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ABSTRACT

OES-based Sensing for Plasma Processing in IC Manufacturing

by

Roawen Chen

Doctor of Philosophy in Engineering -
Electrical Engineering andComputer Sciences

University of California at Berkeley

Professor Costas J. Spanos, Chair

Commercial semiconductor technology is expected to reach the 0.18p,m device

generation using 300mm wafers by the year 2001. In order to meet this expectation, we

need better temporal and spatial process uniformity. This issue is particularly true for

plasma etching because itis often considered one ofthe most critical steps in the manufac

turing of deep sub-micron IC devices. The need for better control suggests that we must

have a robust model-based controller to ensure the IC manufacturers can meet ever tight

ening specifications.

In this work we aredeveloping a methodology for estimating etching performance

using real-time sensors. Specifically, the sensor readings collected throughout plasma

etching processes are used in combination with statistical techniques to model etch rate,

within-wafer uniformity, aspect-ratio dependent etching (ARDE), and critical dimension

(CD) reduction. Most of this effort has been devoted to developing reliable models that

relate process performances to signals acquired from optical emission spectroscopy

(OES), a sensor providing spatially resolved, in-situ, real-time readings without disturbing

the plasma or interfering with the process. Ourstudy is basedon the OES sensor systems
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installed on various commercial plasmaetchers including dielectric etchers (AMAT 5300

Centura), polysiliconetchers (Lam 4400 and 9400), and metal etchers (Lam 9600).

Another aspect of this work is to model the spatial variation of critical dimension

(CD)using the spatial and temporal information provided by the OES sensor. Bothphysi

cal and statistical approaches are employed to extract the spatial and temporal variation

from the original OES sensor readings for each wafer at selected wavelengths. An addi

tional goal of this work is to demonstrate a novel technique for monitoring thespatial CD

variation and detecting abnormal wafers usingOESsignals. This is accomplished by a sta

tistic describing the temporal variation from the real-time OES signals collected from

three spatially resolved beams, and canbe employed to indicate the nature of theCDspa

tial non-uniformity.

Conventional endpoint detection techniques often provide temporally-resolved

information of the etch process, but without spatial resolution. With the emerging of the

300mm wafer production, the potential utility of a spatially-resolved endpoint detector is

expected to increase greatly. In this project we propose a novel spatially resolved sensor to

detect the endpoint and monitor spatial uniformity for a plasma etching process. A scan

ning spatially-resolved optical emission spectroscopy (SROES) system was built and

installed in the Berkeley Microfabrication Laboratory. This sensor system consists of a

stepper motor, controller, and a monochrometer, which provides an in-situ real-time moni

toring of the etching endpoint spatially. The most interesting feature of collected plasma

spatial images is their temporal dependence. This information can be then used to detect

the spatially-resolved endpoints and monitor the etch uniformity. This concept also

extends to a scanning SROES system with a full spectral-range spectrometer. The results

suggest that full color plasma emission spatial profiles are useful for characterizing and

monitoring theplasma conditions. It isourexpectation that these signals will play a useful

role in designing the next generationequipmentcontrollers.
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CHAPTER 1

Introduction

1.1. Motivation

Commercial semiconductor technology is expected to reach the 0.18^m device

generation using 300mm wafers by the year 2001 [1.1]. The fabrication of integrated cir

cuits (ICs) is becoming very capital-intensive, and if the past exponential trend in fab cost

continues, the cost of a state-of-the-artfacility for their manufacture is approaching US$3

billion by the year 2000 and US$10 billion by the year 2005 [1.2]. Moreover, a fab's life

span is reducing over the past decade. In the mid-'80, a fab cost about $100million and

had an expectedlife span of nearlyten years. Nowwe have $1 billionfabs with a life span

of only five years. The depreciation alone is approximately $4 million a week [1.3]. It is

expected that semiconductorindustrycan not afford to go on investing at these level while

remaining profitable. Thus, to offset this enormous investment, IC manufacturers must

achieve high yield, throughput and productivity quickly.
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Historically, the IC industry has reduced manufacturing cost by improving yields,

increasing wafer size, shrinking linewidths and improving equipment productivity. How

ever, the cost of funding the transition to larger wafer size (e.g., > 300mm) and smaller lin

ewidths (e.g., < 0.1Spm) is probably too high to justify the advantage of reducing the

overall cost by increasing productivity. Moreover, a portion of the productivity improve

ment due to larger wafer size is often offset by the increasing technological challenge for

achieving a good spatial uniformity. It has also been shown [1.3][1.4] that one area where

we have more room to improve is the area of equipment productivity (see Figure 1.1).

Additionally, it is extremely difficult to measure each wafer after each step in high

volume semiconductor factories, which produce chips with over 100 manufacturing steps

and high throughput. Present strategyis to measureand monitorwafersperiodically after

changing the machine settings, however, at the penalty of cost and throughput. Although

this method gives an indication of how the machineis operating, it offers no guaranteethat

the subsequent production wafers will be processed properly.

c

0

1
'a'

Wafer Size

Yield Improvement

Equipment Productivity

Histoiial Curve

(25% - 30%A^r improvement)

Time

Feature Size
~12%-14%

7%-10%

1995

~12%-14%

- —<2%

~k— -

>9%-15%

Figure 1.1 Historical and perspective trendof productivity improvement (modified
from [1.4])
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Therefore, to achieve short cycle times and low-cost wafer fabrication, sensor-

aided manufacturing (SAM) of ICs is emerging as an approach to optimizethe cost-effec

tiveness of IC production [1.5]. One key SAM concept is to monitor the equipment and

wafer conditions in-situ to ensure that the semiconductor wafers are processed properly

during each step. The test wafers, machine calibration and maintenance can be thus mini-
/

mized by the means of SAM so that the overall equipment effectiveness can be improved.

Plasma etching has been widely used in the manufacturing of sub-micron IC

devices, and it is also considered to be one of the yield limiters. In the past, empirical opti

mization of plasma parameters has produced many successful etching and deposition "'rec

ipes". A lot of effort has been spent developing reliable empirical models that relate the

response of process outputs (such as etch rate) to variations in input parameters (such as

pressure, RP power, or gas flow). These models are required by semiconductor manufac

turers in order to predict etch behavior imder an exhaustive set of operating conditions to

a high degree of precision. Traditionally, this approach has relied on statistical techniques

without detailed reference to plasma physics and microscopic etch mechanisms. By con

trast, numerical simulations based on fundamental physical theories have been used in aca-

demia, but these are computationally expensive and typically take too long for real-time

manufacturing applications. Also, these efforts have focused on explaining plasma param

eters with little description of spatial and temporal etch performances.

Optical emission spectroscopy (OES) has been widely used in plasma assisted pro

cess for in-situ process diagnostics and monitoring. Generally, a complete OES system

should be capable of resolving three components of plasma variability: spectral resolution

(i.e., chemical resolution), temporal resolution, and spatial resolution. However, the ideal

OES system with high spectral, temporal, and spatial resolutions is very expensive. There

fore, the commercial OES system often gives up one of these information "dimensions" to
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reducethe cost. For example, the full-range OEScommercial system onlyprovides a lim

ited spatialresolution. Myresearch objective is to employ spatially-resolved optical emis

sion spectroscopy (SROES) as a novel real-time fault detection tool for plasmaetch. The

OES sensorwith spatial resolution has a uniqueadvantage in plasmaprocessing becauseit

provides in-situ spatial, temporal, and spectral information without disturbing the plasma

or interferingwith the process. This studyis basedon the SROES sensor systems installed

on various commercial plasma etchers including polysilicon etchers (Lam 4400, 9400),

oxide etchers (AMAT 5300 Centura™) and metal etchers (Lam 9600 TCP™).

There are several important issues in implementing the OES system for in-situ pro

cess monitoring and diagnosis. First, since a typical spectrum usually contains thousands

of wavelengths, an efficient way to compress and extract spectral information from OES

readings is vital to implement the OES system in an IC production environment. Secondly,

the information included in the temporal and spatial signatures of OES signals collected

from one wafer is difficult to interpret. Thirdly, the relation between the OES signals and

wafer characteristics is still imder investigation (Note that the optical emission intensity of

discharge is only a direct indicator of plasma states, not wafer states). This thesis will try

to resolve these issues.

1.2. Thesis Organization

This thesis starts from a qualitative description of the plasma etch process and

mechanisms, plasma etcher designs, optical emission theory, optical emission spectros

copy, and several statistical multivariate techniques in Chapter 2. Chapter 3 through Chap

ter 5 develop the wafer-state prediction models using the spectral information provided by

the OES system. Several statistical data compression techniques are employed to filter out

the spectral information from a large number of spectral variables. The beauty of these

techniques is that they provide an efficient way to extract the important spectral informa

tion without identifying the chemical species and their spectral signatures prior to the data
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analysis. In other words, we propose a novel way to explain the wafer-states by using sta

tistical identification procedures. In addition, we interpret these results with the help of the

physical understanding of the process, and discuss the constraints while implementing

these wafer-state modeling techniques. Up to this point, no within-wafer temporal and spa

tial information of OES signals is included in this framework. In Chapter 5,1 start to esti

mate and monitor the spatial variability of wafer-states using within-wafer temporal and

spatial information provided by a three-beam spatially-resolved OES system. Bothphysi

callybasedandstatistically based approaches areemployed to extractthe spatial and tem

poralvariation from theoriginal SROES sensorreading foreachwafer. Chapter6 develops

a novel scanning SROES system which significantly enhances the spatial resolution of

OES readings. Spatial information provided by this scanning SROES can be then used to

estimate the spatial variability of wafer-states and, most importantly, is used as a "spa

tially-resolved endpoint detector" while observing thetemporal dependence of the spatial

profiles of plasma emission. Finally, conclusions and future work related to this research

are given in Chapter 7.
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CHAPTER!

Background

2.1. Previous Work

Sensor-aided statistical process control (SPC) is emerging as a novel technique for

monitoring, diagnosing, andmodeling theplasma etchprocess in themodemsemiconduc

tor manufacturing environment. There are a number of sensors, either in commercialized

or still developing stage, which have been investigated by several research groups for

plasma etchers. Forexample. Lee and Spanos [2.1] [2.2] at the University of Califomia,

Berkeley have demonstrated thefeasibility ofusing themachine-state real-time sensorsig

nals (e.g., power, pressure, and gas flow) to monitor the health of the commercial plasma

etcher in real-time and model the etch rates accurately.

Optical emission spectroscopy (OES) is probably the most widely used in-situ

sensor for plasma etching process. Nonetheless, its usage has been mainly limited to mon

itoring a single wavelength of light emittedfrom a chemicalspecies of interest such as etch

byproductsfor endpoint detection or contamination control. For example, Selwyn at IBM

[2.3] has used optical emission (OB) to detect tool contamination and malfunction for
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plasma etching by monitoring emission from discharge-excited impurities. In addition to

species identification and endpoint control, a full spectral-range OES is also used as a

promising tool to characterize the wafer or machine states. However, the most vital chal

lengeis howto analyze a complex spectrum acquired by themultichannel OES rapidly and

accurately. One solution is to analyze the OES data by multivariate statistical techniques.

Shadmehret al at IBM[2.4]haveproposed to use principal component analysis (PCA)and

neural networks (NN) to characterize the effects of machine parameters (e.g., pressure,

power,and gas mixture)onthe opticalemissionand massspectraof CHF3/O2 plasma. Sim

ilarly, Anderson et al at the University of New Mexico [2.5][2.6] have used OES to charac

terize the oxideetch process.Their resultsshowthat the emissionfingerprint, as determined

by the Chemometrics, correlate well with the oxide etch rate for the CF4/CHF3 plasma.

Recently, White et al [2.7] at MIT have used some non-linear statistical techniques such as

nonlinear partial least squares (PLS) and multilayer perceptron (MLP) neural networks to

estimate the aluminum linewidth reductions at different sites on the wafer by combining the

spectra collected from different regions in plasma using spatially-resolved OES (SROES).

Although these techniques show a promising way to describe the wafer-to-wafer

behavior of equipment/wafer states, no real-time and only limited spatial information is

included in their frameworks. The typical approach of applying these sensor signals is to

model the wafer-state measurements from one selected site by one spectrum collected dur

ing main etch period (that is, one OES sample per wafer) [2.4][2.7], or to model the spatial

mean of the wafer-state measurements using the corresponding temporal average of sensor

signals acquired from one wafer [2.5][2.6]. Although these techniques can predict some of

the wafer-states (mostly etch rate) imder certain circumstances, the temporal and spatial

information collected from sensors is mostly sacrificed in order to simplify the analysis.

Moreover, few explicit physical interpretations have been made to relate optical emission

intensities to equipment or wafer state, which limits the utility of these techniques.

8
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2.2. Plasma Etch Process

Plasma etching is considered a botdeneck process in integrated circuit (IC) manu

facturing lines. It usually involves complex reactions/collisions of a large number of ener

getic electrons, photos, ions and chemically reactive gas molecules. The success of a

plasma etch process is determined by some complex tradeoffs in order to optimize each of

a long list of process parameters, including etch rate, selectivity, damage, residue, micro-

loading, and profile and linewidth control. Moreover, continued device scaling is making

plasma etch even more difficult to manage. In order to control this "mysterious" process,

comprehensive understandings of etch mechanisms and etcher designs are necessary.

2.2.1. Etch Meehanisms

There are four basic plasma etch mechanisms: sputtering, pure chemical etching,

ion energy driven etching, and ion inhibitor etching [2.8]. Sputtering is a process of remov

ing the substrate material by purely physical processes, as illustrated in Figure 2.1. Since

sputter etching is purely physical and requires high ion energy and low pressure, it is the

least selective mechanism. Sputtering rates are generally low because the yield is typically

of order one atom per incident ion, regardless of the etched materials.However, sputtering

is the most anisotropic etch process.

Chemical etching is simply due to the fact that gas-phase etchant atoms or mole

cules chemically react with the surface. Thus this process can be highly selective, and the

etch rate can be quite large because the flux of etchants to the substrate can be high in pro

cessing discharges. However, the most important requirement for this kind of process is

that a volatile reaction by-product has to be formed. Moreover, chemical etching is usually

isotropic, which is undesirable for achieving good linewidth control.

Jon-enhanced energy-driven etching is a combined etching process with both

etchant atoms (chemical etching) and energetic ions (ion-bombardment). Generally, the
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Figure 2.1 Four basic plasma etching mechanisms: (a) sputtering; (2) pure chemical
etching; (c) ion energy-driven etching; (d) ion-enhanced inhibitor etching [2.9]

etch rate of this etch process is much larger than that of either pure chemical etching or sput

tering alone, since the impinging ions can damage the surface so that it increases the etchant

atom's reactivity significantly. The etch product must be volatile, as for pure chemical etch

ing. Because the energetic ions have a highly directional angular distribution when striking

the substrate, the etching can be highly anisotropic. However, ion-enhanced energy-driven

etching may have poor selectivity compared to pure chemical etching. Thus the trade-off

between anisotropy and selectivity is an important issue in designing this etch processes.

Ion-enhanced inhibitor etching, illustrated in Figure 2.1(d), is a conceptually more

different etch mechanism, compared with the previous etch mechanisms. The discharge

supplies etchants, energetic ions, and inhibitor precursor molecules that adsorb or deposit

on the substrate to form a protective layer of polymer film. The ion-bombarding flux pre

vents the inhibitor layer from forming on horizontal surfaces so as to expose the surface to

the chemical etchant. Where the ion flux is low, such as on the vertical feature sidewalls,
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the inhibitors form a very thin film to protect the surface from the etchant, thereby making

the process anisotropic.

Although four etch mechanisms have been distinguished, their use for a particular

film etch often involves parallel or serial combinations of these mechanisms, as will be

noted for the A1 etch in the next section.

2.2.2. Etching Processes

The materials that need to be etched in a typical silicon-based IC generally fall into

one of three areas: polysilicon, dielectrics or metals, each of which requires a dedicated

etch process and equipment set-up. The difficulties of each etch process are primarily

caused by the push to smaller features, but also by new transistor design, DRAM cell struc

tures, isolation technologies, planarizationand interconnectschemes.Figure 2.2 illustrates

a typical cross-section of CMOS IC and its required etchprocesses. In the following sec

tions, these three etch processes are described in detail.

2.2.2.1. Poly-Silicon Etching

Poly-Sican be etchedin the chlorinedischarge. For imdoped poly-Si, the etch rate

is very slow unless undoped poly-Si is etched by C1 in the presence of energetic ion bom

bardment. For heavily n-type doped poly-Si, it can be rapidly and spontaneously etched by

C1 atoms. Thus, etched features are often severely undercut. This can be prevented by side-

wall inhibitor chemistry. It is also important to note that C1 also attacks the doped poly-Si

but at a much slower rate [2.9].

There are several critical requirements for poly-silicon etching that must be

addressed. First, selectivity to the oxide is extremely important for poly-silicon etching,
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Figure 2.2 Typical cross-section for logic CMOS IC

because the etch must not punch through the thin gate oxide, keeping the oxideloss small,

even with a 50-100% overetch. Secondly, the .gateprofile control is also vital. The modem

gate design usually includes limgsten silicide over poly-Si application. This type of struc

ture requires two different materials to be etched while maintaining all the important

parameters such as profile control, minimal undercutting, and selectivity between layers

and the substrate.

2.2.2.2. Oxide Etching

The etching of Si02 is different from poly-Si etching because the silicon-oxygen

bond is about twice as strong as the silicon-silicon bond that is broken in poly-Si etching^

Thus, to break the silicon-oxygen bond, ion and neutrals are directed at the wafer surface

with more than twice as much as power as in other types of etch systems. Although F atoms

1. The silicon-silicon bonding is 78 kcal/mole, whereas the silicon-oxygen bonding is 190 kcal/mole.

12
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are known to etch Si02, the pure chemical etch rate based on F atoms is slow and therefore

impractical in a real etch system. As such, a more complex fluorocarbon etch chemistry is

commonly used for oxide etching. It is known that CF^radicals do not spontaneously etch

Si02 because these radicals do not dissociatively absorb in Si02. Therefore, no pure chem

ical etching of Si02 takes place in fluorocarbon plasma, and all observed Si02 etching is

ion-energy driven [2.8][2.9]. The Si02 etching is anisotropic, and the etch rate correlates

with the ion bombarding energy and is independent of the substrate temperature [2.8]. High

selectivity can be achieved for CF^radical etchants produced using unsaturated fluorocar

bon feedstocks or by adding hydrogen to saturated feedstocks [2.8]. In both cases, the pro

tective polymer layer is formed on the surfaces other than silicon oxide (the oxygen

released in the etching of Si02 prevents the formation of the polymer)[2.10].

In the area of oxide etching, the most demanding application is high aspect-ratio

contact/via etch (as shown in Figure 2.2). It is due to the fact that contacts have different

depths at a single masking layer, so the shallow contact clears first while the deep contact

continues to etch. Another challenge of oxide etching is to obtain high selectivities to the

photoresistmasking layer as well as the underlyingmaterialonce it is exposed. Because the

modem high-density plasma is very effective at dissociating the feedstock gases, which

creates excessive amounts of aggressive fluorine atoms, free fluorine tends to rapidly eat

away organic photoresist and thereby reduce the photoresist selectivity.

Another problem in oxide etch is the etch-stop, which means the etching action

slows or stops altogether for some unknown reasons [2.10]. This problem is even more

severe for very small and deep features. One hypothesis to explain etch-stop is that there is

an imbalance between poljnmer formation, passivation, and ion-bombardment processes

[2.10] so that the etch process stops due to the excess of poljmier formation.

13
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2.2.2.3. Metal Etching

Today, metal etching still means mostly aluminum etching, although tungsten is

often used for contact and via fill. Aluminum etching is essentially a chemical-reaction

driven process [2.9][2.11]. However, since aluminum is not etched in fluorine atom plasma

(because aliuninum fluoride is completely involatile), aluminum has to be etched in atomic

and molecular chlorine or bromine (both aluminum chlorides and aluminum bromides are

volatile). It is also important to note that ion bombardment has a limited effect on the alu

minum etching rate because the spontaneous chemical attack is very fast [2.9]. Therefore,

the inhibitor chemistry is necessary for linewidth control in aluminum etching. In the case

of CI2/BCI3 etchant, the aluminum layer is etched by chlorine atoms and molecules while

the additionof BCI3 is used to providethe inhibitorchemistrythat enhancesthe etch anisot-

ropy [2.9]. Moreover, since oxygen and water are desorbed on the surface of aluminum film

which will seriously interfere with the etching process, the addition of the BCI3 can react

preferentially with H2O and O2 in the process chamber, thereby providing reproducible

processing when added to CI2[2.9].As a result, plasmas based on BCI3/CI2 mixtures have

become the standard for aluminum etching [2.11]. After aluminum etching, a timed over-

etch process is usually performed to ensure the aluminum film has been cleared from the

wafer. The oxide loss due to the over-etch process is primarily driven by the ion-bombard

ment mechanism [2.8].

One challenge with aluminum etching is that there are varying amounts of copper

added to the aluminum (to prevent the "spiking" effect). This makes etching more difficult

because copper chlorides have low volatility.Photoresist degradation is another problem in

chlorine-based plasmasince the etch product, i.e., AICI3, accelerates degradation of resist.

In addition, etch rate microloading (also known as aspect-ratio dependent etch) is of
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increasing importance in metal etch, especiallyfor device geometries shrinking below half-

micron [2.12]. The A1 etch rate microloading is a tradeoff against A1etch rate. In an etchant

deficient environment, A1 etch rate in the open area is slower than that in the dense area,

due to the chemical loading effect. When the etchant concentration is sufficient, the etch

rate in the open area is enhanced, while the etch rate in the dense area is limited by species

transportation.

Table 2.1 summarizes the typical feed gas and mechanisms for plasma etching var

ious materials.

