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Abstract

A new speech enabled applications infrastructure for the Infopad is proposed and
demonstrated. The architecture allows use of arbitrary recognizer engines and eliminates
the dependency on a specific recognizer or specific recognizer API. The Nuance
recognizer system and TI Dagger system are used as test speech recognition engines.

The infrastructure allows easy speech activation of Java programs. A Java Virtual
Keyboard, a Java Personal Information Manager, and a Java Graph Editor were created
using the infrastructure. These demonstration programs give some insight into the
capabilities and limitations of speech as an input mechanism for portable multimedia
devices, such as the Infopad.
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L Background: Infopad User Interface

The Infopad is as a standalone, wireless network terminal, connected through high
bandwidth wireless link to a basestation. This basestation is in turn connected via wire to
a Sun Unix workstation. All of the Infopad computation is performed on the Sun
workstation, only the user interface output and the user interface input are performed at
the actual terminal itself. The Infopad is in essence an X-terminal, but one that is
portable as well as wireless.

The Infopad has no keyboard or mouse. It only has pen and speech as input. An
infrastructure, called Infonet, has been developed to handle these forms of input across
the wireless Infopad link [Nara96b]. Tools have been developed to translate pen input to
mouse press and drag input for control of menus and windows [Nara96a). Extensions to
the Infonet system have also enabled audio input and output at the Infopad terminal,
specifically using a modified version of the AudioFile (AF) client-server system

originally developed by DEC [AF].

A. Pen Input
In its present state, the pen is best used for manipulation tasks rather than input
tasks, pointing and dragging rather than pen input. One reason for this is that an
integrated handwriting recognizer is not available for the Infopad. Handwriting
recognition systems are available, such as the QuickPrint system by Lexicus and the
“handwriting recognition system developed by Narayanaswamy as part of his doctoral

thesis [Nara96a]. There is no handwriting recognition system integrated into the Infopad



for use across all applications, just as there is no handwriting recognition system
integrated into the X-windows environment.

The original handwriting recognizer for the Infopad and much of the pen input
infrastructure were written by Narayanaswamy [Nara96a]. Essentially this system
accesses the handwriting recognition functionality through a specific API, with favorable
integration with applications written in the Tcl/Tk scripting and user interface language.
Applications must be compiled with the Narayanaswamy’s recognizer library. This
infrastructure works and has been used to create a few demonstrable programs such as a
SPICE input editor and a handwriting input widget [Nara96a].

The standalone QuickPrint system works as follows. Individual letters are drawn
into a small window. The individual letters are recognized and then can be sent to any
given window as X-windows KeyPresses that the user designates by pointing. This
system is clumsy and ineffective, not only because of the multiple steps involved in

inputting a simple word, but also in the ineffectiveness of the recognizer.

B. Speech Input

The original speech interface for the Infopad is similar in architecture to
Narayanaswamy’s handwriting input system. The audio input mechanism is essentially a
modified version of the AudioFile server system and is quite generic in allowing audio
input and output. The original speech recognizer, written by Burstein, is a fairly
sophisticated speaker dependent, trainable recognition system [Burs96]. Like the

handwriting system, this recognizer requires use of Burstein’s API and compilation with



Burstein’s libraries for the speech system. This system has been demonstrated
applications such as the Spice editor and a speech input widget [Burs96].

In the Infopad application environment, dependency on any specific speech
recognizer API or library is not ideal. Dependency on a specific API restricts the user to a
specific speech recognizer, since there is no standard speech recognizer API. Since there
are many speech recognition engines available of differing performance and suitability,
the dependency on a specific API is not favorable. Furthermore, integration with Tcl/Tk,
as in the original Infopad UI systems, is less favorable than integration with the Java
AWT for instance_, given that Tcl/Tk is less mainstream than Java.

For these reasons, the Infopad user interface infrastructure is not complete. This
project concentrates on a new speech enabled applications infrastructure for the Infopad.

The handwriting recognition system was pushed out of the scope of this project.



0. Motivation and Goals

One of the primary goals in this project is to take the next step in the advancement
of the speech user interface infrastructure of the Infopad. The main goal is to allow
easier development of speech recognizer enabled programs, easier in this case including
enabling Java based applications. A secondary goal for this project is to create a speech
recognition architecture, which was not only programming environment independent, but
also speech recognizer independent. The recognition system needs to be available to
programmers through a well-defined interface. Furthermore, the system should support
the available commercial, speaker independent speech recognizers, such as those from TI
and Nuance that were available for this project.

The handwriting recognition infrastructure was not pursued in this project. It isa
work that is left for improvement for other developers, and is work that was placed out of

the scope of consideration for this project.

A. New Programming Environment

As described later in this report, the end architecture was developed to be
integrated with the Java programming environment, making it readily available for use by
Java programmers. The J ava programming environment was chosen for a number of
reasons. The primary reason was its recent wide availability and popularity. The Java
programming environment, together with the virtual machine on different reference
platforms, provides a lightweight, functional subsystem, which gives us the opportunity
to quickly create applications. In many ways, the basic user interface capabilities

included in the Java Abstract Window Toolkit (version 1.0.2) are the ones that are most



required by developers for the Infopad. By its nature as a stand-alone handheld device,
the Infopad application level does not require particularly complex access to different
platform-specific capabilities. Another advantage of Java is its support for network
capabilities, such as sockets. This network support proved useful in the final architecture
of the speech recognition system.

It is interesting that the Java language was originally developed for use in
lightweight standalone devices [Flan96]. This seems to make it even more appropriate
for use as the underlying environment for the new speech recognition system architecture

for the Infopad.

B. New Speech Recognition Architecture

For the new speech recognition architecture, the process in this project was to
start with a speaker-independent speech recognition engines available from TI and
Nuance and then use their available API’s to it and develop a speech recognition system
that would work with the Infopad audio system. In this process, it was also an important
consideration to develop a speech recognition interface architecture, which would allow a
program developer to access the speech recognition capabilities without too much
application customization.

The end solution for this problem was to eliminate dependence on the speech
recognizer API’s by wrapping a speech recognition server system around the speech
recognizers. In the actual application, a client module accesses the speech recognizer

server through a socket. A diagram of the architecture follows:
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Figure 2-1. Speech Enabled Application Architecture



In the diagram above, the audio input goes directly to the speech recognizer
system. This system then passes on the recognized words to the speech recognizer server
wrapper, through the recognizer’s API. The wrapper then talks through a single point of
connection, a socket, to the client program. The only things that pass through that socket
are the recognized words. The client application, which has the option of using the client
wrapper module, can then take those recognized words and translate them into desired
result actions.

As is readily seen from the architecture diagram, it is possible to use any speech
recognition engine for a given client application. For each recognizer, the speech server
wrapper needs to be rewritten to include the hooks to the speech recognition engine APL.
But with that done, the client application does not need to change.

For this project, the above architecture is demonstrated for two applications. The
first application is a simple personal information manager (PIM) which shows some of
the potential advantages of speech input in personal information creation and retrieval.
The other application is a speech-activated graph layout application, which highlights the
ability of speech to be used even for spatial creations. The design and implementation of
both of these applications is included in further sections of this report. Both of these
applications use the speech recognizer independent infrastructure, and both applications
have been tested with the TI and the Nuance recognizers.

