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Abstract

The aim of this paper is to explore intrinsic geometric methods of recovering the three
dimensional motionof a moving camerafrom a sequence of images. Generic similarities between
the discrete approach and the differential approach are revealed through a parallel development
of their analogous motion estimation theories.

We begin with a brief review of the (discrete) essential matrix approach, showing how to
recover the 3D displacement from image correspondences. The space of normaJized essential
matrices is characterized geometrically: the unit tangent bundle of the rotation group is a
double covering of the space of normalized essential matrices. This characterization naturally
explains the geometry of the possible number of 3D displacements which can be obtained from
the essential matrix.

Second, a differential version oftheessential matrix constraint previously explored by [21, 22]
is introduced in a isomorphic section. We then present the precise characterization of the space
of differential essential matrices, which gives rise to a novel eigenvector-decomposition-based
3D velocity estimation algorithm from the optical flow measurements. This algorithm gives a
unique solution to the motion estimation problem and serves as a differential counterpart ofthe
SVD-based 3D displacement estimation algorithm from the discrete case.

Finally, simulationresultsare presented evaluating the performance ofour algorithmin terms
of bias and sensitivity of the estimates with respect to the noise in optical flow measurements.
Future work will apply these results to cooperate vision with other inertial navigation sensors
to recover 3D motion and orientation of mobile robots.

1 Introduction

The problem ofestimatingstructure and motion from image sequences has been studied extensively
by the computer vision community in the past decade. Various approaches differ in the types of
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assumptions they make about the projection model, the model of the environment, or the type
of algorithms they use for estimating the motion and/or structure. Most of the techniques try to
decouple the two problems by estimating the motion first, followed by the structure estimation. So
the two are usually viewed as separate problems. In spite of the fact that the robustness of existing
algorithmshas been studied quite extensively, it has been suggested that the fact that the structure
and motion estimation are decoupled typically hinders their performance [11]. Some algorithms
address the problem of motion and structure (shape) recovery simultaneously either in batch [18]
or recursive fashion [11].

The approaches to the motion estimation only, can be partitioned into the discrete and differ
ential methods depending on whether they use as an input set of point correspondences or image
velocities. Among the efforts to solve this problem, one of the more appealing approaches is the
essential matrix approach, proposed by Longuet-Higgins, Huang and Faugeras et al in 1980s [7].
It shows that the relative 3D displacement of a camera can be recovered from an intrinsic geo
metric constraint between two images of the same scene, the so-called Longuet-Higgins constraint
(also called the epipolar or essential constraint). Estimating 3D motion can therefore be decoupled
from estimation of the structure of the 3D scene. This endows the resulting motion estimation
algorithms with some advantageous features: they do not need to assume any a priori knowledge
of the scene; and are computationally simpler (comparing to most non-intrinsic motion estimation
algorithms), using mostly linear algebraic techniques. Tsai and Huang [20] then proved that, given
an essential matrix associated with the Longuet-Higgins constraint, there are only two possible 3D
displacements. The study of the essential matrix then led to a three-step SVD-based algorithm for
recovering the 3D displacement from noisy image correspondences, proposed in 1986 by Toscani
and Faugeras [19] and later summarized in Maybank [10].

Motivated by recent interests in dynamical motion estimation schemes (Soatto, Frezza and
Perona [15]) which usually require smoothness and regularity of the parameter space, the geometric
property of the essential matrix space is further explored: the unit tangent bundle of the rotation
group, i.e. T'i(50(3)), is a double covering of the space of normalized essential matrices.

However, the essential matrix approach based on the Longuet-Higgins constraint only recovers
discrete 3D displacement. The velocity information can only be approximately obtained from the
inverse of the exponential map, as Soatto et al did in [15]. In principle, the displacement estimation
algorithms obtained by using epipolar constraints work well when the displacement (especially the
translation) between the two images is relatively large. However, in real-time applications, even if
the velocity of the moving camera is not small, the relative displacement between two consecutive
images might become small due to a high sampling rate. In turn, the algorithms become singular
due to the small translation and the estimation results become less reliable.

A differential (or continuous) version of the 3D motion estimation problem is to recover the 3D
velocity of the camera from optical flow. This problem has also been explored by many researchers:
an algorithm was proposed in 1984 by Zhuang et al [22] with a simplified version given in 1986
[23]; and a first order algorithm was given by Waxman et al [8] in 1987. Most of the algorithms
start from the basic bilinear constraint relating optical flow to the linear and angular velocities
and solve for rotation and translation separately using either numerical optimization techniques
(Bruss and Horn [3]) or linear subspace methods (Heegerand Jepson [4, 5]). Kanatani [6] proposed
a linear algorithm reformulating Zhuang's approach in terms of essential parameters and twisted
flow. However, in these algorithms, the similarities between the discrete case and the differential
case are not fully revealed and exploited.



In this paper, we develop, in parallel to the discrete essential matrix approach, a differential
essential matrix approach for recovering 3D velocity from optical flow. Based on the differen
tial version of the Longuet-Higgins constraint, so called differential essential matrices are defined.
We then give a complete characterization of the space of these matrices and prove that there
exists exactly one 3D velocity corresponding to a given differential essential matrix. As a differ
ential counterpart of the three-step SVD-based 3D displacement estimation algorithm, a four-step
eigenvector-decomposition-based 3D velocity estimation algorithm is proposed.

One of the big advantages of the differential approach is easy to exploit the nonholonomic
constraints of the mobile base where the camera is mounted. In this paper, we show by example
that nonholonomic constraints will reduce the number of dimensions of the motion estimation
problem, hence reduce the number of minimum image measurements needed for a unique solution.
The motion estimation algorithm can thus be dramatically simplified. The differential approach
developed in this paper can also be generalized to uncalibrated camera [21, 2].

Finally, simulation results are presented evaluating the performance of our algorithm in terms
of bias and sensitivity of the estimates with respect to the noise in optical flow measurements.

2 Review of the Discrete Essential Matrix Approach

In this section, we study the problem of recovering 3D displacement of a movingcamera from image
correspondences (i.e. corresponding point features from two images of the same scene taken from
different viewpoints) using an intrinsic geometric constraint: the Longuet-Higgins constraint or the
epipolar constraint. This approach is usually referred to as the essential matrix approach, and
'"'"discrete is added whenever we need to separate it from the differential essential matrix approach
to be developed in section 3.

This section gives a geometric review of main results obtained in the study of essential matrices.
Although the review is by no means exhaustive, it provides a self closed introduction to the 3D
displacement estimation algorithm. Most of these results have already been obtained before by
different researchers, but the proofs provided here are more concise and rigorous. As a new result,
we show that the unit tangent bundle of the rotation group, i.e. 7i(50(3)), is a double covering
of the space of normalized essential matrices.

We first introduce some notations which will be frequently used in this paper. Given a vector
p = (pi,P2jP3)^ € we define p 6 so(3) (the space ofskew symmetric matrices in by:

/ 0 -P3 P2 \
P= I P3 0 -Pi 1. (1)

\ -P2 Pi 0 /

It then follows from the definition of cross-product of vectors that, for any two vectors p, g G

pxq = pq. (2)

The matrices of rotation by 6 radians about y-axis and 2:-axis are respectively denoted by:

cos(^) 0 sin(^) \ / cos(^) —sin(^) 0
Ry{0)=\ 0 10, Rz{0)=\ siniO) cos{e) 0 |. (3)

—sin(^) 0 cos(0) / \ 0 0 1



2.1 Longuet-Higgins Constraint

The camera motion is modeled as a rigid body motion in The displacement of the camera
belongs to the special Euclidean group SE{3):

SE{S) = {(p, R):peR^Re 50(3)} (4)

where 50(3) is the space of 3 x 3 rotation matrices (unitary matrices with determinant +1) on R.
An element g = (p,R) in this group is used to represent the 3D translation and orientation (the
displacement) of a coordinateframe Fc attached to the camera relative to an inertial frame which is
chosen here as the initial position of the camera frame Fo (see Figure 1). By an abuse of notation,

Fo >

X g = (p, R)

Figure 1: Coordinate frames for specifying rigid body motion of a camera.

the element g = (p,R) serves as both a specification of the configuration of the camera and as a
transformation taking the coordinates of a point from Fc to Fq. . More precisely, let qoiQc € R^
be the coordinates of a point g relative to frames Fo and Fc, respectively. Then the coordinate
transformation between go and gc is given by:

go = Rgc + p. (5)

Assume that the camera frame is chosen such that the optical center of the camera, denoted
by o, is the same as the origin of the frame. Then the image of a point g in the scene is the point
where the ray < o^g > intersects the imagingsurface. A sphere or a plane is usually used to model
the imaging surface. The model of image formation is then referred as spherical projection and
perspective projection, respectively.