Table 2.1

Typical feed gas and mechanisms for plasma etch [2.9]

Materials

Etched

Source

gas

Additive Mechanism

Poly-Si
(n-doped)

Cl2 None

C2F6
Chemical

Ion-inhibitor

Si02 CFx H2 Ion-enhanced energy-
driven

A1 Cl2 . BCI3 Ion-inhibitor

2.3. Plasma Etch Equipment

Today almost all commercial plasma etchers are single wafer systems, that is, the

system presents an identical environment to every wafer, compared with the batch wafer

systems in which the etch conditions are varied dependent on the wafer locations. Although

there are many variations of chamber configuration with major differences in electrode

structure for commercial single-wafer plasma etcher, two most commonly used plasma

reactors are introduced in this section: capacitive planar etcher and high-density discharge

etcher.
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2.3.1. Capadtive Planar Etcher

Capacitively driven RF discharge (also called RP diodes) etchers are commonly

used for materials processing. The basic geometry consists of a vacuum chamber contain

ing two planar electrodes separated by a spacing / and driven by an RF power source, as

illustrated in Figure 2.3 (a). When operated at low pressure, with the wafer placed on the

powered electrode for removing substrate materials, this reactor is commonlycalled reac

tive ion etcher (RIE). In this case, the etching is a chemical process enhanced by energetic

ion bombardment of the substrate. Table 2.2 lists the typical range of parameters for a

capacitive RF discharge etcher.

However, the crucial limiting feature of capacitive RF discharge etcher is that the

ion-bombarding flux and bombarding energy cannot be varied independently. This is sim

ilar to the lack of independent voltage and current control in semiconductor pn junction. To

accomplish the etching performance needed for the deep sub-micron devices, the ion-bom

bardment energy has to be controllable independently of the ion/neutral flux [2.8], which

presents more options to the process engineers to optimize the etching conditions. This

gas feed

shcST

vacuum

pump

(a)

source

vacuum

pump

(b)

rf
I source

S
RFbias

Figure 2.3 The illustrations of (a) capacitive RF discharges in plane parallel
geometry; (b) high-density inductively coupled plasma.[2.8]
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requirement leads to the development of high-density plasma etcher, as described in the

next section.

Table 2.2

Range of parameters for RIE and high-density discharge[2.8]

Parameter RIE High-Density

Pressure (mtorr) 10-1000 0.5-50

Power (W) 50-2000 100-5000

Frequency (MHz) 0.05-13.56 0-2450

Plasma Density (cm'̂ ) 10^-10" lOiO-lO^^

Electron temperature (V) 1-5 2-7

Ion acceleration energy (V) 200-1000 20-500

Fractional ionization 10-6-10-3

b
1

2.3.2. High-Density Plasma Etcher

The low pressure plasmasource is desirable in the modem etcherdesignbecause it

is difficult to diffuse etchants in and reaction byproducts out of openings that are smaller

than 0.25|im. Thesolution is to go to lower pressures where themean freepaths of gasion

and molecules are longer, which also reduces scattering collisions that can cause low pro

file control [2.13]. These needs led to the developmentof the new generation of high-den

sityplasma source, which is capable of generating enough ions to achieve acceptable etch

rate at reduced pressure (high etchrate is important in single wafer systems for reasonable

throughput). Nonetheless, as mentioned in the last section, the need of high-density plasma

etch is not onlydriven by a needto operate at lowerpressure or withhigh ion density, but

rathertheneedto haveindependent control overthe ion bombarding energyandthe ion and

neutral density [2.8] [2.10][2.13]. This "plasma decoupling" allows better control of the

various etch mechanisms {e.g.^ physical ion-bombardmentand chemical etching) that com

petes with each other in plasma etching.
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To achieve a high density plasma source, a commonfeatureis that RF is coupled to

the plasma across a dielectric cylindrical wall, rather than by direct connection to an elec

trode in the plasma [2.8],as for the RBE etcher.This noncapacitive power transfer is the key

to achieving a high ion-density efficiently. To control the ion energy, the electrode on

whichthe wafer is placedcan be independently drivenby a capacitivelycoupledRF source.

Hence, an independentcontrolof the ion/radical fluxes (through the sourcepower) and the

ion-bombarding energy (through the wafer electrode bias power) is possible. There are

many different high-densityplasma source designs in tenns of the way by which power is

coupled to the plasma. The examples include electron cyclotron resonance (ECR), helical

resonator (HR), and inductive (or transformer) coupled plasma source (ICP or TCP)[2.8].

Among these different designs, ICP (or TCP) is the most commonly used high-density

plasma source in current fabrication lines. An inductive coupled plasma etcher is shown in

Figure 2.3(b). In this case, plasma acts as a single-turn, lossy conductor that is coupled to a

multitum nonresonant RF coil across the dielectric discharge chamber, where RF power is

inductively coupled to the plasma by transformer action. In contrast to ECR, a dc magnetic

field is not required in this efficient power coupling design [2.8].

Despite the obvious needs for developing high-density plasma sources with low

pressure, high ion/radical fluxes, and controllable ion energies, there are many other issues

needed to be resolved. The first critical issue is to achieve the required process uniformity

over 200 to 300mm wafer diameters. In contrast to the nearly one-dimensional geometry of

a typical RIE etcher, high-density cylindrical sources can have length-to-diameter ratios of

order or exceeding unity [2.8]. Plasma formation in such geometries is inherently radically

nonuniform. The second critical issue is to achieve an efficient power-coupling across a

dielectric wall over a wide operating range of plasma parameters. The third issue is that the

degradation of and deposition on the wall can lead to irreproducible source behavior and

the need for frequent costly cleaning cycles. The forth issue is that the low-pressure opera-
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tion usually leads to severe pumping requirements for high etching rate, and thus to the

need for larger and costlier vacuum pumps.

For more detailed and quantitative description of these plasma etchers, one can

refer to Chapter 11 and 12 in the book of ^Trinciples of Plasma Discharges and Materials

Processing" by Lieberman and Lichtenberg [2.8].

2.4. In-Situ Sensors for the Etch Process

Bama et al. [2.14][2.15] state that any IC manufacturing tool requires three distinct

types of sensors to completely characterize the tool and its effect on the wafer: machine-

state (e.g., RF power, gas flow, pressure), process-state (e.g., plasma density, delivered

power), and wafer-state (e.g., etch rate, film thickness) sensors. Of these three sets,

machine-state parameters are the easiest to monitor and control. Usually, a closed-loop con

troller continuously adjusts machine parameters to preset targets. These types of sensor

readings are available in most modem etchers. In contrast, process-state sensor parameters

are dependent on both machine-state parameters and uncontrolledperturbationsin the sys

tem. This type of sensor has to be in-situ, real-time and non-intrusive. Wafer-state sensors

are often the most direct way to monitor the effect of the process on the wafer. However,

due to the scarcity of in-situ and real-time wafer-state sensors, an ex-situ and post-process

approach is typically used in manufacturing sites.Consequently, such sensor data can only

be used to provide run-to-runcontrol of the process. The typical approach being pursued

for in-situ control is to characterize the etch process using process state sensors, rather than

wafer-state sensors. A major roadblock to this type of real-time and in-situ control is the

complicated or sometimes, unclear relationship between process-state and wafer-state

parameters.

There are many different types of in-situ commercially available sensors that could

be used for monitoring the parameters specified in plasma etch [2.14], as listed in Table 2.3.
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Table 2.3

Commerciallyavailablesensorsfor plasma etch (modified from Ref,[2.14])

Monitoring Parameters Sensor Comments

Equipment state

Chamber/substrate tempo'ature

Pressure

Gas flow

Thermocouple

lonization gauge

Mass flow controll^

All these machine-state sensors

are commonly installed on the
commercial etchers by

equipment vendors

rfpower and coil power rf sensors

bias voltage rf sensors

Process state

Reactant concentration Optical emission
Laser-induced fluorescence

Mass spectroscopy

Standard technique
Not robust enough for production,

Installation e}q)ensive

Endpoint detection Optical emission
Residual gas analysis (RGA)

Routinely used
Time delay, expensive

Ion density Langmuir probe Intrusive

rf plasma parameters W/phase at multiple frequencies Difficult to correlate to specific
machine/wafM/process states

WafCT temperature Thermocouple
Pyrometer

Fluorescence

Wafer tempaature inferred
Emissivity and light interference

Intrusive probe

Wafer state

Etch rate (thickness) EUipsometer
Interferometer

Widely implemented on R&D
basis

Critical dimension (CD) Scatterometer Complex implementation

2.5. Optical Emission Spectroscopy

Optical emission spectroscopy (OES) is the most widely used optical analytical and

diagnostic instrument in plasma-assisted processing, where gas-phase species are promoted

to excited electronic states by collisions with energetic electrons. The emission processes

in OES is illustrated in Figure 2.4. It is important to note that only excited species in plasma

can be detected by OES, and thus the observed spectrum only gives information about the

excited-state density and does not directly reflect the ground-state population. The densities
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Figure 2.4 Schematic diagram of atomic emission spectrum

ofexcited-state species are typically < 10'̂ ofthe ground state density [2.8][2.9]. Further

more, whileemission from specific intermediates andproducts maydominate optical emis

sion spectra, emission from thechemically dominant species (e.g., etchant) and interesting

species (e.g., etch byproduct) may notbe observable. Still, when such emission is present,

OES has proven to bea very powerful tool and is routinely used tomonitor gas-phase pop

ulation during process development andfor endpoint detection during IC manufacturing.

2.5.1. Quantitative Description of Optical Emission

Basedon the assumption that the excited state is formed solelyby electronimpact

excitation and that this excitation occurs in a single step from the ground state, and that

emission must occur once the state is excited, optical emission intensity is written [2.9] as

I(Xij):=NPijAij(Xij)K (2.1)

where i indicates the ground state, j indicates the excited state, X^j is the transition wave

length between state i and state j, Nis the ground state density, Ay is the Einstein emission
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probability, AT is a correction factor which describes the effectof view volume and align

ment, and P is the electron impact excitation function which represents the probability of

exciting thestatej byelectron impact, starting from the groimd state. P is a complex func

tion of electron temperature 7^, and is given by [2.8]

P = (2.2)

where is the electron velocity, is the cross section for emission of a photon of wave

length X due to electron impact excitement, and is the electron distribution function

which depends on electron temperature and electron density [2.8]. It is also important to

note that the electron temperature is a monotonically increasing function of 1/Pr, where Pr

is the pressure [2.8][2.9]. Among these variables in Eq.(2.1), only the groundstate density

N and the electron impact excitationfunction P are dependent on the machine settings, and

only N is wavelength-independent.

2.5.2. OES Instrumentation

Optical emission spectroscopy involves the collection, spectral dispersion, and

detection of light. Typical experimental setups for OES are shown in Figure 2.5. Emission

from a specific volume in the plasma chamber is imaged onto the extrance slit of a spec

trometer by a series of UV-grade fused-silica lens and optical fiber.

The light can be dispersed by a diffraction grating system. One common design for

grating spectrometer is Czemy-Tumer arrangement [2.16], as shown in Figure 2.5. A

curved mirror images the source from the entrance slit onto a parallel beam that is directed

to the diffraction grating. A second curved mirror focuses that diffracted beam onto the exit
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Figure 2.5 Schematic illustration of the OES instrumentation

slit. The diffraction grating is commonly a square, of length L, with v grooves per millime

ter that run normal to the plane of incidence of light. The groove density determines the

spectral dispersion, which is given by a grating equation [2.17]

nik= i/(sin0^-sin0,) (2.3)

where m is the diffraction order, is the grooveseparation,and 0;„and 0j are the angles of

incidence and diffraction. The grooves are blazed to maximize first-order diffraction (m=l)

at a specified wavelength. The spectral resolution due to dispersion is given by [2.17]

w
(2.4)
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where w is the exit slit widths, and/is the spectrometer focal length which is the distance

from the exit plane to the last focusing mirror (also the distance from the entranceplane to

the first focusing mirror). It is also important to note that the efficiency of a grating system

and optical fiber is a function of wavelength. Therefore, the optical emission intensity

detected by OES is rewritten as

I(Xij) =NPijAijQ(Xij)K (2.5)

where Q(Xij) is a correction factor to account for the apparatus collection efficiency atthe

emission wavelength Xij.

The dispersed light can be detected by a parallel detector such as a photodiode array,

or a charged-coupled device (CCD) array detector. This technique can detect a wide spec

tral range without scanning the grating, thereby achieving a rapid data acquisition. How

ever, one potential disadvantage in using a parallel detection scheme is relatively low

spectral resolution when a broad spectral region is being monitoring at one time. Array

detectors often have 1000 to 500 pixels limiting the spectral resolution of an OES system.

That is, the spectral resolution of OES system is often limited by the light detector, instead

of the grating's groove density. For example, if the spectral range 250-750nm is monitored

with a 1000-channel detector, the maximum resolution is about 0.5nm, which may not be

satisfactory to reveal enough etch information. The spectral resolution can be improved by

examining a smaller spectral range with the same detector, or using a high-density CCD

array [2.16].

2.5.3. Actinometry

As mentioned, the observed intensity of a spectral line is not comparable to a mea

surement of the concentration of the chemical species associated with this spectral line.
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Therefore, actinometry [2.18] has been used to determine the quantitative concentration of

interesting species. Actinometry involves the addition of a known amount of a gas phase

species such as Ar to the discharge. The assumptions of actinometry are that the excited

state is formed only by single step electron excitation from the ground state, that the elec

tron velocity dependence of the cross section for this excitation is similar to that of the spe

cies of interest (see Eq. (2.2)), that the wavelengths of the two lines are similar, and that the

emission probabilities are truly constant. Under these circumstances, the variation of the

electron energydistributionfunctionwith featuresof the dischargelike pressure and power

can be compensated by taking the ratio of emission of the discharges of interest,Z, to that

of the inert gas, M:

~ c • — (2 6)

If isknown andIzand aremeasured, anabsolute value of canbedetermined. Even

if C is not known, the relative variationof //z withvariationof dischargeparameters can be

found.

2.6. Multivariate, Statistical Data Compression

Since typical sensor datasets contain many correlated variables (forexample, one

spectrum contains about a thousand correlated variables), it is not practical to use all of

them directly. Therefore, several statistical data-compression and multivariate regression

techniques are presented here to extract valuable information from these multivariate

sensorsignals and relatethesereduced dataset to the waferstates.

2.6.1. Principal Component Regression

A statistical method called Principal Component Analysis (PCA) is often used to

create a few statistically significant, uncorrelated weighted sums from the original corre-
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lated data [2.19]. PCA is used to explain most of the variance in the original data set by

only a few principal components (PCs). PCA transforms the input variables to a set of

orthogonal variables known asprincipal components, which arelinearcombinations of the

original variables [2.19]. Specifically, PCA decomposes a matrix X {I xJ)^ where there

are / measurements variables for I objects, into a series of R principal components

R

X = XZrPr (2-7)
1

wherePj. is the loading vector and Zj. is a score vector the coordinates in the trans

formed space). Since the covariancematrix of the original input matrixX is symmentric, it

can be decomposed into X^X=pAp^, where the diagonal elements of the A are the eigen

values which summarize the variances explained by the PCs, and the columns ofp are the

eigenvectors of the covariance matrix of X. The coefficients of the original variable are the

eigenvectorsp or loadings. The PCA transformation is often

(2.8)

where X has been scaled by subtracting from each colunm its mean and dividing by its

standard deviation. The transformed variables, Z, are the principal components of X or t-

scores. The ith principal component is

Zi^P^x (2.9)

The loading vectors p provide the directions with maximum variability. Typically, the first

few principal components can explain most of the variation of input data set (/.e., X). The

number of principal components retained in the model is sometimes determined by a

"scree" plot, which characterizes the proportion of total population variance explained by

the first R principal components where R is from 1 to the total number of observations.

26



Chapter 2

Another way to understand PCA is to illustrate it by a simple case, as shown in Figure 2.6.

The original axes Xj and *2 are transformed to a new orthogonal principal component axes

Zi and Z2' Becausezj explains most of the variation, we can sometimes visualize all data

points are along one axis (i.e. in a one dimensionalspace).

two dimensional space

Figure2.6 Principal component transformation in two dimensioned space (•
denotes data point)

Once this principal component analysis is complete, the reduced PC variables can

beused as theinput matrix for regression. This is called Principal Component Regression

(PCR). An overview of theseprocedures is shown in Figure 2.7.

2.6.2. Partial Least Squares Regression

T.iVft Principal Component Analysis, Partial Least Square Analysis (PLSA) is also

based on projecting the information in high-dimensional data spaces down onto low-

dimensional spaces, defined by a small number of eigenvectors, known as latent vari-

ables[2.20][2.21]. Thesenew latentvariables summarize much of the important informa

tioncontained in the original dataset.However, in the PLSAalgorithm, both the response
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Convert raw data to a two-dimensional
matrix (row=observations, column= variables),

Determine the covariance matrix of X,

XTX

Perform singular value decomposition for
X'^ to determine eigenvector

Retain the most significant eigenvectors whose
scores can explain the most of the variation of

the original dataset

Project centered data onto reduced set of
eigenvectors (Generally, the m dimensional data
are transformed to n dimensional space, m»n)

Estimate the wafer output parameters using
the reduced data set

Figure 2.7 The algorithmic flow of Principal Component Regression

variables (Y) and input variables (X) are used. The scaled and mean-centered X and Ycan

be decomposed as:

(2.10)
a = 1
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A

(2.11)
a = 1

where is the latent vector, E and F are the residuals, and and are loading vectors

whose elements w^j and q^j express the contribution of each variable Xj and yj, respec

tively. A common PLSA algorithm is summarized below and illustrated in Figure 2.8:

Step 1: Set u equal to any colunm of Y.

Step 2: Regress columns of AT on uto get loadings: = u^XAi^u.

Step 3: Normalized w to unit length.

Step 4: Calculate scores t = Xw/w^w.

Step 5: Regress the columns of Yon t: =t^Ylw^t.

Step 6: Calculate the new score vector for Y:u = Yqlq^q.

Step 7: Check convergence of u: if yes go to 8; if no go to 2

Step 8: Calculate Xmatrix loadings by regressing colunms ofXon t: =t^Xlt^t.

Step 9: Calculate residual matrices: E=X- tp^ ,F =Y- tq^

The total number of PLS components A) needed to extract the information

from X and Yis usually low (typically 2 to 5 in our application) and can be estimated by

cross-validation in order to prevent model overfitting. This is done by minimizing a crite

rion called theprediction error sumof squares (PRESS) [2.22] defined as

PRESS (2.12)
i = 1

where m is the total number of variables used in the model. The first few dimensions are

usually the most important and dominate the model. Hence, the final model of Eq.(2.11)

can be expressed in terms of the X data as the regression model:
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y = xp + F

where the matrix of regression coefficients is given by:

P= Wip^Wy'Q^

(2.13)

(2.14)

where W, P, and Q are the matrices whose columns are the vectors Pa

a=l,2,...,A, as defined above.

Figure 2.8 PLSA iteration
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CHAPTERS

Wafer-State Modeling Using OES for
Oxide Etch

3.1. Introduction

As indicated in Section 2.4, the lack of in-situ and real-time wafer-state sensors

leads to an effort of developing reliable models that relate the wafer-state measurements

(e.g., etch rate or etching imiformity) to variations in real-time process-state sensor read

ings so that the process-state sensor can be used as a "counterpart" of the wafer-state sen

sor. These models, so called Wafer-State Models, are needed in order to predict etch

behavior under a wide range of operating conditions to a high degree of precision. In this

chapter, we present a methodology to estimate several important post-etching wafer char

acteristics for the interconnect dielectrical etching process using OES sensor readings (see

Figure 3.1). All data acquisitions, measurements, and wafer fabrication were performed

on state-of-the-art plasma etchers in a high-volume IC production site.
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One challenge worth noting is that the spectral data are difficult to interpret using

conventional multivariate linear regression because of the large number of variables

involved. Consequently, Principle Component Analysis (PCA) and, alternatively, Partial

Least Squares (PLS) have been employed to compress the spectral data, and then relate the

reduced data set to the etching performances.

Source Power

Bias Power

Gas Flow

Temperature

Throttle

plasma

fjiMAT 53D&C€nmra[

Wafer State
Based Model

Output Wafer
Characteristics

- Etch Rale

• Uniformity

- ARDE

Figure 3.1 Waferstate modeling scheme using OES sensor readings.

3.2. Experiment to Link OES Signals to 0?dde Etch Variability

3.2.1. Data Acquisition

An SC Technologies optical emission spectrograph and controller were installed

on the Applied Materials 5300 Centura dielectric high-density plasma (HDP) etching

chamber at AMD's Fab-25. An optical fiber was mounted on the reactor viewport and

directed toward the entrance slit of an image spectrograph, as illustrated in Figure 3.2. The

grating system dispersed the incident light and projected the spectrum onto a photodiode

sensor array. Because there are 501 pixels on the photodiode array, we had the capability

to monitor the intensities of 501 different wavelengths simultaneously during the etching
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process. The control of this system and the subsequent data conversion and analysis were

done on an IBM 486 PC and Sun SPARC-20 workstation, respectively. The S-plus com

mercial software package was used for the statistical analysis. Since the intensity ratio

between the main C and F lines is strongly related to the etching performance [3.3], the

spectral data was acquired in the 200 to 500nm range in order to ensure that most of the

C^Fy spectral features were monitored. In this study we used the 600 groove/mm grating

with a 0.6nm/pixel resolution and an acquisition time of less than one second per frame.

For each wafer, five spectral frames were collected throughout the 150 seconds of

the main etch step. The signals collected during the main etch step fluctuated whenever the

RF power was applied or removed. The unstable features caused by these transient effects

must be removed before any further statistical analysis. In this work, the OES data sets

were selected by choosing the third spectrum which was collected at about the 80th sec

ond of processing for each wafer, that is, only one spectrum was used for each wafer (i.e.,

sampUng rate is only one per wafer).

photodiode
array

Roof Temperature (~270°C)

Plasma

-.Bias RF ^
— electrical chuck

^ -10°C
1.8MHz

Source RF

2MHz

('-220°C)

Figure 3.2 Schematic illustration of the experimental set-up on AMAT 5300 oxide
etcher
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0.55pim

—*1 h~
1 1.35nm

''' '' ^ ^ TEOS
t

2.7pm

Bulk Si T
Figure 3.3 Cross section of the test structure for a monitor wafer.

3.2.2. Experimental Design

A designed experiment was conducted in order to develop the wafer state models.

The experiment was a five-factor, 26-run central composite design, in addition to four cen

ter points [3.4]; this is a resolution V design without blocking. The input variables in this

experimental design were source power (Watts), bias power (Watts), €2?^ flow rate

(seem), roof temperature (°C), andthrottle opening ratio (%). Thedeviations fromthe cen

ter values of the input settings used in this experiment were about +/-15% (see Table 3.1).

