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Abstract

In this paper, we generalize our previous results on generating common
randomness at two terminals to a situation where any finite number of agents,
interconnected by an arbitrary network of independent, point-to-point, dis

crete memoryless channels, wish to generate common randomness by inter

active communication over the network. Our main result is an exact char

acterization of the common randomness capacity of such a network, i.e. the

maximum number of bits of randomness that all the agents can agree on

per step of communication. As a by-product, we also obtain a description

by linear inequalities of the blocking-type polyhedron whose extreme points

are precisely the incidence vectors of all arborescences in a digraph, with a
prescribed root of out-degree 1.
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1 Introduction

Two or more communicating agents are said to have common randomness if there
is a random variable, e.g.. a random bitstring, whose value is known to all of them.
This notion of shared randomness turns out to be of significance in many problems
of information theor\'. For example, common randomness available to a transmitter
and receiver allows them to use random codes for data transmission, which can
outperform deterministic codes in certain situations, e.g., with arbitrarily varying
channels [1], [8]. In the theory of identification over noisy channels [4], [5], [6],
the maximum achievable identification rate is essentially determined by the amount
of common randomness that the transmitter and receiver can set up. Common
randomness can also significantly reduce the communication complexity of certain
distributed computations [12], [15]. Finally, secret commonrandomness available to
a transmitter and receiver allows them to communicate securely over a channel with
eavesdroppers [2], [13], [14].

For all these reasons. Ahlswede and Csiszar initiated a systematic study of the
role of common randomness in information theory and cryptography. In [2], they
addressed the problem of generating common randomness at two terminals without
giving information about it to an eavesdropper, in both a "source-type" model and
a "channel-type" model. Then, in [3], they studied the rates at which common
randomness could be generated at two terminals without any secrecy requirements,
but under various other resource constraints.

However, in both [2] and [3]. the possibility of exploiting channel noise to gen
erate common randomness was not explored, except in the simple case of two ter
minals connected by a discrete memoryless channel with noiseless feedback. To see
how channel noise could actually be useful in this context, consider a situation where
there are two agents .4 and B connected to each other in both directions by a pair of
channels. As an extreme case, a.s.sume that neither agent has access to any external
sources of randomness (such as a random bit generator). Even then, A and B may
be able to generate common randomness! The intuition is this: suppose .4 transmits
some known input sequence to B. If the channel from .4 to B is noisy, then the
resulting output sequence seen by B will be random. Since the input sequence is
known, B could somehow "cancel" out its effect on the output sequence, and extract
the randomness due to noise. Now, if the channel from B to A has positive Shannon
capacity, then B could reliably convey the randomness thus obtained to A. using
suitable encoding techniques; A and B would then have common randomness.

Of course, this procedure could be repeated, and A could simultaneously extract
randomness from the output of the B-to-A channel (if it is noisy) and convey it
reliably to B (if the A-io-B channel has positive Shannon capacity), thus generating
more common randomness. For this scheme to work, it is clear that at least one of
the channels must be noisy — otherwise no randomness would be available — and
at least one of them must have positive Shannon capacity — otherwise the agents
would not be able to agree on a common random output.

A natural question that arises here is: what is the maximum ra/e, in bits per
step of communication, at which the two agents can generate common randomness
this wav from the noise on the two channels, i.e.. what is the common randomness



capacity oi the given pair of channels? This question was posed and answered in [IT],
under the assumption that the two channels are independently operating discrete
memorylesschannels (DMC's). The main result of [IT] is that A and B can generate

max {min[//(IbIA'b), /(A'.4; y'4)] + min[H(Ya\Xa), /(A'b;>b)]} (1)

bits of common randomness per step of communication over such a pair of channels.
In (1). and (A'b.V'b) are random input-output pairs for the A-io-B and
B-to-A DMC's, respectively, and the maximum is over all possible distributions for
the inputs Xa and A'b- The rate in (1) was shown to be optimal with a "strong''
converse, which was proved by developing a novel typical sequence machinery for
interactive communication. Further, it was shown that the common randomness
capacity in the presence of independent, discrete memoryless sources of external
randomness at the two terminals could actually be derived from (1).

In the special case where both channels are binary symmetric with crossover
probabilities p and q. respectively, the expression in (1) reduces to min{/?(p) -j-
h(q),2 —h{p) —h{q)}^ where h{') is the binary entropy function. Observe that
this is 0 if and only if either h{p) = h{q) = 0 (no randomness on either channel)
or h{p) = h(q) = 1 (plenty of randomness but no ability to agree): moreover the
capacity equals its maximum of 1 bit per step when h{p) = h{q) = 1/2. For details
and other examples, see [IT].

1.1 Subject of this paper

The results of [IT] apply only to situations where common randomness is to be
generated at two distant terminals. In this paper, we study a much more general
problem where any finite ninnber oi agents, interconnected by an arbitrary neXwork
of point-to-point channels, wish to generate common randomness by communicating
interactively. Our main result is an exact characterization of the common random
ness capacity of any such network, i.e. the maximum number of bits of randomness
that all the agents can agree on. per step of communication over the network.

We assume that the topology of the network is represented by a digraph G =
(V, E). The vertex set V of this digraph is just the set of agents, and the edge set E C
V'' XV describes their interconnections — (w. u) € E means there is a channel whose
input is controlled by u. and whose output is seen by v. (Depending on the context,
we will refer to elements of V'' as either vertices or agents, and to elements of E as
either edges or channels.) As in [IT], we assume that these channels are all DMC's,
and that they operate independently. Communication occurs simultaneously on all
the channels, and in synchronism (i.e., there is a common clock).

As in the two-agent case, there are basically two steps here in the process of
generating common randomness. The first step is for the agents to bring channel
noise into play by communicating over the channels, so that each agent can then
extract randomness from the observed channel outputs. The second step is for each
agent to convey reliably the randomness thus obtained to each of the other agents,
using suitable encoding techniques.

The mechanism for extracting randomness from noise extends in a straightfor
ward manner from the two-agent case to the general situation considered here. How-
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ever, several new features show up in the second step. In the two-agent case, there
is onlj' one path along which an agent can deliver randomness to the other, and this
path consists of a singlechannel. Also, the flows of randomness originating from the
two agents do not interact — each is conflned to a different channel. In contrast,
in an arbitrary network of channels, there could be several paths from one agent to
each of the others, many of these consisting of more than one channel, and all these
paths could be used simultaneously to deliver randomness. Moreover, a given chan
nel could be on several different paths, which means that the flows of randomness
from different agents must interact.

