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Chapter 1

Introduction

1.0 Background

Wave propagation in multiconductor system has been a research topic since the turn of thecen

tury. Originally, signal transmission through telephone and telegraph lines as well as the tran

sient phenomena on power transmission lines were the main subjects of the research. Later,

striplines have found their applications as directional couplers and interdigital filters. Wth the

advent of integrated circuit technology, the coupled microstrip transmission lines consisting of

multiple conductors embedded ina multilayer dielectric medium have evolved asa new class of

microwave networks. Then the need to consider interconnect in digital circuits as lossy trans

mission lines arose in the early 90*s, particularly for multi-chip modules. Increasing lengths of

interconnect combined with the fasterswitching speeds of modemlogichavecreateda situation

where interconnect time-of-flight(delay) hasbecome comparable to signal transition times, giv

ingrise to transmission-line effects such asreflection and overshoot Such phenomena arecapa

ble of causing undesired switching. In addition, with the development of the deep submicron

techniques, thesmall cross-sectional areas of typical high-performance interconnect give rise to

series loss and the additional phenomenaof attenuation and dispersion[l][2].

1.1 Interconnect Modeling

Traditionally, different interconnect models aredeveloped foron<hip andoff-chip cases respec

tively. For CMOS technology, RC lumped models are adequate foron-chip interconnect model

ing. Previously, moment-based methods, like Asymptotic Waveform Evaluation (AWE)[3] were



employed to reduce theorderof on-chip interconnect models. But,these methods usually suf

fer from the ill-conditioning and numerical instability problems. In recent years, Lanczos

algorithm [4][5] is used in place of AWE. For off-chip interconnect modeling, transmission

line models based on moment matching methods are often used. Though Pad6 \^a Lanczos

(PVL) is efficient in RC or RLC lumped model order reduction, it has some problems when

applied to transmission line ixKxiels. One advantage of moment based approaches over PVL is

that they can construct approximations to systems with irrational system response, i.e. a sys

tem with delay elements such as transmission lines, as easily as for a rational response,

whereas Krylov-subspace model reduction algorithms for systems with irrational response

have yet tobedemonstrated[6]. Away todeal with the problem is to treat transmission lines

as the interconnection of a large number of RLGC segments, but the efficiency of such a dis

cretization approach may be unsatisfactory.

In this thesis, we consideroff-chip interconnect modeling by means of transmission line mod

els.

1.2 The Circuit Simulation Problem

Thefundamental difficulty encountered in integrating transmission linesimulation intoa tran

sient circuit simulator is that circuits containing nonlinear devices or time-dependent charac

teristics must be characterized in the time domain while transmission lines with loss,

dispersion, ordiscontinuity are best characterized in the frequency domain. To cope with this

difficulty, four types of approaches have been proposed in the literature. One uses a networic

of lumped elements and segments of ideal transmission line to approximate the frequency

response of each lossy transmission line or each lossy multiconductor system[8]. These



approximated circuit models are suitable for existing general-purpose circuit simulators. How

ever, a drawback of this approach is that the amount of computation increases due to the laige

number ofextra nodes and elements introduced[9].The second type ofapproach adopts the con

volution technique. The outputs of linear lossy multiconductor lines are the convolutions of the

inputs with the impulse responses (Green's function) ofthe multiconductor lines. The multicon

ductor lines are treated as a linearN-Port system. The difficulty of this typeof approach lies in

how to determine the impulse responses of an arbitrary multiconductor line system. Existing

methods rely on the use of the inverse Fast Fourier transformation technique[10], the numerical

inverse Laplace transformation techique[ll], inverse Fourier transformation of frequency-

domain scattering parameters[12][13], and even the explicit analytical approach[9] todetermine

the impulse response. However, the convolution simulations suffer from a common drawback:

the convolution operation needs to extend over the entire past history. The computation time

required atany time point t isthen proportional to the time point t; therefore, the convolutions at

large time points will be very time-consuming. Furthermore, the inverse Fourier transformations

of [10], [12], and [13] will suffer from either the aliasing effects or from too many frequency

points needed for the transformations to avoid aliasing.

Inorder toimprove the efficiency ofthe simulation involving fast-varying signals, the recursive

convolution technique is used instead of direct convolution[16], but explicit analytical expres

sions for the impulse responses are still needed. In order to deal with this difficulty, the Fade

technique is used toobtain approximate explicit analytical expression of the transfer function.

