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Abstract

Progressively Reliable Packet Delivery
For Interactive Wireless Multimedia

by
Richard Yeh-Whei Han

Doctor of Philosophy in Engineering — Electrical Engineering
and Computer Sciences

University of California at Berkeley

Professor David G. Messerschmitt, Chair

In this dissertation, we propose a progressively reliable end-to-end network proto-
col for delivery of delay-sensitive visual multimedia over a wireless channel with a time-
varying bit error rate and limited bandwidth. Interactive applications like Web-based
image browsing which operate over a wireless access link to the Internet require immedi-
ate delivery of image data to the receiver in order to support genuine interactivity. Wired
Internet connections incur roundtrip delays approaching the interactive latency bound.
Reliable protocols that retransmit lost or corrupt packets over an Internet connection that
also includes a noisy wireless link will be unable to deliver an image by the interactive
latency bound. We derive a lower bound on the latency incurred by an ideal retransmis-
sion-based ARQ protocol in a noisy bit error rate (BER) wireless channel, and show that
full reliability will cause the transport latency to far exceed the interactive latency bound at
1% BER. We also show that, even by adding powerful Reed-Solomon forward error cor-

rection (FEC) codes with redundancy rates that double or triple the bandwidth, the latency



penalty due to ARQ retransmissions is too high to achieve the interactive latency bound at
3% BER. -

Applications that accept unreliable packet delivery, e.g. packet loss and paclét corrup-
tion, have a more reasonable chance of achieving the interactive latency bound over a
noisy channel. Practical complexity and delay constraints on FEC and compression cause
the traditional approach of aggressive compression and aggressive FEC to be unable to
deliver images quickly enough at severe BER’s. Under these conditions, we show that the
joint source/channel coding approach of error-resilient image coding)decoding combined

- with forwarding of corrupt packet data can continue to support interactive image display.
We demoﬁstrate that error-tolerant image coding can reconstruct images at 3% BER and
simultaneously compress images down to 0.75 bits/pixel via lossy quantization only.

We propose a progressively reliable end-to-end protocol designed for rapid yet asymp-
totically reliable delivery of delay-sensitive imagery. A possibly noisy initial version of a
packet is forwarded to the receiver quickly to allow the end user to interact immediately |
with an initially noisy image. For bursty multimedia applications like Web-based image
browsing, the noisy still-image needs to be cleaned of any persistent artifacts. Therefore,
the protocol follows its initial delivery with multiple increasingly reliable deliveries of
each packet, leveraging off of the retransmission mechanism of the protocol. We call this
progressively reliable protocol “Leaky ARQ”. We identify through X server simulation
three additional performance-enhancing functions for Leaky ARQ: delaying retransmis-
sions by many seconds; cancelling out-of-date retransmissions; and fine-grained schedul-
ing of application data through the use of flows. Finally, we show how Type-II Hybrid
ARQ protocols, also called packet combining or memory ARQ protocols can be modified

to implement ARQ.
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Introduction

“...Yet all experience is an arch wherethrough gleams that
untravell’d world whose margin fades forever and forever as I move.”

— Ulysses, by Lord Tennyson

In this dissertation, we consider the design of an end-to-end network protocol for
delay-sensitive visual multimedia delivered over an Internet connection that includes a
wireless access channel with a time-varying bit error rate and relatively limited bandwidth.
Interactive applications like Web-based image browsing which operate over a wireless
access link to the Internet require immediate delivery of image data to the receiver in order
to support genuine interactivity. Such delay-sensitive imaging applications can be
designed to tolerate channel distortion in the form of packet loss and packet corruption. By
tolerating some channel distortion in a reconstructed packetized image, delay-sensitive
applications can reduce the perceptual latency seen by the end user. Error protection
schemes like forward error correction (FEC) and/or reliable retransmission-based proto-
cols (also known as ARQ protocols) are designed to mitigate distortion caused by channel

noise, but will introduce additional transport latency either through retransmissions or
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bandwidth expansion. By accepting less than fully reliable packet delivery, delay-sensitive

applications don’t have to suffer the latency penalty associated with fully reliable packet
delivery over a noisy wireless channel. This dissertation develops a progressively reliable
end-to-end protocol that delivers an initial possibly noisy version of a packet to the
receiver quickly, followed by multiple increasingly reliable versions of that packet. Pro-
gressively reliable packet delivery allows the end user to trade off subjective priorities
related to the two dimensions of quality/distortion and delay by initially supporting low-
latency high-distortion delivery of a packetized image, while ultimately supporting low-

distortion high-latency reconstruction of a packetized image.