In this paper, we use bold letters to denote quantities associated with the image. The image
of a point g € R^ in the scene is then denoted by q € R^. For the spherical projection, we simply
choose the imaging surface to be the unit sphere:

5'={?€K3| W = l}

where the norm || • |1 always means 2-norm unless otherwise stated. Then the spherical projection
is defined by the map from R^ to 5^:

TT,

g
9 ^ <1=TT^-



For the perspective projection, we choose the imaging surface to be the plane of unit distance
away from the optical center. The perspective projection onto this plane is then defined by the
map TTp from to the projective plane

7r.
.3

P •

9= (91,92,93)^
93 93

The essential approach taken in this paper only exploits the intrinsic geometric relations which
are preserved by both projection models. Thus, theoremsand algorithmsto be developed are always
true for both cases, unless otherwise stated. By an abuse of notation, we will simply denote both
TTa and TTp by the same letter n. The image ofthe point q taken by the camera at the initial position
then is qo = 7r(go)j and the image of the same point taken at the current position is qc= T^(gc)' It
was first obtained by Longuet-Higgins [7] in 1981 that the two corresponding image points qo and
qc have to satisfy a geometric constraint, the so-called Longuet-Higgins constraint:

Theorem 1 (Longuet-Higgins Constraint)
Let the 3D displacement of the frame Fc relative to the frame Fq he given by the rigid body motion
g = (p,R) € SE{S), and let q^ qc be the images of the same point q taken by the camera at frames
Fo and Fc, respectively, then qo, qc satisfy:

q^J7^pqo = 0. (6)

Proof: From (5), the coordinates of q relative to frames Fo and Fc are related by:

qc = R'^{go-p)' (7)

Since qo,qc are the images of qo and q^ respectively, there existsscalars Ao, Ac € R (in the spherical
projection case, Ao = ||9o|| and Ac = \\qc\h perspective projection case, Ao = 9o3 and Ac = qcs)
such that:

qo — Qc —Acqc* (®)

Take the inner product of the vectors in (7) with R^{p x qo):

qjR^{p Xqo) = {qo - p)^FF^(p Xqo). (9)

Since p^(px qo) = 0 and qj{px qo) = AoqJ(p x qo) = 0, the right hand side is zero. We then have:

Xcq^R'̂ pqo = 0 (10)

If Ac 0, we get q^F^pqo = 0. •

Remark 1 The Longuet-Higginsconstraint (6) is also known as epipolar constraint in the computer
vision literature. For the special case when R = I, i.e. there is only translation, the epipolar
constraint simply represents the coplanar relations held by the three vectors: p,qo and qc.



2.2 Characterization of the Essential Matrix

In Theorem 1 wesee that the matrix which has the form E = with € 50(3) and p € so(3)
plays an important role. Such a matrix is called an essential matrix^ and the set of all essential
matrices is called the essential space, denoted by €:

e = {RS\Re 50(3),5 € so(3)} C (H)

The following theorem, due to Huang and Faugeras, gives a characterization of the essential
space.

Theorem 2 (Characterization of the Essential Matrix)
A non-zero matrix E is an essential matrix if and only if the singular value decomposition (SVD)
of E: E = satisfies:

S = dzap{A,A,0} (12)

for some A € E+.

Proof: For the necessity, suppose E = RS with R G 50(3) and 5 6 so(3). Then 5 = p for
some p G Thus E^E = -5^ = -p^ has three eigenvalues {||p||̂ , ||p|p,0}. For the sufficiency,
knowing E = t/EV^, one can actually construct a rotation matrix R and a skew matrix5 in terms
of U,E and V such that E = RS (see formula (23) in the following). •

We will study the properties of the essential matrix and solve the problem of recovering the 3D
displacement g = (p, R) from a given essential matrix E. Since the Longuet-Higgins constraint (6)
is a homogeneous constraint, the essential matrix E can only be recovered up to a linear scale. As
long as the translation is not zero, it is customary to set the norm of the translation vector p to
be of unit length. Given the non-zero translation vector p G ^ define the space of normalized
essential matrices, the normalized essential space to be:

= {fi51 i?6 S0(3),S = p/IIpII 6 so(3)} C (13)

It follows that the singular values of a normalized essential matrix are {1,1,0}.

Now the 3D displacement estimation problem is reduced to: given a normalized essential matrix
E, find allpossible solutions g = (p, R) with p ^ and R G50(3) such that R^p = E.

2.2.1 Uniqueness of 3D Displacement Recovery from the Essential Matrix

The answer to the question: "how many solutions g exist for a given essential matrix E?" relies
on a special property of skew matrices, which we will develop now.

It will be convenient to represent a skew matrix as the product of a unit skew matrix and a real
(non-negative) scalar. This unit skew matrix is called the associated unit skew matrix for a given

^The case that p = 0 needs to be treated separately. This is because, p = 0 is a singular point in the space f as a
subset of K®'*® (due to this, S is not a regular manifold embedded in



skew matrix. Given a unit skew matrix p € 5o(3) with ||p|| = 1, and a real number 6 € R, we write
the exponential of pB as:

=I-{-Bp +̂ p^ + +•••. (14)
It can be shown that the exponential map transforms the unit skew matrix p to a rotation matrix,
i.e. € 50(3), which represents the rotation about the axisp by ^ radians. Actually, is given
by the Rodrigues' formula:

= /+ psin(0)+p^(l - cos(^)). (15)

For details, see Murray, Li and Sastry [12].

Lemma 1 Given any non-zero skew matrix S € 5o(3), if, for a rotation matrix R 6 50(3), RS is
also a skew matrix, then R = I or e^"" where p is the unit skew matrix associated with S. Further,
eP"5 = -5.

Proof: Without loss of generality, we assume 5 is a unit skew matrix. Thus, there exists a unit
vector p € such that p = 5. Since RS is also a skew matrix, {RS)^ = —RS. This equation
gives:

RpR = p. (16)

Since i? is a rotation matrix, there exists w € ||a;|| = 1 and ^ GR such that R = e^^. Then,
(16) is rewritten as:

Applying this equation to w, we get:

e^^pe'̂ ^uj = paj. (18)

Since = u, we obtain:

e'̂ ^pu) = pw. (19)

Since u; is the only eigenvector associated to the eigenvalue 1 of the matrix and ^ is orthogonal
to (jj, puj has to be zero. Thus, u is equal to p or —p. R then has the form which commutes
with p. Thus from (16), we get:

e^P^p = p. (20)

According to Rodrigues' formula, we have:

= / + psin(2^) +p2(l - cos(2^)) (21)

(20) yields:

p^sin(2^) +p^(l —cos(2^)) = 0. (22)

Since p^ and p^ are linear independent [12], we have sin(2^) = 1 - cos(2^) = 0. That is, Bis equal
to 2A:7r or 2/:7r + 7r, k eZ. Therefore, R is equal to I or eP'̂ . It is direct from the geometric meaning
of e^p that eP'̂ p = -p, thus e^^S = -5. •



Theorem 3 (Uniqueness of the Displacement Recovery from the Essential Matrix)
There exist exactly two 3D displacements g = (p,R) £ SE{Z) corresponding to a non-zero essential
matrix E ^ S.

