

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A NEW SPEECH ENABLED APPLICATIONS

INFRASTRUCTURE FOR THE INFOPAD

by

Anoop Kumar Sinha

Memorandum No. UCB/ERL M98/3

14 January 1998

t'

A NEW SPEECH ENABLED APPLICATIONS

INFRASTRUCTURE FOR THE INFOPAD

by

Anoop Kumar Sinha

Memorandum No. UCB/ERL M98/3

14 January 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A New Speech Enabled Applications Infrastructure for the Infopad

By

Anoop Kumar Sinha

Masters of Science

Engineering-Electrical Engineering and Computer Sciences
University of California Berkeley

Abstract

Anew speech enabled applications infrastructure for the Infopad isproposed and
demonstrated. The architecture allows use of arbitrary recognizer engines and eliminates
thedependency ona specific recognizer or specific recognizer API. The Nuance
recognizer system and TIDagger system are used as test speech recogmtion engines.
The infrastructure allows easy speech activation ofJava programs. AJava Virtual
Keyboard, a Java Personal Information Manager, and a Java Graph Editor were created
using the infrastructure. These demonstration programs give some insight into the
capabilities and limitations ofspeech as an input mechanism for portable multimedia
devices, such as the Infopad.

Table of Contents

I. Background: Infopad User Interface 4

A. Peninput ^

B. Speech input ^

n. Motivation and goals ^

A. New programming environment 7

B. New speech recognition architecture 8

in. Speech recognizer comparisons 11

A. TIDagger speech recognizer 12

B. Nuance speech recognizer 12

C. Implementation details 13

rV. Design of the speech recognizer grammar 18

A. Handling words that sound the same 18

B. Natural language inthegrammar 21

C. Future ofspeech recognizer granunars 22

V. Speakable X-keyboard 24

VI. Java Virtual Keyboard 27

Vn. JavaPersonal Information Manager (PIM) 32

Vm. Java Graph Editor ^3

IX. Conclusions

X. Bibliography

Appendix A: Grammar and Location ofFiles 51
Acknowledgments

List of Figures

Figure 2-1. Speech Enabled Application Architecture ^

Figure 4-1. Orthogonal grammar vs. natural speech tradeoff. 19

Figure 6-1. Java VirtualKeyboard

Figure 7-1. JavaPIM

Figure 7-2. PIM E-mail

Figure 7-3. PIM Contact

Figure 7-4. PIM Calendar

Figure 7-5. PIM To-do

Figure 7-6. PIM Scratchpad

Figure 7-7. PIM Eliza

Figure 8-1. Java Graph Editor

I. Background: Infopad User Interface

TheInfopad is as a standalone, wireless network terminal, connected through high

bandwidth wireless link to a basestation. This basestation is in turn connected via wire to

a Sun Unix workstation. All of the Infopad computation is performed on the Sun

workstation, only theuser interface output and theuser interface input are performed at

the actual tenninal itself. TheInfopad is in essence an X-terminal, but onethat is

portable as well as wireless.

TheInfopad hasno keyboard or mouse. It only has pen and speech as input. An

infrastructure,called Infonet, has been developed to handle these forms of input across

thewireless Infopad link [Nara96b]. Tools have been developed to translate pen input to

mouse press and drag input for control of menus and windows [Nara96a]. Extensions to

theInfonet ^stem have also enabled audio input and output at theInfopad terminal,

specifically using a modified version of the AudioFile (AF)client-server system

originally developed by DEC [AF].

A. Pen Input

In itspresent state, thepen is best used for manipulation tasks rather than input

tasks, pointing and dragging rather thanpeninput. One reason forthisis that an

integrated handwriting recognizer is notavailable fortheInfopad. Handwriting

recognition systems are available, such asthe QuickPrint system by Lexicus and the

handwriting recognition system developed by Narayanaswamy as part ofhis doctoral

thesis [Nara96a]. There isno handwriting recognition system integrated into the Infopad

for use across all applications, just as thereis no handwriting recognition system

integrated into the X-windows environment.

The original handwriting recognizer for the Infopad and much ofthe pen input

infrastructure werewritten byNarayanaswamy [Nara96a]. Essentially thissystem

accesses the handwriting recognition functionality through a specific API, with favorable

integration with applications written intheTcl/Tk scripting and user interface language.

Applications must becompiled with the Narayanaswamy's recognizer library. This

infrastructure works and has been used to create a few demonstrable programs such as a

SPICE input editor and a handwriting input widget [Nara96a].

The standalone QuickPrint system works as follows. Individual letters aredrawn

into a small window. The individual letters are recognized and then can be sent to any

given window as X-windows KeyPresses thatthe user designates bypointing. This

system is clumsy and ineffective, not only because of the multiple steps involved in

inputting a simple word, but also in the ineffectiveness of the recognizer.

B. Speech Input

The original speech interface for the Infopad is similar in architectureto

Narayanaswamy's handwriting input system. Theaudio input mechanism is essentially a

modified version ofthe AudioFile server system and is quitegeneric in allowingaudio

inputand output. The original speech recognizer, written byBurstein, is a fairly

sophisticated speaker dependent, trainable recognition system [Burs96]. Like the

handwriting system, this recognizer requires use ofBurstein's API and compilation with

Burstein's libraries for the speech system. This system has been demonstrated

applications such as the Spice editor and a speech input widget [Burs96].

In the Infopadapplication environment, dependency on anyspecific speech

recognizer API or library is not ideal. Dependency on a specific API restricts the user to a

specific speechrecognizer, since there is no standard speech recognizer API. Since there

aremany speech recognition engines available of differing performance and suitability,

the dependency on a specific API is notfavorable. Furthermore, integration with Tcl/Tk,

as in the originalInfopadUI systems, is less favorable than integration with the Java

AWT for instance, given that Tcl/Tk is less mainstream than Java.

For these reasons, the Infopad userinterface infrastructure isnot complete. This

project concentrates ona new speech enabled applications infrastructure for the Infopad.

Thehandwriting recognition system was pushed out of the scope of thisproject.

n. Motivatioii and Goals

One ofthe primary goals inthisproject isto take thenext step inthe advancement

ofthespeech user interface infrastructure ofthe Infopad. The main goal is to allow

easier development of speech recognizer enabled programs, easier inthis case including

enabling Java based applications. Asecondary goal for this project is to create a speech

recognition architecture, which was notonly programming environment independent, but

also speech recognizer independent. The recognition system needs to beavailable to

programmers through a well-defined interface. Furthermore, the system should support

the available commercial, speaker independent speech recognizers, such asthose fi'om TI

and Nuance that were available for this project.

The handwriting recognition infrastructure was not pursued in this project. It is a

work that isleft for improvement for other developers, and is work that was placed out of

the scope ofconsideration for this project.

A. New Programming Environment

As described later inthis report, the end architecture was developed to be

integrated with theJava programming environment, making it readily available for use by

Java programmers. The Java programming environment was chosen for a number of

reasons. Theprimary reason was itsrecent wide availability and popularity. The Java

programming environment, together with the virtual machine ondifferent reference

platforms, provides a lightweight, functional subsystem, which gives us the opportunity

to quickly create applications. In many ways, the basic user interface capabilities

included in the Java Abstract Window Toolkit (version 1.0.2)are the ones that are most

required by developers for theInfopad. Byits nature asa stand-alone handheld device,

theInfopad application level does not require particularly complex access to different

platform-specific capabilities. Another advantage of Java is its support for network

capabilities, such as sockets. This network support proved useful in thefinal architecture

ofthe speech recognition system.

It is interesting thatthe Java language was originally developed for use in

lightweight standalone devices [Flan96]. This seems to make it even more appropriate

for use as the underlying environment for the newspeech recognition system architecture

for the Infopad.

B. New Speech Recognition Architecture

For the new speech recognition architecture, the process in this project was to

start with a speaker-independent speechrecognition engines available from TI and

Nuance and then use their available API's to it and develop a speech recognition system

that would woricwith the Infopad audio system. In this process, it was also an important

considerationto develop a speech recognition interfacearchitecture, which would allow a

program developer to access the speech recognition capabilities without too much

application customization.

