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Abstract

In the present work explicit formulas for analyzing the birth oflimit cycles arising in the Chua's
circuit through a Hopf bifurcation is provided. A local amplitude equation is derived using a
frequency domain approach and harmonic balance approximations. Furthermore, the first
Lyapunov index used to detect degenerate Hopf bifurcations is derived in terms ofthe parameters
ofthe nonlinear circuit. Aperspective ofanalyzing other bifurcations using this frequency domain
approach is discussed.
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1.- INTRODUCTION

Chua's circuit has become a paradigm for complex oscillatory dynamics and chaos arising in simple electronic
nonlinear circuits [1-3]. The bulk ofpapers regarding the complex dynamics in this circuit has focused on chaotic
attractors. period-doubling bifurcations, period-adding bifurcations, and so on. In this paper, on the contrary, astudy
of Hopf bifurcation is performed using a frequency domain approach in a way reminiscent of the classical
describing function method. The procedure consists ofapplying the harmonic balance method to provide the (local)
amplitude solution for the emerging limit cycles. Moreover, the first Lyapunov index or curvature coefficient is
obtained in terms ofthe relevant parameters ofthe circuit. The vanishing ofthe curvature coefficients allows us to
study the birth ofmultiple periodic solutions in the unfoldings of the so-called degenerate Hopf bifurcation [4].

This present work follows the lines initiated in [5] regarding the dynamics of Hopf bifurcation in Chua s circuit.
However, the procedure used here for approximating the amplitude oflimit cycles does not use the center manifold
theory or coordinate transformations. A frequency domain approach, closely related to control theory and the
harmonic balance method are used to obtain the main results [6].
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The motivation of this study comes from recent results obtained in [7] concerning the existence of multiple limit
cycles around the symmetrical equilibria ofChua's circuit, as well as large amplitude cycles surrounding the three
singular points. As we have used a smooth (third-order polynomial) nonlinearity to approximate the piece-wise
linearcharacteristics, this work share similarities with continuous efforts made by other researchers in finding the
maximum number of limit cycles in planar cubic systems [8-10]. Since Chua's equations consists of three first-order
ODEs, its dynamics are more complicated than those arising from two first-order ODEs (also called planar systems).
In particular, it is a challenge to plot the successive curvature coefficients to determine regions ofmultiple periodic
solutions in the parameter space. This report is the first attempt in this direction. Moreover, a discussion is presented
concerning the extension ofthis method to detect other bifurcations using ahigher-order harmonic balance.

2.- MAIN RESULTS

The smooth model of Chua's circuit ([5] and [7]) is given by

i=a[v-(p(:r)],

y-x-y + z,

z = -p.v,

where (p(.v) =c,.v'+c,a-, is a cubic polynomial nonlinearity, a, p, c,, and Cj are system parameters. The
parameters a and p will be used as the main bifurcation parameters in the following, for the sake ofclarity. After
making the following change ofcoordinates to simplify the structure of the linear part

system(1) can be recastas follow:
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AT, =--ac,Ar, +aY,--ac^x, -ac,.Y,,

x^ - p.Y,,

.Y, = .Y, -A% - a:,.

Choosing the following equivalent representation ofEq. (2) (see [11] for more details about the methodology):

a: = y4(a, P)a: + Bg{Cx\a, p),
V= C(a,p)Y,

where

-003/2 0 o

0 op

1 -1 -1

B =

(1)

(2)

C=[l- 0 0], g(x;a,P) =-a(-C3Ar,+c,.Yf),

we end up with asimple form for the linear transfer function G(j;a, P) =C[sJ - Af'B, where ".v " is the variable
of the Laplace transform.
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5* +5+ B
G(5:.,.) = -5' +5-(l +^aCj) +j(p +3acj -a) +^apcj

N{s)

D{s)

The Jacobian matrix to be used in the frequency domain formulation is

y = —ac, +2ac,e} •>
2 •

where .r, g(A-,):= /(e,) and e, is the equilibrium point obtained from

G(0;.,.)/(e,) =̂ -(^ac^e, +a )=-e,,
ape,

=> ef" =0, and =e!'-' =±J—

Notice that our selection ofa unique representative variable e, simplifies the computation ofthe Hopf bifurcation
formulas given in [11] since the eigenvectors v and are both equal to 1. However, explicit expressions for the
original 3 variables can also be obtained, and in this case the expressions ofthe eigenvectors are slightly more
complicated.