Impulse response functions are approximated with a sum ofexponential functions in the time

domain. However, the Fade technique suffers from the instability problem: unstable poles may

be generated for known stablenetwoiks.



1^.1 Interconnect Simulation Via Passivity

Most of the research in this area, such as AWE(Asymptotic Waveform Evaluation),depends

onPad^ approximations of irrational functions and convolution. Although Pad6 approxima

tion provides a feasible and accurate UKxlel for low-order reduced models, it tends to yield

unstable poles when the number of poles (order of approximation) exceeds eight In [17],

mixed-exponential functions are introduced to overcome theproblem of instability. How

ever, extremely ill-conditioned matrices because of severe numerical problems may still

exist when computing high order moments. Further, this method does generate unstable

poles and subsequently deletes them to avoid instability. The Corrplex Frequency Hop-

ping(CFH) method [18] computes high order moments correctly without generating unsta

ble poles. However, difficulties of using special high precision programming techrtiques

hinder its use. Since transmission lines are passiveelements, a rational approximation, prop

erly done, should lead to poles in the left half s-plane. In classical network theory, the

impedance of a single transmission line is a positive real function, while formultiple trans

mission lines the impedance is a positive real matrix. Based onthe positive real property, the

method due to Pillai, Shim and Youla [19] can be used to obtain stable poles during the

approximation of the characteristic admittance and transfer function of the transmission

line.

1.3 Contribution

A new approach for transient simulation of lossy interconnects terminated inarbitrary non

linear elements is proposed. The approach is based onPillai method toavoid the instability

problem caused by the Pad6 approximation. By applying the recursive convolution tech

nique, we greatly reduce the computation used toperform convolutions. We have incorpo-



rated the proposed technique inSWEC. The comparisons with other interconnect models

indicate that the model we derive is a good model[20] in terms of accuracy, efficiency

and stability.

1.4 Organization

Chapter 2 reviews some basic concepts such as power spectrum, positive function,

bounded function and maximum entropy. It also givessomerelated importanttheorems.

Chapter 3 presents the formulation of the proposed Pillai-like method. We will compare it

with the original Pillai method. The reason why the proposed Pillai-like method insures

stability will also be described.

In chapter 4, the recursive convolution method will bereviewed together with experimen

tal results.

Chapter 5 suggests possible future work and makes some conclusions of this thesis.



Chapter 2

Background and Review of Basic
Concepts

2.0 Power Spectrum

Suppose Hi..) is a transfer function ofa linear system, power spectrum of //(.) is defined

as:

•25(co) = |//0CD)1 = //(ycD)//*(;€0) (2.1)

If the time domain format of h(t) is real, then H* (yco) = H(-yco), so it follows

S((0) =Hijai)H*(j<0) =HijO>)Hi-jO>) =H(s)W(-i)Uy<„ =Si-<0) <2-2)

2

5(co) is an evenfunction of o) . If //(.) is also rational, 5(o)) can be presented as.

5(co)=« =^
S- J<0

^0
(2.3)

where i4(.) and B(.) areteal polynomials in satisfying (2.3). If is a zero of either A

or B in (2.3) with nonzero real part, then -5^, Sj* and -Sj* will also have nonzero real

parts. This can beeasily proved as follows: assume Sj isa root ofA; since Ais a real poly-

9 2
nomial in j , s^* is also a root, so that (j-5i)(s-Si*) = s -(s^*+Si)s has

real coefficients. Byreplacing s with -s, it can be easily seen that Sf*md -5^*are also



roots. Moreover, from thenonnegativity constraint in (2.3), every zero of A and B onthe j(0-

axis must occur with even multiplicity. This allows the representation

/!(_/) = (2.4)
= N(s)N(-s) (2.5)

where M(s) and N{s) are real Hurwitz polynomials which have no zeros in the open right

half plane in the s-domain (or interior ofthe unit circle in the z-plane). Substituting (2.4) and

(2.5) into (2.3) gives

(2.6)5(0,) =
M(,s)M(-s) SB Jtn

S = jG>

where H(s)= . In the z-domain, the power spectrum of H(z) can be expressed as
M{s)

S(z) = |//(z)P = H{z)h\z)

where z= and T is the sampling period. Let H^{z)= H Since z=i.

