

Copyright © 1998, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

REACHABILITY VERIFICATION FOR

HYBRID AUTOMATA

by

Thomas A. Henzinger and Vlad Rusu

Memorandum No. UCB/ERL M98/19

15 April 1998

REACHABILITY VERIFICATION FOR

HYBRID AUTOMATA

by

Thomas A. Henzinger and Vlad Rusu

Memorandum No. UCB/ERL M98/19

15 April 1998

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Reachability Verification for Hybrid Automata'

Thomas A. Henzinger^** Vlad Rusu^***

^ EECS Department , University of California, Berkeley, CA
tahOeecs.berkeley.edu

^ SRI International, Computer Science Laboratory, Menlo Park, CA
rusuCcsl.sri.com

Abstract. We study the reachability problem for hybrid automata.
Automatic approaches, which attempt to construct the reachable region
by symbolic execution, often do not terminate. In these cases, we require
the user to guess the reachable region, and we use a theorem prover
(Pvs) to verify the guess. We classify hybrid automata according to the
theory in which their reachable region can be defined finitely. This is the
theory in which the prover needs to operate in order to verify the guess.
The approach is interesting, because an appropriate guess can often be
deduced by extrapolating from the first few steps of symbolic execution.

Keywords: hybrid automata, reachability verification, theorem proving.

1 Introduction

Hybrid automata are a specification and verification model for hybrid systems
[ACH"'"95], systems that involve mixedcontinuousand discreteevolutionsofvari
ables. The problem that underlies the safety verification for hybrid automata is
reachability: can an unsafe state be reached from an initial state by execut
ing the system? The traditional approach to reachability attempts to compute
the set of reachable states by successive approximation, starting from the set
of initial states and repeatedly adding new reachable states. This computa
tion can be automated and is guaranteed to converge in some special cases
[KPSY93,AD94,ACH'^95,HKPV95,RR96], for which the reachability problem is
decidable. In general, however, this approach, which we call reachabiliiy con
struction^ may not be automatable or may not converge.

It is for this reason that in this paper, we pursue a different approach, called
reachability verification. In reachability verification, the user guesses the set of

A preliminary version of this paper will appear in the Proceedings of the First In
ternational Workshop on Hybrid Systems: Computation and Control (HSCC 98),
Lecture Notes in Computer Science, Springer-Verlag, 1998.
This research was supported in part by the ONR YIP award N00014-95-1-0520, by
the NSF CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the
AFOSR contract F49620-93-1-0056, by the ARO MURl grant DAAH-04-96-1-0341,
by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036.
Supported by Lavoisier grant of the French Foreign Affairs Ministry and by SRI.

reachable states, and then a theorem prover is applied to verify the guess. A
guess has the form of a logical formula, which is true exactly for the states that
are guessed to be reachable. We classify hybrid automata as to what logical
theory suffices to define the set of reachable states. The formula to be guessed
must lie in this theory, and the verification part amounts to a proof in this
theory. Hence, the simpler the theory, the more constrained the guess and the
easier the verification. In some cases—for example, the case of additive-inductive
hybrid automata, where the set of reachable states is definable in a decidable
subtheory of (IR, IV, .4-, <)— the verification part is often completelyautomatic.
The reachability verification approach is interesting because when successive
approximation does not converge, a suitable guesscan often be found by studying
and extrapolating the first few iterations of successive approximation. In this
way, some automatic heuristics can be developed to aid the guessing part.

The rest of the paper is organized as follows. In Section 2, we present the
hybrid automaton model, the reachability construction method, and the reach
ability verification method. We restrict our attention to linear hybrid automata,
for which reachability construction can be automated and has been implemented
in verification tools such as HyTech [AHH96]. In Section 3, we classify linear hy
brid automata according to the theory in which the set of reachable states is
definable. For example, all linear hybrid automata for which reachability con
struction converges are polyhedral., as their reachable region can be defined in
(iR,-f, <). We giveexamples of linear hybrid automata whose reachable regions
are quite simple yet non-polyhedral (e.g., additive-inductive), as well as ex
amples of linear hybrid automata whose reachable regions are quite complex
(e.g., most naturally expressed using trigonometric functions). Wf also present
a restricted subclass of additive-inductive automata for which the reachable re
gion can be computed algorithmically, even though reachability construction
does not necessarily terminate. Finally, in Section 4 we describe an embedding
ofhybridautomata into the theorem prover Pvs [ORR"''96], and apply the reach
ability verification method to some well-known examples for which reachability
construction fails.

2 Linear Hybrid Automata and Reachability Analysis

Hybrid automata [ACH+95] are finite automata enriched with a finiteset of real-
valued variables. In each location, the variables evolve continuously according to
differential activities, as long as the location's invariant remains true; then, when
a transition guard becomes true, the control may proceed to another location,
and reset some of the variables to new values. We restrict our attention to a
simple class of hybrid automata, allowing only straight-line activities and resets
of variables to zero. More general feature can be approximated in the simpler
framework, with additional locations, transitions, and variables [HHWT98].

