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Abstract

1.0 Abstract

With the convergence of audio, video, and the Internet, multimedia applications increasingly
demand real-time processing from general purpose CPUs. Traditionally, computer architects have
increased the performance of CPUs in incremental steps, increasing the number of cache levels,
increasing the complexity of I/O controllers, increasing the length of the pipeline, increasing the
number of instructions issued per cycle, and reducing the overall chip size. But the constraint of
real-time processing is a hard problem, and computer architects must take a different approach to
keep up.

One approach is to support the signal processing functions that are common to these applications
by introducing native signal processing (NSP) instructions into the microprocessor. In this report,
I describe the architectural features of the UltraSparc processor and the signal processing func
tionality of the Visual Instruction Set (VIS). I also measure the performance of a number of real
time applications and signal processing kernels that use the Visual Instruction Set and discuss the
implementation of the VIS code generation domain within the Ptolemy environment.
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Introduction

3.0 Introduction

3.1 Motivation

Multimedia applications, such as high-quality audio, speech recognition, video conferencing,
and Internet communications, all require intense signal processing. Traditionally, computer
architects have made it possible to augment the signal processing capabilities of workstations
by inserting DSP boards with high-performance DSP chips. Beyond rapid prototyping, this
idea has not really caught on.

A competing approach, termed native signal processing (NSP), moves real-time signal pro
cessing functions onto the CPU itself. The UltraSparc processor is one of the first modem
RISC chips to include instmctions specialized for signal processing. In particular, the Ultras-
pare Visual Instmction Set (VIS) is an instmction set that is geared to support image and video
processing [1].

Any successful multimedia application, however, will eventually require some sort of audio
support. Although not specifically developed for audio signal processing, the VIS is an attrac
tive target for work in this area. TTie VIS supports data types that pack multiple 16 bit words
and includes fixed-point instructions that operate on these multiple words in parallel.

3.2 Approach

Ptolemy is a graphical software tool that simulates, prototypes, and synthesizes code for sig
nal processing and communication systems. As a rapid prototyping tool, Ptolemy can be eas
ily extended. New stars and targets can be added to simulate signal processing systems on a
number of different platforms. As a code synthesis tool, Ptolemy can stitch together C code
from a block diagramin an efficientmanner. In this project, I rely on the rapid prototyping and
C code synthesiscapabilitiesto develop a VIS code generation domain and to analyze its per
formance.
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Introduction

The VIS code generation domain is developedas an extension of the CGC domain. There are
several advantages to this approach. The Ptolemy CGCdomain already contains a rich library
of signalprocessingstars. Thus any application can leverageoff of this infrastructure. Further
more, the majority of VIS instructions have a C interface via an inline mechanism [1]. As
such,the CGCdomain can be easilyextended to generate VIS code. In this manner, applica
tionscan be developed with and withoutVIS so that speed and quantization performance of
basic signal processing kernels can be measured. The measurement of these key benchmarks
will provide a data point in judging the potential of the VIS.

From signal processing kernels, I then move onto audio applications. Much of the current
infrastructure within the Ptolemy simulation and code generation environment has been devel
oped for one dimensional signal processing. For this reason, audio applications rather than
image or video applications are developed with the VIS.

3.3 Overview of Report.

The rest of this report is divided into four sections. Section 3 gives an overview of the Ultras-
pare processor and Visual Instruction Set. Emphasis is placed on the instructions and architec
ture that support one-D signal processing. Section 4 overviews the development of the VIS
domain within the CGC domain. New stars, targets, makefiles, and Tcl/Tk interfaces are intro
duced. Section 5 analyzes both the quantization and speedup performance of the VIS. Perfor
mance results compare the VIS code to the integer and floating point C code of the Ultrasparc
processor. Finally, Section 6 presents the development of a real time audio application with
the VIS.
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Ultrasparc Processor and ViS

4.0 Ultrasparc Processor and ViS

4.1 Overview

The Ultrasparc processor is a superscalar processor thatimplements a 64bitRISC architec
ture [2]. Thesignificant features of the architecture are its ability to issue fourinstructions per
cycle and theenhancement of its floating point unit to support theVisual Instruction Set. The
enhancement is provided bya partitioned adder thatcanadd four 16bitwords in parallel and
a partitioned multiplier thatcan multiply four 8x16 bit words in parallel. Thepartitioned mul
tiplication andaddition provides up to four times speedup in signal processing applications.

4.2 UltraSparc Architecture

4.2.1 Functional Units

Figure 3.1 shows a high leveldiagramof the fivemain functional units that make up the
Ultrasparc processor.
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Figure 3.1 Simplified Diagram of the UltraSparc processor
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Ultrasparc Processor and VIS

• Prefetch and Dispatch Unit

The prefetch and dispatch unit (PDU) prefetches and dispatches up to four instructions per
cycle. Four instructions are prefetched from the 16 kbyte I-Cache. A dynamic branch pre
diction mechanism is used to tag each pair of instructions and set the prefetch pointer to
the next four instructions. A prediction rate of 90% has been reported on typical database
applications. The instructions are then partially decoded and stored in a 12-deep instruc
tion buffer. The grouping logic accesses the instruction buffer and issues up to four
instructions based on resource availability and dependencies. A grouping, for example, of
2 floating/graphics, 1 integer, and 1 load/store instruction per cycle is possible.

• Integer Execution Unit

The integer execution unit (lEU) performs all the integer arithmetic and logical operations.
Two dual 64 bit ALUs perform addition, subtraction, multiplication, and division. A sepa
rate 64 adder is provided for virtual address additions for memory instructions.

• Floating-Point / Graphics Unit

The floating-point / graphics unit (FGU) performs all the floating-point arithmetic opera
tions and the VIS fixed-point arithmetic operations. In all, FGU contains 5 separate units:
floating-point adder, multiplier, and divider and graphics adder and multiplier. The graph
ics adder performs single cycle partitioned add and subtract. The graphics multiplier per
forms three cycle partitioned multiplication and compare.

• Load Store Unit

The load store unit (LSU) executes all the memory operations between the FGU and lEU
and the external memory hierarchy. The LSU consists of the data cache, load buffer, store
buffer, and data memory management unit.

• External Cache

The external cache services misses from the I-Cache of the PDU and the D-Cache of the

LSU.

4.2.2 Processor Pipeline

The functional units of the Ultrasparc processor carry out their operations in a dual 9-stage
pipeline. Figure 3.2 shows the stages of the pipeline. The prefetch and dispatch unit make up
the first three stages of the pipeline. The pipeline then splits into dual four stage integer and
floating point pipelines. The pipelines then join together again to resolve traps and write the
output.
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X3 -Finish Execution

Figure 3.2 Uitrasparc Dual Pipeline

Table 1. Stages In the Uitrasparc pipeline

Stage

Fetch (F)

Decode (D)

Group (G)

Execution (E)

Register (R)

Description

• Upto four instructions arefetched from theI-Cache, along with
branch prediction information.

• The fetched instructions are pre-decoded to speed up grouping in
the next stage.

• The decoded instructions are sent to the Instruction Buffer.

The instructions in the buffer are grouped and dispatched.