The end solution for this problemwas to eliminate dependence on the speech

recognizerAPI's by wrapping a speechrecognition serversystemaround the speech

recognizers. In the actual application, a clientmodule accesses the speech recognizer

server through a socket. A diagram of the architecture follows:

AudtoFUe (aiecord)

audio input

Speech recognizer
(T1 or Nuance)

API iiinction calls

f

Speech server wrapper
(Passes through recognized words)

f

SOCKET

r

Speech client interface
(in Java; Accepts recognized words)

Java inteiface
r

Speech activated
application

(in Java)

Figure 2-1. Speech EnabledApplication Architecture

In the diagram above, theaudio input goes directly to thespeech recognizer

system. This system then passes ontherecognized words to the speech recognizer server

wrapper, through the recognizer's API. The wrapper then talks through a single point of

connection, a socket, to theclient program. The only things that pass through that socket

are therecognized words. The client application, which has the option ofusing theclient

wrapper module, canthen take those recognized words and translate them into desired

result actions.

As is readily seen from the architecture diagram, it is possible to useany speech

recognition enginefor a given clientapplication. For each recognizer, the speech server

wrapperneeds to be rewritten to include the hooks to the speech recognition engine API.

But with that done, the client application does not need to change.

For this project, the above architecture is demonstrated for two applications. The

first applicationis a simple personal information manager (PIM)which showssomeof

the potential advantages of speech input in personal informationcreation and retrieval.

The other application is a speech-activated graph layoutapplication, whichhighlights the

ability ofspeech to be used even for spatial creations. The design and implementation of

both ofthese applications is included in further sections ofthis report. Both ofthese

applications use the speech recognizer independent infrastructure, and both applications

have been tested with the TI and the Nuance recognizers.

It is possible for an application developer to use this application architecture from

languages other than Java. For instance, in 'C, the developer must perform the manual

socket connection operations, but having done that, he will have access to the

infrastructure.

10

HL Speech Recognizer Comparison

For this particular project, the TI Dagger Speech recognition system (TISR).and

the Nuance Recognition System(Nuance) were used. Both of these recognizers are

speaker independent and implemented in software only. Both require audio input and a

user-specifiedgrammar. They return a result based on the specified recognition

grammar.

The most important step in using these speaker independent recognizers is writing

a useful speech recognition grammar. Thegrammar limits the recognizer's words search

space, and a good grammar is critical for good performance and accuracy ofthese

recognizers, especially because theyare speaker independent. Thegrammar used for the

applications in question is discussed in the next section ofthis report.

At the outset, one of the strongest limitations in the accuracy ofthese recognizers

is the fact that they are both speaker independent and not trainable. Thetrainable

recognizer writtenbyBursteintends to improve in performance for a given usergiven

training. Neitherthe TI nor the Nuance recognizer has thiscapability and recognition

tends to be eithergoodor horrible depending onwhether theuser'svoice matches the

voice models used by these recognizers.

Beforeconsidering the actual useof these recognizers for the Infopad, it is useful

to highlightthe differences between the two recognizers. The differences betweenthe

two recognizers helpus understand the performance differences in the Infopad speech

recognition system, as well as the potential and limitation of speech as an input

mechanism for the Infopad.

11

A. TI Speech Recognizer

The TISR recognizer is smaller; it uses less memory and uses less disk storage

space. It runs as a standalone program on amachine, the engine itself simply taking in

audio input and returning a result as well as statistical parameters for that result. The

algorithms are hidden, but there are some customizable parameters for the speech system.

However, there are fewer customizable parametersthan for the Nuance system.

The TIrecognizer core functionality offers little more than grammar specification

and a built-in speech model for recognition. It is speaker independent, and there isno

way to adapt or learn from recognition mistakes. It isa fairly good recognizer, but has

serious recognition problems when used innoisy environments. It also has serious

problems with voice standards that do not match its speech models. These deficiencies

were addressedby changingthe grammar to improve recognition accuracy.

Its tumaround time is suitable for our applications, with goodend-pointing and

recognition results beingreturned in at most a second from the end of end-pointing,

provided the load of the machine it is running onis low. However the initialization for

TISRtakes approximately ten to fifteen seconds on a lowload machine.

B. Nuance recognizer

The Nuance recognizer isundoubtedly superior in performance. Architecturally,

the Nuance recognizer always runs in the client, server mode. The server process isthe

core rBCognizer engine and is hefty inmemory requirements and CPU usage. The

recognition system has been optimized for noisy environments, in particular the default

12

speech models are for a telephone line [Nuan]. This being the case, it almost always

performsbetter than the TI Recognizer.

Any Nuance client is lightweight, since all ofthe computing isgoing on in the

Nuanceserver. Once a serveris started, the clienttakes less than a second to start,

connect and initialize. When recognizing, the Nuance recognizer is also perceptibly

faster than the TIrecognizer is. No doubt the Nuance event model, which uses callbacks

to pass back die recognition result, accounts for some ofthat performance increase from

the threads-based TI recognizer. For the Nuance recognizer, it is also possible to

distribute the recognition load, putting the hefty server process on afast server and using

lightweight clients.

Through testing and usage, itis clear that the Nuance recognizer is superior and

should be used whenever possible. Perhaps the only case where it cannot be used is ifa

Nuance license is not available for the machine in question.

C. Implementation Details

In the Infopad cluster ofmachines, the TI recognizer is available on all machines

whereas theNuance recognizer isonly available on badlands.eecs.berkeley.edu.

In order to useeach system, a user must gothrough thefollowing steps:

1. Write a grammar:

• TI: the grammar is in standard Backus Naur Form, specifying individual words or

sentences [Tisr]. Thegrammar used is in Appendix A.

13

• Nuance: the grammar can be BNF but also can include extensions, such as allowing,

optional words in agiven sentence, allowing multiple repeated words. [Nuan] .

2. Compile the granunar with an audio model:

• TI: "tisrjcompile"; the grammar is compiled using abuilt-in audio model, which has

a 10,000 word vocabulary. Words not inthe vocabulary are automatically split into

phonemes, anda utility creates a pronunciation model forthose words.

• Nuance: "nuance__compile"; words not in the model files vocabulary are returned to

the user with a request for manual, phonetic breakdown. The user must specify the

pronunciation ofthe wordsthatNuance does not have in its vocabulary.

3. Test the compiled grammar file

• TI: requires using a sample program, which implements the TISR API to read inthe

compiled grammar.

• Nuance: requires using a sample program, which implements theNUANCE API to

read in the complied grammar.

4. Use the grammar in the specified application.

Both TISR and Nuance come with their own 'C level API. At the core, both

recognizers go through the following operations: initialize, read inthe compiled grammar

file, startlistening, endpoint each phrase and return the text result, clean-up by freeing

memory and quit. However, Nuance performs those operations using a setof individual

Nuance-defined Event callbacks. HSR's approach is more sequential, withthe use of a

separate thread to return recognized words to theuser which recognition is being

performed. Thesetwo API's are not compatible andnot interchangeable. To use one or

14

the other intiieir specified form would limit the user toone recognizer orthe other. This

incompatibility is notsomuch a difference infunctionality, but rather a lack of

standardization.

Forthis project, one ofthe main goals was to make the Infopad system recognizer

independent. One ofthe first tasks was deciding how to take TISR and Nuance and put

standard wn^per code around them so that clients could access them in individual ways.

By using a common wrapper, the recognizer independence was limited by the least

common denominator of thefunctionality of thetwo recognizers. Between TI and

Nuance, this meant that the common wrapper could not use some ofthe scoring

probabilities returned by the Nuance recogmzer, nor could it use the Nuance routines for

reading input directly from a microphone.

Least common denominator API functionality seemed best accompanied by least

common denominator grammar functionality. Hence, the advanced features in the

Nuance grammar specification were not used. Rather, the grammars were specified using

BNF. With standard BNF, itwas easy to write a program, Gramm, which translated the

TISR grammars tothe Nuance grammars, ensuring the same accepted words no matter

which client application was used.

The best model for this system was toimplement ageneric server wrapper around the

speech recognizers, rather than rely on aspecific API to fold into awritten application.

The speech recognizer server wrapper creates and maintains asocket towhich clients

connect. The speech recognizer wrapper just passes recognized words through that

socket.