Below (Figure 1) is an example of a linear hybrid automaton. It has the
three locations si, S2> ^3 and the three variables x, y, z. The automaton starts
at location si with variable x set to 0 and variables y.z set to 1, and control

can remain at location si while the invariant x < y is true. Here, x increases
with slope 1 (x = 1) and y remains constant at 1 (y = 0). Thus, control can stay
at Si for at most 1 time unit, until x reaches 1. When this condition becomes
true, control leaves si by taking a transition. Here, the only available transition
is the one that leads to S2, which is enabled when x = y. Then, control goes
to location S2, where x decreases (x = —1), and stays there until x reaches 0.
When this happens, the transition from $2 to S3 is enabled and control goes to
S3, by assigning variable z to 0 in the process. The process continues likewise at
location S3.

X = 0

y = 1
z = 1

2 = 1

X <y I > 0 2 < 1

i; =] X = —1 z = 0

y = 0

II

y = 0

H

II

0

y = i
U = o .i = 0 2 := 0 .i = i

Si S2 S3

Fig. 1. Example of a linear hybrid automaton

Syntax of linear hybrid automata. A convex linear predicate is a system of
linear inequalities over given variables. A linear predicate is a finite disjunction
of convex linear predicates. A linear hybrid automaton consists of the following
elements:

- a finite set A' = {xi, X2,... , Xn} of variables;
- a finite set L of locations;
- a finite multiset of transitions T C L x L;
- for each location / G L:

• an invariant Inv{l), which is a convex linear predicate on the variables;
• an activity Act{l), which is a tuple of differentials laws (on law per vari

able) of the form x = A(/, x). Here, A{l,x) is a rational constant, also
called the slope of variable x at location /;

• an initial condition Init{l), which is a convex linear predicate on the
variables;

- for each transition < 6 T:

• a guard Guard{t), which is a convex linear predicate on the variables;
• a reset Reset{t), which is a set of variables Reset{t) C X.

Semantics. The semantics of hybrid automata builds upon the following prelim
inary notions. A valuation is a function v : X]R that associates a real number
u(x) to each variable x G A'. Given a variable valuation v and a linear predicate

P over the variables, we say v satisfies P, written P{v) = true, if by replacing
in P each variable x with its value t;(x), one obtains a true statement. In par
ticular, if valuation v satisfies the invariant of location I (respectively, the guard
of transition i) we write Inv{l){v) = true (respectively, Guard{t){v) = true).
Given a valuation v and a subset V C X of variables, we write v[Y := 0] for the
valuation that assigns 0 to all variables in Y, and agrees with v on all variables
in XXy. Given a valuation v, a location I S L, and a non-negative real r €
we write v -J-i r for the valuation that assigns to each variable x in X the value
v(x) -f A(l, x) •r, wh«re A{1, x) is the slope of variable x at location /.

The semantic features of a hybrid automaton are the following:

- a state is a pair (/, f), where / is a location and v a valuation such that
Inv{l){v) = true]

- for a non-negative real r € there is a continuous step of duration r
between two states (/, v) and (/, v') denoted (/, v) (/, v'), if v' = v +i r;

- for a transition a = (/,/') 6 T, there is a discrete step of label a between two
states (/, r) and denoted (/, v) if Guard{t){v) = true and
v' = v[Resei{1) := 0];

- a run is a finite sequence of continuous and discrete steps (/q, vq) —*• ('i. vi) ^
{lm,Vm) such that the first state (/q,vq) is initial; i.e., vq satisfies the

initial condition Inii{lo).

A state is reachable if it coincides with the last state of a run. A linear region is
a pair {/,P), where / is a location and P is a linear predicate on the automaton
variables. A state (s, v) satisfies the linear region (/, P) if s = / and v satisfies P.
In this case we also say that the region (/, P) contains the state (s, v). The
reachahiliiy problem for linear hybrid automata is: given a linear hybrid auto
maton A and a set H of linear regions, is there a reachable state of A that is
contained in some region in TZ. We discuss below two kinds of approaches to this
problem.

Reachability construction [ACH'̂ 95]. This method performs a symbolic
execution of the hybrid automaton. It consists in successively approximating
the reachable region, starting from the initial region, and iterating successor
operations until the computation converges. There are two kinds of successors.

The continuous successor of a region (/, P) is the region (/, Pi) that con
tains all the states that can be reached from states satisfying (/, P), by a single
continuous step. The predicate Pj is obtained by extension of P at location I.
Suppose P is a linear predicate over the variables xi,... ,Xn, and that variable
X,- evolves in location / by the law x,- = ki (for all i 6 {!,... ,n}); then, the
extension of P at location / is described by the following predicate:

Pi = 3t> O.P(xi - Ari •r,... , x„ - •r) (1)

It can be shown that the elimination of the existential quantifier in formula
(1) can be performed, and it again produces a linear predicate in variables
xi,... ,x„: the continuous successor of a linear region is still a linear region.