Upto fourvalidinstructions aredispatched to thelEU,FPU,and
LSU functional units.

• Data from the integer register file is sent to the two integer
ALUs.

• Results are available by the next cycle.

• Corresponding to theE stageof the integerunit, the data from
the floating point register file is accessedand fiuther decoded.
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Ultrasparc Processor and VIS

Table 1. Stages In the Ultrasparc pipeline

Stage

Cache Access (C)

XI

N1

X2

N2

X3

N3

Write (W)

Description

* Wtual addresses calculated in the E stage are sent to detennine
whether the access is a hit or a miss in the D-Cache.

• Floating point instructions start their execution.

A data cache miss/hit or a TLB miss/hit is determined.

For most floating point instructions, this is the second execution
stage.

Integer pipe waits for the floating point pipe to complete.

Most floating-point and graphics instructions flnish their execu
tion in this stage.

• Integer and floating-point instructions converge to resolve traps.

All results are written to the register files.

4.3 VIS Data Types

The Ultrasparc is a 64 bit processor. It can process (add, multiply, etc.) data types up to 64 bits
long. As Figure 3.3 shows, the VIS Data types use the normal 8 bit byte, 16 bit short, 32 bit
integer, 32 bit float, and 64 bit double data types. It does not create a data type with a new bit
length. However, the novelty is the way the VIS partitions the old data types. In particular, the
VIS introduces four new partitioned data types, partitioning the 32 bit float and the 64 bit dou
ble so that each will represent multiple 8 and 16 bit words.
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Ultrasparc Processor and VIS

Signed Byte vis__s8

Unsigned Byte vis_u8
15

Signed Short vis_s16

A
0

0

Unsigned Short vis_u16
31 0

Signed long vis_s32

Unsigned iong vis_u32

Float vis_f32

63 0

Double vis_d64

Figure 3.3 VIS Data Types Used

Audiosamples comein many different formats andeachformat requires a different number of
bits per audio sample. The VISallocates 16bits per audiosample. 16bit is a convenient repre
sentation since it divides evenly into the 32 bit float and the 64 bit double. As Figure 3.4
shows, the VIS data types can pack two audio samples into a 32 bit float and four audio sam
ples into a 64 bit double. The VIS instructions can then performfixed point adds and multi
plies on two or four audio samples at a time. The results can be kept in two intermediate
formats: 16 bit fixed point or 32 bit fixed point. The 32 bit intermediate format ensures 16 bit
quality audio. The trade-off, however, is speed. The necessary instructions for the 32 bit inter
mediate format are not as highly parallel as those for the 16 bit intermediate format.

An image is composed of a pattern of pixels. Each pixel can represent shades of gray or the
intensities of RGB. The VIS allocates eight bits per pixel sample, which sets the range of val
ues from 0 - 255. Once again this is a convenient representation since it divides evenly into the
32 bit float and the 64 bit double. As Figure 3.4 shows, the VIS data types can pack four pixels
into a 32 bit float and eight pixels into a 64 bit double. The VIS instructions can then process
four or eight pixels at a time. The results are kept in a 16 bit intermediate format, which is suf
ficient for most image processing applications.
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Pixel vis_f32 u8 u8 u8 u8
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00
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Intermediate
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Figure 3.4 VIS partitioned data types.

4.4 VIS instructions

The Visual Instruction Set adds over 50 new instructions to increase the performance of signal
processing applications. The instructions can be divided into utility inlines, logical instruc
tions, zirithmetic instructions, packing instructions, and array instructions. The following
sections present a descriptive overview of the VIS instructions used in one-D signal process
ing.

4.4.1 VIS Utility inlines

The VIS utility instructions are not actually part of the VIS extension. They are inlined utili
ties that are generally useful in setting the fields of the graphics status register and perform
ing VIS register to register transfers.

Table 2. VIS utility Inlines

Instruction Description

vis_write_gsr()
vis_read_gsr()

Assign a value to the Graphics Status Register (GSR) and read the
GSR.

vis_read_hi()
vis_read_lo()
vis_write_hi()
vis_write_lo()

Read and write the upper and lower 32 bits of a vis_d64 variable.
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Ultraspare Processor and VIS

Table 2. VIS utility iniines

Instruction Description

vis_freg_pair() Join two vis_f32 variables into one single vis_d64 variable.

vis_to_floatO
Place the bit patternof a vis_u32variableinto a vis_f32 variable
without performing floatingpoint conversion.

vis_to_double()
vis_to_double_dup()

vis_to_double() places two vis_u32 variables into the upperand
. lower 32 bits of a vis_d64 variable. vis_to_double_dup() places the

same vis_u32 variable into the upper and lower 32 bits of a vis_d64
variable.

In general, themultiplication of twofixed point numbers forms a product whose binary
point isno longer aligned with themultiplicands. Thus it may benecessary to normalize the
product bybitshifting. The graphics status register (GSR) is used to control theamount of
shifting needed to normalize theresult of VIS partitioned multiplications. TheGSRcontains
two fields: a 4 bit scale factor and a 3 bit alignaddr offset. The value of the scale factor deter
mines how much to shift each of the products. Figure 3.5 shows the GSR and an example of
how to load the scale factor.

b63

Graphics Status Register

b6 b3 b2 bO

scale alignaddr
factor offset

VIS example code setting the scale factor.
vis_u8 scalef;
vis_write_gsr(scalef« 3);

Figure 3.5 Graphics Status Register

The other inline utilities are used for VIS register to register transfers. One set of instruc
tions loads 32 bit words from a vis_d64 register to a vis_f32 register. The vis_read_hi(), for
example, extracts theupper 32 bits from a vis_d64 register andplaces themintoa vis_f32
register. Theother setof instructions stores 32 bitwords from vis_f32 registers to a vis_d64
register. Thevis_freg_pair(), for example, joinstogether data from two vis_f32 registers to
pack a vis_d64 register. It is interesting to note here thatwhile there are instructions toper
formregister to register transfers between vis_f32 and vis_d64 registers, there are no
instructions thatperform register to register transfers between vis_sl6 andvis_f32 registers.
Thus, bit shifting is used to load 16 bit audio samples into vis_f32 registers.
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Uitrasparc Processor and VIS

4.4.2 VIS Logical Instructions

These instructions perform a full suite of partitioned logical operations between VIS vari
ables. There are two versions of the eight basic logical operations (or, and, xor, nor, nand,
xnor, omot, and not). The 32 bit version, marked with the suffix s, operates on the vis_f32
variables, while the 64 bit version operates on the vis_d64 variables. There are also two ver
sions of the six basic compare operations, which generates a bit mask as the result. The 16
bit version, explicitly labeled with the suffix 16, compares two 16 bit partitioned vis_d64
variables, while the 32 bit version,explicitly labeled with the suffix 32, compares two 32 bit
partitioned vis_d64 variables.