15

This model is appropriate for our task for many reasons. The first is that the

audio inputted into the recognizer comes from an AudioFile server (AF) in the Infopad

model. The client microphone audio passes to an AF server, which then redirects the

audio to an"arecord" client. This allows us to simultaneously set-up the audio input,

speech recognizer and wrapper ina single line function call using pipes:

ForTI:

> arecord -e lin I tisr_parse -params tisr_files.prm

For Nuance:

> arecord -e lin I rstest -package pim2_n

arecord —e lin: acquires linearencoded speech input

tisr__parse -params tisr__files.prm: tisr_files.prm is the compiled grammar file

rstest-package pim2_n: pim2_n isthe directory with the compiled grammar file

These function calls setup therecognizers and wrapper. Attheend ofthese function

calls, theseprograms setup a socket and wait for a connection to that socket from a

client. Once that connection is made, the speech recognizerwrapper passes the

recognized words through that socketto the client.

The methodology described above creates a speech recognition server out ofany

speech recognizer. The speech recognizer server model suits our application much better

than internally compiled speech recognizer API function calls, since the speech

recognizer easily be changed with no change in functionality ofthecode.

16

Furthermore, clients simply need to talk appropriated to thespeech recogmtion server

socket They can be written in any language that supports sockets.

Forthis project, clients were implemented using Java, which has built-in socket

support. As will be described later in this report, using Java and its programming

abstractions and constructs on the client side with the speech recognition server wrapper

provides a superb architecture for writing speech activated applications for the Infopad.

17

IV. Design of the speech recognizer grammar

The grammar performance inthe speech recognizer system is perhaps the single

biggest factor in the performance of this speech recognition system —performance

meaning the accuracy ofthe word recognized compared tothe word desired. This is the

most important factor here, because if agiven word is consistently recognized incorrectly

orsimply never recognized correctly, thefunctionality enable by that word will never be

able to be accessed by speech.

In ourspeech recognition systems, the grammars can specify one word or a phrase

ofwords. A phrase ofwords gives the impression ofbeing naturally connected speech,

when in fact the recognizer is treating thephrase as itsown entity. Hence, "please send

ane-mail to this person," is actually said in one breath rather than as seven individual

words. This is in fact is obviously more natural for theuser, even though it does lead to

the need to specify a large number ofpossible input phrases.

A. Handling words that sound the same.

The speech recognizergrammargreatly influences the overall accuracy ofa

speaker-independent speech recognition system. Here we introduce theterm "orthogonal

grammar," by which we mean a speechrecognizer grammar wherethe words or

recognizable phrases do not contain similar words or similar phonemes and hence are

more easily phonetically distinguishable. Forinstance, having the two phrases "hello"

and "hellothere" in the grammar leads to potential conflict because a usercould be

starting thephrase "hello there" even though the recognizer returns "hello". "Hello" and

"hellothere" in the samegrammarmakes the grammar less orthogonal.

18

Though it isdesirable tohave an orthogonal grammar in a speaker independent

recognition system, it is clearly not practical, especially ifthe system is to be designed for

natural speech input, speech input that auser would say in everyday speech. This is one

tradeoffthat must be made in thedesign ofa speech recognition system, which uses

speaker independent recognizers. In fact, the compromise must be made regardless of

whether the system is speaker dependent or independent, and apoint that should be noted

in any speech recognition systemdesign.

Orthogonal
grammar

Natural

speech

Figure 4-1. Orthogonal grammar vs. natural speech tradeoff

For our specific case, the grammar tradeoffs involved needing to include many

phrases that were started by the same words. Some specific phrases that ended up in the

final grammar design include "switch to contact" versus "switch tocalendar', year-up

versus "year-down" There is also awhole set ofcommands that are started by the same

phrase and simply end in adifferent number or name. "Please send and e-mail to

<name>" can take any one of**bob", "kevin", *'group", etc. The set ofcommands that

deals with specifying atime, such as "meet at <number> o'clock" or "go to <month>

<day> <year>", all rely on sufficient phonetic distance between the numbers and terms in

question. Luckily, most numbers are fairly phonetically distinct and also most

19

recognizers are built with models that easily distinguish numbers, one ofthe initial tasks

ofa speech recognizer. The distinction between "seven" and "eleven" often trips up the

recognizer. Also, numbers that are prefixed with a tens specification, such as "twenty-'

or"thirty-", canbe easily confused, especially if thespeaker does not enunciate.

There were also cases where therewere many phonetically similar words, even if

thewords do not startwith the same phrase or even look similar. As an example, in the

InternationalPhonetic Alphabet, "alpha" representing "a" and "papa" representing "p"

are quite similar in their phonetic representation. This means that the recognizer

confused them quite readily. The solution in this case wasto extend "alpha"to

"alphabet," and extending it to three syllables distinguished "papa" from "alphabet".

Initially, "alpha"was consistently recognized as"papa" bythe recognizer, in essentially

100% ofthe cases. After changing the phraseto "alphabet", the recognition problems

essentially were eliminated.

Thishighlights an interesting point about the design of grammars and the ensuing

performance with these speaker-independent recognizers. A small change in the

grammarvocabulary can changethe recognition accuracy from near0% to near 100%.

This also follows from the fact that speaker independent recognizers are fairly

deterministic. There is no dynamic learning involved and hence if the word is said the

sameway, the word will be recognized in the sameway. One viable solution to this is, as

we have done, changethe grammar so that non-orthogonal conflicts do not exist. This is

why the grammar design is critical for performance ofthe recognizer.

A wider implication of this fact is that it is not necessarily useful to talk about

performance numbers in this particular speech recognition system. Performance numbers

20

such as 99% accurate or 5% accurate are of dubious value since those numbers are so

much at the two extremesfor these particular recognizers.

Another wider implication ofthis exercise is to show that this consistently

accurate orconsistently inaccurate speech recognition system performance is one ofthe

most critical problems for aspeech recogmzer. Auser can experience extreme frustration

using the speech recognition system ifthat user is unable to access agiven behavior

because he is unable to say agiven word. To have "papa" recognized each time alpha

is said means that spelled words will have "p's" in their spelling as opposed to a s !

B. Natural language in the grammar

One general trend that was discovered in the design ofthe grammar was the trade

offbetween the grammar orthogonality and the closeness to natural language ofthe

required input speech. Ifachange needed to be made in the grammar so that the given

phrases would be more recognizable, then the speech would often times change from

beingmost natural to beingless natural.

In the design ofthe grammar, it was also not possible for the grammar to include

every possible variation ofagiven phrase. One ofthe goals in the design is to pick the

most natural repression ofaphrase so that auser has ahigh probability ofchoosing it

when spoken. But greater accuracy will be achieved ifthe user is trained and is familiar

with the specific variations ofthe phrases that are recognized in the limited grammar

system.

As an example ofthis, there are an incredible variety ofpossible phrases that can

be said for agreeting. Only some ofthem can be picked for inclusion in this grammar.

21

<GREETING> > hello | good-bye | see ya | take care I sincerely

What this leads to is a potentialthat the user will say some other greeting, such as

"salutations" or "later", and the recognizer will be unable to recognize their phrase. A

furtherproblemwith this system is that the recognizer will not only be ableto recognize

the correct phrase. It will not know whether it has the correct phrase or not, as it simply

sees and inputted stream of phonemes and tries to recognize them as best it can.

In this particular project, these concerns were addressed by carefully considering

the trade offbetween how natural the grammar is versus how well the grammar

performed. In designing some ofthe possible inputted phrases, adding "please" to the

front ofthe phrase changed the performance ofthe recognitionsearch and improved the

grammar accuracy. This allowed the introduction of a set of"natural language"

commands, all ofwhich needed to start with "please" to distinguish them from other

commands that are more direct command based.

C. Future of Speech Recognizer Grammars

The prospects are, however, that this will improve. There will be continued

improvement in speech recognition algorithms that will allow recognizers to more finely

distinguish between similar sounding words. This will also permit the added value of

allowing more natural phrases to be specified as input. More likely than not, in the next

generation ofspeech recognition systems, the natural feel ofthe grammar will improve

and the restrictions on the grammar will decrease.

An alternative approach which somewhat by-passes the entire issue of specifying

longphrasesin a grammarinvolves preparing a speech recognition system that tries to

22

segment and then recognize individual words no matter what phrases are said. This

system will not have to deal with the issue ofa user manually specifying natural phrases,

provided the vocabulary size is large enough. But it will have added problems of

segmenting words as well as problems distinguishing wordswith slurred syllables.