It is possible for an application developer to use this application architecture from
languages other than Java. For instance, in ‘C’, the developer must perform the manual
socket connection operations, but having done that, he will have access to the

infrastructure.
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IIL. Speech Recognizer Comparison

For this particular project, the TI Dagger Speech recognition system (TISR) and
the Nuance Recognition System (Nuance) were used. Both of these recognizers are
speaker independent and implemented in software only. Both require audio input and a
user-specified grammar. They return a result based on (the specified recognition
grammar.

The most important step in using these speaker independent recognizers is writing
a useful speech recognition grammar. The grammar limits the recognizer’s words search
space, and a good grammar is critical for good performance and accuracy of these
recognizers, especially because they are speaker independent. The grammar used for the
applications in question is discussed in the next section of this report.

At the outset, one of the strongest limitations in the accuracy of these recognizers
is the fact that they are both speaker independent and not trainable. The trainable
recognizer written by Burstein tends to improve in performance for a given user given
training. Neither the TI nor the Nuance recognizer has this capability and recognition
tends to be either good or horrible depending on whether the user’s voice matches the
voice models used by these recognizers.

Before considering the actual use of these recognizers for the Infopad, it is useful
to highlight the differences between the two recognizers. The differences between the
two recognizers help us understand the performance differences in the Infopad speech
recognition system, as well as the potential and limitation of speech as an input

mechanism for the Infopad.
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A. TI Speech Recognizer

The TISR recognizer is smaller; it uses less memory and uses less disk storage
space. It runs as a standalone program on a machine, the engine itself simply taking in
audio input and returning a result as well as statistical parameters for that result. The
algorithms are hidden, but there are some customizable; parameters for the speech system.
However, there are fewer customizable parameters than for the Nuance system.

The TI recognizer core functionality offers little more than grammar specification
and a built-in speech model for recognition. It is speaker independent, and there is no
way to adapt or learn from recognition mistakes. It is a fairly good recognizer, but has
serious recognition problems when used in noisy environments. It also has serious
problems with voice standards that do not match its speech models. These deficiencies
were addressed by changing the grammar to improve recognition accuracy.

Its turnaround time is suitable for our applications, with good end-pointing and
recognition results being returned in at most a second from the end of end-pointing,
provided the load of the machine it is running on is low. However the initialization for

TISR takes approximately ten to fifteen seconds on a low load machine.

B. Nuance recognizer

The Nuance recognizer is undoubtedly superior in performance. Architecturally,
the Nuance recognizer always runs in the client, server mode. The server process is the
core recognizer engine and is hefty in memory requirements and CPU usage. The

recognition system has been optimized for noisy environments, in particular the default
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speech models are for a telephone line [Nuan). This being the case, it almost always
performs better than the TI Recognizer.

Any Nuance client is lightweight, since all of the computing is going on in the
Nuance server. Once a server is started, the client takes less than a second to start,
connect and initialize. When recognizing, the Nuance recognizer is also perceptibly
faster than the TI recognizer is. No doubt the Nuance event model, which uses callbacks
to pass back the recognition result, accounts for some of that performance increase from
the threads-based TI recognizer. For the Nuance recognizer, it is also possible to
distribute the recognition load, putting the hefty server process on a fast server and using
lightweight clients.

Through testing and usage, it is clear that the Nuance recognizer is superior and
should be used whenever possible. Perhaps the only case where it cannot be used is if a

Nuance license is not available for the machine in question.

C. Implementation Details
In the Infopad cluster of machines, the TI recognizer is available on all machines
whereas the Nuance recognizer is only available on badlands.eecs.berkeley.edu.

In order to use each system, a user must go through the following steps:
1. Write a grammar:

e TI: the grammar is in standard Backus Naur Form, specifying individual words or

sentences [Tisr]. The grammar used is in Appendix A.
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Nuance: the grammar can be BNF but also can include extensions, such as allowing,
optional words in a given sentence, allowing multiple repeated words. [Nuan]

. Compile the grammar with an audio model:

TI: “tisr_compile”; the grammar is compiled using a built-in audio model, which has
a 10,000 word vocabulary. Words not in the vocabplary are automatically split into
phonemes, and a utility creates a pronunciation model for those words.

Nuance: “nuance_compile”; words not in the model files vocabulary are returned to
the user with a request for manual, phonetic breakdown. The user must specify the
pronunciation of the words that Nuance does not have in its vocabulary.

. Test the compiled grammar file

TI: requires using a sample program, which implements the TISR API to read in the
compiled grammar.

Nuance: requires using a sample program, which implements the NUANCE API to
read in the complied grammar.

. Use the grammar in the specified application.

Both TISR and Nuance come with their own ‘C’ level API. At the core, both

recognizers go through the following operations: initialize, read in the compiled grammar

file, start listening, endpoint each phrase and return the text result, clean-up by freeing

memory and quit. However, Nuance performs those operations using a set of individual

Nuance-defined Event callbacks. TISR’s approach is more sequential, with the use of a

separate thread to return recognized words to the user which recognition is being

performed. These two API’s are not compatible and not interchangeable. To use one or
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the other in their specified form would limit the user to one recognizer or the other. This
incompatibility is not so much a-difference in functionality, but rather a lack of
standardization.

For this project, one of the main goals was to make the Infopad system recognizer
independent. One of the first tasks was deciding how to take TISR and Nuance and put
standard wrapper code around them so that clients could access them in individual ways.
By using a common wrapper, the recognizer independence was limited by the least
common denominator of the functionality of the two recognizers. Between TI and
Nuance, this meant that the common wrapper could not use some of the scoring
probabilities returned by the Nuance recognizer, nor could it use the Nuance routines for
reading input directly from a microphone.

Least common denominator API functionality seemed best accompanied by least
common denominator grammar functionality. Hence, the advanced features in the
Nuance grammar specification were not used. Rather, the grammars were specified using
BNF. With standard BNF, it was easy to write a program, Gramm, which translated the
TISR grammars to the Nuance grammars, ensuring the same accepted words no matter
which client application was used.

The best model for this system was to implement a generic server wrapper around the
speech recognizers, rather than rely on a specific API to fold into a written application.
The speech recognizer server wrapper creates and maintains a socket to which clients
connect. The speech recognizer wrapper just passes recognized words through that

socket.
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This model is appropriate for our task for many reasons. The first is that the
audio inputted into the recognizer comes from an AudioFile server (AF) in the Infopad
model. The client microphone audio passes to an AF server, which then redirects the
audio to an “arecord” client. This allows us to simultaneously set-up the audio input,

speech recognizer and wrapper in a single line function call using pipes:

For TI:

> arecord -e lin | tisr parse —params tisr_files.prm

For Nuance:

> arecord —-e lin | rstest -package pim2 n

arecord —e lin: acquires linear encoded speech input
tisr_parse —params tisr_files.prm: tisr_files.prm is the compiled grammar file

rstest —package pim2_n: pim2_n is the directory with the compiled grammar file

These function calls setup the recognizers and wrapper. At the end of these function
calls, these programs set up a socket and wait for a connection to that socket from a
client. Once that connection is made, the speech recognizer wrapper passes the
recognized words through that socket to the client.

The methodology described above creates a speech recognition server out of any
speech recognizer. The speech recognizer server model suits our application much better
than internally compiled speech recognizer API function calls, since the speech

recognizer cam easily be changed with no change in functionality of the code.
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Furthermore, clients simply need to talk appropriated to the speech recognition server
socket. They can be written in any language that supports sockets.