Proof: Since any non-zero essential matrix is a product of a normalized essential matrix and a
real scalar, we only need to prove the result for a normalized essential matrix.

For a given normalized essential matrix E ^ the existence of one solution is direct from the
definition of the essential matrix. We now prove there are exactly two such displacements using
Lemma 1. Suppose (pi,i2i) € 5E(3) and (p2^R2) € SE(Z) are both solutions for the equation
It^p = E. Then we have Rfpi = ^2^2- It yields R2R1P1 = P2' Since pi,P2 a-re unit skew
matrices and R2R1 is a rotation matrix, according to Lemma 1, we have either {p2,R2) = (Pi> -Ri)
or (p2,-R2) = •

2.2.2 3D Displacement Recovery from the Essential Matrix

Although Theorem 3 claims that there are two displacements corresponding to an essential matrix,
it does not give an explicit construction for the solutions. A construction based on the SVD of the
essential matrix is given in Soatto et al [15]. However, since the SVD of an essential matrix is not
unique and the unitary matrices U,V associated with the SVD are in 0(3) not necessarily in the
rotation group 50(3), the proof given in [15] is not complete. In this section, we show that such
construction actually depends on a stronger characterization of the essential matrix than the one
given by Huang & Faugeras (Theorem 2). Based on this characterization, we give the proof for an
explicit construction of the solutions.

For the singular value decomposition (SVD) of a matrix E — the matrices U and V are
unitary matrices, i.e. U, V € 0(3). The following lemma gives a slightly stronger characterization
of the SVD of essential matrices.

In both the next lemma and theorem we will use the fact that, according to the definition of
the matrix Rz{0)^ for the matrix S = diag{X, A,0}, ilz(±|)S are skew matrices.

Lemma 2 Consider the SVD of a non-zero essential matrix E = UT,V^. IfV^ 50(3), then so
is U G 50(3), and vice versa.

Proof: Since E is an essential matrix, there exist R 6 50(3) and 5 6 so(3) such that RS =
E. Then RS = Multiplying both sides by VR2(+|)t/^, we get VRz{+^)U'̂ RS =
Vi2^(+f)SV'̂ . Since both 5 and V/2z(+|)EV^ are skew matrices, according to Lemma 1,
VRz(-\-^)U^R = / or VRz(+^)U^R = In both cases, taking the determinants of both sides
of the equations we get det{V)det{U^) = -fl. Thus, U G50(3) if and only if V G50(3). •

Starting from any SVD of an essential matrix E = UEV^, if det(V) = -1, then write E =
(—C/)E(—V)^. Since —V G 50(3), so is —U G 50(3) according this lemma. Thus this lemma
guarantees that the essential matrix E always has a SVD E = UEV^ such that both unitary
matrices U and V are in 50(3). The lemma is important because it validates the construction of
the rotation matrix in the following theorem.

Theorem 4 (Displacement Recovery from the Essential Matrix)
Given the singular value decomposition of a non-zero essential matrix E: E —UEV^ with both
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U,V e 50(3), then the two 3D displacements {p,R) corresponding to E are given by:

{rIp2) = (23)

Proof: Lemma 2 guarantees so defined Ri,R2 are in 50(3). Since i?jj(±f)E are skew matrices,
so are pi,p2- It is then direct to check that Rjpi = t = 1,2. •

Although the matrices U and V are not unique in the SVD ofan essential matrix (for example,
they may differ by an arbitrary Rz{^))^ Theorem 3 guarantees that these variations give the same
pair of solutions as given in (23).

2.2.3 Characterization of the Normalized Essential Space

In this section, we study the geometric properties of the normalized essential space. Readers who
are not familiar with differential geometry may simply skip this section, without loss of continuity.

It is known from differential geometry that the set of tangent vectors (the tangent space) of the
rotation group 50(3) at the identity element e, is theset ofskew matrices so(3) (see Boothby [1]),
that is:

re(50(3)) = so(3). (24)

S:nce 50(3) is a Lie group, the tangent space at any point R G50(3) is given by the push-forward
map:

Tr{SO{Z)) = R,(so{Z)) = {R5|5 € 5o(3)}. (25)

It is direct to check that the push-forward map is an isomorphism between so(3) and r/?(50(3)).
Thus, the tangent bundle (for a reference on fiber bundle theory see Steenrod [16]) of the rotation
group 50(3), defined to be:

T(50(3))= U Tfl(S0(3)) (26)
ft€50(3)

is equivalent to the space 50(3) x so(3) (Lie groups have trivial tangent bundles), which, in turn,
can be used to represent the configuration space of a rigid body motion (the base point R € 50(3)
represents for the rotation and the tangent vector p € so(3) for the translation). We are interested
in the case when the translation vector of the rigid body motion is of unit length. Define the unit
tangent bundle of the rotation group 50(3) to be:

T,(S0(3))= U {flS|5 =p,<p,p>=l}. (27)
ReS0(3)

where < •,• > is any invariant Riemannian metric on 50(3).^

We then have:

^Since 50(3) is a compact Lie group, there exists ein invariant metric (there gire infinitely many of such invarieint
metrics but they are essentially the same — only differ by constant sceilars). Using any such metric, the \init tangent
bimdle is well-defined.



Theorem 5 (Characterization of the Normalized Essential Space)
The unit tangent bundle of the rotation group 50(3), i.e. ri(50(3)), is a double covering of the
normalized essential space Si, or equivalently speaking, Si = Ti(50(3))/Z2.

Proof: Consider the projection from Ti(50(3)) to Si:

h:Ti(SO{Z)) ^ Si

{R,RS)eTi(S0{3)) RSeSi. (28)

According to the proof of Theorem 3:

= {(R,RS), (Re-^'^Re-^'ie^'S))}
= {(,R,RS), (Re~ '̂,RS)}- (29)

Thus, ri(50(3)) is a double covering of Si with the covering map h. m

This theorem gives a global characterization for the local coordinates assigned by Soatto et al in
[15] to the essential space. Since ri(50(3)) is a 5-dimensional connected compact manifold, we
thus also have:

Corollary 1 (Regularity of the Normalized Essential Space)
The normalized essential space Si is a 5-dimensional connected compact differentiable manifold
embedded in

Proof: The compactness is trivial. That Si is embedded in follows from the fact that, if
F : N M is a one-to-one immersion and N is compact, then F is an embedding (see Boothby

[1])-

This property validates potential motion estimation algorithms which might require certain smooth
ness or regularity on the space of the parameters to be estimated.

2.3 Algorithm

In this section, we introduce the three-step SVD-based 3D displacement estimation algorithm pro
posed by Toscani and Faugeras [19]. For a detailed proof of this algorithm see Maybank [10].

Let E = R^p € be the essential matrix associated with the Longuet-Higgins constraint
(6). The 3x3 matrix E has the form: (ei 62 63 \

€4 €5 60 j . (30)
e? €8 69 /

Define the essential vector e 6 R® to be:

e = (61,62,63, 64,65,60,67,68,69)^. (31)

Define a vector a 6 R® associated to each pairofimage correspondence = (xq, po, Zq)^ € R^, qc =
(®c» 2/c, Zc)^ € R^ to be:

a = (XcXo, XcVo, XcZo, VcXo, VcVo, VcZo, ZcXo, ZcPo, z^Zof. (32)
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We thus have

q^Eqo = a'̂ e. (33)

Then the Longuet-Higgins constraint can be rewritten as a^e = 0. Given a set of (possibly noisy)
image correspondences: qo,qc, « = 1,... ,m between two images, vectors a*, f = 1,... ,m are
then defined for each pair (qj„qj.) using (32). Define the matrix A 6 associated with these
measurements to be:

yl = (ai,a2,...,a-)^. (34)

If there is no noise on these measurements, the essential vector e has to satisfy:

Ae = 0. (35)

From this equation we see that, in order to have a unique solution for e, the rank of the matrix A
has to be eight. Thus, at least eight pairs of image correspondences are needed for this algorithm
to recover the 3D displacement, i.e. m > 8.