The discrete successorof a linear region (/, P) by a transition (/, /') £ T is
the region (/', P(i,i')) that contains all the states that can be reached from states
satisfying (/, P), by a single discrete step. The predicate P{!,!') is obtained from
P by projection over transition (/,/')• Suppose that P is a linear predicate over
variables Xi,... ,Xn, and transition (/,/') resets the variables x,-,,Xfj,... ,x,p;
then, the projection of P over transition (/, /') can be described by the following
predicate:

P{i,i') = (®«j = 0 = 0a •••a Xij, = 0) a3x,i.3x,-3 .. .3x,j,.P(xi,... ,x„)
(2)

It can be shown that the elimination the existential quantifiers in formula (2) can
be performed, and it again produces a linear predicate in variables xi,... ,Xn.
Thus, the discrete successor of a linear region is still a linear region.

Reachability construction consists in iterating the following Post procedure:

Input: set A of linear regions.
Output: set B of linear regions, initially empty.
For each linear region (/, P) in the set A, for each transition (/,/') with origin /:

- let Pi be the intersection of P with the guard of transition (/,/')
- let P2 be the projection of Pi over transition (/, /')
- let P3 be the intersection of P2 with the invariant of /'
- let P4 be the extension of P3 at state /'
- let P5 be the intersection of P4 with the invariant of /'
- add (/', P5) to set B.

We denote by Pos<^(/) the set of regions obtained by applying k times the
Post operation to the set of initial regions 1 = {{I, Init{l)i A Inv{l))\l € L},
and by Posi'{I) the countably infinite union Vitgjv Posi^{I). This isalso called
the reachable region, and it represents all the reachable states of the hybrid
automaton. Once Post'(I) is computed, the reachability problem for a set of
linear regions Tl can be solved by checking if the intersection Post'{I) D 72. is
non-empty.

We call reachability construction the process of computing the sequence 7,
Posf(7), Post^{I) ... of sets of regions. If, for some integer k 6 it is the case
that PosP"^^(/) C Post''{I), then reachability construction terminatesinfinitely
manysteps, and Post'{I) = Pos<*(/). This does not happen in general for linear
hybrid automata [HKPV95]. Some subclasses for which reachability construc
tion terminates have been identified, such as timed automata, initialized rectan
gular hybrid automata,^ and others [KFSY93,AD94,ACH+95,HKPV95,RR96].
For these classes, the reachability problem is decidable. Reachability construc
tion is the procedure implemented in symbolic model-checking tools such as
HyTech [AHH96].

For these classes, termination is achieved by slightly modifying the automaton.

Reachability verification. We define a new approach to the reachability prob
lem, called the reachabilHy verification method. This method can succeed in
cases when reachability construction fails. Reachability verification consists of
two steps: first, to gvess the reachable region; second, to verify that the guess
is correct. In many cases (some of which are presented in Sections 3 and 4), a
suitable guess can be found using the simple heuristic described below, and the
verification can be performed by induction, using a theorem prover.

It appears that when reachability construction does not terminate, the reach
able region of a hybrid automaton can still behave in a regular manner. As an
example, consider the hybrid automaton in Figure 1. By studying the reach
ability construction over a few iterations (performed in this situation by the tool
HyTech), it can be seen that the reachable region is described by the following
set of regions:

{(si , 3i 6 l^^(l >lAx<iAy = iAz = 1)),

(s2 • 6 2\^(^ > 1 AX< I Ay = 2Az = 1)), (3)
(s3 , 3/ € J '̂.{i > I AX—0 Ay = z + i Ai < y < i + 1))}

The above expression involves a quantifier over a new natural-number variable i.
Thus, a simple heuristic to guess the reachable region is to observe a few itera
tions of reachability construction, and to search for a reachable region of the form
3ii € W .. .3iq 6 i\'.7^(ii,... , i,); that is, the reachable region involves some
new natural-number variables ii,... , iq in addition to the automaton variables.

A typical situation is to guess a reachable region written using only one
natural-number variable j, which represents the number of iterations of the Post
procedure. In this case, we call the guessed region directly inductive, and proving
that the guess is correct amounts to prove that for all j G N, PosP{I) = Tt{j).
This can be performed by induction using a theorem prover. In particular, we
need to show the two followingproof obligations: 7^(0) = {Init{l)\ AInv{l) \ l E L)
for the base step, and Vj G]\^.Post{7l{j)) = 7l{j -f 1) for the induction step.
As we shall see in Section 3, these proof obligations can often be discharged
automatically.

In other situations the guessed region may not be directly inductive, but it
can be made so by introducing new variables and constraints. For instance, the
reachable region defined by expression (3) is not directly inductive, since the
natural-number variable i does not represent the number of iterations. But this
region becomes directly inductive by adding the constraints j = 3t, j = 32-1-1,
and j = 32-1-2 respectively to the three regions in the set (3). That is, we define
the sets of regions Tl{j) = {(si, 32 G = 32 At > 1 Ax < 2' Ay = t Az = 1)),
(s2,32 GW.(y = 32 -fl A2> 1 AX< 2Ay = 2Az = 1)), (53,32 GW.(j = 32 -1- 2A
2> lAx = 0Ay = z-l-2A2<y<2 + 1))} and now the "guess" 3j G N.1Z{j)
is directly inductive, with j representing the number of iterations.

