simulation shows that complex edge heating persists
at higher densities. The electron heating profile is given
in figure 29 and a snapshot of F(x, Ux.') is shown in
figure 30. Electron heating and cooling is again observed
at the edges, and electron bunching is found in F(x, i>x, t).

With this understandingof the dynamics of the electron
heating in resonant discharges one might develop a non
local approach [28-31] in order to solve Boltzmann's
equation in the hopes of obtaining an analytic model for
(F)r. This is an essential quantity in determining plasma
composition. Evidence of the non-local behaviour of the
low-pressure resonant discharge isshown infigure 22which
shows the ionization rate in space to be more similar to
the electron density profile than electron heating profiles.
One might adapt the theory of Aliev et al [32,33] for
quasi-linear heating due to local resonances in a travelling
surface wave discharge with a dielectric boundary. In the
resonant discharges described in our work, the scale length
of the steady-state fields and resonant fields are similar(on
the order of the sheath thickness); hence, it is predicted
that this will require modification to Aliev's theory in
modelling the series resonant discharge. Another point of
concern is the high degree of anisotropy (at low pressures)
in F(x, Vx, Uy, Uz, 0 (bunching is only observed in the x
direction along the electricfield) which is not treated in the
cited works.

Before leaving our discussion of electron heating, we
comment on the quality factors, Qy shown in table 2 (and
table 1). The quality factor, calculated for each resonant
discharge, is given by

Tjt stored energy
T power dissipated ^(o/whm

0)

where T is the wave period. The energy density stored in
the resonant oscillation is taken to be

stored energy = f dt f dv('-:^(£(x,r) —£(x))^
Jo JVtilume \ ^

+^^^(f(Xy Vy t) - /(X, u))^ (26)
where bars indicate time averaged quantities. The power
loss is equal to thepower supplied in the steady-state and is
computed from the time averaged VI across the discharge
gap.

We find, as can be expected, that Q approaches the
value (t)/v„ for increasing pressures, and is significantly
lower than q)/v„ for lower pressures due to the enhanced
role of collisionless damping. Similar trends are seen
in transitions to stochastic heating for non-resonant
discharges [34].



6. Conclusions

Parallel-plate discharges have been sustained at the series
resonance. A nearly pure resistive load is seen by the
drive circuit. Power can then be supplied with low applied
voltages (2 and 3 volts) to sustain argon discharges with
sheath potentials '^107,. Peak time-dependent internal
voltages exceed this value. Densities up to '^1 x 10'* cm^
have been simulated (higher densities requiring extensive
computation time), with density increasing as the cube
of the drive frequency. Results are compared with
the predictions of various models with some success.
Discharge stability has been analysed.

Heating profiles ((J, • £7),(x)) at low pressures are
distinct from other discharges, exhibiting regions of heating
and cooling at the plasma edge. Heating mechanisms have
been analysed. EEPFs have been measured showing the
presence of a hot-electron tail at low pressures.
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Abstract. Standing electron surface waves have been used to naturally sustain a
plasma discharge. This workdiffers from previousstudies of surface wave
dischargesin that, here, we focuson surface waves excited in a metal bound
plasma slab which propagate along the plasma/sheath boundaryand sustain a
discharge. Our 'experimental' results are obtainedfrom electromagnetic
partide-in-cell simulations with Monte Carlo collisions of a 2d3v plasma. Results
are analysedfordischarges operating over a range offrequencies, neutral gas
pressures and antenna design.