However, since the measurements are usually noisy, there might not exist any solution of e for
Ae = 0. In this case, we use the one which minimizes the error function l|>le|p.

It is straight forward to know that (Theorem 6.1 of Maybank [10]):

Lemma Z If a matrix A £ has the singular value decomposition A = UHV'̂ and c„(F) is
the column vector ofV (the singular vector associated to the smallest singular value ffn)) then
e = Cn(V) minimizes ||Ae|p subject to the condition ||e|| = 1.

The matrix E which is reconstructed from such optimal vector e is not yet guaranteed to be in
the essential space E yet. Let || • ||/ stand for the Frobenius norm. The following theorem gives a
natural projection onto the essential space.

Theorem 6 (Projection to the Essential Space)
If the SVD of a matrix F £ R^^^ is given by F = Udiag{ai,a2,(Tz}V^ with cri > <72 > <^3}
then the essential matrix E £ E which minimizes the Frobenius distance \\E —F\(j is given by
E = Udiag{X, A, 0}V^ where A= (<Ji + o^2)/2.

For the proof of this theorem see Maybank [10].

We are finally ready to give the algorithm.

Three-Step SVD-Based 3D Displacement Estimation Algorithm:

1. Estimate Essential Vector:

For a given set of image correspondences: (q'o, qj.), i = 1,... , m (m > 8), find the vector e
which minimizes the error function:

V(e) = \\Aef (36)

subject to the condition ||e|| = 1, where A is the matrix associated with image measurements;

11



2. Singular Value Decomposition:
Recover matrix E from e and find the singular value decomposition of the matrix E:

E = Udiag{ai^ (72, (J3]V^ (37)

where cri > <72 > <73;

3. Recover Displacement from the Essential Matrix:
Define the diagonal matrix E to be:

S = diasf{l,1,0}. (38)

Then the 3D displacement (p, R) is given by:

p=Vfiz(±|)SV'". (39)

Note in step 2, the matrix E reconstructed directly from e has Frobenius norm 1. We know
normalized essential matrices have Frobenius norm \/2, instead of 1. However, this causes no
trouble for the above algorithm because essential matrices differed by a pure scalar have the same
projection on the normalized essential space £1.

Remark 2 Note that if E £ Si satisfies the Longuet-Higgins constraint, so does —E € Si. This
introduces the so-called "twisted-pair" ambiguity (Maybank [10]). Thus, totally, we get four am
biguous solutions of the 3D displacement for a given set of image correspondences. However, after
imposing the so-called "positive depth constraint", that all the points lie in front of the camera, the
ambiguities will be resolved and there is only one best solution.

Note the essential vector e is actually parameterized by p and R, i.e. we should write e(p, R). In
general, the above algorithm, unfortunately, does not necessarily give the optimal solution {p*,R*)
which minimizes the originally picked error function ||Ae(p, R)|p among all possible pairs (p, i2),
i.e. on Si. This problem is indeed an optimization problem on Si, which is not a Euclidean
space. Taking the Riemannian metric induced from ri(50(3)) for Si, it is then converted to an
optimization problem on a Riemannian manifold, a topic which has been studied by Smith, Brockett
et al [14].

A dynamic version of this algorithm which recursively estimates the essential vector e using
implicit extended Kalman filter, the socalled essential filter, has been proposed by Soatto [15]. A
big advantage of the dynamic approach is that the algorithm is not as sensitive to noise since it
uses a sequence of images instead of only two images to recover the 3D motion.

3 Differential Essential Matrix Approach

The differential case is the infinitesimal version of the discrete case. To reveal the generic similarities
between these two cases, we now develop the differential essential matrix approach for estimating
3D velocity from optical flow in a parallel way as we did in last section for the discrete essential
matrix approach for estimating 3D displacement from image correspondences.
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After deriving the differentia] version of the Longuet-Higgins constraint, the concept of differ
ential essential matrix is defined; we then give a thorough characterization for such matrices and
show that there exists exactly one3D velocity corresponding to a non-zero differential essential ma
trix; as a differential version of the three-step SVD-based 3D displacement estimation algorithm,
a four-step eigenvector-decomposition-based 3D velocity estimation algorithm is proposed; at last,
we discuss the reasons why the zero-translation case makes all essential constraint based motion
estimation algorithms fail to work and suggest possible ways to overcome this trouble.

3.1 Differential Longuet-Higgins Constraint

Suppose the motion of the camera is described by a smooth curve g(t) = (p(f),/?(f)) € SE{d).
According to (5), for a point q attached to the inertial frame Fo, its coordinates in the inertial
frame and the moving camera frame satisfy:

qo = R{t)qc{t)^p{t)' (40)

Differentiating this equation yields:

qc = -R^Rqc - R^p. (41)

Since -R^R € so(3) and (see Murray et al [12]), we may define uj = (wi,u?2ii*'3)^ 6
and v = (ui, t;2,ua)^ € R^ to be:

a? = -R^R, V= -R'^p. (42)

The interpretation of these velocities is: —u is the angular velocity of the camera frame Fc relative
to the inertial frame Fi and —v is the velocity of the origin of the camera frame Fc relative to the
inertial frame Fi. Using the new notation, we get:

9c = + u. (43)

From now on, for convenience we will drop the subscript c from qc. The notation q then serves
both as a point fixed in the frame and its coordinates in the current camera frame Fc. The image
of the point q taken by the camera is given by the spherical projection: q = Tr{q). Denote the
velocity of the image point q, the so called optical flow, by u, u = q 6 R^.

Theorem 7 (Differential Longuet-Higgins Constraint)
Consider a camera moving with linear velocity v and angular velocity lj with respect to the inertial
frame. Then the optical flow u at an image point q satisfies:

u^vq -f q^tDOq = 0 (44)

or in an equivalent form:

(u^,q^) ^ ĵq=0 (45)
where s is a symmetric matrix defined to be s = \{Cjv -f Ow) € R^^^.
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Proof; From the definition of the map tt's, there exists a real scalar function X(t) (||9(0II or
93 (t), depending on the projection type) such that:

9 = Aq. (46)

Take the inner product of the vectors in (43) with (u x q):

g^{v Xq) = {Cjq + t;)^(u Xq) = q^u^vq. (47)

Since 9 = Aq + Aq and q^(u x q) = 0, from (47) we then have:

Aq'̂ Oq - Aq^w'̂ uq = 0. (48)

When A^ 0, we obtain a diflferential version of the Longuet-Higgins constraint:

u^Oq + q^wuq = 0 (49)

Due to the following Lemma 4, for any skew symmetric matrix A € q^i4q = 0. Since
^{uv—vu) is askew symmetric matrix, q^^{u;v—vu)q = q^sq—q^tDOq = 0. Thus, q^sq = q^wOq.
We then have:

u^uq+ q^sq = 0. (50)

The proof indicates that there is some redundancy in the expression of the differential Longuet-
Higgins constraint (44). The following lemma shows where this redundancy comes from.

Lemma 4 Consider matrices Mi,M2 € q^Miq = q^M2q for all q € R^ and only if
Ml —M2 is a skew matrix, i.e. Mi —M2 € so(3).