For this project, clients were implemented using Java, which has built-in socket
support. As will be described later in this report, using Java and its programming
abstractions and constructs on the client side with the speech recognition server wrapper

provides a superb architecture for writing speech activated applications for the Infopad.
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IV. Design of the speech recognizer grammar

The grammar performam:.:e in the speech recognizer system is perhaps the sihgle
biggest factor in the performance of this speech recognition system -- performance
meaning the accuracy of the word recognized compared to the word desired. This is the
most important factor here, because if a given word is ¢onsistently recognized incorrectly
or simply never recognized correctly, the functionality enable by that word will never be
able to be accessed by speech.

In our speech recognition systems, the grammars can specify one word or a phrase
of words. A phrase of words gives the impression of being naturally connected speech,
when in fact the recognizer is treating the phrase as its own entity. Hence, “please send
an e-mail to this person,” is actually said in one breath rather than as seven individual
words. This is in fact is obviously more natural for the user, even though it does lead to

the need to specify a large number of possible input phrases.

A. Handling words that sound the same.

The speech recognizer grammar greatly influences the overall accuracy of a
speaker-independent speech recognition system. Here we introduce the term “orthogonal
grammar,” by which we mean a speech recognizer grammar where the words or
recognizable phrases do not contain similar words or similar phonemes and hence are
more easily phonetically distinguishable. For instance, having the two phrases “hello”
and “hello there” in the grammar leads to potential conflict because a user could be
starting the phrase “hello there” even though the recognizer returns “hello”. “Hello” and

“hello there” in the same grammar makes the grammar less orthogonal.
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Though it is desirable to have an orthogonal grammar in a speaker independent .
recognition system, it is clearly not practical, especially if the system is to be designed for
natural speech input, speech input that a user would say in everyday speech. This is one
tradeoff that must be made in the design of a speech recognition system, which uses
speaker independent recognizers. In fact, the comproqﬁse must be made regardless of
whether the system is speaker dependent or independent, and a point that should be noted

in any speech recognition system design.

Orthogonal

Natural
speech

Figure 4-1. Orthogonal grammar vs. natural speech tradeoff

For our specific case, the grammar tradeoffs involved needing to include many
phrases that were started by the same words. Some specific phrases that ended up in the
final grammar design include “switch to contact” versus “switch to calendar”, “year-up”
versus “year-down”. Thére is also a whole set of commands that are started by the same
phrase and simply end in 2 different number or name. “Please send and e-mail to
<name>”" can take any one of “bob”, “kevin”, “group”, etc.  The set of commands that
deals with specifying a time, such as “meet at <number> o’clock” or “go to <month>

<day> <year>”, all rely on sufficient phonetic distance between the numbers and terms in

question. Luckily, most numbers are fairly phonetically distinct and also most
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recognizers are built with models that easily distinguish numbers, one of the initial tasks
of a speech recognizer. The distinction between “seven” and “eleven” often trips up the
recognizer. Also, numbers that are prefixed with a tens specification, such as “twenty-"
or “thirty-", can be easily confused, especially if the speaker does not enunciate.

There were also cases where there were many phonetically similar words, even if
the words do not start with the same phrase or even look similar. As an example, in the
Internationat Phonetic Alphabet, “alpha” representing “a” and “papa” representing “p”
are quite similar in their phonetic representation. This means that the recognizer
confused them quite readily. The solution in this case was to extend “alpha” to
“alphabet,” and extending it to three syllables distinguished “papa” from "‘alphabet”.
Initially, “alpha” was consistently recognized as “papa” by the recognizer, in essentially
100% of the cases. After changing the phrase to “alphabet”, the recognition problems
essentially were eliminated.

This highlights an interesting point about the design of grammars and the ensuing
performance with these speaker-independent recognizers. A small change in the
grammar vocabulary can change the recognition accuracy from near 0% to near 100%.
This also follows from the fact that speaker independent recognizers are fairly
deterministic. There is no dynamic learning involved and hence if the word is said the
same way, the word will be recognized in the same way. One viable solution to this is, as
we have done, change the grammar so that non-orthogonal conflicts do not exist. This is
why the grammar design is critical for performance of the recognizer.

A wider implication of this fact is that it is not necessarily useful to talk about

performance numbers in this particular speech recognition system. Performance numbers
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such as 99% accurate or 5% accurate are of dubious value since those numbers are so
much at the two extremes for these particular recognizers.

Another wider implication of this exercise is to show that this consistently
accurate or consistently inaccurate speech recognition system performance is one of the
most critical problems for a speech recognizer. A user can experience extreme frustration
using the speech recognition system if that user is unable to access a given behavior
because he is unable to say a given word. To have “papa” recognized each time “alpha”

(139 I ) ”'

is said means that spelled words will have “p’s” in their spelling as opposed to “a’s

B. Natural language in the grammar

One general trend that was discovered in the design of the grammar was the trade-
off between the grammar orthogonality and the closeness to natural language of the
required input speech. If a change needed to be made in the grammar so that the given
phrases would be more recognizable, then the speech would often times change from
being most natural to being less natural.

In the design of the grammar, it was also not possible for the grammar to include
every possible variation of a given phrase. One of the goals in the design is to pick the
most natural expression of a phrase so that a user has a high probability of choosing it
when spoken. But greater accuracy will be achieved if the user is trained and is familiar
with the specific variations of the phrases that are recognized in the limited grammar
system.

As an example of this, there are an incredible variety of possible phrases that can

be said for a greeting. Only some of them can be picked for inclusion in this grammar:
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<GREETING> ---> hello | good-bye | see ya | take care | sincerely

What this leads to is a potential ti)at the user will say some other greeting, such as
“salutations™ or “later”, and the recognizer will. be unable to recognize their phrase. A
further problem with this system is that the recognizer will not only be able to recognize
the correct phrase. It will not know whether it has the correct phrase or not, as it simply
sees and inputted stream of phonemes and tries to recognize them as best it can.

In this particular project, these concerns were addressed by carefully considering
the trade off between how natural the grammar is versus how well the grammar
performed. In designing some of the possible inputted phrases, adding “please” to the
front of the phrase changed the performance of the recognition search and improved the
grammar accuracy. This allowed the introduction of a set of “natural language”
commands, all of which needed to start with “please” to distinguish them from other

commands that are more direct command based.

C. Future of Speech Recognizer Grammars

The prospects are, however, that this will improve. There will be continued
improvement in speech recognition algorithms that will allow recognizers to more finely
distinguish between similar sounding words. This will also permit the added value of
allowing more natural phrases to be specified as input. More likely than not, in the next
generation of speech recognition systems, the natural feel of the grammar will improve
and the restrictions on the grammar will decrease.

An alternative approach which somewhat by-passes the entire issue of specifying

long phrases in a grammar involves preparing a speech recognition system that tries to
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segment and then recognize individual words no matter what phrases are said. This
system will not have to deal with the issue of a user manually specifying natural phrases,
provided the vocabulary size is large enough. But it will have added problems of

segmenting words as well as problems distinguishing words with slurred syllables.
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V. Speakable X-keyboard

One of this project’s first test applications implemented using the TI and Nuance
recognizers is the “Speakable X-keyboard.” The goal of this application is to allow the
user to speak a word representing a letter and then have the corresponding letter appear
on the screen in the window with the current input focus. This methodology eliminates
the need for a keyboard, though it still necessitates the use of a mouse to change the input
focus or change the input position.

The vocabulary chosen for this process was the International Phonetic Alphabet
[[PA], and modifications were made to it. The modifications included making words that
sounded similar to the recognizer more orthogonal either by adding syllables, in the case
of “alphabet” instead of “alpha”, or changing the structure of the word for a given letter,
as in “go-golf” instead of “golf”. The modified vocabulary was chosen after experiment
and iteration, by pronouncing the 26 words in the alphabet and seeing which were
generally clearly recognized and which were not.