1. Introduction

In early work [1-7] on resonantly sustained plasmas, the
region of plasma generation is generally confined in space
due to the method of excitation (within some cavity or
between electrodes) [8]. As an example, Fehsenfeld et al
[7] demonstrated a variety of microwave discharges in
which a plasma is sustained in a glass tube by inserting
the tube into a microwave cavity which is driven at one
of the cavity resonant frequencies. The enhanced cavity
fields start the plasma discharge after which the amplitude
of the fields adjusts due to the introduction of the plasma
load. The dimensions of the microwave resonant cavities
are limitedby designcriteriaat a given operatingfrequency,
and are of the order of a few centimetres. These cavities
produce plasma volumes of the order of tens of cubic
centimetres. This limit prompted Moisan et al to develop
a device called a surfatron in which a plasma column is
sustained by a travelling surface wave launched from one
end [8]. Ihe launcher surrounds a gas filled dielectric
tube which contains the plasma radially, but the plasina
is not confined axially since the length of the discharge
is proportional to the input power. Reported operation
occurs over a wide range of neutral gas pressures and
electron densities. Devices operate from a few hundred
kHz to '^10 GHz with density ranges 5 x 10® cm~^ to
a few 10*^ cm"^, gas pressures from 10"^ Torr to a few
timesatmospheric, and radii fromOS mm to 10 cm. Since
these devices are electrodelessand can produce discharges
over large volumes, they have been utilized in materials
processing, ionsources, laserexcitation, elemental analysis
and lighting.

In a more recent woiic [9] Moisan and Zakrzewski
give a reviewof the basic theoryand variousexpoimental
designs for plasma sources based on the propagation of
electromagnetic surface waves. The surfatron was the first

0963-02S2/98/010041-t-13$19.50 ® 1998 lOP Publishing Ltd

of these plasmasources and has inspired much subsequent
research in the field. There also has been much theoretical
work done to understand better these plasmas, with efforts
mainly focusing on characterizing radial and axial profiles
of the fields and plasma properties. Some of the early
authors include Zakrzewski etal [10,11], Claude etal [12],
Ferreira [13,14] and Aliev et al [15,16]. Recently, a new
mechanismof electron heatinghas also been described [17].

In addition to the travelling surface wave sustained
cylindrical discharges developed by Moisan, therehasbeen
an effort to develop standing and planar surface wave
sustained plasmas. Some motivation for this effort comes
from a desirefor plasmauniformity whichcan be of use in
laser sources and materials processing applications. Rakem
et al [18] make a comparison between a simple model
and experiment [19]on a cylindrical standingsurfacewave
plasma where the far end of the column is shorted with
a metal sleeve. For discharge (column) lengths less than
some limit, the density remains nearly constant along the
column axis (with some fraction of modulation due to the
standing wave). An argon ion laserwas built basedon this
structure.

Nonaka [20] reports on new devices similar to the
surfatron, but with various cross-sections of which a
rectangular one is of particular interest. A large area (up
to 0.73 m X 1.72 m) plasma is produced. Later analysis
[21] of this planar travelling surface wave source led to
determination of the axial density gradient in diffusion and
recombination dominated regimes and electrostatic mode
structure. The axial density gradient, although still linear
in the propagation dimension, is predicted to be much less
than in the cylindrical case.

Other efforts have led to the development of planar
standing surface wave sources. A planar microwave
standing surface wave device, developed by Komachi
and Kobayashi [22], consists of a dielectric wave guide
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(18 cm X30 cm) bound by metal and plasma on either
side with a vacuum gap between the dielectric and the
plasma. Microwave energy is fed into the dielectric guide
and the fringe fields couple to and sustain the plasma. In
the directions aligned with the dielectric plane, the plasma
density is modulated about a nearly constant value by the
standing wave. In the perpendicular (to the dielectric)
direction the measured electron density decays rapidly.
A simple model was presented based on a homogeneous
plasma.

Another source similar to that of Komachi and
Kobayashi [22] is presented by Nagatsu et al [23). A
planar source is operated at the end ofa cylindrical cavity
in which a slotted waveguide antenna is used to couple
microwave power into a quartz window which separates
the plasma chamber from the slot antenna. A standing
surface wave pattern is observed in the optical emission
intensity of the plasma, and the eigenmodes of the system
are computed by Ghanashev etal [24]. The field strength
of the electromagnetic surface wave modes is observed to
decay into the overdense plasma inapproximate agreement
with the plasma skin depth.