The nominal values of input settings are the typical recipe for interconnect dielectrical

etching. This range of input settings provides sufficient range of real-time data and output

wafer responses. Thirty 8-inch monitor wafers used in this experiment were covered with

2.7pm TEOS and 1.35pm photoresist (see Figure 3.3) pattemed and developed for narrow

line openings. In-line sensor data were captured during the processing of each wafer and

the responses were measured for each run. The output wafer measurements the

responses ofthis experiment) were oxide etch rate, oxide etching uniformity^ aspect-ratio

dependent etching^ (ARDE) near the center of the wafer, and ARDE near the edge of the

1, Within-wafer unifonnity is defined as (Standard deviation of etch rate over 17 selected sites on wafer)/
(Average of etch rate over the 17 sites on wafCT)xlOO.

2. Aspect-ratio dependent etching (ARDE) is determined from SEM picture readings and is defined as 100
X(Depth of contact hole - Depth of open area)/(Depth of contact hole)
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wafer. Film thickness was measured both pre- and post-etch on the Prometrix UV 1050 at

17 points on each wafer; etch rate and uniformity were calculated from these thickness

measurements. ARDE values were determined from SBM photographs. Due to some sen

sor failures, only 29 out of 30 wafers were included in the analysis that follows.

Table 3.1

Change in Percent from Nominal

input

variables

Source

(Watts)
Bias

(Watts)
C2F6 flow

rate

(seem)

Roof

Temp (°C)

Throttle

(Percent)

central point 2600 1600 30 270 65

change in
percent from

norminal
11.5% 12.5% 33.3% 3.7% 53.8%

3.3. Modeling Results

Since the typical OBS data set contains 501 correlated variables in each spectrum,

it is not practical to use aU of them. One notable challenge is to decide which wavelengths

should be chosen to represent the entire set of OBS variables. Several data filters are intro

duced in this study. The easiest method is simply to filter the wavelengths based on spec

tral identification prior to the data analysis. Additionally, Principal Component Analysis

(PCA) and Partial Least Squares (PLS) are two statistical multivariate data reduction tech

niques for compressing a large number of variables down to a small number (<10) of

orthogonal variables, as described in Section 2.6. These reduced variables can be then

used as the input matrix for a regression model. Ordinary Least Squares Regression

[3.7][3.8] has been employed to relate the three reduced OBS data sets to the etching per

formance. All three methods have been applied in this study, and they will be discussed in

some detail next.
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3.3.1. Regression models using the intensities of the pre-selected wavelengths

A typical optical emission spectrum acquired from the Applied Materials 5300

with C2F6 etchant is shown in Figure 3.4, along with the corresponding chemical species

associated with chosen spectral lines. Only those spectral peaks associated with the impor

tant plasma species are chosen as the input variables for regression modeling. An F-distri-

bution test is also employed in order to confirm whether these intensities vary significantly

during the experiment This test compares the variance of the real-time signals collected

from the factorial experiment and those collected from the baseline runs {Le., center points

of the DOE). Those variables that have a substantial variation relative to the baseline data

are considered to be sensitive to the equipment settings. More specifically, the F-statistic is

calculated by

CNorHe

2000 2500 3000 3500 4000

wavelength(Angstrom)

4500 5000

Figure 3.4 A typical spectrumcollectedfrom the AppliedMaterials5300 during the
main etch (etchant is C2F6) with spectral lines labeled with theircorresponding

species.
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where is the estimated variance of the signals collected during the factorial experi

ment, ^ctAs the estimated variance of the signals collected during the centerpoint runs, a

is the probability of type I error (/.e., the probability that a process producing acceptable

values of a particular quality characteristics will be rejected as performing unsatisfacto

rily), Va// signifies the degrees of freedom in the factorial experiment, and signifies the

degree of freedom in the centerpoint runs. In our case, is 29 and Vcq. is 3. Those wave

lengths having high F-test values are determined to have statistically significant variation.

Using this approach, we selected eight particular wavelengths representing the dominant

chemical species, listed in Table 3.2, as the input variables for building regression models.

Table summarizes the modeling results for different wafer responses. The results

reveal that OES signals have a strong correlation with oxide etch rate and uniformity

because of good values^ (greater than 0.8), while the OES signals can only explain

50% of the variation in ARDE. Nonetheless, despite the high R^ value, the models result

ing from this method are not suitable for the purpose of prediction. This is because the

high degree of correlation among these input OES variables induced a multicollinearity

problem, and as a result, the prediction capability of the model could be very poor [3.5].

For example. Figure 10 displays typical wafer-to-wafer time series of intensities for three

different wavelengths (i.e. 251, 288 and 440nm). It apparently shows a strong correlation

among these three variables. As a result, in the model of oxide uniformity, the correlation

between coefficients of first and second variables is 0.8892, so they are almost correlated.

Moreover, we only select eight wavelengths and ignore the rest of the OES variables in

3. The value of the statistic is a common measure for regression model goodness of fit. It is a measure of
the proportion of total variationexplainedby the regression model. A perfect model fit is indicated by an

statistic of 1.
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A, = 251nm

X = 288mn

w«f«r numtor

A
X = 440nm A

/V^ y
Figure 3.5 Wafer-to-wafer plots of intensities for three differentwavelengths

(upper: 251nm, middle: 288nm and bottom:440nm)

this OLSR modeling. This assumption might not be true and may result in incomplete

models. In order to overcome theseproblems, otherstatistical methods including PGRand

PLSR are used as alternatives.

Table 3.2

The distinct wavelengths selected for the ordinary least squares regression model.

wavelength(nm) possible species

248 CF

251.6 CF2

258 CF2

288 CF2

385 CNorHe

437 C2

440 SiF

467 C2
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Table 3.3 ANOVA Tables of OLSR models for all responses

Response: Oxide Etch Rate

Source DOF SS MS F

Regression 8 38363120 4795390 18.11299

Residual 20 5294974 264749

R^ = 0.88; Adjusted R^ = 0.834

Response: Oxide Etch Uniformity

Source DOF SS MS F

Regression 8 94.88443 11.86055 40.52149

Residual 20 5.85396 0.29270

= 0.942; Adjusted = 0.92

Response: ARDE_Center

Source DOF SS MS F

Regression 8 6247.014 780.8767 3.234707

Residual 20 4828.115 241.4057

R^ = 0.56; Adjusted R^ = 0.392

Response: ARDE_Edge

Source DOF SS MS F

Regression 8 2868.347 358.5434 4.498748

Residual 20 - 1593.97 79.6985

R^ = 0.643; Adjusted R^ = 0.507^

a. This is a modified version of the statistic which considers the number of param

eters ofthe model and is given by AdjR^ = 1- [1-R^]—^, whwe n is the
n —p

number of obsCTvations and p is the number of parameters.

3.3.2. Regression models using PCA reduced variables

As detailed previously in Section 2.6, PCA reduces the dimensionality of the data

projecting them onto a low-dimensional space and converting them into a uncorrelated

data set. One importanttask is to determine howmanyprincipal components (PCs) should

be retained in the model. An empirical method is to make a screeplot which indicates the
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HMM WUmiaii o.aeG o.9ei o.oes 0.997 0.999 0.999 0.999 1

" PcT PC3 PC4 PC5 rc6 PC7
Figure 3.6 Scree piot oi me pnncipai componem analysis oi aaia ^me numDer
shown on the top of each bar indicates the cumulative summation of their explained

percentage of variations of total OES data)

percentage of variation explained by each principal component in the study [3.6]. We

found that seven PCs are adequate to explain 99.9% of process variation (see Figure 3.6.).

The loading plots of the first seven PCs (Figure 3.7) reveal that these PCs consist

mostly of contributions from only 10-20 spectral peaks. The rest of the wavelengths have

only negligible weights in the PCA modeling, which agrees with our previous observation

that only 10-20 spectral lines among the 501 monitored wavelengths can be related to the

variation of the process outputs.

Using the seven PCs with the largest eignvalues, the PCA models can explain 85%

and 95% of the variation in etch rate and uniformity, respectively. Also, an of 0.65 is

achieved for the ARDE models. Table 3.4 summaries the variability of the predictors (i.e.,

OES signals) and responses (i.e., wafer-state measurements) explained by the principal

components. The results reveal that the 2nd, 4th, and 7th PCs explain the most of variabil

ities of oxide etch rate and uniformity. By contrast, the 2nd, 5th, and 6th PCs are more

related to ARDE. The loading plots (Figure 3.7) indicate that CF2 lines, especially for

258nm and 288nm spectral lines, are more responsible features than SiF lines.

Since only a few PCs show a strong correlation with wafer states, one variable

selection technique based on the student-t test at the 0.05 significance level is conducted to

reduce the number of PCs used for principal component regression modeling. The results
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show that only 4, 5, 3, 5 PCs are sufficient to explain oxide etch rate, uniformity,

ARDE_center, and ARDE_edge, respectively. Table 3.5 summaries the ANOVA tables for

the models based on these selected PCs.

r

IslPC

3500

wav«lwigOi(Af>S*t'om)

2nd PC

3600 4000

wav«l«ngth(Ang*troin)

3rd PC

3600

wav*lw«0)(Angstiom)

4th PC

3600

w«v*l«noO)(Ano>lrom)

eth PC

7th PC

Figure 3.7 The loading vectors of the first seven principal components
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Table 3.4

Proportion of predictor and response variability explained by principal
components (Bold: the PCs selected for PGR models)

X Y(etch rate) Y(iiniforniity) Y(ARDE_cen) Y(ARDE_edg)

Explained by

Zj 82.8% 12.5% 15.6% 1.22% 3.3%

Z2 14.8% 55.1% 61.8% 40% 36%

Z3 1% 0.5% 0.65% 2% 5.8%

Z4 0.5% 9.4% 5.7% 0.5% 0.2%

Zs 0.4% 0.04% 5.5% 8.5% 8.5%

Z6 0.2% 1.3% 0.45% 9.1% 12.2%

Z? 0.2% 9.8% 6.45% 0.68% 11.2%

Unexplained 0.1% 11.3% 3.7% 38% 25.8%

Table 3.5

The ANOVA Tables for PGR models of all responses.

Response: Oxide Etch Rate

Source DOF SS MS F

Regression 4 37918939 9479735 39.64236

Residual 25 5739155 239131

R^ = 0.87; Adjusted R^ = 0.85

Response: Oxide Etch Uniformity

Source DOF SS MS F

Regression 5 95.86826 19.17365 90.55085

Residual 24 4.87013 0.21174

= 0.951; Adjusted = 0.94

Response: ARDE_Genter

Source DOF SS MS F

Regression 3 5421.432 1807.144 7.990983

Residual 26 5653.697 226.148

r2 = 0.49; Adjusted R^ = 0.43
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Response: ARDE_Edge

Source DOE SS MS F

Regression 5 3154.624 630.9248 11.09685

Residual 24 1307.692 56.8562

R^ = 0.71 Adjusted R^ = 0.65

3.3.3. Regression models using PLS reduced variables

PLS can also reduce the number of terms in the final model. The main difference is

that while in PCA the transformation is only dependent on the variability in the input

matrix X (i.e., OES data), in PLS the transformation depends on both the input X and the

response Y (i.e., wafer state measurements). To determine the appropriate number of vari

ables to retain in the modeling, we minimize a criterion called prediction error sum of

square (PRESS) (see Eq.(2.12)). These minimized PRESS statistics indicate that 2-6 vari

ables (dependent on the different wafer responses) are sufficient to describe the input data

and then used as the regressor for the wafer responses. Figure 3.8 shows the plots of

PRESS versus the number of variables used in PLSR models. Like PCA, the results of

PLS modelsexhibitgood R^ values for oxideetch rate and uniformity, and only moderate

R^ values for ARDE. Table 3.6 shows the ANOVA summaries of these PLSR models.
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Figure 3.8 The plots of PRESS for all wafer responses (a) oxide etch rate; (b)
uniformity; (c) ARDE at center; (d) ARDE at edge

Table 3.6

The ANOVA tables of PLSR models for all responses

Response: Oxide Etch Rate

Source DOF SS MS F

Regression 5 39026329 7805266 38.75869

Residual 23 4631765 201381

R^ = 0.894; Adjusted R^ = 0.872

Response: Oxide Etch Uniformity

Source DOF SS MS F

Regression 5 96.99312 19.39862 119.1285

Residual 23 3.74527 0.16284

R^ = 0.9628; Adjusted R^ = 0.955
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Response: ARDE_Center

Source DOF SS MS F

Regression 2 4697.992 2348.996 9.577

Residual 27 6377.137 245.275

R^ = 0.42; Adjusted r2 = 0.38

Response: ARDE_Edge

Source DOF SS MS F

Regression 3 2849.2 949.7351 14.719

Residual 26 1613.11 64.5244

R^ = 0.64; Adjusted R^ =0.6

A flow chart of the modeling scheme using the OES signals is illustrated in

Figure 3.9.

3.4. Discussion

As indicated in the previous sections, an OES sensor can capture the wafer-to-

wafer variations of the oxide etch rate and uniformity. This can be explained as follows:

oxide etch is essentially an ion-bombardment sputtering process, as mentioned in Chapter

Wafers

Real-time
Signals

Post-Measurement

using ProMetrix & SEM

DataReduction

F-distribution

PGA

PLS

output

i
Responses

/(OES)

T
input

Figure 3.9 The flow chart of wafer state modeling
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2. The oxide etch rate is dependent on the ion bombarding activity, and thereby relates to

the ion energy (controlled by bias power) and ion flux (controlledby source power and gas

flow). Because optical emission intensity of discharge is strongly related to source and

bias power levels as indicated in Section 2.5, OES sensor are capable to capture the

changes of ion-bombardment behaviors and thus explain oxide etch rate variations.

The overall limited success in predicting ARDE from OES signals might be due to

several reasons. First, ARDE is only measured at two separate sites on each wafer (one is

in the center and another is in the edge). It may be insxifficient to represent the entire

wafer. Secondly, the ARDE measurements are conducted by an off-line cross-section

SEM micrographic readings, and thus may not be accurate. Thirdly, ARDE is not only

related to the ion energy/flux, but rather related to the polymer forming, and chamber wall

and roof temperatures (NOTE: polymer deposition is extremely sensitive to the wall/roof

temperatures [3.9]), which may not be revealed by the OES sensors.

Table 3.7 gives a comparison of all three data reduction and modeling methods. It

shows the number of variables used in each rnodel and the performance of each model in

terms of adjusted R^ values. Thiscomparison reveals that performance of PLSRis similar

to that of PGR.

It is also important to examine the role of scaling in the OES data sets. Scaling usu

ally plays a vital role for the data files with different scale or unit However, in the OES

data file, most of the data (say, 60-70%) appear to be noise. Scaling, as a result, could give

equal weights to the noise features as that for meaningful spectral features, and thereby

degrade the R-square value of the model. For the good models with a high correlation

between response and OES data such as etch rate, the use of the scaled X matrix could

result in a worse R-square than unsealed X matrix does. For the models with low correla

tion (R^<0.6), scaling does not show any significanteffect on R-square.
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Summary of the results of chamber state models.

Ch^terS

Response: Oxide_BR Response: Oxide_Uniformity

Data reduc

tion method

#of

input
vari

ables

R^ Adj. R2 Data reduc

tion method

#of

input
vari

ables

R2 Adj. R^

Species

Identification

8 0.88 0.834 Species

Identification

8 0.94 0.92

PGA 4 0.87 0.85 PGA 5 0.95 0.94

PLS 5 0.9 0.872 PLS 5 0.96 0.955

Response: ARDE at center Response: ARDE at edge

Data reduc

tion method

#of

input
vari

ables

R2 Adj. R2 Data reduc

tion method

#of

input
vari

ables

R2 Adj. R2

Species

Identification

8 0.56 0.392 Species

Identification

8 0.64 0.507

PGA 3 0.49 0.43 PGA 5 0.74 0.66

PLS 2 0.42 0.38 PLS 3 0.64 0.6

3.5. Summary

Run-to-run chamber state modeling using real-time OES signals is effective in cap

turing the process variation and explaining the final wafer characteristics, especially for

oxide etch rates and their within-wafer uniformity. In this chapter, three data reduction

techniques are compared. First, Ordinary Least Squares Regression is performed on wave

lengths selected based on species identification. Two other modeling techniques. Principal

Component Analysis and Partial Least Squares were also introduced to eliminate the cor

relation among input variables and reduce the input matrix size. The resulting models of

oxide etch rate and within-wafer uniformity were very good in the sense that 85% of the
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etch rate variation and more than 95% of uniformity variation were explained by these

models. However, only less than 60% of ARDE variation can be captured by OBS signals,

which might be due to the inaccmacy of ARDE measurements or/and the insufficient

information collected by OES. No modeling technique is overwhelmingly better than the

others, in terms of their R^values. Nevertheless, PLSR generally involves a more complex

computation, and therefore is computationallyexpensive.
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CHAPTER 4

Wafer-State Modeling Using OES for
Metal Etch

4.1. Introduction

In this chapter we examine the optical emission spectra collected from a commer

cial transformer coupled plasma (TCP) high-density plasma (HDP) metal etcher at Texas

Instruments (TI) under various machine input settings. Our goal is to describe the relation

between emission intensity variations and machine parameter variations and, most impor

tantly, the relationship between emissionvariationand wafer state variation, as illustrated

in Figure 4.1. These optical emission spectra collected during aluminum etch and over etch

of the underlying oxide can be employed in combination with several statistical and phys

ical techniques to model the wafer states such as etch rate and critical dimension (CD), and

machine states such as coil power and chamber pressure.

4.2. Experiment to Link OES Signals to Metal Etch Variability

This work was conducted on a commercial Lam 9600 TCP metal plasma etch tool

with BCI3/CI2 etchant. The experimental wafers have a 200A TiN/6000A Al-0.5%Cu/
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200A TiN/Si02 stack covered by patterned photoresist with 0.5|im linewidth (see

Figure 4.2). The main etch process was terminated by the intensity drop of the AlCl spec

tral line (A^262nm) detected by an interference filter endpoint system, followed by a timed

over-etch process for the underlying TiN and Si02 layers. Several sensors were monitored

in this project, including machine-state sensors such as pressure, gas flow and power sen

sors, and process-state sensors such as OES. The machine-state sensors were built into the

etcher tool to collect the available machine data at an acquisition rate of IHz during the

processing of each wafer. A Chromex spectrograph with a Princeton Instrument 1024 x

256 CCD camera was used in this study to obtain the temporally and spatially resolved pro

cess-state information. Three optical fibers are connected between the reactor viewport and

the spectrograph. The spectrograph is set up to view the plasma across three distinct

regions arranged laterally above the wafer being etched. The spectrograph was configured
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Figure 4.2 The TiN/Al-Cu/TiN/Oxide stact (a) beforeetch, and (b) after etch.

with a split grating, which enabled the entire spectrum to be imaged onto the CCD in two

separate stripes per beam. This split grating provides the desired bandwidth/resolution

combination without having to mechanically scan the grating. In thisexperiment, the spec

tral data collection was performed at an acquisition rate of 0.33Hz (i.e., 3 second cycle

time). Each spectra has 2042 intensity values in the 245 to 520nm and 530nm to SOOnm

range, corresponding to a spectral resolution of less than Inm. A typical optical emission

spectrum acquired from the etcher is shown in Figure 4.3, along with the corresponding

chemical species associated with chosen spectral lines.

Sinceone goal of this effortwasto explain the plasmaetchprocess for a widevari

ety of process conditions and across a widerangeof setpoints, an experimental designwas

created to span the range of setpoints of interest. A blocked, five-level central composite

experiment was conducted on70wafers forthefivevariables: TCPcoilpower(Watts), RF

bias power (Watts), pressure (mTorr), total gas flow (seem), and C2/BCI3 ratio. The devi

ation from the nominal values of the input settings used in this experiment was +!-
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Figure 4.3 The identification of the optical emission spectra collected from a Lam
9600 TCP metal etcher (etchant: CI2/BCI3)

10-20%. Severalwafer-stateparameters weredeterminedafter the etch process:Electrical

critical dimension (CD) measurements were taken on a Tokyo Seimitsu tool for the alumi

num linewidth after etch process (see Figure 4.4(a)). The oxide lost during the over-etch

process was determined by the difference in oxide thicknessmeasured after oxide deposi

tion and after etch (see Figure 4.4(b)). As a result, oxide etch rate was calculated as the total

oxide loss divided by the oxide etch time (determined by the endpoint trajectory), from

which we determined the oxide etch rate. Both oxide loss and CD were measured for each

of the 32dies on the wafer.Dueto severalsensorandmeasurement failures, only51 wafers

were used in this analysis. In the following sections, "CD" is used to represent the post-

etch aluminum linewidth, and "oxide etch rate" is used to represent the over-etch rate for

the undemeath oxide layer.
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Figure 4.4 Typical contour plots of (a) aluminum CD measurements; (b) oxide loss
measurements, (the unit of the contour plots is angstrom)

4.3. Data Pre-Processing

The variation of OES data at one wavelength has two components: temporal vari

ation (due to the optical emission intensity changes over time), and spatial variation (due

to theintensity difference of three spatially-resolved spectra at thesame spectral line). In

this chapter, we only consider the temporal variation without taking into account thespatial

variation among the three beams of OES signals in order to simplify the analysis. The

details of using the information of the spatial variation and temporal-spatial interaction

variation will be addressed in the later chapters.

4.3.1. OES Temporal Variation

A typical temporal trajectory of optical emission at the C1 line (725nm) from one

wafer is shown in Figure 4.5. Note thatit is a three-stage process. Stage 1 is themainetch

of the A1 layer terminating by the machine endpoint detector (operating at 261nm, Le.y

AlCl line), stage2 is a briefover-etch process for the underlying thin TiNlayer, andstage

3 is an over-etch process for the underlying oxide layer. While described in different
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stages, it is important to note that this is a single recipe etch process, that is, the process

recipe is identical during stage 1 through 3. This within-wafer temporal profile is due to the

fact that different amounts of chemical species are generated or consumed throughout the

etch process. Figure 4.5 also clearly shows that the within-stage variation is much smaller

than the stage-to-stage variation. Therefore, the optical emission intensity during the alu

minum etch (stage 1) and the oxide etch (stage 3) for each wafer is approximated by the

average of emission intensity over stage 1 and stage 3, respectively. (The TiN etch stage is

ignored in this study)

C:.
S-

s.

