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Chapter 1

Introduction

1.0 Background

Wave propagation in multiconductor system has been a research topic since the turn of the cen-
tury. Originally, signal transmission through telephone and telegraph lines as well as the tran-
sient phenomena on power transmission lines were the main subjects of the research. Later,
striplines have found their applications as directional couplers and interdigital filters. With the
advent of integrated circuit technology, the coupled microstrip transmission lines consisting of
multiple conductors embedded in a multilayer dielectric medium have evolved as a-new class of
microwave networks. Then the need to consider interconnect in digital circuits as lossy trans-
mission lines arose in the early 90’s, particularly for multi-chip modules. Increasing lengths of
interconnect combined with the faster switching speeds of modern logic have created a situation
where interconnect time-of-flight(delay) has become comparable to signal transition times, giv-
ing rise to transmission-line effects such as reflection and overshoot. Such phenomena are capa-
ble of causing undesired switching. In addition, with the development of the deep submicron
techniques, the small cross-sectional areas of typical high-performance interconnect give rise to

series loss and the additional phenomena of attenuation and dispersion[1][2].

1.1 Interconnect Modeling

Traditionally, different interconnect models are developed for on-chip and off-chip cases respec-
tively. For CMOS technology, RC lumped models are adequate for on-chip interconnect model-

ing. Previously, moment-based methods, like Asymptotic Waveform Evaluation (AWE)[3] were
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employed to reduce the order of on-chip interconnect models. But, these methods usually suf-
fer from the ill-conditioning and numerical instability problems. In recent years, Lanczos
algorithm [4](5] is used in place of AWE. For off-chip interconnect modeling, transmission
line models based on moment matching methods are often used. Though Padé Via Lanczos
(PVL) is efficient in RC or RLC lumped model order reduction, it has some problems when
applied to transmission line models. One advantage of moment based approaches over PVL is
that they can construct approximations to systems with irrational system response, i.e. a sys-
tem with delay elements such as transmission lines, as easily as for a rational response,
whereas Krylov-subspace model reduction algorithms for systems with irrational response
have yet to be demonstrated[6). A way to deal with the problem is to treat transmission lines
as the interconnection of a large number of RLGC segments, but the efficiency of such a dis-

cretization approach may be unsatisfactory.

In this thesis, we consider off-chip interconnect modeling by means of transmission line mod-

els.

1.2 The Circuit Simulation Problem

The fundamental difficulty encountered in integrating transmission line simulation into a tran-
sient circuit simulator is that circuits containing nonlinear devices or time-dependent charac-
teristics must be characterized in the time domain while transmission lines with loss,
dispersion, or discontinuity are best characterized in the frequency domain. To cope with this
difficulty, four types of approaches have been proposed in the literature. One uses a network
of lumped elements and segments of ideal transmission line to approximate the ﬁ'equen;:y

response of each lossy transmission line or each lossy multiconductor system[8]. These



approximated circuit models are suitable for existing general-purpose circuit simulators. How-
ever, a drawback of this approach is that the amount of computation increases due to the large
number of extra nodes and elements introduced[9). The second type of approach adopts the con-
volution technique. The outputs of linear lossy multiconductor lines are the convolutions of the '
inputs with the impulse responses (Green’s function) of the multiconductor lines. The multicon-
ductor lines are treated as a linear N-Port system. The difficulty of this type of approach lies in
how to determine the impulse responses of an arbitrary multiconductor line system. Existing
methods rely on the use of the inverse Fast Fourier transformation technique[10], the numerical
inverse Laplace transformation techique[11], inverse Fourier transformation of frequency-
domain scattering parameters[12][13], and even the explicit analytical approach[9] to determine
the impulse response. However, the convolution simulations suffer from a common drawback:
the convolution operation needs to extend over the entire past history. The computation time
required at any time point t is then proportional to the time point t; therefore, the convolutions at
large time points will be very time-consuming. Furthermore, the inverse Fourier transformations
of [10], [12], and [13] will suffer from either the aliasing effects or from too many frequency

points needed for the transformations to avoid aliasing.

In order to improve the efficiency of tiu: simulation involving fast-varying signals, the recursive
convolution technique is used instead of direct convolution[16], but explicit analytical expres-
siohs for the impulse responses are still needed. In order to deal with this difficulty, the Pade
technique is used to obtain approximate explicit analytical expression of the transfer function.
Impulse response functions are approximated with a sum of exponential functions in the time
domain. However, the Pade technique suffers from the instability problem: unstable poles may

be generated for known stable networks.



