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Abstract

Measurement-based Admission Control (MBAC) is an attractive mechanism to concurrently offer Quality
of Service (QoS) to users, without requiring a-priori traffic specification and on-line policing. However, several
aspects of such a system need to be clearly understood in order to devise robust MBAC schemes. Through a
sequence of increasingly sophisticated stochastic models, we study the impact of parameter estimation errors,
of flow arrival and departure dynamics, and of estimation memory on the performance of an MBAC system.

We show that a certainty equivalence assumption, i.e., assuming that the measured parameters are the
real ones, can grossly compromise the target performance of the system. We quantify the improvement in
performance as a function of the memory size of the estimator and a more conservative choice of the certainty-
equivalent parameters. Our results yield new insights into the performance of MBAC schemes, and represent
quantitative guidelines for the design of robust schemes.

1 Introduction

Integrated-services networks are expected to carry a class of traffic that requires Quality of Service (QoS)
guarantees. One of the main challenges consists inproviding QoS to users while efficiently sharing network
resources through statistical multiplexing. The role ofAdmission Control (AC) is to limit the number of
flows admitted into the network such that each individual flow obtains the desired QoS.

Traditional approaches to admission control require an a prioritraffic specification in terms ofthe pa
rameters of a deterministic or stochastic model. The admission decision is then based on the specifications

"This author has been supported in part by a grant from FVance Telecom/CNET.
^This authorhas been supported by grant F49620-96-1-0199 from AFOSR, a grant from Pacific Bell and a MICRO grantfrom

the government of California.
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of the existing gind the new flow. However, it is usually difficult for the user to tightly characterize his
traffic in advance [17]. For many types of traffic, such as variable-bit-rate (VBR) compressed video, it is
very difficult to define adequate traffic descriptors that take into account thewidely varying source charac
teristics occurring at a slow time-scale ( such as due to scene changes). This is true even for stored media
such as video-on-demand, as the user is expected to be able to exercise interactive control (such as pause,
fast-forward etc.) IVaffic descriptors such as the leaky bucket that has been proposed in standard bodies
like the ATM Forum is only adequate for describing the short time-scale burstiness of the variable-rate
traffic. As a result, traffic specifications can be expected to be quite loose, resulting in conservative use of
resources.

Stochastic models such as those based on effective bandwidth [14] are better suited to achieve good

statistical multiplexing gain. However, they suffer from two problems. First, it is difficult for the user
to come up with the model parameters o priori. If he overestimates his requirements, then resources will
be wasted in the network. This reduces the network utilization. If he underestimates his requirements,

then insufficient resources will be allocated to his flow. The user has to abort the flow or try to adapt to

this situation, for example by increasing the degree of compression of a video flow, thereby lowering its

perceived quality. Second, it is hard to police traffic according to a statistical model [14]. It is not clear
how to ensure that a traffic flow correspond to the specified parameters, without which admission control

can easily be "fooled".

Measurement-based Admission Control (MBAC) avoids these problems by shifting the task of traffic

specification from the user to the network. Instead of the user explicitly specifying his traffic, the network

attempts to "learn" the statistics of existing flows by making on-line measurements. This approach has

several important advantages. First, the user-specified traffic descriptor can be trivially simple (e.g. peak

rate). Second, an overly conservative specification does not result in an overallocation of resources for the

entire duration of the session. Third, when traffic from different flows are multiplexed, the QoS experienced

depends often on their aggregate behavior, the statistics of which are easier to estimate than those of an

individual flow. This is a consequence of the law of the large numbers. It is thus easier to predict aggregate

behavior rather than the behavior of an individual flow.

Relying on measured quantities for admission control raises a number of issues that have to be under

stood in order to develop robust schemes.

• Estimation error. There is the possibility of making errors associated with any estimation pro

cedure. In the context of MBAC, the estimation errors can translate into erroneous flow admission

decisions. The effect of these decision errors has to be carefully studied, because they add another

level of uncertainty to the system, the first level being the stochastic nature of the traffic itself.

Assuming certainty equivalence up-front, i.e. assuming that the estimated parameters are the real

parameters, is dangerous, as we simply ignore its impact on the quality of service.

• Dynamics and separation of time-scale. A MBAC is a dynamical system, with flow arrivals

and departures, and parameter estimates that vary with time. Since the estimation process measures



the in-flow burst statistics, while the admission decisions are made for each arriving flow, MBAC

inherently links the flow and burst time-scale dynamics. Thus, the question of impact of flow arrivals

and departures on QoS arises. Intuitively, each flow arrival carries the potential of making a wrong

decision. We therefore expect a high flow arrival rate to have a negative effect on performance. On

the other hand, the impact of a wrong flow admission decision on performance also depends on how

long it takes until this error can be corrected - that is, on flow departure dynamics.

• Memory. The quality of the estimators can be improved by using more past information about the

flows present in the system. However, memory in the estimation process adds another component

to the djmamics of a MBAC. For example, it introduces more correlation between successive flow

admission decisions. Moreover, using too large a memory window will reduce the adaptability of

MBAC to non-stationarities in the statistics. A key issue is therefore to determine an appropriate

memory window size to use. For this, a clear understanding of the impact of memory on both
estimation errors and flow dynamics is necessary.

The goal of this work is to study the above issues - the impact of estimation error, of flow arrival
and departure dynamics, and of measurement memory - in a unified framework. We wish to gain an
understanding about how these aspects of a MBAC system interact. To do so, we consider a sequence
of increasingly sophisticated models, adding one of the above issues at a time. This sequence culminates
in the continuous load models which allows us to derive smalytical approximations, as well as an intuitive
understanding, about how the above issues fit together. The ultimategoal is to shed insights on the design
of robust MBAC schemes which can provide the appropriate QoS to the user even in the presence of the
additional uncertainty due to measurements.

The rest ofthe paper is organized as follows. In Section 2, we describe the models that will be studied.
The analysis of these models is explained in Section 3 and 4. In Section 5, we summarize the insights
obtained and use them to study the problem of choosing the appropriate memory window size. We also
report some simulation results on real and synthetic traffic. In 6, we discuss how our results relate to
previous work in measurement-based admission control. We conclude the paper in Section 7.

2 Models

We begin by briefly describing the basic model. The network resource considered is a buff'erless single
link with capacity c. Flows arrive over time and, if admitted, stay for a random time. The bandwidth
requirements of a flow fluctuate over time while in the system. We assume that the statistics of the
bandwidth fluctuations of each flow are identical, stationary and independent of each other, with a mean

bandwidth requirement of fi and variance An important system parameter is the normalized capacity
72:=^, which measures the system size in terms of the mean bandwidth of the flows. Resource overload
occurs when the instantaneous aggregate bandwidth demand exceeds the link capacity, and the quality of
service is measured by the steady-state overflow probability pf.



To study the various issues outlined in the introduction, we will analyze three variations of this basic
model of increasing complexity. In the first variation, an infinite burst of fiows arrives at time 0 and
admission control decisions are made then, based on the initial bandwidths of the flows. After time 0,

no more flows will be accepted and moreover the fiows already admitted will stay in the system forever.
We call this the impulsive load model with infinite flow holding time. This model permits us to study
the impact of the measurement errors on the number of admitted fiows and on the overflow probability,
without the need to worry about flow dynamics.

In the second variation, we consider a similar model with flows admitted only at time 0, but now the

admitted fiows have holding times exponentially distributed with mean Th- Thus, they will gradually
depart from the system. We call this the impulsive load model with finite flow holding time. This model

allows us to study the impact of flow departures on the overflow probability.

The last variation is the continuous load model, where the full flow arrival and departure dynamics

are considered. In this model, fiows arrive continuously over time with effectively infinite arrival rate, i.e.

there are edways flows waiting to be admitted into the network. Once they are admitted, they stay for an

exponentially distributed holding time with mean Th- The motivation for this model is that a well-designed

robust MBAC should work well even for very high flow arrival rates, to cater for times when there is a

surge in user demand of the service. Thus, the continuous-load model provides the most stringent test for

MBACs.

Several comments about the model are in order. First, we observe that the traffic model is a stationary

one. In practice, one of the main reasons for using a measurement-based scheme is to adapt to non-

stationarities in the statistics of the traffic, either due to the change in the nature of the flows or change in
the statistics within a flow itself. The approach taken in this paper is to use a stationary model to evaluate
the performance of schemes with limited memory. Thus, the results are valid if the traffic statistics are

stationary within the memory time-scale. We view this as a first step towards a full understanding of
adaptivity issues.