Table 3. VIS Logical Instructions

Instructions Description

vis_fzero()
vis_fone()
vis_fzeros()
vis_fones()

Set the vis_f32 or the vis_d64 to all ones or all zeros.

vis_fsrc()
vis_fnot()
vis_fsrcs()
vis_fnots()

Copy a vis_f32 or a vis_d64 value or its complement.

vis_f[or,and,xor,nor,nand,xnor,0
mot,not]()
vis_fIor,and,xor,nor,nand,xnor,0
mot,not]s()

Perform a logical operation between two 32 bit vis_f32 or
two 64 bit vis_d64 variables.

vis_fcmp[gl,le,eq,ne,lt,ge] 16()
vis_fcmp[gt,le,eq,ne,lt,ge]32()

Perform a comparison between two 16 bit partitioned or 32
bit partitioned vis_d64 variables and generates a bit mask as
the result.

4.4.3 VIS Arithmetic Instructions

The VIS provides instructions to perform parallel addition and multiplication. These instruc
tions are the workhorse responsible for providing most of the speedup in signal processing
algorithms.

Table 4. VIS Arithmetic Instructions

Instructions Description

vis_fipadd[16,16s,32,32s]()
vis_fi)sub[ 16,16s,32,32s]()

Perform addition or subtraction on two 16 bit partitioned
vis_f32 variables (16s), two 16 bit partitioned vis_d64 vari
ables (16), two 32 bit vis_f32 variables (32s), or two 32 bit
partitioned vis_d64 variables (32).

Real-time Signal Processing on the Uitrasparc 13 of 41



Ultrasparc Processor and VIS

Table 4. VIS Arithmetic Instructions

Instructions Description

vis_fniul8xl6()

Performmultiplication betweenthe elementsof an 8 bit par
titioned vis_f32 variable and those of a 16 bit partitioned
vis_d64 variable to producea 16bit partitioned vis_d64
result.

vis_fmul8xl6au()
vis_finul8xl6al()

Performmultiplication betweenthe elementsof an 8 bit par
titioned vis_f32variable and the upper (au) or lower (al) 16
bits of a vis_f32variable to produce a 16 bit partitioned
vis_d64 result.

vis_fmul8suxl6()
vis_fmul8ulxl6()

Performmultiplicationbetween the elements of a 16bit par
titioned vis_d64 variable and those of another 16 bit parti
tioned vis_d64 variable to produce a 16 bit partitioned
vis_d64 result.

vis_finuld8suxl6()
vis_fmuld8ulxl6()

Perform multiplication between the elements of a 16 bit par
titioned vis_f32 variable and those of another 16 bit parti
tioned vis_f32 variable to produce a 32 bit partitioned
vis_d64 result.

The VIS canperform parallel fixed point addition andsubtraction on two 16bit partitioned
vis_f32variables, two 16bit partitioned vis_d64variables, or two 32 bit partitioned vis_d64
variables. In fixed pointaddition, the decimal pointis assumed to be aligned, andoverflow
will result in wraparound. Figure3.6 diagrams an example of the VIS fixed pointaddition
on two 16 bit partitioned vis_d64 variables.
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vis_d64

vis_d64
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VIS example code performing parallel addition on two 16 bit
partitioned vis_d64 variables.

vis_d64 data1, data2;
vis_d64 sum;
sum = visjpadd16(data1 ,data2);

Figure 3.6 16 bit partitioned vis_d64 addition.
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Ultrasparc Processor and VIS

The VIS can perform partitioned multiplication on two 16 bit partitioned vis_f32 variables
or two 16 bit partitioned vis_d64 variables. The two different partitioned multiplications
allowsthe programmer to keep two different intermediateformats. The 16 bit partitioned
vis_f32multiplicationkeeps its results in a 32 bit intermediate format, which providesa
dynamic range that is good enoughfor 16bit quality audio processing. The 16bit parti
tioned vis_d64 multiplication keeps its results in a 16 bit intermediateformat, which pro
vides greaterparallelism anda dynamic rangethat is good enough for non critical audio
processing. Also, as mentioned earlier, there does not exist a parallel 16x16 bit multiplier
but only a parallel 8x16bit multiplier. Therefore, in both cases, the 16bit partitioned multi
plications are performed in three stages.

Figure 3.7shows the three stages of the 16bitpartitioned vis_d64 multiplication. Thefirst
stage multiplies thelower 8 bitsof each 16 bitpartitioned element in opl by thecorrespond
ing 16 bitpartitioned element in opl. Each 24bitproduct is signed extended to 32bits and
the upper 16bits are returned in a 16 bitpartitioned lowerproduct. Thesecond stage multi
plies the upper 8 bitsof each 16 bitpartitioned element in op] by thecorresponding 16 bit
partitioned element in opl. The upper 16 bits ofeach product are returned ina 16 bitparti
tioned upperproduct. The final stage performs a 16bit partitioned addbetween theupper-
productand the lowerproduct to produce a 16bit partitioned result.

Figure 3.8 shows the three stages of the 16 bitpartitioned vis_f32 multiplication. The first
stage multiplies the lower 8 bits of each 16 bitpartitioned element inopl bythe correspond
in 16 bit partitioned element inopl. Each 24bitproduct is signed extended to32bits, and
the entire 32 bits are returned in a 32 bit partitioned lowerproduct. The second stage multi
plies the upper 8bits ofeach 16 bit partitioned element inop! by the corresponding 16 bit
partitioned element in opl. The entire 32 bits are returned in a 32 bit partitioned upperprod
uct. The final stage performs a 32bitpartitioned add between the upperproduct and the low
erproductto produce a 32 bit partitioned result.

The 16 bitpartitioned vis_d64 multiplication has a high degree ofparallelism, performing
four 16x16 bitmultiplies. However, there is a loss of precision inboth the first and second
stages since all intermediate formats are clipped to 16 bits. Also there are no instructions
that can perform a scale change on each of the four products in the result. The 16 bit parti
tioned vis_f32 multiplication, ontheother hand, has a lower degree of parallelism, perform
ing only two 16x16 bitmultiplies. However, there is noloss ofprecision since the
intermediate formats keep all 32 bits. Furthermore the vis_fpackl6 instruction performs a
scale change and then packs the 32bitpartitioned result into a 16 bitpartitioned
packed_result.
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63 55 47 39 31 23 15 7 0
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16 bit partitioned vis_d64 muttipiication
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vis_d64 UpperProd, LowerProd; 63 55 47 39 3i 23 15 7 o
LowerProd = visJpmui8ul16(Op1,Op2);

Op2[3
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Figure 3.7 16 bit partitioned vis_d64 multiplication.
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16 bit partitioned vis_f32 multiplication

vis_f32 Opl, Op2, packed; LowerProdf
vis_d64 UpperProd, LowerProd, product;
vis_write_gsr(1«3); ^ ^3i 23 15 7o
LowerProd =visJpmuidSuil 6(0p1,0p2); ^

Opl

Op2[
Si

UpperProd =visJpmuldSsuxl 6(0p1,0p2); q 2[
product =vis_fpadd32(LowerProd,UpperProd); ^ ' x a 1
packed =visjpackl6(product); UpperProd[

63

UpperProd

LowerProd

product[

packed

31

31

31

Figure 3.8 16 bit partitioned vis_f32 multiplication.
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Uitrasparc Processor and VIS

4.4.4 VIS Data Formatting Instructions

The VIS data formatting instructions are used for packing VIS data and for performing VIS
register to memory transfers. The packing instructions convert 16 or 32 bit data to lower pre
cision fixed point data. Input values are shifted by the amount in the GSR and then clipped
to fit within the dynamic range of the output.

