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HYBRID SYSTEMS WITH FINITE BISIMULATIONS

GERARDO LAFFEKRIERE, GEORGE J. PAPPAS, AND SHANKAR SASTRY

Abstract. The theory of formal verification is one of the main approaches to hybrid system
analysis. A unifiedapproach to decidability questions for verificationalgorithms is obtained by
the construction of a bisimulation. Bisimulations are finite state quotients whose reachability
properties are equivalent to those of the original infinite state hybrid system. This approach
has had success in the reachability analysis of timed automata and initialized rectangular
automata. In this paper, we use recent results from stratification theory, subanalytic sets, and
model theory in order to extend the state-of-the-art results on the existence of bisimulations
for certain dasses of hybrid systems.

1. Introduction

Hybrid systems consist of finite state machinesinteracting with differentialequations. Various
modeling formalisms, analysis, design and control methodologies, as well as applications, can
be found in [2, 3, 4, 10, 16]. The theory of formal verification is one of the main approaches
for analyzing properties of hybrid systems. The system to be analyzed is first modeled as a
hybrid automaton, and the desired property is expressed using a formula from some temporal
logic. Then, model checking or deductive algorithms are used in order to guarantee that the
system model indeed satisfies the desired property.

Verification algorithms are essentially reachability algorithms which check whether trajecto
riesof the hybridsystem can reach certainundesirable regions of the state space. Since hybrid
systems have infinite state spaces, decidability of verification algorithms is very important.
Decidability results for analyzing hybrid systems consider special finite state quotients of the
original infinite state hybrid automaton called bisimulations. Bisimulations are reachability
preserving quotient systems in the sense that checking a property on the quotient system is
equivalent to checking the property on the original system. Showing that an infinite state
hybrid automaton has a finite state bisimulation is the first step in proving that verification
procedures are decidable. This approach has yielded several classes of decidable hybrid sys
tems including timed automata [1], initialized rectangular automata [20], and linear hybrid
automata [11]. Some undecidable classes have also been discovered in [12]. Computing finite
bisimulations is clearly related to the problem of obtaining discrete abstractions of continuous
systems which has been considered by [21, 17, 5] as well as [8].

Since the discrete dynamics are already finite, it is clear that decidability results for hybrid
systems depend crucially on the success of obtaining finite bisimulations for continuous dy
namics. The cases considered so far in the literature dealt with simple dynamics: i: = 1 for
timed automata [1], i € [a, 6] for rectangular automata [20], and Ax < b for linear hybrid
automata [11]. In this paper, we extend the bisimulation methodology to hybrid systems
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with more general djaiamics. We describe an algorithm which, upon termination, provides
the desired finite bismilarity quotient. In order to investigate classes of systems for which the
algorithm terminates, we combine mathematical techniques from differential geometry and
recent results in logic model theory. With these new tools, we prove the existence of finite
bisimulations for various classes of hybrid systems with planar continuous dynamics. This
convergence of mathematical logic and differential geometry also provides a natural frame
work for extending the decidability frontier for more general classes of hybrid systems. Such
extensions will require pushing the boundary of decidable theories in mathematical logic.

Abstracting a discretegraph from a hybridsystemrequires the analysis oftrajectories ofvector
fields and their intersection properties relative to a given collection of sets. Considering hybrid
systemswith arbitrary dynamicsand arbitrary state partitions would soon lead to pathological
situations. Subanalytic sets [6, 13, 23] provide a rich class of sets which have many desirable
local intersection properties with trajectories of analytic vector fields. Subanal3rtic sets can
also be partitioned into smooth embedded submanifolds in a form suitable for constructing
a bisimulation. Such partitions are called stratifications. Moreover, we show that relaxing
the class of vector fields or sets in some naive ways leads to pathological situations. On the
other hand, the concept of o-minimal theories in logic [26, 27, 28] identifies classes of sets
with good intersection properties suitable for the global study of trajectories of vector fields.
The combination of tedmiques from both fields highlights the kind of properties of sets that
play a central role in obtaining discrete abstractions.

The outline of the paper is as follows: In Section 2 we review the notion of bisimulations
of transitions systems. In Section 3 we define the class of hybrid systems under study and
describe the main algorithm of the paper (Algorithm 2). Section 4 presents some basic
facts about stratification theory and subanalytic sets and relates them to the construction
of bisimulations. In Section 5 we present recent results in model theory which are used in
Section 6 in order to obtain classes of systems for which the bisimulation algorithm terminates.
Section 7 contains conclusions and issues for further research.