Second, we consider a resource model without buff'ers. There are several motivations for this. First,
the dynamics leading to the overflow event in a bufferless system is much simpler than that ofoverflowing
in a buffered system, as the event occurs whenever the instantaneous aggregate traffic load exceeds the
link capacity. This simplification allows us to focus on the measurement problem that is of central interest
in this paper. Second, our recent work on multiple time-scale traffic [10] such as compressed VBR video
has indicated that a significant bulkof the statistical multiplexing gain can be obtained by a Renegotiated
Constant Bit Rate (RCBR) service. In this service model, buffering only occurs at the network edge, while
sources renegotiate GBR rates from the network over the duration of a flow. Thus, the rates of the users

fluctuate over time. Bandwidth renegotiations fEiil when the current aggregate bandwidth demand exceeds
the link capacity, and the renegotiation failure probability is the QoS measure of this service. Thus, our

bufferless model is directly applicable to this problem. In any case, the performance of schemes for the

bufferless model is a conservative upper bound to the case when there are buffers.

Third, the flows are assumed to have homogeneous statistics. How this assumption can be relaxed will



be discussed in Section 5.4.

Before we begin the analysis of these models, a few words about the notations in this paper. We
use capital letters to denote random variables. The Gaussian distribution will play a central role in our

analysis; the probability density function of a zero mean, unit variance Gaussian random variable (A^(0,1))
is denoted by

0(x):=
—x"

exp(-r-)
•s/2^ 2

and the complementary cumulative distribution function denoted by

roo

Q{x) := / <f){u)du.
Jx

(1)

(2)

3 Impulsive Load Models

3.1 Infinite Flow Holding Time

In this subsection, we study the impulsive load model with infinite flow holding time, when flows are

admitted at time 0 and stay in the system forever. The goal here is twofold. First, we wish to illustrate the

importance of the additional uncertainty due to measurement or estimation error, by comparing schemes

with perfect knowledge and measurement-based schemes. Second, we wish to lay the groundwork for the

more sophisticated models discussed in subsequent sections.

Suppose the stationary bandwidth distribution of each flow i has mean fj, and variance The number

of admissible flows m* is the largest integer m such that

Pri^Xi(t)>c> <pg. (3)
1=1

where Xi{t) is the bandwidth of the ith flow at time t. (Recall that c := ufi is the total capacity of the
link.) For large system size n, the number of admissible calls will be large, and by the Centred Limit
Theorem,

uy/m
Y^Xi{t) - mti
t=i

N{0,1)

Thus, if the parameters fi and are known a priori, then the number of flows m* to accept should satisfy:

Q
nfjL — m fjL

avm
= Pq' (4)

where Q(-) is the ccdf of a A^(0,1) Gaussian random variable as defined in eqn. (2). ^ Because the AC

^Note that here, as in the sequel, we are ignoring the fact that m* is an integer and therefore eqn. (4) cannot be satisfied
exactly in general. In the regime of large capacities, however, the approximation is good and the discrepancy can be ignored.



has perfect knowledge ofthe statistics, the actual steady state overflow probabihty

Pf-=
1=1

satisfles the QoS requirement. For reasonably large capacities, it follows from solving (4) that m* is well
approximated by:

(5)m* = n— ^^y/n + o{y/n)

where q, '= Q~^{Pq) and o{y/n) denotes a term which grows slower than y/n. Note that n is the number
of flows that can be carried on the link if each has constant bandwidth yi. Thus, the term ^\/n in the
above expression can be interpreted as the safety margin left to cater for the (known) burstiness of the
traffic.

Now, consider the situation when a MBAC does not know y and a a priori^ but relies on an estimation

of these parameters from the initial bandwidth of the flows and use the estimates in a certainty equivalent
fashion. More specifically, we assume there are an infinite number of flows waiting for admission at time
0 due to a burst of arrivals. Invoking again the central limit approximation for large systems, the number

of flows Mo the MBAC admits should satisfy:

where

Q
ny —Moy

'\/Mo
= Pq^

5=iVXi(0) and 5= ^^(^((0)-?)
n ' n — 1 '

i=l . t=l

(6)

(7)

The criterion (6) is the same as (4), but with the true mean y and standard deviation a replaced by the

estimated mean y and standard deviation a respectively.^ Note that the number of flows Mo admitted
under the MBAC is now random, depending on the random bandwidths of the flows at time 0. This is

a consequence of the fact that the admission control decisions are made based on measurements rather

than known parameters. Also, the scheme considered here is an example of a memoryless MBAC, since

the admission control decisions are made based on the current bandwidths only.

We now want to approximate the average overflow probability

Pf

{Mo
t=i

{t) > c

in steady state (i.e. for t large) and compare it to the target pq. To do this, we first find an approximation
for the distribution of Mo, the number of flows admitted.

^Observe here that the estimation is based on n flows. In a more precise model, the estimation should be based on Mo flows,

the number to be admitted. However, in a large system, Mq will be close to n and the discrepancy in replacing Mq by n in the
estimators are small.



For large capacities, by the law of large numbers, the estimated mean /i will be close to the true mean

11. and the estimated variance will be close to the true variance A more precise approximation of

the deviation of these estimated quantities from the true values is given by the Central Limit Theorem:

for large n. Here, Iq -^(0,1), and can be interpreted as the scaled aggregate bandwidth fluctuation at

time 0 around the mean. Similarly, the estimated standard deviation can be written as:

(7 = +o{^) (9)
y/n y/n

where Zq is Gaussian. These two approximations imply that the deviation of the estimates from the

respective true quantities is of order Now, as mentioned earlier, if the estimates were exactly equal to

their true values, then the number of flows admitted Mq will be precisely m*. This suggests that we can

approximate the distribution of Mq by a linearization of the relationship (6) around a nominal operating
point {m*,ii,a) (i.e. the operating point under perfect knowledge):

ufi - {m* + Am){^ + _
(<7 + ;^)\/m* +Am

Expanding the left hand side, using eqn. (4), we get

^ +-yo =0(1)
y/n /i

and hence

Mo = m* - —Yoy/n + o{y/n). (10)

Thus, we see that the effect of estimation error is an order y/n Gaussian fluctuation around m*, the
number of sources admitted under perfect knowledge (cf. top part of Fig 1). Note also that the randomness
in the number of flows admitted is due mainly to the error in estimating the mean (To) rather than the

error in estimating the standard deviation (Zq).
Substituting eqn. (5) into (10), we get Mq in terms of the system size n:

Mo = n --{Yq + ag)y/n+ o{y/n) (11)

Although we have derived the result somewhat heuristically, it can be made precise by the following result,
which is proved in Appendix 7.

Proposition 3.1 For each system size n, let be the random number of flows admitted under the

MBAC when the capacity is nji. Then the sequence ofrandom variables {—"} converges in distribution
to the random variable —^{Yq + o^).
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Figure 1: Uncertainty due to fluctuation in the number of flows (top) and in the aggregate bandwidth (bottom),
for an admission controller with perfect knowledge (left) and for an MBAC (right).

We now proceed with an explicit approximation of the overflow probability. The randomness in the

aggregate traffic load at some future time is due both to the randomness in the number of flows admitted

as well as the randomness in the bandwidth demands of those flows. This can be approximated with the

help of the following lemma, which is an extension of the Central Limit Theorem for a sum of a random

number of random variables;

Lemma 3.2 [3, p. 369, problem 27.14] A'i,A'2,... be independent, identically distributed random

variables with mean p and variance o^, and for each positive n, let Vn be a random variable assuming
positive integers as values; it need not be independent of the Xm's. Let W„ = Suppose as

n -+ oo, ^ converges to 1 almost surely. Then as n—^ oo,

Wn - VnP

ay/n

converges in distribution to a iV(0,l) random variable.

Applying this lemma, the aggregate load at time t can approximated by:

Mo

St := ^2 ~ +o{\fn) (12)
1=1



Here Yt ~ ^'(0,1) and can be interpreted as an approximation for the scaled aggregate bandwidth fluctu

ation at time t:

1

(Ty/n
-n/x

Lt=i

Intuitively, eqn. (12) means that the fluctuation of the aggregate load is approximately the linear superpo

sition of two effects: the random number of flows together with the random bandwidth fluctuation around

the mean. Substituting eqn. (10), we get

5t = n/x -H a{Yt -Yq- aq)y/n+ o{y/n

Thus, for large n, the overflow probability at time t is:

Pr {St > nfi} « Pr [Yt —Vb > Ckg}

This expression gives us an interpretation of how overflow occurs in a MBAC system: it is a combination

of an aggregate bandwidth estimation error at admission time (Vb) smd a fluctuation of the aggregate

bandwidth {Yt) at time t after the flows have been accepted. Contrast this with the case with perfect

knowledge, where the overflow probability at time t is simply Pr {Ft > a^}, due to bandwidth fluctuation
at time t.