1.2.1 Interconnect Simulation Via Passivity

Most of the research in this area, such as AWE (Asymptotic Waveform Evaluation), depends
on Padé approximations of irrational functions and convolution. Although Padé approxima-
tion provides a feasible and accurate model for low-order reduced models, it tends to yield
unstable poles when the number of poles (order of approximation) exceeds eight. In [17],
mixed-exponential functions are introduced to overcome the problem of instability. How-
ever, extremely ill-conditioned matrices because of severe numerical problems may still
exist when computing high order moments. Further, this method does generate unstable
poles and subsequently deletes them to avoid instability. The Complex Frequency Hop.-
ping(CFH) method [18] computes high order moments correctly without generating unsta-
ble poles. However, difficulties of using special high precision programming techniques
hinder its use. Since transmission lines are passive elements, a rational approximation, prop-
erly done, should lead to poles in the left half s-plane. In classical network theory, the
impedance of a single transmission line is a positive real function, while for multiple trans-
mission lines the impedance is a positive real matrix. Based on the positive real property, the
method due to Pillai, Shim and Youla [19] can be used to obtain stable poles during the
approximation of the characteristic admittance and transfer function of the transmission

line.

1.3 Contribution

A new approach for transient simulation of lossy interconnects terminated in arbitrary non-
linear elements is proposed. The approach is based on Pillai method to avoid the instability
problem caused by the Padé approximation. By applying the recursive convolution tech-

nique, we greatly reduce the computation used to perform convolutions. We have incorpo-



rated the proposed technique in SWEC. The comparisons with other interconnect models
indicate that the model we derive is a good model[20] in terms of accuracy, efficiency

and stability.

1.4 Organization
Chapter 2 reviews some basic concepts such as power spectrum, positive function,

bounded function and maximum entropy. It also gives some related important theorems.

Chapter 3 presents the formulation of the proposed Pillai-like method. We will compare it
with the original Pillai method. The reason why the proposed Pillai-like method insures

stability will also be described.

In chapter 4, the recursive convolution method will be reviewed together with experimen-

tal results.

Chapter S suggests possible future work and makes some conclusions of this thesis.



Chapter 2

Background and Review of Basic
Concepts |

2.0 Power Spectrum

Suppose H(.) ‘is a transfer function of a linear system, power spectrum of H(.) is defined

as:

S(®) = [H(jo)*= H(jo)H*(jo) @.1)

If the time domain format of h(t) is real, then H*(jw) = H(-jw), so it follows

S(@) = H(jo)H*(jo) = H(jo)H(-jo) = H(s)H(-s)|,_ ,, = S(-0) 22

s = jo

S(w) is an even function of (o2 .If H(.) is also rational, S(®) can be presented as,

B(ow) _ B(=s)

>0
A@Y) A=)

s = jo

S(w) =

(2.3)

where A(.) and B(.) are real polynomials in st satisfying (2.3). If s, is a zero of either A
or B in (2.3) with nonzero real part, then —s,, 5,* and —s,* will also have nonzero real
parts. This can be easily proved as follows: assume s, is a root of A; since A is a real poly-
nomial in sz, s,* is also a root, so that (s—s,)(s—5,*) = st - (sy* +5,)s +5,5,* has

real coefficients. By replacing s with —s, it can be easily seen that 5,* and —s,* are also
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roots. Moreover, from the nonnegativity constraint in (2.3), every zero of A and B on the jo-

axis must occur with even multiplicity. This allows the representation

A(=s2) = M(s)M(-s)  (2.4)
B(~s®) = N(s)N(=s) (2.5

where M(s) and N(s) are real Hurwitz polynomials which have no zeros in the open right
half plane in the s-domain (or interior of the unit circle in the z-plane). Substituting (2.4) and

(2.5) into (2.3) gives
_ N(s)N(=s) _ _
SO = M) s=jo HOHES ) jo  26)

where H(s)= iv—l%)) . In the z-domain, the power spectrum of H(z) can be expressed as

S(z) = |H@)? = H@H (2)

T

where z = ¢ and T is the sampling period. Let H.(2)= H'(l_). Since z = -1;,
z

Z
H.(z) = H'(2). Thus

S@) = H@I = H@H.(2) @7

2.1 Positive function
Positive real function is one of the most important concepts required to understand the passiv-

ity property of transmission models.