Finally, even in situations when the guess is not (or cannot be transformed
into) directly inductive, a useful approach is to prove that it is an invariant
of the system. This can often be done automatically and it is often enough in
practice for proving safety properties. We present sample proofs in Section 4.

We now give a classification of hybrid automata according to the theory in which
their reachable region can be written finitely. The less expressive this theory, the
less interactive theorem proving is needed for doing reachability verification.

3 Reachable Region Classification

The first class that we define contains in particular all the hybrid automata for
which reachability cqjistruction terminates.

Definition 1 (polyhedral hybrid automata). A linear hybrid automaton is
polyhedral if its reachable region can be expressed as a set ofpairs {(/, Pi) \ € L)
such that for each location I ^ L, P\ is a formula of the theory^

We say a linear hybrid automaton is finitely constructible if its reachability con
struction terminates: i.e., for some k € IN, Post'il) — Post^{I). While all
finitely constructible hybrid automata are polyhedral, the converse is not true:
it iseasy to construct a hybrid automaton such that forallk ^ IN, Post^{I) is the
closed interval [0,Ar]; thus, the reachable region Pos<"(/) is the interval [0,oo),
but reachability construction does not converge in finitely many steps. The class
of finitely constructible hybrid automata includes the timed automata [AD94]
and the initialized rectangular hybrid automata [HKPV95] (with some minor
modifications to force the reachability construction to terminate) as well as some
other restricted classes [KPSY93,RR96].

Definition 2 (additive-inductive hybrid automata). A linear hybrid au
tomaton is additive-inductive if its reachable region can be expressed as a set
of pairs {{I, Pi) \ I € L] such that for each location I ^ L, Pi is a formula
of the theory {R, 1N,+, <) in tuhich all natural-number variables are outermost
existentially quantified. •

For instance, the hybrid automaton in Figure 1 is additive-inductive: we have
seen that its reachable region (3) involves the real variables x,y,z and the
natural-number variable i, which is outermost existentially quantified.

Proposition 1. The class of polyhedral hybrid automata is strictly included in
the class of additive-inductive hybrid automata.

Proof. The inclusion is obvious (since any formula of (iR, + , <) is also a formula
of {R, <)). Let us show that the inclusion is strict. For this, consider the
hybrid automaton in Figure 1. We have seen that it is additive-inductive, and let
us suppose it is finitely constructible, thus polyhedral by a previous observation.
Then, formula (4) 3i € JN-{i > lA®<tAy = iA2 = 1) can be also expressed in
the theory (JR,+, <); that is, the set of triples {x,y,z) satisfying (4) constitute
a finite union of convex polyhedra P\,... , P/v in R^. Since (4) is the countably
infinite union VieA'(' ^ 1Ax < t Ay = i Ar = 1), it follows that at least one of

^ Whenever we define a logical theory, we allow (unless explicitly restricted) arbitrary
first-order quantification and boolean connectives.

the convex polyhedra Pj coincides with the union of infinitely many polyhedra
of the form (5) (a: < i Ay = t A2 = 1). This is not possible, because the union
of polyhedra of the form (5) is not convex (they are all disjoint). •

Suppose the user can guess a reachable region like in Definition 2 (using the
simple heuristic of extrapolating from the first few reachability steps) and that
furthermore the guess is directly inductive (cf. end of Section 2). Then, verifying
that the guess is correct can be done by induction in a completely automatic man
ner. Indeed, both the base and the inductive steps of the proof require computing
the extension and projection operations (cf. equations (1), (2) of Section 2) for
formulas of the theory [R, W, -H, <)• This amounts to proving finitely many im
plications of the form Vx € JR".Vi € W".3y € R.<p{x,i,y) => ^'(Xjijy)- Proving
such an implication can be done automatically, by eliminating the existential
quantifiers on the real variables using the Fourier-Motzkin algorithm [Zie95]
(transforming the universal quantifiers into existential ones by taking the nega
tion of the formula whenever necessary). At the end we are left with a formula
of Presburger arithmetic, which is decidable.

In the situation where the guessed region is not directly inductive, one can
still attempt make it directly inductive as indicated in Section 2, by introducing
new variables (one of which represents the iteration number) and new constraints
connecting the existing and the new variables. Finally, even when a guess is not
directly inductive, it can be useful (as an invariant of the system) to prove safety
properties. We demonstrate these approaches in Section 4 on some well-known
examples.

We now define a class of linear hybrid automata whose reachable region
can be defined in terms of natural and real numbers, using addition and mul
tiplication. Consider the theory {R, J^\ -f, a'xA'. NxB, <) of reals and naturals
with multiplication between naturals -jvxA', multiplication between naturals and
reals b'xR, and inequality. Any formula in this theory is a boolean combination
of linear inequalities in the real variables, with polynomial coefficients in the
natural-number variables; for example, (n^ —l)-x + m- y + n > 0, where x, y
are real variables and m,n are natural-number variables.