To get the overflow probability in steady state, we set t = oo, in which case Voo is independent of
Iq. Therefore, the difference Voo —Fo is a Gaussian random variable with mean 0 and variance 2(7^. The
overflow probability is therefore

P/ «0(^)• (14)
We summarize this result more formally in the following proposition:

Proposition 3.3 Suppose the target overflow probability QoS is Pq. Let pj be the actual average steady
state overflow probability using the certainty equivalent MBACfor capacity np. Then as the system size
grows:

(13)

Note that for the AC with perfect knowledge, the overflow probability is exactly pq. This is because

the aggregate bandwidth fluctuation stems only from the fluctuation of the individual flows' bandwidths
(cf. lower left part of Fig. 1). On the other hand, in the measurement-based case, the variance of the
aggregate bandwidth is doubled because the number of flows also fluctuates due to measurement error
(cf. lower right part of Fig. 1). The \/2 factor is therefore the effect of measurement error, and has
quite a tremendous impact on the overflow probability p/. For example, if p, = l.Oe - 5, then the actual
performance in the MBAC system would bep/ « 1.3e-3, a difference of two orders of magnitude. In
other words, if we want to achieve Pf = Pq using a MBAC in this impulsive load model, then we have to
adjust the target overflow probability under certainty equivalence.

Pee =Q(y2aq^ or ace •= Q^{Pce) =V2aq. (15)



Using the approximation Q(x) « for small Q{x), we see that

2

Thus, we see that to achieve a target pq in this setting, we need to set pce roughly to be the square of
the target probability. This conservatism leads to a loss in system utilization compared to the scheme
with perfect knowledge of the statistics. The average utilization (in terms of bandwidth) for the certainty
equivalent scheme using parameter pce instead of pq is given by E{Mo)p,, or c - aOceVn, as implied by
eqn. (10). The average utilization for the perfect knowledge scheme, on the other hand, is given by m*
or c—aaq\/n, as inferred from (5). Thus, ifwe pick ace to be y/2aq, this translates to a loss of utilization
of {y/2 - l)aaqy/n.

Proposition 3.3 has several surprising aspects. First, it is a universal result in the sense that the

performance of the certainty equivalent scheme does not depend on the stationary distribution of the

flow nor its mean and variance. Second, although the estimators are unbiased, the net impact on the

performance of the system is negative. Thus there is an inherent asymmetry between the effects of over-

estimation and under-estimation. Third, the impact of the estimation error does not vanish as the system

size becomes large, even though the estimates become more and more accurate. Fourth, for a large system,

the degradation in performance of the certainty equivalent scheme is due mainly to the estimation error

in the mean p of the bandwidth distribution and not to that in the standard deviation a.

To get more insights into the last two phenomena, let us perform the following deterministic sensitivity

analysis. Define the following function:

Pf{p,a,m) := Q
c — mp

ay/m

which is the overflow probability when there are m flows in the system each with mean rate p and variance

Suppose first that we measure only p, but that a is known exactly. The number of flows admitted m{p)

depends on the measured value p and is given by the certainty-equivalent admission criterion (compare

with (6)):

pf{p,a,m{p))=pq. (16)

Note that the actual overflow probability pf for a given m{p) is pf{p^a^m{p)). The sensitivity of the
overflow probability with respect to the measured p is the deviation of pj from its target value pq if p
deviates slightly from its target value p. For small deviations, we can simply use the derivative of pf with
respect to p.

Sfi := •^pfip^ar.mip))
H=fi

Using (16), this derivative can be computed as:

<f>{aq)p y—-
Sn = —Vm*.

10



Similarly, the sensitivity with respect to measured a, assuming // known, is given by:

Sa — —
a

Now observe that the sensitivity of the system performance on the knowledge of the standard deviation,

Sa, does not depend on the system size. Therefore, increasing the system size, and therefore improving

the quality of the estimator a, results in a diminishing net impact on the overflow probability. On the

other hand, the sensitivity increases with the system size, approximately as \/n, while the variance of

the estimator /t decreases approximately as l/^/n. This suggests that the net impact of the uncertainty

in the mean bandwidth estimate does not diminish as the system size grows, and also explains why the

deviation from p/ from the target overflow probability pq is asymptotically independent of n: both effects,
less estimation error but increased sensitivity to estimation error, cancel out. The increased sensitivity to

the mean estimate arises because when there are more flows in the system, and therefore more statistical

regularity in the aggregate bandwidth, the system is driven closer to full utilization, which makes it more
susceptible to admission mistaikes.

The approximations used here are based in the heavy traffic regime, where the system size is large and
when scaling up the size of the system, we exploit the additional statistical regularity by increasing the
system utilization, while keeping the QoS constant. This is in contrast to the large deviations regime,
where the system utilization is asymptotically constant, but where the QoS-requirement is scaled with the
system size. The heavy traffic approximations allow us to linearize the dynamics of the system and to use
Gaussism statistics. This will prove even more vaduable as we analyze more complex models in the next

sections. A large deviations analysis of a related measurement-based admission control problem can be
found in [21].

3.2 Finite Holding Time

Now that we have convinced ourselves that estimation error can have an impact that should not be

neglected, we want to refine the previous model. More specifically, we now assume that the time-scale
separation is finite. There still is a burst of flows arriving at time 0 and demanding admission into the
system. However, these flows are now assumed to have finite duration. In fact, we assume that the holding
time of a flow (i.e., the time between the flow's admission and the time when it departs from the system)
is an exponential random variable with mean Th, and the holding times of different flows are assumed
independent. We let pt denote the probability that a flow has not departed from the system at time t. It
is given by

P( =exp^-^^. (17)
Furthermore, we let p{t) denote a flow's auto-correlation function, where

,. £;[(A,(0) - p){Xi{t) - fi)\p{l) •— ^2

11



If Nt is the number of flows left in the system at time t, and Mq is the initial number of flows admitted
into the system, then expected number of flows at time t is ptElMo]. Using eqn. (10), this implies
that

E[Nt] = ptfi - \/n + o{\/n)

We observe that the system size is n, and so approximately a fraction pt of the total capacity is used at

time L The law of large number suggests that as n becomes large and everything else flxed, the overflow

probability at time t actually goes to zero!

Intuitively, this can be explained as follows. When performing certainty-equivalent admission control,

we set aside some bandwidth in order to accommodate fluctuations of the aggregate bandwidth. This spare

bandwidth is on the order of y/n (cf. (5)). On the other hand, the flow departure rate is proportional to

the number of flows in the system, approximately proportional to n/Th. Now suppose that at some time

instant, the system is close to overloading. How much time is necessary to restore the "safety margin"

of y/n by letting flows depart? This restore time is on the order of y/n/{n/Th) = Th/y/n. Thus, the

larger the system, the faster can the safety margin be restored. This means that to cause an overload,

the aggregate bandwidth must fluctuate fast enough so that this fluctuation cannot be compensated for

by just letting flows depart. However, as the time-scale gets shorter, the aggregate bandwidth tends to be

more correlated, thus making such a quick change more and more unlikely.

While the above suggests that for large enough n, the overflow probability gets close to zero, it is clear

that the longer the duration Th of the flows, the larger the system size has to be for this effect to kick in.

The above asymptotic analysis is crude in the sense that the flow duration, which may be quite long, does
not enter the picture, since all other parameters are kept fixed while n grows large. On the other hand, it

can be seen from the above discussion that the restore time Th/y/n is the natural time-scale to analyze the

dynamics due to flow departure. To make such analysis more convenient, let us rescale the flow holding
time:

Th = Thy/n

where we view Th fixed as n grows leirge. The advantage of this scaling is that it allows us to make
approximations for large n but at the same time taking into consideration the actual duration of the flows.

More specifically, it can be shown, under this scaling, the flow departure rate can be thought of as constant
equal to y/n/Th. Letting Z)[0,<] be the number of flows departing in [0,f], we have the approximation:

D[0, t] =-^y/n -f- o{y/n) (18)
Th

Using eqn. (10), the number of flows left in the system at time t can therefore be given by:

Nt = MQ- £>[0, t] = n- -(Ko +a,) +4
P Th\

Using Lemma 3.2, the aggregate load at time t is:

Nt

5f = ^ Xi{t) « Ntfi +o-Yty/n
i=l

12

y/n-\-o{y/n) (19)



n^^ +cr(Yt-Yo--!^-a„)^/n (20)
\ ctT/, /

where Yt is an approximation of the scaled fluctuation of the aggregate bandwidth

n

CTy/n
t=l

By the Central Limit Theorem applied to pairs of random variables [3], Fo and F are jointly Gaussian
random variables with zero means, unit variances and covariance p{t) (i.e. same as an individual flow).