The basic steps in this Speakable X-keyboard are as follows: say the word, have
the program recognize the word, translate that word to the appropriate letter, and then
echo that letter to the screen. The drawback in this approach is that X-windows system
has a built in security model, which makes it impossible to generate fake keyboard events
for windows that do not explicitly allow them [Young]. In order to accept fake keyboard
events, an xterm, for instance, needs to have the X-resource “*xallowkeypress” property
set to true, and an emacs window likewise has to have the “x-allow-keypress events”

member variable set to true [Shil97a]. The “Speakable X-keyboard” was tested for those
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two cases, but for some other applications, the X-keyboard as implemented would not .
work.

For the emacs window and the xterm, using this Speakable X-keyboard
conclusively showed that this Speakable keyboard approach was unacceptable. The input
was completely too slow; there was a high probability of inaccuracy and the need for
correction; and the interface was simply not friendly. The Speakable X-keyboard
allowed input at approximately the order of 5 words per minute, given the latency in
recognition, the need for correction, and the length and number of spoken words needed
to specify a given written word. This is a magnitude slower than a standard typing input
speed of 50 words per minute, and intolerably slower than the average speaking speed of
200 words per minute. The high inaccuracy in this method is partly a function of the
performance of the recognizer on the modified International Phonetic Alphabet
vocabulary, and unavoidably a function of the speaker’s ability to speak at the proper rate
for accurate recognition and to avoid slurring individual words representing letters. The
task of speaking a word to represent a letter does not represent a user-friendly input,
especially given that speakers are familiar with spelling words using the sounds
representing the letters, “ay”, “be”, etc., not different words represent the letters.

It is quite clear from the implementation of the Speakable X-keyboard that it is
not a good input method. It might be a more natural method if speech recognizer had the
capabilities to distinguish and recognize the 26 different sounds representing letters. But
the recognizers used in this experiment do not have that capability. It is unlikely that any
recognizers would have that capability just given the phonetic similarity of the letters

L TP > B T e ) “t” “V” €@,
Z
b b .

with the long “€” sound: “b”, “c”, “d”, “¢”, “g”, “p”,
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As far as speech input is concerned, discrete word input is not a viable input
methodology here, because discrete word input involves specifying a large, unwieldy
vocabulary for the recognizers used in this project. Furthermore, it is hard to cover all of
the required spoken words. Added to these problems is the fact that these speaker
independent recognizers are not designed for large vocgbulary, discrete word entry.

In the end, the Speakable X-keyboard showed that letter by letter, spoken word

input is not a particularly good method for Infopad users.
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V1. Java Virtual Keyboard -

The work done for the Speakable X-keyboard was not entirely abandoned,
because even though it has poor performance, the approach does provide a generic input
methodology. The Speakable X-keyboard approach is a useful backup in the case that
there is no other way to input individual letters. A Java Virtual Keyboard was chosen as
the appropriate method to input individual letters in the new infrastructure for Java
applications for the Infopad.

The Java Virtual Keyboard avoided the issue of X-event security by simply
creating keypresses for “appropriate” Java AWT text boxes and text fields. The
“appropriate” boxes are those widgets that are created using the Java classes
SpeakableText and SpeakableTextField that were defined for this project. SpeakableText
is a subclass of the java.awt.Text, and SpeakableTextField is a subclass of
java.awt.TextField.

In addition to being responsive to the Java Virtual Keyboard, these sub-classed
text fields allow speech-controlled focus, allowing the user to say the name of the text
field, for instance “name text field”, and have input focus shift to that text field.

Input focus is one of the seminal problems in speech interface design. It is clear
that in a joint mouse and speech environment, the mouse can be used for input focus.
However to fully enable hands free operation, if desired, it is useful to provide a
methodology for changing input focus not only by mouse but also by specific speech

commands.
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The other difference between the Speakable X-keyboard and the Java Virtual
Keyboard is that the Java Virtual Keyboard has an on-screen representation. Ina
keyboard-absent environment, having a familiar on-screen keyboard representation
ensures that the user can input any text that they normally would input via the keyboard.
Especially in the Infopad’s case where the speech or handwriting recognition systems are

not mature enough for arbitrary word input, the on-screen representation proves to be

very useful.

a
abandon
able
about

[SPEECH NOT AVAILABLE

Figure 6-1. Java Virtual Keyboard

Specific design choices were made for this particular graphical user interface
representation. The first choice, the size of the Java Virtual Keyboard window, followed
from the 640x480 pixel size restriction of the Infopad screen. The buttons were chosen
and sized to be as big as practical with the additional choice that the total window was to
be 640x100 in size. The graphical user interface was chosen to have a text box
representing the word that would be forwarded to the destination text box. This dual

representation makes it clear to the user that they are using the input virtual keyboard.
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The Java Virtual Keyboard itself has an upper right hand list box with a list of
2,000 most common words. As the user types using the Virtual Keyboard, the highlight
moves to the word started by the word presently being typed in the input box. The user
can complete the word by selecting it from the list box. This technique, often called
“autocompletion,” can speed up the input of words. The rate at which it speeds up input
heavily depends on the usefulness of its preloaded vocabulary and the amount that it is
used. An end user can extend the vocabulary in this particular autocompletion system
simply by pressing the “Add” button for a word that he fully finishes typing in the Java
Virtual Keyboard. Likewise words can be removed from the autocompletion using
“Del.” The modified word list can and must be manually saved off to disk using “Save”.

In an effort to conserve the window space, the Java Virtual Keyboard box was
also designed with the lower right text box, which lists the speakable words given the
current program focus. The application program using the Java Virtual Keyboard is
responsible for loading and deleting words to that list box, through an interface. The list
provides a way for the programmer to give the user a list of possible commands to say.

One important point is that the commands listed in the speech-input box can be
activated not only by speech, but also by selecting them by mouse. This provides an
alternative way to activate commands even if speech is not available or perhaps if the
speech recognition was inaccurate.

The text field above the list box shows the word that was recognized by the
speech recognizer and the command that is sent to the application. So long as the speech
recognition system s running properly, that speech input box will always show what the

speech recognizer recognized.
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Architecturally, this Java Virtual Keyboard also enables the programmer to avoid.
dealing with the plumbing associated with connecting to the speech recognition system.
The Java Virtual Keyboard implementation has in it all of the code needed to connect to
the speech recognizer and retrieve words and forward those words through an interface to
the end level applications that use it. In the architecture that was described earlier in this
report, the Java Virtual Keyboard sits on the client side of the socket of the speech
recognizer server wrapper. The Java Virtual Keyboard awaits words from that speech
recognition server, and passes those along to the application.

In end-user experiments, this Java Virtual Keyboard fulfilled its specified tasks
and functionality well. In applications that were written and are described later in this
report, the Virtual Keyboard, with its speech input list box and the ability to discretely
input any word, is extremely useful if not critical for the various applications. For a user
just starting with one of the speech activated applications, it also provides that list of
speakable vocabulary. For certain text inputs for name, address, or e-mail address, for
instance, the Java Virtual Keyboard is the obvious input method.

Originally, the Infopad’s user interface was not planned to rely on an on-screen
keyboard. The original plan was to enable all user-interface input through handwriting
recognition or speech recognition, which are arguably more natural inputs than a
keyboard. The problem with relying on handwriting and speech input alone is the
immaturity of the handwriting and speech infrastructure for handling generic
applications. In the case of handwriting input, the commercial input widget that is
installed in the Infopad is not an integral part of the system and is not widely used.