2. Bisimulations of Transition Systems

We adopt here the terminologyof [11] slightly modified for our purposes. A transition system
T —(Q,E, Qoi Qf) consists of a (not necessarily finite) set Q of states, an alphabet E of
events, a transition relation Q x E x Q, a set Qo C Q of initial states, and a set Qj? Q Q
of final states. A transition (gi,o',g2) is denoted as A 92- The transition system is
finite if the cardinality of Q is finite and it is infinite otherwise. A region is a subset P CQ.
Given a € E we define the predecessor PreciP) of a region P as

(2.1) Pre„{P) = {g e 0 I € P and g A p}

Given an equivalence relation '^C Q x Q on the state space one can define a quotient tran
sition system as follows. Let Q/ denote the quotient space. For a region P we denote
by P/ rsj the collection of all equivalence classes which intersect P. The transition relation
—on the quotient space is defined as follows: for QuQ2 € Q/ Q\ Q2 iff there exist
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qi € Qi and q2 € Q2 such that qi A 92- The quotient transition system is then T/
E, Qo/^, Qf/^)'

Given an equivalence relation on Q, we call a set a '̂ -block if it is a umon of equivalence
classes. The equivalence relation is a bisimulation ofT iff Q01 Qf '̂ -blocks and for all
a € E and all '̂ -blocks P, the region Pre„{P) is a '̂ -block. In this case the systems T and
T/~ are called hisimilar. We will also say that a partition isa bisimulation when its induced
equivalence relation is a bisimulation. A bisimulation is called finite if it has a fimte number
of equivalence classes. Bisimulations are very important because bisimilar transition systems
generate the same language [11]. Therefore, checking properties on the bisumlar transition
system is equivalent to cheddng properties of the original transition system. This is very
useful in reducing the complexity of various verification algorithms where Q is finite but very
large. In addition, ifT is infinite andT/'^ is a finite bisimulation, then verification algorithms
for infinite systems are guaranteed to terminate. Successful applications of this approach for
hybrid systems include timed automata [1], initialized rectangular automata [20], and linear
hybrid automata [11]. It should be noted that the notion of bisimulation is similar to the
notion ofdynamic consistency [7, 8, 18]. If is a bisimulation, it can be easily shown that if

q then

Bl: p G Of iff 9 € Qf, and p € Qo iff 9 ^ Oo
B2: if p A p' then there exists q' such that q q' and p' q'

Based on the above characterization, given a transition system T, the following algorithm
computes increasingly finer partitions of the state space Q. If the algorithm terminates, then
the resulting quotient transition system is a finite bisimulation. The state space Q/ ^ is called
a bisimilarity quotient.

Algorithm 1: (Bisimulation Algorithm for Transition Systems)
Set: 0/{Qo n Qf, Qo \ Qf, Qf \ Qo,Q \ (Qo UOf)}
while: 3 P,P' G0/'^ and a GE such that 0 P n Prea{P') ^ P

set: Pi = P n PreaiP'), P2 = P\ Pre^iP')
refine: 0/'^= (0/\{-P}) U{Pi, P2}

end while:

Notice that each time the partition 0/ is refined, the transitions are updated to account
for the newly subdivided sets. When diecking specific properties, such as reachability to the
set Qf, one might simplify the algorithm by starting with a coarser partition, for example
{Ofi 0 \ Of}- III generalone should include in the initial partition all additional sets relevant
to the verification problem of interest (such as safe or unsafe regions). The larger the initial
class of sets the more difficult it is for the algorithm to terminate.

3. Bisimulations of Hybrid Systems

We focus on transition systems generated by the following class of hybrid systems.

Definition 3.1. A hybrid system is a tuple H = (A, Aq,Af, P, P, /, G, P) where
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0<X<1

1<Y<2

X>5

Y<-10

0<X<1Y=I

X=0 Y=1

dX^=Gj(X.Y)

dY

dt

Y>-10.

Figure 1. A typical hybrid automaton

X = Xd XXc is the state space with Xd = {gi,.. •, gn} and Xc an analytic manifold.
JVo C is the set of initial states
Xp C A" is the set of final states
F : X —> TXc assigns to each discrete state 9 GXd an analytic vector field F{q, •)
E C Xd X Xd is the set of discrete transitions
/ ; Xd —> 2-^^ assigns to each discrete state a set I{q) C Xc called the invariant.
G : E —> Xd x 2"^^ assigns to e = (gi, 92) € £? a guardof the form {gi} x C7, C/ C J(gi).
R : E —> Xd X2^^ assigns to e = (gi, g2) € F a reset of the form {g2} x V, V C /(g2).

Trajectories of the hybrid system H originate at any (g, x) € Xq and consist of either contin
uous evolutions or discrete jumps. Continuous trajectories keep the discrete part of the state
constant, and the continuous part evolves according to the continuous fiow F(g, •) as long as
the fiow remains inside the invariant set /(g). If the fiow exits /(g), then a discrete transition
is forced. If, during the continuous evolution, a state (g, x) GG{e) is reached for some e € E,
then discrete transition e is enabled. The hybrid system may then instantaneously jump from
(g,x) to any (g',a;') GR(e) and the system then evolves according to the fiow F(g',•). Notice
that even though the continuous evolution is deterministic, the discrete evolution may be
nondeterministic. The discrete transitions allowed in our model are of the type allowed in ini
tialized rectangular automata [20]. We assume that our hybrid system model is non-blocking,
that is from every state either a continuous evolution or a discrete transition is possible.

Example 3.2. Atypical hybrid system is shown inFigure 1. The state spaoe is {Ql,Q2} xR^.
The initial states are of the form {Ql} x {(x,3/) GR^ | 0 < x < 1,1< y < 2}. The discrete
d3niamics consists of two transitions ei = (Q1,Q2) and 62 = (Q2,Q1). Within discrete state
Ql, the continuous variables x and y evolve according to a differential equation as long as
{x,y) G/(Ql) = {(a;,y) € R^ | a; < 5}. Once x > 5, discrete transition ei is forced and x,y
are nondeterministically reset to values in fixed sets. The system then fiows according to the
flow associated with Q2. The evolution from that point on is similar. We would like to find
out whether the system will reach the set offinal states {Q2} x {(x, y) GR^ | x < -5}.