Thus, yt-yo-iV[0,2(l-p(<))l.

The overflow probability pf{t) at time t is given by

Pf{t) « Pr{y,-yo>4L +a,|
f aTh )

= Q
V2(l-p(<))

From (21), we can see clearly the two effects affecting the overflow probability. For small <, the
denominator ^^2(1 —/9(t)) is close to zero, making the overflow probability very small. This is because
shortly after the admission decision, due to correlation in the bandwidth of the flows, the aggregate
bandwidth does not change much. For large t, t/Th makes the argument of the Q-function large as well,
i.e. the overflow probability small. This is because enough flows have departed to make overflow unlikely.
Intuitively, Th defines the critical time-scale for this system: it is unlikely that an overflow event occurs
at times significantly after T/,. Thus, in the study of this system, we can concentrate on what happens
between times of the order of T/j. It is interesting that since T/, = Th/y/n, this critical time-scale depends
not only on the average holding time but also the size of the system.

4 The Continuous Load Model

We shall now consider a full-blown dynamical model, where flows arrive continuously over time. We assume

a worst-case scenario, where the effective arrival rate is infinite, i.e. there are always flows waiting to be
admitted into the network. Thus, admission control decisions are made continuously at all times. Clearly,

the performance of any admission control algorithm under finite arrival rate will be no worse than its
performance in this model. Another advantage of this model is that we need not worry about the specific
flow arrival process which may be hard to model in practice. As before, when flows are admitted, they stay
for a duration exponentially distributed with mean Th- In this section, we will look at both memoryless
MBAC schemes and schemes with memory and compare their performance.
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4.1 Memoryless MBAC

We first look at the scheme that was considered in the impulsive load model, where admission control

decisions are made based on estimates of the mean and variance using the current bandwidths of the flows.

Assume that the system starts at time 0. Our goal is to find the overflow probability at an arbitrary time
t, particularly at t = oo which yields the steady-state overflow probability. We do this by first analyzing
the dynamics of the number of flows in the system.

Let Mi be the number of flows that the MBAC determines should be in the network at time t; as in

(22), Mi is given by:
fn/i —

Q

where ^
1 " r 1 " 12

~ ~ ' (23)

a{t)yfMi = P„ (22)

m =-f\Xi(t) and 5(0=
n r—' n — 1 r-f

t=l L t=l

Observe that Mt is random and depends only on the current baindwidths Xi{tys of the flows. Call Mt the

estimated admissible number of flows at time f. The actual number of flows Nt in the system at time t is

no less than Mt since there are always flows waiting to be admitted and thus the system is always filled

to the limit as currently determined by the MBAC. On the other hand, Nt can be strictly greater than

Mt as flows that were admitted earlier stay for a certain duration and thus Nt cannot perfectly track the

fluctuations of Mt (see Fig. (2)). To compute Nt, first observe that if s* is the last time at or before time

t that flows were admitted, then the number of flows in the system at time s* is precisely the same as

number of flows admissible at time s*, i.e. Ns- = Ms-. In between time s* and time t, no new flows were

admitted. Hence, if we let D[s,t] be the number of flows departed in time interval [s,<), then

Nt = Ns- - = Ms- - Dls\t] (24)

On the other hand, for any s < t,

Nt = Ns + A[s,<] - D[s, t]> Ns - D[s, t]> Ms- D[s, t) (25)

where A[s,f) is the number of flows admittedduring [s,t]. Thus we conclude from (24) and (25) that

Nt= sup {Ms-D[s,t]} (26)
0<s<t

Eqn. (19) in the previous section tells us that Ms —Dls,t] is the number of flows in the system at time t

if there were only a single impulse of flow arrivals at time s. Thus, the effect under a continuous load can

be thought of as the superposition of the effects from all impulsive arrival times, starting at time 0.

Using formula (26), we can approximate Nt using our approximations for Mg and I?[s,t] as discussed
in the previous section. Eqn. (10) gives an approximation for Ms'.

Ms = n - —{Ys + ag)\/n -\- o{y/n) (27)
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Figure 2: The relationship between the current estimate of admissible number of flows Mt and the actual

number of flows Nt. The time-scale Th is the typical time for the system to recover from admission errors.

where {y^} is a stationary zero-meaii Gaussian process with unit variance and auto-correlation function
p{t) (that of an individual flow), and can be interpreted as the scaled aggregate bandwidth fluctuation of

the flows around the mean. Eqn. (18) suggests an approximation for

D[s,t) ss y/n
Th

The following limit theorem makes the approximation of Nt precise.

Theorem 4.1 For the system of size n, let be the process describing the evolution of the number of

flows in the system. Assume condition B.6 is satisfied. If we scale the flow holding time as Tf^ = Thy/n,
71

where Th is a fixed constant, then as n oo, for each t, —^-7=— converges in distribution to

where {yf} is defined as above.

a

— sup
M o<s<t{-y,-

crTh

Since we are now dealing with random processes rather that random variables as in the last two sections,

the proof of this theorem is more technical and involves the notion of weak convergence. It is given in

Appendix B. Condition B.6 contains mild technical assumptions on the individual flow processes; these

are also stated in the appendix. These assumptions hold for a very broad class of models. For example,

thev hold for if each individual flow is a Markov modulated fluid
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Once we obtained an approximation for Nt, we can immediately deduce an approximation for the
aggregate load St at time t and hence the steady-state overflow probability pf, using the same argument
as for the impulsive load model.

Proposition 4.2 For the system of size n, let be the aggregate load t time t andp^^\t) be the overflow
probability at time t. Then converges in distribution as n—* oo to

sup <Yt-Ys i={t - s) - ag\
o<s<t I aTh J

(n)and the overflow probability p^ (t) converges to:

Pri sup [Yi-Ys S=r(< - s)l >aq \ .
lo<s<« I aTh J J

For brevity, we will define the important parameter:

/3 := -4=. (28)
cTh

The steady-state overflow probability can then be approximated by taking <= oo in Prop. 4.2 and using

stationarity of {Yt} to get:

p/« Pr |sup{yo -Vs +/?s}| (29)
Interestingly, one can interpret the limiting overflow probability at time t as that of the length of a

certain queue at time t exceeding aq. The queue is one which has a constant service rate of 0, with the
amount of work arriving in time interval [s,t] given by Yt —Ys.

4.2 Analysis of Overflow Probability

Our next step is to analyze the approximation to the overflow probability given by eqn. (29). Since the

process {Kf} is stationary and symmetrically distributed around 0, we can rewrite that as

Pf «Pr jrn^^ {Y-t -Yq- 0t} >a,|
This can be interpreted as the hitting probability of a Gaussian process {V-t —To} on a moving boundary

y = 0T -h aq. While there is no known closed-form solution to this problem, an approximation can be
obtained by applying results due to Braker [11, 12] on hitting probabilities of locally stationary Gaussian
processes, extending,the results by [7] for stationary processes. Define

a\t) := £[(y_, - YoY] = 2[1 - p(t)]
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to be the variance of Y-t - Yq. (Recall that Yt has zero mean and unit variance.) Assume the single-sided

derivatives of p{t) at <= 0 exist and are finite, let v'̂ (O) be the right derivative of the function cr^{t) at
<= 0. ^ Then an approximation to the hitting probability is given by:

Pr Isup {Y-t - Yq - 0t} >Qq \ K
U>o )

where (p{x) is the iV(0,1) probability density function. The integrand above can be viewed as an approxi
mation to the first hitting time density at time integrating over all t yields the probability that hitting
occurs at all. This is an approximation in the sense that as Og —^ oo, the ratio of the left-hand and the
right-hand sides approaches 1. Hence this approximation is good when pg is small.

While this yields an approximation that can be computed numerically for general auto-correlation
functions, we would like to get more analytical insights. To that end, consider the specific auto-correlation
function:

p(t) =exp(-^). (31)
With this choice of the auto-correlation function, {Vi} is the well-known Ornstein-Uhlenbeck process. The
parameter Tc governs the exponential drop-off rate ofthe correlation function, and is a natural correlation
time-scale for the burst dynamics ofthe traffic. Substituting this into the approximation (30) and rescaling
the time variable, we get:

p,a-t r ^ dt (32)
Jo (2(1-exp(-7f))]5 \v'2(l-exp(-7«))/

where

= J_ = Zi ?-
'''' UTc Tc •p

One can think of 'y as the separation between the flow and burst scales, although note that Th is the scaled
holding time. If we make a time-scale separation assumption, i.e. 7 > 1> then

Note that the first approximation is via exp(-7t) « 0 for 7 » 1.
It is interesting to compare this overflow probability for the continuous-load model with the corre

sponding result for the impulsive load model under long flow durations, given in Proposition (3.3). To do
this, we first use the approximation ^ « Q{x) and rewrite (33) in terms of the flow parameters as

17



over

time

Figure 3: The ratio of correlation time-scale Tc and of the critical time-scale T/, determines the overflow

probability.