Table 5. VIS Data Formatting Instructions

Instructions Description

vis_fpackl6() Clips four 16 bit fixed values to four unsigned 8 bit pixel values.

vis_fpack32() Clips two 32 bit fixed values to two unsigned 8 bit pixel values.

vis_fpackfix()
Converts a 32 bit partitionedvis_d64variableto a 16 bit partitioned
vis_f32 variable.

vis_fexpand() Converts four unsigned 8 bit pixel values to four 16 bit fixed values.

vis_fpmerge()
Merges two 8 bit partitionedvis_u32 variables into a single 8 bit par
titioned vis_d64 variable by selecting bytes in an alternating fashion.

vis_falignaddr()
vis_faligndata()

Calculate 8 byte aligned address and extract an arbitraiy 8 bytes from
two 8 byte aligned addresses.

vis_edge[8,16,32]()
Computea mask usedfor partialstorageat an arbitrarilyalignedstart
or stop address.

vis_pst_[8,16.32]()
Write mask enabled 8,16,32 bit components from a vis_d64 value to
memory.

vis_sl_u[8,8_i,16,16_i]()
visjd_u[8,8_i,16.16j]()

Perform 8 and 16 bit loads and stores to and from floating point reg
isters.

vis_pdist()
Computethe absolute valueof the difference betweenthe two pixel
pairs.

4.5 Fixed Point Arithmetic

TheVIS performs fixed pointarithmetic. Fixed pointarithmetic generally requires lessdecod
ing than floating point and is therefore faster. However, theeffects of overflow andloss of pre
cision are greater for fixed point arithmetic, and therefore the programmer must take greater
care in adding and multiplying fixed point numbers.

AsFigure3.9 illustrates, a 16bit fixed pointnumber is just a binary representation of a num
ber. Bits to the left of the decimal point represent the sign and integer part of the number,
while thoseto the rightrepresent the fraction part of the number. There is no physical decimal
point. Theposition of the decimal pointmust be implicitly defined by the user. Once it is
defined, the dynamic range of the fixed point number is set. InFigure3.9, the decimal point is

Real-time Signal Processing on the Uitrasparc 17 of 41



Ultrasparc Processor and VIS

located at bit 14 so that the dynamic range of the fixed point numbers, assuming two's com
plement representation, is from -one to one.

bl5 bl4bI3 bl2 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO

1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0

t
binary point

Figure 3.9 16 bit fixed point number.

When computing with fixed point numbers, the programmer should minimize overflow and
minimize the loss of precision. The loss of precision is introduced by quantization effects
from two sources: A/D and D/A conversions and multiplication [3]. The former is discussed in
section 5.4 Quantization Performance, and the second, multiplication, is presented below.

When two fixed point numbers are multiplied, there can be a loss of precision through quanti
zation and a scale change. Figure 3.10 shows the multiplication of two fixed point numbers of
length N. Notice that the product is of length 2N. If only N bits of the product are returned, the
product is quantized by either dropping or rounding up the least significant N bits. Also notice
that the binary point of the product has shifted to the right by one. The product no longer has
the same dynamic range as that of the two inputs. It is up to the user to keep track of the binary
point and shift the result back if necessary.

X

0, .1 1 1

oil 1 1

0 Q.1 0 0 1 0 0

Figure 3.10 Fixed Point Multiplication

Overflow occurs when an arithmetic operation produces a result that is too large to fit within
the original fixed point representation. There are several ways of dealing with overflow.

• Saturation Arithmetic
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Ultrasparc Processor and VIS

When overflow occurs, saturation arithmetic sets the result to the highest possible value.
Saturation is often used since it has a predictable behavior, setting all overflow values to
the maximum value.

Wraparound Arithmetic

When overflow occurs, wraparound arithmetic discards the overflow bits and uses the
remaining bits "as is". The final result therefore wraps around and can take on values of
the opposite sign. For example. Figure 3.11 shows the addition of two sine waves that
results in wraparound. Wraparound is used because it is simple to implement. Also the
accumulation of several overflows can still lead to the correct value even if intermediate

ones wraparound [4].

'—' "J
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5.0 CGCVIS

The codegeneration domains in Ptolemy consist of a setof Stars, Targets, and Schedulers that
generate code for a particular computational model. TheCGC domain, for example, generates C
codeaccording to the synchronous dataflow (SDF) semantics. The CGCVIS domain extends the
CGCdomain by synthesizing C code with VIS instructions. The CGCVIS domaincontainsa new
set of Stars, Targets, and an enhanced Tcl/Tk interface.

5.1 Stars

The purpose of the CGCVIS domain was to compare the performance of the Visual Instruc
tion Set against regular C code. A parallel set of CGCVIS stars were created from the CGC
library.

Table 6. CGCVIS Stars

Star Name Description

CGCVISAddSh
Add the corresponding 16-bit fixedpoint numbers of two 16 bit parti
tioned vis_d64 particles.

CGCVISBiquad Implements an IIR biquad filter using the inner product method.

CGCVISFFTCx
Implements the radix 2 algorithm to calculate the FFT of a complex
input sequence.

CGCVISHR Implements an FIR filter using a matrix vector multiplication.

CGCVISInterleaveIn

Reads four 16-bit audio samples at each invocation. The audio sam
ples are read in through the left and right stereo channels and are
interleaved into a single output stream.

CGCVISInterleaveOut
Sends out a stream of audio samples to the audio device. The stream
of audio interleaves the left and right stereo channels.

CGCVISMpyDblSh

Multiply the corresponding 16-bit fixed point numbers of two 16 bit
partitioned vis_d64 particles. The vis_fniuld8suxl6() and
vis_imuld8ulxl6() instructions are used which keep a 32 bit interme
diate format.

CGCVISMpySh

Multiply the corresponding 16-bit fixedpoint numbers of two 16 bit
partitioned vis_d64 particles. The vis_fmul8suxl6() and
vis_fmul8ulxl6() instructions are used which keep a 16bit intermedi
ate format.

CGCVISPackSh

Takes four float particles, casts them into four signed 16-bit
fixed point numbers, and packs them into a single 64-bit float
particle.
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Table 6. CGCVIS Stars

Star Name Descriptioii

CGCVISParametricEq

Implements a parametric biquad filter.The user supplies the parame
ters such as Bandwidth, Center Frequency, and Gain. The digital
biquad coefficientsare quickly calculated based on the procedure
defined by Schpak.

CGCVISStereoBiquad
Implements an IIR biquadfilter that assumes the input is a streamof
au^o samples with the left and right stereo channels interleaved.

CGCVISStereoIn

Reads four 16-bitaudio samples at each invocation.The audio sam
ples are read in through the left and right stereo channels and are sent
out as separate streams.

CGCVlSStereoOut

Sends out a stream of audio samples to the audio device. The stream
of audio.enters as separate left and right stereo channels but is inter
leaved before being sent to the audio driver.