We may categorize the variety of plasma sources
discussed so far as follows. First, there are Id metal
bounded plasma sources (such as the capacitively coupled
RF discharge) which can beoperated at the series resonance
(cutoff for the main asymmetric planar surface wave).
There arecylindrical and planar dielectric bounded sources
operating from the RF to the microwave regime in
which both travelling and standing surface waves, which
propagate along the plasma edge, sustain the plasma.
Lastly, there are microwave sustained discharges in which
a dielectric bound plasma is sustained by the fields of
a resonant structure such as a cavity [7], a slow-wave
structure [25,26], a fast-leaky-wave structure [27] or a
dielectric waveguide [22,24]. In these latter devices the
plasma is only weakly coupled to the sustaining structure
and the plasmas are separated by open space or by
dielectric containing vessels from the microwave sources.
Inother words, thesustaining structures (microwave cavity,
slow-wave structure, fast-leaky-wave source or dielectric
waveguide) in each ofthese sources is only weakly affected
by the presence ofthe plasma as described by Zakrzewski
and Moisan [28]. Because the structure of the applied
fields is largely independent of the plasma these devices
do not take full advantage of the normal surface modes of
the bound plasma where the plasma becomes nearly a pure
resistive load. Resonant excitation of these modes produces
large currents in the plasma for small applied fields.

Prior surface wave discharges were maintained in
dielectric bound columns. The surface waves associat^
with metal bound plasmas, which have been analysed in
previous work [29,30] have not been considered asa ineans
for sustaining a discharge. It may have been believed
that such waves would be shorted out by the presence
of conducting walls close to the plasma. This is not
the case, as demonstrated previously [29,30], because the
existence of the plasma sheaths enables surface slow-wave
propagation. This is in agreement with prior experimental
work by Napoli and Swartz [31] where detection of low-
frequency forward waves in a conducting cylinder filled
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with an annular plasma and a central solid dielectric
rod were explained by incorporating a sheath capacitance
between the conductor and the plasma in a planar plasma-
guide model.

In this work we demonstrate a new type of plasma
source, in which standing surface waves in a metal bound
plasma slab are resonantly excited by an applied signal. The
fields from these standing surface waves are us^ to heat the
electrons which sustain the plasma. The work is performed
via particle-in-cell (PIC) simulation [32] ofan argon plasma
in which a Monte Carlo collision algorithm [33] is used
to model collisions with neutrals. A set of computer
experiments have been performed with varying neutral
pressures, excitation frequencies and antenna designs in
order to characterize this type of source. Comparisons
can be made with the resonantly sustained RFdischarge in
which RF power is applied at the series resonance [5,34]
which arises from the balancing of the capacitance of the
sheaths with the inductance of the plasma bulk in a ID
electrostatic model. Plasma densityprofiles, field structure,
electron heating profiles, steady-state plasma pararneters
and electron energy probability functions (EEPFs) will be
presented. The proposed source has the projected benefit
of producing low-voltage plasmas in a wide range of gas
pressures and plasma densities. Also the planar, standing
wave configuration easily scales to large areas. Both of
these features are desirable for many materials processing
applications.

This work further introduces PIC simulation to the
study of surface wave produced plasmas (SWPs) and it
is hoped that this technique will provide added insight into
the characterization of these types of source. In section 2
we describe our model and show schematics of the two
different reactor configurations studied. Section 3 describes
thesimulation techniques used to represent ourmodel. The
results of several computer experiments (simulations) are
presented in section 4. Conclusions follow in section 5.

2. Model description

In this work, we study the 2d3v (i.e. two displacement and
three velocity dimensions) metal bounded argon plasma
slab, which is sustained by standing surface waves. We
choose the propagation direction to be along y, and the
direction perpendicular to the slab to be Jc. We will consider
both theinfinite (periodic iny and bound bymetal walls in
Jc) slab, and the double-bounded cavity in which the slab
is bound by metal walls in both Jc and y. The surface
waves are excited by varying arrays of current loops of
infinitesimal thickness as shown in figures 1 and 2. These
designs have been chosen to excite an asymmetric surface
wave [29,30] in the doubly bound system (a symmetric
wave wasnotdriven because of geometric constraints), and
a hybrid mode, in which both symmetric and asymmetric
modes are present in the system, which is periodic in
y. These models are each scalable to larger areas. The
antenna designs have been chosen primarily for the ease in
which they could be incorporated into our simulation code,
XPDP2 [35], and not on their realizabili^r in laboratory
experiments. This idealization should not diminish the
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Rgure 1. Schematic of 2D model bound in x and j?for surface wave sustained discharge. Antenna current is given by
= sin(&>rf/)- Approximately to scale.