For the impulsive load model, the overflow probability is approximately Qi^)- Eqn. (34) tells us that
in the regime of sepguration of time-scales, the corresponding overflow probability can be much worse in

the continuous-load model. This is because while estimation errors can occur only at a single point of
time in the impulsive load model (time 0), in the continuous-load model estimation errors occurring at any

time in an interval of size roughly Th before time t will have a significant impact on the number of fiows

at time t. The shorter the traffic correlation time-scale Tc, the faster the memoryless mean bandwidth

estimates fluctuates, and the larger the probability of having an under-estimation at some time in the

interval. Eence, the overflow probability in the continuous-load model increases with the separation of
time-scale For example, note the multiple peaks (underestimations of /i) within the interval of length
Th in Fig. 3; each of these peaks could potentially cause overload within the critical time-scale T\. The

lesson is that it's not only important to consider the estimation error at a single time-instant, but also the
chance of making error any time in the interval defined by the effective flow holding time-scale T^. Note
also since Th decreases as where Th is the actual mean holding time, the overflow probability decreases
roughly as

We can also write the above approximation as (using again « Q(^))j

Pf
Th

y/2Tc
(35)

h.e. i.+(0) := limt_o+ "
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4.3 MBAC with Memory

We see that the memoryless scheme suffers from two problems . First, the estimation error at a specific

admission time instant is large, and in fact has impact which is of the same order of magnitude as that due

to the statistical fluctuations of the bandwidths when the correct number of flows are admitted. Second,

the correlation time-scale of the estimation errors is the same as that of the traffic itself; thus, in the

regime when the flow holding time is much larger than the traffic correlation time-scale (T/, Tc), the
probability of having a large under-estimation of mean bandwidth at some time during the time-scale Th

is high. A strategy which, as we will see, counters both these difficulties is to use more memory in the

mean and variance estimators.

To be more concrete, let us consider using the first-order auto-regressive filter with impulse response:

Hi) '= ^exp "(0
to estimate both the mean and the variances. (Here, u{t) is the unit step function.) Thus, in place of the

memoryless estimators in eqn. (23), the MBAC would use:

h{T)dT

h{T)dT

Note that the estimates are obtained by an exponential weighting of the past bandwidths of the flows.

The parameter Tm governs how the past bandwidths are weighted; it can thought of as a measure of the
memory size of the estimators. The relationship between Jimit) and the memoryless estimator /i(t) is
simply * /i, where * is the convolution operation.

Corresponding to Theorem 4.1 and Prop. 4.2 in the memoryless case, we can show:

Theorem 4.3 For the system of size n, let be the process describing the evolution of the number of
flows in the system. Assume condition B.6 is satisfied. If we scale the flow holding time as = Thy/n,

^(n)_n
where Th is a fixed constant, then as n oo, for each t, " converges in distribution to

- sup l-Zs - - aq\ (36)
Mo<s<t I aTh J

where Zt —{h*Y)t and is a zero-mean, unit-variance stationary Gaussian process with autocorrelation
(t^\

function same as that of an individual flow. The overflow probability pj {t) at time t converges to:

Pr\ sup {Yi-Zs ^(f-s)|>a9l
[o<s<t I aTh J J
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One can interpret Zt as the error in the filtered estimate of the mean bandwidth of a flow at time t.
The steady-state overflow probability under the MBAC with memory can therefore be approximated by:

Pf wPr |sup(Z_t -To -0t) >
This is again a hitting probability of a Gaussian process {{Z-t - To}) on a moving boundary, and an
approximation of such a probability is given by [11, 12]:

' ^ (37)

where

(Qg + t) ( Ckq t
3^ dt + Q I Qq 1/1 -f

:= EHZ_. -nn = ^ exp(-.t)
Now, under separation of time-scales, 7 1, we have the approximation that

t ^^ 2rc -f Tm
' p Tc + Tm

in which case the above integral can be explicitly computed as:

^ 7^: 1 f Tg -|- Tm 2
~ V(Tc +T„)(2Tc +T„) ' r2(2Tc +T„)°'

+Q (38)

To compare this result to the memoryless case, let us first use the approximation Q{x) « to rewrite

(38) in terms of pq and also the flow parameters:

7^, rt / \
„ ^ ^ ( nr~ \ arc+Tm

n/(T, +T„)(2T, +T„) '

+Q|<^9\/1 + ^| (39)

Comparing eqn. (38) to eqn. (33), we can see explicitly the effect of memory. Let us look at the first

term in (38), which corresponds to (35). The exponent is ^2rc^^) w^^^h is \ when there is no memory (as
we had in the memoryless scheme), monotonically increases with Tm^ and reaching a value of 1 for infinite

memory. This effect can be explained by the fact that the variance ofthe meanbandwidthestimate, E\Zl]^
is and decreases monotonically to zero with more memory. Thus the inaccuracy in the estimates

and hence the inaccuracy in the number of flows accepted decreases (cf. Fig. 4). Furthermore, increasing

the amount of memory has an additional effect of smoothing the mean bandwidth estimates; thus, not only

are the individual bandwidth estimates more accurate, they also fluctuate less so that the probability of
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Figure 4: Estimation memory reduces the variance of the bandwidth estimator, and also smoothes its fluctu

ation.

having an under-estimation at some time over an interval of length Th is reduced. This is reflected in the

smaller pre-factor _ZJl.—7 in the first term of (39) replacing the factor -7^ in the memoryless
•\/{Tc-¥Tm){2Tc-\-TTn) v2ic

case. This can be interpreted as increasing the correlation time-scale by Tm, the estimator memory size.

In the limit for large T^, we always have exactly the right number of fiows in the system and the

overflow occurs due only to the fluctuation of bandwidth requirements of flows in the system, and not to

the fluctuation of the number of flows in the system. This is now given by the second term in (39).

The shorter Tm, the more conservative the choice of pce has to be, resulting in a loss of utilization.

This loss of utilization can be quantified. The average utilization (in terms of bandwidth) of the system is

given by fiE[Nt], where Nt is the (stationary) number of flows in the system at time t. Eqn. (36) allows
us to approximate this when pce is used as the certainty-equivalent parameter:

(jLE[Nt] +(Ty/nE j^sup |-Z5 - | -o-Q {Pce)\/n

Since the other terms do not depend on pce, we see that the difference in utilization in using pce and

is simply

<Jy/n [Q"HPce) - Q"HPce)] (40)

This allows us to quantify the impact on the utilization on using a more conservative certainty-equivalent

parameter.
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5 Discussions and Simulations

We begin this sectionby summarizing the resultsobtainedfrom our model. We then report some simulation
results. We then illustrate how robust measurement-based admission control can be performed using our

results. Finally, we investigate the sensibility of our approach to several of the assumptions in our model.

5.1 Summary of Results

Our framework yields several interesting qualitative insights about the measurement-based admission con

trol issues we discussed in the introduction:

• Memoryless certainty-equivalent admission control can have very poor performance due to estimation

error. The target QoS overflow probability can be missed by several orders of magnitude. The

impact of the estimation errors does not diminish as the system gets larger. This is in spite of the

fact that the estimation errors are unbiased. There exists a fundamental asymmetry associated with

the uncertainty of the flow parameters: the negative effect on QoS of an underestimation of flow

parameters - and therefore of an overestimation of the number of permissible flows - far exceeds the

positive effect on QoS of an overestimation of flow parameters.

• Estimation errors of different statistical parameters can have very different impact on the performance

of an MBAC scheme. In the heavy traffic regime, the effect of error in estimating the mean is much

more significant than the error in estimating the standard deviation.

• Flow departure dynamics have a significant impact on the performance of an MBAC scheme. The

parameter T/, = Th/y/n, where Th is the average flow holding time and n the system size, defines a
critical time-scale for which the effect of an admission error persists. This critical time-scale decreases

with a shorter holding time or a bigger system because flows can leave the system more rapidly to

repair a wrong decision.

• A high flow arrival rate has a detrimental effect on the performance of an MBAC scheme. A robust

MBAC not only has to make sure that the estimation error for each decision is small, but also that

the worst estimation error over the critical time-scale is small. Thus, a memoryless scheme which

makes decisions based only on estimating current bandwidths is not robust; if the traffic correlation

time-scale is short compared to the critical time scale Th, then the bandwidth estimates fluctuate too

wildly.