Speech activation required and still requires custom applications. In the end, it is clear
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that in the User Interface design for the Infopad, a Virtual Keyboard is necessary, if only

because the speech input and the handwriting input technologies are not yet up to par.

31



VII. Java Personal Information Manager (PIM)

Eg% Keypboard

Figure 7-1. Java PIM

One of the two applications written using the Java Speech infrastructure for the
Infopad was the speech-activated Personal Information Manager (PIM). A personal
information management application was chosen for a number of different reasons. The
first is that it is an application of great potential value to an end user if speech activated. .
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Personal Information Management is an area in which a computer organizer can help
tremendausly in keeping track of e-mail, contact information, calendar information, and
to-do list. Tt is also an application, which lends itself very nicely to speech activation.
The tasks that a PIM can control are similar to the tasks that a secretary often takes care
of Giving instructions about appointments, inputting address information, and sending
messages by speaking to a PIM can be like talking to a personal computer secretary.

Personal Information Management is one of the areas that speech recognition is
likely to lave a strong impact when speech recognition technologies become ubiquitous.
Personal handheld devices already perform PIM functions. It is likely that these PIM
devices will continue to become smaller in form factor. Below a certain size a keyboard
is impractical, and it is likely that they will rely on speech input and possibly output in
their use.

Though certainly much bigger and more functional than a tiny handheld PIM
device, the Infopad provides a good testing ground from a User Interface perspective for
the value of speech input for PIMs. The PIM designed for this project was not meant to
be functioral but not over-featured. It was meant to perform basic functions, such as the
e-mail, calendar, contact management mentioned before, but was not meant to be a
production level system.

Given this as the case, it was possible to experiment with some of the potential
interactions between different PIM elements using complex phrases for speech input.
One example of this is sending an e-mail directly to a contact list member using a natural
sentence: “please send an e-mail to this person.” The interaction, as it worked itself out

in development, is natural, even if not all variations of the phrase are available.
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Examples of these natural language phrases are given in the detailed explanations of each
element of the PIM.

One non-standard element is also included in the PIM application. A speech-
activated implementation of the ELIZA program was developed to see show how it is
already possible to enable speech input for a computer Rogerian psychologist [Eliza].
Though ELIZA might not be incorporated into a PIM, it certainly fits the analogy ofa
conversation with a secretary. The ELIZA implementation was modified from public
domain code [Eliza].

This PIM is designed to be completely hands free, if desired. A pen is not needed
for any element. Especially in conjunction with the Java Virtual Keyboard, however, pen
use makes use of the PIM more efficient and easier. Perhaps the single most common
area where a pen is desirable is for input focus, for specifying the text box that is the
current focus of Java Virtual Keyboard input. The various text fields can be specified by
speech by saying their label or by whatever element that they represent; however a simple
pen touch in that element is a more efficient way of specifying the proper input focus.

The underlying element that was chosen to enable multiple functionality required
in the PIM was the tabbed panel widget. This widget allowed us to create six different
functions in this PIM which were easily integrated. The most important benefit of the
tabbed panel widget is that it saves real estate, which is quite a premium on the Infopad’s
small screen. A tabbed element metaphor seems to be an advisable general methodology
for the programs written for the Infopad’s small screen. The tabbed widget that is used,
as well as many of the other elements and graphical widget classes, came from

Symantec’s Visual Café Pro 1.0 Java authoring tool.
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Switching between tabs by voice involves the “switch to” set of commands where
“swith to” is followed by one of “e-mail”, “contact”, “calendar”, “todo”, “scratchpad”, or
“eliza”. A switch in panels automatically updates the list of sayable elements. The
update of the sayable elements is controlled at the application level via an interface to the
Java Virtual Keyboard. A good consecjuence of the tab-enabled approach is that it
automatically leads to high rejection for commands that should not be enabled when a
given PIM element is in the foreground. For example, though the recognizer might
recognize “please send an e-mail to this person” based on speech input, that command
will have no effect if we are in the “To-do” tab. Though this does lead to the need to
repeat mis-recognized commands, at least it does not lead to the wrong behavior.

In regards to accuracy, “please” precedes complex natural language phrases,
which must be said in a single breath. If recognized at the beginning of the phrase,
“please” signals the recognizer to move down a certain tree in the grammar which
includes the more complex commands. The single breath is a requirement because the
recognizer is actually recognizing a phrase as a single element rather than a set of discrete
words. In this implementation, all complex phrases start with “please,” increasing the

accuracy of the recognizer as well as the politeness of the input.
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s TabT ester

noop Sinha
{aks@eecs.berkeley.edu, 510-848-0354(H), 510-64

{-----Original Message
{From:  Anoop Sinha [SMTP: aks(@eecs.berkeley
{Sent.  Thursday, August 07,1997 12:43 PM
o aks®@eecs.berkeley.edu
c: aks@eecs.berkeley.edu
ubject: hello

Figure 7-2. PIM E-mail

The E-mail client that was written is extremely simple yet fully functional for
basic notepad memo type tasks. The program is hard-wired to connect to the Infopad
cluster mail server, zabriskie.eecs.berkeley.edu. The first time the user request to “Get”
e-mail, either by pressing the “Get” button or by the “get my e-mail” voice command, the
program requests the username and password, both most easily inputted via the Java
Virtual Keyboard.

Saying “next” and “previous,” scrolls through messages that show up in the e-
mail catalog. If the user desires to use the e-mail application completely hands-free, he
can specify input focus by calling out “to text field”, “subject text field”, or “message text

field”, for the three input text fields, and then input letters by speech. Saying “letter”
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followed by the modified International Phonetic Alphabet word for that letter creates a .
letter.

The most interesting commands to the e-mail tab are those that involve natural
language input and do not show up in the sayable words list box. Those commands
include, “add this person to my contact list”, which takes the e-mail address and name of
a person from the message currently selected and creates an entry for that person in the
contact manager. Likewise, the command, “please send an e-mail to Bob”, looks in the
contact manager for a person with the name Bob, pulls out the e-mail address and puts
that e-mail address in the “To:” text field. To assist in composing messages quickly and
efficiently, it is possible to tell the PIM to “please say hello”. This will write add a line
with “hello” in the message text box. “Please say meet at 4 o’clock” will add the phrase
“meet at 4:00” to the e-mail to enable assisting in the scheduling of meetings.

Each of these natural language commands is appealing to an end user, who can
see them as spoken commands between individuals. These commands do not cover all
potential ways of saying various phrases, for the clear reason that it is too difficult to
specify all such commands. Furthermore, specifying too many variations would tax the
recognizers. Ultimately, the included language commands can be read from the grammar
specification elsewhere in this report.

The longer complex phrases are much more likely to be used, if available, in
speech input form compared to the shorter command phrases, such as “load”, “deliver”.
These longer complex phrases seem to be the are the area in which speech recognition
has the greatest potential, even if the complex parsing routines that must be used to

decipher the commands.