The following eigenlocus G(s)J is then calculated about the symmetrical equilibrium points ~

(called P- in the literature on Chua's circuit") which give birth to aHopf bifurcation under appropriates values of
the system parameters:

-^ac^N(s) /-j^
l = G(s)J =^—

D(s)

The Hopf bifurcation condition is obtained from Eq. (3) when X=-I and .9 =/cOf), (Oo 5^ 0 giving the following
pair of equations

Thus, a simple expression ofthe starting frequency ofoscillations through the Hopf bifurcation mechanism in the
symmetrical equilibrium points can be easily obtained from Eq. (4) as follows

(Dp =-2a"Cj(l + 2c,) •

Notice that to change (control) the frequency ofemerging limit cycles the relevant parameters are a and c,.
The following closed-loop transfer function is useful in the computation ofthe Hopf bifurcation formulas:

Since x, =-e,,then P' =x|'' = =e\'^
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G(^v;a,p)

[l + G(.v;a,P)J]

N{s){s-2ajCy)-o, s

The Hopf bifurcation formulas needed for the computation ofthe amplitude equation and the first Lyapunov index
are as follows:

3
(i) 'Ae\~

^,,((0) = -\H{i'2x3i\.,.)Dyv®\\

6ac,e
-(±) (7)

' ' //(/2(o);

p^ (to) =£>, [\ V®K,, +V®FoJ+ i DyV ®V®V,
=6ac,[^e,"y2,((D) +|],

where D, and £), are the second and third order partial derivatives of f(e^) evaluated at the equilibrium point
e\-\ ® is the tensorial product (in this case, the scalar product), and the bar denotes the complex conjugate
operation. The amplitude equation is obtained from the following approximation

?[ =-l+e'^, =-1-0'G(/co)/7,((o). (9)

where 0 is a measure of the amplitude of the first harmonic and is a complex number. Then, from Eq. (9) a
measure ofthe amplitudes ofthe emerging limit cycles from Hopf bifurcations can be written as follows:

0=1 ?l±! (10)
G(i(d)p, (CO)

The computation of the first Lyapunov index requires the evaluation ofEqs. (6-8) at criticality (.v = /cO(,, co„ 0
given byEq. (4)). Several simplifications yield the following expressions;

IV =-i//(0;.,.)£),v®v,
3 " (11)

Ael'''

^22(««^o) = V,

3 J-(l+6ac3)(Oo-H/daCjl
~4(Doe;*'t 3(l-2ac3)+/6cOo j' (i2)

v.CcOo),
4(0oe,
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(cOo) =D,[4V 0 +V® ^^02]+ R 0 V0 V,

= 6ac, + -S ^ R
COn

(13)

Finally, the cwrature coefficient (or the first Lyapunov index) can be expressed by

, . ^fw'''G(/(Oo)p,(cDo)la,((Do) =-iHj TTTj r
I M' G'Jv J (14)

^ [a(H-2ac3) +/cOo];7,(cOo) ]
[-2a)o -\cLCy +/2(0o(l-|ac-,)j

where denotes the real part ofacomplex number. Equating expression (14) to zero gives the degenerate Hopf
bifurcations points whose unfoldings contain multiple limit cycles. This degenerate Hopf bifurcation curve can be
continued in the parameter space a - P - c, to search for other more complicated singularities as organizing
centers of the dynamics. For this parameter set: a = 1.106691504, P = 1.09950956, c, = 1 and

^^=-0.06934372403 there is a Hopf bifurcation in the symmetrical equilibria P~ with a frequency
COo =0.3824948062 having the first and second Lyapunov indexes equal to zero. According to the theory of
degenerate Hopf bifurcations a structure ofthree nested limit cycles can be encountered for a suitable perturbation
in the parameters a - P - c-.

Some simulations using LOCBIF [12] are presented below for illustration of the main results near the above
mentioned singularity by fixing c, =1 in all the cases considered. In Fig. 1, a stable limit cycle encircling P is
shown for a =1.106691, p =1.0991, and c, = -0.06934372. The limit cycle is separated from the origin in the
phase-plane (the left-top comer in Fig. 1).

Varying appropriately the parameters a and p the stable limit cycle is deformed such that one of its extremes is
near the origin (clo.se toa saddle-loop separatrix bifurcation). This situation is depicted in Fig. 2 for a = 1.22043,
P =1.22, and c, = -0.06934372.

Figures 3. 4 and 5 show one large amplitude stable limit cycle surrounding the three equilibria and two unstable
limit cycles surrounding P* and P~. The simulations were obtained using different initial conditions in order to
give an ideaof the basins of attractions of the stable solutions.

In Fig. 6, a degenerate Hopf bifurcation curve (Hopf curve plus first Lyapunov index equal to zero, i.e..
codimension 1bifurcation) isdepicted. Notice that the degenerate Hopf bifurcation of codimension 2 (regular Hopf
plus the first and second Lyapunov indexes set equal to zero) is very close to the parameter setting depicted here.
Also, it is very interesting to note that the Hopf degeneracy curve of codimension 1 has a turning point close to the
limiting point in which Cj -> 0. This type ofbending ofthis Hopf degeneracy has been observed before in other
systems (see [11] and [13] for more details) in connection with the appearance ofdegenerate Hopf bifurcations of
codimension 2 regarding multiple cycles.