1.6cm <—\N
conducting boundary

Figure 2. Schematic of 2D model bound in x and y forsurface wave sustained discharge. Antenna current is given by
In = C05(.2jrYnfLy) sin(c.;rf f).

Figure 3. Peak antenna field, B^ix,y), for double-bounded system = 150 MHz, Isoanx « 700 A m"').

results presented here. Several more realistic means of
coupling might be envisioned in which the characteristics
of the metal bound standing surface wave discharge are not
greatly altered.

For all simulations, the slab thickness (x) is 2 cm
and a length of 1 m in the unresolved (z) dimension is
chosen for bookkeeping. The simulations bound in y are
8 cm long in that dimension. The simulations which are
infinite (and periodic) in y have a period of 1.6 cm. Argon
pressures vary from 2 to 100 mTorr. This range has been
chosen because ID simulations have shown that a heating
mode transition takes place here [34] in which collisional or
ohmic heating at higherpressures gives way to collisionless
heating via wave-particle interactionsat lower pressures. A
modest frequency range of 1.5 x 10^-3.0 x 10^ Hz is used

to investigate plasma density, and discharge scaling with
frequency. The standing, planar surface wave discharge
described here is not thought to be restricted to this pressure
and frequency range; however, simulation at higher argon
pressures and frequencies requires increasing computation;
runtimes on the workst^ons used for this work become

prohibitive.

3. Simulation

As previously mentioned, we use the PIC code XPDP2
[35], with a Monte Carlo scheme [33] for modelling
collisions with argon neutrals, for our study. This code
has been heavily modified to allow modelling of the planar
surface wave discharge. The main change has been the
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Figure 4. Peak antenna field, Eyix, y), for double-bounded system = 150 MHz, Igouwe =7O0 Am~').
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Figure 5. Peak antenna field, Ex(x, y), for system bound In and periodic in y (/^ a 200 MHz, Isoune =350 Am"').

addition of an electromagnetic field solver and a charge
conserving, particle current gathering routine [36] for both
theperiodic andbound models (in y). Thecurrent gathering
is done simultaneously with the particle advance in order
to detect cell crossings and more accurately gather the
particle current. The switch from an electrostatic code
to an electromagnetic one was needed in order to self-
consistently couple the antenna fields to the surface waves.
We will see, however, that, since the surface waves are
slow waves with the wavelengths much smaller than that
of waves of the same frequency in vacuum, the wave
fields present in the steady-state discharge are primarily
electrostatic (irrotational) in nature and may be derived
from Poisson's equation. However, at longer wavelengths
in y or at higher (microwave) frequencies not modelled
here (due to computational constraints), the waves would
require an electromagnetic description.

In order to improve computational performance, several
additional modifications to XPDP2 were made. They
include the subcycling of the electromagnetic field solver

with respect to the electron particle push and gather,
and the subcycling of electrons with respect to the ion
pushing/gathering [32]. This is useful because the field
Courant condition requires that Ax/(cAt), Ay/(cAt) <
0.5 while particle Courant merely requires Ax/(vTeAt),

^ 0.5 and, since we are examining a non-
relativistic plasma, these conditions impose significantly
different constraints on the time step for field and
particle advance. Numerical instabilities, associated with
subcycling the fields, were eliminated with damping
schemes including the introduction of a small surface
impedance on the walls and a lag averaging scheme
[37] in the electric field advance. Divergence cleaning
was also implemented to further reduce error whereby
V 'Ets pI€q is periodically enforced to correct numerical
error in the field solver which relies on Faraday's law
and Ampere's law to advance the fields in time without
explicitly enforcing Coulomb's law.