//♦(z) = H (z).Thus

S(z) = \H(zf = Hiz)H,U)

2.1 Positive function

Positive realfunction isone ofthe most important concepts required tounderstand the passiv

ity property of transmission models.

Definition 2.1.1. A function f(z) is ssad tobepositivefunction if



1. f(z) is analytic in \z\ < 1 (the interior ofthe unit circle)

2. The real part of f(z),Re(f(z))>0 in H < 1

Definition 2.1.2. If f(z) is also real for real z then it is said topositive real (p.r.).

In the beginning of thiscentury, Schur discovered the interesting correspondence between

positive functions and the power spectrum. This is summarized in thefollowing two the

orems.

Theorem 2.1. Associated with every power spectrum 5(z)
oo

i2 ^ ks(z) = i//(zr = Xv

there exists a unique positive function[21]
00

Z(z) = r^ +i^r^z
1

Theorem 2.2. (Schur's Theorem) The power series

Z(z) = +
1

defines a positive function iff every Hermitian Toeplitz matrix is positive for every

ro rj rj .

''l* '"o '"l •

ik-1 '^ik-2

k = 0oo,where ri*= r_j^[21].

• '•ik-1

• fk^l^k-l

• • • • • • •

• '*0 '*1

• '•i* '*0

^0



Lemma 1. If 5(z) is a power spectrum of //(z), then there exists a positive function

Z(z) such that S(z)= |//(z)|̂ = Z(z) +Z»(z) ^ rQ+l^r^z'' and

Z«(z) = rQ*+2^r^*z'̂ with r^.
1

This lemma can be inferred from Theorem 2.1,

Lemma 2. If Z(z) is a positive function and has rational expression Z(z) = then

h*(z) Z(z) + Z»(z) fl(z)h»(z) + b(z)a*(z)

° 51(7) 2 2a(z)a.(z)

Let

fl(z)ft»(z) + h(z)fl»(z) = 2p(z)P*(z)

thus

a{z)b*(z) +biz)a^(z)_ P(z)p»(z)
2a(z)fl.(z) aiz)a*(z)

We can find //(z) by using j~//(z)//#(z). Thus//(z) =

2.2 Bounded functions

Definition 2.2.1. A function d(z) is said to be bounded if

1. d(z) is analytic in |z| < 1

2. |d(z)| < 1 in |z| < 1



Definition 2^.2. If d{z) is also real for real z, then it is said to be bounded real (b.r.).

Let d(z) be the bounded function which represents the reflection coefflcient associated

with a positive function Z(z) normalized to some Rq withpositive real part.Thus

Z(z)-/?o
~ Z(z)+Ro*

with/?o = 2(0). di(z) has theform

d (z) = -d(z) = i • 2(z)-Z(0) (2.9)djUl - 2 z(z) +Z*(0)

which is analytic in |z| <1. If d(z) is also analytic on z = e"'®, then on the boimdaiy, we

have

d^<.e^)\ =We^i S1

and hence from the maximum modulus theorem, |dj(z)| ^1 in |z| <1 and is also analytic

in |zl <1. More generally, from (2.9), |di(z)| for |z| = r< 1 and using Schwarz's

lemma[27], ldi(z)| ^1 in |z| <1. Hence, |di(z)| is always a bounded function. Let

Zi(z) represent the positive function associated with |di(z)| normalized to Z(0),

Zi(z)-Z(0)
~ Zi(z)+Z»(0)

Combining (2.9) and (2.10), we have

1 Z(z)-Z(0) _ Zi(z)-Z(0)
rZ(z) +Z»(0) ~ Zi(r)+Z*(0)

10



Z(0)

Fig. 2.1 Ideal IVansmission line

The reflection coefficients associated with the two positive functions Z(z) and ZjCz) so

generated arerelated through thedelay operator z when they areboth normalized to Z(0).

Thus, starting with anypositive function Z(z), the above procedure willalways give rise

toa new positive function Zi(z) [21]. Equations (2.8) can begiven aninteresting physical

interpretation bymaking useof an ideal delay lineandtheincident andreflected waves.