Every hybrid system H = (X,Xo, Xp,F,E, /, G, R)generates a transition system T = (Q, E,-)
»Qo> Qf) by setting Q= X, Qo = Xo, Qp = Xp, E= jEu{t}, and -^= (UggE -^)U A where

Discrete Transitions: (g, x) A (q', x') for e GE iff (g, x) GG(e) and (g', x') GR(e)
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Continuous Transitions: (^i, xi) (92j ^2) iff9i = 92 and there exists 5 > 0 and a curve
X: [0,5] —¥ M with x(0) = Xi, x(S) = X2 and for all t € [0,5] it satisfies x' = F(qiyx{t))
and x(t) € /(91).

The continuous r transitions are time-abstract transitions, in the sense that the time it takes to
readi one state from another is ignored. Havingdefined the continuousand discrete transitions

and A allows us to formally define Prer{P) and Pree{P) ioi e £ E and any region PCX
using (2.1). Furthermore, the structureofthe discrete transitions allowed in our hybrid system
model result in

/X Tx / r»\ 10 if P n R(e) = 0
~̂ G(e) if PnR(e) 0

for all discrete transitions e € E and regions P. Therefore, if the sets P(e) and G{e) are
blocks of any partition of the state space, then no partition refinement is necessary in the
bisimulation algorithm due to any discrete transitions e € E. This fact, in a sense, decouples
the continuous and discrete components of the hybrid system. In turn, this implies that
the initial partition in the bisimulation algorithm should contain the invariants, guards and
reset sets, in addition to the initial and final sets. This allows us to carry out the algorithm
independently for each discrete state.

More precisely, define for any region PCX and q e Xd the set P, = {x € Xc '• (9, x) € P}.
For each discrete state q e Xd consider the finite collection of sets

(3.2) Ag = {/(?), G(e)„P(e)„ (Xo)„ (Xp),}

which describes the initial and final states, guards, invariants and resets associated with
discrete state q. Let Sq be the coarsest partition ofXc compatible with the collection Aq (by
compatible we mean that each set in Aq is a union ofsets in Sq). The (finite) partition Sq can
be easily computed by successively finding the intersections between each of the sets in Aq
and their complements. These collections Sq will be the starting partitions of the bisimulation
algorithm.

Algorithm 2: (Bisimulation Algorithm for Hybrid Systems)
Set: X/r^ =\J^Sq
for: q G Xd

while: 3 P,P' € Sq such that 0 ^ P n Prer(P') # P
Set: Pi = P n Prer{P')\ P2 = P \ Prer(P')
refine: Sq = (Sq \ {P}) U{Pi, P2}

end while:

end for:

A few comments are in order here. The key problem is to investigate how the flow of P(g, •)
interacts with the sets Sq for a single discrete state q. This requires that the trajectories of the
vector field P(g, •) have "nice" intersection propertieswith suchsets. Since the goalis to obtain
finite partitions, it willbecomeimportant that werestrict the study to classes of sets with good
"finiteness" properties, for example, sets with finitely many connected components. In the
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subsequent sections we identify classes of sets and vector fields which exhibit such properties
and for which Algorithm 2 terminates.

One can also view the partitions in the algorithm as a way of discretizing the system trajecto
ries. This suggests studying the continuous transitions by looking only at the points at which
the trajectories move from one set in <5^ to an "adjacent" one. This is in general not possible
because sets could have rather pathological boundaries (see also Example 4.8). We will see in
the next section that subanalytic sets are free from such pathologies and that in fact one can
formalize the idea of trajectory discretization associated to the partition in that case.

We conclude this section with an example that shows that, even in apparently simple situa
tions, Algorithm 2 does not terminate.

Example 3.3. Let F be the linear vector field X on R^. Assume the partition

of R^ consists of the following three sets (see Figure 2): Pi = {(x,0) : 0 < re < 4}, P2 =
{(x,0) : —4 < re < 0}, P3 = R^ \ (Pi UP2). The integral curves of F are spirals moving away

SA\\\x.
AA.Wv \ s\.

Figure 2. Algorithm 2 does not terminate

from the origin. The first iteration of the algorithm partitions P2 into P4 = P2 fl Prer{Pi) =
{(1,0) : Xi < X < 0} and P2 \ Pre,-(Pi). Here xi < 0 is the x-coordinate of the first
intersection point of the spiral through (4,0) with P2. The second iteration subdivides Pi
into P5 = Pi n Prer(P4) = {(a^)0) : 0 < x < X2} and Pi \ Prer(P4) where X2 > 0 is the
x-coordinate of the next point of intersection of the spiral with Pi. This process continues
indefinitely since the spiral intersects Pi in infinitely many points, and therefore the algorithm
does not terminate.

4. Subanalytic Sets and Stratifications

In this section we describe some fundamental properties of subanalytic sets (see [6, 13, 23] for
more detsdls). A differentiable manifold is real analytic {C^) if the transition maps between
local coordinate charts are analj^ic functions on their domains (which are open subsets of R").
An embedded submanifold 5 of a manifold M is a topological subspace of M together with a
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differentiable structure such that the inclusion from S into M is a smooth immersion (i.e. has
full rank at every point). A vector field F on the real analytic manifold M is analytic if its
coordinates in any local chart are analytic. If F is an analytic vector field then any integral
curve of F is analytic.