23

V. Speakable X-keyboard

One ofthis project's first test applications implemented using the TI and Nuance

recognizers is the "Speakable X-keyboard." The goal ofthis application is to allow the

user tospeak a word representing a letter and then have the corresponding letter appear

onthescreen in thewindow with thecurrent input focus. This methodology eliminates

the need for akeyboard, though itstill necessitates the use ofa mouse to change the input

focus or change the input position.

The vocabulary chosen for this process was the International Phonetic Alphabet

[IPA], and modifications were made to it. The modifications included making words that

sounded similar tothe recognizer more orthogonal either by adding syllables, in the case

of"alphabet" instead of"alpha", or changing the structure ofthe word for agiven letter,

as in "go-golf instead of"golf. The modified vocabulary was chosen after experiment

and iteration, bypronouncing the26words in the alphabet and seeing which were

generally clearly recognized and which were not.

The basic steps in this Speakable X-keyboard are as follows: say the word, have

the program recognize the word, translate that word to the appropriate letter, and then

echothat letter to the screen. The drawback in this approach is that X-windows system

has a built insecurity model, which makes it impossible to generate fake keyboard events

for windows that do not explicitly allow them [Young]. In order to accept fake keyboard

events, anxterm, for instance, needs to have the X-resource "*xallowkeypress" property

setto true, andan emacs window likewise has to have the"x-allow-keypress events

member variable set totrue [Shil97a]. The "Speakable X-keyboard" was tested for those

24

twocases, but for some other applications, theX-keyboard as implemented would not .

work.

For the emacs window and the xterm, using this SpeakableX-keyboard

conclusively showed thatthis Speakable keyboard approach was unacceptable. The input

was completely too slow; there was a high probability ofinaccuracy and the need for

correction; andthe interface was simply not friendly. The Speakable X-keyboard

allowed input at approximately the order of5words per minute, given the latency in

recognition, the need for correction, and the length and number ofspoken words needed

to specify a given written word. This isa magnitude slower than a standard typing input

speed of50 words per minute, and intolerably slower than the average speaking speed of

200 words perminute. The high inaccuracy in this method is partly a function ofthe

performance oftherecognizer onthe modified International Phonetic Alphabet

vocabulary, and unavoidably a function ofthespeaker's ability to speak atthe proper rate

for accurate recognition and to avoid slurring individual words representing letters. The

task ofspeaking a word to represent a letter does not represent auser-friendly input,

especially given that speakers arefamiliar with spelling words using thesounds

representing the letters, "ay", "be", etc., not different words represent the letters.

It isquite clear from the implementation ofthe Speakable X-keyboard that it is

not a good input method. It might bea more natural method ifspeech recognizer had the

capabilities to distinguish and recognize the26 different sounds representing letters. But

therecognizers used in this experiment do not have that capability. It isunlikely thatany

recognize would have thatcapability justgiven the phonetic similarity of the letters

with the long "e" sound:"b", "c", "d", "e", "g", "p", "t", "v", "z".

25

As far as speech input is concemed, discrete word input is not aviable input

methodology here, because discrete word input involves specifying a large, unwieldy

vocabulary for the recognizers used in this project. Furthermore, it is hard to cover all of

the required, spoken words. Added to these problems is the fact that these speaker

independent recognizers are not designed for large vocabulary, discrete word entry.

In the end, the Speakable X-keyboard showed that letter by letter, spoken word

input is not a particularly good method forInfopad users.

26

VL Java Virtual Keyboard

Thework done for the Speakable X-keyboard was notentirely abandoned,

because even thou^ it has poor performance, the approach does provide a generic input

methodology. The Speakable X-keyboard approach is auseful backup in the case that

there is no other way to input individual letters. AJava Virtual Keyboard was chosen as

the appropriate method to input individual letters in the new infrastructure for Java

applications for the Infopad.

The Java Virtual Keyboard avoided the issue ofX-event security by simply

creating keypresses for "appropriate" Java AWT text boxes and text fields. The

"appropriate" boxes arethose widgets that are created using the Java classes

SpeakableText and SpeakableTextField that were defined for this project. SpeakableText

isa subclass ofthejava.awt.Text, and SpeakableTextField isa subclass of

java.awt.TextField.

Inaddition to being responsive tothe Java Virtual Keyboard, these sub-classed

text fields allow speech-controlled focus, allowing the user to say the name ofthe text

field, for ins^tance "name textfield", and have input focus shift to that textfield.

Input focus isone ofthe seminal problems in speech interface design. It is clear

that inajoint mouse and speech environment, the mouse can be used for input focus.

However to fully enable hands free operation, ifdesired, it isusefril to provide a

methodology for changing input focus not only by mouse but also by specific speech

commands.

27

The other difference between the Speakable X-keyboard and the Java Virtual

Keyboard is that the Java Virtual Keyboard has an on-screen representation. In a

keyboard-absent environment, having afamiliar on-screen keyboard representation

ensures that the user can input any text that they normally would input via the keyboard.

Especially in the Infopad's case where the speech or handwriting recognition systems are

not mature enough for arbitraiy word input, the on-screen representation proves to be

very useful.

^KeyboQid

Del Save

backspace

NOT AVAILABLE

Figure 6-1. Java Virtual Keyboard

Specific design choices were made for this particular graphical user interface

representation. The first choice, the size ofthe Java Virtual Keyboard window, followed

from the 640x480 pixel size restriction ofthe Infopad screen. The buttons were chosen

and sized to beas bigas practical with theadditional choice that the total window was to

be 640x100 insize. The graphical user interface was chosen to have a text box

representing the word that would be forwarded to the destination text box. This dual

representation makes itclear to the user that they are using the input virtual keyboard.

TheJava Virtual Keyboard itself has an upper right hand listbox with a list of

2,000 mostcommon words. As theuser types using the Virtual Keyboard, the highlight

moves to the wordstarted by theword presently being typed in the input box. The user

can complete theword byselecting it from the list box. This techmque, often called

"autocompletion," can speed up the input ofwords. The rate atwhich it speeds up input

heavily depends onthe usefulness ofits preloaded vocabulary and the amount that it is

used. An end user can extend the vocabulary in this particular autocompletion system

simply by pressing the "Add" button for a word that he fiilly finishes typing in the Java

Virtual Keyboard. Likewise words can be removed from the autocompletion using

"Del." The modified word list can and must be manually saved off to disk using' Save .

In an effortto conserve the window space, the Java Virtual Keyboard boxwas

also designed with the lower right text box, which lists the speakable words given the

current program focus. The application program using the Java Virtual Keyboard is

responsible for loading and deleting words to that list box, through an interface. The list

provides a way fortheprogrammer togive the user a list ofpossible commands to say.

One important point isthat the commands listed in the speech-input box can be

activated not only byspeech, but also by selecting them by mouse. This provides an

altematiye way to activate commands even if speech is not available orperhaps ifthe

speech recognition was inaccurate.

The text field above the list box shows the word that was recognized by the

speech recognizer awl the command that is sent to the application. So long as the speech

recognition system is running properly, that speech input box will always show what the

speech recognizer recognized.

29

Architecturally, this Java Virtual Keyboard also enables the programmer to avoid,

dealing with theplumbing associated with connecting to the speech recognition system.

The JavaVirtual Keyboard implementation has in it all ofthe code needed to connect to

the speech recognizer and retrieve words and forward those words through an interface to

the end level applications that use it. Inthe architecture that was described earlier in this

report, the Java Virtual Keyboard sits on the client side ofthe socket ofthe speech

recognizer server wrapper. The Java Virtual Keyboard awaits words from that speech

recognition server, and passes those alongto the application.

In end-user experiments, this Java Virtual Keyboard fulfilled its specified tasks

and functionality well. In applications thatwere written and aredescribed later in this

report, the Virtual Keyboard, with its speech input listbox and theability to discretely

inputanyword, is extremely useful if not critical for thevarious applications. For a user

just starting with oneofthespeech activated applications, it also provides that list of

speakable vocabulary. For certain text inputs for name, address, or e-mail address, for

instance, the Java Virtual Keyboard is the obvious input method.

Originally, the Infopad's user interface was not planned to relyon an on-screen

keyboard. The original plan was to enable all user-interface input through handwriting

recognition or speech recognition, which are arguably more natural inputs than a

keyboard. Theproblem withrelying onhandwriting and speech input alone is the

immaturity ofthe handwriting and speech infrastructure for handling generic

applications. In the case ofhandwriting input, the commercial input widget that is

installed in theInfopad is not an integral part of thesystem and isnotwidely used.