• Increasing the amount of memory in the estimator reduces the overflow probability in two ways. First,

the individual bandwidth estimates are more accurate because of averaging over a larger number of

samples. Second, it smoothes the bandwidth estimates so that they fluctuate less over time. This

provides more control to the worst estimation error over the critical time-scale.

These insights are obtained from our analysis, which culminated in explicit formulas for evaluating

the performance of MBAC schemes in terms of key parameters such as estimator memory size, traffic
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correlation time scale and average flow duration. Specifically, the main results are the general formula

(37) for the overflow probability, and the formula (39) specialized to the regime of separation of flow and

burst time-scales Moreover, formula (40) yields the impact of a more conservative MBAC scheme on the

utilization of the system, and, together with the previous formulas on overflow probability, quantifies the

tradeoff between estimator memory size and the conservativeness of the MBAC for a given target QoS.

5.2 Simulation Results

We use RCBR (Renegotiated Constant Bit Rate [10]) traffic sources, i.e., the traflfic rate produced by a

source is constant over time intervals. Rate changes (renegotiations) are source-initiated and occur only

on interval boundaries. We use independent homogeneous sources where the marginal rate distribution is

Gaussian with cr/ii = 0.3. The interval lengths are i.i.d. following an exponential law with mean Tc, which
implies that the autocorrelation function of the traffic rate process is precisely as in (31).

We simulate the admission controller imder infinite load and we measure the resulting overflow prob

ability pf. We terminate simulations when (a) the 95% confidence interval is less than -I-/- 20% of the
estimated mean, or (b) the estimated mean plus the confidence interval is at least two orders of magnitude
below the target overflow probability. The latter criterion is to terminate simulations within a reasonable

time for very small p/. In that case, we report an estimated pj obtained by keeping track ofthe empirical
mean p and variance of the aggregate bandwidth at the sample points and computing p/ as Q(^).

We sample p/ at regular intervals of length 2max{Th,Tm,Tc). This sample period is long enough to
give approximately independent samples of the system, as the "memory" due to flow dynamics, estimation
memory, and traffic correlation is taken into account. We also let the system initially warm up to steady
state without collecting samples.

We now describe some simulations we have performed to validate the above insights. In particular, we

wish to verify that our formulas can be used to perform robust measurement-based admission control. We
proceed in two steps. First, we compare the overflow probability p/ obtained through simulation to the
value predicted by theory. Second, we invert (38) to obtain an adjusted target overflow probability Pce such
that pfiTln^T'c.Pce) = Pq- We then simulate the system with this adjusted target overflow probability in
order to check if the overflow probability p/ really is close to the target overflow probability p, regardless
of the other parameters.

Figure 5 shows the overflow probability p/ as a function of the memory window size Tm- We observe
that the overflow probability predicted by theory is conservative with respect to the simulated value. Wb
attribute this offset to the assumptions in our model, such as ignoring the discreteness of the number of

flows. However, the shape of the graphs correspond very well; in particular, the knee, corresponding to the
valueof Tm beyond which using a longer memory window sizehas little additional benefit, is well matched.
Figure 6 and 7 demonstrate that our formulas can be used to performrobust measurement-based admission
control. We see that with an adjusted overflow probability target, the actual overflow probability is slightly

smaller than pq over the whole range of parameters (cf. Fig. 7). Note that for small Tm, the adjusted
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Figure 5: The overflow probability p/ as predicated by theory (eqn. (38)) and obtained by simulation (T/,
1000, Tc = 1.0, Pee = l.Oe —3).

target overflow probability pce can be very small (< le —10) with respect to the target overflow probability

Pq of le —3.

5.3 Memory Window Size and Robust MBAC

So far, we have assumed that the correlation time-scale parameter Tc and the flow holding time Th are
known. In practice, it is usually not very difficult to obtain a good estimate of the average holding time

Th of flows. On the other hand, the correlation time-scale Tc and more generally the correlation structure
of the traffic is hard to estimate in practice, as realistic auto-correlation functions axe more complex than
a pure exponential. Therefore, we would like to design the MBAC such that its performance is good over

a wide range of values for Tc. We claim that this can be accomplished by choosing the memory window

length Tm on the order of the critical time-scale T/j. For concreteness, let us pick the window size Tm to

be Th and examine the performance of the system for a range of Tc.

First, assume Tc is small with respect to T/i. This is the separation of time-scale regime and formula

(39) applies and holds for all Tm- Using the fact that Tm = Th Tc, we get the further approximation:

Pf P9 (41)

which is of the order of pq. In this regime, the eflfect of the estimator memory effectively smoothes the
fluctuations of the traffic and obtain a reliable estimate of the mean traffic rate. Although this result is
derived using the simple exponential auto-correlation function (31), it can be easily shown that in this
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Figure 6: The adjusted target overflow probability by inversion of (38), for n = {100,1000}, Th = (leS, le4},
and Pg —l.Oe —3.

regime, the detailed correlation structure is not relevant and a similar approximation holds for other auto
correlation functions. We call this the masking regime (cf. Figure 8) because the memory window size
masks the impact of the parameter Tc on the overflow probability p/; the fluctuation time-scale of the
mean estimator is determined by Tm alone. _

Next, let us consider the other extreme, when Tc is much longer than Th- In this case, 7 = < 1,
and we have the approximation:

Tc + Tm

Substituting this into the general formula (37) and evaluating the integral, we get:

1 ic CT Mc

P/ «
Tc a

exp

y/^Th^

which definitely meets the target QoS since Tc » Th in this regime. In contrast to the masking regime,
the time-scale of the estimator fluctuation is dominated by Tc- The memory window is effectively useless

in this regime, as it does not reduce estimation errors. However, the fluctuation of the estimators around
their mean is at a time-scale longer than the critical time-scale. This is precisely the regime where the
repair effect makes overflow unlikely. Therefore, we call this the repair regime (cf. Fig. 8).

For Tc in between the two extremes, there is no closed-form expression for the overflow probability,
and we resort to a numerical integration of the formula (37) to study the performance of the MBAC. This
is shown in Fig. 9, where we plot the overflow probability as a function of TmfTh and Tc- We see that
while for small Tm/fh the performance is not robust, the QoS is satisfied over a wide range ofTc once the
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Figure 7: The simulated overflow probability pj using the adjusted target overflow probability shown in the

previous graph.

memory window size is chosen to be a significant fraction of T/,. This is further corroborated by simulation

results using RCBR shown in Fig. 10.

Another way of understanding these two regimes is through a slightly different viewpoint of the MBAC.

So far, we have assumed that the goal of the measurement process is to estimate stationary trafiic pa

rameters {fi and <7^) in order to keep the number of admitted flows as close as possible to the number of
flows 771* we would admit if p and cr^ were known exactly. The goal of this process is to maintain enough
spare bandwidth such that the target overflow probability is not exceeded. However, we have seen that

flow departures reduce the time-scale over which admission errors persist to the critical time-scale T/,. The

system has a relaxation period over which it "forgets" past admission mistakes. What we effectively do
by setting the memory window size to T/, is to let the estimators track the traffic fluctuation over this

relcixation time-scaJe. This is appropriate as we only need to accurately predict the parameters over a

time-scale of T^. Longer-term fluctuations are implicitly absorbed by the system.

The above analysis and simulations are based on a traffic model with correlation at a single time-scale.
In practice, traffic fluctuations may occur at multiple time-scales. In particular, several studies of various

types of network traffic have found phenomenon of long-range dependence (LRD) [16, 8, 1, 6]. However,
based on the intuition gained from the single time-scale model , we expect that a memory window size
on the order of Th is again appropriate here. As before, flow departures dictate a critical time-scale Th

over which the statistics of the future behavior of the traffic has to be predicted. A memory window offh
allows the simultaneous smoothing of the fluctuations faster than Th for reliable estimation and the tracking

of fluctuations at a time-scale larger than T/,. The statistics of the long-term fluctuations of long-range
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Figure 8: An illustration of the masking regime and of the repair regime.

dependence is therefore irrelevant.

To provide some support for this hypothesis, we present simulation results on an actual traffic trace.
Figure 11 and 12 show the overflow probability when the flow is a piecewise CBRversion of the MPEG-1
encoded Starwars movie [10]. This particular trace has been shown to exhibit long-range dependence [Sj.
We vary the average flow holding time and plot the overflow probability as a function of l/T/j. As with
the synthetic traffic above, wesee that the performance is not robust under memoryless estimation. When

Th is large (corresponding to small Tc in Fig. 9), the performance misses the target by 1 or 2 orders of
magnitude. On the other hand, we note that with the choice of memory window sizeTm = Th, the MBAC
is robust (cf. Fig. 12). Apparently, the strong long-term fluctuations of this traffic do not degrade the
performance of the MBAC.
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Figure 9: The overflow probability pf obtained by numerical integration of (37), as a function of the normalized

memory window size Tm/Th and of the correlation time-scale Tc-

p,M • lunelion of andTtnTh-

Figure 10: The simulated pj over the same parameter range as in Fig. 9.