Consider an ideal delaylineasFig2.1 with one-way delay t thathasbeen terminated on a

positive function ZjCz) and let Z(z) represent the input positive function. Then, the

reflection coefficient d{z) of the input Z(z) normalized to Rq = Z(0) is given by

Eq(2.8) and that of the termination ZjCz) is given by Eq(2.9). Let ajfz), Pi(z) represent

the transforms of the input incident and reflected waves and a2(z), p2(^) ^ those at the

output terminals of the line. Under the assumption that all these waves arenormalized to

Z(0), wehave

PiU)
ai(r)

= d(2)
(2.11)

11



and

P2(Z)
= d,(z) (2.12)

Since theincident waves OiCt) and a^it) only undergo a one-way delay of x in the line,

we have

PzC) = ai(f-t)

and

Pl(0 = 0t2(t-X)

Under zero initial conditions, the Laplace transfoimof the aboveequationsgive

PjCs) =

and

Thus, in the z-domain

p,(s) = e~"a2,(s)

C^) ^ 2nPiW (2.13)
p2(2) Oi(z)

Byidentifying e~ to bethedelay operator z such that z = e , (2.13) changes to

OiM _ 1 Pl(^)
PjCz) ~ z a,(z)

12



and it can be further reduced to

dl(z) =id(2)

23 Generalized Line Extraction Process

Z^(z) isdenoted as the positive function at the rth stage resulting from r successive line extrac

tions. Let

where r ^ 1 represent the characteristic impedance of the rth line. The reflection coefflcient of

Z^(z) normalized to j, the characteristic impedance ofthe previous line can be formed as

Z,(z)+ /?,.,♦

Hence

l-tf;(z; (2.14)

To extract the next line, since - •=-7-7-—5-^ is bounded, Z^^ j(z) denotes thepositive functionz Z^(z)+/c^*

associated with thisbounded function. By using Eq(2.14), Z^^ i(z) changes to

Zr.lW l-d,^,(z)

Thus

1 _ Z,^.i(z)-/e, ^ ^2
z Z,(z) +V +V

13



Physically, Z^^iiz) represents the new positive function after (r+1) line extractions and

j(z) the associated bounded function normalized to the characteristic impedance of the

last line. Using £q(2.14) and Eq(2.1S), we have

/?,_i(z) + /?,_i%(z) R, + R,*zd,iz)
Zriz)^

Let

l-d,iz) l-zd^^.i(z)

R-~R- j

•'-I® •

represent the rth junction mismatch reflection coefficient Clearly, |5j= |d^(0)| ^ 1 and it

gives

(2.16)

Referring to Fig 2.2, a line extraction from the input positive function Z(z) has resulted in a

set of new positive functions Z,.(z). Notice that the above line extraction is possible only if

the normalization is carried out with respect to Ri = Z,(0). Following the transmission line

terminology, we will denote Z,(0) to be the characteristic impedance of the ith line. This

extraction process can be further described by Richards' theorem[23].

Fig 2.2 Generalized line Extraction

14



In the next chapter, we wUl explain how toapply Pillai orPiUai-like approximation based

on line extraction. Before that, wefirst present a important method, namely, theMaximum

Entropy Method, used to estimate power spectrum.

2.4 Maximum Entropy Method[24]

TheFFT is not theonlyway to estimate the power spectrum of a process, nor is it neces

sarily the best way for all purposes. To see how onemight devise another method, let us

enlarge ourview for a moment, so thatit includes notonly real frequencies in theNyquist

interval -/^ </ </^» hut also the entire complex frequency plane. Let us transform the

complex frequency plane to the z-plane, byintroducing the relation z = , where A

is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval on

the real axis of the s-plane maps one-to-one onto the unit circle in the complex z-plane.

We see that the FFT power spectrumestimate can be written as

N/2-1

£ ft/
k = -N/l

(2.17)

Of course, it is not the true power spectrum, but only an estimate. The estimate is not

likely to be exact because in the z-plane, equation (2.17), the finite Laurent series, offers

only an approximation toa general analytic function of z. In fact, a formal expression for

representing"trae" power spectrumis

S{z) = ra
(2.18)

This is an infinite Laurent series which depends on an infinite number of values

Equation (2.17) isjust one kind ofanalytic approximation tothe analytic function ofzrep-

15



resented by Eq(2.18). It goes under several names, including direct method, all-zero

model, and moving average (MA) model. The term "all-zero" in particular refers to the

fact that the model spectrum can have zeros in the z-plane, but not poles.