Speech activation required and still requires custom applications. Inthe end, it is clear

30

that intheUser Interface design for theInfopad, a Virtual Keyboard is necessary, if only

because the speech input andthe handwriting inputtechnologies are not yet up to par.

31

Vn. Java Personal Information Manager (PIM)

Del \ Save

Figure 7-1. Java PIM

a

abandon
able Si
about ^

SFfiCHNOfmiLABLE

hello
good-bye
submit Mi

Oneofthe two applications written using the Java Speech infrastructure forthe

Infbpad was the speech-activated Personal Information Manager (PIM), A personal

information management application was chosen for a number ofdifferent reasons. The

first is that it is an ^plication ofgreatpotential value to anend user if speech activated.

Personal Infimnation Management is an area inwhich a computer organizer can help

tremendoosfy in keeping track ofe-mail, contact information, calendar information, and

to-do It as also an application, which lends itself very nicely to speech activation.

The tasks that a PIM can control are similar to the tasks that a secretary often takes care

of. Giving instructions about appointments, inputting address information, and sending

messages by speaking to a PIM can be like talking to a personal computer secretary.

Personal Information Management isone ofthe areas that speech recognition is

likely to have astrong impact when speech recogmtion technologies become ubiquitous.

Personal handheld devices already perform PIM functions. It is likely that these PIM

devices will continue to become smaller in form factor. Below a certain size a keyboard

is impractical, and it is likely that they will rely on speech input and possibly output in

their use.

Though certainly much bigger and more functional than a tiny handheld PIM

device, the Infopad provides agood testing ground from aUser Interface perspective for

the value of speech input for PIMs. The PIM designed for this project was not meant to

befiinctioEiai butnotover-featured. It was meant to perform basic functions, such asthe

e-mail, calendar, contact management mentioned before, but was not meant to be a

producti(M level system.

Given this asthecase, itwas possible to experiment with some ofthe potential

interactioxBS betweendifferent PIM elements using complex phrases for speech input.

One ftyampte ofthis is sending an e-mail directly to acontact list member using anatural

sentence: *^lease send an e-mail to this person." The interaction, as it worked itself out

in development, is natural, even ifnot all variations ofthe phrase are available.

33

Examples ofthese natural language phrases are given in the detailed explanations ofeach

element ofthe PIM.

One non-standard elementis also included in the PIM application. A speech-

activated implementation ofthe ELIZA program was developed to see show how it is

already possible to enable speech input for a computer Rogerian psychologist [Eliza].

Though ELIZA might not beincorporated into a PIM, it certainly fits the analogy ofa

conversation with a secretary. The ELIZA implementation was modified from public

domain code [Eliza].

This PIMis designed to becompletely hands free, if desired. Apen isnotneeded

for anyelement. Especially in conjunction withthe JavaVirtual Keyboard, however, pen

use makes use ofthe PIM more efficient and easier. Perhaps the single most common

areawhere a pen is desirable is for input focus, for specifying thetextboxthatis the

current focusofJava Virtual Keyboard input. Thevarious text fields canbe specified by

speech by saying their label or bywhatever element thatthey represent; however a simple

pentouch in that element is a moreefficient wayof specifying the proper input focus.

Theunderlying element thatwaschosen to enable multiple functionality required

in the PIM was the tabbed panel widget. This widget allowed us to create sixdifferent

functions in this PIM which were easily integrated. The most important benefit of the

tabbed panel widgetis that it saves real estate, which is quite a premium on theInfopad's

small screen. A tabbed element metaphor seems to be an advisablegeneral methodology

forthe programs written for the Infopad's small screen. The tabbed widget thatis used,

as weH as many ofthe other elements and graphical widget classes, camefrom

S3nnantec'sVisual Cafe Pro 1.0 Java authoring tool.

34

Switching between tabs byvoice involves the"switch to" set ofcommands where

"swith to" is followed byoneof "e-mail", "contact", "calendar '̂, "todo", "scratchpad", or

"eliza". A switch inpanels automatically updates thelist of sayable elements. The

update of the sayable elements iscontrolled at the application level via an interface to the

Java Virtual Keyboard. Agood consequence ofthe tab-enabled approach is that it

automatically leads to high rejection for commands that should not be enabled when a

given PIM element is in the foreground. For example, though the recognizer might

recognize "please send an e-mail to this person" based on speech input, that command

will have no effect if we are in the "To-do"tab. Though this does lead to the needto

repeat mis-recognized commands, at least it does not lead tothe wrong behavior.

In regards to accuracy, "please" precedes complex natural language phrases,

which must besaid ina single breath. If recognized at the beginning ofthephrase,

"please" signals therecognizer to move down a certain tree inthe grammar which

includes themore complex commands. The single breath isa requirement because the

recognizer is actually recognizing a phrase as a single element rather than a set ofdiscrete

words. In this implementation, all complex phrases start with "please," increasing the

accuracy ofthe recognizer as well as the politeness of the input.

35

^TafaTesler

EnMB : Contact Calendar;' Todo j: Scratchpad | Eliza

E-mail Catalog

A'hbba Sriia <M^S>eeci.befkeieM
ArwopSinha <asfnha@CS.Starrford I

Compose

Anoop Sinha<aks@eecs.befkeley.edu

Subject:

noop Sinha
aks@eecs,berkeleii.edu. 510-848-0354(H], 510-b4<£ii^

—Original Message
From: Anoop Sinha [SMTP:aks@eecs.berkeley.^
Senl: Thursday.August 07.199712:43 PM
To; aks^eecs.berkeiey.edu fe
Cc: aks@eecs.berkeley.edu
Subiect: hello

Figure 7-2. PIME-mail

The E-mail client that was written is extremely simple yet fully functional for

basicnotepad memo type tasks. The program is hard-wired to connect to the Infopad

cluster mail server, zabriskie.eecs.berkeley.edu. The first time the user request to "Get"

e-mail, eithar by pressing the"Get" button or by the"getmy e-mail" voice command, the

program requests the usemame and password, both most easily inputted via the Java

Virtual Keyboard.

Sajring "next" and"previous," scrolls through messages that show up in the e-

mail catalog. If the userdesires to usethe e-mail application completely hands-free, he

can specify input focus by calling out "to textfield", "subject textfield", or "message text

field", for the three input textfields, and then input letters by speech. Saying "letter"

followed by the modified International Phonetic Alphabet word for that letter creates a

letter.

The most interesting commands to the e-mail tab are thosethat involve natural

language input and do not show up in the sayable words listbox. Those commands

include, "addthis person to my contact list", which takes the e-mail address and name of

a person from themessage currently selected and creates an entry for that person inthe

contact manager. Likewise, the command, "please send an e-mail toBob", looks inthe

contact manager fora person with the name Bob, pulls out the e-mail address and puts

that e-mail address in the "To:" text field. To assist in composing messages quickly and

efficiently, it ispossible totell the PIM to "please say hello". This will write add a line

with "hello" inthe message textbox. "Please say meet at4 o'clock" will add the phrase

"meet at 4:00" to the e-mail to enable assisting in the scheduling of meetings.

Each ofthese natural language commands is appealing to an end user, who can

see them as spoken commands between individuals. These commands do not cover all

potential ways ofsaying various phrases, forthe clear reason that it is too difficult to

specify all such commands. Furthermore, specifying too many variations would taxthe

recognizers. Ultimately, the included language commands canbe read from the grammar

specifrcation elsewhere in this report.

The longer complex phrases are much more likely to beused, if available, in

speech inputform compared to theshorter command phrases, such as"load", "deliver".

These longer complex phrases seem to betheare thearea inwhich speech recogmtion

hasthe greatest pot^itial, even if the complex parsing routines that must be used to

decipher the commands.

37

^TabTester

Emalt'Contactcalendar|Todo|ScratchpadjEliza

XIfiA'tdeleteinertsave

Search^

Arooo5!r:f(a

SamO^i

YeKijiiaiTung
BcbBradersen
Fredefi:k^Bu^ghafdt
Kevih:25mmerrnart.

NamK-'-tAnoopSinha

aks^eecs.berkeiey.edu

5108480354Home.510G429350

NOFAX4154934917

GraduateStudent

DCBerkeley

2701Ridgett203

84709CnlryUSA

Figure7-3.PIMContact

Thecontactmanagerelementisquitesimilarinstructuretothee-mailprogram.