Let M and N be real analytic manifolds and let N) denote the set of analytic functions
from M into iV. If / € C"{Mj N) we say / is of class Given an analytic manifold C/, we
denote by E(C^(C/,R)) the Boolean algebra generated by the sets of the form {x : f(x) = 0}
or {x : /(x) > 0}, where / €

Definition 4.1. Let M be a real analytic manifold. A subset A of M is semianalytic in M if
for every there is an open neighborhood U of p in M such that C/ DA € E(C"^(I7, M)).
If A C M is semianalytic in M we write A € SMAN(M).

Definition 4.2. Let M be a real analytic manifold. Define SBANrc(M) and SBAN(M) by

1. A € SBANrc(M) if and only if there is (AT, /, A*) such that is a real analytic manifold,
/ € C^iN, M), A* € SMAN(iV), A* is relatively compact and A = /(A*);

2. A € SBAN(M) if and only if A is the union of a locally finite collection of members of
SBANrc(M). (A collection of sets C is locally finite if any compact set intersect only
finitely many sets in C.)

We say that A is subanalytic in M H A £ SBAN(M). It is easy to see that A G SBANrc(M)
if and only if A is subanalytic in M and relatively compact. The following properties of
subanalytic sets are easily derived from the definitions.

1. SBAN(M) is closed imder locally finite unions and intersections.
2. If A G SBAN(M) and /: M —N is of class and proper on A, the closure of A,

then /(A) GSBAN(A^). (A function / is proper if is compact whenever K is.)
3. If A GSBAN(Ar) and /: M —^ iV is of class then f-\A) GSBAN(M).

The following two properties require more subtle proofs, but they give the first indication that
this will be a suitable class of sets for our studies.

4. If A G SBAN(M) then M \ A G SBAN(M).
5. A subanaljrtic set has a locally finite number of connected components, each of which is

subanalytic.

Example 4.3. Points are subanalytic, and so is any locally finite union of points, for example
Z" as subset of R". The empty set and M are both in SBAN(M). Let a, 6 G R, a < 6, then
[a,6], [a,6), (a, 6] and (a, b) are subanalytic in R The open ball B(p, r) centered at p of radius
r in R" is in SBAN(R**).

Definition 4.4. Let M be a real analjrtic manifold. An analytic (C^) stratification of M is
a partition S of M with the following properties:

1. each 5 G <S is a connected, real analytic, embedded submanifold of M,
2. S is locally finite, _ _
3. given two sets 5, P G 5, P / 5, such that 5 n P 0 then S C P and dim S < dim P.
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The sets in a stratification are called strata.

The central result on stratifications for our analysis is the following. For a proof see [22].

Theorem 4.5. Let A be a locally finite family of nonempty suhanalytic subsets of a real
analytic manifold M. For each A € A, let F{A) be a finite set of real analytic vector fields on
M. Then there exists a subanalytic stratification S of M, compatible with A, and having the
property that, whenever S € S, S C A, A ^ A, X E then either (i) F is everywhere
tangent to S or (ii) F is nowhere tangent to S. (S is compatible with A is every set in A is
a union of sets in S.)

Theorem 4.5 is illustrated by the following example.

Example 4.6. Let F be the following analytic vector field on

X = x^ -\-y^
y = 0

which has an isolated equilibrium at the origin and points in the positive x-direction otherwise.
Consider the following two subanalytic sets

51 = {(a;, y) € E^ 12/ > 0 and (x - 1)^ -\-y^ = 1}
52 = {(a;, y) € E^ 12/ = 0 and 0 < x < 2}

shown in Figure 3. A subanalytic stratification ofE^ which is compatible with the sets Si, S2
and the vector field F is also shown in Figure 3. It consists of

• 0-dimensional strata

- Pi = (0,0), P2 = (2,0), and P3 = (1,1)
• 1-dimensional strata

- Ci = {(x,2/) € E^ Iy = 0 and 0 < x < 2}
- C2 —{(a:, y) € E^ Iy > 0 and 1 < x < 2 and (x- 1)^ -1-2/^ = 1}
- Cz —{(ic, y) € E^ 1y > 0 and 0 < x < 1 and (x —1)^ + 2/^ = 1}

• 2-dimensional strata

- Di = {(x,2/) € E^ 12/ > 0 and (x - 1)^ + 2/^ < 1}
- P>2=K'\{i'l,^2,P3,Ci,C2,C3,Dl}

Notice that the vector field is tangent to Pi since it is an equilibrium as well as to Ci, D\ and
D2' The vector field is transverse to all the other strata. Moreover, Si = Pi UP2UP3UC2UC3
and 62 = Pi U P2 U Ci.

In view of the above properties we will restrict oiu: study to hybrid systems for which the
relevant sets are all relatively compact and subanalytic.

Assumption 1 : For each discrete state q the collection Aq consists of relatively compact
subanalytic sets. In particular, we assume there exists a compact set K such that ii A ^ Aq
then AC K.
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y'y'

S2 X P2 X

Figure 3. Subanalytic stratification example

The partitionSg which serves as the initialization step of Algorithm 2 can now be assumed
to be a subanalytic stratification compatible with Ag and the vector field •) (as given by
Theorem 4.5).