Definition 2.1.1. A function f(z) is said to be positive function if



1. f(z) isanalyticin |z] < 1 (the interior of the unit circle)

2. The real partof f(z),Re(f(2))20 in |2| <1
Definition 2.1.2. If f(2) is also real for real z then it is said to positive real (p.r.).

In the beginning of this century, Schur discovered the interesting correspondence between
positive functions and the power spectrum. This is summarized in the following two the-

orems.

Theorem 2.1. Associated with every power spectrum S(z)

S(z) = H@)? = T 12"

there exists a unique positive function[21]

Z(2) = rg+23 et
1

Theorem 2.2. (Schur’s Theorem) The power series

Z(z) = ro+ ZZrkzk
1

defines a positive function iff every Hermitian Toeplitz matrix is positive for every

20

oooooo

k = 0 — e, where r*=r_,[21].



Lemma 1. If S(z) is a power spectrum of H(z), then there exists a positive function

VA Z. -
2, _ﬂz_("'_) where Z(z)=r0+22rkzk and

1

Z(z) such that S(z2)= |H(2)|"=

Z.(2) = ro*+22rk*z'k with r*=r_,.
1

This lemma can be inferred from Theorem 2.1.

Lemma 2. If Z(z) is a positive function and has rational expression Z(z) = b(z) then

a(z)

b«(2) Z(2)+Z.(2) a(z)b.(z) + b(2)a.(z)
Zs(2) = oy ad S —5— = T gme
Let
a(2)ba(2) + b(2)as(z) = 2B(2)B.(2)
thus

a(2)bs(2) + b(2)ae(z) B(2)B«(2)
2a(z)a.(2) T a(z)a.(z)

We can find H(z) by using ﬂg ;B'E ; H(z)H.(z). Thus H(z) = E%

2.2 Bounded functions

Definition 2.2.1. A function d(z) is said to be bounded if

1. d(2) is analyticin |2 < 1
2. ld(2)|<1inl7 <1



Definition 2.2.2. If d(z) is also real for real z, then it is said to be bounded real (b.r.).

Let d(z) be the bounded function which represents the reflection coefficient associated

with a positive function Z(z) normalized to some R, with positive real part. Thus

Z(z)-R
da(z) = ZTZ)._-PR% 2.8)
with Ry = Z(0). d,(z) has the form
= Ly = 1. 2(2)-2(0) 29
4h() = 340 = 2 Ty + 2+ ) @9

which is analytic in |z] < 1. If d(2) is also analyticon z = ¢’®, then on the boundary, we

have

|a, )| = lae™)| <1

and hence from the maximum modulus theorem, |[d;(2)] 1 in |2| <1 and is also analytic
in |z] < 1. More generally, from (2.9), |d1(z)| < % for |2] = r<1 and using Schwarz’s

lemmal[27], |d,(2)| <1 in |2l < 1. Hence, |d,(2)] is always a bounded function. Let

Z,(z) represent the positive function associated with |dl(z)| normalized to Z(0),

Z,(2)-Z(0)
Z,(z) +Z*(0) (2.10)

d 1 (2) =
Combining (2.9) and (2.10), we have

1 2(2)-2(0) _ Z,(2)-Z(0)
z Z(2)+Z*(0)  Z,(z) +Z*(0)

10



- —>
[z
Lz)
dzy —> 20 (di(2))
_

Fig. 2.1 Ideal Transmission Line

The reflection coefficients associated with the two positive functions Z(z) and Z,(2) so
generated are related through the delay operator z when they are both normalized to Z(0).
Thus, starting with any positive function Z(z), the above procedure will always give rise
to a new positive function Z,(z) [21). Equations (2.8) can be given an interesting physical

interpretation by making use of an ideal delay line and the incident and reflected waves.

Consider an ideal delay line as Fig 2.1 with one-way delay 1 that has been terminatedon a
positive function Z,(z) and let Z(z) represent the input positive function. Then, the
reflection coefficient d(z) of the input Z(z) normalized to R, = Z(0) is given by
Eq(2.8) and that of the termination Z, (z) is given by Eq(2.9). Let a,(z), B,(z) represent
the transforms of the input incident and reflected waves and a,(z), B,(z) be those at the

output terminals of the line. Under the assumption that all these waves are normalized to

Z(0), we have

Bl(z) _
0@ - d(z)

(2.11)
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and

= d(2) (2.12)

Since the incident waves o, (7) and o,(¢) only undergo a one-way delay of T in the line,

we have

B,(#) = o (2—1)

and

Bi() = ay(2—17) -

Under zero initial conditions, the Laplace transform of the above equations give

Ba(s) = € a,(s)

and

By(s) = e Tay(s)