37



8¢

‘uosJad

P2103[as A[JUSLIND 9Y) JO SSIIPPE [IBW-2 Y] 0} JUSS [Iew-d Ue sajea1d aseryd snyy,  uosied
sy} 03 [1ew-9 ue puas asea|d,, s1 1afeurwr 108U Sy} UI 9]qe[IEAR dseryd oFenJue|

[eimeu suQ °,dooue, yim sues 1ey) sweu ay3 01 WIYS1Y Sy1 Ao pue £030]dwod
yoJeas oy wiroj1ad [  dooue puyy ases|d,, Jey} ST UOIOUNISIP JSIOUY “JUSW]S PIJISIp
ay3 03 WYS1YSTY 9Y1 SAOW [[1M DAL 1X3] YOI83S 3y} 0} PIPPE 19139] Yory "pIeoqiay]
[BNUIA BAR[ Y} JO UONR[dWIOd0INE SY3 33I] YONW PIsn aq UeD YOIYM ‘p[oY X2} [oIeas

Y} S1 UOIOUNSIP PapPE Uy ‘[aued qel 9A10R 2y} ST J9FeURLI 192IU0D BY) USYM Furuesw
jua1ayyIp Suraey Inq 19A0 ALIBD 9AES, pue  peO[, ‘ S19[°P,, PP, SPUBLIOD Y],

‘wesSoid [rew-o 9y} 0 AININIIS UL IB[IWIS 9Nb ST JUSWI[S J9FRURLI JOBIUOD AL,

1o0IUOD) NI "S- 24n31

Juspni§ ajenpely

TR

Jéa:‘soara@we




The contact manager itself is a difficult element to completely automate using
speech. The first problem is that the vocabulary of names is limited by the names that are
included in the grammar. This set of names in the test grammar is arbitrary and based on
the elements in the stored in the default contact manager file. Adding a new element to
the contact manager also necessitates changing the speech grammar in order to be able to
use that name in voice commands. Furthermore names are often quite distinctive and
often mispronounced. This being the case, names are almost always most likely to be

entered using the Java Virtual Keyboard rather than voice.

5 6 7
10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Figure 7-4. PIM Calendar
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The calendar tab is interesting in that it has few simple speech commands and is .
almost always will be used with complex speech input. The most common is switching
among dates by saying, “please go to <month> <date> <year>”, where the month is the
name of the month; date is a number from 1 to 31; and year as implemented can be from
1996 to 1999. That command will automatically update the calendar widget to display
the proper month and year as well as move the selection to the proper date.

The Calendar widget itself is designed to be easy to use with a pointer input, and
switching among months or years is quite simple. The added value in using speech is in
eliminating a set of additional selection or processing, reducing the number of steps for
switching a date from essentially three (using pen to select month, then day, then year) to
one (the single spoken phrase).

The calendar ﬁxnctionality is simple and unremarkable in that it simply keeps
track of a list of times 'and events for a given date. These essentially take the form of
| meetings for most individuals. The command “please add a meeting at <time> with
<name>" is available in this tab. The time is internally parsed based on what is inputted,
and the name is from the list of names that exist in the original contact list. The
command adds this entry to the calendar view. As a possible extension, it is easy to see
that it is possible to spawn off an e-mail message to the other meeting attendee, based on
a look-up from the contact list. The calendar element shows the advantages of the tight

integration of the different PIM elements.
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Figure 7-6. PIM Scratchpad
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The To-do and the Scratchpad tabs are unremarkable and do not have much
speech activation. To-do tasks are typed in by Virtual Keyboard rather than by voice,
though it is possible to negotiate through the text fields by voice. Scratchpad is basically
for drawing by pen.

Both of these tabs highlight the fact that speech input is not necessarily the
appropriate input mechanism for certain functionality. Speech activation is the wrong
choice for the To-do list and the Scratchpad, both of which itself necessitates use of the
pointer. A single input methodology is unlikely to cover all possible input needs. Two
together such as a mouse and keyboard are more powerful. Speech input and a pen input

are also together quite powerful.

| ke TabT ester

Figure 7-7. PIM Eliza
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The last and perhaps most interesting, from a speech-activated perspective,
element is the ELIZA tab. ELIZA was designed as a Rogerian psychologist to continue
to probe and ask questions based on a given set of rules in response to input from a given
user. It is 2 very simple program in that it does not comprehend information that it
receives as input. It actually moves through a state machine, parsing each individual
sentence and giving the appropriate response based on how it parses the sentence or what
keywords it recognizes.

It is an interesting task for a speech recognition system since most of the
commands that are specified in ELIZA involve simple psychological issues such as
problems and other queries. The actual ELIZA specification is fairly large, and in some
ways unlimited, since ELIZA can parse almost any sentence in someway and give the
response, “I’m not sure I understal;d you fully.” In the case of this speech recognition
system, it was critical to limit the possible inputs to Eliza to a very limited subset.
Limited even to the point of not likely covering the fully range of possibilities in a given
conversation. However, enough of the subset was included in the vocabulary to be
interesting.

Use of ELIZA certain shows promise for the use of speech in artificial
intelligence applications. Once speech recognition capabilities improve enough, ELIZA
shows that it will make sense to include free form speech input in a speech recognition
system. The free form speech input increases the friendliness and the user’s connection
with the computer system. The set of spoken phrases that ELIZA as implemented can

" recognize can be deduced from the grammar specification.
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The most important contribution of this PIM was not in the features it included in
the PIM, but rather in how it shows that a speech inputted PIM has great potential,
especially if natural language phrases are included in the input vocabulary. With speech
as input, it.is possible to have a great wealth of information transmitted in a single spoken
sentence, which might affect all of the different PIM components in a coordinated
fashion. This natural input interaction should make PIM’s a viable replacement for
cumbersame keyboard and mouse commands that are a part of computer PIM’s today.

It is clear from this implementation, that training will almost certainly be required
to enable users to know about the full range of functionality available in a speech
activated system. With some training and accurate recognition, it is possible to maneuver
quite readily among the different elements of the PIM, for instance, but some speech
activated commands will remain unknown and unused unless enabled by training. Part of
the issue in this regard is the design of the grammar and the functionality that-the

grammar covers as well as the words that the implementation recognizes.



VIII. Java Graph Editor

Another demonstration application developed using the Java Speech architecture
was the speech-enabled Java Graph Editor. This application was developed to
experiment with voice cues leading to visual results, showing us the potential future of
speech activated applications even in a visual environments.

In the case of the Java Graph Editor, the pen as input is an option. However,
commands are designed so that the entire functionality of the Java Graph Editor can be
performed with speech.

The core Graph Editor code was largely due to work by Shilman [Shil97b]. His
toolkit for graph element and editor classes for nodes and edges enabled quick creation of

the speech enabled Graph Editor program.

e T A S e s R S e e T AR

Figure 8-1. Java Graph Editor
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The Java Graph Editor program was built using the Java Virtual Keyboard infrastructure.
Though a virtual keyboard is not necessary for the program, using the Java Virtual .
Keyboard provides a consistent user view of the available speech commands in the
sayable listbox. The Virtual Keyboard also takes care of the hooks to the speech
recognizer.

The basic operations in the Graph Editor are quite simple: add node, delete node,
move node, select a node, and creéte an edge between two nodes. These operations are
enumerated in the mode buttons on the left-hand side of the application window.
Switching modes by speech is the same as speech enabling the different tabs in the PIM
application. “Switch to add mode”, or “switch to edge mode” are examples of the
required commands.

For this particular application, one point of consideration is how to determine a
created node’s initial position. The least of all evils is simply to create the node in a
random position, which is what is presently implemented. Specifying a Cartesian
position or specifying a position relative to the other nodes already in the graph is
possible, but not necessarily ideal or clear. In this case, the pointer is the more
appropriate user interface method for specifying location on the canvas; speech is not
appropriate for this visual operation. The initial position is in fact not readily specified
by voice commands alone.