Thecommands"add","delete","load"and"save"carryoverbuthavingdifferent

meaningwhenthecontactmanageristheactivetabpanel.Anaddeddistinctionisthe

searchtextfield,whichcanbeusedmuchliketheautocompletionoftheJavaVirtual

Keyboard.Eachletteraddedtothesearchtextfieldwillmovethehighlighttothe

desiredelement.Anotherdistinctionisthat"pleasefindanoop"willperformthesearch

completelyandmovethehighlighttothenamethatstartswith"anoop".Onenatural

languagephraseavailableinthecontactmanageris"pleasesendane-mailtothis

person."Thisphrasecreatesane-mailsenttothee-mailaddressofthecurrentlyselected

person.

The contact manager itself is a difficult element to completely automate using

speech. The first problem is that the vocabulary ofnames is limited by the names that are

included inthe grammar. This set ofnames in the test grammar is arbitrary and based on

the elements in the stored in the default contact manager file. Adding a new element to

the contact manager also necessitates changing the speech grammar in order to be able to

use thatname in voice commands. Furthermore names are often quite distinctive and

often mispronounced. This being the case, names are almost always most likely to be

entered, using theJava Virtual Keyboard rather than voice.

Eraai|i^Cphia^f;'Calehddr;|:^
— — calendar

• 10 n 12 13 14 15

IB 17 18 19 20 21 22

23 24 25 26 27 28 29

Figure 7-4. PIM Calendar

The calendar tab is interesting in that ithas few simple speech commands and is

almost always will be used with complex speech input. The most common is switching

among dates by saying, "please go to <month> <date> <year>", where the month is the

name ofthe month; date isa number from 1to 31; and year as implemented can befrom

1996to 1999. That command will automatically update the calendar widget to display

theproper month and year as well asmove the selection to the proper date.

The Calendar widget itself is designed tobe easy touse with a pointer input, and

switching among months oryears isquite simple. The added value inusing speech is in

eliminating a setofadditional selection orprocessing, reducing the number ofsteps for

switching a date from essentially three (using pen to select month, then day, then year) to

one (the single spoken phrase).

The calendarfunctionality is simple andunremarkable in that it simply keeps

track ofa list oftimes and eventsfor a given date. These essentially take the form of

meetings fbr most individuals. The command "please add a meeting at <time> with

<name>" is available in this tab. Thetime is internally parsed based on what is inputted,

and the name is from the list ofnames that exist in the original contact list. The

conunandadds this entry to the calendar view. As a possible extension, it is easyto see

that it is possible to spawn off an e-mail message to theother meeting attendee, based on

a look-up from thecontact list. The calendar element shows theadvantages ofthetight

integration ofthe different PIM elements.

40

test code

watch movie

Rntsh preset

Figure 7-5. PIM To-do

Figure 7-6. PIMScratchpad

TheTo-do and the Scratchpad tabs are unremarkable and do nothave much

speech activation. To-do tasks are typed in by Virtual Keyboard rather than by voice,

though it ispossible to negotiate through the text fields by voice. Scratchpad isbasically

for drawing by pen.

Both of these tabs highlight the fact that speech input is not necessarily the

appropriate input mechanism for certain functionality. Speech activation is the wrong

choice for the To-do list and the Scratchpad, both of which itself necessitates use of the

pointer. A single input methodology is unlikely to cover all possible input needs. Two

together such as a mouse and keyboard are more powerful. Speech inputanda pen input

are also together quite powerful.

HiiiijQ

Email:] Cph^ Calendar Todo jiiScratchpad

I.ID not «ure I understand you

Figure 7-7. PIMEliza

The lastand perhaps most interesting, from a speech-activated perspective,

element is theELIZA tab. ELIZA was designed as a Rogerian psychologist to continue

to probe and ask questions based on agiven set ofrules in response to input from agiven

user. It isavery simple program in that it does not comprehend information that it

receives as input. It actually moves through astate machine, parsing each individual

sentence and giving the appropriate response based on how itparses the sentence or what

keywords it recognizes.

It isan interesting task for a speech recogmtion system since most ofthe

commands that are specified in ELIZA involve simple psychological issues such as

problems and other queries. The actual ELIZA specification is fairly large, and in some

ways unlimited, since ELIZA can parse almost any sentence in someway and give the

response, *T'm not sure Iunderstand you fiilly." In the case ofthis speech recogmtion

system, itwas critical to limit the possible inputs toEliza to avery limited subset.

Limited even tothe point ofnot likely covering the fully range ofpossibilities in agiven

conversation. However, enough ofthe subset was included inthe vocabulary to be

interesting.

UseofELIZA certain shows promise for theuse ofspeech inartificial

intelligence applications. Once speech recogmtion capabilities improve enough, ELIZA

shows that it will make sense to include free form speech input ina speech recognition

system. The firee form speech input increases the friendliness and the user's connection

with the conqiuter system. The set ofspoken phrases that ELIZA as implemented can

recognize can be deduced fromthe grammar specification.

43

T&e most important contribution ofthis PIM was not in the features itincluded in

thePIMp but ratherin how it shows thata speech inputted PIM has great potential,

especially iifnatural language phrases are included in the input vocabulary. With speech

as input, it is possible to have agreat wealth ofinformation transmitted in a single spoken

sentence;, which might affect all ofthe different PIM components ina coordinated

fashion. Thisnatural input interaction should make PIM's a viable replacement for

cumbersmne keyboard and mouse commands that are a part ofcomputer PIM's today.

It is clear from this implementation, that training will almost certainly berequired

to enableusers to know aboutthe full range of functionality available in a speech

activated system. With some training and accurate recognition, it is possible to maneuver

quite reafiSly among thedifferent elements ofthePIM, for instance, butsome speech

activatedcommands will remain unknown and unused unless enabled by training. Part of

theissuein this regard is the design of thegrammar and thefunctionality that the

grammarcovers as well as the words that the implementation recognizes.

44

Vm. Java Graph Editor

Another demonstration application developed using the Java Speech architecture

was thespeech-enabled Java Graph Editor. This application was developed to

experiment with voice cues leading to visual results, showing us the potential fiature of

speech activated applications even in a visual environments.

In the case of theJava Graph Editor, the pen as input isanoption. However,

commands are designed so that the entire fiinctionality ofthe Java Graph Editor can be

performed with speech.

The core Graph Editor code was largely due to work by Shilman [Shil97b]. His

toolkit for graph element and editor classes for nodes and edges enabled quick creation of

the speech enabled Graph Editor program.

I^JavaVisualization

Figure 8-1. Java Graph Editor

The Java Graph Editor program was built using the Java Virtual Keyboard infrastructure.

Though a virtual keyboard isnot necessary for the program, using the Java Virtual .

Keyboard provides a consistent user view of theavailable speech commands inthe

sayable listbox. TheVirtual Keyboard also takes care ofthe hooks to the speech

recognizer.

Thebasic operations inthe Graph Editor are quite simple: add node, delete node,

movenode, select a node, and createan edgebetween two nodes. Theseoperations are

enumerated in the mode buttons on the left-hand side ofthe application window.

Switching modes by speech is the same as speech enabling the different tabs in the PIM

application. "Switch to add mode", or "switchto edgemode" are examples of the

required commands.

For this particular application, one point of consideration is howto determine a

created node's initialposition. Theleastof all evils is simply to create the nodein a

random position,which is what is presently implemented. Specifying a Cartesian

position or specifying a position relative to the other nodes already in the graph is

possible, but not necessarily ideal or clear. In this case, the pointer is the more

appropriateuser interface methodfor specifying location on the canvas; speech is not

appropriate for this visual operation. The initial position is in fact not readily specified

by voice commands alone.

Speech is also not appropriate for specifying movement of objects. Though voice

can allow us to specify node movement up, down, left, or right, it is better to rely on the

pen for moving nodes.

46

Speech definitely adds value in the selection of nodes. As implemented, each

node has an associated number, to enable identification by speech. Saying"find one" or

"find seven" will move the selection to the node number in question. Ifdeletion is the

desired operation, "deleteone" or "delete seven" will delete the node withnumber

specified ifthe node exists in the graph. These operations are quick and likely quicker

thana visual search, selection, and deletion. They remove the need for a slow visual

scan.