Thus, in the z-domain

0y (2)  25By(2) ”13
B2 ¢ 0, @)

By identifying e 2" tobe the delay operator z such that z = et » (2.13) changes to

w B,(2)
B,(z) o,(2)

=1
¥4
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and it can be further reduced to
1
d,(z) = ;d(z)

2.3 Generalized Line Extraction Process

Z,(2) is denoted as the positive function at the rth stage resulting from r successive line extrac-

tions. Let

R,y =2,.,00)

f

where r21 represent the characteristic impedance of the rth line. The reflection coefficient of

Z,(z) normalized to R, _ , the characteristic impedance of the previous line can be formed as

_ Z,()-R,.,
d,(z) = Z, (D) +R,_,*

Hence
R,_(2)+R,_,*d,(2)
Z,(2)= 1-4,2) (2.14)
. . 1 Zr(z)_Rr . . .
To extract the next line, since = - —————— is bounded, Z, , ;(z) denotes the positive function

z Z(z)+R>

associated with this bounded function. By using Eq(2.14), Z, , ,(z) changes to

Rr + Rr*dr-l- 1(2)

Zr-t-l(z): l‘dr-o-l(z)

Thus

1 Z(2)-R, Z,,,(2)-R,-

z = = 2.15
z Z(2)+R*  Z,,,(z)+R* d,1(2) (2.15)
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Physically, Z, , ,(2) represents the new positive function after (r+1) line extractions and
"d,,(2) the associated bounded function normalized to the characteristic impedance of the

last line. Using Eq(2.14) and Eq(2.15), we have

R,_1(2)+R,_y*d,(z) R, +R*zd,(2)

Z,(2)= T-d,(z) T 1-zd,,,(2)

R,_,
4O = g 3x 5

represent the rth junction mismatch reflection coefficient. Clearly, |S,|= |4,(0)| <1 and it
gives

(R,—R,_))+2(R,* +R,_,)d, ,1(2) (2.16)

d (z)= (R, +R,_1*)+2(R,*-R,_,*)d, ,,(2)

Referring to Fig 2.2, a line extraction from the input positive function Z(z) has resulted in a

set of new positive functions Z;(z) . Notice that the above line extraction is possible only if
the normalization is carried out with respect to R; = Z;(0). Following the transmission line

terminology, we will denote Z;(0) to be the characteristic impedance of the ith line. This

extraction process can be further described by Richards’ theorem([23].

— {1+ "1 ]z

z(z) —» R R, d (z)—»-R,

Fig 2.2 Generalized Line Extraction
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In the next chapter, we will explain how to apply Pillai or Pillai-like approximation based
on line extraction. Before that, we first present a important method, namely, the Maximum

Entropy Method, used to estimate power spectrum.

2.4 Maximum Entropy Method[24]

The FFT is not the only way to estimate the power spectrum of a process, nor is it neces-
sarily the best way for all purposes. To see how one might devise another method, let us
enlarge our view for a moment, so that it includes not only real frequencies in the Nyquist

interval —f . < f < f ., but also the entire complex frequency plane. Let us transform the

2wirA , where A

complex frequency plane to the z-plane, by introducing the relation z = €
is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval on
the real axis of the s-plane maps one-to-one onto the unit circle in the complex z-plane.

We see that the FFT power spectrum estimate can be written as

N/72-1 2
2 r k"" 2.17)

k=-N/2

Siz) =

Of course, it is not the true power spectrum, but only an estimate. The estimate is not
likely to be exact because in the i-plane, equation (2.17), the finite Laurent series, offers
only an approximation to a general analytic function of z. In fact, a formal expression for

‘representing “true” power spectrum is

2
k

-
zr,‘z

S(z) =

(2.18)

This is an infinite Laurent series which depends on an infinite number of values 7;.
Equation (2.17) is just one kind of analytic approximation to the analytic function of z rep-
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resented by Eq(2.18). It goes under several names, including direct method, all-zero
model, and moving average (MA) model. The term “all-zero” in particular refers to the

fact that the model spectrum can have zeros in the z-plane, but not poles.