! A1 etch

V

1

'TiN etch

10 15 20

etch time(unitB3 sees)

oxide etch

Figure 4.5 The temporal trajectory of optical emission intensity for one
w^er at the C1 line

In addition, because each wafer was intentionally processed under different

machine settings, wafer-to-wafer variation of sensor signals is much larger than within-

wafer variation for each etch stage. Therefore, in the following sections, we model the

wafer-to-wafer variationat selected wavelengths for the selected stage of the etch process.

For instance, the wafer-to-wafer variation for the emission intensity at selected wave

lengths for the oxide etch (i.e. over etch) stage can be examined to see whether it is affected
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by the wafer-to-wafer chamber pressure, TCP coil power variation, or other process vari

ables.

4.3.2. OES Variable Selection

One challenge worth noting is how to decide which wavelengths should be chosen

to represent the entire set of OES variables in order to determine the temporal variation.

Different wavelengths (corresponding to different chemical species and different excited

states) may reveal totally different temporal profiles. Therefore, much effort has been

devoted towards choosing the appropriate spectral lines to represent the entire spectrum.

We tried two separate approaches. First, only the wavelengths associated with identified

chemical species (e.g., Cl, BCl, and Al) shown in Figure 4.3 are chosen as the input vari

ables for the following regression model. Second, a statistical spectral compression tech

nique, based on principal component analysis (PCA)[4.1], is employed to extract the

variance of the original spectral data using only a set of principalcomponents (PCs)[4.1].

PGA often reveals relationships that were not previously suspected and thereby allows

novel interpretations, as demonstrated in Chapter3. As mentioned in Section2.6, PCA can

find a new coordinate system obtained by rotating the original system, and the new axes

represent the directions with maximum variability. In a sense, PCA captures the wave

lengths which give the highest intensity variability and describes their linear combination
a

as principal components [4.1].

These PCs contain most data variance and are used as the input matrix for model

ing. It is important to note that although this PCA technique lacks the insights of spectral

identification, it is sufficient to extract the spectral Unes giving the most variance by taking

the lines with the greatest amplitudeson the loading plots. The objective of this regression

modeling is to explain the wafer-to-wafer variation (that is, the OE at one wavelength for

one wafer compares with the OE at the same wavelength collected from other wafer). As

long as the PCs capture the wafer-to-wafer variation of the plasma emission, this informa-
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Figure 4.6 C1line intensity versus machine settings (each line denotes the fitted
linear regression model)

tion is sufficient to explain the corresponding wafer state variation. The details of the PCA

algorithm are described in Chapter 2.

4.4. Results

4.4.1. Relating OES and Machine Variables

The first aspect of this work is to model the temporal mean of OES trajectories

using the machine parameters collected by the machine-state sensors. We first select four

spectral lines including 262nm(AlCl), 272nm(BCl), 396nm(Al), and 725nm(Cl) to repre

sent the entire spectrum. A least-squares linear regression model is determined (y = OES

intensity, x = machine settings) and a student-t test [4.2] is used to examine the significance

of each machine variable. The results show that more than 96% of the emission intensity

variation for either oxide etch or A1 etch is simply explained by three machine parameters:

1/pressure, TCP coil power and bias power. In fact, 70-85% of emission intensity variation

can be explained by the TCP coil power variation alone, whereas gas flow, and CI2/BCI3
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ratio have a negligible effect on the emission intensity. Figure 4.6 displays theeffects of

machine parameters onthe optical emission intensities. Similar modeling results areshown

in Section 4.4.2 for the OES data reduced by PGA.

It is worth noting that the correlation between emission intensities and TCP coil

power is a weak function of wavelengths, as shown in Figure 4.7. In other words, the

enhancement or reduction of emission intensities is strongly sensitive the TCP coil power,

rather than their corresponding chemical species. This will be addressed in the following

sections.

4.4.2. Relating OES and Wafer-state Variables

The second aspect of this work is to model the spatial mean of the wafer-state

parameters such as etch rates or CDs as a function of their corresponding OES signals

acquired from one wafer without taking into account the spatial variation of wafer-state

60



Chapter 4

lO
CO

.•e ^
§ lO

i s
S

10 20 30

wafer order

wafer-mean of oxide etch rate

OES intensity

40 50

Figure 4.8 The wafer-to-wafer trajectory of oxide etch rate and emission intensity
values from C1 line

measurements. The results show that the oxide etch rate can be easily modeled by four selected

wavelengths (adjusted R-square - 0.9) with a residual standard error (RSE) ofonly 1.1A/sec (the

average oxide etch rate is about 18.4A/sec), whereas only an adjusted R-square of 0.036 is

achieved for aluminum CD using the same wavelengths, corresponding to a RSE of 0.014|jm.

Figme 4.8 shows that the variations in emission intensities are strongly dependent on oxide

etch rate even though only one spectral line, X=500nm (which is not a distinct feature as shown in

Figure 4.3) is used to represent the entire spectrum. This suggests that the changes of oxide etch

rate in this etching condition can be fully explained by emission brightness changes (R^ > 0.9)

regardless of the chosen wavelength's corresponding chemical species. In other words, the

observed correlation between oxide etch rates and emission intensities is almost independent of

wavelength.

The models are slightly improved if we use a PGA reduced OES data set as input variables.

A student-t test at the 0.1 significance level is used to select the principal components which should

be retained in the model to explain the variation of wafer-state measurements. This significance

test is conducted for the modeling of the oxide etch rate. Four PCs are selected and the resulting

oxide etch rate RSE isonly 1A/sec, corresponding toan adjusted R^ of0.94. However, the wafer-

to-wafer variation of the spatial CD mean is still poorly explained by the PCA-^based model. An
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Figure 4.9 Oxide etch rate versus machine settings (each line denotes the
fittied linear regression model)

adjusted of 0.43 is achieved for the model, which relates aluminum CDs to OES sensor

signals, corresponding to a RSE of 0.01 l|im.

4.5. Discussion

As indicated in the previous sections, in aluminumetch, optical emission intensity

is primarily dependent on TCP coil power, and the effects of pressure and RF bias power

are less significant. This can be explained as follows: despite the fact that the increase of

pressure {Pr) can enhance the ground state density N as shown in Eq.(2.1), P in Eq. (2.1)

tends to drop since the electron temperature decreases with decreasing 1/Pr [4.5][4.6].

Therefore, the optical emission intensity 7 («= AT and P) is less sensitive to the change of

pressure. On the other hand, since electron density is proportional to TCP coil power [4.5],

the increase of TCP coil power leads to a higher P (electron impact excitation function) in

Eq.(2.2). Moreover, a higher concentration of neutrals can be achieved by increasing the

TCP coil powerdue to increased dissociation of the BCI3. Therefore, the higherTCP coil
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power tends to increase both N and P, resulting in an increase of emission intensity. This

hypothesis is strengthened by Figure 4.7: since TCP coil power controls the emission

intensities for all wavelengths, the correlations between TCP coil power and emission

intensities show little dependence on wavelengths.

Oxide over-etch in this experiment is mostly an ion-enhanced process since low

pressure (favors higher ion bombardmentenergies) and high TCP power (favors higher ion

flux) are used to enhance oxide etch rate. By contrast, in the case of a chemically driven

process, such as aluminum etch, the concentration of neutral etchant (in this case, the neu

tral etchants are CI2and Cl) is the key factor for determining the etch rate. Because neutral

etchantscan also be generated through the dissociation of BCI3, higherpressure(moreCI2

and BCI3) and higher power (more BCI3 dissociation) can both lead to an increase in the

concentration of neutral etchant.

It is relatively straight forward to explain the poor correlation between CD and OES

signals. First, since CD is a complex function of pressure, etchant concentration, wafer

temperature, and power (favors the reaction between etchant and photoresist so generate

polymer), a linear statistical modeling technique may not be sufficient to explain CD

behavior, as is also suggested by White et ai'[4.3]. Secondly, CD variation is usually an

accumulation of the variation from the previous lithography and thin-film deposition pro

cesses, as well as the inhibitor-driven etch process. Because there is no pre-etch CD mea

surement available in this experiment, we are imable to decompose the final CD variation

into lithography-induced CD variation and etch-induced CD variation. Yu et. al [4.4] have

also concluded that CD variation is mostly attributed to the lithography step, rather than

etch step. Because the OES signal only captures the variation due to plasma-induced fluc

tuation, it is incapable to describe the total CD variation. Lastly, CD variation is not only

related to the plasma intensity, but is also a function of over-etch time. In this work, the

influence of over-etch time has not been considered.
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4.6. Summary

In this chapter we have demonstrated that the variationof the measured wafer-state

parameters can be sufficientlycaptured by the measured OES only under certain circum

stances. Our results suggest the following: (1) optical emission due to the excited species

in plasma during A1 etchingis very sensitiveto the variationsof TCP coil power, while the

portions of etch rate variation driven by chamber pressure and other machine variables are

not captured well by the OESreadings; (2) the variation in oxideetch rate during over-etch

is mainly attributed to the TCP coil power change, and the brightness of plasma emission

is strongly related to the oxide etch rate; (3) the correlation between emission intensities

and oxide etch rates is not a strong function of wavelength; (4) the variation of OES signals

has a direct correlation to the oxide etch rate variation which is driven by ion energy/den

sity change. OES is less directly related to CD variation which is inhibitor controlled.

As such, a process-state sensor [4.7][4.8] such as OES will have a limited success

in capturing the variations of aluminumCDs. The success of wafer-state modeling is lim-
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ited by the nature of the physical and chemical mechanisms of the etch process, as well as

the sensor efficiency. Specifically, OES analysis is only able to capture the changes of

plasmavariables (e.g.,ion density, ion energy, andelectron temperature) whichmightnot

be the only causes of the etch variations, as illustrated in Figure 4.10. Hence,OES is more

able to capture the plasma-induced etch variation, rather than to capture the variation

induced by non-plasma factors (e.g., wafer temperature). Sensor fusion [4.7] (that is, the

integration of the signals collected by many different types of sensors) is thus needed to

enhance the correlation between the sensor signals and wafer-state variables. An in-sitUy

real-time wafer-state sensor may be the ultimate approach to provide a direct measurement

of wafer-states (e.g. CDs) for fault detection and process control.
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CHAPTERS

CD Modeling and Monitoring Using

SROES for Poly-Si Etch

5.1. Introduction

The variation of poly-Si critical dimension (CD) has a significant impact in deter

mining integrated circuit (IC) performance, because of possible device parameter drift and

circuit performance degradation introduced by CD non-uniformity. For example, the

microprocessor speed is a function of which is strongly correlated to gate CD [5.1]. In

this chapter, we develop a novel approach to describe plasma-induced poly-Si CD reduc

tion (also known as imdercut) and its spatial variability using the signals collected from a

spatially-resolved optical emission spectroscopy (SROES) system. A Chromex 250IS

Imaging Spectrograph along with a Princeton Instruments TE-CCD-1024E thermoelectri-

cal cooled CCD camera and an ST-130 controller is installed in the Berkeley Microfabri-

cation Laboratory, and is set up to view the plasma across three distinct regions arranged

laterally above the etching wafer. Three full-range spectra are collected simultaneously.
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Figure 5.1 A typical spectrum collectedfrom the Lam 4400 during the main etching
(etchant is CI2) with spectral lines labeled with the corresponding species.

As a result, the data sets collected by this SROES system contain spatial, temporal and

spectral information of plasma emission.

The separation of the statistical contribution of OES signals is a key step to deter

mine the spatial uniformityof CDs. However, it is not easy to directlyuse OES spatial and

temporal information because our OES sensors can only acquire signals in real-time from

three^ distinct regions, while CDs are measured off-line atmany different positions on each

wafer.

In Section 5.3, CD reduction is modeled using a compressed data set of OES with

out taking into account the spatial variation among the three beams of the OES signals. In

Section 5.4, we take advantage of the wealth of spatially-resolved and real-time data that

an OES system can provide to characterize the temporal and spatial behavior of the plasma

and to estimate the spatial variation of within-waferCD measurements. In other words, in

addition to establishing a model to describe the wafer-averageCD using OES intensities.

1. The number of beams used in this experiment is chosen after considering the hardware installation com
plexity, chamber geometrical limit, vertical CCD resolution, and possible acquired data size.
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Figure 5.2 Schematic illustration of three-beam spatially-resolved optical
emission spectroscopy

we also investigate the spatial and temporal emission profiles and relate them to the CD

spatial variances.

Although the optical emission intensities are changing from wafer to wafer, we use

the term, "OES temporal variation", to describe the variation of real-time DBS signals, col

lected from the duration of the etch process for one wafer in this Chapter. We also use the

term "CD" to describe the etch-induced CD reduction in the following sections.

5.2. Experiment to Link OES Signals to CD Variability

Three-beam in-situ SROES sensors have been installed on a Lam 4400 Rainbow

plasma etcher. The sensor readings are collected simultaneously throughout the etching

process at an acquisition rate of 1 Hz. We have chosen a 150 groove/mm grating in order

to monitor the.240nm to 790nm spectra with a resolution of 1.2nm/pixel, as shown in



Ch^tCT 5

Figure 5.1. Three optical fibers are connected from the spectrometer to the etcher reactor

viewport of a Lam 4400 polysilicon etcher. The spectrometer is set up to view the plasma

across three distinct regions arranged laterally above the etching wafer, as illustrated in

Figure 5.2. Each OES frame contains 3072 (1024x3) readings. Approximately 50 frames

are collected throughout the main etch process for each wafer. As a result, this SROES

sensorsystemprovides bothtemporal andspectral information in addition to limitedspatial

information.

The analysis that follows was based on a set of designed experiments. We used a

fractional central composite design with9 centerpoints, resulting in a totalof 37 runs. The

input variables for this experimental design are RF power, pressure, gap, total flow, and

Cl2/He ratio (see Table). The wafers are initially fabricated with apoly-Si film of 4500A

onbuffer oxide layer of1500A, before further lithography and etching processes are carried

out.The photomask was fabricated using a 2-micron design rule. Linewidths are optically

measured off-line both before and after the etching process with nine points recorded for

each wafer, as depicted in Figure 5.3. Once these measurements are complete, CD reduc

tion can be estimated by subtracting the poly-Si linewidth from its correspondingphotore

sist linewidth, see Figure 5.4. ElectricalCD measurementis also conductedfor the poly-Si

Beam 3

Beam 2

Beam 1

Figure 5.3 Top view of spatially-resolved OES
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linewidth to verify and calibrate the optical CD measurements. The spatial variance of CD

measurements for one wafer is defined as

X(CD,-CD)-
1 = 1

n-\
(5.1)

where i is the index of CD measurement ranging from 1 to 9, n=9 is the total number of

measurements^, and CD isthe "etch-induced CD reduction". Agauge study [5.2] was also

conducted to ensure adequate CD inspection capability. This study showed that approxi

mately 4.5% of the overall CD variation is due to measurement error, while the rest of the

variation is induced by the process.

^ GDI ^

Pre-etch • Oxide Post-etch

Figure 5.4 Cross sections of the test structures before and after etching (PR stands for
photoresist)

Table 5.1

Central Composite Experimental design - nominal and extreme settings

Design variables RF Power

(Watt)
Pressure

(toor)
Gap (cm) Total flow

(seem)

Cl2/He
ratio

Central settings 275 425 0.8 580 0.42

Change in per
centage from

nominal

14.5% 13% 12.5% 7% 7%

2. Only nine points were measured for each wafer in order to reduce the measurement time while retaining
acceptable spatial information., as shown in Figure 5.3
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5.3. Models of Average CD Reduction

This section describes the procedures of the data analysis for two different modeling

methods. To perform this analysis, all experimental data are transformedinto a matrix for

mat. Let a 37 X1 array Y= [y;, y2, and 2i31 x 1024 matrix X represent the sets

of CD measurements of 37 experimental wafers and the measured 1024optical emission

spectral channels corresponding to the37 wafers (that is, only onespectral frame for each

wafer), respectively. X^j is the value of the jih OES channel for the ith wafer, where i = 1,

2,..., 37 andj = 1,2, ...,1024, TheX and Ymatrices in this studyare not scaled.

5.3.1. Principal Component Regression Model

In thisanalysis, wefirstestimate thenumber ofprincipal components thatshould be

retained in the model by performing a screeplot analysis. Figure 5.5(a) shows that thefirst

4 principal components areadequate to explain 99.5% of process variation. We retain this

percentage of variance in order to ensure that some of the variation contributed from the

weak^ spectral lines isalso included by the selected principal components. Although many

weak spectral lines associated with the chemical species (e.g., SiCl) related to the etching

performance arerelatively weak asobserved inFigure 5.1, they might bephysically signif

icant and should not be neglected.

The number of principal components retained in the model can be also verified by

cross-validation. A Prediction-Error-Sum-of-Squares (PRESS) statistic is employed by a

jackknife routine [5.3] shown in Appendix A to confirm that4 principal components give

the least PRESS, as shown in Figure 5.5(b). It also shows that the inclusion of the 5th PC

significantly degrades the PRESS in this PGA analysis.

3. In comparisonto some of the strongestlines suchCI2.
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Next, these four principal components are employed in a regression model against

the original response Y. The model is

Yi = ZijPz = 0.66 +0.00052z,i - 0.0021z.2 +0.0014z,.3 - 0.000822,4, (5.2)

where i = 1 37. It is interesting to note that the 4th principal component has the highest

coefficient comparing with others. Also, the PGR of our OES data shows that the first prin

cipal component accounts for 88.3% of the total variability of the predictors, the second

principal component accounts for about 7.7%, the third one accounts for 3% and the last

one for 0.5%. However, the fourth principal component explains more variability in the

response than in any other principal components, as listed in Table 5.2. Therefore, one

should not expect principal components to explain variability in responses in the same

order that they do for the variables from which they are formed [2.19]. An account for the

variability of the predictors and responses explained by the principal components is given

in Table 5.2.
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Figure 5.5 (a)The screeplot of OES data; (b) PRBSS-statistics
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Table 5.2

Proportion of predictor and response variability explained by principal
components

X X Y Y

Explained by individual cumulative individual cumulative

Zi 88.3% 88.3% 0.5% 0.5%

Z2 7.7% 96% 35.8% 36.3%

Zs 3% 99% 2.7% 39%

Z4 0.5% 99.5% 28% 77%

Unexplained 0.005% 100% 33% 100%

Because the 2nd and 4th principal components appear to reveal a strong effect on

the responses, it ntightbe worth to see the loading plots (fg., the coefficients of the original

variables) of all four components so as to distinguish the important spectral lines which

might be related to the etching performance. Figure 5.6 indicates that 387nm, 500nm,
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Figure 5.6 Loading plots of the first 4 principal components (the spectral lines
marked are difficult to observe in the original spectrum)
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583nm, 663nm and 703mn peaks are the most significant features, although they are not

revealed by observing Figure 5.1. PGR, in this case, in useful in filtering the spectral data

so as to identify the features which are difficult to observe in the original spectrum, as cir

cled in Figure 5.6.

The prediction error sum of squares (PRESS) ofthis fitted model can be determined

by a jackknife iteration [5.3]. The result shows that the value of PRESS of this model is

about 0.168,^hich corresponds to a standard error of prediction (SEP)'̂ of0.2 pm. By

comparison, the average standard deviation of within-wafer and wafer-to-wafer CD mea

surement are about 0.06|im and 0.13|im, respectively. These tests suggest that the PGA

model based on the OES signals can not fully explain the GD variations. This will be fur

ther addressed in Section 5.5.

Another modeling technique, PLSR, will be used in the next section.

5.3.2. Partial Least Squared Regression Model

The PLSR technique operates in somewhat the same way as PGR in that a set of

vectors are obtained from the predictor variables. However, what makes PLSR different is

that as each vector is obtained, it is immediately related to the response and the reduction

in variability among the predictors. The estimation of the next vector takes that relationship

into accoimt. Simultaneously, a set of vectors for the responses is also being obtained that

also takes this relationship into account.

To determine how many variables are significant and should be retained in the

modeling, a PRESS statistic can be employed. It indicates that 5 latent vectors are needed

to describe the predictors in order to achieve minimum PRESS, as seen in Figure 5.7. The

PLSR model can be written as

4. SEP = (PRESS/m) '̂̂ , where misthe total number ofPCs used in the prediction model.
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numMr of vslabtos

Figure 5.7 PRESSvs. the numberof variables in model

= 0.662 + 0.0001/,! - 0.0001/,2 + 0.0005/,3 - 0.0003/,.4 + 0.01/,.5 (5.3)

where i=1, ,37 and Ij is thejth latent variable. The residual sum of squares (RSS) of this

PLSR prediction model is only 0.0493 with 31 degrees of freedom, smaller than that

derived from the PGRmodel which is 0.062. This is expected because we use both X and

Yto construct the model. It is important to notethat thepurpose of thismodel is prediction,

while another set of OES sensor data can be projected on the previously constructed latent

structure. Althoughwe do not have additional data set to examinethe prediction accuracy

of thismodel, jackknife is one approach toestimate theprediction error. Using a jackknife

routine shown in Appendix A,theprediction error sum ofsquares is about 0.2,correspond

ing to a SEP of 0.2}jm, which is similar to that in the PGRmodel.

5.3.3. Comparison of Models

For the data set used, no one modeling method clearly stands out as the "best" pre

diction model for GD reduction. Both PGR and PLSR techniques can reduce the parameter

space of themodels, although each oneof them uses a different approach. ThePGRmodel

has a RSS value of 0.0616 and corresponds to an R-square of 0.67, and a PRESS value of

0.168. Four principal components are used and each onehas a different correlation to the
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responseparameters CD reduction). This information is helpfulin the spectral analy

sis since many small but important atomic spectral lines are often observed by stronger

molecular spectral bands. In our case, we find that the 2nd and 4th principal components

capture significant spectral lines which are not prominent in the original data (see

Figure 5.6). A comparisonof the modeling results is summarizedin Table 5.3.

Table 5.3

Comparison of modeling methods for CD reduction

RSS R^ adj.R^ ° SEP(\im)

# ofvariable used
in model

PGR 0.062 4 0.67 0.63 0.2

PLSR 0.049 5 0.8 0.77 0.2

a. Adjusted is a modified version of the statistics that considersthe number of
parameters ofthe model and isgiven by adj. = l'{l-R^)n/(n-p), where n is the num-
bCT of observations and p is the number of parameters.