For these reasons, the problem of optimally disseminating randomness from each
agent to all the others is quite non-trivial in the general situation. In fact, the
solution to this problem leads to some purely combinatorial results about blocking
polj'hedra, which are of independent interest. Some of these results are described
in Section 4 of this paper, including a characterization by linear inequalities of the
blocking-tj'^pe polyhedron whose extreme points are precisely the incidence vectors
of all arborescences in a digraph, with a given root of out-degree 1 — a result
akin to Fulkerson's in [10]. Other related results, including an algorithm for finding
a minimum-weight arborescence with a given root of prescribed out-degree (and
a corollary' "packing" result similar to Fulkerson's optimum arborescence theorem
[10]), will appear elsewhere.

Note that the digraph G is allowed to have self-loops, i.e., edges of the form
(i:,i'). Such edges can be used to incorporate into the network itself any external
sources of randomness that the agents may have. For example, suppose agent v has
a random bit generator providing R^. independent and unbiased bits in each step of
communication. \\-e could then assume that (v.v) € E. and that the DMC
has only one input symbol, which produces exj>{Rj.) equiprobable output symbols.
This way, v would get randomness at rate 7?^. from the output of the {v.v) DMC,
instead of the external source.

However we do not restrict the self-loop DMC's to have this special form. In
general, v could vary the distribution of the {v, c) DMC's output from step to step,
just by varying the input symbol. Further, v could introduce memory in the sequence
of outputs, by adapting the input in each step to all past outputs. In fact, it is not
even necessary to assume that the external sources available to different agents are
independent. By introducing self-loops and modifying the channels in the network
appropriately, we could cover the situation where agent v gets an external random
input in step k. and the random vectors : v £ V), k = 1,2,..., are
i.i.d. with an arbitrary common distribution. With these considerations in mind, we
will assume from now on that all available external sources have been incorporated
into the network itself.

The rest of the paper is organized as follows. In Section 2, we formulate the
problem more precisely, and state our main results in Theorems 2.1, 2.2, and 2.3.
Theorem 2.1 is an "achievability" result, stating that common randomness can be
generated over the network at a certain rate C^. Theorem 2.3 is a "converse" result,
stating that no rate higher than a certain C" is achievable. Theorem 2.2, whose
proof yields the combinatorial results mentioned above, is then used to show that

= C" (this result has no non-trivial counterpart in [17]). These theorems are



proved in Sections 3, 4, and 5.

2 Statement of problem and results

The following conventions will be in effect throughout the paper: all logarithms
and exponentials will be to the base two. If N is a positive integer, then [A'] =
{1,2,..., A'}, [sj will denote the largest integer not exceeding 2. The standard
sequence notation z^" = {zi.Z2..... z^) will be employed. If 5 is a finite set, then
{zg : s £ S) will mean a vector whose components are indexed by the elements of
5. R+ will denote the set of all non-negative real numbers, and Rj the set of all
vectors G R+ : s € 5).

If Q = (Q{y\x) : (x.y) G A' x >') is the matrix of transition probabilities of a
discrete memoryless channel (DMC) with input alphabet A' and output alphabet
y. P is a probability distribution on A', and A' and Y are random variables with
the joint distribution Pr{X = x.Y = y} — P{x)Q{y\x), then we will also write
H{Q\P) and /(P;Q) for H{Y\X) and /(A';V'), respectively.

2.1 Definition of common randomness capacity

As mentioned in Section 1.1. the network of DMC's connecting the agents will be
represented by the digraph G = (V,E). The DMC corresponding to the edge e £ E
will b(^ assumed to have finite input alphabet A'g, finite output alphabet and
transition probabilities • i^-.y) C Ae x yg).

will say that the edge (u, v) exits u and enters v. If IT' C V, then

5-(H-) (2)

5+(lV) =' {(u, v)e E:ue tv; r i IV} ; (3)
CT(IV) = {(u,f)€£::u€lVi'€lV}. (4)

Thus (resp. (^"'"(IT')) is the set of edges that exit (resp. enter) a vertex not
in IT' and enter (resp. exit) one in IT', while cr(lT') is the set of edges that exit and
enter vertices in IT'. To simplify notation, we will write ^~(u), S'̂ {v), and a{v) for

respectively. Note that a{v). if non-empty, contains
exactly one edge, viz. a self-loop on v. It will also be convenient further to define

5.v.(VV) 11' <5-(IV)U<7(IV): (5)
So.,m = <5+(IV)U<7(1V). (6)

Thus ^jn(l'l^) (resp. ^ou<(lT')) is the set of edges that enter (resp. exit) a vertex in
W, In particular, (5,n(i '̂) (resp. ^ou/(^0) is just ^~(u) (resp. S'̂ {v)) with the self-loop
on V thrown in, if it exists.

To generate common randomness, the agents communicate interactively over
the network for a certain number, say n. of steps. This communication proceeds
according to an agreed-upon set of rules that specifies each agent's channel inputs
in each step, based on the channel outputs available to him from all previous steps.



More elaborately, in step k (1 < k < n). agent i' does the following in sequence and
in synchronism with all the other agents:

• He determines the input symbol to be transmitted in step k on each exiting
channel e € a function Xe,k = : e' G the se
quences of outputs Yg7^ received in the previous A-—1 steps on all entering
channels e' €

• He then transmits the symbols Xe.k on their respective exiting channels.

• Finally, he receives the outputs 1e',t corresponding to the symbols transmitted
in step k on all his entering channels.

After n steps, each agent either computes a random output taking values in a
common finite set of size, say, K — without loss of generality, we will take this
set to be [A ] {1,2,.... A'} — or decides that the attempt to generate common
randomness failed. Each agent's decision is based solely on the output sequences
available to him. Formally, agent v computes a decision random variable Sv that is
a function of all the output sequences YJ. e' G takes values in the set
{*} U [A']. Here, Sv = * is supposed to indicate that v declared failure to generate
common randomness.

Let /e = {feA -. •-'Jcm)'. and f = (/^ : e G E). Let S = (Si,. : i; G V^"). Then the
pair (f, S), which all the agents agree on before communication begins, sums up
the set of rules according to which the agents communicate over the network and
make their final decisions. We will refer to (f, S) as an (n. A') protocol for generating
common randomness. Of course, the "amount" of randomness generated by this
protocol, and the extent to which it is truly "common," are determined by the joint
distribution of the decision random variables Si:, v G V''. Ideally we would like to
have

Pr {5V = / for all v G V} = — for each / G [A'], (7)

with I\ as large as possible. If (7) were true, then all the 5Vs would be equal with
probability 1, and uniformly distributed over [A']. (There would be no "failure"
events of positive probability.) Such a protocol could reasonably be said to generate
log A' bits of common randomness in n steps of communication.