Speech is also similarly useful forthis application in the connecting ofnodes. It

is much easier to specify "connect one to two and three" than it is to switch to edge mode

and draw edge elements between thenodes one and two and one and three. The

connection commands is also remarkable in its ability to concisely contain multiple

different visual commands, muchlike the natural language commands in the PIM

specified multiple operations.

Though this graph creation behavior isquite basic, it does show that incertain

areas speech commands arenot appropriate while in other areas speech commands

improve thecapabilities ofthesystem. This is likely a general rule in the creation of

speech activated system. Translated asa design rule: speech should bechosen for certain

situations and applications and not used in others.

Onefinal situation forthisapplication inwhich speech activated control has good

potential is in the use and specification of filters. The use offilters to generate

interpretations firom a graph is an idea introduced to the author by Shilman and

implemented together for a 3-dgraph visualization project [Shil97c]. The same ideas

wereused for this two dimensional graph layout application, in an initial form to show

47

thepotential use of speech forfilter specification. In the case of this application, it is

possible to speak the command '.'show me the layer" or "show me the names", two

different commands which applythe layer-filter andthe name-filter to the graph in

question respectively. These filters simply modify the nodes by changing the shapeof

the node, or the hatchmarks that are used to specify it, based on the internally stored layer

value or the name.

It is quite clear that the conceptoffilters is quite powerful for analyzing a large

grqjh where nodes have internallystored properties and externalproperties, which can be

modified. Specifying filters using speech also appears quitesuperior to specifying filters

by name. A complex filter could be specifiedwith a very natural language command,

such as "show me the people older than 30 who are female". The "show me" translates

into a filter that the application determines, and the user can be hidden from the details of

the specific filter or how that filter is created.

The operation of"show me" is one of most natural commands that can bring

speech and visualization into complementarypositions. In the particular case ofgraph

layout where often one ofthe applications desired is data visualizationand manipulation,

speech activated commands are likely to be useful for specifying complex filters and

viewpoints.

48

DC. Conclusions

This project was successful in introducing a new speechenabledapplication.

infrastracture for the Infopad and in showing the viability of speechas an inputmethod

for the In^ad. The project showed that speech has strong potential in the area of

personal information management, and it is likelythat speech-enabled application

developed that manage personal informationwill gain acceptance. The project also

showed that the usefulness of speech does not stop with PIMs, however, and can extend

to a wide variety ofcommand applications, even those with visual feedback such as a

graph editor.

Speech is apparently most useful in conjunction with other input methodologies,

and the combination of speech input and a pen is quite powerful for tablet based input.

However, the work in this project suggests that a virtual keyboard is the best option, at

the moment, for free form text input method. Though speech and pen input together are

powerful, the general input provided by the keyboard suggest that it should be included

as an alternative in systems requiring generic input.

Ultimately, application developers can easily use this Java-based architecture for

their own programs. The speech server wrapper functionality is generic, and users who

do not want to use the provided Java VirtualKeyboard or who wantto use speech server

technologyfor some other task, can modify the use of the speech recognition server

wrapper to their own needs. Though it would require some coding, it is not difficult to

use the speech server wrapper around any other sort of recognizer, perhaps evenone day

a speedy hardware enhanced speech recognition system.

49

Bibliography

fAF| hsttp!://gatekeeper.dec.com/pub/DEC/AF/

[Burs96]Burstein, Andrew. "Speech Recognition for Portable Multimedia Terminals."
Ph. D-Thesis. Graduate Division, Electrical Engineering and Computer Sciences,
Universily ofCalifornia, Berkeley, May 1996.

[Elizal Hiayden, Chris. http://24.3.201.16/chayden/eliza/Eliza.html

[Flan96] Flanagan, David. Java in a Nutshell. O'Reilly and Associates, 1996.

[IPA]: ltfdtp:/Avww.dutch.nl/wilbwk/digit.htm

[Long5>5J Long, Allan Christian, Jr., ShankarNarayanaswamy, AndrewBurstein,
Richard Han, Ken Lutz, Brian Richards, Samuel Sheng, Robert Brodersen, Jan Rabaey.
"A Frolotype User Interface for a Mobile Multimedia Terminal." Proceedings of the
1995 Computer Human Interface Conference, May 1995.

[Naira96alNarayanaswamy, Shankar. "Pen and SpeechRecognition in the User Interface
for Mobak Multimedia Terminals." Ph. D. Thesis. Graduate Division, Electrical
Engiineermg and Computer Sciences, University ofCalifornia, Berkeley, May 1996.

[Nara96b]JNarayanaswamy, Shankar, SrinivasanSeshan, Eric Brewer, Robert Brodersen,
Frederick Brughardt, AndrewBurstein, Yuan-Chi Chang, Armando Fox, JeflEirey Gilbert,
Richard Hhn, Randy Katz, Allan C. Long, David Messerschmitt, Jan Rabaey.
"Applicat'bn and Network Support for Infopad." IEEEPersonal Communications
Magazine,,March 1996.

[Nuan] Nuance Recognizer Documentation.

[Shil97al Shi1man, Michael. http://www-cad.eecs.berkelev.edu/-michaels/sax

[Shil97bl Shilman, Michael. http://www-cad.eecs.berkelev.edu/-michaels/.graph

[ShiI97cI Shilman, Michael, http://www-cad.eecs.berkeley.edu/~michaels/courses/vr

[Tisr] TTDhgger System Documentation.

[Young] Young, Douglas. The X Window System: Porgramming and Applications with
XT OSF/MotifEdition. Prentice Hall, 1990.

50

Appendix A. Grammar

start{<START>).
export(<START>).
<START> > <START1> I <IPA> I <KEYBOARD> I <PIM> | <GRAPH> I <NL>.
<START1> > go to sleep | wake-up I stop listening I start feedback I stop
feedback.

<NUMBER> > number <NUMBER2> | <NUMBER2>.
<NUMBER2> > <DIGITS> | <TEENS> | <TWENTIES> | <THIRTIES> | <NtJMBER3>.
<NUMBER3> > <FORTIES> | <FIFTIES> I <SIXTIES> | <SEVENTIES> I <NUMBER4>.
<NUMBER4> > <EIGHTIES> I <NINETIES>.
<DIGITS> > zero | one | two I three I four I five I six I <DIGITS2>.
<DIGITS2> > seven | eight I nine I oh.
<TEENS> > ten I eleven 1 twelve I thirteen I fourteen I <TEENS2>.
<TEENS2> > fifteen | sixteen I seventeen I eighteen I nineteen.
<TWENTIES> > twenty | twenty-one | twenty-two | twenty-three I <TWENTY2>.
<TWENTY2> > twenty-four | twenty-five | twenty-six | <TWENTY3>.
<TWENTY3> > twenty-seven I twenty-eight | twenty-nine.
<THIRTIES> > thirty I thirty-one I thirty-two I thirty-three I <THIRTY2>.
<THIRTY2> > thirty-four I thirty-five I thirty-six 1 thirty-seven I
<THIRTY3>.

<THIRTY3.> > thirty-eight | thirty-nine.
<FORTIES> > forty I forty-one I forty-two I forty-three I <F0RTY2>.
<FORTY2> > forty-four 1 forty-five I forty-six I forty-seven 1 <F0RTY3>.
<F0RTY3> > forty-eight | forty-nine.
<FIFTIES> > fifty | fifty-one I fifty-two | fifty-three I <FIFTY2>.
<FIFTY2> > fifty-four 1 fifty-five | fifty-six I fifty-seven I <FIFTY3>.
<FIFTY3> > fifty-eight | fifty-nine.
<SIXTIES> > sixty I sixty-one | sixty-two I sixty-three | <SIXTY2>.
<SIXTY2> > sixty-four 1 sixty-five I sixty-six I sixty-seven I <SIXTY3>.
<SIXTY3> > sixty-eight 1 sixty-nine.
<SEVENTIBS> > seventy I seventy-one I seventy-two I seventy-three I
<SEVENTY2>.

<SEVENTY2> > seventy-four | seventy-five 1 seventy-seven I seventy-seven I
<SEVENTY3>.

<SEVENTY3> > seventy-eight I seventy-nine.
<EICTTIES> > eighty I eighty-one | eighty-two | eighty-three I <EIGHTY2>.
<EIGHTY2> > eighty-four 1 eighty-five I eighty-eight | eighty-seven I
<EIGHTY3>.