The metal boundaries are taken to be nearly perfect
conductors and to absorb incident particles. Secondary
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Rgure 6. Peak antenna field, £y(x, y), for system bound in Hand periodic in y =200 MHz, =350 Am*').
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Figure 7. Average electron density, n.(x. y) (in m"®), for double-bounded system.

emission is not implemented (which is acceptable for low
plasma potentials, although the code iscap^leof
secondary emission. In the periodic model, both particles
and electromagnetic fields which exit one end are injected
at the other end.

The following method isapplied toproduce the steady-
state discharges. A uniform plasma is loaded at / = 0
between the conducting boundaries with a density chosen
to be near the expected equilibrium value at the midplane
of the final steady stale. A fixed current is applied to
the antennae throughout the simulation. After an initial
transient penod of the order of several ion transit times,
a steady-state equilibrium is achieved provided the applied
antenna currents were sufficient and the initial density was
not too far from the final density. One need not start
the simulations with an initial density; however, a more
complex antenna circuit would have been necessary to
allow for the build-up of a discharge from breakdown.
After the stable discharge is formed, the applied current
(to the antennae) is incrementally lowered to a minimum
value below which the plasma extinguishes. The coarseness

of the current decrement provides some source of error in
the determination of the minimum; however, this methodis
estimatedto yieldmeasurements of /«/„ no more than 15%
above the actual value. The existence ofa minimum applied
current is analogous to the minimum applied voltage
observed by Godyak and Popov [38] and demonstrated in
simulation by one of the authors and a co-worker [34].

Much of the simulation output, which will be presented
in section 4, is produced by cycle averaging the signals
through oneperiod of the applied signal.

4. Results

In presenting our results for surface wave sustained
discharges using the models described in section 2, it is
convenient to treat the surface waves as being electrostatic.
The fully electromagnetic simulation describedin section 3
produces the vacuum antenna fields shown in figures 3-6.
For the frequencies of operation (150-300 MHz), the free
space wavelength is much longer than the dimensions
and wavelengths chosen for our discharges (i.e., the drive



D J Cooperberg and C K Birdsall

•«2.1

Figure 8. Average electrostatic potential, 4>(x, y) (In volts), for double-bounded system

mm

Rgure 9. Amplitude of the electrostatic potential signal (in volts) atthe fundamental (drive) frequency
|<t»(x. y,art=150 MHz)| as measured by simulation, for double-bounded system.
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Figure 10. Average electron heating profile. (in Wm"®). for double-bounded system.

frequencies are well below cutoff for the conducting parallel found to decay exponentially away from the antennae. At
plate system in the absence of plasma), and the fields are these frequencies, the surface wave modes present mthe
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Table 1. Varying wrf, fixed neutral density: parameters for various experiments, va, (Hz)« lOTa (eV). (cm)
«3.2paas (mTorr), ky =3.93 cm~\ L* s= 2cm for experiments A-0. n^, fpo and Vpiasma represent peak time averaged values.

fsotme Ptfgon ^source ^
Experiment (MHz) (mTorr) (Am-^) (cm-^)

fpa Tg Vpiasma ^
(MHz) (V) (V) (W)

A 150 10.0 600

8 200 10.0 350

C 250 10.0 300

D 300 10.0 260

1.1 X 10® 300
2.2x10® 420
5.1 X 10® 640
8.6 X 10® 830

3.3 21

3.4 21

3.2 23

3.2 25

0.41

0.77

1.7

2.7

2.3

3.8

5.7

10

Table 2. Varying neutral density, fixed a>„: parameters for various expenments. XA«jn.fj,.(cm)« 3.2p^
k, m3.93 crrr\ U^2cm for experiments E-G. fpo and Vpissm represent peak tinrie avera^ wlues. are the
Jectron momentum collision frequency and mean free path for electron-neutral collisions respectively. (Expenments
are tdentical.)