Up to this point, we onlyuse the average plasma emission intensity to describe the

etch state for each wafer and no real-time plasma emission information is included in this

modelingframework. Fromthe nextsection,we will start to includethe real-timeinforma

tion and relate it to the CD spatial variation.

5.4. Monitoring and Modeling of CD Spatial Variation

In this section, we illustrate how to determine and summarize the statistical spread

associated with the acquired OES sensor readings. The variation of OES data can be char

acterized by several categories including spectral variation (due to the emission intensity

difference at different wavelengths), temporal variation (due to the optical emission inten

sity changes over time), and spatial variation (due to the intensitydifferencefor the spectra

collected at different regions in the plasma). In this study, a typical OES data set collected

from all wafers contains 1024spectralvariables x 50 temporal variables x 3 spatial vari-
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ables X 37 wafers. Obviously, it is not easy to utilize all the information contained in this

large number of variables.

We propose a simple approach to decompose the variation of OES signals. This

approach is to determine thedeviations oftheintensities ofselected wavelengths from their

temporal and/orspatial baseline trends. Since poly-Si is etched by CI2 and C1 [5.5] andthe

S/NratioofCI2 line (K ~ 262nm) is much higher thanthatoftherestof thespectral features,

the intensities of CI2 reveal useful etchinformation. Therefore, the CI2 line is selected to

represent theentire spectrum to simplify theanalysis and enhance thecomputational effi

ciency.

In the following sections, both physical and statistical approaches are employedto

extract the spatial and temporal variation from the original OES sensor readings for a

selected CI2spectral line.

5.4.1. Extraction of temporal variation of OES signals

In the past, an Auto-Regressive Integrated Moving Average (ARIMA) time-series

modelwasemployed to filterthenon-stationary sensordatatime-series bya baseline model

and to convert them into a more stationary data series so that a control chart can be

employed [5.6][5.7]. However, although this technique can capture themachine faults asso

ciated with short-term fluctuation, the difficulty of detecting the optical emission long-term

time drift problem (for example, due to window clouding effect) limits its application. In

this section, we propose an altemative approachto extract the temporalvariation.

The temporalvariance for the CI2 spectral line is determined as follows. Since the

OEStrajectory is not a stationary timeseries(seeFigure5.8), the OESdatamust be filtered

from a baseline trend. The wafer with a minimum CD spatial variance and a nominal recipe

is selected as a baseline wafer. The first step in the algorithm is to remove the intensity dis-
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Figure 5.8 Typical OES trajectories for different spectral lines.

continuity due to the recipe change (we reduce the power level for the over etch step) by

mean shifting, and then model the baseline trend of the OES signals by a locally weighted

regression smoother^ [5.8], as shown inFigure 5.10. The baseline trend isthen normalized

between 0 and 1 to prevent the intensity drift. Once the baseline behavior has been estab

lished, the normalized OES data from the other wafers are subtracted from the trend model.

The deviations from the trend in the etch time frame suggest a plasma disturbance or a

chemical reaction discontinuity. The estimated temporal variance of the OES signals at a

selected spectral line can be expressed as

_ Trend 2

l^yi-yi )
1 = 1

n-1
(5.4)

where yj is the OES intensity at time /, n is the total number of sequential observations, and

yjrend ^ model at time i, as given by

5. This particular smoothing algorithm uses locally linear fits. A window is placed about each time point and data
points that lie inside the window are weighted so that nearby points get the most weight and a weighted regression is
used to predict Ae value at that point A more complete description of this smoothing algorithm will be provided in
Appendix D.
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trend

yi

^(no)

= y y::W[-
7=1

b.-.o-y.-./l ^
'"'"'Niyjyi.o-yi.p

(5.5)

wherej indexes the near neighborof each data point,N(yi Q) is the total numberof the near

neighbors of point Wis the weight assigned to each point of a neighborhood with a tri-

cube weight function (i.e., W(u) = (1-u^f for 0 < m<1; W(u) = 0, otherwise). The values

derivedfrom Eq.(5.4) can be then used to represent the temporal variationof the OES sig

nals, as illustrated in Figure 5.10.
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Figure 5.9 Poly-Si etched spatial profile vs. OES trajectory.
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Figure 5.10 Temporal varianceextractionfrom the OES trajectories.

One mechanism that might relate the spatial CD signature to the temporal OES sig

nature is given below: As illustrated in Figure 5.9, point A in the emission trajectory sig

nifies the time when the underneath oxide starts to expose. Its corresponding poly-Si

thickness profile is shown in Figure 5.9. Point B in the same emission trajectory implies

that the poly-Si layer is fully cleared at Tg. The transition between point A and B indicates

the spatial uniformity of the etch process. Generally, a shorter transition means a better

etch uniformity. Figure 5.11 shows that the A-B transition time of a normal wafer is shorter

than that of an abnormal wafer.
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Figure 5.11 The OES trajectories and CD plots for (a) wafer #2; and (b) wafer #30

5.4.2. Extraction of spatial variation of OES signals for a three-beam sensor

The spatial variation of OES signals is often considered as the intensity differences

among the three beams at a selected spectral feature. However, it is important to note that

the different intensities among the three beams are mostly caused by the sensor collection

efficiency and the unequal plasma volume viewed, rather than the plasma density spatial

non-uniformity. This problem is usually compensated by actinometry, a technique

described in Section 2 [5.9][5.10]. In this context, actinometry is used to determine the

absolute concentration of chemical species of interest only if the chemicals are suitable and

the ratio of and shown in Eq. (2.6) is a constant. In the Cl2/He plasma, it is not ideal

to compare the absolute concentrations in order to determine their spatial distribution.

Nonetheless, since the relative variation of the plasma density is more important than its

absolute value in the application of process control, we propose an alternative approach to
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describe the relative wafer-to-wafer variations ofspatial distribution ofplasma density and

energy without determining their absolute concentrations.

Consider the emission ratio of the species of interest Z to that of the second inert

species M:

= c {^zPz\ (5.6)

where Ny Py Q(X)y A, and K are defined in Eq. (2.1), and i is the beam index ranging from

1 to 3. For each beam, K is identical and thus can be cancelled. The ratio AJAj^ is inde

pendent of the beam used and can be consideredas a constant C. The apparatusfunction Q

also cancels out if the wavelengths of the two lines are similar (i.e., within a few nm to each

other). In our case, the ratio of P^^ and P^i is a complicated function of plasma variables

(seeEq. (2.2)), and hence can not be simplified as a constant Therefore, the spatialvaria

tion of emission is related not only to the ground density ratio of species Cl and He, but

also to the ratio of their electron impact excitation functions, and can be written as:

spatial variation -
^He^HeA

(5.7)

where / ^ j. To simplify this analysis, we assiune is uniform in the chamber since

He is non-reactive throughout the etch process. As a result, Eq. (5.7) can be rewritten as

spatial variance -
j

However, the remaining challenge for this techniques is how to decouple N and P

from Eq. (5.7) so that the spatial information of ion density, electron density, and electron
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temperature can be extracted to map CD spatial variances for this Cl2-Heplasma. This dif

ficulty limits the application of actinometry in this study.

Alternatively, an empirical approach is used to extract the spatial variation of

plasma emission. Similar to the method we used to extract the temporal variation from OES

signals, the baselinespatialbehaviorof selected X(in thiscase, we use the CI2 line) is also

established from the baseline wafer used in Section 4.1. The "spatial trend" consists of only

three points normalized between 0 and 1. Then the spatial curves extracted from other

wafers are subtracted from this trend curve. The deviation from the trend suggests a spatial

fluctuation of the plasma. We use a similar expression as shown in Eq. (5.4) to describe the

"spatial variance" of plasma (in this case, n is equal to 3). The physical normalization

approach, in which the emission intensity is converted to plasma density, thus becomes

unnecessary. An overview of this approach is illustrated in Figure 5.12. Note that the tem

poral variance of emission intensities determined in Section 5.4.1 is an indicator of the tem

poral variation of chemical reaction, while the "spatial variance" of emission intensities

determined in this section is more of an indicator of the behavior of the plasma spatial uni

formity.

5.4.3. Modeling Results

The extracted spatial and temporal variances are used to estimate the spatial vari

ance of the CD measurements. The results show that most of the estimated CD spatial vari

ance is explained by the OES temporal variance, rather than the spatial variance.

Specifically, a least-squares regression fit for wafer-to-wafer CD spatial variance shows

that an adj. of 0.82 is achieved by the OES temporal variance alone, while an adj. of

0.22 is achieved by the OES spatial variance alone. In this section, we only present the

84



Chapt^ 5

baseline

Figure 5.12 Extraction of OBS spatial variance.

results derived from the CI2 line (X=260nm). Nonetheless, this approach can be easily

extended to other wavelengths as well.

It is hypothesized that the spatial variation of the normalized OBS readings is

caused by plasma non-uniformity durmg the etch process, while the temporal variation of

OBS readings is either due to the plasma disturbance, the photoresist profile variation, or

poly-Si film thickness variation, as tabulated in Table 5.4. Because the OBSspatial varia

tion has only a small influence on the resulting CD spatial variation in tenns of their low

correlation, this indicates that the plasma non-uniformity may not be the major cause of

CD spatial variation. Instead, the variation resulting from the previous lithography/film

deposition steps, which can be detected by the OBS trajectory discontinuity, is more

responsible for the post-etch CD spatial variation.
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Table 5.4

Possible physical causes of the decomposed OES variation.

Variation component Possible Physical Causes

Temporal plasma energy spatial non-uniformity,
plasma density spatial non-uniformity,

species concentrationspatial non-uniformity,
endpoint detector malfunctions,

poly-Si film/PR thickness non-uniformity

Spatial plasma energy spatial non-uniformity,
plasma density spatial non-uniformity,

species concentration spatial fluctuation

5.4.4. Monitoring of CD Spatial Variation

The previoustechniqueprovidesa promisingwayto monitorthe wafer-to-wafer CD

spatial variance. Because the extracted components of OES variances described in

Section 5.4.1 are filtered from the normalized baseline trend models, the deviations from

these trends can be also used to establish conventional control charts, based on the assump

tion that these deviations are normally distributed random variables. This assumption is

later confirmed by the Fourier analysis [5.4], as seen in the periodogram in the top of

Figure 5.10. Moreover, because the data decomposition allows us to model many different

types of variations, the resulting fault detection tends to be more complete compared with

the time-series ARIMA approach [5.7] which only allows us to monitor temporal variation.

To demonstrate this technique's fault detection capability, we monitor the OES tem

poral variance by a control chart^. These extracted variations generally exhibit the wafer-

6. control chart is based on a hypothesis test that the variance of a normal distribution equals to the base
line variance. The test statistics for this hypothesis follows a chi-square distribution [5.2]. This test is very
useful in many quality-control applications [5.2]. For example, consider a normal random variable with vari
ance C5^. If is less than or equal to some value, say the baseline Oq, then the natural inherent scatter of the
process will bewell within the design requirements. However, if <r exceeds Gq^, then the natural scatter in
the process will exceed the specification limits. Note that this test is based on the assumption that variance of
the baseline process is known, and that the variables are i.i.d. normal.
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to-wafer variation arising from such things as deviations of the emission intensity of CI2

line from their specified trajectories. A control chart is used for each extracted variance

with a control limit of

2

(5.9)

2
where x a/2, n-1 is the ot/2 percentage point of the chi-distribution with n-1 degrees of

freedom, is the sample variance of baseline wafer, and n is the sample number for each

wafer (n is typically larger than 50 in this case).

The results show that the OES sensors can detect 5 out of 6 wafers having an abnor

malspatial CDuniformity, sis shown in Figure 5.13. Thetopchartin Figure 5.13 shows the

actual measured spatial CD variance over wafers, while the bottom chart in Figure 5.13

shows its corresponding OES temporal variance.

5.5. Discussion and Summary

In this chapter, we demonstrate that run-to-run wafer state model using an in-line

sensoris effective in capturing theprocess variation andexplaining 63%~77% of the esti-

(b)

Figure 5.13 The SPC chart of (a) CD spatial variance; (b) OES temporal variance
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mated CD variations.Two different modelingtechniques,principal component regression

and partial-least squareregression areused to predictthe CD reductions of semiconductor

wafers using OES sensor signals. Neither modeling method is overwhelmingly better than

the other.PCR andPLSRshowasimilarmodeling capability. 67%and 80%of the CDvari

ations canbe explained byPCRand PLSR, respectively. Since there is no other set of data

toverify the prediction accuracy foreach model, ajackknife method is used toestimate the

prediction error sum ofsquares. Theresults indicate thatboth modeling approaches have a

similar SEP.

Although the results of the wafer-to-wafer poly-Si CD models are acceptable in

terms oftheir resulting R^ values, the goodness-of-fit tests and the high SEP values suggest

that thesemodels arenot good. Thismaybe attributed to twofactors. First,as suggested by

White et al [4.3],the linearmodeling approach is not sufficient to explainthe CDvariation.

They suggest that othernon-linear approaches such as non-linear partialleast squaresanal

ysis and neural network models appear to show better modeling results. Second, as

described in Chapter 4, the link between CD reduction and plasma emission intensity may

not be significant so that the models based on the OES signals can not fully explain the CD

variations. It is also important to note that the logarithmic emission intensity has also been

investigated as the input space in our modeling schemes, but the results show no improve

ment.

Nevertheless, we have demonstrated that CD within-wafer spatial variations, rather

than the CD within-waferaverages,can be more readily detectedusing OES sensor signals.

It has been shown that the single-wavelength approach applied to the OES sensor data can

be used to provide new insights with existing process knowledge.The results indicate that

the majority of the CD spatial variance can be explained by OES temporal profile behavior.

However, since CD spatial variation is not only related to the etch process but also to the



previous process step aswell, OES sensors andconventional statistical techniques are less

able to reveal enough information, unless the temporal variation of OES data is also

included in the modeling.

The next challenge is to implement this technique into manufacturing sites with

tighter process windows. Since the wafers in the IC Fabs are mostly processed under the

same "recipe", the variations of CD and OES are less significant, compared with the case

in ourdesignedexperiment. This maylead to somedegreeof difficultyin implementation.

Additionally, the three-beamapproachis often insufficientto describe the spatial distribu

tion of plasma.Therefore, weproposean experiment usingan alternative scanningSROES

technique in order to establish the observability of spatialOES non-uniformity to plasma

and wafer characteristics with less calibration problems and more spatial resolution. This

technique will be introduced in the next chapter.
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CHAPTER 6

Scanning Spatially Resolved OES

6.1. Introduction

While conventional endpoint detection techniques often provide temporally-

resolved information about the etch process, they do not provide any spatial resolution.

With the emergence of 300mm wafer production, the utility of a spatially-resolved end-

point detector is expected to increase greatly. While multi-beam SROES is a very promis

ing method for detecting spatial plasma uniformity, its promise has not yet been fulfilled.

There are several problems that need to be addressed. First, the intensity differences

between OES beams due to the asymmetry of grating efficiency can not be easily normal

ized. Secondly, when only few beams are used, they are often insufficient to describe the

spatial distribution of plasma. Therefore, we propose an experiment using a scanning

SROES technique in order to observe plasma non-uniformity. We expect to face fewer cal

ibration problems and enjoy better spatial resolution, using more than 20 viewing "chords".

The optical emission signatures acquired from scanning SROES will be decom

posed and normalized so as to map them onto the etch characteristics. We are also compar-
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ing the spatially-resolved emission intensity profiles with the machine endpoint traces

' collected by the etcher. Experiments have been carried out in the Berkeley Microfabrica-

* tion Laboratory in cooperation with Lam Research. The objective of this work is to use

these techniques for providing direct etch spatialuniformityinformation,as well as for spa

tially-resolved endpoint detection.

6.2. Previous Work

Several research groups have developed opticaldiagnosticsensors and algorithms

for measuring 2-dimensional (2-D) or 3-dimensional(3-D) images of plasma, and measur

ing the spatialdistribution of reactants in a plasmareactor. In this section, webrieflyintro

duce their work and sensor designs.

Hareland and Buss [6.1] at Sandia National Laboratories have developed a sophis

ticated imaging instrument, consisting of a monochrometer with bilaterally adjustable

extrance and exit slits, video camera with video cassette recorder and image processor, as

shown in Figure 6.1(a). The lateral image collected from the plasma etch chamber was

transformed to 3-D spatial maps of emitting- species of the Cl2/He plasma by the Abel

inversion (described in Chapter 3). A patterned 6" Si wafer with poly-Si lines was etched

so as to investigate the relation between local etch rate and radial emission intensity pro

files of excited atomic Cl. The results show that there is a direct correlation between the

radial emission intensity of atomic Cl and the etch rate for polycrystalline silicon.

Fender et al at the University of Michigan [6.2] used the Abel inversion to deter

mine the radial optical emission profile in a parallel plate radio frequency system known

as the GEC Reference Cell. The optical system imaged the parallel light collected from the

emission of Ar discharges at a given height between the electrodes. This image was rotated

by 90 degrees to project parallel light rays on to a photodiode array for various pressure
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and power settings, as illustrated in Figure 6.1(a). This was repeated for a number of points

across the electrode at various heights. Etch uniformity was also examined in this study.

The results indicated that the non-uniformity of this discharge was directly related to the

etch rates. Buie et al. [6.3][6.4] have conducted a similar experiment to construct the opti

cal emission radial image at various pressure and power settings for 1024 points across the

electrode, at a given height above the bottom powered electrode for the Ar line at 750.4nm.

plasma

rotational
mirror and
collimator

side window

lens, pnsms,
pinhole

movable in z-direction

rotational
mirror and
collimator

movable in z-directi

optical fiber
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Figure 6.1 Schematic illustration showing the top view of the discharge chamber for
(a) references [6.1][6.2][6.3][6.4][6.5]; (b) reference [6.6].
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The plasma was monitored for the entire 30 minute etch. The results indicated that the

^ plasma emissivity and the etch depth are related.

f Beale et al. [6.5] at the Universityof Wisconsin-Madison also used the Abel inver-

' sionof line-integrated intensities of Ar emission to characterize the2-D maps ofemission

in a planar, inductively coupled discharge (ICP) of argon. The collection optics were

mounted on a movable stand outside a 6-inch diameter viewport on the side of the cylin

drical chamber. The line of sight of the collection optics was oriented to imagechordsin

planes perpendicular to the chamber axis. Stand positions were selected to include three

heights, and for each of these, several radial positions. The contour plots of the emission

intensityspatialprofilefor two differentAr pressures wereobtained. The results showthat

maximum emission intensity in a location whichis off-axisand close to the quartzwindow.

The variation of emission intensity with different power levels was also investigated.

• Wafer measurements were not included in this study.

Table 6.1

Summary of the previous work related to spatially resolved OES

Reference Plasma Inversion Lambda(nm) Published

Year

Wafer-state

correlation

[6.1] Cl2/He Abel 726 (CD 1993 Yes

[6.2][6.3][6.4] Ar; CF4/Ar/02 Abel 750 (Ar) 1993,95,96 Yes

[6.5] At Abel 912.5 (Ar),
867 (Ar)

1994 No

[6.6] Ar Radon 419 (Ar),
434 (Ar),
396 (Ar)

1991 No

[6.7][6.8] Ar * * 1996,97 Yes

*: not available

Miyake et al [6.6] have applied a more general tomographic method to reconstruct

the optical emission profile of several species in a ring-shaped DC magnetron discharge.

Instead of imaging the parallel light emission. Miyake's group collected the optical emis-
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sion profiles from two ports at 90 degrees to each otherby two identical scanning mirror

systems. In each case, the direction of the slice of collectedemissionwas pivoted about the

point and controlled by the position of a mirror (alongx or y, see Figure 6.1(b)) in order to

obtain the radial profile. A series of 100fan-beam scans in the x-y plane were conducted

and the respective 2-D radial profiles were reconstructedby using the inverse Radon trans

form [6.6].

Shannon et al. at the University of Michigan [6.7][6.8] also examined a similar

light collection system based on a rotating point sensor at the surface of the view window.

The radial emissivity profile was reconstructed by a regularized inversion algorithm. The

correlation between etch rate and radial emissivity profile was observed. A smrunary of

their works is tabulated in Table 6.1.

All these previous works use the sensor systems providing either low spatial or

temporal resolution. Moreover, only single wavelength experiments were presented. Here

we report on a more complete scanning OES system with good spatial, temporal, and spec

tral resolution for the purpose of real-time monitoring of plasma etch processing.

6.3. Instrument Set-up at the Berkeley Microfabrication Laboratory

A Verity Instruments scanning mirror system with an Oriental Motor's RFK 5-

phase stepper motor is mounted on the viewport of Lam 4400 plasma etcher in the Berke

ley Microfabrication Laboratory. A set of line integral measurements for a selected spectral

line is collected by scanning the mirror on the x-y plane (see Figure 6.2) with an increment

ofA0°over the range of -0° ~ +0°, dependent on the required spatial resolution. The typical

data acquisition rate is 20~30Hz. At this data acqiusition rate, the plasma can be scanned

in 1-3 seconds. Each scan cycle consists of line discharge intensity measurements of many

different angular positions in the sweep. Fan-shaped regions of discharge emission are thus

collected by this computer controlled scanning mirror system, which optimizes two impor

tant variables: scanning speed and scanning steps (that is, the nmnber of stops for each scan
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plasma etcher

viewport

machine endpoint detector

Lam 4400

stepper motor
controller

Monochrometer

opticalfiber^ or Spectrometer

optical fiber
j focal lens

pinhole
mirror

Data Acquisition card

Figure 6.2 Schematic illustration of the scanning SROES set-up and discharge
chamber (a) side view; (b) top view.

cycle), while the scanning angle is given. The angle of each scanning step of the stepper

motor is controlled by the pulse train clock rate sent by a 166 MHz Pentium™ PC. The

driver of the stepper motor is written using theT^ational Instrument's LabView™ software

package.

A slice of the light emission signals is deflected 90° from x-y plane to z-axis (see

Figure 6.2 and Figure 6.3) by a mirror, and collected by means of a series of UV-grade

fused-silica lens and optical fiber. A 1mm pinhole is placed at the focal point of the focal

lens in order to block out the surrounding background light. The collected light emission

signals are then transferred to an SC Technology DES-310 monochrometer, and thereafter

dispersed by a 600 groove/mm grating system with a spectral resolution of about Inm. The

wavelength can be chosen with the help of a 3-digit LED display which is built into the

monochrometer. Light intensity at this wavelength is then detected by a photomultiplier
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tube (PMT). The snapshots of the emission are triggered by the acknowledge signals of the

stepper motor to ensure the data acquisition takes place only when the stepper motor is

stepped. The data acquisition rate is therefore equal to the number of scanning steps per

second.