<EIGHTY3> > eighty-eight | eighty-nine.
<IIINETIES> > ninety | ninety-one I ninety-two | ninety-three I <NINETY2>.
<NINETY2> > ninety-four 1 ninety-five | ninety-nine I ninety-seven I
<NINETY3>-

<NINETY3> > ninety-eight | ninety-nine.
<IPA> >• toggle letter mode | letter <IPA1> 1 letter <KEYBOARD>.
<IPA1> alphabet I bravo I charlie | delta | echo | foxtrot I go-golf I
<IPA2>.

<IPA2> hotel I india i juliett I kilo I lima I mike I november I <IPA3>.
<IPA3> > oscar | papa | guebec | romeo | sierra-song | tango | uniform I
<IPA4>.

<IPA4> > victor I idiiskey I x-ray I yankee I zulu.
<KEYBOARD> > space-bar | return I tab-key | backspace | <KEYB0ARD2>.
<KEYBOARDZ> > shift | alt-key | control | clear.
<MONTH> > january | february I march I april | may I june I <M0NTH2>.
<MONTH2> > july I august 1 September I October I november I december.
<PIM> > <DEFAULT> I <EMAIL> I <CONTACT> I <CALENDAR> I <SCRATCH> I <PIM2>.
<PIM2> <CHECK> I <TODO> I quit this program.
<DEFAIJLT> > sleep | wake-x:^ 1 load I save | add | delete | previous | next
<DEFAULT2>.

<DEFAULT2> > switch to <PANEL>.

<PANEL> > e-mail | contact I calendar I to-do I scratch-pad I eliza.

51

<EMAJ:L> > <EMAIL1>.

<EMAIL1> > deliver | coii5)ose I reply I get my e-mail 1 <EMAILF> text field.
<EMAILF> > to I sxjibject I message.
<CONTACT> > search | <C0NTACT1> text field.
<C0NTACT1> > search | name I e-mail | business I home I fax I <C0NTACT2>.
<C0NTACT2> > other I title | company I address-one I <C0NTACT3>.
<C0NTACT3> > address-two I city I state I zip | coxantry.
<CALENDAR> > <CALENDAR1> text field 1 <CALENDAR2>.
<CALENDAR1> > time | task.
<CALENDAR2> > year-up | year-down I <MONTH> | <MONTH> <NUMBER>.
<SCRATCH> > <SCRATCH1>.

<SCRArCHI> > black I white | clear.
<CHECK> > <CHECK1> text field.

<CHECK1> > number | date I payee.
<TODO> > <T0D01> text field.

<T0D01> > task I <DIGITS>.

<NL> > please <NL2>.
<NL2> > <NLEMAIL> I <NLCONTACT> I <NLCALENnAR> I <ELIZA>.
<NLEMAIL> > send an e-mail to <NAMES> | <NLE2>.

<NLE2> > send an e-mail to person <NUMBER>| say <SAYING> | <NLE3>.
<NLE3> > con^ose an e-mail I conpose an e-mail to person <NUMBER> I <NLE4>.
<NIiE4> > <NLE5>.

<NLE5> > e-mail <NAMES> I <NLE6>.

<NIiE6> > add this person to my contact list.
<NAMES> > anoop | bob | yeh I sam I tony | fred I kevin I group.
<SAYING> > <GREETING> | <MEET> I <NAMES>.
<GREETING> > hello I good-bye I see ya I take care | sincerely.
<MEET> > meet at <MEETR> I meet at <MEETR> on <DATE> I meet on <DATE>.

<MEETR> > <NUMBER> o'clock I noon I midnight | <CMEETR1>.
<MEETR1> > <NUMBER> fifteen I quarter past <NUMBER> | <MEETR2>.
<MEETR2> > <NUMBER> thirty I half past <NUMBER> | <MEETR3>.
<MEETR3> > <NUMBER> forty-five | quarter til <NUMBER>.
<DArE> > <MONTH> <NUMBER2> nineteen <NINETIES> | <MONTH> <NUMBER2>.
<NLCONTACT> > send an e-mail to this person | find <NAMES>.
<NLCALENDZ\R> > go to <DATE> I add a meeting at <MEETR> | <NLC2>.
<NLC2> > add a meeting at <MEETR> with <NAMES> I with <NAMES>.
<EIiIZA> > write <ELIZA2> I eliza <ELIZA2> I computer <ELIZA2>.
<ELIZA2> > <E1> I <E2> | <E3> | <E4> | <E5> | <E6> | <E7>.
<E1> > i remember my <ZNOUN> I i remember my <ZPOS> <ZNOUN>.
<E2> > i am <ZADJ> I i was <ZADJ>.
<E3> > am i <ZADJ> | are you <ZADJ> 1 were you <ZADJ>.
<E4> -—> why don't you I why can't i I why not.
<E5> > yes | no | what | because | why 1 how 1 hello I con^juter.
<E6> > sorry I just because I none | perhaps.
<E7> > always | alike | if I bye | good bye.
<ZNODN> > mom I dad | brother I sister I mother I father I <ZN1>.
<ZIfl> > dog I cat I con^uter I car I fish | house I everyone I <ZN2>.
<ZN2> > everybody | nobody 1 noone I wife I child I family.
<ZADJ> > <ZADV> <ZA1> I <ZA1>.
<ZA1> > happy I sad I bad I good I funny I serious I curious I <ZA2>.
<ZA2> > bored I scared 1 excited I experienced I fine | <ZA3>.
<ZA3> > ecstatic I excellent I terrible I horrible I unhappy I <ZA4>.
<ZA4> > depressed I sick | elated | glad I better.
<ZM)V> > very I not very I terribly I amazingly I especially I <ZAD1>.
<ZAD1> > always | never I forever.
<ZPOS> > your I my I our I her 1 his.
<GHZ^H> > <GMODES> | save file I load file | look up I create 1 rename I
<GFAPH2>.

<GM3DES> > switch to <CTfODEl> mode | <GFILTER>.

<GM3DE1> > move | add I delete I edge I select.
<GR?LPH2> > <GDO> <NDMBER> 1 delete selected | remove selected I <GRAPH3>.
<GDO> > find I xmselect I select | delete I remove.
<GEAPH3> > connect <NUMBER> <GCN> | disconnect <NUMBER> <GCN>.

52

<GCN> > <GN> I <GN> <GN> | <GN> <®J> <GN> | <GN> <GN> <GN> <GN> I <GCN2>.
<GCN2> > <GN> <GN> <GN> <GN> <GN> I <GN> <GN> <GN> <GN> <GN> <GN> I <GCN3>.'
<GCN3> > <GN> <GN> <GN> <GN> <GN> <GN> <GN> I <GN> <GN> <GN> <GN> <GN> <GN>
<GN> <GN>.

<GN> > <GCON> <NUMBER>.

<GCON> > and 1 with I to I from.
<GFILTER> > add filter | add <GFTYPES> filter I show me the layers | <GF2>.
<GF2> > show me the names I delete filter I delete filter <NUMBER> I <GF3>.
<GF3> > show me the money | select filter <NUMBER>.
<GFTYPES> > reset I name | layer.

Location ofFiles (in Infopad cluster):

/tools/ui/speechDemos/
/tools/ui/speechDemos/Gramm/
/1ools/ui/speechDemos/Jgraph/
/ tools/ui/speechDemos/Pim/
/tools/ui/speechDemos/Nuance/
/tools/ui/speechDemos/TI/
/tools/ui/speechDemos/noise/

/1ools/ui/speechDemos/3ervenuance

/tools/ui/speechDemos/Startnuance
/tools/ui/speechDemos/startti

/tools/ui/speechDemos/runpim*
/1ooIs/ui/speechDemos / rxingedit *

grammar translation program
Java Graph Editor
Java PIM

Nuance recognizer files
TI recognizer files
noise reduction files

start Nuance seirver recognizer on
badlands.eecs.berkeley.edu only
start Nuance server wrapper

start TI recognizer and server
wrapper

start the PIM

start the GraphEdit program

53

Acknowledgments

I would like to thankProf. Brodersenfor his support ofthis project and his

guidance. I wouldalso liketo thankJeff Gilbert for his help in gettingme started with

this project. I wouldespecially like to express my deepgratitudeto Michael Shilman for

many productive and enriching brainstorming sessions on this and other projects.

54

	Copyright notice 1998
	ERL-98-3