CGCVISSubSh
Subtract the corresponding 16-bit fixedpoint numbers of two 16 bit
partitioned vis_d64 particles.

CGCVISUnpackSh.
Takesa single 64-bit float particle, unpacks them into four
16-bitfixed point numbers, and casts them into four floatparticles.

The CGCVIS starsuse the partitioned multiplies and adds to speedup the compute intensive
portions of signal processing applications. TThe dataformat is assumed tobe a 4x16 bit word,
which we called a "quad-word". The CGCVISPack and CGCVISUnpack stars are used to
pack a quad-word forprocessing and unpack a quad-word so that theresults canbe displayed.

5.2 Targets

When compiling VIS code, several compile options must bechosen. The-fastoption with the
optimization option level -xO[ll2l3I4l5] chooses the fastest code generation option available
on thecompile time hardware. Also, the vis.il file must be included in the command line to
resolve VISfunction calls.Finally, the -xchip-ultra specifies the targetarchitecture and the -
xarch-vSplusa identifies the instructions that the compilercan use.

Themostconvenient way to encapsulate this information in Ptolemy is through the CGC-
MakefileTarget. Thisparticular target generates a separate makefile with the above options to
compile thesource code. Several other alternatives were explored, such as developing a sepa
rateCGCVISTarget or deriving all VIS stars from a VISBase star. Sincejust compile time
options needed to be set, the former proved unnecessary causing much code duplication, and
the latter created problems with multiple inheritance issues.
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5.3 Tcl/Tk Interface

To support real time user control, a new Tcl/Tk interface was developed byJohn Reekie. Fig
ure 4.1 shows a parametric biquad block diagram andits user interface. Eachstar and its
parameters are named and can be associated with a single usercontrol panel. The control
panel canbe made of predefined components in theTcl/Tk library or custom made compo
nents.Duringrun time, each component controlsa specific parameterof a named star.

Parametric

Source;

♦ Una ^

Microf^ne

Oesllnalion:

♦ Line Out

Figure 4.1 Parametric Biquad

For example, the two parametric biquad filters in Figure 4.1 are named "left" and "right". Pre
viously, each star would generate its own control panels and separate controls, but the new
interface allows both stars to connect to a single user control panel. The "gain" control is used
to adjust the gain parameter in both stars.
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6.0 Performance of Key Benchmarks

6.1 Overview

The goal of the Visual Instruction Set is to speed up signal processing functions. In this sec
tion, the performance advantage of the VIS is measured on three basic signal processing ker
nels: FIR, biquad, and FFT. Each of these kernels is selected because they are representative
of other more complex signal processing kernels. For example, the FIR will characterize how
much the VIS speeds up basic multiply and add routines. The biquad will demonstrate how
well the VIS handles a feedback element, and the FFT will show how well the VIS handles
nested for loops.

6.2 Matrix-Vector Approach

The question remains: Given this jumble of VIS instructions and data types, how can one
speedup basic signal processing kernels? The signal processing kernels are linear time invari
ant systems that can be rewritten as matrix-vector operations. The matrix-vectoroperations
can then be implementedwith the Visual Instruction Set. The partitioned additions and multi
plications of the VIS allows a systems to process a vector of inputs and produce a vector of
outputs in the same amountof time as that of a single input/single output system. The VIS
thereforeuses these partitioned additionsand multiplications to reduce the overall number of
adds and multiplies and speed up basic signal processing operations.

6.2.1 FIR

The convolution of an input sequence and a real finite impulse response filter is an order N
operation. Forevery output, N multiplications andN-1 additions areusedin theconvolution.
Figure 5.1 shows how thisproblem canbe written as a matrix-vector multiplication. The
matrix-vector approach basically unrolls the convolution operation, multiplying an entire
row of the coefficient matrix with the input vector.

The structure of the coefficient matrix is known as a circulant matrix. Each row is just a
shifted copyof the previous one. Sincethe VIS has implemented 16 bit partitioned adders
andmultipliers, optimal performance is achieved if the input, coefficient matrix, and output
are 8-byte aligned. The VISpartitioned instructions can then be used to reduce the number
of multiplications to N/4 and the numberof additions to N/4-1 to provide a four timesspeed
up.
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Figure 5.1 Two versions of the ITR filter.
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6.2.2 Biquad

The biquad filter is an infinite impulse response filter so it cannot be directly implemented
by convolution. Instead, a recursive computational algorithm can be developed from its sec
ond order difference equation. Each output, y[n], depends on the previous two outputs, {y[n-
1], y[n-2]}, the current input, x[n], and previous input samples, x[n-l] and x[n-2]. However,
there are an infinite number of computational algorithms that might prove more efficient.
Figure 5.2 shows the difference equation reframed into a classic state space form. In fact, the
biquad can be put into a canonical controllable form, where all the states are updated by a
matrix-vector multiplication. The output is then a function of the state vector and the current
input vector.

Notice however that the size of the matrix is not optimal. Remember the optimal VIS multi
plications and additions are 4x4. Also Figure 5.2 shows that the state vector must be updated
for every new output. Another approach is to eliminate this feedback dependency This
approach, shown in Figure 5.3, is called the inner product method [5].

The inner product method eliminates the dependency of the feedback by recursively expand
ing the difference equation. The entire set of outputs {y[n],y[n+l], y[n+2], y[n+31} depends
on the same previous outputs {y[n-l] and y[n-2]}. Hence the VIS partitioned instructions
can be used to calculate il the outputs atthe same time with no direct dependencies. How
ever, the number of multiplies and adds greatly increases. Even with the VIS partitioned
multiplication and addition, the final number of multiplies equals that of a regular biquad.
Thus there is little performance gain here.
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y[n] + bo*y[n-l] + bi*y[n-2] = ao*u[n] + ai*u[n-l] + a2*u[n-2]

Xi[n+1] 0 1 xi[n] 4- 0
X2[n+1]

-bj -bo
X2M 1

u[n]

yW —r a2 -aobi aj-aoboJ xi[n]
X2W

[ao] u[n]

Figure 5.2 State space formulation of Biquad Filter

y[n] = - bo*y[n-l] - bi*y[n-2] + a()*u[n] + ai*u[n-l] + a2*u[n-2]

y[n+l] = - bo*y[n] - bi*y[n-l] + ao*u[n+l] + ai*u[n] + a2*u[n-l]

= (bo^-bi)*y[n-l] +bo*bi*y[n-2] +ao*u[n+l] + (ai-ao*bo)*u[n]
+ (a2-ai*bo)*u[n-l] - a2*bo*u[n-2]

y[n+2] = - bo*y[n+l] - bi*y[n] + ao*u[n+2] + a|*u[n+l] + a2*u[n]
=(2*bo*bi-b^)*y[n-l] +(ti2-lb^*bi)*y[n-2] +ao*u[n+2]

+ (ai-ao*bo)*u[n+l] + (ao*bo-ai*bo-ao*bi+a2)*u[n]
+(ai*bV2*^0-^i*bl)*^^"l] +0>o*a2-a2*bi)*u[n-2]

y[n+3] = - bo*y[n+2] - bi*y[n+l] + ao*u[n+3] + ai*u[n+2] + a2*u[n+l]
=(b^-3*b?*bi+b?)*y[n-l] +(b^*bi-2*bo*b2)*y[n-2] +ao*u[n+3]

+ (ai-ao*bo)*u[n+2] + (a2-2*ai*bo+ao*bo)*u[n+l]
+(aj*b aao*b^ai*b j-a2*bo+2*ao*bo*b1)*u[n]
+(a2*b^a2*bi-ai*bo+2*ai*bo*bi)*u[n-l]
+ (2*a2*bo*bi-a2*bo)*u[n-2]

Figure 5.3 Inner Product Method
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6.2.3 FFT

The implementation of the FFT was straight forward. Figure 5.4 shows the flow graph of a
complete decimation in time decompositionof an 8 point FFT.The VIS flow graph is simi
lar, except that at each node in the flow graph, four multiplications and four additions take
place. This takes advantage of the VIS partitioned instructions and reduces the overall num
ber of multiplies by a factor of four.