If we look at the problem of approximating Eq(2.18) more generally, it seems clear that

wecoulddo a betterjob with a rational function; onewith a series of typeEq(2.17) in both

the numerator and the denominator.Less obviously,it turns out that there are some advan

tages in anapproximation whose firee parameters allliein thedenominator,

1
(2.19)

5(2)«
M/2

S
k = 'M/2

The *s can be thought of as being determined by the condition that the power series

expansion ofEq(2.19) agree with the first M+1 terms ofEq(2.18).The differences between

the approximations Eq(2.17) and Eq(2.19) are approximations with very different charac

ter. Most notable is the fact that Eq(2.19) can havepoles, corresponding to infinite power

spectral density, on the unit z-circle, i.e. at real frequencies in the Nyquist interval. Such

poles can provide an accurate representation for underlying power spectral which have

sharp, discrete "lines" or delta-functions. By contf^t, Eq(2.17) can have only zeros, no

poles, atreal frequencies inthe Nyquist interval, and must thus attempt tofit sharp spectral

features with essentially a polynomial. The approximation Eq(2.19) goes under several

names: all-poles model, maximum entropy methods (MEM), autoregressive model (AR).

16



Chapter 3

Interconnect Modeling Based on
Passivity

3.0 The Power Spectra of simple RLGC Lines

It is found in [8] that with significant delays, the macromodel method[25] is no longer

accurate. Transmission lines should be modeled separately by propagation functions and

characteristic impedances or admittances.

Suppose R,L ,G,C are unit length parameters, the characteristic admittance of a single

transmission line is defined as

Y —1^^ ^ ^ = y (oo) (3.1)^'*JsL +R +b

/c c /?
where y^C®®) ' ^ ' -.Itspoy/trsiiQctnimis

5(co) =ly,(ya)f =

Thepropagation function of a single transmission lineis defined as:

nym) = ex/7(-e(y(D))

where 6(7C0) = VC/coL + /?)(ytDC + G) .Afterfactoring outthe ideal delay, r{j(o)cm

be written as

r(yo)) = exp(-jG}X)exp((~Jab)x)FU<^) (3.4)

17



where exp(-jm) is the ideal delay, x = and d is the length of line. Let

FO'CD) = exp{- V(yo> + +b) + + . Its power spectrum is 5(©) = |FO(i))p. Then

FCyco) can be approximated via its power spectrumso that r(5) can be obtained.

Toapply Schur's theorem, power spectra of y^(y©)andF(y©) are transformed into the z-domain by a

process similar to inverse Fourier transform. Assume 5(©) = |//(y©)| , we denote its inverse Fourier

transform as

R(t) =^ JSi(o)e^^dm
—oo

Let 7 be the samplingperiod. Using discrete inverseFourier transform gives

S(CD) = (3.6)
—oo

Let z = e . Eq(3.6) can then be written as

S(z) =£r,z* (3.7)

Since S(©) is an even function, in the z-domain, r^= with k = 0 —><». Therefore,
oo oo

S(Z) = fo +J^r^z +5)rtZ (3.8)
1 1

3.1 Proposed Method

After deriving thepower spectra ofcharacteristic admittance and propagation function as in section 3.0,

we intend togetthe rational approximation of the power spectra and further obtain the rational approxi

mation of the original functions.
18



3.1.1 Levinson Algorithm

As in (3.8), 5(2) represents the series expansion of the power spectrum for characteristic

admittance ^^(z) or propagation function factor F(z) . Using Maximum Entrophy

Method gives

• Jisbi o"

where A(z) = and A«(z) = As 5(z) = //(z)//*(z), Hiz) represents
0 0

characteristic admittance or propagation function factor which are positive real functions.

Hence, H{z) = -ttt andA(z) is also positive real. Suppose A„(z) is an approximation
A(z)

of A(z). Let

+ + (3.10)

Then

Moving A„#(z) to the right hand side of Eq(3.11) and multiplying z" on the both side give

oo eo \ n
n. Z

V is=l i=l /
i(z)

Because A-(z) ^0 in |z| ^ 1, let

19



1 2 nwith b^Q = . Comparing the coefficients of l,z,z ,z on both side, we get
^rt,0

0 '*1 ^2 - '"ii-.l ''n

1 **0 ••• ^h~2 ''n-1

n-1 '^«-2

'•n ''n-l

"o'
=

0

♦ • ♦

1

.