Experiment
fseueeo
(MHz)

Paigon
(mTorr)

fsoures
(V)

rta
(cm-®)

fpa
(MHz)

V/n

(MHz)
kme
(cm)

Te
(V)

Vftasma
(V)

P

(W) Q

E

F
G

200

200

200

2.0

10.0

100.0

600

350

290

2.2 X 10®
2.2 X 10®
3.4 X 10®

420

420

520

9.7

36

250

15

3.4

0.42

4.7

3.4

2.4

31

21

17

1.3

0.77

0.59

3.1

3.8

2.3

1.77M08

m-r

0020

Rgure 11.Theorerical dispersion relation for the main
symmetric and asymmetric surface wave for the plasma
density and electron temperature measured in
experiment B (table 1).

steady-state discharges are 'slow waves' with wavelengths
much shorter than those of lightat the same frequency in
fiee space. The result is that the plasma responds nearly
electrostatically to the £q>plied electrodynamic fields. As
evidence that our approximation isvalid, we have observed
that the ratio of the (time and space averaged) perturbed
electrostatic (derived from Poisson's equation) field energy
density to the perturbed electrodynamic field energy density
is >0.9 for all simulations. In order to study surface
waves at longer wavelengths in y orathigher frequencies
(achieved by varying the cavity and antennae design) one
must abandon the electrostatic approximation. Also, if
the free-space wavelength approaches the slab width in
Jc, the electrostatic approximation fails. As a further
comment, inthestudies oftravelling surface wave sustained
plasma columns, the axial wavelength ofthe surface wave

Figure 12. Theoretical eigenfunction,
<l>(x, ky =2X/1.6 cm-^), for the plasma density and
electron temperature measured in experiment B(table 1).

varies as the plasma density decays and the electrostatic
approximation may be valid atthe end ofthe plasma column
and invalid at the begitming since the axial wavelength
generally decreases with decreasing density.

We now proceed with a presentation and discussion of
our simulation results.

4.1. Case 1: bound In x and y

For this simulation (see figures 1, 3 and 4) two antennae
are driven by ideal current sources operating at 150 MHz
with peak current of700 Am"' (the units reflecting adepth
in the unresolved z dimension). The antennae signals arc
180 degrees out ofphase in order toexcite an asymmetric
standing surface wave in the plasma along y. The argon
neutral pressure is 10 mTorr. The average electron density
and theelectrostatic potential in the steady-state discharge
arc shown in figures 1_^d 8. The time averaged peak
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Figure 15. Potential at f s 0.

density is 2.19 x 10'^ m"^ which leads to a peak plasma
frequency of 420 MHz. The DC peak potential is 28 V.
The electron temperature, defined as 2(KE)/3, is 3.4 eV.
The ratio of electrostatic electric, field energy density to

Figure 16. Potential at t = 7/8.

electrodynamic electric field energy density is 0.99. The
power supplied to the discharge, which is calculated from
an integration over volume of the time averaged J • B,
is 3.39 W (taking I m depth in z). The amplitude of the



Rgure 19. Potential at t = 4T/6.

standing surface wave is shown in figure 9. Reflection
at the y boundaries produces only small deviation from
perfect reflection in which the wave would exhibit purely
sinusoidal behaviour in y (actually a standing surfacewave
can also be seen along the y boundaries!). The potential
shown in figure9 is in good qualitative agreement with the
fields predicted by the main asymmetric surface wave in a
metal bound plasma slab [29,30].

The quality of the resonance is given by

Q_27t stored energy ojrf
T power dissipated fwhm

Figure 22. Potential at t s 7T/B.

where T is the wave period. This can be computed with the
approximation that the RF stored energy density is given
by

y, t) ~ {E(x, y, 0),P

-Mx, y, 0)/l(t;(x, y, 0)iP)

which is integrated over space and averaged over time. The
power loss is given by the time averaged J • E integrated
over space. The result is a O factor of 8.5. We note that
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Figure 23. Average electron heating profile, {Jgx-Ex)! (in W at f = 300 MHz, p = 10 mTorr (experiment D).
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Rgure 24. Average electron heating profile, {J^-Eyh (in W m-^) at / =300MHz, p = 10 mTorr (experiment D).

<^rf/Ve — 26 (where Vg is the electron-neutral collision
frequency ~ 36 MHz). The underestimate of the measured
Q maybedue in part to the presence of collisionless heating
which increases the effective collision frequency.