The following proposition illustrates some of the good intersection properties that analytic
curves have with subanalytic sets. The "finiteness" property indicated in the proposition
makes it possible to define transitions between adjacent strata in a natural way.

Proposition 4.7. Let I be an open interval, M a real analytic manifold and j: I M a real
analytic function. Let S be a stratification ofM by subanalytic sets If [a, b] C I then there
exists a finite partition {xi,... , Xn} of [a,b] with the property that for each i = 1,... , n —1
there exists a stratum Si € S such that 7((xi,Xi+i)) C Si.

Proof The family X = {7"^(5) n [a,6]: S e S} is a finite partition of [a,b] by subanalytic
sets. Each such set consists of a finite number of points and open intervals. Using all such
points and the endpoints of such intervals gives the desired partition. •

The following example shows the type of pathological situations that can be encountered if
the assumption on subangilyticity is even slightly relaxed.

Example 4.8. Consider the stratification of by the following five sets:

Si = {(0.0)}

X > 0 A y = isin

|(x,y): X<0 Ay=
|(x,S;):a;^0 Aj/> ismij (J {(0, j/): 2/> 0}
|(x,j;);ijiO A2/< xsini|(J{(0,3/): y<0}

52

53

54

S3
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Figure 4. Infinite crossings on a compact interval

Notice that Su S2 and Ss form the graph of the function f(x) = xsin ^ (/(O) = 0), while
S4 and Ss denote the region above and the below the graph, respectively. Each set is a C"^,
embedded submanifold of and they clearly satisfy the condition on the dimension of the
strata in the closure of other strata. Finally, consider the constant vector field F = ^. Then
the integral curve 7 of F through (0,0) is the rr-axis (parameterized by x itself). Therefore,
the image by 7 of any interval containing 0 intersects both S4 and S5 an infinite number of
times. This is reminiscent of the undesirable zeno property which allows an infinite number
of switches in finite time.

Since the algorithm considers one discrete state at a time, we will simplify the notation by
assuming that the discrete state q is fixed and drop it as a subscript. In particular we will
consider a vector field F and a stratification S of Xc by subanalytic sets as provided by
Theorem 4.5. By Xc/'^ we will mean the partition of Xc induced by 5. We will denote by
7x the integral curve of F which passes through x at time 0, i.e. with 7x(0) = x.
We now proceed to formalize the notionofa discretization of the continuous transitions relative
to a given partition 5. We do this mainly it simplifies the arguments in the proofof the main
theorem (Theorem 6.1). In addition it supports the intuitive picture we have that a trajectory
can be decomposed as a concatenation of pieces in each of the sets in S.

Definition 4.9 (Transition relative to 5: version 1). Given x,y € Xc we sayx 2/ iff there
is t > 0 such that 7x(<) = y and there exists S e S such that 7^(5) € 5 for 0 < s < t and at
least one of x, ?/ is in S.

To clarify this concept and to facilitate further discussions and proofs we introduce additional
definitions.

Definition 4.10. Given two subsets Su S2 of Xc, and a real analytic curve j : J Xc
where / is an open interval, we say that 7 leaves Si through S2 (or enters S2 from Si) if one
of the following exiting conditions is satisfied:

El: there exist a,b e I, a < b, such that 7(t) 6 Si for all f G(a, 6) and 7(6) € S2
E2: there exist a,b e I, a <b, such that 7(a) GSi and 7(t) G52 for all t G (a, b).
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When X € 5i we say that leaves 5i trough S2 if either El or E2 holds with a = 0.

The following proposition is a simple application of Proposition 4.7 and shows that Defini
tion 4.10 covers all possible "exiting" situations for strata of S.

Proposition 4.11. Let Si € S andy be as above. If there existsto,ti GI such thatj(to) €
and j(ti) ^ Si then there exists a stratum S2 Si) such that either El or E2 holds.

It is clear from Definition 4.10 that in case El, S2r\Si ^ 0. By the properties of stratifications,
we conclude S2 C 5i and dim Sn < dim5i. Therefore, t^ fiow exits the stratum though a
stratum of lower dimension. Similarly in case E2, C S2 and dim^i < dim52 and the fiow
enters S2 from a stratum of lower dimension. The following proposition further clarifies the
possible exit situations.

Definition 4.12. We call a stratum S E S tangential if the vector field F is tangent to S at
every point of S. We call a stratum transversal otherwise.

Proposition 4.13. Let Si, S2 be strata in S and 7 an integral curve of F which leaves Si
through S2. Then one (and only one) of the following holds:

1. condition El holds, Si is a tangential stratum and S2 is a transversal stratum.
2. condition E2 holds. Si is a transversal stratum and S2 is a tangential stratum.

We can now give the alternative definition of relative transitions.

Definition 4.14 (Transition relative to S: version 2). For each x G Xc let S{x) denote the
unique stratum in S which contains x. Given x,y e Xc we say x -> 2/ iff 71 leaves ^(x)
through S{y).

s s
It is clear from Proposition 4.7 that x 2/ iff there exist xi,... ,Xn such that x —>• Xi —>

... -> Xn y- We will denote the Pre operator associated to —> by Pres. The above remark
also implies that we can substitute Pres for Pre^ in Algorithm 2 in the sense that if the
algorithm terminates using Pres then it also terminates when using Prcr.