Definition 3 (multiplicative-inductive hybrid automata). A linear hy
brid automaton is multiplicative-inductive if its reachable region can be expressed
as a set of pairs {(/, Ft) | / G L) such that for all location I £ L, Pi is a formula
of the theory (JR, W,-f,-iVxA.'A'xi?. <) all the natural-number variables
outermost existentially quantified. •

The linear hybrid automaton® in Figure 2 is multiplicative inductive: it can be
showneasilythat the reachableregion at location s\ is defined by the formula(6)
3n G JN.{n > lAx = lAny = lAu = 0Ait = 0), where x, y,u, v are real
variables, and n is a natural-number variable.

Proposition 2. The class of additive-inductive hybrid automata is strictly in-
cluded in the class of multiplicative-inductive hybrid automata.
^ In Figure 2, activities z = y = t£ = i» = OataU locations are not represented.

ii<v —l,u:=u + l,x:=x + y

n
r -

1.

H

II

S2

^

It = V A X = 1
S3

Tx := 0 u := 0,V:= 5

Fig. 2. Multiplicative-inductive hybrid automaton

Proof. The proofof t]j^is proposit ion is based on the following observat ions. Given
two predicates (p and on the real variables xi,... , Xn. we identify (p and with
the sets of points in JR" that they respectively define. We define the maximal
distance A{ip, V*) between p and ip as follows: if v? or V* are empty then V)
is a special value ±; otherwise, A{p,tl;) is the lowest upper bound of the set of
distances in JR" between a point satisfying p and a point satisfying

Consider now an additive-inductive hybrid automaton, a location / of the
automaton, and the formula Bij € A' •• € N.p{xi,.. .Xn, t'l... r,) that de
fines the reachable region of the automaton at locat ion /. Wit hout restricting the
generality, it is possible to suppose that formula <^5 is a convex linear predicate
in variables xi,... , Xn, r'l,... ,iq. We define a sequence {pm)m>i of linear predi
cates by the relation pm{x\,... , Xn) = p{xi,.. .Xn, m ... ,m); i.e., the sequence
of predicates (v7m)m>i is obtained by replacing in formula 95 all integer variables
by the value m. Thus, any predicate in the sequence {pm)m>\ is a convex linear
predicate on xi,... , x„; that is, any predicate Pm is a convex polyhedron in iR".

We now define the sequence (^ni)m>i by A(pm, Pm+\) for all m > 1.
We show that the sequence (i:^m)m>i can behave in one of three possible man
ners. In the first case, there are infinitely many polyhedra pm that are empty
and thus for infinitely many m > 1, Am =J-. Otherwise, there exists an index
M > 1 such that for all m > M, all polyhedra pm are non-empty. Then it can
be shown that for all m > M, each vertex of pm+i is obtained from some vertex
of pm by translation by some constant vector w G iR"• The vector w depends on
the vertex but not on the index m. If all such vectors w are 0, then we have the
second case: for all m > M, the polvhedra pm are equal, and hence the sequence

m>M is constant. Otherwise, at least one vector w is not 0 and we have
the third case: for all m > M, Am > |W'i > 0 (where |iju| denotes the length of
vector w).

Consider now the hybrid automaton in Figure 2 and suppose that it is
additive-inductive. We have seen that the formula (6) Bi € W.(i > 1 A x =
lA2-y=lAt; = 0Ati = 0) represents the reachable region of this hybrid
automaton at location S3. We apply the previous constructions: we obtain the
sequence of predicates pm = (x= lAmy = lAt; = 0At/ = 0) and the sequence
of distances Am = l/m(m -f 1), for all m > 1. The last sequence is strictly
decreasing and converges to 0. But we have seen that this cannot be the case for
a sequence obtained (as described above) from the reachable region
of an additive-inductive hybrid automaton. Hence, the multiplicative-inductive
hybrid automaton in Figure 2 is not additive-inductive. •

Reachability verification can still be applied to multiplicative-inductive hybrid
automata, provided the user guesses the reachable region. For instance, con
sider the hybrid automaton in Figure 2, whose initial region I is defined by
location si. We apply reachability verification: we guess the reachable region at
location S3 to be formula (6) above (using the heuristic of observing the first
steps of reachability construction). This guess is furthermore directly inductive
(cf. end of Section 2): to prove that the guess is correct , we show by induction
that for all A: > 1, the region Post*(/) at location S3 is described by the formula
(x = lAit-y=l^t; = 0Ait = 0). However, unlike the case of additive-
inductive hybrid automata, this proof can only be partially automated. Indeed,
the extension and projection operations (equations (1), (2) of Section 2) can be
computed automatically for predicates in (iR, W, -f, -jvxiVj 'A'xJ? <): these oper
ations require eliminating the existential quantifiers on the real variables, which
can be done using a generalization of the Fourier-Motzkin algorithm [BR97].
But after the quantifier elimination, we are left to decide a first-order formula of
the (undecidable) theory (A',-I-,*, <)• This last formula has to be dealt with by
theorem proving. So, the verification process is more involved than in the case
of additive-inductive hybrid automata.