If we look at the problem of approximating Eq(2.18) more generally, it seems clear that
we could do a better job with a rational function; one with a series of type Eq(2.17) in both
the numerator and the denominator. Less obviously, it turns out that there are some advan-

tages in an approximation whose free parameters all lie in the denominator,

1

S(z)= M/72 2 (2.19)

>

k==-M/2

The a, ‘s can be thought of as being determined by the condition that the power series

expansion of Eq(2.19) agree with the first M+1 terms of Eq(2.18).The differences between
the approximations Eq(2.17) and Eq(2.19) are approximations v;rith very different charac-
ter. Most notable is the fact that Eq(2.19) can have poles, corresponding to infinite power
spectral density, on the unit z-circle, i.e. at real frequencies in the Nyquist interval. Such
poles can provide an accurate representation for underlying power spectral which have
sharp, discrete “lines” or delta-functions. By contrast, Eq(2.17) can have only zeros, no
poles, at real frequencies in the Nyquist interval, and must thus attempt to fit sharp spectral
features with essentially a polynomial. The approximation Eq(2.19) goes under several

names: all-poles model, maximum entropy methods (MEM), autoregressive model (AR).
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Chapter 3

Interconnect Modeling Based on
Passivity

3.0 The Power Spectra of simple RLGC Lines

It is found in [8)] that with significant delays, the macromodel method[25] is no longer
accurate. Transmission lines should be modeled separately by propagation functions and

characteristic impedances or admittances.

Suppose R,L,G,C are unit length parameters, the characteristic admittance of a single

transmission line is defined as

- /ﬁ:ﬁ_ o) [£14 (3.1)
Y. = sL+R‘Y°( ) s+b
b=

2, 2
S(@) = Y (o)’ = Y (=) ’50_;_02 (2)
O +b

The propagation function of a single transmission line is defined as:

. Its power spectrum is

Sy

Q

"
alQ
>

where Y (e) = |+,

I'(jo) = exp(-6(j®)) (3.3)

where 8(jm) = J(joL + R)(joC + G) . After factoring out the ideal delay, I'(j®) can

be written as

I'(jo) = exp(-jot)exp((-Jab)t)F(jo) ~ (3.4)
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where exp(-jot) is the ideal delay, T = JLCd, and d is the length of line. Let

F(jo) = exp(- J(jo + a)(jo + b) + jo + Jab)t . Its power spectrum is S(w) = |F( jco)lz. Then

F(jw) can be approximated via its power spectrum so that I'(s) can be obtained.

To apply Schur’s theorem, power spectra of Y .(jw)and F(jw) are transformed into the z-domain by a

process similar to inverse Fourier transform. Assume S(®) = |H( jm)lz. we denote its inverse Fourier

transform as

R(®) = 5 [ S(@)e™do (35)

Let T be the sampling period. Using discrete inverse Fourier transform gives
S(@) = Yre T (3.6)
Letz = e/, Eq(3.6) can then be written as

S(z) = Yr 3.7)

L J
Since S(w) is an even function, in the z-domain, r = r_,= r, with kK = 0 — oo, Therefore,

S(Z) = ro“'zrkzk"'zrkz-k (3.8)
1 1

3.1 Proposed Method

After deriving the power spectra of characteristic admittance and propagation function as in section 3.0,
we intend to get the rational approximation of the power spectra and further obtain the rational approxi-

mation of the original functions.
18



3.1.1 Levinson Algorithm

As in (3.8), S(z) represents the series expansion of the power spectrum for characteristic
admittance Y _(z) or propagation function factor F(z) . Using Maximum Entrophy

Method gives

1

5@ = 1340

39

where A(z) = Ya;z andAu(z) = Y a;2". As S(2) = H(2)H.(2), H(z) represents
0 0 '

characteristic admittance or propagation function factor which are positive real functions.

Hence, H(z) = ﬁ and A(z) is also positive real. Suppose A,(z) is an approximation
of A(z) . Let
Ay(2) = @, g+ay 12+ ... +a, 2 = A(2) (3.10)
Then
1
S(2) = ———r— 3.11
() A (2)AL(2) @11

Moving A,.(2) to the right hand side of Eq(3.11) and multiplying z" on the both side give
n

oo oo

- i n z

(ro+ Yorz+ Yz ]o Byt BppyZ% ... 48y g2) = )
i=1 i=1

Because A,(z)#0 in 2| <1,let

1
An(2)

n
= by g+bp12+... +b, 2

19



with b, o = a_l; . Comparing the coefficients of 1,2, 22, ...,Z" on both side, we get
n,

_ -
ro Ty T2 «eTq_y Ty -a N 0
nn
Ty To Ty -Th2Tp
@ n-1| = 0
e 00 s LN ] [ XN} = (3.12)
r | SRR r r
-17n-2 0 1
n n an.O bn,O
-r" Fp_g soe oo r ro-' -

The coefficient matrix is a symmetric and Toeplitz matrix. A recursive algorithm named

after Levinson who was one of the first people using this method can reduce the computa-
tion complexity to O(k), where k is the number of coefficients in the series expansion of

the original power spectrum.