Evidence of non-ohmic heating is shown in figure 10
in which the time averaged Jg ' E is plotted. There is
qualitative agreement with the heating profiles at similar
densities and pressures in ID series resonance sustained
discharges [34). The oscillatory pattern along the y
boundaries is thought to arise fi-om a collisionless heating
mechanism. For further discussion of this phenomenon see
Cooperberg and Birdsall [34].

Before proceeding, it should be noted that a significant
potential signal in the discharge is observed at the
second harmonic of the applied frequency as in capacitive
discharges [39]. The ratio of the peak potential at the
second harmonic to the peak potential at the first harmonic
is M).4. The strength of this harmonic may be due in part
to coupling to higher (Tonks-Dattner) surface wave modes
[30]. Third and higher harmonics are not significantly
generated in this or subsequently described experiments.

4.2. Case 2: bound in x, periodic in y

A series of computer experiments has been conducted
using the model having N phased antennae represented in
figure 2. Two sets of experiments were performed. In one,
the applied frequency is varied at fixed argon pressure. In
the other, the argon pressure is varied at constant applied
frequency. Before discussing these experiments, we briefly
discuss how the device pictured in figure 2 excited electron
surface waves.

The main electron surface modes in the non-

tmiform, collisionless, thermal, metal bound plasma slab
are measured and analysed (in the linear regime) by
Cooperberg [29,30]. Applying the same numerical
techniques as in this previous work, and using an electron
temperature and steady-state density profile determined
from a representative surface wave sustained discharge
(identified as experiment B in table 1 and experiment F
in table 2), we find the linear fluid result for the dispersion
relations of the main symmetric and asymmetric surface
waves which are plotted in figure 11. For ky =s



3.93 cm"', which is determined by ourantennae structure,
the two modes occur at nearly the same frequency, / =
180 MHz, and they can be excited simultaneously. Note
theexperimentally measured frequency, 2tky = 3.93cm~^
is / = 200MHz, in reasonable agreement with the theory.
The potential perturbation resulting from the sum of the
symmetric and asymmetric modes, as derived from the fluid
theoiy, is plotted in figure 12. A sinusoidal dependence
in y is not shown. This eigenfiinction can be comi^red
withtheexperimentally measuredamplitude of the potential
oscillating at the fundamental (applied) frequency in the
sustained discharge (figure 13). Reasonable agreement is
again achieved. The amplitude of the potential oscillating
at the second harmonic of the applied fiequency is shown
in figure 14.

Now we discuss our first set of simulations in which

the neutral gas (argon) pressure is fixed at 10 mTorr
and the driving fiequency is varied. At 10 mTorr the
electron mean free path is of the order of the system
size and non-local heating may be assumed. Also for at
this pressure the argon discharge is in a diffusion regime
for charged particle losses. Results for these experiments
are surmnarized in table 1. Several conclusions can be

drawn from these data. Hrst, we find that the peak
steady-state plasma potentials are nearly the same and
of the order of ITg. We also find th^ the values
are neariy the same in these experiments. The applied
frequency is consistently less than the plasma frequency
associated with the peak plasma density located in the
central overdense region as is expected for electron surface
waves. The quali^ factor, Q (computed from the ratio
of stored to dissipated energy described in section 4.1), is
less than is predicted by tarfl^c (where Vc is the electron-
neutral collision frequency ^ 36 MHz). This error may be
due to additional dissipation through collisionless heating,
and, also, to poor antenna coupling. To explain the
decreasing Imi„ we note that the electric field strength
generated by a current loop antennae in vacuum is ouol,
and, by analogy with ID series resonant discharges [6,34],
we expect the -minimum E field to be a fimction of
gas pressure and spatial dimensions, and not driving
frequency.

Significant second-harmonic generation is again de
tected for the experiments listed in table 1. The peak poten
tial at the second harmonic is ^proximately 0.4 times the
peak at the applied fiequency and our previous calculations
of Q must be considered as approximate.