Proof: The sufficiency of Mi —M2 being a skew matrix is trivial. We only need to prove the
necessity. Given q^Miq = q^M2q for all q 6 R^, we have, for all q € R^:

Let M = Ml - M2. Then:

Suppose:

q^(Mi - M2)q = 0. (51)

q^Mq = 0. (52)

mi m2 ma

M = I m4 ms me | . (53)
my ms mg

Substituting q = (1,0,0)^, (0,1,0)^ and (0,0,1)^ into (52) respectively, we obtain mi = ms =
mg — 0. Then:

0 m2 ma

M = I m4 0 me I . (54)
my ms 0
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Now substituting q=(l,l,0)^, (1,0,1)^ and (0,1,1)^ into (52) respectively, we obtain m2 = -m^,
m3 = -my and me = -ms- Thus, M = Mi - M2 is a skew matrix. •

Let us define an equivalence relation on the space the space of 3 x 3 matrices over E: for
X, y € E^^^, X y if and only if x —y € so(3). Denote by [x] = {y € E '̂̂ ^ | y the equivalence
class of X, and denote by [X] the set quotient space E^^^/ can be naturally
identified with the space ofall 3x3 symmetric matrices. Especially, we have s = G[tl'O],
which is the reason why we choose it in the equivalent form (45).

Using this notation. Theorem 7 can then be re-expressed in the following way:

Corollary 2 Consider a camera undergoing a smooth rigid body motion with linear velocity v and
angular velocity u. Then the optical flow u of a image point q satisfies:

[iO] )*• ="•
Because of this redundancy, each equivalence class [wu] can only be recovered up to its symmetric
component s = ^(wO vu) G[tt'O].

3.2 Characterization of the Differential Essential Matrix

We define the space of 6 x 3 matrices given by:

^ iW(wO-t-Ow) ) (56)

to be the differential essential space. A matrix in this space is called a differential essential matrix.
Note that the differential Longuet-Higgins constraint (45) is homogeneous on the linear velocity v.
Thus Vmay be recovered only up to a constant scale. Consequently, in motion recovery, we will
concern ourselves with matrices belonging to normalized differential essential space:

{( l(iiO+Cii) ) (57)

The skew-symmetric part of a differential essential matrix simply corresponds to the velocity
V. The characterization of the (normalized) essential matrix only focuses on the characterization
of the symmetric part of the matrix: s = |(tl>t)-}- utD). We call the space of ail the matrices ofsuch
form the special symmetric space:

<S = <i(w{)-|- Ou;) a; GE^ t; G5^ K (^8)

A matrix in this space is called a special symmetric matrix. The motion estimation problem is now
reduced to the one of recovering the velocity (u?, u) with a; G E^ and u G 5^ from a given special
symmetric matrix s.

The characterization of special symmetric matrices depends on a characterization of matrices
in the form: ui) GE^^^, which is given in the following lemma. This lemma will also be used in the
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next section for showing the uniqueness of the velocity recovery from special symmetric matrices.
Like the (discrete) essential matrices, matrices with the form uv are characterized by their singular
value decomposition (SVD): moreover, the unitary matrices U and V are related.

Lemma 5 A matrix Q € has the form Q = Cjv with lj € v ^ if and only if Q has the
form:

Q = -VRY(B)diag{X, Xcos{0), 0}V^ (59)

for some rotation matrix V € 50(3). Further, X= ||u;|| and cos(^) = u^v/X.

Proof: We first prove the necessity. The proof follows from the geometric meaning of u)v: for
any vector q € R^,

Lovq = a? X (u Xg). (60)

Let 6 € 5^ be the unit vector perpendicular to both oj and v: b = (If ^ x = 0? ^ is
not uniquely defined. In this case, pick any b orthogonal to v and u;,tnen the rest of the proof
still holds). Then w = Xexp{b$)v (according this definition, 9 is the angle between u and u, and
0 < 0 < tt). It is direct to check that if the matrix V is defined to be:

V= (e^2u, 6, u) (61)

Q has the given form (59).

We now prove the sufficiency. Given a matrix Q which can be decomposed in the form (59),
define the unitary matrix U = -VRy{9) 6 0(3). Let the two skew matrices Cj and v given by the
formulae:

0=Vftz(±|)i:iV^ (62)
where Ea = dia^{A, A,0} and Ei = diag{\., 1,0}. Then:

M = URz(±\)T.xV'̂ VRz(±^)Y^iV'̂

= Udiag{X,Xcos{6),0}V^
= g. (63)

Since lj and v have to be, respectively, the left and the right zero eigenvectors of Q, the reconstruc
tion given in (62) is unique. •

The following theorem gives a characterization of the special symmetric matrix.

Theorem 8 (Characterization of the Special Symmetric Matrix)
A matrix s ^ is a special symmetric matrix if and only if s can be diagonalized as s = VHV^
with V G 50(3) and:

E = diag{ai, 02,0-3} (64)

with oi > 0,0*3 < 0 and era = 0"i + 0-3.
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Proof: We first prove the necessity. Suppose s is a special symmetric matrix, there exist
(jj € t; 6 such that s = \(C)v + t)w). Since s isa symmetric matrix, it is diagonalizable, all its
eigenvalues are real and all the eigenvectors are orthogonal to each other. It then suffices to check
its eigenvalues satisfy the given conditions.

Let the unit vector 6 and the rotation matrix V be the same as in the proof of Lemma 5, so are
B and 7. Then according to the lemma

ujt) = -VRY(6)diag{X, Xcos(B), 0]V^. (65)

Since (wO)^ = t)a>, it yields

s= +vCX) =iy (—/2y(0)dia^{A, Acos(^), 0} —dia^{A, Acos(^),O}i?y(0)) (66)

Define the matrix D(A, 6) € to be

D(X^6) = -i?y(^)dio(/{A, Acos(^),0} - A, Acos(0),0}i2y(^)
/ -2cos(^) 0 sin(^) \

= AI 0 -2cos(0) 0 j . (67)
\ sin(^) 0 0 /

Directly calculating its eigenvalues and eigenvectors, we obtain that

D(A, e) =Ry(j- ^) diag {A(l -cos(fl)), -2Acos(e), A(-l -cos(e))} (f "|) •
Thus s = ^VD{X,B)V^ has eigenvalues;

|iA(l-cos(e)), -Acos(e), ^A(-l -cos(e))|,

(68)

(69)

which satisfy the given conditions.

We now prove the sufficiency. Given s = Vidiaff{cri, <T2, 0-3}^]^ with ctj > 0,cr3 < 0 and
(72 = <71 + (73 and € 50(3), these three eigenvalues uniquely determine A,0 G E such that the
a,'s have the form given in (69):

J A = ci —0*3, A> 0
I 0 = arccos(—cr2/A), ^€[0, tt]

Define a matrix V € 50(3) to be V = yii?y (f —f). Then s = ^^^(A,^)y^. According to
Lemma 5, there exist vectors u 6 5^ and a; € E^ such that

Qv = -VRY{e)diag{X,Xcos{9),Q]V'̂ . (70)

Therefore, |(wt)+ Ow) = ^VD{X,B)V^ = s. •

Figure 2 gives a geometric interpretation of the three eigenvectors of the special symmetric
matrix s for the case when both cj, u € 5^.
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Figure 2: Eigenvectors ui, U2,6 ofa special symmetric matrix: \{(^v + vlo)

3.2.1 Uniqueness of 3D Velocity Recovery from the Special Symmetric Matrix

According to the proof of Theorem 8, if we already know the eigenvector decomposition of a
special symmetric matrix s, we certainly can find some velocity (a;, u) such that s = 5(0)0 + vu).
This section discusses the uniqueness of such reconstruction, i.e. how many solutions exist for
s = 5(0)0 + Oo;).