3.1.2 Rational Approximatioﬁ of Z(2)
Let A,(z) be the power series approximation of A(z) up to the kth order, T, be the

determinant of coefficient matrix in Eq(3.12). We can write A,(z) as

ak’k 0
a, -110

A2) = [zk AR 1] S b"*o[zk R 4 l]T"
| 4k0 !

1
= LER ] 06 eee o0 3.13
3 o (3.13)
Fp_1 T oo oo ro ry
k k-1
z ... z 1

withk = 0,..,nand A, = T,.



A
By applying Cramer’s rule on Eq(3.12) to solve for g, , we get a; o= % which
k

finally gives the compact expression of (3.13)

1
AQR) s ——]| ... .. ... 3.19)
* BBy

Theorem 3.1 Let A be an nxn matrix and A, , A,,, A, ,A,, denote the (n-1)x(n-1)
minors formed from consecutive rows and consecutive columns in the northwest, north-

east, southwest and southeast corners. Further let A, denote the central (n-2)x(n-2) minor

of A. Then from a special case of an identity due to Jacobi[26],

A‘.'.AI = AnwAse—A A

ne— sw

According to the definition of A,

Ak=

oooooo

by Theorem 3.1,

ry Ty I3 .. Ty Ty
9 E-1 To ry To ««« Tg_2Tk_1
BApby_g = B (1)

oooooo
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From Schur’s Theorem (Theorem 2.2), A, and A,_, are nonnegtive, thus A A, _,20.

Denote d, as

(_l)k—l To ry To - Tg2 Tk (3.15)
dy = A eve  see see eee
k-1
Fp_2Tgo3 eee oo ro r

it is easy to verify that |d,‘| < 1. Combining with (3.14), we can get a recursive rule

J1-|dd*AL2) = A (2)-2d,Ar_1(2) (3.16)

with Zk(z) = zkA,‘.(z) = z"Ak*(-z-l;).We can further rewrite Eq(3.15) as

k
d,= {Ak_l(s) Y r,.z‘} A,_,(0) (3.17)
k

i=1

where{ }, denotes the coefficients of 2* in { L.

Sinf:eS(z) = A(z).IA.(z) = 2(2) -;Z.(z) and Z(2)= 2‘:"‘((;)4—0(2“1) ,denoteZ,(z) as
2Bk(2)
Z,(2)= ——
K2)= A(2)

As A,(z) and Z,(z) are approximation of A(z) and Z(z) respectively, we have

1 Z,(2)+Z,.(2)

. - 3.18
b weywe! 3 G.18)

hence

Ak‘(z)Bk(z) +Ak(z)8k‘(z) =1 (3.19)



From Eq(3.19), we can find B,(z) has the same recursive formula as A,(2),
J1-140%B(2) = By_1(2)+ 2d,Be1(2) (3.20)

whereék(z) = z"ﬁk.(z) = z"Bk*(z-l—*).'Ihus

(Ag-1(2)-2diAr-1(2))

A (2)=
’ Ji-1af
B,(2)= (Be_(2) + 2d,Be-1(2))

Ji-1a?

Then, Z,, ,(z) can be formed recursively as

2(B,(2) + 2dy., Bi(2))

zZ = =
k+ 1(2) Ak(z)-zd“ 1Ak(z) (3'21)

which has similar form as (2.16). By letting z = 0, we could easily find out Ay(0) and By(0)

whose positive real property is guaranteed by power spectrum. Normalizing A,(z) and denoting it

G = [EA)
k Ak—l k
bi2) = |t-By(2)
k Ak—l k

Let ao(0)= ay(z) = 1 and by(0) = by(z) = ro/2, atk+1th step,

as a,(z) give

Similarly we have

2(b(2) + 2d; 1 Bi(2)) _ 2b,,4(2) T (3.22)

Zy(2) = ak(z)-l-zd,‘.,,lzk(l) - @ 41(2)




with kth term
a,(2) = 6;_1(2) +2d,br_1(2)
b(z) = by_,(2) +2d,a;_,(2)

a,(z) = zk&k.(z) = zkak*(zl*)

Bi(z) = bee(2) = z"b,,*(zl*)