5.4 Heterogeneous Flows

The approach taken in this paper is to use a Gaussian approximation (justified by a heavy-traffic limit)

for the aggregate flow and focus on estimating the mean and variance of the aggregate fluctuation. We did

however make the assumption of homogeneous individual flows, each with same mean variance a- and
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Figure 11: The overflow probability for Starwars sources with memoryless estimation {Tm = 0).
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Figure 12: The overflow probability for Starwars sources with Tm = Th.

mean holding time T/,. A straightforward extension of our analysis shows that the results carry through
for the situation when the average holding times of the flows are different, with the critical time-scale T/,

given by the reciprocal of the departure rate averaged over all flows in the system.
Heterogeneous flows with different mean bandwidth requirements has also no effect on the mean esti-
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mator used in the paper, provided that a Gaussian approximation of the aggregate is still valid. This is
because the mean estimator only makes use of the aggregate and not the individualrates anyway. However,
this is not true for the variance estimator, as it makes use of the individual rates in the estimate. In fact,

it is not difficult to show that the variance estimator (7), which treats each flow as though they have the

same mean, is always biased when the flows have diflFerent mean and over-estimates the variance. Thus,
in a heterogeneous environment, the scheme proposed here will be conservative, leading to some loss in
utilization. However, it is robust with respect to the homogeneity assumption. Of course, if classification

of the flows is available to the MBAC, one can modify the variance estimator, using a different mean

estimate for each class.

6 Related Work

Past work on measurement-based admission control [5], [18], [13] have either ignored measurement errors
or assumed a static situation where calls do not arrive or depart the system and there is arbitrarily long

time to make accurate measurements. Here we discuss two more recent papers which are closer in spirit

to our work.

Jamin et al, in [15], presented a specific algorithm for measurement-based admission control of predic

tive traffic, and evaluated its performance through simulation. The algorithm relies on measurements of

the maximum delay and maximum bandwidth over a measurement interval. There are several parameters

in the algorithm (samphng window size 5, measurement window size T, utilization target, back-off factor

A) that are found to have a significant impact on performance. However, clear guidelines on how to set

these parameters are lacking. We believe that our work offers some insight into the impact of these system

parameters. In particular, the measurement window size T is very similar to our measurement time-scale

Tm. Also, A is a parameter that controls an overestimation of the actual measured delay - in other words,

it controls conservativeness, which in our work is represented through the parameter pce- Therefore, while

the details of the models and metrics are not exactly identical, we think that our work helps understand

the issues that govern the tuning of the above parameters. Our work has the further advantage that we

use a much simpler service model so that we can focus on the issues associated with the measurement

process.

Gibbens et al. [9] studied memoryless measurement-based admission control in a decision-theoretic
framework. Their work takes into account the impact of measurement errors on performance and also

considers the call dynamics. However, there are some significant differences between theirs and our work.

First, a perfect time-scale separation is explicitly built into their model by assuming that the network

states seen by successive call arrivals are independent. This makes it difficult to evaluate the performance

of MBAC schemes with memory and also the effect of traffic correlation on a system with very high call

arrival rates. Indeed they only focused on memoryless schemes. Moreover, our results show that the

condition for time-scale separation is rather subtle, as it depends, among others parameters, on the system
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size. Second, while they also observed that a memoryless certainty equivalent scheme can perform poorly,

their remedy is quite different. They relied on essentially two mechanisms: the use of a Bayesian prior

on the call statistics and network state-independent call rejection. The first mechanism serves to smooth

out the fluctuation in successive memoryless estimates, as the observations are weighted by a fixed prior.

The second mechanism counters very high call arrival rates, by not accepting calls until one has left the
system. In contrast, we propose the use of an appropriate amount of memory in the estimator , which

as we have seen deals with both these problems. Our framework, without a priori assuming time-scale

separation, allows us to evaluate the performance as a function of the amount of memory used. We believe

the appropriate use of memory is a natural and effective strategy, particularly when no reliable prior exists.

7 Conclusions

Measurement-based Admission Control simplifies the contract between the user and the network, at the

expense of having to deal with additional uncertainty in the system. The benefit of relieving the user of the
burden of a-priori traffic specification, and of relieving the network of the burden of policing, far outweighs

the costs of this uncertainty, if it can be prevented from compromising the quality of service experienced

by the user. This problem has motivated the present work.

In this paper, we have presented a framework for studying the performance of admission control schemes

under measurement uncertainty and flow dynamics. Using heavy-traffic approximations, the analysis of

the resulting dynamical systems is simplified via linearization around a nominal operating point and by
Gaussian approximations of the statistics via central limit theorems. We believe that the insight derived
from our models, and the engineering guidelines on the choice of memory and certainty-equivalent target
overflow probability, should be directly applicable in the design of robust MBAC schemes. However, there

are also some additional issues that merit attention.

First, there is increasing interest in adaptive applications, i.e., applications that are capable of func

tioning properly even if the QoS falls below the desired level [4]. This interest stems from the inability of
the current Internet to guarantee any level of QoS. The QoS metric used here, i.e., the probability that a

flow cannot get at least its target bandwidth at time t, is extreme in the sense that it does not account
for the fact that getting part of that target bandwidth is still useful to an adaptive application. We are

therefore working on a generalization of the QoS metric based on utility functions, inspired by Shenker's
work [19). The goal is to assess the impact of application adaptivity on the admission problem.

Second, we have assumed that individual flows are available for measurement. This might actually not

be desirable or feasible in practice. Aggregate measurements can be expected to be easier to implement,

because no per-flow information has to be maintained. While using only aggregate measurement does not

affect the mean estimator, the accuracy of the variance estimator is hampered without per-fiow information.

We plan to study the effect on QoS of having only aggregate estimates available.

31



References

[1] J. Beran, R. Sherman, and W. Willinger. Long Range Dependence in Variable Bit Rate Video Traffic.
IEEE Trans, on Communications, 43(3):1566-1579, February 1995.

[2] P. Billingsley. Convergence of Probability Measures. Wiley,New York, 1968.

[3] P. Billingsley. Probability and Measure (3rd Ed.). Wiley, 1995.

[4] D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an integrated servicespacket

network: Architecture and mechanism. In Proc. ACM SIGCOMM '92, pages 14-26,. 1992.

[5] Costas Courcoubetis et al. Admission Control and Routing in ATM Networks using Inferences from

Measured BuflFer Occupancy. In ORSA/TIMS special interest meeting, Monterey, CA, January 1991.

[6] M. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Evidence and Possible
Causes. In Proc. ACM Sigmetrics '96, pages 160-169, Philadelphia, PA, May 1996.

[7] J. Cuzick. Boundary Crossing Probabilities for Stationary Gaussian Processes and Brownian Motion.

Transactions of the American Mathematical Society, pages 469-492, February 1981.

[8] M. W. Garrett and Walter Willinger. Analysis, Modeling and Generation of Self-Similar VBR Video

Traffic. In Proc. ACM SIGCOMM '94, pages 269-280, London, UK, August 1994.

|9] R.J. Gibbens, F.P. Kelly, and P.B. Key. A Decision-theoretic Approach to Call Admission Control in

ATM Networks. IEEE JSAC, Special issue on Advances in the Fundamentals of Networking, August

1995.

[10] M. Grossglauser, S. Keshav, and D. Tse. RCBR: A Simple and Efficient Service for Multiple Time-
Scale Traffic. lEEE/ACM Transactions on Networking, December 1997.

[11] H. U. Braker. High boundary excursions of locally stationary Gaussian processes. In Proc. of the
Conference on Extreme Value Theory and Applications, Gaithersburg, Maryland, USA, May 1993.

[12] H. U. Braher. High boundary excursions of locally stationary Gaussian processes. PhD thesis, Univer-

sitat Bern, Switzerland, 1993.

[13] I. Hsu and J. WaJrand. Dynamic Bandwidth Allocation for ATM Switches. Journal of Applied
Probability, September 1996.

[14] J.Y. Hui. Resource Allocation for Broadband Networks. IEEE Journal on Selected Areas in Commu

nications, 6(9), December 1988.

[15] S. Jamin, P. B. Danzig, S. Shenker, and L. Zhang. A Measurement-Based Admission Control Algo
rithm for Integrated Services Packet Networks. In Proc. ACM SIGCOMM '95, 1995.

[16] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the Self-Similar Nature

of Ethernet Traffic (Extended Version). lEEE/ACM Trans, on Networking, 2(1):1-15, February 1994.