As the stratification Theorem 4.5 shows, issues of transversality of trajectories can be analyzed
within the context of subanalytic sets and analytic vector fields. However, the study of
continuous transitions requires that we investigate the global behavior of trajectories. In
general, trajectories ofanalyticvectorfields (and much less their fullflows) are not subanalytic.
Identifying vector fields whoseflows belong to a suitable class is the main obstacle in the study
of bisimulations of hybrid systems. Recent developments in logic model theory provide some
answers as well as suggest the proper context in which to carry on further studies.

5. Model Theory

Model theory studies structures through properties of their definable sets (see [14, 25] for gen
eral background). The basic structures of interest for this paper are that of the real numbers
as a complete ordered field, symbolized by (R, -h, —, x, <, 0,1), and its extensions. Every such
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structure L has an associated language C of formulas. The (first order) formulas over C are
the well-formed logical expressions obtained by using logical connectives, quantifiers 3 V, real
numbers as constants, the operations of additions and multiplication, and the relations < and
= (quantification is allowed over variables). All formulas will be interpreted over the real
numbers. A definable set in the language C (or of the structure L) is a subset of R" (for some
n) of the form {(oi,..., a„) € R" : ^(fli,..., a„)}, where ^(xi,..., Xn) is a formula in C and
rci,..., Xn axe free (i.e. not quantified) variables in A function / is definable if its graph is
a definable set.

While many of the concepts here apply to more general structures, in all that follows we
consider only structures over the real numbers.

Definition 5.1. The theory of C is o-minimal ("order minimal") if every definable subset of
R is a finite union of points and intervals (possibly unbounded).

Tarski [24] was interested in the extension ofthe theory ofthe real numbers bythe exponential
function, (R, x, <, 0,1, exp) (i.e., there is an additional symbol in the language for the
exponentid function). We denote this structure by Rexp- While such theory does not admit
elimination of quantifiers, it was shown in [27] that such theory is model complete, which in
turns implies that it is o-minimal. Anotherimportant extension is obtained as follows. Assume
/ is a real-analytic function in a neighborhood of the cube [—1,1]" C R". Let /: R" —R be
the function defined by

/(j.) =ifa: €(-1,1)"
10 otherwise

We call such functions restricted analytic functions. The structure Rexp,an =
(R,+, —, X, <,0, l,exp, {/}) is then an extension of Rexp where there is a symbol for each
restricted analytic function. One reason this structure is relevant for this paper is that all
relatively compact subanalytic sets are definable in Rexp,an • Moreover, if F is a linear vector
field in R" with real eigenvalues, then the trajectories of F are definable in Rexp,an- In [26], it
was shown that Rexp.an is also o-minimal. Finally, thereare a few consequences ofo-minimality
that are crucial for our results. We list them below imder one proposition. The proofs are
contained in the various references mentioned above.

Proposition 5.2. Assume L is an o-minimal structure. Then

1. Any definable set has a finite number of connected components, each of which is a defin
able set.

2. If A is definable, then so is its (topological) closure. Moreover, dimFr(A) < dimA,
where Fr(A) = A \ A is the frontier of A and the dimension of a set F C R" is the
maximum integer d for which there is an embedded manifold o/R" contained in B.

3. Given definable sets Ai,... ,Ak in R" (and for any integerp), there is a finite C strat
ification o/R" compatible with {Ai,... , Ajb}. In fact, for the structure Rcip,an the strata
are definable (real) analytic manifolds.

We are now ready to apply these results to prove that Algorithm 2 terminates for certain
classes of planar systems.
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6. Finiteness Results

In this section we use the model theoretic tools of Section 5 in order to obtain classes of
systems for which the Bisimulation Algorithm of Section 3 terminates.

Recall that given the family of sets as in Assumption 1, and the vector field F we first
obtain a stratification S compatible with A as given by Theorem 4.5. We will also assume
that S is compatible with a compact subanalytic set K whichcontains all sets in A. We define

= {5 € <S : 5 n AT ^ 0} (which is therefore finite).

Theorem 6.1. Let Xc = ^, F be the linear vector field Ax and assume that the eigenvalues
ofA are real. Then the bisimulation algorithm for hybrid systems (Algorithm 2), initialize
with Sk, terminates.

Proof. We will consider the case when the origin is the only equilibrium of F. (The other
cases require minor modifications.) We assume without loss of generality that {(0,0)} €

As indicated in Section 3 it suffices to study only the evolution of the continuous variables
and use Pres in Algorithm 2. To simplify notation we will simply refer to it as Pre. In
order to show that the bisimulation algorithm terminates we will construct a finite refinement
of Sk which is "invariant" imder the Pre operation and which is a refinement of Xc/ at
each step.