A DC voltage between 0 and 10 volts is applied to adjust the gain of the PMT. The

resulting analog output of the monochrometer (i.e., the light emission counts at a selected

wavelength) is sent into National Instrument's AT-MIO-64E-3 data acquisition card via a

BNC cable. The lateral image of plasma is recorded for each scan. As a result, a high spatial

resolution (e.g., 20 steps per scan) can be achieved while the temporal resolution (e.g., scan

cycle time ~ 1second)of plasmaimaging is still acceptable. It is importantto note that the

viewing angular range of this scanning OES is determined by the geometry of the etching

chamber. Figure 6.3 depicts the geometry of the etch chamberand the scanningOES sys

tem.

Even though our objective is to collectfull spectral data (as reported later in this

thesis), we initially collected singlespectral lines. In this context, it is crucial to choose a

4" wafer

Figure 6.3 Geometrical illustration of theetchchamber (Lam 4400) and optical
paths of the scanning mirror
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proper monitored optical emission line which has high signal-to-noise (SN) ratio, and most

importantly, relates well tothe wafer-state parameter ofinterest such as the etch rate. Inthe

case of polysilicon etch, wecan choose theendpoint wavelength of 262 nm which corre

sponds to the CI2 concentration, or405nm which is related to SiCl. We chose the 262nm

in this experiment because of its high S/N ratio. The machine endpoint signals are also

simultaneously acquired from the SECn port on the machine and sent to the acquisition

card. Theiroptical emission traces aredisplayed together on thecomputer screen for com

parison.

In an additional experiment, we have also collected full spectral-range data using

an SC Technology Sentry™ 4001 spectrograph with an image intensifier. The scanning

spatial images of 512 different wavelengths can be simultaneously collected throughout

the etch process. Because the time for acquiring a spectrum is longer than that for the

single-wavelength case,the typical acquisition rateis about20 steps percycle, resulting in

a scan cycle time of 2.6 seconds. Table 6.2 lists the scanning rates and cycle times for

single-wavelength and fiill-spectrum SROES, respectively.

Table6.2

The optimized scanning SROES system settings

Scanning SROES
System

monochrometer spectrometer

Data acquisition rate 25Hz lOHz

Scan steps per cycle) 25 20

Cycle time 1 second 2.6 second

viewing angle (degree) -35 -43

One challenge in designing this scanning SROES system is to optimize the scan

ning steps and acquisition rates while keeping the cycle time as short as possible, in order

to maximize the temporal and spatial resolution. Figure 6.4 depicts the "resolution" trade-
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offs. Case 1 illustrates an OES system with a high spatial resolution (e.g., small step angle)

but low temporal resolution (e.g., long cycle time). Case 2 illustrates an OES with a high

temporal resolution (e.g., high scanning rate, long cycle time) while the spatial resolution

is low. Case 3 illustrates an ideal system in which both temporal and spatial resolutions are

high. One obvious solution to achieve high temporal and spatial solutions is to increase the

speeds of microprocessor/microcontroller, data acquisition routines and motor motion.

s = 6, t = 6

spatial points

(a) Case 1

First cycle scan

s=9,t = 9

spatial points

(b) Case 2

spatial points

(c) Case 3

Figure 6.4 Schematic "resolution" plots for three different SROES systems with (a)
high spatial resolution and low temporal resolution; (b) low spatial resolution and

high temporal resolution; (c) high spatial resolution and high temporal resolution. (•
denotes data point at time t and spatial point s)
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6.4. Experimental Design Used to Collect Scanning OES Data

The experimentincludes two phases. In the first phase, a simpleexperimentis con

ducted in order to examine the spatially-resolved endpoint detection capability using this

scanning SROES system. Theexperiment includes seven 4" wafers which arecovered with

30nm gate oxide and 400nm poly-Si films withoutpattems on the wafers. All wafers are

processed under the same baseline recipe (listed in Chapter 5) on a Lam 4400 poly-Si

etcher. The detector used in this experimentis a monochrometer turned at 262nm.

Table 6.3

Machine settings for a 2^ experimental design

Input settings Low Center-

point
High

RF Top (Watts) 270 300 330

RF Bottom (Watts) 135 150 165

Pressure (mtorr) 11 12 13

HBr/Cl2 flow ratio 2 3 4

In the second phase, a two-level, four-factor, full factorial experiment with four

center points is conducted on a Lam 9400 high-density plasma etcher with an etchant of

Cl2/HBr. The experimental variables are pressure, RF top electrode power, RF bottom

electrode power, and HBr/Cl2 gas flow ratio (see Table 6.2). The OES used in this phase

is a SCTechnology Sentry™ 4001 fullspectral-range spectrometer. A typical optical emis

sion spectrum collected from Lam 9400 is shown in Figure 6.5, which is quite different

from the spectrum collected from Lam 4400 (etchant is only CI2) as shown in Figure 5.1.

The spatial profiles are collected at 512 wavelengths ranging from 200nm to 1024nm with

a resolution of 2-3 nm/pixel. The data are collected throughout a 60-second timed main

etch plus a 20-second timed over-etch under various etching conditions. All poly-Si film is

removed completely after the etch process. Off-line oxide thickness measurements are per-
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fonned both pre- and post-etch on the Nanospec. Thirteen points are recorded for each

wafer.

200

o <=> .

CO
UJ
O

LO

o

o

o

400

HBr or Ho

100

Waveiength(nm)

600

200 300

pixel number

800 1000

400 600

Figure 6.5 A typical spectrum collected from the Lam 9400 during main etching
(etchant is Cl2/HBr) with spectral lines labeled with their correspondingchemicd

species.

6.5. Data Analysis

6.5.1. Phase 1: Single Wavelength

A typical two-dimensional spatial profile collected from this scanning SROES

system with monochrometer is shown in Figure 6.6. The most interesting feature of these

spatial images is their temporal dependence. In order to distinguish the plasma-induced

emission variability from the background noise, one needs a high S/N ratio of the emission

signals at a selected wavelength. Therefore, the SROES is operated at 262nm (the strongest

CI2 line) in this experiment. Figure 6.7 depicts a typical evolution plot of plasma spatial

profile at the 262nm spectral line. One can clearly identify the endpoint from this plot. In
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order to further eliminate the noise induced by the non-plasma factors, careful data smooth

ing, both along time axis as well as along © axis, is sometimes necessary. In those cases, a

locally-weighted smoothing technique is used.

0.25

0.45

0.4

0.35

0.3

0.15

0.1

0.05

3.5

50

OES profile at various times from 55.6 to 83.6 sees.

55 60 65 70
Angular position number

(a)

OES profile at various times from 54.8 to 82.8 sees.

55 60 65 70
Angular position number

75

(b)

Figure 6.6 Typical plasmalateral profiles collected by scanning SROES with
monochromater turned at (a) 405nm; (b) 262nm
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endpomt

Ng

Figure 6.7 The temporal evolution of spatial plasma images (at 262nm) before
-smoothing.

The next challenge is to extract a spatially-resolved endpoint from this plot.

Because the trajectory of plasma emission might evolve differently, depending on the

angular point, an empirical approach is presented here to detect the spatial uniformity of

endpoints: first, wetaketheratiosofthe OEintensities of theadjacent scanning cycles,that

is, we determine the value of

(6.1)

where Rij is the intensity ratio, and Iij is the smoothed OE intensity atcycle i and angular

position j. In an uniform etch process, the ratio should be independent of the angular posi-
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tion and is approximately a constant for eachscanning cycle. By reconstructing a 3-D plot

based on these ratios Rij as afunction of time and angular position (see Figure 6.8(a)), we

can observe that the ratioprofilesare mostly independent of angleduringthemain-etch and

over-etch period, but become dependent on angle while the wafer is undergoing endpoint.

In otherwords, this "spatially-resolved time dependence" means that the spatial profile of

OE evolves at different rates whilethe etchprocess is at endpoint. This information can be

further used to monitor the etch uniformity.

endpoint

20 30 -4.0 SO SO TO

Figure 6.8 (a) OE intensity ratios v.s. time, and (b) its corresponding5,- plot

A statistical score Si is defined by the standard deviations of Rj j dividing by the

mean of j atcycle i, that is.

5, = ^

.;• =1 J
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where n is the total number of angular points. This score is an indirect measure of the

changes of the spatial profile at cycle i as shown in Figure 6.8(b), and can be used to predict

the etch uniformity.

It is important to note that no direct information of etch imiformity is available in

this experiment because the poly-Si film is removed completely during the etch process.

Nonetheless, etch uniformity can be indirectly extracted by measuring the post-etch oxide

thickness after the over-etch process, based on the assumption that etch rate non-unifor

mity mainly contributes to plasma non-uniformity rather than poly-Si film thickness non-

uniformity.This data set can be used to verify the fault detectioncapability of this scanning

SROES. Figure 6.9 shows the charts based on the spatial varianceSj and the corresponding

over-etch uniformity. One can see that some wafers with large etch non-uniformity can be

captured by the chart.
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6.5.2. Phase 2: Multiple Wavelengths

While single wavelength spatial profiles, coUected at high speed, conserve the pur

pose of process monitoring and control, a full spectral fingerprint of plasma emission, even

with a relatively low scanning rate, can be comprehensive means of process diagnosis. In

this section, our scanning system incorporates full-range spectroscopy to acquire the scan

ning 3-D images of plasma at multiple wavelengths, so as to characterizethe plasma etch

1 e 20 tO

X

wavelengths

time

X

\

angular pomts

time

>

v..

•2 *3
a c
Go's

§

>

Figure 6.10 Arrangement and decompositionof a three-way array of
scanning OES data set
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process. The scanning rate is set at 20 steps per cycle, which corresponds to a cycle time

of 2.6 seconds and a scanning angle that spans about 43 degrees. The data provided by this

full-spectral scanning SROES requireadditional computation. In this section,we propose

three different approaches to deal with these data sets.

6.5.2.1. Signature Analysis

To investigatethe plasma imagesfor one wafer,the measurementdata is organized

into a three-dimensional array which 0 is the angular point ranging from

1 to 20, Xis the wavelength, and t is the cycle number. The different wavelengths are orga

nized along the vertical side, the measurementangular points are organized along the hor

izontal side, and their time evolution is revealed along the third dimension, as illustrated in

Figure 6.10. Each horizontal slice through this array (seeFigure 6.10) is a 0 x f data matrix

representing the time trajectories of emission intensities for all the angular points at a

singlewavelength X. Each vertical slice (see Figure 6.10) is a A. x r matrix representing the

evolution of spectra at a specified angular pointS. Each slice on a X. x 0 plane represents

the spectral evolution along different angular points at a specifiedmeasurementcycle t.

Figure 6.11 shows typical I(Q,t) plots at 252nm (Si) and 838nm(Cl) lines, respec

tively. In this example, this specific wafer has undergone a long, three-step process: step 1

is the main etch for the poly-Si film, step 2 is the over-etch process for the underlying thin

gate oxide, and step 3 is the continuous over-etch process for the underlying Si substrate.

Si emission intensity appears to be higher during the Si etch steps than that during the oxide

over-etch. On the contrary, C1 intensity is lower during the Si etch step compared with that

during the oxide over-etchprocess.Figure 6.12shows a typicalI(X, t) plot at 0 =10 (central

angular point), and Figure 6.13 shows a typical I(X, 0) plot during the 10th scanning cycle

(midway through the main etch process).
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%'k)
V

(a)

oxide etch

%

main etch

(b)

Figure 6.11 Typical 1(0, t) trajectory at (a) 252nm; (b) 838nm.

Figure 6.14 shows these emission signatures at different top-electrode power lev

els. It reveals that powerhas a strongereffecton the opticalemissionintensitylevels, rather

than that on the spatial or temporal profiles. Similarly, these emission profiles show little

dependence on the bottom-electrode power, pressure, and HBr/Cl2 gas flow ratios. In the

future, with higher scanning speed and spectral resolution, these plots may be used as the

signatures of the plasmachamberconditions. One possibleapplicationof the 3-D emission

signature database is that it can be used to characterize and monitor the plasma and

machine conditions with "inert" plasma without processing expensive test wafers.
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Figure 6.13 Typical plots at the 10th scanning cycle (a) full spectral range
plot, (b) 500-1000nm spectral range plot, (c) full spectral range image plot



Figure 6.14 iCk, 6j, /(X, t), and/f6. t)plots at different top electrode power levels
(a) 270W,(b) 330 W.

6.5.2.2. Ratio Analysis

As seen in Figure 6.4, the light collected by the scanning OES system outside the

process chamber is actually the total emission along a linear path through the process

chamber. The linear paths correspond to chords through the circular chamber, and their

lengths differaccording to their angular position. Thetotal emission received at the detec

tor is the integral of the localemission along thatpathlength. Dueto the difference of these

collection chords, bell-shaped curves areusually observed. Since this geometrical factor in

the Si signal is also presentin the C1 signal at the sameacquisition, the spatialprofiles can

be corrected by normalizing the Si emission intensity by thatof Cl, in orderto visualize the

true spatial profiles. This is seen in Figure 6.15, in which we take the ratio of the normal-
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angular point

Figure 6.15 A typical ratio plot of normalized spatial-temporal profiles of
I(252nm)/I(838nm)

ized ^spatial-temporal profiles oftwo different wavelengths. Note that the temporal infor

mation is still retained in this plot, while the spatial profile is normalized. This information

can be used to indicate the spatial uniformity of the plasma emission, allowing an indirect

observation of spatial etch variability.

6.5.2.3. Principal Component Analysis

A statistical data compression technique, Principal Component Analysis (PCA),

can be also implemented to compress the spectral information into few principal compo

nents. In this way, the plots depicted in Figure 6.12 and Figure 6.13 can be reduced to those

shown in Figure 6.16 and Figure 6.17, respectively. In addition, by extending the PCA

compression shown on Figure 6.16 to all angular points, we can construct the spatial-tem

poral profiles for the first four principal components (PCs), as depicted in Figure 6.18.

In comparison to the similar profiles sampled at the selected wavelength (see

Figure 6.11), the profiles basedon the compressedPCs aremore difficult to interpret phys-

1. the spatial-temporal profiles are normalized for a totalrange for 0 to 1 before taking the ratio.
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ically. However, there are several advantages in using the PCA approach. First, the spectral

information is statistically filtered to only a few components so that no chemical identifi

cation is necessary. Secondly, because the geometrical factor associated with the spatial

profiles is mostly included in the lower order PCs, as described in Section 6.5.2.2, higher

order PCs often contain more information of plasma emission disturbance than that of

lower order PCs (however, in this case, the PCs higher than 4th order just contain white

noise). For instance, the 2nd PC shown on Figure 6.18, reveals the etch transitions at dif

ferent angular points without the typical bell-shaped spatial profiles. Additionally, the 3rd

and 4th PCs shown on Figure 6.18 reveal the emission disturbances during etch transitions.

By enhancing the scanning speed, this PCA approach can be incorporated with the frame

work proposed in Section 6.5.1 in order to extract the spatial etch uniformity. Thirdly, PCA

is essentially a data smoother which can automatically move the data noise to the higher

order PCs, while smoothing the profiles of the 1st and 2nd PCs.

.... - - e =10 !
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Figure 6.16 Temporal profiles at the four principal components after PCA
compression (the first four PCs explain 94% of the variability of optical emission)
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Figure 6.18 PC(0,t) plots of the spatial profiles of the first four principal
components
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6.6. Discussion

It is worth noting that the Abel inversion [6.9][6.10] is not used in this study. Abel

inversion is a pure mathematical technique applied in the study of extended radiation

sourcewith cylindrical symmetry. It was proposed [6.1][6.2][6.3][6.4][6.5][6.7] to elimi

nate the geometrical factor of the collected plasma emission spatial profile by inverting

Abel's integral equation, assuming the light source is optically thin and axially symmetri

cal. However, the success of this techniqueis heavily reliedon many geometricalassump

tions and the low signal noise [6.9][6.10].

Because the geometrical factor of the collected plasma emission spatial profile is

independent of its corresponding measurement time and wavelength, the temporal and

spectral dependence ofthespatial image collected by our scanning SROES system canstill

be revealed without utilizing the Abel inversion.

The post-etch remaining oxide thicknesses are measured for all wafers. Their

within-wafer variations are also determined and plotted in Figure 6.19(a). Note that the

oxide layers on some wafers areetched completely during theetch process, and therefore

nooxide layer remains forthese wafers. The results from therest ofthewafers indicate that

wafer # 4 shows largeetch ratevariation. Figure 6.19(b) shows the spatial-temporal plots

based on the 3rd and 4th PCs, as weU as the plot based on its ratio analysis results (see

Figure 6.19 (c)). These patterns donotexhibit any significant difference when compared

to those of normal wafers. This might be due to the fact that the spectral (i.e., chemical),

spatial, and temporal resolution of thefull spectrum scanning SROES system used in this

experiment is insufficient to reveal enough etch information, which wiU beaddressed next.

Several issues are important for the implementation of the scanning SROES sys

tem. First,the sensitivity of the SROES system mustbehigher thanthenoiselevelin order

to detect the etch-induced emission variability.
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Figure 6.19 (a) oxideetch rate uniformity of wafer#4 and its contourplot, (b) its
correspondingspatial-temporal plot based on 3rd and 4th PCs, and (c) its

corresponding ratio plot of wavelength 252nm and 838nm.

Secondly, the scanning SROESis only able to detect the plasma-inducedetch vari

ability, but not the etch variability due to other factors such as wafer temperature, lithog

raphy non-uniformity, film defects and polymer deposition.

Thirdly, the scanning rate of this system has to be very high in order to remove the

confounding effect between temporal resolution and spatial resolution, as described in

Section 6.3. Since the typical endpoint transition lasts 1-3 seconds, a fast scanning SROES

with short scan cycle time is required to detect the spatially-resolved endpoints.

Lastly, high spectral-resolution spectroscopy is important for detecting the minor

species such as etch by-products. However, high resolution spectroscopy requires a detec

tor with many pixels (e.g., 1024 or 2048 pixels). The acquisition time associated with this
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high-resolution system is usually longer, thereby degrading the scanning rates and hence

increasing the scanning cycles. Thus, optimizing the temporal, spatial, and spectral resolu

tions of the scanning SROES system is crucial for a potential application. For the purpose

of process control and etch uniformity monitoring, a high scanning rate system with a

monochrometer is acceptable, as long as the key spectral line is determined apriori. For the

purpose of process diagnosis, full spectral-range spectroscopy with high spectral resolution

is necessary in order to investigate the emission signatures from many different chemical

species simultaneously, despite the fact that the scanning rate of this system may be signif

icantly lower than the monochrometer case. Presently, an integrated system with both high

scanning rate and high spectral resolution is under construction.

6.7. Summary

In this chapter we have demonstrated a novel approach to monitor etch spatial uni

formity. Much effort has been devoted to build a scanning SROES system, which enables

us to monitor the plasma variability with high spatial and temporal resolutions. We first

attempt to use this system with a monochrometer as a "spatially-resolved endpoint detec

tor". The results show that the time dependence of the spatial profiles is indeed more

important than the profiles themselves. This framework has also been extended to a scan

ning SROES with a full spectrometer. The obvious advantage in using the spectrometer is

that we can monitor a large number of different chemicals, allowing us to characterize the

plasma even at the cost of losing the temporal resolution (because of the longer scanning

cycle time). We have proposed three different approaches to analyze these data sets. It

appears that none of these approaches is able to relate these scanning profiles to wafer

states. The PCA is a more statistically robust approach compared to other empirical

approaches, but may be too difficult to interpret practically, and may also need additional

computational resources.
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In order to maintain a high acquisition rate while still having high spectral resolu

tion, an improved scanning OES system with improved software and better hardware

design is being built. This new system can acquire signals with a potential maximum acqui

sition rate of lOOHz with an adjustable spectral range. The signals collected by this

improved systemcan be used as fingerprints of the plasmaemissionconditions.One future

direction is to analyze these fingerprints with the help of the signal processing algorithm

such as Fourier Transformation [6.11] to extract the etch-induced emission disturbance.

Moreover, this system possibly can be used to investigate the CI2 plasma density spatial

profiles using Ar as an actinometer [6.12]. That is, the spatial profile of the ratios of the

selected C1 and Ar lines can be used to indicate the spatial distribution of the plasma den

sity in-situ and in real-time. The result also can be confirmed and further investigated by

the traditional Langmuir probe [2.8].
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Conclusion and Future Work

7.1. Thesis Sununary

This thesis presents a methodology for estimating etchingperformances using the

information provided by real-time OES sensors. The sensor readings werefirst collected

throughout the oxide plasma etching processes and then used with existing statistical

techniques to model etch rate, etch rate spatial uniformity, aspect-ratio dependent etch

ing. Various modeling techniques suchas Principle Component Analysis (PCA), and Par

tial Least Squares (PLS) have been employed to relate the various OES signatures to

etching performance. The results show that 87% of oxide etch rate variation and more

than 95% of the variation in their within-wafer uniformity can be explained by these

models, although the OES signals can only explain 65% of the variation in aspect-ratio

dependent etch (ARDE).

We then examined the optical emission spectra collected from a commercial high-

density plasma metal etcher under various machine input settings. Similarly, these optical

emission spectra collected during aluminum etch and over etch (i.e., oxide etch) steps can
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be employed in combination with several statistical and physical techniques to model the

wafer states such as over-etch rate and aluminum critical dimension (CD), and machine

states such as TCP coil power and chamber pressure. This study is based on the optical

emission spectroscopy (OES) system installed on a Lam 9600 TCP high-density plasma

(HDP) metal etcher at Texas Instruments (TI).

Our study shows that OES is only superior in capturing the variations of few

machine variables suchasTCPpower. Specifically, ourresults indicate thatmorethan80%

of the wafer-to-wafer plasma light-emission variation is explained by TCP power alone,

whilechamber pressure andbiaspowercanonlyexplain a smallportion of variation. Addi

tionally, we observe that OES is more sensitive to the variations in the etching process

driven by ion-bombardment than to the variations driven by the inhibitor-driven mecha

nism. In other words, the implementation of OES sensorfor monitoring the etch variability

is dependenton the etch mechanisms. Our results suggest that OES sensors are better able

to capture oxide etch rate variation (more than 94% of wafer-to-wafer variation is

explained), while only less than 44% of CD variation is modeled by OES under the same

experimental conditions.