Theorem 9 (Uniqueness of the Velocity Recovery from the Special Symmetric Matrix)
There exist exactly four 3D velocities (o;, u) with o; € and u € 5^ corresponding to a non-zero
special symmetric matrix s € «S.

Proof; Suppose (o;i, ui) and (o;2, V2) are both solutions for s —5(400 + OcO), we have:

OicOi + 4O1O1 = O2CO2 + 4O2O2.

From Lemma 5, we may write:

(OiOi = -Vii2y(^i)dia^{Ai, Ai cos(^i),0}Vi^
4O2O2 = -V2-Ry(^2)dmp{A2, A2COs(^2)5 0}V2^.

Let W = V^^V2 € 50(3), then from (71):

D{Xuei) = WD{X2,e2W^-
Since both sides of (73) have the same eigenvalues, according to (68), we have:

Ai = A2, 02 = Oi.

(71)

(72)

(73)

(74)

We then can denote both 0i and $2 by 9. It is direct to check that the only possible rotation matrix
W which satisfies (73) is given by /sxs or:

—cos(^) 0 sin(0) \ / cos(^) 0 -sin(^) \
0 -1 0 or 0 -1 0 . (75)

sin(0) 0 cos(^) / \ -sin(0) 0 -cos(^) /

From the geometric meaning of Vi and V2> 21II the cases give either u)ivi = 4O2O2 or tOiOi = O24O2.
Thus, according to the proof ofLemma 5, if (cu, u) isone solution andljv = Udiag{X^ Xcos{0)^Q}V^,
then all the solutions are given by:

40 = URz{±:^)^xU^. v=VRz{±-)i:iV^;
(76)

where Ea = diafir{A, A,0} and Ei = diag{\.^ 1,0}.
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3.2.2 3D Velocity Recovery from Differential Essential Matrix

Given a non-zero differential essential matrix E G its special symmetric part gives four possible
solutions for the 3D velocity (u;,u). However, only one of them has the same linear velocity v as
the skew-symmetric part of E does. We thus have:

Theorem 10 (Uniqueness of the Velocity Recovery from Differential Essential Matrix)
There exists only one 3D velocity (t«^, u) with a; € and u € corresponding to a non-zero
differential essential matrix E ^ E'.

In the discrete case, there are two 3D displacements corresponding to an essential matrix.
However, the velocity corresponding to a differential essential matrix is unique. This is because,
in the differential case, the twist-pair ambiguity (see Maybank [10]), which is caused by a 180®
rotation of the camera around the translation direction, is avoided.

It is clear that the normalized differential essential space E{ is a 5-dimensional differentiable
submanifold embedded in Further considering the symmetric and anti-symmetric structures
in the differential essential matrix, the embedding space can be naturally reduced from R®^^ to
R®. This property is useful when using estimation schemes which require some regularity of the
parameter space (for example, the dynamic estimation scheme proposed by Soatto et al [15]).

3.3 Algorithm

Based on the previous study on the differential essential matrix, in this section, we propose an
algorithm which recovers the 3D velocity of the camera from a set of (possibly noisy) optical flows.

Let ^^ with s=\(C;x)+v(j) be the essential matrix associated with the differential
Longuet-Higginsconstraint (45). Since the submatrix u is skewsymmetric and s is symmetric, they
have the following forms:

0 -Vz U2 \ f Si S2 S3
u= I Vz 0 -Ui ], S= I S2 S4 S5 I. (77)

-V2 Vi 0 / \ Sz S5 S6

Similar to the discrete case, define the (differential) essential vector e GR® to be:

e= (ui,U2,t;3,Si,S2,S3,S4,S5,S6)^- (78)

Define a vector a GR® associated to optical flow (q, u) with q = (z, j/, z)"^ GR^ u = (ui, U2, ^3)^ G
R® to be^:

a = {uzy —U22, uiz —uzx, U2X —uiy, 2a:t/, 2xz, y^, 2yz, z^)'̂ . (79)

The differential Longuet-Higgins constraint (45) can be then rewritten as:

a^e = 0. (80)

For perspective projection, z = 1 and «3 = 0 thus the expression for a can be simplified.
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Given a set of (possibly noisy) optical flow vectors: (q',u'), i —1,... ,m generated by the same
motion, define a matrix A € associated to these measurements to be:

A= (a^a^...,a'")'• (81)

where a* are defined for each pair (qSu') using (79). In the absence of noise, the essential vector
e has to satisfy:

Ae = 0. (82)

In order for this equation to have a unique solution for e, the rank of the matrix A has to be eight.
Thus, for this algorithm, in general, the optical flow vectors of at least eight points are needed to
recover the 3D velocity, i.e. m > 8, although the minimum number of optical flows needed is 5 (see
Maybank [10]).

When the measurements are noisy, there might be no solution of e for Ae = 0. As in the discrete
case, we choose the solution which minimizes the error function ||Ae|p. This can be mechanized
using Lemma 3.

Since the differential essential vector e is recovered from noisy measurements, the symmetric
part s of E directly recovered from e is not necessarily a special symmetric matrix. Thus one can
not directly use the previously derived results for special symmetric matrices to recover the 3D
velocity. In the algorithms proposed in Zhuang [22, 23], such s, with the linear velocity v obtained
from the skew-symmetric part, is directly used to calculate the angular velocity u. This is a over-
determined problem since three variables are to be determined from six independent equations; on
the other hand, erroneous v introduces further error in the estimation of the angular velocity uj.

We thus propose a different approach: first extract the special symmetric component from the
first-hand symmetric matrix s; then recover the four possible solutions for the 3D velocity using the
results obtained in Theorem 9; finally choose the one which has the closest linear velocity to the
one given by the skew-symmetric part of E. In order to extract the special symmetric component
out of a symmetric matrix, we need a projection from the space of all symmetric matrices to the
special symmetric space S.

Theorem 11 (Projection to the Special Symmetric Space)
If a symmetric matrix F € R^^^ is diagonalized as F = Vdiag{Xi, X2, with V 6 50(3),
-^1 > 0, A3 < 0 and Ai > A2 > A3, then the special symmetric matrix E ^ S which minimizes the
error —F\\'j is given by E= Vdiag{ai, 0*2, <T2}V^ with:

2X1 -f A2 —A3 Ai + 2A2 + A3 2A3 + A2 —Ai ^ ^
<Ti = r , ^2 = , 0-3 = . (83)

Proof: Define 5s to be the subspace of 5 whose elements have the same eigenvalues: E =
diag{cri,a2,(T3}. Thus every matrix jE G5e has the form E = VjEVj^ for some Vi € 50(3). To
simplify the notation, define Sa = diag{Xi, A2, A3}. We now prove this theorem by two steps.

Step One: We prove that the special symmetric matrix £* G 5e which minimizes the error
\\E —F||y is given by E = VSV^. Since F G5e has the form E = ViHV^, we get:

|1£-F||} = IIVjSVi'" - VEaVI}
= IISa-V^ViEV/'VII^. (84)
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Define W = V'̂ Vi € 50(3) and W has the form:

Then:

Wi W2 W3

W = \ W4 W3 tye 1• (85)
W7 Ws Wq

IIE-FII} = ||Ea -
= (r(E^)-2tr(H'STy^£A) + tr(S2). (86)

Substituting (85) into the second term, and using the fact that ^2 = <7i + <73 and W is a rotation
matrix, we get:

triWHW'̂ T.x) = <7i(Ai(l-u;|) + A2(l-u?i) + A3(l-u;i))
+ <73(Ai(1 —UJj) + A2(1 —tf^l) + A3(1 —tu?)). (87)

Minimizing \\E —F||y is equivalent to maximizing tr{WEiW^Tix)' From (87), tr{WI^W^T,x) is
maximized if and only if U73 = ice = 0, tUg = 1, it;4 = ly? = 0 and tyj = 1. Since W is a rotation
matrix, we also have W2 = wg = 0 and w\ = 1. All possible W give a unique matrix in 5s which
minimizes \\E - F\\j: E = FEV^.