O

(3.12)

The coefficient matrix is a symmetric andToeplitz matrix. A recursive algorithm named

after Levinsonwho was one of the first people using this method can reduce the computa

tion complexity to 0{k),where k is the number ofcoefficients in the series expansion of

the original power spectrum.

3.1.2 Rational Approximation of Z(z)

Let A^(z) be the power series approximation of A(z) up to the kth order, 7^^ be the

determinant of coefficientmatrix in Eq(3.12). We can write Aj^Cz) as

AtW =[zS*-'... zl]
. ^*.0 -

" ... Z

v/ithk = 0,...»/I and = 7^^.

r© ri rj ...

ri r© ri ...

''ik-l ^k~2

k
Z Z

(3.13)

20



*-l
By applying Cramer's rule on Eq(3.12) to solve for which

finally gives the compact expression of (3.13)

ri r2 ... r^.i

rix r 1 ••• ''i-2 ''ik-1

A,(z) =

*-l '^k-2

k k-1
z z

''0

Z 1

(3.14)

Theorem 3.1 Let A be an nxn matrix and A„^, A^^yA^g denote the (n-l)x(n-l)

minors formed from consecutive rows and consecutive columns in the northwest, north

east, southwest and southeast comers.Furtherlet denote the central (n-2)x(n-2) minor

of A. Then from a special case of an identity due to Jacobi[26],

^nw^se ^ne^sw

According to the definition of A^

by Theorem 3.1,

A^Ak^k-l - aLi-

r, rr

1 ''o '"i

ife-1 '^k

'k-l ^k-\

k-l ^k-l

^k '•*-1

(-1)

1 ^1 ''3

0 ''l '*0

^k-2 ^k-3

k-l '^k

'k-l^k-l

21



From Schur's Theorem (Theorem 2.2), and Aj^_2 ^ nonnegtive, thus

Denote as

_ (-1)d, =

ri rj r3 ...

To ri ro ... r^.2

^k-2 ^k-'i

(3.15)

itis easy to verify that |dj ^ 1.Combining with (3.14), we can get arecursive rule

Jl-\d^\\iz) =At.i(z)-zd^h.i(2) (3.16)

with Aifc(z) =z''Ai^,(z) =z*i44*rp\ WecanfurtherrewriteEq(3.15)as

1 i=l h

k .
where{ denotes the coefficients of z in { }jfc.

Since5(z) = -^^♦(^) ^(2)= h-OCz*"^^) ,denoteZjt(z) as
A(z)A*iz) Ajt(z)

Z,(z)=
2B^(z)

A,(z)

As Ai^iz) and Zjt(z) are approximation ofA(z) and Z(z) respectively, we have

1 Z^(z) +Zf^^iz) jgjSiz) Ajt(z)Ajt*(z)

hence

Ai^(z)BAz) + A^(,z)B^,(z) = 1
(3.19)

22



From Eq(3.19), we can find B^(z) has the same recursive formula as Ajj(z),

S;t(z) = Bjj_1(z) +zd^t _1(z)

whereBi(z) =z*Bt»(z) =z*fljt*fpJ. Thus
iAt.i(z)-zdi^t.i(z))

At(z)=

Bt(z)=

7i-W'

Then, Z^^i(z) can be formed recursively as

, ,,

02i,

which has similar form as (2.16). By letting z = 0, we could easily find out Ao(O) and

whose positive real property is guaranteed by power spectrum. Normalizing Ai^{z) and denoting it

as fl^(z) give

Similarly we have

bk(z) =J-P^B,(z)

Letao(0)= «o(^) = 1 and MO) = M^) = ro/2.atk+lthstep,

^ ^ 2(b^(z) + zd^^ibtU))
ai,(z) +zdt^ia^(z) ~ <ii+,(z)

(3.22)

23



with kth term

b^(i) = b^_i(z) + zdi,ai,_i(z)

at(z) = z%,(z) =

hU) =

Aftern steps, by letting ^ j «- 0, we have

. 2l>nUK.,.n*U

Since

,..,.,2 s.r y . Z(z)+Z.(z) a(2)Mz) +h(z)a.(z)|//(z)| =W(z)ff.(z) 5 2a(z)a.(z)