In general, however, it is not possible to satisfy (7) except in the trivial case
A' = 1. Therefore, we will have to settle for approximate equality and uniformity of
the 5i's. To this end, we make the following definition: (f, S) is an (n, A', A) protocol

if

—p— < Pr {Si; =1for all vGV'} < for each /G[A']. (8)
To motivate this definition, suppose that A' = exp{nR —o(n)} for some R> 0,

and A = o(l) — what this means is that (f, S) is the n '̂̂ term in a sequence of
(n.K'n.Xn) protocols, with lim infr._^>3(l/") log A'n = R and lim„_^oc An = 0. Then,
by (8).

Pr {3 / G [A'] such that Sv = / for all v G V'} > 1 —A. (9)



This means that all the agents compute the same random output with high prob
ability. In particular, the probability that some agent declares failure to generate
common randomness is small.

Next, we will show that each St has an entropy of nR —o(n), implying that
it has an approximately uniform distribution. In what follows, if W C V, then

Sw* {Sf : V E First note that

H{Sv) = -Y,P'-{Sv = s}\ogPr{Sv = s}
s

K

> / for all I' € V}logPr {5, = / for all r € V]
1=1

j<

>

= logA'- [Alog A'-f (1 - A)]og(l-1-A)]
= nR-o{n). (10)

Here, the first inequality holds because —log ^ > 0 for c G [0, l]r and the second
inequality is bv (8). Now (9) implies Pr{Su ^ 5u.} < A for all u and xu. Hence

< 1 + Alog A', by Fano's inequality. In fact, for all non-empty sets U and
IT of vertices, we have

HiStlSw) < X^//(5„|S,r)
ueu

< |A|(1-H AlogA')

= o{n). (11)

The inequalities above are by the chain rule for entropy and the fact that con
ditioning cannot increase entropy. From (10) and (11), it follows that for any non
empty IT C V,

A (Sir) = A (Sr) —A (Sv'-ir|Sir)
> nR —o{n). (12)

In particular, A(5v) > nR —o{n) for any v. as claimed earlier. For future reference,
note also that by (11) and (12), with W replaced by U in (12),

/(S,r;Sir) = A(SLr)-A(SHSir)
> nR —o(n). (13)

The above considerations motivate the following definition of the common ran
domness capacity of the given network:

Definition 2.1 R is an achievable rate of generating common randomness over the
given network if there exists a sequence of (n, A'n? A^) protocols such that

lim An =0 and liminfi^^-^ =R. (14)
K-A-v. n-foo ^ '

The common randomness capacity of the network is the supremum of all achievable
rates.



Our main result is a "single-letter" characterization of the common randomness
capacity, in terms of the topology of the network and the characteristics of the
channels constituting it.

2.2 Characterization of the common randomness capacity

For ease of reference, we first record the definitions of some standard graph-theoretic
concepts. All definitions are with respect to the given digraph G = (V, £*).

A path from vertex u to vertex w is a set of A* > 1 edges

{(ro,Ui),(ri,U2).(i'2T I'a)... •

with I'o = u and Vk —ic. A circuit is a path from some vertex to itself. Note that a
self-loop (i',u) constitutes a circuit by itself.

An arborescence rooted at v is a set T of edges, with the following properties: (i)
no edge in T enters v: (ii) for each u ^ v, exactly one edge in T enters ir. and (iii)
T does not contain any circuits.

It can be verified easily that the above properties imply that (iv) |r| = |V'| —1;
(v) for each u ^ r, there is a unique path in T from v to u: and (vi) the edges of T
form a spanning tree in the undirected graph underlying G. We will denote the set
of all arborescences rooted at v by T{v), and let T =

If (u, I') € T, then we will say that u is the parent of v in T. and v is a child of
u in T. Note that a vertex can have more than one child in T. but no more than

one parent — in fact, every vertex other than the root has exactly one parent in T
(the root has none). A vertex with no children in T will be called a leaf ofT (every
arborescence has at least one leaf).

For each e E E. let be a probability distribution on the input alphabet Xc of
channel e, and let P = (Fe : ^ € E). Let the vectors a(P) € R+ and b(P) GRf be
given by

«,(P) 11:' (15)
e€5in(v)

MP) /(P,;Q.), (16)

and let 7^(P) be the polyhedron of all vectors r G R+ satisfying the following
constraints:

rr < ai,(P): for each v G V: (17)
Tenv)

Y2 Ct < be(P). for each e G (18)
T-.c^T

Note that the constraint in (18) can be ignored if e is a self-loop, because the LHS
is then a summation over an empty set (no arborescence contains a self-loop), and
is therefore equal to zero.

The "achievability" part of our main result essentially states that for any P and
any r G TZiP); the rate YIt is achievable.



Theorem 2.1 (Achievability result) Lei

C«(P) max ^ rr, (19)
r€7;(P) ^

a = max a(P). (20)

Then the common randomness capacity of the network is bounded from below by

To establish that the common randomness capacity is actually equal to we
must also prove an appropriate "converse" result. For this purpose, it will be con
venient first to derive different, more explicit, expressions for Ck(P) and

Note that C«(P) is defined in (19) to be the optimal value of a certain linear
program (LP). We will now write down the dual to this LP. From now on, we will
refer to the LP in (19) as the primal. The dual LP has a variable € R+ for each
V€ V, and a variable y^ G R+ for each e G £*. The dual constraints are

^ l/e ^ h for each r € V and T GT{v). (21)
eeT

Let V denote the dual feasible region (which does not depend on P). Thus V is the
polyhedron of all vectors (x,y) € R+xR^ satisfying (21).

The dual objective is to minimize '̂t (P)'^\ + DegE^e(P)ye- By linear pro
gramming duality, the optimal values of the primal and dual problems are equal,
i.e..

Ck(P) = min
(x^yleD

J]a,.(P);r,.-l-]^6e(P)l/c
.i£l' e^E

The key step in obtaining more convenient expressions for Ck(P) and is to
decompose the polyhedron T> as the vector sum of the convex hull of its extreme
points and the cone generated by its extreme directions. (Every polyhedron of non-
negative vectors can be so decomposed.) Now, the cone generated by the extreme
directions of V equals all of Rj^ x R^ because T> has the following property: if
(x,y) G T>, and x' > x. y' > y, then (x'.y') G V. As for the extreme points of V.
the following result identifies a finite set DqCV that contains all of them.

Theorem 2.2 (Combinatorial result) For each non-empty subset W of V, let
x(VF) € R^ and y(VF) € Rf be given by

1 ifveW: , /n.\def/ 1 ifeeS~{W): .
) = s n w • i/e(B ) = S A jt • (23)( 0 otherwise: (0 otherwise.

For each 1 < m < |V''|, and each collection of non-empty and pairwise disjoint
subsets 1i,..., Vjn+i of V, let y(Vl,..., Vin+i) G R+ 6e given by

u n- 1/ 1 / 1/'" 'fee US' S-{Vi):

Let Do be the set consisting of the vectors (x(VV'),y(lT')) and (0,y(Vi,..., IVrfi))
defined above. Then Dq C V; in fact.