For each stratum S € Sk with (0,0) € 5 we consider the set

5oo = {a;€5:Vt>0 7x(<) ^-5}

As mentionedearlier, since the eigenvalues of A are real, the fiow of F, $(x, t) = 7i(t) =
is definable in IKexp,an (the entries in e^^ involve polynomials and real exponential functions).
Therefore, the set Soo is definable. For each stratum T of dimension one with T C S^T S,
we consider the set

r» = {x € r : 7s leaves T through Soo}

The set T* is also definable in Mexp,an and therefore can be written as a finite, disjoint union
of definable sets each of which is either a point or homeomorphic to an open interval. We
may assume, by refining the original if necessary that the finitely many points in the
decomposition of T* are already strata of Sk-

For each x € let Fs denote the trajectory of F passing through x, that is

Fs = {7xW •^ € ^}-

For each stratum 5 € 5 and x € 5, let Tx(S) denote the connected component of Fx H 5
which contains x. It is clear, from the definition of Sooi that if x € Soo then Tx{S) C Soo-
From this it follows that if x € T and 7® leaves T through S then jx either leaves T though
Soo or leaves T through S\Soo-

Let {pi},... ,{pz} be all the O-dimensional strata ofSk- Notice that for each i, j, if Fp. flFp^. ^
0, then Fp. = Fp^.. We will eliminate redundancies and assume that the are pairwise
disjoint. For each set S e Sk and each the sets S n and S\U(Fp, are definable in
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cp,an (Intuitively, these sets are partitions of 5 "in the direction of the flow of F"). By
o-minimality, we get that each such set has a flnite number of connected components. Let
B denote the (finite) collection of all such connected components. The collection B is then a
partition of K compatible with S (every set in <S is a union of sets in B).

Claim: At each step of the bisimulation algorithm, B is compatible with M/-^.

The claim shows that B is finer than all partitions obtained at each step. Since B is finite,
this proves that the algorithm terminates.

To prove the claim we first show that if B for i = 1,... , n then

(6.1) Pre{UBi) = UPre(Bt)

We will call a set B € B tangential if B is contained in a tangential stratum of <S (i.e. B is a
connected component of either STir, or S\urp. with S tangential). The set B will be called
transversal otherwise. Notice that if B is tangential and rc G B then rx{S{x)) C B.

Let X € Pre{Bi) for some i = 1,... , n and x 0 Bj. Suppose 7a;(t) G S{x) for 0 < t < 5 and
7x(5) GBi (i.e. exit condition El). In particular, 5(a;) is a tangential stratum. If 71(t) ^ UBj
for t < 5, then x GBre(UBt). If 7x(t) € UBj for somet < then for somej, Bj is tangential,
so rx(S{x)) C Bj and x GBre(UBi). If, instead, 7x(t) GBi for 0 <<< (5 (exit condition E2),
then clearly x G Pre(UBi).

Conversely, let x G Pre(UBi). If jx(t) € S(r) for 0 < t < $, jxi^) € UBj, let zq be such that
7x((5) G Bio. Then x G PreiBio) C UPre(Bi). If, instead, 7x(t) G UBi for 0 < t < (5, then
there is a > 0 and a Bi^ which contains 7x(t) for 0 < t < (5o (here we used o-minimality
again to conclude that Fx intersects each Bi in a finite disjoint union of points and arcs).
Therefore, x G Pre(Bio). This conclude the proof of (6.1).

By construction, B is compatible with Sk- At each step of the bisimulation algorithm we
need to show that if B = UjLjBi and B' = U^iBJ with Bi, BJ GB then B flPre{B') is again
a finite union of sets in B. Based on (6.1) it will suffice to show that for B,B' G B, either
B n Pre(B') = 0 or B fl Pre{B') = B.

We consider several cases. The set B is of one of the two forms: (a) a connected component
of5 n Pp., or (b) a connected component of5 \ UFp..

If S is 0-dimensional there is nothing to show because B contains a single point.

If 5 is 1-dimensional and B is of type (a), then either S is transversal and B consists of a
single point or S is tangential and so B = Fx(5) for any x GB. The first case is again clear.
In the second case, if there is x G B O Pre(B') then there exists <5 > 0 such that 7x(t) G S
foi 0 < t < S and 7x(<5) 6 B'. But then for all y G Fx(iS'), jy leaves S through B'. So
B = Fx(5) C Pre{B').

If B is 1-dimensional and B is of type (b) then we again consider separately the cases when
S is tangential and when S is transversal. In the first case we proceed as before. Assume
now, that S is transversal. Notice that if x G B n Pre(B') then Fx intersects both B and
B'. Therefore B' is also a connected component of S' \ UFp. (for some S'). By transversality,
7x leaves S intro S' under exit condition E2 and so S C Fron{S') (= S' \ S') and S' is
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2-(limeiisional. By continuity of the flow of F, there is an open neighborhood N of x sudi
that foi y e N n Bj 7y leaves S through S'. Moreover, since there are flnitely many we
may assume (by taking N smaller) that 7y leaves S through B'. We have then showed that
the set E = {x G B : jx leaves S through B'} is open in B. Suppose E ^ B. Then there is
y € B in the frontier of E. We can flnd a neighborhood W of y such that W n rp. = 0 for
all i. Since S' is open in and S is transversal, we can flnd a neighborhood Wq cW of y
and e > 0 such that for 2 G Wq n5 and 0 < t < e we have 7x(t) eWnS'. But then every
such z belongs to E. This contradicts the fact that 2/ is a frontier point. Therefore, E is also
closed in B and so it must equal B (since B is connected). We conclude in this case that
B = Br\Pre(B').