Speech is also not appropriate for specifying movement of objects. Though voice
can allow us to specify node movement up, down, left, or right, it is better to rely on the

pen for moving nodes.
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Speech definitely adds value in the selection of nodes. As implemented, each
node has an associated number, to enable identification by speech. Saying “find one” or
“find seven” will move the selection to the node number in question. If deletion is the
desired operation, “delete one” or “delete seven” will delete the node with number
specified if the node exists in the graph. These operations are quick and likely quicker
than a visual search, selection, and deletion. They remove the need forva slow visual
scan.

Speech is also similarly useful for this application in the connecting of nodes. It
is much easter to specify “connect one to two and three” than it is to switch to edge mode
and draw edge elements between the nodes one and two and one and three. The
connection commands is also remarkable in its ability to concisely contain multiple
different visual commands, much like the natural language commands in the PIM
specified multiple operations.

Though this graph creation behavior is quite basic, it does show that in certain
areas speech commands are not appropriate while in other areas speech commands
improve the capabilities of the system. This is likely a general rule in the creation of
speech activated system. Translated as a design rule: speech should be chosen for certain
situations and applications and not used in others.

One final situation for this application in which speech activated control has good
potential is in the use and specification of filters. The use of filters to generate
interpretations from a graph is an idea introduced to the author by Shilman and
implemented together for a 3-d graph visualization project [Shil97c]. The same ideas

were used for this two dimensional graph layout application, in an initial form to show
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the potential use of speech for filter specification. In the case of this application, it is
possible to speak the command “show me the layer” or “show me the names”, two
different commands which apply the layer-filter and the name-filter to the graph in
question respectively. These filters simply modify the nodes by changing the shape of
the node, or the hatchmarks that are used to specify it, based on the internally stored layer
value or the name. |

It is quite clear that the concept of filters is quite powerful for analyzing a large
graph where nodes have internally stored properties and external properties, which can be
modified. Specifying filters using speech also appears quite superior to specifying filters
by name. A complex filter could be specified with a very natural language command,
such as “show me the people older than 30 who are female”. The “show me” translates
into a filter that the application determines, and the user can be hidden from the details of
the specific filter or how that filter is created.

The operation of “show me” is one of most natural commands that can bring
speech and visualization into complementary positions. In the particular case of graph
layout where often one of the applications desired is data visualization and manipulation,
speech activated commands are likely to be useful for specifying complex filters and

viewpoints.
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IX. Conclusions

This project was successful in introducing a new speech enabled application.
infrastructure for the Infopad and in showing the viability of speech as an input method
for the Infopad. The project showed that speech has strong potential in the area of
personal information management, and it is likely that speech-enabled application
developed that manage personal information will gain acceptance. The project also
showed that the usefulness of speech does not stop with PIMs, however, and can extend
to a wide variety of command applications, even those with visual feedback such as a
graph editor.

Speech is apparently most useful in conjunction with other input methodologies,
and the combination of speech input and a pen is quite powerful for tablet based input.
However, the work in this project suggests that a virtual keyboard is the best option, at
the moment, for free form text input method. Though speech and pen input together are
powerful, the general input provided by the keyboard suggest that it should be included
as an alternative in systems requiring generic input.

Ultimately, application developers can easily use this Java-based architecture for
their own programs. The speech server wrapper functionality is generic, and users who
do not want to use the provided Java Virtual Keyboard or who want to use speech server
technology for some other task, can modify the use of the speech recognition server
wrapper to their own needs. Though it would require some coding, it is not difficult to
use the speech server wrapper around any other sort of recognizer, perhaps even one day

a speedy hardware enhanced speech recognition system.
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Appendix A. Grammar

start (<START>) .

export (<START>) .

<START> ——-> <START1> | <IPA> | <KEYBOARD> | <PIM> | <GRAPH> | <NL>.
<START1> —--> go to sleep | wake-up | stop listening | start feedback | stop
feedback.

<NUMBER> --~-> number <NUMBER2> | <NUMBER2>.

<NUMBER2> —~-> <DIGITS> | <TEENS> | <TWENTIES> | <THIRTIES> | <NUMBER3>.
<NUMBER3> —---> <FORTIES> | <FIFTIES> | <SIXTIES> | <SEVENTIES> | <NUMBER4>.
<NUMBER4> ---> <EIGHTIES> | <NINETIES>. .

<DIGITS> —--> zero | one | two | three | four | five | six | <DIGITS2>.

<DIGITS2> ---> seven | eight | nine | oh.
<TEENS> ——-> ten | eleven | twelve | thirteen | fourteen | <TEENS2>.
<TEENS2> ---> fifteen | sixteen | seventeen | eighteen | nineteen.

<TWENTIES> ---> twenty | twenty-one | twenty-two | twenty-three | <TWENTYZ2>.
<TWENTY2> ---> twenty-four | twenty-five | twenty-six | <TWENTY3>.
<TWENTY3> ---> twenty-seven | twenty-eight | twenty-nine.

<THIRTIES> —---> thirty | thirty-one | thirty-two | thirty-three | <THIRTY2>.
<THIRTY2> -——> thirty-four | thirty-five | thirty-six | thirty-seven |
<THIRTY3>.

<THIRTY3> —--> thirty-eight | thirty-nine.

<FORTIES> ——-> forty | forty-one | forty-two | forty-three | <FORTY2>.
<FORTY2> --—> forty-four | forty-five | forty-six | forty-seven | <FORTY3>.
<FORTY3> ---> forty-eight | forty-nine.

<FIFTIBS> ---> fifty | fifty-one | fifty-two | fifty-three | <FIFTY2>.
<FIFTY2> ---> fifty-four | fifty-five | fifty-six | fifty-seven | <FIFTY3>.
<FIFTY3> =~--> fifty-eight | fifty-nine.

<SIXTIES> ---> sixty | sixty-one | sixty-two | sixty-three | <SIXTY2>.

<SIXTY2> ———> sixty-four | sixty-five | sixty-six | sixty-seven | <SIXTY¥3>.
<SIXTY3> ~--> sixty-eight | sixty-nine.

<SEVENTIES> ---> seventy | seventy-one | seventy-two | seventy-three |
<SEVENTYZ2>.

<SEVENTY2> —--> seventy-four | seventy-five | seventy-seven | seventy-seven |
<SEVENTY3>.

<SEVENTY3> ---> seventy-eight | seventy-nine.

<EIGHTIES> —--> eighty | eighty-one | eighty-two | eighty-three | <EIGHTY2>.
<EIGHTY2> -—-> eighty-four | eighty-five | eighty-eight | eighty-seven |
<EIGHTY3>.

<EIGHTY3> ——-> eighty-eight | eighty-nine.

<NINETIES> ---> ninety | ninety-one | ninety-two | ninety-three | <NINETY2>.
<NINETY2> —-> ninety-four | ninety-five | ninety-nine | ninety-seven |
<NINETY3>.

<NINETY3> -—-> ninety-eight | ninety-nine.

<IPA> --—> toggle letter mode | letter <IPAl> | letter <KEYBOARD>.

<IPA1> -—> alphabet | bravo | charlie | delta | echo | foxtrot | go-golf |
<IPA2>.

<IPA2> -—> hotel | india | juliett | kilo | lima | mike | november | <IPA3>.

<IPA3> -—> oscar | papa | quebec | romeo | sierra-song | tango | uniform |
<IPA4>.
<IPA4> -—> victor | whiskey | x-ray | yankee | zulu.