T> = com-(Do) + R^xRJ. (25)

Here, conv(DQ) denotes the convex hull of all the vectors in Dq.

9
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The desired decomposition of V is given b\' (25). We are now in a position to
state the "converse" part of the main result.

Theorem 2.3 (Converse result) Let

~ ^ (26)C"(P) =' min
(x,y)6Do

Yi 0,.{P]X, + Y be{P)yc

C" =' C"(P). (27)

Then the common randomness capacity of the network is boundedfrom above by C*.

We claim now that Cm(P) = C"'(P) for every P, and hence = C". To see
this, note that by (25), and the non-negativity of the vectors a(P) and b(P), the
optimal value of the dual LP equals the minimum of the dual objective function over
conv(Do), which in turn equals the minimum over Dq. by linearity. But the dual
optimal value also equals Ck(P) by LP duality (see (22)), and the minimum of the
dual objective over Dq equals C"(P) by definition (see (26)). Hence C»(P) = C'^P).
It follows now that both and C equal the common randomness capacity of the
given network.

Theorem 2.3 essentially states that if limn_+c^, = 0, then there does not ex
ist a sequence of {n.h'n-Ki) protocols for generating common randomness with
lim inf,i_43o(l/^^) log A'n > C". (We can actually prove a. slightly stronger result, with
liminf replaced by limsup.) In the usual terminology, this is a "weak" converse to
Theorem 2.1. A "strong" converse would state that even if only limsup„_^^ < 1
is assumed (instead of limn-+>^ = 0), there does not exist a sequence of (n, Kn-. An)
protocols with lim sup^^_^5^( 1/77) log A'n > C"- Such a result was proved in [17] for
the two-agent case. By similar methods, it is indeed possible to prove a "strong"
converse in the general case, too. However, we have omitted the details of the
extension.

3 Proof of the achievability result

The intuition behind the achievability result can be summed up as follows: sup
pose the agents communicate with each other over the network for a large number
of steps in such a way that, on average, the input sj'mbols of channel e are used
according to the distribution Pe. Then, on average, channel e corrupts each trans
mitted symbol by adding H{Qe\Pe) bits of noise. If the agents always use codewords
from reliable block codes for communication, then they can recover this randomness
due to noise from their respective incoming channels. This way, agent v can extract

^e65,n(L) ^(Qel^e) bits of randomness from channel noise, in each step of commu
nication.

To generate common randomness, each agent must then reliably convey as much
of this randomness as possible, subject to capacity constraints, to all the other
agents. This is where the concept of arborescence comes in. An arborescence rooted
at Vis just a minimal set of edges in which there is a path from v to every other
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vertex. Therefore, agent v could disseminate a part of the extracted randomness
through each arborescence T rooted at i\ by sending a message to his children in T,
each of whom relays it in turn to his own children in T. and so on, till the message
reaches every agent.

Suppose V wants to send bits of randomness per step through each arbores
cence T € T{v). Since v gets only Ee€5in(f) ^(Qel-'̂ e) bits of randomness per step
from noise, we have the constraint Z^rerit) < SIee5,„(i/) ^(Qel^e) for oach v € V.
Also, the channel e can reliably convey only I(Pe'i Qe) bits per step if its input sym
bols are used according to the distribution Pg. Therefore, we also have the capacity
constraint ^ HPe- Qt) for each e £ E. These are just the conditions (17)
and (18) defining the polyhedron 7^(P).

So, as long as the vector of rates r is in 7^(P), the agents can generate common
randomness at a total rate of IZrertt) The inner sum here is the rate at
which common randomness originates at v (from the noise on the channels entering
I'), and is then conveyed to all the other agents.

In Section 3.1, we will make the above reasoning precise using the following
lemma, which was the basis for the achievability proof in [17] also.

Lemma 3.1 Consider a DMC with finite input and output alphabets A' and y,
respectively, and transition probabilities Q = (Q(i/|.i') : (x.y) € A x J^^). Suppose P
is an n-type on A (i.e.. P is a probability distribution on A such that nP{x) is an
integer for all x 6 A'j. Then:

(1) For any R' > 0 and L < exp(n/?'), there exist sequences c(l),... ,c(jL) in
A'", all of type P, and a partition of into subsets C(l).... ,C{L), such that

1 —Q"(C(?)|c(?)) < exp {-nQ(/?'. P)-I-o(n)} , for all i e [L]. (28)

Here, a(R'. P) is a continuous function of (R'.P) that is positive if R! < /(P;Q)
and zero otherwise. The o(n) term does not depend on R' or P.

(2) If R" > 0 and M < exp{nR") then, for any c € A'" of type P and any
Q ! there e.rists a partition of C into subsets C{*).C{\).... .C{M), such that

(5"(C(j)|c) is the same for all j € [M], and

Q"(C(*)|c) < exp{-n3{R",P)-{-o{n)} . (29)

Here, 3{R",P) is a continuous function of {R",P) that is positive if R" < H{Q\P)
and zero otherwise. The o(n) term does not depend on R" or P.

Proof: The first part is a standard result — see Theorem 5.2 on p. 165 of [7] for a
proof. The second part is Lemma 3.2 in [17]. •

3.1 A protocol for generating common randomness

Suppose 72 1 and P^ is an 7?-type on the input alphabet A'e of channel e. Fix an e >
0. Then the first part of Lemma 3.1 says that we can find a "constant-composition"
block code for channel e, with blocklength n and exp{ [7?(/(Pe; Qe) —c)J} codewords
— all of type P^ — and a maximal error probability bounded by exp(—Q72), for
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some Q > 0. Using this code, it is possible to conveyone of exj>{[n{I{Pe: Qc) —e)J}
messages reliably across the channel e.

By the second part of Lemma 3.1, each decoding set in the above code can
further be partitioned into exp{[7?(^(Qc|Pe) —£)J} subsets that have equal proba
bility when the corresponding codeword is transmitted, and a remaining "failure"
set whose probability is bounded by exp(—3n), for some 3 > 0. It is these '"equipar-
titions" of the decoding sets that make it possible to generate randomness from
noise. Whenever a message is transmitted across channel e using the block code,
the agent at the receiving end can first decode the message reliably by observing
which decoding set the channel output falls in. Then, by further observing which
subset of the partition of that decoding set contains the channel output, he can
obtain a "noise variable" Be that is either a bitstring of length [n(i/(Qe|Pe) —e)J;
or the failure symbol *. The entropy of Be is close to n{H{q,\P.) - c) because
Pr{Be = *} < exj>{ —377) and, conditional on Be ^ *, all the bitstrings are equiprob-
able.