There is onlyone case remaining: S of dimension 2 (and hence tangential). If B is of type (a)
then rx(5') = B and we are done as before.

Assume then that B is a connected component of S \ UFp,., B' a connected component of
iS"\urpj, S' is transversal, and dimS' = 1. (The case with S' 0-dimensional is excluded since
in that case S' fl Fp^ ^ 0 for some i.)

Let re G B n Pre{B') and assume there is y € B\ Pre(B'). We want to show that this leads
to a contradiction. Let a : [0,1] —B be a curve connecting x to y. Let to be the smallest
t G[0,1] such that 7a(t)(5) ^ B' for some s > 0. If 7a(«o)(®) € 5 for all s > 0 then Q:(to) GBoo-
By the choice of to we in fact have Q;(to) 6 Fp^ for some po (see the initial subdivision caused
by Boo). But this contradicts the fact that B is of type (b). Assume then that 7o(to)(®) ^ ^
for some s > 0. For each t G[0,to] let s{t) be the smallest s such that Ja(t){s) ^ B. For each
t G[0, to] set p{t) = 7a(o(s(t)). There are two possibilities: either p(to) GS' or p(to) E S'\S.
In the first case choose a local chart (TV, <p) centered at p(to) so that in (p-coordinates we have
TV n B' = TV n B' = {(x, 0)} and TV n B = {(x, y) : p > 0} (therefore F points into the lower
half plane at every point of TV n B'. By continuity of the flow and transversality, we still have
that 7a(t) crosses TV n B' from the upper to the lower half plane for to <t < to-i- e. But this
contradicts the choice of to-

In the second case, we have p(to) € F^^ for some qq. But this contradicts the fact that B is of
type (b).

All this implies that every y ia B must also be in Pre{B'). That is, B = B n Pre{B'). This
concludes the proofs of the claim and the theorem. •

As the proof above suggests the termination of the algorithm depends on the fact that the
integral curves of the vector field intersects relatively compact subanalytic sets in at most
flnitely many points. This allows us to get the following generalization.

Theorem 6.2. If F is an analytic vector field in which admits an analytic family of first
integralsj then the bisimulation algorithm terminates. (Here, by an analytic family of first
integrals we mean a non-constant (real) analytic function /: R^ —)• R such that for each
trajectory ^ of F the function f{'y(t)) is constant.)
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Proof. Notice that each level curve of / is an analytic set and therefore its intersection with
any relatively compact definable set (in ]Rexp,an) is definable in IESexp,an- The proof then follows
the lines of the previous one but replacing the sets r,<, with the corresponding level set of /
(level sets of / are at most l-dimensional since / is not constant on any open set). •

Corollary 6.3. If F is a linear vector field in with purely imaginary eigenvalues and Sk
is as in the theorem, then the bisimulation algorithm terminates.

Proof. Unless A = 0, in which case the result is trivial, there exists an (invertible) matrix P
such that ||-Px|p is constant along trajectories of F. •

Corollary 6.4. If F is an analytic Hamiltonian vector field in and Sk is as above, then
the bisimulation algorithm terminates.

Proof. The Hamiltonian is constant along the trajectories. •

Remark 6.5. As is clear from the proofs above, the key is that all the objects involved (the
vector field F, the initial family of sets, the fiow of F) be definable in some o-minimal extension
of the field of real numbers. We presented above just two specific instances of such a situation
which can be easily characterized. A more recent o-minimal extension of the reals, by so called
Pfaffian functions, was found in [28].

The issue of decidability is a much harder and still open problem. It is not even known if
the theory of Rexp is decidable, although in [15] it was shown that it would be a consequence
of Schanuel's conjecture in number theory. The results we obtained in this paper suggest
how to find some restricted classes of vector fields for which the algorithm is constructive.
Indeed, if all the relevant sets are semialgebraic (for example if F is a Hamiltonian vector
field on the plane with a polynomial Hamiltonian and the initial conditions, guards, etc., are
semialgebraic), then they are definable in (R,-I-, —, x, <,0,1) for which decision methods are
known (see [9] for a related result).

7. Conclusions

In this paper, we presented an algorithm for on obtaining finite bisimulations of hybrid sys
tems. Termination was guaranteed for classes of vector fields with planar continuous dynamics.
This was achieved by combining the geometric framework of subanal3diic sets with model the
oretic concepts from mathematical logic. The mathematical tools used in this paper provide
the natural platform for the study of reachability properties of hybrid systems.

Issues for further study include the extension of the main result to R". The tools used in
the proof of the main theorem apply to higher dimensions. The key construction in the
two dimensional case depended on finitely many trajectories. The higher dimensional version
requires a detailed analysis of infinite collections of trajectories, organized perhaps inductively
according to the dimension of the strata involved.

Bisimulations of hybrid systems with more general discrete transitions can also be considered
in the framework of subanaljrtic stratifications and o-minimal structures. However,the reset
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maps must be in some sense compatible with the flows for the procedure to terminate. In
addition, for certain restricted classes of vector flelds the algorithm can be made constructive
(for example, for vector flelds on the plane with a polynomial Hamiltonian and all relevant
sets semialgebraic). Furthermore, if the bisimulation algorithm does not terminate (or is not
computable), it may be useful to consider system over-approximations [19], for which the
algorithm would terminate (or is computable).
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