*i3 *8
Figure 5.4 Flow graph of 8 point

FFT decimation in time

x[0]

6.2.4 FIR In depth

The FIR can be reformulated as a matrix-vector multiplication and implemented with VIS
partitioned multiplications and additions. The implementation within ih& Ptolemy environ
ment is divided into three sections: setup, go, and wrapup.

In the setup method, memory is allocatedfor the coefficient matrix. Most of the VIS parti
tioned instructions operate on 8-byte aligned data. Non-aligned data can be accessed with
vis_alignaddr() and vis_faligndata() instructions, but these are very cycle expensiveopera
tions. Therefore, to optimize the VIS instructions, the coefficient matrix and the vector of
current and past input data (x) are aligned along an 8-byte boundary.

26 of 41 Real-time Signal Processing on the Ultrasparc



Performance of Key Benchmarks

One row of coefficient matrix

I

Four 16x16-bit i
multiplies \ ^

16-bit add

Four 16-bit adds

+)Two 16-bit adds

Figure5.4 FIR filter calculation (courtesy of JohnReekie)

Inthe go method, the matrix-vector multiplication isperformed. Figure 5.4 illustrates the
multiplication ofone row ofthe coefficient matrix by the input vector. The first multiplica
tion andaddition accumulates four partial sumsin a vis_d64 register. The code is:

for (outerloop = 0; outerloop < n; outerloop-H-) {
data = src[nminusk];
tapvalue = *tapptrO-i-i-;
/* take product */
pairhi = vis_fmul8suxl6(data, tapvalue);
pairlo = vis_fmul8ulxl6(data, tapvalue);
pair = vis_fpaddl6(pairhi,pairlo);
/* accumulate */

accumO = vis_fpaddl6(accum0,pair);

}

Notice that the 16 bitpartitioned vis_d64 multiplications are used. This multiplication keeps
all the results in a 16 bit intermediate format. Therefore, if audio samples were being filtered
here, the output would not be 16bit quality audio.

Inorder toproduce a single output, the four partial sums need tobeunpacked from the
vis_d64 register and summed together, as illustrated bythe lower adders inFigure 5.4. This
isperformed by taking the lower pair and the upper pair and adding them (vis_fpaddl6s).
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transferring the result into integer registers (the cast to vis_u32), bit-shifting to separate the
two 16-bit words, and summing:

splithi = vis_read_hi(accumO);
splitlo = vis_readJo(accumO);
split = vis_fpaddl6s(splithi, splitlo);
accumOu= *((vis_u32*) &split);

splithihi = (short)(accum0u»16);
splitlolo = (short)(accumOu&Oxffif);
y11 = splithihi + splitlolo;

This piece of code illustrates some of the awkwardness associated with manipulating multi
ple datawords. As mentioned earlier, there are no vis_d64 to vis_sl6 register to register
transfer instructions so bit shifting is necessary. The matrix-vector multiplication is repeated
four times for each row of the coefficient matrix, and the 16-bit results obtained from each
row are then combined into a single vis_d64 register.

6.3 Timing Performance

The VIS can potentially provide a four times speedup to signal processing applications. In
fact. Sun has reported a speedup from 1.5 to 10 times on basic image processing functions.

Table 7. Timing Results

Kernels VIS/Float
VIS/

Integer

HR 3.43 6.33

256 Pt FFT 1.28 N/A

Biquad 0.99 2.76

Table 6 shows the performance of three basic signal processing kernels: a single sample FIR
filter, a single sample biquad filter, and a 256 point complex FFT. Both VIS and C versions of
each kernel function were written: all versions are functionally equivalent but exercise differ
ent computational units of the Ultrasparc, such as the integer unit, the floating point unit, and
the VIS unit. Timing results are obtained on an Ultrasparc-I workstation running at 143 MHz.
A high resolution Unix timer, gethrtime(), measures the execution speeds of the functions.
Several iterations were run to obtain a mean time:

start = gethrtimeO;

for(j = 0;j<NTIME;j++) {
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firvis_filter()

}

end = gethrtimeO;

time = (float) (end - start)/1000000/NTIME;

The speedup of the VIS code over the floating point C code and the integer code were calcu
lated. The results range from no speedup to just over 2 times speedup for the VIS vs the float
ing point unit and 2 times speedup to over 6 times speedup for the VIS vs integer unit. One
immediate observation is that the VIS does not outperform its floating point unit by the same
amount as that of the VIS and integer unit.

The FIR filter proved to be consistently faster when written with the VIS code over both the
floating and integer units. There are two reasons. First the algorithm is simple. The FIR is just
a straight inner product between the filter taps and the inputs. There is no introduction of a
feedback element or nested for loops. Second, the convolution operation is easy to rewrite
with VIS code. The convolution operation can be rewritten as a matrix vector multiplication,
and the VIS partitioned instructions can be applied to reduce the overall number of adds and
multiplies.

In implementing the FIR filter, two design choices were made.First, the 16bit partitioned
vis_d64 multiplications are used, which keeps a 16 bit intermediate format. For higher preci
sion calculations, a 32 bit intermediate format can be kept, but the VIS/Float speedup is
reduced from 3.43 to 2.00. Second, 16 bits are used for the input and the filter coefficients.
This requires 16x16 bit multiplies, whichare carried out in three stages. For many applica
tions, greater quantizationeffects are tolerated so that 8 bits are sufficientfor the filter coeffi
cients. All partitionedmultiplications can therefore be carried out in a single stage, which
should lead to a greater speedup.

The biquad filter showedlittle or no gain when implementedwith VIS. One of the limitations
of the matrix vector approach is its ability to handle feedback. The feedback introduces a loop
such that every output depends on the previous output. Hence the outputscan no longer be
computedseparately or in parallel. Several methods, such as the state space and inner product
method, were used to eliminate the feedback loop. But more multiplies and adds were gener
ated so that the VIS partitioned instructions showed little gain.

The FFT is implementedhere with a standard radix 2 algorithm.Three nested for loops are
used to calculate all the nodes of the butterfly. However the algorithm is modified so that, at
each node, four multiplies and additions take place. The speedup here is modest since more
shuffling and unpacking of data is required.