Suppose the agents have agreed upon such block codes, together with equiparti-
tions of their decoding sets, for all the channels in the network. Let P = (P^ : e € E)
be the collection of chosen ??-types, and let r be a vector in the interior of the poly
hedron "/^(P). We will now describe a protocol for generating common randomness,
using the agreed-upon codes, that achieves the rate The protocol has n
rounds, in each of which a codeword from the appropriate block code is transmitted
on each channel in the network (these transmissions occur in synchronism). The
total number of steps in the protocol is thus The codewords transmitted by
an agent on his outgoing channels in any round are functions only of the channel
outputs he received on all his incoming channels in the immediately preceding round
— a "Markovian" property.

Let the n rounds of the protocol be indexed by 0,1,...,?? —!. We will now
describe the events in round k from the point of view of a particular agent, say v.
The round has three stages:

1. First, for each arborescence T of which v is not a leaf, agent v transmits a
message Mr.vik) to all his children in T. using the appropriate block codes.
The message is either a bitstring of length [nr^J, or the failure symbol
* (we will describe in Stage 3 how it is determined).

Observe that the channel e must therefore carry one of exp([nrrj) -f 1
messages for each arborescence T to which it belongs, so that the total number
of possible messages is nr9e(®^P(["^rJ) + l)- If e is small enough, this number
is indeed smaller than exp{[n(/(Pe; Qe) —c)J} — the number of codewords in
the code for channel e — because r was assumed to be in the interior of 7^(P).

2. Next, for each arborescence T of which v is not the root, agent v decodes the
message sent in round k by his parent in T as, say, MT,v{k)' In the process
of decoding these messages, he also obtains a noise variable Be(k) from each
incoming channel e G ^ir.(^)? described earlier. Thus, Be{k) is either a
bitstring of length [n(P(QelPe) —e)J, or the failure symbol *.
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3. Finally, agent v determines the messages Mt,v(^"+1) to be transmitted in the
next round to his children in T. There are two cases to consider here:

(a) For each arborescence T that is not rooted at v, equals MT,v{k)^
the estimate that u made of the message sent in round k by his parent in
T.

(b) For the arborescences T that are rooted at i', determined
based on the noise variables Be{k). e 6 follows:

i. If Be{k) = * for some e, then 1) = * for every T G T(v).
ii. If Be{k) * for all e, then the messages +1), T G T(v),

are taken to be disjoint substrings of the concatenation of all the
bitstrings Be(k). with the length of MT,v{k-\-l) being

In Case ii above, observe that we need a total of Ergrii) bits to
define the messages A/t,i,(A" +1), T G T(v). If c is small enough, this
number is indeed smaller than Z]ee5,„(i) —e)J — the length
of the concatenation of all the Be(k) — because r was assumed to be in
the interior of 7^(P).

It remains to specify how the messages A/7'.t,.(0) are chosen. Actually, the purpose
of round 0 is only to initiate the process of extracting randomness from noise, and
there are really no messages to be transmitted. We may therefore define A/t,^.(0)
arbitrarily, say Mt.vW = for ^ ^rid r.

To complete the description of the protocol, we must also describe how the
agents compute their decision random variables at the end. Observe that in round
k. 1 < k < n. the root of each arborescence transmits a message to all his children,
which is derived in round A' —1 from the noise variables on the root's incoming
channels. Each of these children forms an estimate of that message in round k. and in
turn conveys that estimate to his own children in round A' +1, and so on. Eventually,
every agent forms an estimate of the message. All these estimates coincide with the
original message if no decoding errors occur. Moreover, if there are no failures in
extracting randomness from noise (i.e., Bc{k) ^ * for any edge e and any k > 0).
then all the messages are bitstrings contributing to common randomness.

Let driv) denote the depth of v in T. i.e., the number of edges in the unique path
in T from the root to v (we will say that the root is itself at depth 0). Then, by the
remarks made in the preceding paragraph, the message MT,v(k-\-dT{v)) transmitted
by Vin round k-\-dT{v) to his children in T is i'*s own estimate of Mr.uik). where u
is the root of T. Let

M, =' {MrAk +Mv)): r 6T, l<k<n-d).. (30)

where d max^.i ^7(1?) is the maximum depth of any arborescence. Then, Mi,, is
the vector of v's estimates of the messages sent by the roots of all arborescences in
rounds 1.2.... .n —d (for arborescences rooted at v. these estimates are of course
the same as the actual messages themselves). Clearly, if no decoding errors occur in
any round on any of the channels, then the M^.'s will all be equal.

13



Here is how agent v determines his decision random variable Sv If some compo
nent of My equals *, i.e., if MtA^ + ^t{v)) = * for some T eT and 1 < k < 71 —d.
then agent v declares failure to generate common randomness, and sets 5i = *. On
the other hand, if no component of My equals *. then agent v takes 5y to be, say, 1-f
the integer whose binary representation is the concatenation (in some agreed-upon
order) of all the bitstrings MtA^ + T € T, 1 < k < n-d. Thus, the 5y's
all take values in {*} U [A'], where

K=exp|(«-</)5]^ [nr^jj
=exp |n^ rrj -o(n^)|. (31)

It can be shown that the protocol satisfies (8) with

A = nlA"! [exp(—an)-I-exp(-.3n)] (32)

= 0(1). (.33)

The RHS of (32) is a union bound on the probability that some "bad" event
occurs during the protocol — here, a "bad" event is either a decoding error, or a
failure to extract randomness from noise (i.e., Be{k) = *). on some channel in some
round. The proof of (32) is quite similar to that of Claim 3.1 in [17], and will not
be repeated here (the main idea is to use the "Markovian" nature of the protocol to
bound the probabilities involved).

From (31) and (33), it follows that the protocol achieves the rate TAis
completes the achievability proof.

4 Proof of the combinatorial result

For each T £T. define the vectors fi{T) GR+ and i^{T) € R+ as follows:

/rp^ def f 1 ifT G^(i'): 1 .rp^ def f 1 if c GT"; tow
= I 0 otherwise; = [ 0 otherwise.

fJ>{T) and i^{T) may be regarded as incidence vectors for the arborescence T — the
former indicates the vertex at which T is rooted, and the latter which edges belong
to T. Let

Co = {(Mn.f(r)): rer}. (3.5)

Then, observe that the polyhedron V (the dual feasible region) is precisely the set
ofvectors (x,y) GR+xR^ such that fJv^v-\-T>eeE^eye > 1 for all (/i, i/) GCo;
i.e.,

V = •[(x,y) GR+xRJ : /x-x +i/-y > 1for all (/a, i/) GCq} . (36)
Now define a new polyhedron C by substituting Do for Cq in the above definition;

i.e., let

C= {(^,1/) GR+xR^ : X > 1for all (x,y) GDq} . (37)
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In the terminology of polyhedral combinatorics ([11]: Section 6 of Chapter 30).
V (resp. C) is the blockeroi Co (resp. Dq).