<KEYBOARD> ——-> space-bar | return | tab-key | backspace |<KEYBOARDZ>.
<KEYBOARDZ> —---> shift | alt-key | control | clear.

<MONTH> —> january | february | march | april | may | june | <MONTH2>.
<MONTH2> —-> july | august | september | october | november | december.

<PIM> ---3> <DEFAULT> | <EMATIL> | <CONTACT> | <CALENDAR> | <SCRATCH> | <PIM2>.
<PIM2> -—-> <CHECK> | <TODO> | quit this program.

<DEFAULT> ---> sleep | wake-up | load | save | add | delete | previous | next |
<DEFAULTZ2>.

<DEFAULT2> ---> switch to <PANEL>.

<PANEL> —-—> e-mail | contact | calendar | to-do | saratch-pad | eliza.
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<EMAIL> —--> <EMAIL1>. A
<EMAIL1> —--> deliver | compose | reply | get my e-mail | <EMAILF> text field.

<EMAILF> ---> to | subject | message.
<CONTACT> —-—> search | <CONTACT1> text field. .
<CONTACT1> -—-> search | name | e-mail | business | home | fax | <CONTACT2>.

<CONTACT2> ---> other | title | company | address-one | <CONTACT3>.
<CONTACT3> ---> address-two | city | state | zip | country.
<CALENDAR> —---> <CALENDAR1> text field | <CALENDAR2>.

<CALENDAR1> ---> time | task.

<CALENDAR2> —--> year-up | year-down | <MONTH> | <MONTH> <NUMBER>.
<SCRATCH> ---> <SCRATCH1>.

<SCRATCH1> -——> black | white | clear.

<CHECK> —-> <CHECK1l> text field.

<CHECK1l> —-—-> number | date | payee.

<TODO> —---> <TODOl> text field.

<TODO1l> —-> task | <DIGITS>.

<NL> ---> please <NL2>.

<NL2> --—> <NLEMAIL> | <NLCONTACT> | <NLCALENDAR> | <ELIZA>.
<NLEMAIL> ---> send an e-mail to <NAMES> | <NLE2>.

<NLE2> -—> send an e-mail to person <NUMBER>| say <SAYING> | <NLE3>.
<NLE3> ---> compose an e-mail | compose an e-mail to person <NUMBER> | <NLE4>.
<NLE4> =--——> <NLE5>.

<NLES5> --——> e-mail <NBMES> | <NLE6>.

<NLE6> ---> add this person to my contact list.

<NAMES> —--> anoop | bob | yeh | sam | tony | fred | kevin | group.
<SAYING> —--> <GREETING> | <MEET> | <NAMES>.

<GREETING> -—-> hello | good-bye | see ya | take care | sincerely.
<MEET> ---> meet at <MEETR> | meet at <MEETR> on <DATE> | meet on <DATE>.
<MEETR> —---> <NUMBER> o'clock | noon | midnight | <MEETR1>.

<MEETR1> —---> <NUMBER> fifteen | quarter past <NUMBER> | <MEETR2>.
<MEETR2> -—> <NUMBER> thirty | half past <NUMBER> | <MEETR3>.
<MEETR3> ---> <NUMBER> forty-five | quarter til <NUMBER>.

<DATE> ---> <MONTH> <NUMBER2> nineteen <NINETIES> | <MONTH> <NUMBER2>.
<NLCONTACT> ---> send an e-mail to this person | find <NAMES>.
<NLCALENDAR> ---> go to <DATE> | add a meeting at <MEETR> | <NLC2>.
<NLC2> ---> add a meeting at <MEETR> with <NAMES> | with <NAMES>.
<ELIZA> ---> write <ELIZA2> | eliza <ELIZA2> | computer <ELIZA2>.
<ELIZA2> ——--> <E1> | <E2> | <E3> | <E4> | <E5> | <E6> | <E7>.

<El> ---> i remember my <ZNOUN> | i remember my <ZPOS> <ZNOUN>.

<E2> ---> i am <ZADJ> | i was <ZADJ>.

<E3> —---> am i <ZADJ> | are you <Z2ADJ> | were you <ZADJ>.

<E4> ---> why don't you | why can't i | why not.

<ES5> ---> yes | no | what | because | why | how | hello | computer.

<E6> —---> sorry | just because | none | perhaps.

<E7> ---> always | alike | if | bye | good bye.

<ZNQUN> -—-> mom | dad | brother | sister | mother | father | <ZN1>.
<ZN1> ---> dog | cat | computer | car | fish | house | everyone | <ZN2>.

<ZN2> ---> everybody | nobody | noone | wife | child | family.
<ZADJ> ---> <ZADV> <ZAl> | <2ZAl>.

<ZA1> ---> happy | sad | bad | good | funny | serious | curious | <2A2>.
<2A2> ---> bored | scared | excited | experienced | fine | <ZA3>.

<ZA3> ---> ecstatic | excellent | terrible | horrible | unhappy | <2ZA4>.
<ZR4> ---> depressed }| sick | elated | glad | better.

<ZADV> ---> very | not wvery | terribly | amazingly | especially | <ZAD1l>.
<ZAD1> ---> always | never | forever.

<ZPOS> ---> your | my | our | her | his.

<GRAPH> ---> <GMODES> | save file | load file | look up | create | rename |
<GRAPH2>.

<GMDDES> —--> switch to <GMODEl> mode | <GFILTER>.

<GMODE1l> ---> move | add | delete | edge | select. .

<GRAPH2> -—> <GDO> <NUMBER> | delete selected | remove selected | <GRAPH3>.
- <GDO> ---> find | unselect | select | delete | remove.

<GRAPH3> ---> connect <NUMBER> <GCN> | disconnect <NUMBER> <GCN>.



<GCN> —==> <GN> | <GN> <GN> | <GN> <GN> <GN> | <GN> <GN> <GN> <GN> |
<GCN2> ———> <GN> <GN> <GN> <GN> <GN> |

<GN> <GN> <GN> <GN> <GN> <GN> |

<GCN2>.

<GCN3> —-——> <GN> <GN> <GN> <GN> <GN> <GN> <GN> | <GN> <GN> <GN> <GN> <GN> <GN>

<GN> <GN>.

<GN> —=--> <GCON> <NUMBER>.
<GCON> —---> and | with | to |
<GFILTER> ---~> add filter |
<GF2> ---> show me the names |

from.
add <GFTYPES> filter |
delete filter

<GF2>.
<GF3>.

show me the layers |
| delete filter <NUMBER> |

<GF3> ---> show me the money | select filter <NUMBER>.

<GFTYPES> ——-> reset | name | layer.

Location of Files (in Infopad cluster):

/toals/ui/speechDemos/
/tools/ui/speechDemos/Gramm/
/tools/ui/speechDemos/Jgraph/
/tools/ui/speechDemos/Pim/
/tools/ui/speechDemos/Nuance/
/tools/ui/speechDemos/TI/
/tools/ui/speechDemos/noise/

/tools/ui/speechDemos/servenuance

/tools/uifspeechDemos/startnuance
/tools/ui/speechDemos/startti

/tools/ui/speechDemos/runpim*
/tools/ui/speechDemos/rungedit*

grammar translation program
Java Graph Editor

Java PIM

Nuance recognizer files

TI recognizer files

noise reduction files

<GCN3>.’

start Nuance server recognizer on

badlands.eecs.berkeley.edu only
start Nuance server wrapper
start TI recognizer and server
wrapper

start the PIM

start the GraphEdit program
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