Hgures 15-22 show snapshots of the electrostatic
potential in the plasma over one period of the applied
signal (for experiment D). For the same experiment, the
electron heating in x and y is shown in figures 23
and 24. The oscillatory behaviour of Jez * £!x on the
antenna side of the slab again shows qualitative agreement
with ID measurements [34]. The oscillatory behaviour
of Jey • Ey may be caused by collisionless heating in
the propagation direction (y). Similar, although less
pronounced oscillations, are observed in the • JE? of the
other experiments.

Innally, we have plotted ev/ versus riepeak in figure25.
The data, over the limited fiequency range measured, seems

Surface wave sustained plasmas
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Rgure 25. Peak electron density versus applied frequency.
The line represents napt^ a q>^, p«pan = 10 mTorr.
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Rgure 26. Electron densities averaged in ^ and time.
Sheath width decreases with increasing applied frequency,
Pzvon = 10 mTorr.

to agree with the ID prediction [6] that riepeak o: a^f.
Also shown are the average electron density profiles in Jc
(figure 26) in which it is observed that the sheath width
decreases with increasing drive fi:equency. It is observed
that the variation of the steady-state electron density in y
is less than 2% for experiments A-D.

The second set of surface wave sustained discharge
experiments, in which fiequency is fixed and neutral
pressure is varied, are surmnarized in table 2. The
data shows that electron temperature, r«, increases with
decreasing pressure as can be expected [39]. Also the
quality factor is decreased at higher pressure as can be
expected due to a higher collision fiequency. Q is lower
at 2 mTorr than at 10 mTorr which is not expected. A
possible explanation is weaker coupling to the antenna
fields since the plasma density profile varies with presstue;
however, more comprehensive simulation is needed to
clarify this seeming discrepancy. The ratio of the peak
amplitude of the electrostatic potential at the second
harmonic to that at the fundamental frequency is 0.58,
0.38, 0.19 for experiments E, F and G respectively. This
shows a decrease in second-harmonic generation for more
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Rgure 27. Electron energy probability functions for varying
neutral pressure, f = 200 MHz. A hot-tail Is present at the
lowest pressure.
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Rgure 28. Electron densities averaged in ^ and time.
Densityasymmetry is visible at the highest pressure.
/ = 200 MHz.

dissipative systems.
Figure 27 shows the electron energy probability

function (EEPF) averaged over space for each experiment
(E, F and G). Experiment E (2 mTorr) exhibits a hot-
electron tail analogous to the lower-pressure ID discharges
described in a previous article [34]. At the higherpressure
(experiment G, 100 mTorr) the tail is lost and, instead, we
see depletion of the distribution at higher .energies, which
is presumably due to inelastic collisions.

Rgure 28 shows electron density profiles averaged in
y and time. Again, variation of the steady-state electron
density function in y is less than 2% in each experiment.
The increased density on the antenna side of the discharge
for the highest-pressure simulation (experiment G) may be
due to a shift from a non-local regime (long electron mean
free path) to a local one (short electron mean free path) as
indicated in table 2.

5. Conclusions

We have shown, via PIC-MCC simulation, that metal
bound planar plasma discharges can be sustained via
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standing surface wave excitation. Discharges in both
infinite (periodic) and bound slabs have been successfully
modelled. Low-voltage, low- (and moderate-) pressure
plasmas which exhibit uniform densities in the directions
parallel to the slab boundaries are produced.

The scalability to larger discharge areas, possibility
for operation at higher frequencies (leading to higher
densities), and ability to operate in a one-sided mode
where large sur&ce wave fields and electron heating are
localized to one edge of the plasma slab, along with
the lack of complexity in the reactor design, give this
type of discharge promise for use in applications such as
materials processing. Also, since the plasma is completely
surrounded by conducting walls, there is no HF radiation
loss associated with dielectric or partially dielectric bound
HF sources. One can also speculate that excitation of
surface waves along the conducting containing boundaries
present in other types of plasma source may be used as a
secondary heatingmechanismin order to modifyor enhance
plasma density and uniformity.

Further simulation and computational speed-ups may
lead to efficient modelling of larger-area, higher<^ensity
plasmas. Further simulations and laboratory experiments
are needed to perfect a more efficient wave exciting
mechanism. Also, the details of collisionless electron
heating mechanisms in two dimensions need further
investigation.
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