Our goal is to prove (25). The starting point of the proof is the following fun
damental result in the theory of blocking polyhedra: if V and C are the blockers of
finite sets Cq and Dq, respectiveh', then (25) holds if and only if

C = conv(CQ) -f Rl '̂xRf (38)

holds. See [11], Theorem 6.3 in Chapter 30, for a proof of this equivalence, which is
based on Farkas's lemma. If either (25) or (38) holds, then V and C are said to be
a blocking pair of polyhedra. and the matrices whose rows are the vectors in Co and
Dq. respectively, are said to be a blocking pair of matrices.

We will therefore prove (25) by proving (38). In doing so, it will be convenient
to be able to treat vertices and edges on an equal footing. For this purpose, we
will first extend G in the following way: let G —(V.E). where V = V U {r}, and
E = E U{{r. v) : VE V'}. Thus G is obtained from G by adding a new vertex r, and
adding new edges from r to all the vertices in G. We may then identify the edge
(r, r) in G with the vertex v in G.

We will prove the statement (38) about G by proving an equivalent statement
about G. Some notation will be useful here. Let

5+{r) = {(r.v)-.v€V}. (39)

For W C V', continue to define ^~(VF) as in (2). Further, let

5-(ir) i-(M') U {(r, v) : v € H'} . (40)

We will denote the set of all arborescences in G by T. Note that all arborescences
in G must be rooted at r, since no edge in G enters r. Further, there is a one-to-
one correspondence between the arborescences in the original digraph G. and the
elements of T that have exactly one edge exiting r; if T € T satisfies T H 5"^(r) =
{(r, I-)}: then T corresponds to the arborescence T —{(r. r)} in G. which is rooted
at V.

To derive the equivalent of (38) in G. we must define the equivalents in G of
the finite sets Cq and Dq. and the polyhedron C. First, for each T £ T. define an
incidence vector HT) £ Rj as follows:

- {i
Observe that if T O ^•'"(r) = {(r, i?)} then ^{T) contains all the information in the
vectors fx{T') and where _ {(r, u)} is the arborescence in G (rooted
at r) to which T corresponds. Therefore, the appropriate equivalent in G of the set
Co is

Co =' Tef, |rni+(r)| = l}. (42)
Next, for each non-empty subset IT of V. let z(lT) £ R^ be given by

laifri"''' '«>
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and. for each collection of two or more non-empt}' and pairwise disjoint subsets
V'l..... Vm+i of V. let z( Vi,.... VVr.+i) € Rf be given by

-a/ V if e€ USi'I 0 otherwise.
Observe that z(W) and z(V'i...., VV.+i) contain all the information in (x(l'l'),y(iy))
and (0,y(Vi,..., V„t+i)), respectively. Therefore, the appropriate equivalent of Dq
in G is the set Dq consisting of all the vectors z(W) and z(Vi,..., defined
above. Finally, it is obvious that the equivalent of the polyhedron C is

C =' {$ €R| : z•̂ > 1for all ze Do] • (45)
The statement (38) about G is then clearly equivalent to the following statement

about G:

C = conv(Co) + Rf. (46)
The R.HS of (46) is the polyhedron of all vectors in Rj that are greater than or

equal to convex combinations of the incidence vectors of those arborescences in G
that use exactly one edge exiting r. Essentially, (46) says that this polyhedron can
also be described as the set of vectors in that satisfy a certain system of linear
inequalities. We will derive (46) from the following corollary of Fulkerson's optimum
arhortscence theorem, which describes in a similar way the polyhedron of vectors in
R^ that are greater than or equal to convex combinations of the incidence vectors
of all arborescences in G (without any degree constraints on the root r).

Theorem 4.1 (Fulkerson) Let

.4o =' {«(r): ret}. (47)
and let

i =' {€ €Rf : z•$ > 1for all z6 Bo} . (48)
where Bq C Dq is the set consisting only of the vectors z(li') defined in (43). Then

A = co/7r(.4o) + R+. (49)

Proof: See [10]. •

Observe that Aq D Cq and .4 3 C, so that (46) does not follow by a "sandwich''
argument from (49). The following curious fact is worth noting: although C is
obtained by adding many more constraints to those defining A. it actually has far
fewer extreme points than A.

We will prove (46) by proving containment in both directions, beginning with
the easier direction C D conv(Co) + R+. (This part of the proof does not require
Theorem 4.1.) Since C is a convex set with the property that E C whenever

^ for some ^ E C. the desired result will follow if we just show that C 3 Cq.
i.e.. z •^ > 1 for all z E Dq and ^ E Cq. This is the content of Parts (a) and (b)
of the following lemma. Part (c) of the lemma states that much more is true: each
vector in Co is actually an extreme point of C.
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Lemma 4.1 Let T eT, Then:

(a) for any non-empty subset IF ofV, z{W) '^(T) > 1, i.e., T contains at least
one edge from

(b) if \T n = 1 then, for any collection of two or more non-empty and
pairwise disjoint subsets V'l..... \4i+i ofV, z( V'l...., V^i)-^(r) > 1, i.e., T contains
at least m edges from US/

(c) if \T n = 1 then ((T) is an extreme point of C.

Proof: Appendix. •

To prove containment in the other direction, viz. CC conv(Co) + Rf, it suffices
to prove that every extreme point of C is in Co, because C is clearly equal to the set
of all vectors that are greater than or equal to convex combinations of its extreme
points. We will actually prove that

min q •^ > min q •^ for any vector q € Rf. (50)
$€Co

Since the minimum of any non-negative linear functional over C must occur at one
of its extreme points, and since C 3 Cq is already known, it will follow from (50)
that Co contains every extreme point of C. (Together with Part (c) of Lemma 4.1,
this will actually imply that Co is precisely the set of extreme points of C.)

The main idea in the proof of (50), besides Theorem 4.1, is the following lemma:

Lemma 4.2 Every extreme point ^ of the polyhedron C satisfies IIe€5+(r)Ce = 1-

Proof: .Appendix. •

Let any q € Rj be given, and define a vector q' GRf as follows:

, def I ifeG<5'̂ (r);
[ g, otherwise.

Later, we will take M to be a large positive number. Now, since I3ee5+(r) fe = 1 for
any ^ € Co, we have q •^ = q' •^ —M for any $ € Co, and hence

min q •€ = min q' •^ - M. (52)
Co ^0

By Lemma 4.2, q •^ = q' •^ —M for any extreme point ^ of C, so that

min q •€ = min q' •^ - M. (53)

Because of (52) and (53), (50) will be proved if we show that

min q' •^ > min q' • (54)
^€Co
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To prove (54). we must bring Theorem 4.1 into play. The key to doing this is
the following observation: if M is very large, then

min = min q'• ^. (55)

The reason is this: the RHS of (55) is the minimum of arborescences
T in G. If M is very large — say, M > Qe — then any arborescence T with more
than one edge exiting r would have a much larger value of J2eeT Qe with
exactly one edge exiting r (each T must use at least one edge exiting r). Therefore,
the RHS of (55) must actually equal the the minimum of ZleGT^e restricted to
arborescences T with exactly one edge exiting r, which is just the LHS.