Although the OES sensor is capable of continuously collecting spectra in real-time,

this study only looked at a single spectral snapshot per wafer. Hence, we develop

methods for characterizing the time behavior of the plasma. These methods allow us to

incorporate real-time data into our models, thus increasing the accuracy of our

predictions. Most of this effort has been devoted to decompose the variations of signals

acquired from a spatially-resolved optical enussion spectroscopy into several

components, which provide valuable information of etch spatial uniformity. We have

proposed an empirical approach to extract the variability of OES signals. It is conducted

by the temporal and spatial signature analysis of a selected wavelength. The results show
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that the CD spatial variation is mostly explained by the temporal, rather than their spatial

component of sensor signals. The monitoring of the spatial CD variation in-situ is also

accomplished by a statistic describing the variation of the real-time OES signals This

SPC scheme is employed to indicatethe nature of the CD spatial non-uniformity.

The scanning SROES provides another way to monitor the spatial variability of

etching by enhancing the spatial resolution of the SROES sensor, as iQustrated in

Figure 7.1. The time dependence of the spatial emission profiles is used to resolve the

spatial endpoints. The information extracted from the 3-D spatial profiles is further used

to monitor the spatial uniformity of etch process. This project is also extended to a full-

spectrum scanning OES system, in which we can achieve high resolution of spatial, and

spectral information (see Figure 7.1), however, at the expense of temporal resolution.

Potentially, these color 3-D signatures can be used to characterize the plasma conditions.

In summary, we believe that the information provided by the OES sensors can be

categorized into three parts: First, the emission intensity level at selected wavelengths
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Figure 7.2 A schematic illustration of the relations among etch variability, plasma
variability, and OES detection capability (not in scale).

can be used to characterize the density of excited species. This might relate to etch

activity that depends on the etch mechanisms; Secondly, the ratio of the intensities of

two selected wavelengths can be used to normalize the intensity drift and relate to the ion

density (e.g., actinometry), for selected wavelengths; Thirdly, the emission profiles,

including both temporal and spatial profiles, can be used to indicate plasma and etch

uniformity.

Nevertheless, there are several issues related to the implementation of OES sensors.

First, an OES sensor can only partially explain the causes of etch process variability.

Because etch process involves a wide variety of reactions among molecules, atoms, ions,

and electrons, an OES sensor is only capable of capturing the density variability of the

chemical species visible on the collected spectrum. It is still questionable whether the

OES sensor is able to detect other non-plasma factors such as wafer temperature,

chamber wall temperature, polymer deposition, thin film uniformity and quality, and
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lithography variations, which also have significant impact on the wafer. As a result, the

emission signals collected from the OES sensor relate more to etch rates, rather than

selectivity, etch-stop, anisotropy, plasma damage, and microloading effects. Figure 7.2

illustrates the observed relations among the etch process variability, plasma variability,

and OES detection capability.

7.2. Future Work

Although the methods developed in this study are based on OES data collected

from plasma etchers, the methodology presented is general and can be applied to other

types of equipment and sensor readings. For example, multivariate data collected from RF

monitors, or residual gas analysis (RGA) sensors can be used in the same manner. More

over, this methodology can also be applied to other semiconductor equipment that can be

monitored by a multivariate sensor.

By comparison with other in-situ OES sensors, our unique full-spectral range scan

ning SROES sensor, providing a high resolution spatial and spectral information, is prom

ising in the application of in-situ process control and monitoring. The temporal resolution

(i.e., acquisition rates) can be enhanced by a faster microprocessor/microcontroller.

SROES can be further extended to monitor the spatially-resolved endpoints and character

ize the plasma conditions. For example, the plasma etch equipment can be conditioned by

the scanning OES signatures, instead of using monitor wafers. Statistical data filters such

as PCA may be utilized to compress the spectral information so that a compressed 2-D

spatial plot based on principal components is extracted for the characterization of the

plasma conditions. The etch transition detection method based on PCA and jump linear

filtering [7.1] might be another solution that will determine the spatially-resolved end-

points.
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Appendix A

S-plus Code

A.l The Splus routinefor quick principal component analysis

> PCA

function(X)

{

length

1] .

}

The bootstrap routine for cross-validation

> PCACV

function(X, y, maxFactors)

{

N <- nrow(X) # total number of samples (wafers)
resid <- matrix(0, N, maxFactors) # residual (prediction error)

matrix

PRESS <- numeric(maxFactors) # prediction error sum of squares
for(i in 1:N) {

125

nr <- nrowlX)

nc <- ncol(X)

Xbar <- apply(X, 2, mean) # mean of columns (length=nc)
Xout <- outer(rep(1, nr), Xbar) # rows of Xbar repeated nr times
Xc <- X - Xout # Centered X

XXt <- (Xc %*% t(Xc))/nr # XXt instead of XtX
o <- eigen(XXt, symmetric = T) # do eigendecomp. of XXt
V <- matrix(0, nr, nc)

V <- t(X) %*% o$vectors # get e-vectors of XtX
V <- t(t(V)/apply (V, 2, vecnorm)) # make all e-vectors unit

list(scores = ((X - Xout) %*% V)[, l:nr - 1], loadings = V[, l:nr -

center = Xbar, var = (o$values)[l:nr - 1])
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# Do PCA on all samples except one
pcobj <- M5fPC{X[ - i, 1)
for(j in IrmaxFactors) {

# Fit y to linear model of the first j scores (with intercept)
Isobj <- Isfit(pcobj$scores[, l:j], y[ - i], intercept

= T)

# Predict the excluded sample sind calculate residual (pred. error)
Xc <- X[i, ] - pcobj$center # center X[i,]
SCO <- t(as.matrix(Xc)) %*% pcobj$loadings[, l:j]

# scores

pred <- sum(as.nvimeric(sco) * lsobj$coef [-1]) + lsobj$
coef[l]

resid[i, j] <- pred - y[i]
PRESS[j] <- PRESS [j] + (resid[i, j])''2

)

cat("is", i, "\n")

}

list(resid = resid, PRESS = PRESS)

A.2 The Splus routine for partial least-.square analysis

> PLSl.pred

function(X, y, maxa)

{

Xc <- scale(X, center = T, scale = F) # Center each column
yc <- scale(y, center = T, scale = F)
nr <- nrow(Xc)

nc <- ncol(Xc)

w <- matrix(0, nc, maxa) ## Correlation between inputs/response
tt <- matrix(0, nr, maxa) ## Scores
p <- matrix(0, nc, maxa) ## Input loadings
qq <- as .nvimeric(O) ## Response loading (length=maxa)

# for prediction
aveX <- apply(X, 2, mean) ## avg. of colximns (a vector, length=nc)
aveY <- mean(y) ## (a scalar)'
b <- matrix(0, nc, maxa) ## Beta for prediction
bO <- matrix(0, 1, maxa) ## Offset (constant term)
a <- 1

while(T) {

V <- as.numeric(t(Xc) %*% yc)## (yc assumed to be a column
matrix)

w[, a] <- v/sqrt(sum(v * v))
## loading weights (unit length)

tt[, a] <- Xc %*% w[, a] ## input scores

V <- as.numeric(ttt, a])

inv <- l/sum(v * v)

p(, a] <- t(Xc) %*% tt[, a] * inv ## input loadings
qqta] <- sum(yc * v) * inv ## response loading
Xc <- Xc - as.matrix(tt(, a]) %*% t(p[, a])
yc <- yc - tt[, a] * qq[a]

## Coefficients for prediction. Model: y = bO + Xb
b[, a] <- w[, l:a] %*% solve(t(pt, Ira)) %*% w[, l:a]) %*% qq[l:a]
bO[, a] <- aveY - sum(aveX * as.numeric(bl, a])) # (scalar)

## convergence criteria
if(a == maxa)

break
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ifia == nr - 1) break

# if (svun(diag (t (Xc) %*% Xc)) <= 5) brecOc

# if (suin(abs (yc)) <= le-10) break
a <- a + 1

)

# return values and names

list(weights = w, scores = tt, loadings = p, q = qq, E = Xc, f = yc, b
= b, bO = bO, aveX = aveX, aveY = aveY)

)

A.3 The Jacknife routine for cross-validation

> PLSICV

function(X, y, maxFactors)

{

N <- nrow(X) # total number of samples (wafers)
resid <- matrix(0, N, maxFactors) # residual (prediction error)

matrix

PRESS <- numeric(maxFactors) # prediction error sum of squares

for(i in 1:N) {

# Do PLS on all samples except one
obj <- PLSl.pred(X[ - i, ], y[ - i], maxFactors)

# Predict the excluded sample and calculate residual (prediction
error)

# for each number of PLS factors

for(j in 1:maxFactors) (

resid[i, j) <- (obj$bO[, j] + sum(X[i, ] * obj$b[, j])
) - yti]

PRESStj] <- PRESS[j] + (resid[i, jl)'^2
)

cat("i='', i, "Xn")

)

list(resid = resid, PRESS = PRESS)

)

A.4 Routine for determining OES temporal variance

> OES.temp

tteirporal plots at selected wavelength for each wafer for exp2
#Mc; pixel number. (Mc=34 => 262nm)
fvinction(Wafl=2,Waf2, Mc=34)

{

OESl <- numeric 0

0ES2 <- numeric()

DEV <- numeric 0

VAR <- numeric 0

wafNameList <- character()

par(mfrow=c(3,1))

# determine the trend model

trend <- matrix(scan("oes_st2/waf16"),ncol=1024,byrow=T)
leng <- nrow{trend)

for(q in 1:30){
if(trend[q+2,Mc] > 3*trend[q,Mc]){

m <- (q+3)

break

}else{

m <-l
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)

for(j in 40:(leng-l)) {
if(trend[j+l,Mc] < 0.5*trendtj/Mc]){

n <- j-1

break

)6lse {n<-leng)

)

trend <- trend[in:n,Mc]

trendO_trend

LL <- length(trend)

for (k in 20:LL){

, if(trend[k]==min(trend[20:LL])){
nO <- k

break

)

else{ }

)

shift<- trend[nO-1]-trend[nO+2]

trend <- c(trend[l:(nO-1)],(trendL(nO+2):LL]+shift))
trend <- (trend-min (trend)) / (inax(trend) -inin(trend) )
trend <- supsmu(1:length(trend),trend,span=l/40,bass=l0)$y

# read data

for(i in Wafl:Waf2) {
if(i < 10) (

wafPrefix <- "wafO"

) else (

wafPrefix <- "waf"

}

wafNamel <- paste("oes_stl/",wafPrefix, i, ".stl", sep = "")
wafName2 <- paste("oes_st2/",wafPrefix, i, sep = "")
wafName3 <- paste("oes_st3/",wafPrefix, i, ".st3", sep = "")

W1 <- inatrix(scan(wafNainel,nuineric()) ,ncol=1024,byrow=T)
W2 <- inatrix(scan(wafNaine2,numeric()) ,ncol=1024,byrow=T)
W3 <- matrix(scan(wafNaine3,nviineric()) ,ncol=1024,byrow=T)
t <- nrow(W2)

title <- paste("wafer ",i,''\n")
#In this matrix, col is wavelength, row is time;

if (i!=34 & i!=4 ^ i!=5 & i!=20 & i!=24 & i!=27 & i!=30){
# Remove the zero points

if (Mc==34){

for(q in 1:30){

if(W2[q+2,Mc] > 3*W2[q,Mc]){
m <- (q+3)

break

}else{

m <-2

)

)

for(j in 10:t-l) {
if (W2[j+l,Mc] < 0. 5*W2[j ,Mc] ) {
n <- j-2

break

)else {n<-(t-l))

)

cat(i,m,n,"Xn")
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W1 <- Wl[in:n,Mc]

W2 <- VJ2[in:n,Mc]

W3 <- W3[in:n,Mc]

LO <- length(W2)

Appendix A

D1 <- supsmu(1:L0,W1,span=l/40,bass=10)$y
D2 <- supsmu(1 :L0,VI2,span=l/40,bass=10)$y
D3 <- supsmu (1 :L0,V13 , span=l/40,bass=10) $y

diffWl.diff(Dl)
diffW2_diff(D2)

diffW3_diff(D3)

diffWl_supsmu(1:length(diffWl),diffWl,
span=l/10,bass=20)$y

di f £W2_supsmu(1:length(di£ £W2),di££W2,
span=l/10,bass=20)$y

di££W3_supsmu(1;length(di££W3),di££W3,
span=l/10,bass=20)$y

£or (k in 20:length(di££Wl)-3){
i£ (di££Wl [k]==inin (di££Wl [20:length (di££Wl) -3])) {

nl <- k

break

}

else{ )

)

cat(i,m,nl,n,"Xn")

Title <- paste("waier#",i,seps"")
shi£t<- Wltnl]-Wl[nl+2]

new <- c(Wl[l:nl],(Wit(nl+2):LO]+shi£t))
normal <- (new-min (new)) / (max(new) -min (new))

trendl <- approx(trend,n=length(normal))$y
dev <- normal-trendl

plot(Wl,ylab="Cl_stl'',xlab="etch time",
type="b" ,main=Title)

plot(new,ylab="Cl_stl",xlab='etch time",
type="b",main=Title)

plot(dev,ylab="deviation",xlab="etch time",
type="l",main=Title)

OESl <- c(OESl,Wl)

0ES2 <- c(0ES2,new)

DEV <- c(DEV,dev)

var <- cbind(i, sum(dev''2) / (length(dev)-1))
VAR <- rbind(VAR,var)

)

}

)

par(m£row=c(2,1))list(trend=cbind(l:length(trendl),trendl),
OESl=cbind(l:length(OESl),0ES1),
0ES2=cbind(l:length(0ES2),0ES2), DEV=cbind(l:length(DEV),DEV))
plot(OESl,xlab="time",ylab="OES Intensity(C12)",type="l")
plot(0ES2,xlab="time",ylab="OES Intensity(C12)",type="l")
plot(DEV,xlab="time",ylab="Deviation",type="l")
plot(VAR,xlab="wa£er order",ylab="Temporal Variance",type="b")

)
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Routine for read anil analysis of the scanning SROES data (monochromater case)
function (waf1=6 ,waf2=12, sinooth=T)

{

par (mfrow=c (4,2))
timeall <- numeric{)

unif.all <- numeric0

#default parameter

# s is angular point

s <- 10

# t is cycle nvmiber
t <- 15

for (i in wafl:waf2){

OES <- n\jmeric()

OESnew <- numeric 0

cycleNameList <- character()
cat(paste("waf",i," is loading",sep=""),"\n")
wafername <- paste("wafer ", i, sep="")
cycl <- 0

cyc2.matrix <- cbind(c(1:15),c(89,36,19,95,0,84,79,84,85,81,
82,80,38,61,21)-1)

if (i==cyc2.matrix[i,1]){cyc2 <- cyc2.matrix[i,2])

# read data from ASCII format

if(i < 10) {

waferPrefix <- "wafer00"

) else {

waferPrefix <- "waferO"

)

wafname <- paste("data/",waferPrefix,i,"/",S6p="")

for(j in cycl:cyc2) {

if(j < 10) {
cyclePrefix <- "cycleOO"

} else {

cyclePrefix <- "cycleO"

)

cycleNamel <- paste(wafname,cyclePrefix, j,".dat", sep = "")
cat(paste("cycle",j," is loading",sep=""),"\n")
W <- matrix(scan(cycleNamel,numeric()) ,ncol=2,byrow=T)

OES <- rbind(OES,W)

)

time <- matrix(OES[,1],ncol=20,byrow=T)
cycletime<- time[3,1]-time[2,1]
cat(paste("Cycle time for wafer#",!, " is ", cycletime," seconds",

sep=""),"\n")
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OES <- 0ES[,-1]

# arrange the data set into a 3-d array format
OES <- matrix(OES,ncol=20,byrow=T)
# row:time; col:spatial points ==> OES[t,s]

# Plots of one-dimentional signatures

# par(mfrow=c(2,l))
Sp <- c(l:20)

Time <- c{cycl:cyc2)*cycletime

# plot spatial profile

plot(Sp,OES[t,],xlab="angular points",ylab="OES intensity",type="l")
# plot temporal profile

plot(Time,OES[,s],xlab="cycle number",ylcd)="OES intensity",type=*l",
main=wafername)

# Plots of two-dimentional signatures

par(mfrow=c(1,1))
persp(Time,Sp,OES,xlab="time(sec)",ylab="Angular
point",zlab="OE intensity",cex=0.7)
zlab="OE intensity",cex=0.7)

if (i <10){

printnamela <- paste("plot.waf0", i,".ps",sep=""))
else{

printnamela <- paste("plot.waf", i,".ps",S6p=""))
printgraph(file=printnamela)

# Extract OES time dependence
if (smooths=T){

# smoothing

datal.1 <- numeric()

data <- numeric 0

#cycle

m <- nrow(OES)

#spatial point

n <- ncol(OES)

# smooth x-axis

for (i in 1:m) {

Dl.l <- supsmu(l:n,OES[i,1,span=l/40,bass=10)$y
datal.1 <- rbind(datal.1,D1.1)

)

# smooth y-axis
for (j in 1:n){

Dl<- supsmu(l:m,datal.l[,jl,span=l/40,bass=10)$y
data <- cbind(data,Dl)

)

)

else(

data <- OES

)

totaltime <- nrow(data)
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time <- numeric{)

uniformity <- numeric()

ia <- 2

ib <- 19

offset <- 10

par(mfrow=c(2,2))
if (i == 12)(offset <- 7}

for (k in 15;(totaltime-offset)){
OESratio <- data[k+1,ia:ib]/data[k,ia;ib]

OESnew <- rbind(OESnew,OESratio)

time <- rbind(time,Time [k])

unif <- var(OESratio[])/mean(OESratio[])
uniformity <- rbind(uniformity,unif)
)

persp(time,Sp[ia:ib],OESnew,xlab="time(sec)",ylab="Angular point",
zlim=c(0.8,1.2),zlab="It/It-l")

if (i <10){

printnamela <- paste("SDratio.wafO", i,".ps",sep=""))
6lse(

printnamela <- paste("SDratio.waf", i,".ps",sep=""))
printgraph(file=printnamela)

# determine the spatial uniformity information
par(mfrow=c(2,2))

plot(x=time,y=uniformity,type="l",xlab="time",ylab="",
ylim=c(0,0.00012))

if (i <10){

printnamela <- paste("unif.wafO", i,".ps",sep=""))
else{

printnamela <- paste("unif.waf", i,".ps",sep="")}
printgraph(file=printnamela)

unif.all <- rbind(unif.all, uniformity)
cat ("waiting ","\n")

)

par(mfrow=c(2,1))
plot(unif.all,xlab="time",ylab="",type="l")

)

A.6 Routine for read and analysis of the scanning SROES data (spectroscopv case")

function(wafl,waf2, pca=T, nor=F)

{

par(mfrow=c(2,2))

#default parameter

#s is angular point
s <- 10

#t is cycle n\imber
t <- 10

# tranfer pixel number to wavelength
pixel <- matrix(c(l,36,54,512),ncol=l)
lambda<- matrix(c(200,262,309,1024),ncol=l)
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a <- coef .lin(lm( (lainbda~pixel))) [1]
b <- coef .lin(lm( (lambda-pixel))) [2]

X <- c(l:512)

wavelength <- a + b*x

for (i in wafl:waf2){

OES <- numeric 0

cycleNcuneList <- character{)
cat{paste("waf'',i, * is loading" ,sep="\n")
wafername <- paste("wafer i, sep=*")
cycl <- 4

cyc2.matrix <- cbind(c(l:20),c(29,32,32,34,28,31,27,28,29,30,29
,28,31,25,29,28,28,27,29,29)-l)

if (i==cyc2.matrix[i,1]){cyc2 <- cyc2.matrix[i,2])

# read data from ASCII format

if(i < 10) {

waferPrefix <- "wafO"

} else (

waferPrefix <- "waf"

)
wafname <- past6("data/",waferPrefix,i,"/",sep="")

)

for(j in cycl:cyc2) (

if(j < 10) {
cyclePrefix <- "CYCLEOO"

) else {

cyclePrefix <- "CYCLEO"

}

cycleNamel <- paste(wafname,cyclePrefix, j,".DAT.d", sep = "")
W <- matrix(scan(cycleNamel,numeric()),ncol=513,byrow=T)
OES <- rbind(OES,W)

time <- matrix(OES[,1],ncol=20,byrow=T)

cycl6time<- time[3,1]-time[2,1)
cat(paste("Cycle time for wafer#",i, " is cycletime," sec

onds" ,sep=""),"\n")

OES <- 0ES[,-1]

# arrange the data set into a 3-d array format
OES <- array(OES,dim=c(20,(cyc2-cycl+l),512))

# Plots of one-dimentional signatures

# plot spectrum
plot(OES[s,t,],xlab="pixel number",ylab="OES intensity",type="l")
par(new=T,yaxs="d")

plot(x=wave-
length,y=OES[s,t,],axes=F,type="l",lty=2,xlab="",ylab="",mex=0.1)

axis(side=3)
mtext(side=3,line=3,"Wavelength(nm)")
par(yxas="r")

write(t(OES[s,t,]),ncol=l,file="spectrum")
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# plot spatial profile
# pixel 36 is the main Br pesik. Pixel 407 is C1 line
Me <- 36

Mc2 <- 407

plot (OES (, t,Mc] fXlabs'cingular points" ,ylab=''OES intensity" , type="l")
plot(OES[,t,Mc2],xlab="angular points",ylab="OES intensity",type="l")
plot{OES[,t,Mcl/0ES[,t,Mc2],xlab="angular points",ylab="OES inten

sity" ,type="l")

# plot temporal profile

plot(OES[s,,Mc],xlab="cycle number",ylab="OES inten
sity" ,type="l",main=wafername)

Time <- c(cycl:cyc2)*cycletime
Sp <- c(l:20)

if (pea == T){

par(mfrow=c(3,3))
OESPCAl <- numeric0

0ESPCA2 <- numeric0

0ESPCA3 <- numeric 0

0ESPCA4 <- numeric 0

for (k in 1:20){

OES.PCA <- PCA(OES[lc, , ] )$scores [,1:4]