X = 1,1/= 0 X := 3x —4y
y:=4x + 3y

Fig. 3. Hybrid automaton with exponential/trigonometric reachable region

While the theory of natural numbers with addition, multiplication and order
is extremely expressive for encoding purposes, there exist linear hybrid auto
mata whose reachable regions are most naturally expressed in terms of other
operations, like exponentials and trigonometric functions. Consider the hybrid
automaton in Figure 3. The transition sets the variables to new values'* that we
denote x', y'. Let 9 E Rhe such that 5 cos0 = 3. Then, we have x' = 5(x cos9 —
ysin9),i/ = 5(xsin^-|- ycos9). Interpreted as a vector operation, the previous
relationsjust say that vector [x', j/] has a length 5 times greater than vector [x,y],
and that [x',y'] is rotated by angle 9 from [x.y]. Thus, the reachable region is
defined by formula 3n 6 N39 E jR.(x = 5" cos A y = 5" sin n9 A b cos0 = 3).
This would suggest that reachable regions need quite expressive theories in order
to be expressed finitely. However, it is easy to show that the previous region can
be encoded in the first-order theory of integers with multiplication: let code{x,y)
be an encoding function of pairs of integers as natural numbers, and consider the
natural numbers of the form (7): •... Here,
Pn is the n-th prime number, and Xn, Vn are the terms of the sequence defined
by xi = 1, yi = 0, and the transition relation of the automaton. Clearly, the fact
that (x„,yn) is in the reachable region is encoded by the existence of natural
numbers of the form (7), which can be described in the theory (W,-f, •,<).

* The linear assignments can be simulated by appropriate slopes, tests, and resets.

10

Finally, we mention a restricted subclass of linear hybrid automata for which the
reachable region can be computed algorithmically, even though reachability con
struction does not necessarily terminate. Some well-known examples of hybrid
automata (like the oneswe discuss in Section 4) are in this class. We say a hybrid
automaton is iime-prediciable if for each location /' and each pair of transitions
(/, I') and (/, /") with destination (resp. with origin) /, there exists an interval of
IR"^ such that transition («', s") can be fired at any moment within the given in
terval, after the firing of transition (s, s'). We say a hybrid automaton is without
nested cycles if its gr^ph is equivalent to a regular expression (on the transition
names) without nested ♦ operations. We have proved® that time-predictable hy
brid automata without nested cycles are additive-inductive but not polyhedral
(cf. Definitions 1, 2), and that their reachable region can be computed algorith
mically, by a procedure different from reachability construction. This shows that
there exist hybrid automata for which the reachability problem is decidable, even
though reachability construction does not terminate.

4 Hybrid Automata in PVS

We outline the modeling of hybrid automata and reachability verification in
Pvs [ORR"^96]. First we specify a theory polyhedra[n] of n-dimensional poly-
hedra (paramet ric in the dimension n € It cont ains essentially the definitions
of extension, projection (formulas (1), (2) of Section 2), and intersection opera
tions on polyhedra. Writing such first-order predicates in the higher-order Pvs
specification language is straightforward. Then, we write another theory that is
specific to the particular hybrid automaton to be analyzed (containing the defini
tion of the automaton features: states, transitions, activities, invariants, guards,
and resets). This second theory uses (imports) the theory polyhedra[n], in
stantiating n with the number of variables of the hybrid automaton. Finally, in
a third theory called symbolic-analysis we specify the types and operations
of reachability analysis (independent of any particular hybrid automaton): the
region type (record of state and polyhedron), the continuous and discrete suc
cessors of a region, and a post predicate on regions, according to the definition
of the Post operation (cf. Section 2):

region : TYPE = [# thestate: state, thepoly: poly #]

continuous(rl:region) : region =
(#

thestate:= thestate(rl),
thepoly:= intersection(extend(thepoly(rl),

slope(thestate(rl))),invar(thestate(rl)))
#)

The proof is not presented here due to lack of space.

11

discrete (rl:region, t:trans) : region =
(#

thestate := dest(t),
thepoly:= intersection(project(reset(t),

intersection(thepoly(rl),gnard(t))),
invar(dest(t)))

#)

post(Rl,R2:setofC^egion]) : bool =
FORALL (r2:region): member (r2,R2)
IMPLIES EXISTS(rl:region,t:trans):
member(rl,Rl) AND orig(t)=thestate(rl)
AND r2 = continuous(discrete(rl,t))

To provestatements about the reachable region Post*(7), we use induction and
the predicate post. We now describe the application of reachability verification
to examples of hybrid systems modeled by additive-inductive hybrid automata.