By the conclusion of Theorem 4.1, viz. (49), and the fact that C. we have

min q' • i = min q' •^

< min q'• (56)

From (55) and (56), we obtain the desired conclusion (54). This completes the proof.

5 Proof of the converse result

Let (f, S) be any (n.K. X) protocol for generating common randomness, with K =
exp{??/? —o(n)} and A = o(l): as in Section 2.1, this means that (f,S) is the
term in a sequence of {n.h'n.Xn) protocols, with lim infn_fco(l/«) log AT = R and
limn-fco A,i = 0. We will then prove that R < C.

Let A'e.A- and YTa- be the random variables representing the input and output,
respectiveh', on edge e in step k. when the agents communicate according to the
protocol (f, S). For each e € E. define a probability distribution Pg on A'e as
follows:

Pei^) = ^E =a'} .
" A-=l

Thus Pe is the average of the distributions of A'e,ir. ••i AT,n- It will be convenient
to define random variables AT and Ig, for each e 6 P, with the following joint
distribution:

Pr {AT = .T, V; = y} = Pg(a')Qg(i/|.T), (x, y) € A'g x J^g. (57)

Let P = (Pg : e € E). We will actually prove that R < C"(P) + o(l). This
will obviously imply that R < C" + 0(1), whence we will get the desired result
R < C" by letting n tend to oc. In the proof, the following notation will be useful:
if E' C V X V then

Xe',;. =' (.Ve,t ; e € £' n £) and X|;, (Xe-.,- ; 1 < i < k):
Ye../= (V;.i-:e€£"n£') and Y|, (Ye',; : 1< i < fc).

Recall also that Sir =' (5^ : v € VI'), if IV C V.
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Now, C(P) was defined in (26) to be the minimum of the dual objective function
Et-ev + EeGE^e(P)ye over all vectors (x.y) in Dq. To show that R <
C"'(P) + o(l), it suffices therefore to show that R is bounded above by the value of
the dual objective function at each (x.y) in Do (neglecting o(l) terms). The finite
set Do consists of a vector (x(lT),y(iy)) for each non-empty set W of vertices —
call these vectors of the first type — and a vector (0, y( Vj,..., )) for each choice
of two or more non-empty and pairwise disjoint sets Vi,.... of vertices — call
these vectors of the second type. For vectors of the first tj'pe, we must prove that,
up to o(l) terms,

R < Ea.lPKdV) +

= E ""(P) + E ''=(P) (58)
vew eG5-(Tr)

= T. Riy'\-^e) + E (59)

Here, (oS) is by (23), and (59) is by (15), (16), and (57). For vectors of the second
type, we must prove that, up to o(l) terms,

R < EWP)ye(H,.-.d.v4.i)
g^E

1 m + 1

= -E E MP) (60)

= -E E /(A'edV). (61)
j=l e65-(Vj)

Here. (60) is by (24). and (61) is again by (16) and (57).

5.1 Vectors of the first type

Let W be a non-empty set of vertices. Then nR —o(n) < H(S\v), by (12). So (59)
will be proved if we show that H(Sw) is bounded above by 7i times the RHS of (59),
which we proceed to do now:

H(S,v) < H(y,(62)

= t" (Y5,„(.r,.A.|Yj';;;,„.,) (63)
^•=1

= E^(y.(..'),.,y,-„„-,,,|yJ;',„,.,) (64)
A-=l

= E//(Y„„.-).,,Y5-,„,-),dYt'„r,-X»(..'),4 (65)
A-1

< E (Y.("-).dX„.r),A.) +H(Y5-„v),^)] (66)
k=l

19



< E
k=l ,e€<'(W) e€J-(ir)

E f-E//(ya|A'..;.))+ E
:7(tf)Vntel / eS^Tlf) V" it; J

= n

< n

= n

= n

.e€<T(T1

E H(YAX,)+ E ^(>e)
ee<T(Tr) eG5-(Tr)

E 7/(y;|A%)+ E h(y,\x,)+ e ^(Ae:y;)
.e6«T(Tr) e65-(U') e6<5-(n')

E E niyAx,)+ E AA'.;v;)
tiGll' eG^~(f) e€5~(Ti )

(67)

(68)

(69)

Here, (62) is because S^r is a function of (63) is by the chain rule for
entropy: (64) is by (5); (65) is because X<r(U'),A- is a function of (66) and
(67) are by the chain rule and the fact that conditioning cannot increase entropy;
(68) is by the concavity of the entropy and conditional entropy functions; and (69)
is because cr(l'K) U5~(Vi') = Uteiv

5.2 Vectors of the second type

Let Vi,,.., t4-.+i be non-empty and pairwise disjoint sets of vertices. Let

u = V- U v;,
m+l

(70)
J=1

and, for 1 < j < m-1-1, let

HO U V). (71)
i=l

Then, by (13), nR —o{n) < /(Suj; ), j = 1,2,...,???.. To prove (61), it will
therefore suffice to prove that (1/???) ) is bounded above by n times
the RHS of (61). To this end, note that

m rji

E7(s„-:Sr^.) < E^(YL(>.V);YL,v^.,)
i=i j=i

< E ' (yL("^)'Y(V-xr; Y,0„,vv„,^
j=l

m

E
?=i

H(YL(HV).Yr,•><,-) +H

m

H(YL,m-.Y(V, .r) +E ^ (yL(V'̂ .)- Y?v„ xiO
j=l
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-^(YL(UW.)'YSw.xc:) (75)
m+1

= E ^ (YL(V,,. Yf^.cO - H(YL„>w,)'Yi",w,xr) -(76)
j=l

Here, (72) is beca.use is a function of and is a function of
because I{Zi:Z2) < I{Zi. Z3: Z2, Z4)\ (74) is obtained using the

formula I{Zi',Z2) = H{Z\) + H{Z2) —H(Zi,Z2). and the definition (71); (75) is
obtained by "telescoping" the sum in (74); and in (76) we have used the fact that
Wi = V'l, by the definition in (71). We will bound each of the terms in (76)
separately. First,

= tff (Y^,Yi-
A-=l

= t W(Yi-,r,,,..Y,,,.,.,. Yv-xcu-IY*;;:,,.,, Y{-',,:)
A-=l

< E 77 (Y5-(v-Y,„. Y,. xwlYtVv)-X„r,),i..Xv^xr,^
k=l

< E
A-=l

< E
k=l

H(Yj-,.-,)>) +H(Y,„. ,,;.1X,„V).a)

+ H(Yv-xW-|Xv,xiy-)

E 7/0;.,)+ E 7/(v;,A.|-Ve.t)
c65-(Vj) e€<7(lj)

+ H{YeMXe.k)
e£(VjxU)nE

(77)

(7S)

(79)

(SO)

(81)

Here, (77) is by the chain rule; (78) is by (5); (79) is obtained from (78) by first
conditioning on X<t(V'j).a- and also (this does not change (78) since these are
both functions of and then dropping the conditioning on Y{rxL7 (condi
tioning cannot increase entropy); and (80) and (81) are by the chain rule and the
fact that conditioning cannot increase entropy.