OESPCAl <- cbind(OESPCAl,OES.PCA[,1])

0ESPCA2 <- cbind(0ESPCA2,OES.PCA[,2])

0ESPCA3 <- cbind(0ESPCA3,OES.PCA[,3])

0ESPCA4 <- cbind(OESPCA4,OES.PCA[,4])

)

cat(dim(OESPCAl),"\n")
persp(Time,Sp,OESPCAl,ylab="angular point",xlab="time(sec

ond)",zlab="PCl")

persp(Time,Sp,0ESPCA2,ylab="angular point",xlab="time(sec

ond)",zlab="PC2")

persp(Time,Sp,0ESPCA3,ylab="angular point",xlab="time(sec

ond)",zlab=paste("PC3",seps""))
persp(Time,Sp,0ESPCA4,ylab="angular point",xlab="time(sec

ond)",zlab="PC4")

if (i <10){

printname <- paste("T_W_PC4.wafO", i,".ps",sep=""))
else{

printname <- paste("T_W_PC4.waf", i,".ps",sep=""))
printgraph(file=printname)

)

if (pea == F)(
# Plots of two-dimentional signatures

par(mfrow=c(1,1))
persp(Time,wavelength,OES[s,,],xlab="time(sec)",ylab="wave
length (nm) ",cex=0.5)

if (i <10){

printncunela <- paste("T_W.wafO", i, " .ps" , sep="") )
else{

printnamela <- paste("T_W.waf", i,".ps",sep=""))
printgraph(file=printnamela)

par(mfrow=c(1,2))

image (Time,wavelength,OES [s,, ] ,xlab="time (sec) " ,ylab="wave
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length(nm)",cex=0.7)
if (1 <10) (

printnamelb <- paste ( "T_W_iinage .wafO" , i, " .ps", seps""))

else{

printnamelb <- paste("T-W.image.waf", i,".ps",seps*"))
printgraph(file=printnamelb)

peir (mfrow=c (1,1))

persp(Sp,wavelength[] ,OESt,t,] jXlabs"angular point",ylab="Wave
length (nm) " ,cex=0.6)

if (i <10){

printname2a <- paste(*'S_W.wafO" , i, " .ps", sep=""))
else(

printname2a <- paste("S_W-waf", i,".ps",sep=""))
printgraph(file=printname2a)

par(mfrow=c(l,2))
image(Sp.wave1ength,OES[,t,],xlab="angular point",ylab="Wave

length(nm)",cex=0.7)

if (i <10)(
printname2b <- paste("S_W_image.wafO", i,".ps",S6p=""))

else(

printname2b <- paste ( "S_W_in>age .waf", i, " .ps" , sep=" "))
printgraph(file=printname2b)

# normalize the tenporal and sptail profiles to between 0 eind 1
if (nor == T) (

par(mfrow=c(2,2))
to <- 10

ia <- 3

ib <- 17

OESl <- (OES[ia:ib.,Mc]-min(OES[ia:ib,tO,Mc]))/(max(OES[ia:ib,tO,Mc])
-min(OES[ia:ib,tO,Mc]))

0ES2 <- (OES[ia:ib,,Mc2]-min(0ES[ia:ib,tO,Mc2]))/
(max(OES[ia:ib,tO,Mc2])-min(OES[ia:ib,tO,Mc2]))

persp(Sp[ia:ib],Time,OESl/0ES2,xlab="",ylab="",cex=0.7,zlab="")
persp(Sp,Time,OES[,,Mc2],xlab="angular point",ylab="Time(Sec)",cex=0.7)
persp(Sp,Time,OES(,,Mc]/OES[,,Mc2],xlab="angular point",
ylab="Time(Sec)",cex=0.7,zlab="Br/Cl ratio")

)

else (

par (mfrow=c (1,1))

to <- 5

persp(Sp,Time,OES[,,Mc]/OES[,tO.Mc],xlab="angular point",
ylab="Time(Sec)",C6x=0.7,zlim=c(0,2.5) ,zlab="OES intensity")

persp(Sp,Time,OES[,,Mc2],xlab="angular point",ylab="Time(Sec)",cex=0.7)
persp(Sp,Time,OES[,,Mc]/OESt,,Mc21,xlab="angular point",

ylab="Time(Sec)",cex=0.7,zlab="Br/Cl ratio")
image(Sp,Time,OES[,,Mc],xlab="angular point",ylab="Time(Sec)")
if (i <10){

printnameS <- paste (''S_T.wafO", i, " .ps", sep=""))
else{

printnameS <- paste("S_T.waf", i,".ps",sep=""))
printgraph(file=printname3)

}

}

cat ("waiting ", " \n")

)

)
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A.7 Routine for wafer-state contour plot

f\inctlon (waf1, wa£2, loess = T) {

uniformity <- numeric()
# col 1 in map is the die ntunber, col2 and 3 are the site address
map <- matrix(scan("map"), ncol = 2, byrow - T)
num_nrow(map)

par(mfrow = c(l, 1))
del <-c(2,5,6,9,10.14,16,20)

for(i in wafl:waf2){
if (i!= 2 && i!=5 && i!=6 &&i!=9 && i!=10 && i!=14 && i!=16&& i!=20)(

cat(paste("waf",i," is loading",sep=""),"\n")
wafername <- paste("wafer",i,sep="")

## read data from ASCII format

if(i < 10) {

waferPrefix <- "wafO"

} else {

waferPrefix <- "waf"

)

wafname.pre <- paste("pre/",waferPrefix,i, sep="")
wafname.post <- paste("post/",waferPrefix,i,sep="")

oxide.pre <- matrix(scan(wafname.pre,numeric()),ncol=l,byrow=T)
oxide.post <- matrix(scan(wafname.post,numeric()),ncol=l,byrow=T)
oxide <- (oxide.pre - oxide.post)

unif <- sqrt(var(oxide))/mean(oxide)
unif <- cbind(i,unif)
uniformity <- rbind(viniformity, unif)

# fomatting data

topo <- cbind(map[, 1], mapt, 2], oxide)
dimnames(topo) <- list(l:num, c("x", "y", "z"))
topo <- data.frame(topo)

# plot

if(loess) {

#1. contour plot

topo.loess <- loess(z ~ x * y, topo, degree = 1, span= 0.50)
resid_topo.loess$residuals

topo.mar <- list(x = seq(l, 9, 0.5),y = seq(l, 9, 0.5))

topo.lop <- predict(topo.loess, expand.grid(topo.mar))

contour(topo.mar$x,topo.mar$y,topo.lop,xlab="",ylab="",
levels=seq(min(topo.lop),max(topo.lop),30),labex=0.5)

points(topo)

)

)

)

par(mfrow=c(2,1))
plot(x=\miformity[,1),y=uniformity[,2],xlab="wafer number",

ylab="etch uniformity",type="b")
printgraph(file="uniformity_plot.ps")
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MATLAB Code

% GRAPH_EX

% This programs reads the scanning OES data from the file and creates
% a 3D plot. If desired, will create ps files of plots:
%

% oes2dxx.ps 2d profile
% oes3dxx.ps 3d profile
% oes_enptxx.ps machine endpoint
%

% You may wish to change axes and labels on graphs.

% Constants

%

fnvim =20; % File number
print_fig =1; % 1 = print figures, 0 = no printing
print_parse =1; % 1 = create parse data file, 0 = no file

tstep =0.025; % Sample period (in sees)
SICL = 405; % Spectral lines
CL2 = 211;

line_num = SICL; % Line wavelength, used in determining
% constants for parsing data

% Data parsing contants
pkwid =8; % max. width of the beginning peak
pksep =90; % min. separation between peaks
if {line_num == SICL)

pkht =0.1; % min. height of the peak
else % for Cl line

pkht = 1.0;

end
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% Read OES data from file

%

% xO Scanning OES data

% fix Fixed OES data

% to Time

disp(*Reading OES data from file...');
[xO,fix,tO] = read_soes (fniim) ;
10 = length(xO);

tint = [tO(l):tstep:t0{10)-tstep]';

% Parse data into cycles
%

% Data (tO,xO) is interpolated to create (tint,xint) where the
% the time spacing is uniform. The interpolated data is then
% partitioned into cycles in the matrix Z
% Z{i,j) = OES value of i'^th cycle, j'^th position
% Tm(i) = time of the beginning of the i^th cycle

% Parse data routine

tint = [tO(l);tstep:t0(10)-tstep]';
disp('Parsing and interpolating OES data...');
txint,pkloc,Tm, Z] = parse_soes{tO,xO,tint,pkwid,pksep,pkht);
[n,per] = size(Z);

% Output matrix Z to file
if (print_parse)

disp('Creating parse data file...');
fn = sprintf ('sroes%02d_parsed', fnxim) ;
fid = fopen(fn,'wt');
if (fid <= 0)

error('Cannot open parse data file');

end

for i = l:n

fprintf (fid, ' %12. 4e Z(i,:));
fprintf(fid,'\n');

end

fclose(fid);

end

% Plot data

%

% Figure 1: OES profile at various times
ta = 20; tb = 30; % min. and max. cycle nximbers to plot

ia = 45; ib =77; % min. and max. angular position numbers to plot
plot([ia:ib]', Z(ta:tb,ia:ib)');
xlabel('Angular position nuiriber');
yledjel ('OES intensity') ;
title_str = sprintfCOES profile at various times from %4.1f to %4.1f
sees.',... Tm(ta),Tm(tb));

title(title_str);

if (print_fig)
set(gcf,'InvertHardcopy','on');

prtstr = sprintf('print oes2d%02d -dpsc', fnum);
eval(prtstr);
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end

disp{'Hit any key to continue
pause;

% Figure 2: 3-D plot oF OES data

ta = 1; tb = length cnn) ;

zaesh( [ia:ib] ', lta(ta:tb) , Z(ta:tb,ia:ib}) ;

view([1 1 1]);

Zmax = max (max (Z) ) ;

eucis([ia ib Tm(ta) TtaCtb) 0 Zmeix] );

xlabel('Angular position number');

ylabel('Time (sees.)');
2label('OES intensity');

title('Scanning OES profile');

if (print_fig)
set(gcf,'InvertHardcopy','on');

prtstr = sprintf ('print oes3d%02d -^sc', fniun);
eval(prtstr);

end

disp('Hit any key to continue...');
pause;

% Figure 3: 3-D plot oF OES smoothed data/ or Ratios
% A is the smoothed Z data file via splus

ta = 5; tb = length(Tm)-7;
mesh( [ia+3 : ib-3] ' , 'im(ta:tb) , A(ta: tb, ia+3 :ib-3)) ;
view([111]);

%Zmax = max(max(A)};

axis([ia ib Tm(ta) 'nn(tb) 0.7 1.3]);
xlabel('Angular position number');
ylabel('Time (sees.)');
zlabelCOES intensity ratio (smoothed)');
%title('Scanning OES profile');

if (print_fig)
set(gcf,'InvertHardcopy','on');
prtstr = sprintf ('print oes3d%02d_sinoothed -<^psc', fnum) ;
eval(prtstr);

end

disp('Hit any key to continue...');
pause;

% Figure 4: Machine endpoint
% machine endp
ta s 800;

tb = 3995;

plot(tO(ta:tb),fix(ta:tb));
axis([tO(ta) tO(tb) 0.7 1.2]);

title('Machine endpoint');
xlabel('Time (sees)');

ylabel('OES intensity');
if (print_fig)
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set(gcf,'InvertHardcopy','on');
prtstr = sprintf ('print oes_enpt%02d -<%)sc', fnum)
eval(prtstr);

end

function [xint,pkloc,'nnZ]= paise_oes(tO^O,tint,pkwid,pksep,pkht)
% PARSE_SOES Parses scanning OES data into cycles
%

% [nnt,pkloc,TmZl = parse_oes(tO,xO,tint,pkwid,pksep,|̂ t);
%

% Parsing:
%

% 1. Raw data (tOxO)is first interpolated onto time vector
% tint to produce xint.
% 2. Tbe beginnings of the sweeps are identified by a small
% peaks. Tbe smallpeaksaredefined by tbe parameters pkbt
% pkwid andpksep. Usingthese parameters, tbepeaklocations
% are determined and stored in tbe vectors pkloc, and Tm.
% 3. Data is organizedinto by cycles in tbe matrix Z.
%

% Arguments

% tO Time values for OES data.

% xO OES data at time values tO.

% tint Time values to interpolate data.
% pkwid Maximum widthin data pointsof peaks
% pksep Minimum separation between peaks in num. datapoints
% pkbt Minimum height of peak
%

% xint Interpolateddata: xint(i) = x at time = tint(i)
% pkloc data point number of peak locations -
% Tm time of peak locations
% Z Parsed OES data Z(i.:) = data from i tb sweep

% Check time vectors

10 = lengtb(xO):
11 s lengtb(tO);
1= length(tint);
if (11 -=10)

errorCvectors xOand tO must be tbe same length');
elseif (any(t0(2:10) <= 10(1:10-1))) I(any(tinl(2:l)<= tint(l:l-l)))

ezrorCtime values must be in ascending order');
elseif (tintd) < t0(l)) I (tint(l) >= tO(lO))

eiror('time values must be in ascending order');
end

% Intopolate data
xint = zerosdl);
k=l;

for i = 1:1

while (tO(k+l) <= tint(i))
k = k-i-l;

end

p = (tint(i) - tO(k))/(tO(k+l).tO(k));
xint(i) = p»xO(k+l) + (l-p)*xO(k);

end

% Determine starting points of scan by identifying peaks
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k = pkwid+1; n = 0; done = 0;
pkloc = [];
while (-done) & (k <= 1-pkwid)

while (xint(k) <= pkht) I (xint(k-i-pkwid)> pkht)...
I (xint(k - pkwid) > pkht)

k=k +1;

if (k > 1-pkwid)
done =1;

break;

end

end

if (-done)
[pkmaxj] = max(xint(k-pkwid;k+pkwid));
n = n + 1;

pkloc = [pkloc; k-pkwid+j-1];
k = pkloc(n) -f pksep;

end

end

% Parse matrix into data Z.

per = round(mean(pkloc(2:n) - pkloc(1:n-l))); % Compute avg. period
pkloc = [flipod([pkloc(l)-per:-per:l]'); pkloc;...

[pkloc(n)+per:per:length(xint)-per+l ]' ];
% Add cycles at beginning and end of data to include
% power up and down periods

n = length(pkloc);
Z = zeros(n,pw);

Tm = zeros(n,l);
fori = l:n

Z(i,:) = xint(pkloc(i):pkloc(i)+per-l)';
Tm(i) = tint(pkIoc(i));

end

% this function is for data coverstion from ASCII to matlab file

fid = fopen( *wafer20_ratio')
A = fscanf(fid,'%f',[l 12 inf])
A = A'

fclose(fid)
rhodes.eecs 135# more read_soes.m

function [scan_dat,fix_dat,tm] = read_soes(fnum)
% READ_SOES Reads scanning OES data from file
%

% [scan_dat,fix_dat,tm] = read_soes(fhum);
%

% Ihum File number (file is named 'datxx')
% scan_dat Scanning OES data
% fix_dat Fixed position OES data
% tm Hme stamp

% Open data file
DAT_DIR = '/home/users/spanos/rwchen/crete/ScanOES/test';
%DAT_DIR = 7a/crete/cretel/rwchen/ScanOES/test';
fh = sprintf('%s/DAT%02d', DAT_DIR, fnum);
fid = fopen(fh,'rt');
if (fid <= 0)

eiTor('Cannot open data file');
end
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% Read data

z = fscanf(fid, '%f\ [3 inf]};
tm = z(l,:)';
scan_dat = z(2,:)';
fix_dat=z(3,:)';

% Close file

fclose(fid);
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Experimental Design

Run#

Source

(Watts)
Bias

(Watts)
C2F6 flow

rate

(seem)

Roof

Temp (°C)
Throttle

(Percent)

1 2300 1800 20 260 30

2 2900 1800 40 260 30

3 2300 1400 20 260 100

4 2300 1400 40 260 30

5 2900 1400 20 260 30

6 2900 1400 40 260 100

7 2300 1800 40 260 100

8 2600 1600 30 260 65

9 2900 1800 20 260 100

10 2600 1600 30 270 30

11* 2600 1600 30 270 65

12* 2600 1600 30 270 65

13* 2600 1600 30 270 65

14 2600 1400 30 270 65
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Run#

Source

(Watts)
Bias

(Watts)
C2F6 flow

rate

(seem)

Roof

Temp (°C)
Throttle

(Percent)

15 2900 1600 30 270 65

16 2600 1600 40 270 65

17 2300 1600 30 270 65

18 2600 1600 30 270 100

19 2600 1600 20 270 65

20 2600 1800 30 270 65

21* 2600 1600 30 270 100

22 2300 1400 40 280 30

23 2900 1800 20 280 30

24 2300 1400 20 280 30

25 2900 1400 20 280 100

26 2900 1800 40 280 100

27 2900 1400 40 280 30

28 2300 1800 20 280 100

29 2600 1600 30 280 65

30 2300 1800 40 280 30

*: center points

C.2 Berkeley's Lam 4400 experiment

Run Pressure
RF

Power
Gap

Cl2/He
Ratio

CI2 He

1 370 235 0.9 0.42 183 437

2 370 275 0.8 0.45 180 400

3* 425 235 0.8 0.45 180 400

4 370 235 0.7 0.48 200 420

5 425 275 0.7 0.45 180 400

6 425 275 0.8 0.42 172 408

7 - 425 235 0.8 0.45 180 400
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Run Pressure
RF

Power
Gap

Cli/He

Ratio
CI2 He

8 480 315 0.9 0.42 160 380

9 425 275 0.8 0.45 180 400

10* 425 275 0.8 0.45 180 400

11 425 275 0.8 0.45 168 372

12 480 315 0.9 0.48 200 420

13 425 275 0.8 0.45 180 400

14 480 315 0.9 0.48 200 420

15 370 315 0.9 0.42 160 380

16* 425 275 0.8 0.45 180 400

17 425 315 0.8 0.45 180 400

18 370 235 0.9 0.48 175 365

19* 425 275 0.8 0.45 180 400

20 370 315 0.7 0.48 175 365

21 480 275 0.8 0.45 180 400

22 480 235 0.9 0.48 175 365

23* 425 275 0.8 0.45 180 400

24 480 315 0.7 0.48 175 365

25* 425 275 0.8 0.45 180 400

26 480 235 0.9 0.42 183 437

27 370 315 0.7 0.48 175 365

28 425 275 0.8 0.48 188 392

29 425 275 0.9 0.45 180 400

30 480 315 0.7 0.42 183 437

31 480 235 0.7 0.48 200 420

32 425 275 0.8 0.45 192 428

33* 425 275 0.8 0.45 180 400

34 370 315 0.7 0.42 183 437
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Run Pressure
RF

Power
Gap

Cl2/He
Ratio

CI2 He

35* 425 275 0.8 0.45 180 400

36* 425 275 0.8 0.45 180 400

37 370 315 0.9 0.48 200 420

*: center points

C.3 Berkeley's Lam 9400 experiment

Run
Pressure

(mtorr)

Top
power

(Watts)

Bottom

power

(Watts)

CI2
(seem)

HBr

(seem)

HBr/

CI2
time

(sees)

1* 12 300 150 50 150 3 60

2 14 270 165 40 160 4 60

3 10 270 135 65 130 2 60

4 14 330 165 40 160 4 68

5 10 330 135 65 130 2 60

6 10 330 165 , 65 130 2 67

7* 12 300 150 50 150 3 60

8 14 270 135 65 130 2 60

9 14 330 165 65 130 2 65

10 14 330 135 65 130 2 65

11 14 270 165 65 130 2 65

12 10 270 135 40 160 4 65

13 14 330 135 40 160 4 60

14 10 330 135 40 160 4 63

15 14 270 135 40 160 4 63

16 10 330 165 40 160 4 60

17* 12 300 150 50 150 3 60

18 10 270 165 65 130 2. 60
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Run
Pressure

(mtorr)

Top
power

(Watts)

Bottom

power

(Watts)

Ch
(seem)

HBr

(seem)

HBr/

CI2
time

(sees)

19 10 270 165 40 160 4 63

20* 12 300 150 50 150 3 60

*: center points
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Locally Weighted Regression Smoothing

In locally weighted regression smoothing, we build thesmooth function s(x)point-

wise as follows:

1.Take a point, sayx^. Find the knearest neighbors ofx^, which constitute a neighborhood

N(Xq). Thenumber ofneighbors ^is specified asa percentage of thetotal number ofpoints.

This percentage is called the span.

2. Calculate the largest distance betweenXq and another point in the neighborhood:

A(*o) =

3. Assign weights to each point in N(Xq) using the tri-cube weight fimction:

w(
I AUo) )

where W{u) = ((1-m^) , ) forO<u<\

W{u) = 0 otherwise
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4. Calculate the weighted least squares fit of y on the neighborhood N(xq). Take the fitted

value y'o = s(xq) .

5. Repeat for each predictor value.
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Element vs. Wavelength

element wavelengths (nm)

A1 308,309,394,396

AlCl 261,265,268

AlH 426

At 416,451,485,550,603,697,707,750

B 250

BCl 267,272

Br 290,334,355,470,479,570,576,588,600

C 248

CCl 258,307,460

CF 240,256

CF2 249,252,246.255,260,263,271,275,288,292,321

CH 431

CN 359,386,387,418,420,422,647,693,709,785

CO 239,246,249,271,283,313,349,370,451,484,520,561,608,662

C02 288,290,337
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element wavelengths (nm)

C1 726,741,755,772.775.838

CI2 262,309

Cu 325,327

F 624.635,641,677,683,686,687,690,691,697.704,713,720.733,740,
743,751,755,757

H 434,486,656

He 295.319,345,361.363,371,382.387.389,397,403,414.439,444.447,
471.492.502,505.588.668.707.728

Hg 253.7.365.0.404.7.435.8,546.1

N2 337,326,331,390,391.428,576,580,655,662,671,688,727.790

NO 237.245.256.268.272.286

0 437,497.502,533,544.605,616.646,700,725,777

NH 336

OH 307

Si 252,288

SiF 640,777

SiCl 281,282,287,405

SiF2 390,401

SIN 441,405,409,413,420,424

SiO 234,241,249

Ti 335,365,400

TiCl 419

TiF 408

W 272,401,407,430

WF 578

NOTE: the most prominent wavelength are bold
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