The leaking gas burner. The hybrid automaton in Figure 4 models a leak
ing gas burner [CHR91]: location sj (resp. S2) stands for the leaking (resp. the
non-leaking) state of the system; variable x is used to control the time spent
in each state, variable y is a global clock, and variable z measures the total
time spent by the gas burner in the leaking state. A design requirement for

X, y, 2 := p
X < 1

X = 1

y = i
. 2=1

X < 1
r

true

X = 1
y= 1

. 2 = 0

X := 0 '

X > 30

X := 0

Fig. 4. Leaking gas burner automaton

the leaking gas burner is that in any interval of time of at least 60 seconds,
the leaking time does not exceed 5% of the total time. This can be expressed
by the fact that linear predicate y > 60 => 2O2 < y is an invariant of the sys
tem (i.e., true in all reachable states). The specification in Pvs of this example
includesthe theoriespolyhedrafn] with n instant iated by 3 (the number of vari
ables of the automaton), and symbolic-anedysis for the reachability analysis
of the system. The system itself (hybrid automaton in Figure 4) is specified in
a theory leaking-gas-bumer, that contains the description of the automaton:
locations with invariants and differential laws, and transitions called sl_to_s2
and s2_to_sl, with their guards and variables to reset. The reachability con
struction does not terminate® but by studying the first few iterations, one can

Although backwardsreachability construction terminates in this case.

12

guess that the reachable region is described by the following set of linear regions
(from which it can be seen that the hybrid automaton is additive-inductive):

{(si,0<x< lAx —y = zV3i € lN.{i > lAO < x < lAO < z—x < jASOz+x < y)),
(s2»0 <x<lAy=x-l-2Ax>0v3z € W.(z > 1A0< xAO<x <z-flA30z-hx-|-2< y)))

However, this guess is not directly inductive (cf. end of Section 2) because the
natural-number variable i does not represent the number of iterations. It is
possible to make the guess directly inductive, by introducing a new natural-
number variable j and two new constraints j —2z', j = 2i + I. More precisely,
we define the sets of regions TIU) such that for all j > 2, is equal to:

{(si,3z e W.(z > 1Ai = 2zA0<x < 1A0<2-x < zA30z H-x < y)),
(S2,3z €]^.{i> 1Ai = 2z -t-1 A0 < XA0<x < z-j- 1A30z + x -b x< y))}

Furthermore, 7^(0) equals {(si,0 <x<lAx = y= z), {s2, false)} and '72-(l)
equals {(si,/a/se), (s2,0 <x< lAy = x-bxAx> 0)}. Now, the new "guess"
3j £ is directly inductive (with j representing the number ofiterations).
We prove by induction on j that PosP{l) = 7^(i), for all j £ N. This means
that Posi'{l) = 3j £ W.7^(j); i.e., the guess of the reachable region is correct.

Finally, to prove the design requirement of the gas burner y > 60 =i'- 20x < y,
we prove that it is implied by Post'{I). Except for some details (like the expan
sions of the definitions for continuous, discrete, post etc), Pvs can do all the
proofs automatically, using its built-in decision procedures.

The reactor temperature controller. This example is takenfrom [JLHM91].
It is a variant of the nuclear reactor temperature control problem, in which non
linear evolutions are approximatedbypiecewise-linear functions [HHWT98]. The

X > 510

xe [-5,-11

X = 510 X < 550

ir € [1,5]
1/1=1/2 = 1]

x = 510 X > 510

ir 6 [-9, -5]
11/1=1/2=1

y\ := 0
X = 550

1/2 ••= 0
x = 550

3/j ^ y2 d.

Fig. 5. Reactor temperature control automaton

reactor automaton (cf. Figure 5) has three locations: in the nojrod location, the
temperature x increases according to the law x £ [1,5], and control can stay
in location no-rod as long as the temperature does not exceed 550. When the
temperature reaches 550, the reactoruses oneoftwocooling rods, and the control
goes to a location where temperature decreases, according to law x £ [—5, —1] or
X£ [—9,-5], depending on the cooling rod that is used. When the temperature
falls to 510, the rod is removed and the reactor goes back to the no-rodlocation.
After a rod has been used, it cannot be used again before 20 time units. This is
specified using two clocks yi and y2: when the control leaves the location rod,-
(that is, rod z is removed from the reactor) the clock variable y,- is reset, and
the next entry to location rod,- is guarded by the condition y,- > 20. A design

13

requirement for the temperature control system is that the temperature never
reaches the upper limit (x = 550) in the nojrod location of the automaton with
both rods unavailable (yi < 20 and y2 < 20). The reachability construction
from the initial region (location nojrod, variables x = 510, yi = y2 = 20) does
not terminate. However, the reachable region behaves in a regular manner; by
studying the output of the model checker HyTech, it can be guessed that the
reachable region for location nojrod (the location that interests us) has the form:

(x < 550)A[(yi = y2 AX> yi + 490Ax < 5yi + 410)V
3i € lN.{x > y\+510'*Ax < 5yi +510Ay2 > y\ +36+ 28i Ay2 < yi +100 + 80i) V
3i G W.(x > yi +510AX < 5yi +510Ay2 > yi + 16+ 28i Ay2 < yi +80(1 + 0) V
3i € W.(x > y2+510Ax < 5y2+510A9yi > 9y2+112+2202Ayi < y2+48(j+2))V
3i € JV.(x > y2+510Ax < 5y2+510A9yi > 9y2+292+220/Ayi < y2+68+480].