In Figs. 7 and 8 similar structures ofstable and unstable limit cycles are depicted. After looking for more complex
structures of multiple limit cycles (excluding period-doubling bifurcations and chaotic attractors), we observ ed that
the multiple cycles (more than two nested cycles) belong to a narrow band in the parameter setting, as it was
observed before in other systems [11] and [13], using AUTO [14]. Since the accuracy of computer simulations
using LOCBIF is limited, AUTO software should be u.sed for this task.
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3.- DISCUSSIONS AND CONCLUDING REMARKS

The formulas for the amplitude equations of the limit cycles arising in Chua's circuit are obtained using a frequency
domain approach. Moreover, an expression of the first Lyapunov index, which determines the stability of the
emerging periodic solutions, is computed in terms ofthe system parameters. This preliminary step is important in
order to study multiple limit cycles arising from degenerate Hopf bifurcations in this circuit. This frequency domain
approach (also called Graphical Hopf Theorem, GHT for short) for analyzing periodic solutions has provided very
useful results in dealing with degenerate Hopf bifurcations ([11]). Very recently, this approach has been adapted to
handle approximate detection of the first period-doubling bifurcation [15] in the time-delayed version of Chua's
circuit, by considering a higher-order expansion of the periodic solutions. Other related research using a unified
formulation for both Hopf and period-doubling bifurcations were given by [16-17] for a specific system and [18-19]
for a broader class of nonlinear systems. Continuous efforts and progress made by some researchers from
mechanical engineering [20-22] in characterizing accurately the birth ofperiod-doubling bifurcations (subharmonic
resonances in forced systems) using similar methods, had encouraged us to pursue a simple methodology to handle
several types of periodic solutions and their bifurcations. Since the GHT provides also a useful graphical
interpretation, it seems natural to continue this effort in order to give better accurate results using higher-order
harmonic balance approximations and a type of convergence test for the accuracy of the solutions. A unified
approach to treat both Hopf bifurcations and period-doubling bifurcations as well as indication of symmetry-
breaking would be very useful. In such studies, Chua's circuit dynamics offers an excellent vehicle and paradigm
for testingany futuredevelopment in this area.
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CAPTIONS FOR THE FIGURES

Figure I: Stable limit cycle (in red for color picture) surrounding the equilibrium point P* for a =1.106691,
p =1.0991, and =-0.06934372. (The limits of the axes are: =0, =0.35; =-0.35,
z =0).^ max '

Figure 2: Stable limit cycle (in red for color picture) surrounding the equilibrium point P* for a =1.22043,
P=1.22, and c, =-0.06934372. (The limits of the axes are: =0, 2^3, =0.60 ; z„,„ =-0.60,

=0)-

Figure 3: Stable limit cycle (one trajectory in red for color picture) surrounding the three equilibria for
a =0.9893846, p =0.96927, and c, =-0.06934372 . The unstable limit cycles -denoted by white continuous
circles- surrounds the equilibria (The limits of the axes are: =-0.5, =0.5: 2^;^ =-0.5.

2 = 0.5).*^max '

Figure 4: Stable limit cycle (one trajectory in yellow for color picture) surrounding the three equilibria for
a =0.9133561, P =0.88920, and c, =-0.065. The unstable limit cycles are not shown in the figure (The limits
of the axes are: = -0.5 , x„,3, = 0.5; = "0-5, ^„,ax = 0.5).

Figure 5: Stable limit cycle surrounding the three equilibria for a =0.9133561. p =0.8950, and c- =-0.065.
The unstable limit cycles are not shown in the figure but they are closer to the stable limit cycle compared to the
situation shown in Fig. 4 (The limits ofthe axes are: = -0.5 , = 0.5; 2^;^ = -0.5, 2^,3^ = 0.5 ).
(For color picture: yellow and white dots indicate contracting trajectories; red dots indicate expanding trajectories)

Figure 6: Degenerate Hopf bifurcation curve (Hopf+first Lyapunov index equal to zero). On this cur\'e. on its top
right there is a point having an extra condition: the second Lyapunov index is also equal to zero (not shown in the
figure). (The limits ofthe axes are: a„,i„ = 0.98, a„,a^ =1.05; P„,„ = 0.98, P„3^ = 1.05).

Figure 7: Stable limit cycle surrounding the three equilibria for a =1.006382. p =0.9995, and
_ -0.04561432 (in black forcolor picture). The unstable limit cycles surround the symmetrical equilibria. (The

limits ofthe axes are: .y„,j3 = -0.1, 2^3, = 0.4; 2„,j„ = -0.4, 2^3, =0.1).

Figure 8: Stable limit cycle surrounding the three equilibria for a =0.99515, p =0.9916, and
c, =-0.02896491 (in black for color picture). The unstable limit cycles surround the symmetrical equilibria (in
red for color picture). (The limits ofthe axes are: = -0.3, = 0.3; = -0.3,23,3,^= 0.3).
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