Step Two: From step one, we only need to minimize the error function over the matrices which
have the form FSF^ G5. The optimization problem is then converted to one of minimizing the
error function:

\\E —F\\j = (Ai —<7i)^ + (A2 —(72)^ + (A3 —03)^ (88)

subject to the constraint:

<72 = 0-1 + <73. (89)

The formula (83) for <7i,a2,<73 are directly obtained from solving this minimization problem. •

Remark 3 For symmetric matrices which do not satisfy conditions Aj > 0 or A3 < 0, one may
simply choose A'̂ = max(Ai,0) or A3 = mm(A3,0).

We then have an eigenvector-decomposition based algorithm for estimating 3D velocity from
optical flow.

Four-Step 3D Velocity Estimation Algorithm:

1. Estimate Essential Vector:

For a given set of optical flows: (q*, u*), i = 1,... , m, find the vector e which minimizes the
error function:

V(e) = ||/le|p (90)

subject to the condition {|e|| = 1;
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2. Recover the Special Symmetric Matrix:
Recover the vector uq G5^ from the first three entries of e and the symmetric matrix s €
from the remaining six entries.'* Find the eigenvalue decomposition of the symmetric matrix
s:

s = Vidiag{Xi, A2, (91)

with Ai > A2 > A3. Project the symmetric matrix s onto the special symmetric space S. We
then have the new s = Vidiag{(Ti^ (T2, (T3}V^ with:

2Ai + A2 —A3 Ai + 2A2 + A3 2A3 + A2 —Ai ^ ^cTi = 2 , (^2 = , (T3 = ; (92)

3. Recover Velocity from the Special Symmetric Matrix:
Define:

A = <71-0-3, A > 0

6 = arccos(—<72/-^), ^€[0,7r]. (93)

Let V = ViRf (f - f) S 50(3) and U = -VRy{6) 6 0(3). Then the four possible 3D
velocities corresponding to the special symmetric matrix s are given by:

w= URz{±^)^xU'̂ , v=VRz{±^)i:iV'̂
= VRz(±^)^xV'̂ , 6= (94)

where Ea = diag{X^ A,0} and Ei = diag{l, 1,0};

4. Recover Velocity from the Differential Essential Matrix:
From the four velocities recovered from the special symmetric matrix s in step 3, choose the
pair (u;*,u*) which satisfies:

v*^vo = m&xvfvq. (95)
t

Then the estimated 3D velocity (w, v) with u; € R^ and v 6 is given by:

u; —(j", V= vq. (96)

Both vo and v* contain recovered information about the linear velocity. However, experimental
results show that, statistically, within the tested noise levels (next section), uq always yields a better
estimate than v* . We thus simply choose uq as the estimate. Nonetheless, one can find statistical
correlations between vq and v* (experimentally or analytically) and obtain better estimate, using
both uq and v*. Another potential way to improve this algorithm is to study the systematic bias
introduced by the least square method in step 1. A similar problem has been studied by Kanatani
[6] and an algorithm was proposed to remove such bias from Zhuang's algorithm [22].

^In order to guareuitee 00 to be of unit length, one needs to "re-normzdize" e, i.e. multiply e by a scalar such that
the vector determined by the first three entries is of unit length.
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Remark 4 Since both E,-E e S{ satisfy the same set of differential Longuet-Higgins constraints,
both (w, ±u) are possible solutions for the given set of optical flows. However, as in the discrete
case, one can get rid of the ambiguous solution by adding the "positive depth constraint".

Remark 5 By the way of comparison to the Heeger and Jepson's algorithm [4], note that the
equation (82) may be rewritten to highlight the dependence on optical flow as:

[Ai(u) I>l2]e = 0 (97)

where >li(u) € is a linear function of the measured optical flow and A2 € is a function
of the image points alone. Heeger and Jepson compute a left null space to the matrix A2 (C £
j^(m-6)xmj equation: Ci4i(u)u = 0 for v alone. Then they use v to obtain w. Our
method simultaneously estimates v € R^,s € R®. We make a simulation comparison of these two
algorithms in section 4- H should be noted that the noise performance of our algorithm can be
substantially improved by replacing the estimate of Lemma 2 for e as the smallest right singular
vector of A, by e as the smallest right structured singular vector of A ([13]) accounting for the
noise in only the first 3 columns of A. This will be implemented in future.

Due to the same arguments for the discrete case, this algorithm is not optimal in the sense
that the recovered velocity does not necessarily minimizes the originally picked error function
||-4e(u;, u)lp on €[. However, this algorithm only uses linear algebra techniques and is simpler than
a one which tries to optimize on the submanifold €{.

3.4 Difficulties with Zero Translational Velocity

One potential problem with the (discrete or differential) essential approaches is that the motion
estimation schemes are all based on the assumption that the translation is not zero. In this section,
we study what makes the Longuet-Higgins constraint fail to work in the zero-translation case.

For the discrete case, if two images are obtained from rotation alone i.e. p = Qand qc = R^cio^
it is straight forward to check that, for all p € 5^, we have:

qcR^pqo = 0' (98)

Thus, theoretically, the estimation schemes working on the normalized essential space £i will fail
to converge (since there are infinite many pairs of {R,p) satisfying the same set of Longuet-Higgins
constraints). In the differential case, we have a similar situation:

Lemma 6 An optical flow field (q, u) is obtainedfrom a pure rotation with the angular velocity u
if and only if for all vectors u €

[io] )'» =*'•
Proof:

u = a;q since u is obtained from rotation w

u^(i; Xq) = —q^a>(u Xq) for all u G5^

[lie] )" ="•
23



This lemma implies that the velocity estimation algorithm proposed in the previous section will
have trouble when the linear velocity v is zero. There are infinite many pairs of (w,u) satisfying
the same set of differential Longuet-Higgins constraints.

However, it is shown by Soatto et al [15] that, in the dynamical estimation approach, one can
actually make use of the noise in the measurements to obtain correct estimate of the rotational
component R regardless the scale or accuracy of estimation of the translation vector p. The same
should hold also in the differential case. That is, even in the zero-translation case, the recovery of
the angular velocity u) is still possible using dynamic estimation schemes.

4 Applications and Experimental Results

In this section, we discuss some applications of the proposed motion estimation algorithm. Simu
lation results are given for evaluating the performance of the algorithm.

4.1 Exploiting Nonholonomic Constraints

Usually, the kinematics of the mobile base on where the computer vision is mounted satisfy some
so-called nonholonomic constraints. Roughly speaking, these constraints confine the infinitesimal
3D motion but not the global motion of the mobile base (as an example of studying vision with
nonholonomic constraints see Ma, Kosecka and Sastry [9]). A big advantage of the differential
essential approach over the discrete one is that it can make use of these nonholonomic constraints
and much simplify the motion estimation algorithms. We show this by an example of a kinematic
aircraft.

Example: Kinematic Model of an Aircraft

Let g{t) € 5E(3) represents the position and orientation of an aircraft relative to the spatial frame,
the inputs ui, a;3 € K stand for the rates of the rotation about the axes of the aircraft and ui 6 K
the velocity of the aircraft. Using the homogeneous representation for g (for a good reference on
homogeneous representation see Murray, Li and Sastry [12]), the kinematic equations of the aircraft
motion are given by:

9 = 9

f 0 —W3 UJ2 Vl

W3 0 -Ul 0

-U>2 a?i 0 0

\ 0 0 0 0

(101)

where ui stands for pitch rate, u;2 for roll rate, wa for yaw rate and Ui the velocity of the aircraft.