6.4 Quantization Analysis

When implementing a digital filter or algorithm, the designer must minimize the effects of
quantization errors.Luckily, there are manychoices availableto minimizequantization errors,
such as the number of bits to allocate in the A/D conversion of the inputs, the representation of
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thecoefficients inthedigital filter, thefinite-precision arithmetic of thehardware architecture,
and the actual implementation structure of the digital filter. Inthe following sections, we dis
cuss the implementation ofa digital filter for audio processing using the VIS architecture. At
each step of the way, we examine the design choices - the VIS architecture dictated many of
these choices- and the related quantization effects on the system.

6.4.1 Input Quantization and Scaiing

Atthe input, quantization occurs to transform the continuous audio signal to a finite setof
values. This operation can be mathematically represented as:

X = QsM =
r B ^

Xfc,2-'
V 1=1

Equation 1

Two parameters here need to be defined: thenumber of bits, B, to allocate for the input and
the scaling of the signal, to prevent overflow. For example, in section 6, the graphic
equalizer reads in audio samples from a CDthathave been linearly encoded into 16bits.
This fitsnicely withinthe VIS framework. The VIS allocates 16bits per audio sample. If no
scale conversion is necessary, the 16 bit audio samples are directly stored into the VIS vari
ables and isset to2^^. The quantization error isgiven by Eq (2) and can be used to
model the effectsof the quantizer, Qg. The effects of Qg are essentially replaced as an addi
tive white noise signal and an overall metric, known as the signal-to-noise ratio, is used to
quantify its effect. For 16bit CD quality audio, the signal-to-noise ratio is around 90-96 dB
and is given by Eq (3).

(X„2"®) iX^2~^)
—- <e< —- Equation2

SNR =6.02B +10.8 -201og^-^jEquation 3

However, if the audio samples are sent to a filter with a positive gain, overflowmay occur. In
the graphicequalizerpictured in Figure 6.1, the user can adjust the volumecontrol to scale
down the amplitude of the incoming audio stream. This minimizes the occurrence of over
flow but simultaneously increasesX^. Eq (2) showsthat increasingX^j increasesthe size of
the quantization errors, and Eq (3) shows that increasingX^j reduces the signal-to-noise
ratio.

6.4.2 Coefficient Quantization

Coefficient quantization represents anothersourceof quantization error. In the VIS imple
mentation, the coefficients are quantized to 8 or 16 bit accuracy. The finite word length here
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determines the density of points at which the poles and zeros of a transfer function can be
placed. A pole (zero) grid is helpful in visualizing this [5]. It displays the z-plane with the
allowed pole (zero) positions. Two quantization eifects are evident. First, the poles (zeros) of
the desired transfer function are shifted to new positions. Second, there exists the possibility
that poles near (but within) the unit circle are movedoutside, making the transfer function
unstable.

The graphic equalizer in section 6 is composed of a cascadeof parametric biquad filters.
Twoimplementations, one in floating point C code and one in VIS code, were implemented.
The floating point Cversion uses the fill 64 bit word to represent the filter coefficients while
the VIS version uses 16 bit accuracy.The audible effect of coefficient quantization was
greater in the latter.

One approach to analyzing the effects of coefficient quantization is by designing a seriesof
filterswith differentwordlengths and measuring the error in the frequency responses [5]. For
instance,to analyze the effect of coefficient quantization on the passbandregion, the relative
error in the passband is measured between the quantized transfer function and infinite preci
sion transfer function:

RE =

^MAX ~ ^MIN ~
^MAX ~ ^MIN >A MAA - Mils IVI .

Equation 4

® ^MAX ~ ^MIN -

H^ax 2ind represent the maximum and minimun values (in dB) of the passband
response in the quantized transfer function, and represents the ripple (indB) in the infi
nite precision transfer function. Plotting the relative error(RE) for several different finite
wordlengths can show general trends as to howsensitive the particular filter design is to
coefficient quantization.

6.4.3 Roundoff Noise

Another important source of quantization errors is the finite precision arithmetic. Section 3
described the operations of theVIS fixed pointarithmetic. All VIS partitioned multiplica
tions round the results up before quantization. When thesepartitioned instructions are used
in implementing biquadfilters, the quantization effects can be modeled in a similar manner
as the input quantization. Thatis, the quantization resulting from rounding up fixed point
multiplication can be modeled as additivewhite noise.

Figure 5.5 shows a second orderdirect form IIR filter with a quantizer in the feedback loop
to model the quantization effects of the finite arithmetic. The quantizer can actually be place
in any oneof several positions. Even twoquantizers canbe used. However, sincetheoverall
results do not vary much,thesimplest scheme is kept. Furthermore, thequantizer is replaced
with an additive noise source, e[n], to model the round off noise.
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One wayto analyze this is to look at the noisetransfer function, G(z),whichjust happens to
be the same as the filter transfer function, H(z). The noise gain can then be calculated:

X h\n] =
n = 0

1 + r

1-r^
Equation 5

:os2© + iJ ^.4 + 2r^cos2©

Notsurprisingly, thenoise gain increases dramatically as thepoles of thesystem arepushed
near the unit circle. This is consistent with the behavior of the graphic equalizer in section 6
and the quantization effects from the input and filtercoefficients.
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7.0 An Audio Application; Parametric Equalization

A 10band graphic equalizer was implemented in the CGCVIS domain. Code was generatedusing
the VIS instructions, and the application was run in real time on the Ultrasparc processor. For the
implementation, we developed a parametric biquad andenhanced the Ptolemy audioI/Ocapabili
ties and Tcl/Tk interface.

Source:

♦ Line In

Microphone'

Destination:

♦ Line Out

Y Speaker

OJ) . 7i)

Rec Bal Ray : 31 B3 125 2S0 SOO Ik 2k 8k 16k

Figure 6.1 Ten-band Graphic Equalizer

Figure 6.1 above shows a ten-band graphic equalizer that is simulated in the Ptolemy environment
and implemented on the UltraSparc processor. 16 bitaudio samples are read into a FIFO buffer at
44.1 kHz. In the graphical user interface, the userspecifies whether to gain or attenuate the audio
signal in ten presetfrequency bands. The specifications are then mapped down intoparameters
for a bank of twenty parametric biquad filters. Each biquad filter must then filter the buffered
audio stream and output the results to the speaker in real time.

In audio processing, it isuseful tocontrol the gain of anaudio signal in specified frequency bands.
Aparametric filter allows theuser to control the gain by mapping asetof parameters that describe
a specific frequency response intofilter coefficients. To make the parametric filter truly interac
tive, it must update thefilter coefficients in real time. Thedesign of suchparametric filters is given
by Schpak [6].

7.1 Parametric filter design

There are manyways to design a parametric filter, but in order to meet the real time constraint,
three design choices are made. First, IIR filters are chosen. Although FIR filters are stable and
have linear phases, they require high filter orders. IIRfilters require lower filter orders, but the
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phase response is highly nonlinear. In particular, second order biquadratic sections areused
sinceonlymoderate filter selectivity is required. Second, closed-form analytical methods are
chosen over iterative optimization methods. Optimization methods are compute intensive and
degrades the real timeresponse. Finally, a cascade implementation is usedso that when the
characteristicsof one frequency band is changed, only the coefficients for that particular
biquad section is recomputed. Given thedesign choices, the graphic equalizer is implemented
as a cascade of biquadratric filter sections.