Next, we will bound 7/(YJ,_^,„.^_,. Yf,.^,^[.- ) from below. For convenience, let
E' = 5,>.(MWi) U (ItW, X U). Then,

77(Y?,„,nw.„Yr,.„,xi:) (82)
= 77 (Y|,)

= E//(Ye, t|Y|;')
A-=l

> E//(Yes;.|Y^-')
k=l
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^=1

n

k=l e^E'

n m+1

= EE
^-=1 i=i

n m+1

= EE
A-=l j=l

Y. H(Y,,i,\X,,k)+ Y ^f(Y.,t|A'e,A.)
66^in(^j) e6(ljXL)n£

Y H + Y ff(le,A-|AV)
e€«-(Vj) eeclVj)

+ Y H{Y,,k\X,,k)
ee{VjxU)nE

(85)

(86)

(87)

(88)

Here, (83) is again by the chain rule; (84) is because conditioning cannot increase
entropy; (85) is because 'X.E'.k is a function of (86) is by the chain rule and
the fact that, given A'c.a-, Yt.k is conditionally independent of ^E-{e}^k'. and
Y£_{c].a-; (87) is by the definition E' = <^,n(H m+i) U(H'm+i ^ ("!)? (88)
is by (5).

From (76), (81), and (88), we have, after cancelling common terms.

;=i

1 m 1 n m+1

-E^(s..v;Sv-^.) < -EE E wy..k)-mY,.k\x,.k)]
" A-=l j=l e€^-(V'j)
2 m+1

= -E E
17? ^j —1 e€5 (Ij)

El(-^Vt-:Vei-)
.A-=l

< n

1 m + 1

-EE ^(A'.;Ve)
j=l eeJ-(lj)

(89)

The inequality in (89) is by the concavity of the mutual information function.
This completes the proof of the converse.

Appendix

Proof of Lemma 4.1:

(a) Pick any v € IT. Then there is a path in T from r to v. Since r ^ W. there
must be an edge in this path that exits a vertex not in IT and enters one in IT.

(b) By the result ofPart (a), T has an edge from 5~(V'i), for each 1 < i < m+1.
These m + 1 edges must be distinct because the I'^'s are pairwise disjoint. Since
IT n ^•'"(r)l = 1, at most one of these edges can belong to ^•^(r), which means that
at least m of them must belong to 5 (V)).

(c) By Parts (a) and (b), if |rn^"*"(r)| = 1, then HT) € C. To prove that ^{T) is
actually an extreme point of C, we must find a subset of the inequalities defining C.
whose unique solution, when converted to equalities, is ^{T), Consider the following
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set of l^"! inequalities:

> 0. eeE-T: (90)

z(H;)-$(r) > L r€K. (91)

Here, for each v € V. VV't Q V is the set of vertices in the sub-arborescence of T
that is rooted at v (including u); in other words, W^. is the set of all vertices u such
that the path from r to u in T* passes through v. Observe that T has exactly one
edge from ^"(1^1,), viz., the edge that enters u. Using this fact, it can be verified
that i(T) is the unique solution of the equations obtained from (90) and (91). •

Proof of Lemma 4.2:

We will actually prove the following stronger result: every minimal vector ^
satisfies ]Ce€5+(r) fc = 1- Here, ^ is defined to be minimal if GCand ^ imply
that Clearly, every extreme point of C is minimal.

Let ^ G C be a given minimal vector. Now C is defined by a set of constraints,
one for each vector in Dq. From the constraint z(V') > 1, we have IZeeiS+(r) "fe ^ 1-
Let ^r.vi •" ^r.vk fhe positive terms in this sum, so that X^ee^+Cr) Cc = IDi=i -

By the minimality of decreasing ^ in the component corresponding to (r, u,)
results in a vector not in C. This means that, for each 1 < z < k. there is a constraint
involving ^r.t, that is "tight." In other words, there exist subsets IV'i,..., of V,
such that I'i G IT'i and

z{Wi)'i = 1. (92)

We claim that

z(Hj U Wj>) •^ = 1 if IVj n 11/ is non-empty. (93)

The proof of this claim is by a neat trick adapted from [10]. which uses the max-flow
min-cut theorem. Let u G Hj HIT/. Suppose we think of G as a flow network with
source r and sink u. in which the capacity of edge e is ^e- The constraints z(lT)-^ > 1
then imply that every cut (V —IT, IT), u G IT C V. separating r and u has capacity
at least 1. So, by (92) applied to ITj and ITj/. both (V —IT/ ITj) and (V —1T/,1T/)
are min-cuts. But by [9], Corollary 1.5.4, this means that (T —(H j L) IT/), ITjUIT/)
is also a min-cut, which is the same as saying z(VTj U IT/) •^ = 1.

Now, by repeatedly combining pairs of intersecting sets, we can express ITi U
••• U VVfc as the union of pairwise disjoint sets V'l,..., IT+i, with 0 < I < k. Here,
each Vj is the union of certain of the ITVs. By applying (93) repeatedly to each pair
of sets that are combined, we can conclude that (V —Vj, Vj) is also a min-cut, for
each j: i.e..

z(Vj)-^ = l, l<i</ + l. (94)

We can now prove < T and hence X]e€5+(r)?e = 1, as follows. First
of all,

ee5+(»-) «=1

1+1

< (95)
j=l vEVj
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The inequality above holds because I'l,..., Vk are all in V'l U ••• U I7+1. If / = 0,
then

/+i

j=\ veVj t;eVi

< E

= z(V'i)-$
= 1.

The last equality above is by (94). On the other hand, if / > 0, then

/+i /+i

E E ir,, = E
j=i veVj j=i

/+i

E E
eGj-(V'j) ee5-(Vj)

i=i

< (/ + 1)-/
= 1.

(96)

(97)

Here, the second equality is by the definitions (43) and (44). The inequality is by
(94), and the constraint z( V'l,.... V/+i) • ^ > 1. which holds because $ € C and the
V}'s are non-empty and pairwise disjoint.

The desired result follows from (95), (96), and (97). •
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