After n steps, by letting d,, , ; ¢ 0, we have

2b
20 - 375

2b,(2)
a,(z)

+o(zn+l)

Since

Z(2) +Zo(z) a(2)be(2) + B(2)au(2)
2 =T 2a(2)a.(2)

|H()I*= H(2)H.(2)=

Using factorization[28] a (z)b,,.(z)+b (2)a,+(z) = 2B,(z)B,e(2), we can get
B.(2)

H@) = 220

3.2 Pillai’s method ---- Pade-like Approximation

In contrast to the proposed method, after n steps, if d,,, , # 0 and we assume that it is a

rational function, d. ., = LC). then Z(z) = 2APEE X TDaE) o o) and
8(z)’ a,(2)g(2) + of (2)bn(2)
f(z) are coefficients that are solved by
Ax=b
where
X=[gp8k_1--+282 81|f1;_pfg_2, ooy fpfo]T
and

b= [0, 0, cooey azb vaey a“,l]



4y O .. 0 O b* O .. 0 0
Qyp_1 Qo --- 0 0 bl* bo* .... 0 0

Grie2 Gpy3 - Oy 0 b*k_z b*k—3 voe b*o 0

iy Gpeg o Gy Gt b%_y b*_y ... b* D%

* * e *
a, a ... ak_l a; b 2k -1 b 2% -2 b k+1 b K| 2k x 2k

By equating the denominator coefficients of P l, 2 +2, ooy zu, we can derive g(z) and f(z).

Ba(2)
a,(z)

'~
o~

z) is a bounded function, that

It is proved in [19] that H(z) = (z

is stable if d,, ., =

)
-

f(z)

5 < 1. Itis also shown in [19] that this method is equivalent to a Padé approxi-
g(z

is|dn+ l| =

mation when stable poles are obtained. Like Padé approximation, Pillai’s method can match

twice as many terms of S(z) as our proposed method. We call this property its optimal prop-

erty. In addition, stable poles can always be obtained by increasing the order of approximation.
Moreover the equivalent system is not ill-conditioned because of the positive definite coefficient

matrix A of the power spectrum.

3.3 Transformation to Time Domain
From the z-domain, we can directly transform H(z) to time domain by partial fraction expan-

Ba2) | H() _ 0(2) _ NG

sion. Suppose H(z) = By partial fraction expansion we

a,(z)’ z zP(z) D(2)’
have H(z) = co+clz_Lzo+ +c;—fz—k, where ¢; = %((‘% and D'(z2) = .‘%D(z). If in the



k
time domain, H(1) = Y c;exp(-p;t) then p; = x;+ jy; is a pole in the s-domain.
i=0

Assume z; = a; + jb; represents a pole of H(z) and T is the sampling period, then we

have x; = —, y; = 2kn—arctg

21 . Hence, one pole in the z domain maps to infi-

i
nite number of poles in the s-domain.

Levinson Algorithm
1
foo = L.Po = r1s80 = a,ro = dgo’y»

fori=1tok

B
(M = —5 2%y = &+ B,
- e - - -

fi+1,0 fi,o 0
fiv1n fia Sii
o hall

fi+l,|' fii fi.l
_fi+l.i+1_ | 0] _fi,o

Bis1 = fivroTiv2tfivr1livr to v fisnin1nn

/TS bk
! ;41
;41,0 a; 0 0
giv1,1 ;1 i
=l..]1%49]...
Givy,i a;i %1
%4141 LOJ  [%ig

Yo = Gy oliszt @i iv1 o480 0)

} /*forloopend */



Chapter 4

Transient Simulation of Lossy Inter-
connects Based on the Recursive Con-
volution Technique

4.0 Recursive Convolution Technique

The Telegraph Equation for a RLGC-line in the s-domain are:
0 =
xV(x,s) = —(sL +R)I(x, s)

‘%l(x, 5) = —(sC +G)V(x,s)

Rearranging the solution to the Telegraph Equation at the near end and far end of the transmis-

sion line, we get the following formula:

YoV (0, 5)-1(0,s)= exp(-Al)(Y VI, 5) +1(],s))