We prove in Pvs that the above predicate is an invariant at locat ion nojrod of the
automaton. For this, we show that our guess H satisfies ICR and Posi{Tt) C R.
This is enough for proving the design requirement: indeed, the above predicate
implies the negation of the 'dangerous' region x = 550 A yi < 20 A y2 < 20, so
the design requirement is met. Except for details like definition expansion, these
proofs are completely automatic in Pvs.

5 Conclusion

We have presented a new approach to the reachability problem of hybrid auto
mata. The idea is to guess the form of the reachable region and to use theorem
proving for verifying that the guess is correct. We have classified hybrid automata
according to the theory in which their reachable region can be written finitely. In
this classification, we have identified the addHive-indvclive and muliiplicaiive-
induciive hybrid automata, for which the guess can be done using a simple
heuristic and the verification by induction. We have presented some applications
using the prover Pvs. In the future, we plan to automate the method as much
as possible (including automated guess heuristics and adapted strategies for the
Pvs proofs) for being able to cope with larger examples.

Related work. [BW94] exploit the regularity of cycles on a discrete model
(automata with counters). Their approach is fully automatic but it is limited
to linear operations on the variables that are idempotent. [BBR97] present a
similar approach for a restricted class of hybrid automata (there is a fixed inter
val of time between transitions), but their method is fully automatic. Abstract
interpretation of hybrid automata [HPR94] would automatically recognize the
regularities of polyhedra and detect an invariant which, in general, is only an
over-approximation of the actually reachable states. Finally, [VH96] describe an
approach based on stepwise refinement for the verification of hybrid systems,
where Pvs is used to prove the correctness of each refinement step.

Acknowledgments. Thanks to Natarajan Shankar, Luca de Alfaro, Peter Haber-
mehl, and the anonymous reviewers of the Hybrid Systems workshop for useful
comments and suggestions.

14

References

[ACH"''95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X.
NicoUin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verifica
tion of embedded systems. IEEE Transactions on Software Engineering,
22(3):181-2pl, 1996.

[BBR97] B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analy
sis method for strongly linear hybrid systems. In Pror. of the 9th Confer
ence on Computer-Aided Verification, CAV'97, LNC£ 1254,pages 167-178.
Springer-Verlag, 1997.

[BR97) A. Burgueiio and V. Rusu. Task-system analysis using slope-parametric
hybrid automata. In Proc. of the 3rd Conference on Parallel Processing,
Euro-Par'97, LNCS 1300, pages 1262-1273. SprmgeT-Verla&, 1997.

[BW94] B. Boigelot and P.Wolper. Symbolic verification with periodic sets. In Proc.
of the 6th Conference on Computer-Aided Verification, CAV)94, LNCS 818,
pages 55-67. Springer-Verlag, 1994.

[CHR91] Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calciiras of durations. In
formation Processing Letters, 40:269-276, 1991.

[HHWT981 T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. AJgorilhmic analysis of non
linear hybrid systems. IEEE Transactions on AvIoraeUc Control, 1998. T®
appear.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. WTiat's decidable
about hybrid automata? In Proc. of the 27th Annual ACM Symposium on
Theory of Computing, STOC'9o, pages 373-382, 1995.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verifica'tion oflinear hybrid
systems by means of convex approximations, in Proc. of the 1st Static
Analysis Symposium, SAS'94, LNCS 864. pages 223-237. Springer-Verlag,
1994.

[JLHM91] M. Jaffe, N. Levenson, M. Heimdahl, and B. Melhart. Software require
ments analysis for real-time process-control systems. IEEE Transactions
on Software Engineering, 17(3):241-258, 1991.

[KPSY93] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class
of decidable hybrid systems. In Proc. of the 1st Workshop on Theory of
Hybrid Systems, LNCS 736, pages 179-208. Springer-Verlag, 1993.

[ORR'''96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. Pvs: Com
biningspecification, proofchecking, and model checking. In Proc. of the 8th
Conference on Computer-Aided Verification, CAV '96, LNCS 1102, pages
411-414. Springer-Verlag, 1996.

[RR96] O. Roux and V. Rusu. Uniformity for the decidability of hybrid automata.
In Proc. of the 3rd Static Analysis Symposium, SAS'96, LNCS 1145, pages
301-316. Springer-Verlag, 1996.

[VH96] Jan Vitt and Josef Hooman. Assertional specification and verification using
Pvs of the steam boiler control system. In Formal Methods for Industrial
Applications: Specifyingand Programming the Steam Boiler Control, LNCS
1165, pages 453—472. Springer-Verlag, 1996.

[Zie95] G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, 1995.

15

	Copyright notice 1998
	ERL-98-19