32



[17] E. P. Rathgeb. Policing of Realistic VBR Video Traffic in an ATM Network. International Journal
of Digital and Analog Communications Systems, 6:213-226, 1993.

[18] H. Saito and K. Shiomoto. Dynamic Call Admission Control in ATM Networks. IEEE Journal on

Selected Areas of Communications, 9:982-989, 1991.

[19] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE Journal on Selected Areas of

Communications, 13(7), 1995.

[20] D.W. Stroock and S.R.S. Varadhan. Multidimensional Diffusion Proceeses. Springer Verlag, 1979.

[21] D. Tse and M. Grossglauser. Measurement-Based Call Admission Control: Analysis and Simulation.

In Proc. IEEE INFOCOM '97, Kobe, Japan, April 1997.

A Proof of Proposition 3.1:

We use the notations and ^ to denote convergence in distribution and almost sure convergence respec
tively. The following theorems are standard results in the theory of convergence in distribution.

Theorem A.l (Continuous-Mapping Theorem) Let be a sequence of random vectors on If

h ^ is continuous and -S F, then /i(F^"^) h{Y).

Theorem A.2 Let F^"^ 's and 's be random vectors defined on the same probability space. IfY '̂̂ ^ -S F
and a where a is a constant vector, then (F^"\Z^"^) ^ (F,o).

Proof of Proposition 3.1:

For each system size n, let and be the estimates of the mean and standard deviation of the

bandwidth distribution of the flow, respectively. By definition of the MBAC,

+ (42)

which is obtained by solving eqn. (6) for each n. Thus,

~ A("> 2(A(»)Pv/H 2(A("')2V n ^ '
By the strong law of large numbers p and a. For the first term above, y/n{p—

-ctFo by the Central Limit Theorem, where Yq ~ iV(0,1). Also, p and hence by theorems (A.2)
and (A.l) above, the first term converges to -JFq in distribution. The second term converges almost
surely to 0, while the third term converges almost surely to — Applying the above theorems we now

get the desired result:

—(Fo-fQ,)
- 71 V o

y/n
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B Weak Convergence Results for Heavy-Traffic Approxima

tion

In this section, we will prove Theorem 4.1, giving a formal justification of the heavy traffic approximations

we used. To begin, we will specify the space in which the sample paths of the processes live, and define
the notion of weak convergence.

Definition B.l The space X>[0,oo] is the space of all real-valued functions on 2)[0,oo] that are continuous
from the right and have limits from the left. There is a metric (Skorohod metric) defined on F[0, oo] such
that it is complete and separable.

Definition B.2 Let be a sequence of processes whose sample paths are in P[0, oo]. is said
to converges weakly to {Zt} iffor every continuous function f : 2?[0,oo] 9?, E[f{{Zi"^^})] —> E[f{{Zt})].

v
With a slight abuse of notation, we will use —♦ to denote weak convergence of processes as well as

convergence in distribution for random variables. We shall use the following theorem to verify weah

convergence.

Theorem B.3 A sequence of processes {Zj '} converges weakly to {Zt} if all finite-dimensional distribu

tions converge and {Z\^^} is tight, i.e.
1) For every t] > 0, there exists an a > 0 such that

Pr|lZo" |̂ >a| <77 Vn.
2) For every T > 0, e, 77 > 0, there exists a 6 6 (0,1) and an integer uq such that

Pr I sup >eI<77 Vn >7io.
[\t\-t2\<6,0<ti,t2<T J

We will use the following theorems [2], which can be viewed as process-level analogs to A.l and A.2.

Theorem B.4 (Continuous-Mapping Theorem for Processes) Let {Z^"^} be a sequence of processes whose
sample paths are in X>[0,00]. Ifh :V[0,00] —^ P[0,00] is continuous and {Z^"^} {Zt), then g{{zl^^}) ^
9{{Zt}).

Theorem B.5 Let and {Zf^"^}'s be processes defined on the same probability space, and g :
D[0.00] XD[0,00] —» D[0,oo] is continuous. If {Wt} and {Z^^^} converges weakly to a de
terministic process {Zt}, then {zf"^}) ^ 5({WJ, {Zt}).

We need the following technical conditions on the flow processes.
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Assumptions B.6 1) The sample paths of the individual flow processes {A''i(t)} are in 2?[0, oo).
2) The mean bandwidth estimates converges weakly to the constant process p.

3) The standard deviation estimates converges weakly to the constant process a.

4) If we define

* t=i

to be the scaled and centered sum of the individualflows, then as n —» oo, '} converges weakly to {i't},
which is a stationary zero-mean Gaussian process with unit variance and auto-correlation function p{t)

(that of an individual flow).

The second and third conditions say that the estimates as processes are consistent. The fourth condition

says that the aggregation of the individual flows satisfies a functional central limit theorem. It holds for a

very broad class of models for the individual sources. For example, it can be shown [20] that the condition
holds if {A'j(i)} is a X-state continuous-time Markov fluid, in which case the limiting process {y} is a
linear functional of a. K - 1-dimensional diffusion process.

To prove the main theorem, we need the following lemma, which can be viewed as a functional law of
large number for the process describing the evolution of the number of flows in the system.

^(n)
Lemma B.7 The process converges weakly to the deterministic process taking on a constant value

of 1 for all t.

Proof. Using eqn. (42), assumptions (2) and (3) in B.6, together with Theorem B.5, we can see that the

process converges to the process taking on a constant value. Now, for alH > 0,

—-— < —— < sup
n n o<s<t ^

Since } converges weakly to the constant process 1, so does the process {supo<5<t by the

continuous mapping theorem. Hence must converge weaikly to the constant process 1. •

Proof of Theorem 4-1

From eqn. (43), we get for each s„

- n_ \/n{p - a1"^) , (^s"^)^Qg _ cr^P^aq ^ ..(n)
n/S ~ Ai"' 2(Ai"')2v^ 2(Ai"')2V n

By assumption B.6, we know that {\/n(/x —/is"^)} ^ —o^yst where {V,} is a zero meam Gaussian
process with auto-correlation function p. Also, converges weakly to the constant process p and

converges weakly to the constant process a. By Theorem B.5,

,M^ -n. V f 0- , V. /..X
{ •^—} - + Q,)} (44)

y/n p
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Next, we will show that for fixed t > 0, t)} as a process in s converges weakly to the deterministic

process {^} on [0,t]. First, let us fix an s < t. Define now two random variables and D^[s,t].
D'[s, f) is the number of flows departing from the system when there are N{s) flows in the system at time
s and no more flows enter the system in [s,f]; D"[s,f] is the number of flows departing from the system
when there are W:= sup^gj^ •N'(t) flows at time s and no more flows enter the system in [s,t]. It can be
seen that for every x.

Pr |D'[s,tl >xj <Pr {I>[s,t] >x} <Pr {D"[s,f] >x}
Using Chebyshev's bound, we have for every € > 0,

Pr >4<
11 Th J ~

fO-M _ 2:i<V
( ThJ

(45)

The expectation can be computed using the fact that the flows have exponential holding time and departs

from the system independently:

E
_ s-t\

[ n J
Em Em]-Em , (s-t)'

n n fi
n

where q is the probability that a given flow leaves the system some time in [s,f], and is given by

^ := 1 - exp(
-t

ThV^'

By Lemma B.7 and the continuous mapping theorem, as n oc,

Substituting this into (46) shows that

'W W^-
1 E o

n

lim E
n—>oo

_ S-tV
V fh) = 0

(46)

(47)

Hence converges in probability, and hence in distribution, to Using a similar argument, one

can show the same thing for By (45), this imply that for fixed s and t, ^ Using

Theorem (A.2), this implies that for all kand € [0,<], •••̂ y^) ^
i.e. finite-dimensional distributions converge. To show weak convergence as a process, we need to verify
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tightness, according to Theorem B.3. The first condition is trivially satisfied. For the second condition,

Pr I sup ^
l|si-S2|<M<Sl,S2<t v" J

< P,. 3UP

(n)where U := sup.r€(o,f) and

< (^ +l)isupEfip[W,(fc +l)«lA
0 k [n J

6 \ n n /

p=Pr {a flow departs in time [kS^ {k +1)6]} =1—exp(-7-^—).
Thy/n

By direct calculation, (49) is in turn equal to

i(|+l)(|J +o(l))
where the o(l) term goes to zero as n —+ 00. Thus, by appropriaif>e choice of n and 6, (48) can be made
arbitrarily small, this verifies the tightness of and hence its"%'eak convergence.

Combining the weak convergence of and "}, it fdUows that

-S sup {--(l^f - + Q?)}
o<s<t M aTh

•
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