Using factorization[28] fl„(z)b„«(z)+ b„(2)fl„«(z) = 2p„(z)P„^(z), we can get

H(z) -

3.2 Pillai's method — Pade-like Approximation

In contrast to the proposed method, afier n steps, if d„^ j ^ 0 and we assume that it is a

. /(z) ,/v b„(z)g(z) +zf(z)a„(z) ,v jrational function, = ^-^,then Z,(z) , where g(z) and
«(z) «„(z)«(z) +z/(z)Mz)

/(z) are coefficientsthat are solvedby

Ax = b

where

T

and

b ~ [0, 0,.»», ^2/^ **** -f 1̂
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A =

'2ik 0

^lk-\ ^2k

^k+2 ^k+3

^k+1 ^k+2

0 0 bQ^

0 0 bn*

^2k ® ^*k-2 ^*k-3 "

^2k-l ^2k ^*k-l ^*k-2 "
••• ••• ••• ••♦ ••

^k-1 ^k ^*2k-l ^*2k-2 "

0 0

0 0

• • • • • •

b*o 0
i*, b*t

b*t^i b*t 2kx2k

t +1 k + 2 2kByequating the denominator coefficients of z ,z , wecan derive g(z) and/(z).

It is proved in [191 that H(z) =-2^is stable if d,+ , = is abounded function, thatajz) g(z)

»sK+il = m
S(2)

< 1. It is also shown in [19] that this method is equivalent to a Padd approxi

mation when stable poles are obtained. Like Pad6 approximation, Pillai's method can match

twice as many terms of 5(z) as ourproposed method. We call this property its optimal prop

erty. In addition, stable poles can always beobtained by increasing the order of approximation.

Moreover the equivalent system is not ill-conditioned because of the positive definite coefficient

matrix A of the power spectrum.

3.3 lyansformation to Time Domain

From the z-domain, we can directly transform H (z) to time domain by partial fraction expan

.Suppose //(z) =54^. Let .By partial fraction expansion we
fl„(z) z zP(z) D(z)

sion

have Hiz) =Cn +c,—^ +... +c—^, where and D'iz) =-^Diz). If in the
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time domain, H{t) = ^ cfixpirpit) then p^ = +y>,- is a pole in the s-domain.
i = o

Assume z,- = a,- + represents a pole of H{z) and T is the sampling period, then we

. Hence, one pole in the z domain maps to infi-have Xi = y,- = 2kn-arctg

nite number of poles in the s-domain.

Levinson Algorithm

M = 8
1

/oo = l»Po " ''l»^00 " ~

for i =1 to k

{iii = —•«i+i = «,+niPi.

/i+1,0

/i +1,1

f 1+1,1

f i+l,/+l

//,0

fiA

hi
0

0

^ i, i

hi

Aq

Pi +1 "• // +1, O^i +2"^ f /+1,1 '*/ +1 f /+1, /+1 ''l

^•+1-Yi

h.l =

a i + l

^1+ 1,0

o•

o"

^i+1,1

• • ♦

"u
• • ♦ + ^/

«/.i
• • •

^i+l,i ^i, i "..1

+1, / +1 .0, ft.q

^/+1,0^1+2 ''' ^/+1, l'̂ i+1 ••• **" ^/+l,i+l^l

)/* for loop end*/
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Chapter 4

Transient Simulation of Lossy Inter
connects Based on the Recursive Con
volution Technique

4.0 Recursive Convolution Technique

The Telegraph Equation for a RLGC-line in the s-domainare:

^V(x,s) =-(sL +R)I(x.i)
=-UC + G)V(x,s)

Rearranging the solution to theTelegraph Equation at the nearend andfarend of the transmis

sion line, we get the following formula:

(0, s) - 7(0, s)= txp(-Xl)(YQVU, s) + I (/, s))

YqVO. s) -/(/, r)= exp(-A./)(roV(0, s) +7(0,s))

with Tn = ^ = */(sL+ R)(sC + G), R,L,G,C are unit length parameters, / is the
" *4 sL + R

length of the line.The inverse Laplace transform leads to thefollowing equations:

v(0, t)* h^it) - i(0, 0 = v(/, 0* h^it) + /(/, t)* h2(t)

v(/, t)* 0 = v(0,0* /t3(0 +1(0.0* /»2(0

where * stands for the convolution operation and:

A,(o= r'iKoW}

h2(t)= L"'{exp(-X(s)Z)}

*,(»)= L-'{ro(s)exp(-'i.(«)0}
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Since the convolution integration is time-consuming, a special recursive convolution for

mulation was developed[16]. At time r„ ^, for example,

v(0.0*

is 1

where and p,- are zeros and poles after Fade approximation. By using the Trapezoidal

rule, we have:

Jo '̂̂ jVCO, X)exp(p,(f„+1 -t))dt =t\p(Pih„)f^qiV(0,x)exp(Pi(t„-x))dx

+ - t„)exp(p,fc„) + v(0, »„+,)]

which means thatwecanrecursively get t)exp(p,(t„+, - based on the

value of previous time where h^= +1 -'«•

4.1 Experiment Results

Fig 4.1 and Fig 4.2 are the magnitude of characteristic admittance and propagation func

tion generated by the proposed method. The maximum frequency is 1.5GHz. InTable 1,

we list the poles of both the propagation function and the characteristic admittance of the

same example obtained by the proposed method. Example 1 includes only one transmis

sion line, with 5 poles approximation, we compare the results of both proposed method

with Pillai method inFig.4.4. Example 2 is a 5 single transmission line case with nonlin

ear load. The third example is a clock subnetwork with 73 single lossy lines. From the
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results we see that the results of Pillai*s method areclose to thethose generated byPad^

approximation. The results produced by the proposed method are within 5%-8% error

range. Since by using the proposed method, we can not get an optimal rational approxima

tion as Pad^ and Pillai methods, we may lose some accuracy while we ensure stability.

And because die inverse Fourier transform technique is used in the process, the speed

compared with Pad^ approximation is about 1.5-2 times slower, and we usually have to

use higher order than Pad€ to ensure the accuracy.
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Exmp 1. One SingleTransmissionLine
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Fig.4.3
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model
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£xmp2. A Small Circuitwith NonlinearDevices
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ExmpS. Clock
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Chapter 5

Conclusion and Future Work

Anew approach for transient simulation oflossy interconnects isproposed. This approach

is based on Pillai method to avoid the instability problem caused by the Pad6 approxima

tion. By applying the recursive convolution technique, we greatly reduce the computation

used to perform convolutions. We have incorporated the proposed technique in SWEC.

The comparisons with other interconnect models indicate that the model we derived can

ensure stability while we have to increase the number oforder inorder to keep the accu

racy at the same time.

By comparing the simulation results based on Pillai's method, the proposed I*illai's

method and Pad6 approximation, respectively, we found several interesting facts. 1) Pil

lai's method belongs to Padd approximation method category. It also achieves optimal

rational approximation as Padd approximation does. The advantage of Pillai's method is

that it can always find a stable rational approximation by increasing the order of the

denominator and nominator. Unfortunately, there is no easy way to find out up to which

order the rational approximation would be stable. 2) It is the very last step of Pillai's

method which helps find out an optimal solution that leads tounstable rational approxima

tion. Hence, ourproposed Pillai method ensures stability by omitting the last step of Pil

lai*s method. 3) There is a trade off between the stability and accuracy. From the
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experimental results, we see ifproposed Pillai's method isused toforce stability, we need

higher order rational approximation than Fade approximation toobtain the same accuracy.

When we deal with coupled transmission Unes, all the theorems and concepts used insim

ple line cases can be extended [19]. By considering every entry as a matrix, we have the

concept ofpositive matrix function instead ofpositive function. And Schur's Theorem has

the same form asthe original one. Richards* theorem gives rise totwo forms of reflection

coefflcient matrix called right inverse fwrn and left inverse form. Hus is due to the fact

that when Z(z) is a positive matrix function, even if a R has positive Hermitian part,

(Z(z) - /?)(Z(z) +R*)'̂ is not abounded matrix function unless Ris aidentity matrix.

So we have to construct the reflection coefficients based on the fact that

I - d(z)d(z)* ^0 in Izl < 1. And because the impermutability of matrix multiplication,

we have I - diz)*d(z) ^ 0 in Izl < l.Thus we have two forms when deriving d(z). We also

haveLevinson Algorithmfor matricespolynomial.
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