Then the 3D velocity (w,v) in the differential Longuet-Higgins constraint (45) has the form:

u; = (wi,a;2,t^3)^, t; = (ui, 0,0)^. (102)

For the algorithm given in section 3.3, this adds extra constraints on the symmetric matrix s =
|(t50-h vCj): Si = 55 = 0 and 54 = ss. Then there are only four diflFerent essential parameters left
to determine and we can re-define the essential parameter vector e 6 K'* to be:

e = (ui, 52,53,54)^- (103)
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Then the measurement vector a € is to be:

a = (way - W2-2,2xy, 2xz, (104)

The differential Longuet-Higgins constraint can then be rewritten as:

a^e = 0. (105)

If we define the matrix A as in (81), the matrix A^A is a 4 x 4 matrix rather than a 9 x 9 one.
For estimating the velocity (u;, u), the dimensions of the problem is then reduced from 9 to 4. In
this special case, the minimum number of optical flow measurements needed to guarantee a unique
solution of e is reduced to 3 instead of 8. Further more, the symmetric matrix s recovered from e
is automatically in the special symmetric space S and the remaining steps of the algorithm given
in section 3.3 are dramatically simplified.

From this simplified algorithm, the angular velocity lj = (a;i,a;2,u;3)^ can be fully recovered
from the images. The velocity information can be then used for controlling the aircraft.

4.2 Camera Self-calibration

So far, we have assumed that the camera is ideal, i.e. the formation of the image is through ideal
perspective or spherical projections of unit focal length. For a more general camera model, the
relation between an actual image and the ideal image is given by a linear transformation specified
by the so-called intrinsic-parameter matrix of the camera:

/ si 0 -siii \
A= I 0 S2 -Sii2 I . (106)

V0 0 -f J
For a general treatment of the camera self-calibration in the differential case, one should refer to
Vieville and Faugeras [21] and Brooks et al [2]. Here we assume A is time-invariant. Then, it can
be shown that the differential Longuet-Higgins constraint now becomes

-b iq^4^(a>u +{)c!>)4q =0. (107)

If define a differential fundamental matrix to be

then the Longuet-Higgins constraint can be rewritten as

(u^q^)fq = 0. (109)

The problem we are interested here is how to recover, from the fundamental matrix, the camera
intrinsic-parameter matrix A and the camera ego-motion v and u.

Note that the fundamental matrix F has an asymmetric part and symmetric part, as the
essential matrix does. Such matrices have at most eight degrees of freedom. Actually, it is shown
byBrooks et al [2] that the set ofall F isonly a 7-dimensional submanifold in R®, i.e. it has7degrees
of freedom. However, F (with normalized linear velocity u) is a function of 10 free parameters, 5

25



for motion and 5 for camera intrinsic parameters. Thus, the essential constraint is not adequate
for determining all the camera motion and intrinsic parameters in the most general case. If one
wants to recover all 5 ego-motion parameters, maximally, only 2 extra intrinsic parameters can be
recovered at the same time.

This seems to be a little frustrating. However, it actually simplifies the problem we are trying
to solve - the most general case is not solvable anyway, one has to consider the self-calibration
problem for much simplified camera models (with less than two free intrinsic parameters). Some
interesting and solvable cases have been studied by Brooks et al in [2].

4.3 Experimental Results

We carried out initial simulations in order to study the performance of our algorithm. We chose
to evaluate it in terms of bias and sensitivity of the estimate with respect to the noise in the
optical flow measurements. Preliminary simulations were carried out with perfect data which was
corrupted by zero-mean Gaussian noise where the standard deviation was specified in terms of pixel
size and was independent of velocity. The image size was considered to be 512x512 pixels.

Our algorithm has been implemented in Matlab and the simulations have been performed using
example sets proposed by [17] in their paper on comparison of the egomotion estimation from
optical flow®. The motion estimation was performed by observing the motion of a random cloud
of points placed in front of the camera. Depth range of the points varied from 2 to 8 units of the
focal length, which was considered to be unity. The results presented below are for fixed field of
view (FOV) of 60 degrees. Each simulation consisted of 500 trials with a fixed noise level, FOV and
ratio between the image velocity due to translation and rotation for the point in the middle of the
random cloud. Figures 3 and 4 compare our algorithm with Heeger and Jepson's linear subspace
algorithm. The presented results demonstrate the performance of the algorithm while translating
along X-axis and rotating around Z-axis with rate of 23® per frame. The analysis of the obtained
results of the motion estimation algorithm was performed using benchmarks proposed by [17]. The
bias is expressed as an angle between the average estimate out of all trails (for a given setting of
parameters) and the true direction of translation and/or rotation. The sensitivity was computed as
a standard deviation of the distribution of angles between each estimated vector and the average
vector in case of translation and as a standard deviation of angular differences in case of rotation.

We further evaluated the algorithm by varying the direction of translation and rotation and
their relative speed. The choice of the rotation axis did not influence the translation estimates. In
the case of the rotation estimate our algorithm is slightly better compared to Heeger and Jepson's
algorithm. This is due to the fact that in our case the rotation is estimated simultaneously with the
translation so its bias is only due to the bias of the initially estimated differential essential matrix
obtained by linear least squares techniques. This is in contrary to the rotation estimate used by
Jepson and Heeger's algorithm which uses another least-squares estimation by substituting already
biased translational estimate to compute the rotation. The translational estimates are very similar.
Increasing the ratio between magnitudes of translational and angular velocities improves the bias
and sensitivity of both algorithms.

The evaluation of the results and more extensive simulations are currently underway. We believe
that through thorough understanding of the source of translational bias we can obtain even better

®We would like to thank the authors in [17] for making the code for simulations of various algorithms and
evaluation of their results available on the web.
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performance by utilizing additional information about linear velocity, which is embedded in the
symmetric part of the differential essential matrix. In the current simulations translation was
estimated only from uq skew symmetric part of e.

5 Discussions and Future Work

This paper presents a unified view of the problem of egomotion estimation using discrete and
differential Longuet-Higgins constraint. In both (discrete and differential) settings we provide a
geometric characterization of the space of essential matrices and differential essential elements.
This characterization gives a natural geometric interpretation for the number of possible solutions
to the motion estimation problem. In addition, in the differential case understanding of the space
of differential essential matrices leads to a new egomotion estimation algorithm, which is a natural
counterpart of the three-step SVD based algorithm in developed for the discrete case by [19].

In order to exploit temporal coherence of motion and improve algorithm's robustness, a dynamic
(recursive) motion estimation scheme, which uses implicit extended Kalman filter for estimating
the essential parameters, has been proposed by Soatto ei al [15] for the discrete case. The same
ideas certainly apply to our algorithm.

In applications to robotics, a big advantage of the differential approach over the discrete one
is that it can make use of nonholonomic constraints {i.e. constraints that confine the infinitesimal
motion of the mobile base but not the global motion) and simplify the motion estimation algorithms.
An example study of vision guided nonholonomic system can be found in [9]. In this paper, we have
assumed that the camera is ideal. This approach can be extended to uncalibrated camera case,
where the motion estimation and camera self-calibration problem can be solved simultaneously,
using the diflferential essential constraint [21, 2]. In this case, the essential matrix is replaced by the
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fundamental matrix which captures both motion information and camera intrinsic parameters. It
is shown in [2], that the space ofsuch fundamental matrices is a 7-dimensional algebraic variety in
1^3x3 Thus, besides five motion parameters, only two extra intrinsic parameters can be recovered.

Due to the geometric clarity of the motion esimation algorithms, it is promising to merge a
vision system using these algorithms with INS (inertial navigation sensors, such as gyroscopes)
and GPS (global positioning system) to recover 3D motion and orientation of autonomous mobile
robots. It will highly improve the robustness and accuracy of the overall system.
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