YoV, 8)-1(1,5)= exp(-Al)(Y(V(0,5) +1(0,s))

with Y, = s;%%g , A = J(sL + R)(sC + G), R,L,G,C are unit length parameters, ! is the

length of the line.The inverse Laplace transform leads to the following equations:

v(0, £)* hy(2)—i(0,8) = v(l, )% h3(2) +i(l, 1)* hy(2)
v(l, 0)* hy(t)—i(l,8) = v(0, £)* hy(t) +i(0, 1)* hy(1)

where * stands for the convolution operation and:

hy(t)= L™ {Y ()}

hy(t)= L™ {exp(-Ms)])}

ha()= L {Y o(s)exp(-A(s)D)}



Since the convolution integration is time-consuming, a special recursive convolution for-
mulation was developed[16]. At time ¢,, , , , for example,

v(0, )% by(D)], ., = Jo" V(0 D)y (2, 4y — D)

n
= ng(o, £, 1)+ Jg Y 15 a0, exp(py(ty .1 — Tt
i=1

where g; and p; are zeros and poles after Pade approximation. By using the Trapezoidal

rule, we have:

o 4iv(0, Dexp(Pilty .1 ~ DT = exD(pihy) [ 4(0, DIexp(pi(s, — Tt
hn
+ —2—q‘[V(0, tn)exp (pihll) + V(O, tll +1 )]

which means that we can recursively get ﬂ;"q,-v(o, 1)exp(p;(t,. 1 — T))dt based on the

value of previous time where h,= ¢, ,—1,.

4.1 Experiment Results

Fig 4.1 and Fig 4.2 are the magnitude of character.iﬁtic admittance and propagation func-
tion generated by the proposed method. The maximum frequency is 1.5GHz. In Table 1,
we list the poles of both the propagation function and the characteristic admittance of the
same example obtained by the proposed method. Example 1 includes only one transmis-
sion line, with 5 poles approximation, we compare the results of both proposed method
with Pillai method in Fig.4.4. Example 2 is a 5 single transmission line case with nonlin-

ear load. The third example is a clock subnetwork with 73 single lossy lines. From the

28



results we see that the results of Pillai’s method are close to the those generated by Padé
approximation. The results produced by the proposed method are within 5%-8% error
range. Since by using the proposed method, we can not get an optimal rational approxima-
tion as Padé and Pillai methods, we may lose some accuracy while we ensure stability.
And because the inverse Fourier transform technique is used in the process, the speed
compared with Padé approximation is about 1.5-2 times slower, and we usually have to

use higher order than Padé to ensure the accuracy.
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Exmp 1. One Single Transmission Line
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Exmp2. A Small Circuit with Nonlinear Devices
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Chapter 5

Conclusion and Future Work

A new approach for transient simulation of lossy interconnects is proposed. This approach
is based on Pillai method to avoid the instability problem caused by the Padé approxima-
tion. By applying the recursive convolution technique, we greatly reduce the computation
used to perform convolutions. We have incorporated the proposed technique in SWEC.
The comparisons with other interconnect models indicate that the model we derived can
ensure stability while we have to increase the number of order in order to keep the accu-

racy at the same time.

By comparing the simulation results based on Pillai’s method, the proposed Pillai’s
method and Padé approximation, respectively, we found several interesting facts. 1) Pil-
lai’s method belongs to Padé approximation method category. It also achieves optimal
rational approximation as Padé abproximation does. The advantage of Pillai’s method is
that it can always find a stable rational approximation by increasing the order of the
" denominator and nominator. Unfortunately, there is no easy way to find out up to which
order the rational approximation would be stable. 2) It is the very last step of Pillai’s
method which helps find out an optimal solution that leads to unstable rational approxima-
tion. Hence, our proposed Pillai method ensures stability by omitting the last step of Pil-

lai’s method. 3) There is a trade off between the stability and accuracy. From the



experimental results, we see if proposed Pillai’s method is used to force stability, we need

higher order rational approximation than Pade approximation to obtain the same accuracy.

When we deal with coupled transmission lines, all the theorems imd concepts used in sim-
ple line cases can be extended [19]. By considering every entry as a matrix, we have the
concept of positive matrix function instead of positive function. And Schur's Theorem has
the same form as the original one. Richards’ theorem gives rise to two forms of reflection
coefficient matrix called right inverse form and left inverse form. This is due to the fact

that when Z(z) is a positive matrix function, even if a R has positive Hermitian part,

(Z(z)-R)Z(2) + R‘)_l is not a bounded matrix function unless R is a identity matrix.
So we have to construct the reflection coefficients based on the fact that
I1-d(z)d (z)‘ >0 inlzl < 1. And because the impermutability of matrix multiplication,

we have I — d(z)‘d(z) >0 in Izl < 1.Thus we have two forms when deriving d(z). We also

have Levinson Algorithm for matrices polynomial.
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