In the graphic equalizer above, the user chooses either a lowpass,bandpass,or highpass filter
and inputs the sampling frequency, desired gain and center frequency and bandwidth of the
bandpass frequency responseor passband and stopband of the lowpassand highpassfre
quency response.The following algorithmis used to map those "user-friendly"parameters
into digital filter coefficients in real time:

• Pre-warp the analog frequency specifications using Newton's method. This is necessary
since a bilinear mapping is used later to transform the analog filter coefficients to digital fil
ter coefficients.

• Solve the filter coefficients ofan analog biquadratic filter section {a, p, Qj, Qp}.

Equation 1
His) =

as^ +

s +

Qp
+

• Apply bilinear transformation to find digital filter coefficients.

7.2 Analog Bandpass Filter

For an analog bandpassfilter, set the parameters a = 1 and p = 1. The user further specifies:

Table 8. User parameters for bandpass filter

Parameters Symbols

Sampling rate Ts

Center Fre

quency fc

Bandwidth B

Gain k

Substituting s = jf2 into Eq. (1) and solving for the squared magnitude gives:
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2_ fip(2^ac +"'') +Qc"^(i-2ez)
Equation 2 =

qIQl(at +q") + 1- 2Gp )

and at k, which further reduces Eq. (2):

Equation 3\HijQ^)\ =^ ^
>&z

SubstitutingEq. (3) into Eq. (2) the magnitudecan be expressed in terms of the peak gain k.

\HUaf = ^Equation 4
Q(a;-cr) +n^n

Nowat the lowerfrequency point, where the bandwidth is specified, the magnitude is set
to the root peak gain. Solving for |W(n,)| = ^/^ yields,

Qp = r Equation 5
a]-a]

The magnitude at could alsohavebeen set to -3 dB. However, the above formulation
ensures a smooth transition from one biquad filter response to the next.

7.3 Analog Lowpass Filter

Foran analog lowpass filter, set theparameters a = 1and p = gain. Theuserfurther specifies:

Table 9. User parameters for lowpass filter.

Parameters Symbols

Sample rate Ts

Passband Fre

quency
fc

Stopband Fre
quency

fs

Gain k

Substituting s = into Eq. (1) and solving for the squaredmagnitude gives:
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e'e'(P'nc+Q") +n^c"'(i-2PQz)^ .. .I^?0£1)I = -f-S—4 4 2—5 ^Equation 6e,' Qlia*+Q^) +n^£i'(1- 2qI')

.2^2

Substituting Q= i2c Eq. (6) yields:

|//0Q,)1 =^[j2z(P-l)^+l] Equation?
Qg

Setting the magnitude |W(flc)|̂ = yields:

2 3'Qp = ^ r Equation 8
(P-ir-e/'

and substituting this value ofQp into Eq(6) gives:

\HU^)\ =
+n'̂ ) + - 2Pj2|)]

-1) +11 - 2p^!2,ci'n
At the stopband frequency Qg, the magnitude is set to the root peak gain. Q2equals

.2^2.

Qz^ =
Q^P +a^Q^(P-l)-Qy

Equation 10

Equation 9

7.4 Analog Hipass Filter

For an analog highpass filter, the resulting filter design equations can be obtained in a similar
manner. Set the parameters a = gain and 3=1. The user further specifies:

Table 10. User parameters for lowpass filter.
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Parameters Symbols

Sample rate Ts

Passband Fre

quency fc

Stopband Fre
quency

fs

Gain k
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The design equations are given below:

2

Qp^ - ^ Equation 11
(a-ir-Gz

2Qz = —— — j- Equation 12
+n^n^(a- I)- n*a

7.5 Digital Filter

From the user specifications, the desired digital filter specifications can be calculated. How
ever, the digital filter specificationsneed to be prewarped before using them in computing the
analog biquad filter coefficients Qp and Q^. The bilinear transformation is then applied to
biquad filter sections to obtainthe digital filtercoefficients. The prewarping formulas between
the analog {Qg} desired digital {00^} specifications of a bandpass filter are given below:

^~J Equation 13

Bp = Equation 14

£2. £2-
Y = -p = Equation 15

In order to preserve the centerfrequency Qj. and the bandwidth Bp, it is necessary to apply
Newton's method to solvefor tij, sinceEq (14) cannotbe solved analytically. Onlyfive itera
tions are used since Newton's method degrades the real time performance.

Once prewarping is finished, the required Qp and are computed as before. Then bilinear
transformation is applied to the digital transfer function to yield:

z^ + a^z+ aQ
z'̂ + b^z + bQ

Equation 15 F(z) = Hq

Equation 16 pco^T^) + 2(0^7]
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Equation 17 a j =
2e„i2,(-4a +PQ/r^)

O'

_ e„(e,(4a+pa|r^)-2n,r)
Equation 18 Aq =

a'

Equation 19 Z?2 = Q,[Qpi4++2QJ]

. onz. 2Q Q^{-4 +Q;T^)Equation 20 = — 7

^ . 0,(0^(4 +^223^2)^2^,7)Equation 21 Oq = r

Equation 22 Hq = —

7.6 Some Example Frequency Responses

In the following example, the frequency specifications of seven biquad sections are listed in
table 10 and their corresponding frequency responses are plotted in figures 6.2 and 6.3.

Table 11. Biquadratic filter sections.
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Spec. 1 2 3 4 5 6 7

fc or fp 64 160 400 1000 2500 6250 15625

B 151.8 379.5 948.7 2372 5929

k(dB) 6 -10 6 3 -3 6 3
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OMrity or orqutetttic leetiom

Fitq (Ml)

caindo of biquadratic tectioni

10* 10'
Fraq(H()

Figure 6.2 Overlay and Cascade of Biquad Filter Sections
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8.0 Conclusions

We have implementedthe CGCVIS domain in Ptolemy, compared the timing performance of sev
eral basic signal processing kernels, and implemented a real time audio application. The VIS
showed modest speedups on basic signal processing kernels. While the HR filter exhibited good
speedups, the biquad and FFT showed little or none, despite intensive hand coding and several
different algorithms. And as expected, the VIS was sensitive to quantization effects. However,
there are "free" performance gains available to the Ptolemy workstation that are worth supporting.

Comparing the CGCVIS domain to the other DSP code generation domains, we conclude that
coding in VIS is as difficult as coding in other assembly languages. Although the library of VIS
arithmetic instructions was flexible enough to handle most of the audio processing, the library of
VIS data formatting instructions was not rich enough to support all the packing and unpacking of
data.

It is interesting to note that Intel has recently released a Pentium processor with the Multimedia
extension (MMX). The MMX, like the VIS, is a set of instructions that support multimedia appli
cations. 57 new instructions are added to enhance the performance of signal processing applica
tions such as audio, video, imaging and 3D geometry.

Future works include extending the library of audio stars in Ptolemy to handle a range of audio
capabilities, such as ambience simulation and dynamic range control, and implementing CGC
matrices to handle video and image applications.
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