1.1 Wireless access to interactive visual multimedia

The expanding demand for Internet connectivity, the growth of multimedia computing,
and the rising expectation of portable access to information are symptoms of the trend
towards wireless access to multimedia information “anytime, anywhere”. As part of this
increasing integration of computing, communications, and portability, personal computer
laptops can now access the Internet via wireless modems, gaining access to a vast array of
visual multimedia services such as Web-based images, text/graphics, and video. Similarly,
portable “network computers” (Berkeley’s InfoPad [90], Xerox PARC’s MPad [68], Digi#
tal’s Web-aware PDA [7]) have been prototyped recently and offer an alternative paradigm
for wireless access to networked visual multimedia. Both the laptop and portable network
computer models attest to the great appeal of combining portability, connectivity, and mul-
timedia into a single computing and communications device. Previously, personal comput-
ers (multimedia), workstations (networked multimedia), laptops (portable multimedia),

and personal digital assistants (portable with limited multimedia) supported one or two of
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Figure 1.1 General system supporting wireless access to visual multimedia. Packetized
visual multimedia flows from the source coder through the end-to-end net-
work protucol that implements end-to-end error protection, over an Internet
backbone and concatenated wireless access link, to the portable multimedia
receiver for decoding and display.

these individual elements, but failed to realize the potential of combining all three charac-
teristics into a single computing and communications paradigm.

In a system which integrates portability, connectivity, and multimedia, the end user
expects rapid response time and sufficiently reliable communication. These expectations
conflict with the reality of delivering high bandwidth image-based data across a connec-
tion that includes a wireless link with a relatively low bandwidth and relatively high noise
level. The overall sotir¢e-network-receiver system that supports wireless access to distrib-
uted visual multimedia is pictured in Figure 1.1. The multimedia application or source
coder generates images which are compressed, possibly in an error-resilient manner, and
sends the coded image data to the underlying network, e.g. transport protocol, for end-to-
end packet delivery. The transport protocol is responsible for ensuring that the packetized

data arrives at the receiver with sufficient reliability and sufficient speed. The transport
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protocol has the option of applying end-to-end error protection, either in the form of FEC
and/or retransmission-based ARQ protocols. The wireless channel represents the weakest
link in the overall connection both in terms of limited bandwidth and relatively severe bit
error rates (BER’s). The design of an end-to-end network protocol must recognize the
impairments posed by this weakest link, both in terms of its limited bandwidth and its
heavy channel noise.

The scope of this dissertation is confined to designing an end-to-end protocol for
packet delivery of bursty high-bandwidth delay-sensitive multimedia across connections
containing a bandlimited wireless link with a time-varying and at times severe BER. Our
primary application of interest is interactive Web-based image browsing across a wireless
access link, though we mention later how other applications based on video and audio can
also utilize our proposed protocol. In the remaining paragraphs of this section, we outline
the limiting assumptions that are made with regard to the type of source application con-
sidered, the end user’s quantitative expectations in terms of delay and distortion, and the
quantitative assumptions regarding the wireless link’s bandwidth and BER.

Our end-to-end protocol is primarily designed for the class of interactive multimedia
applications which require remote delivery of still images. This protocol is not designed to
deliver unrendered text or command-based graphics, though it could be used to deliver
images with pre-rendered text/graphics. In this class of distributed imaging applications,
we include interactive Web-based image browsing, remotely rendered applications like
Framemaker, and portable network computers which download bitmapped frame buffer
updates across the network like the InfoPad. In each of these examples, images are period-
ically rendered at the source and downloaded to the receiver, thereby exhibiting bursty
traffic behavior. While our primary objective is supporting rapid delivery of delay-sensi-
tive bursty multimedia, we shall mention in Chapter 5 how the proposed protocol can be

parameterized to deliver continuous media audio and video.
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In the image browsing application described above, the end user has subjective expec-
tations that are stringent in terms of delivery latency but are more relaxed in terms of the
permissible distortion introduced by channel noise. For real-time video/audio conferenc-
ing applications, the maximum acceptable roundtrip delay cannot exceed about 200 ms
[41][132], though some would argue for a tighter roundtrip bound. For point-and-click
bursty-media applications like interactive image browsing, genuine responsiveness will
impose a similar though likely tighter requirement of about 100 ms roundtrip delay. This
constraint on delay plays a key role in the design of our progressively reliable protocol. On
the other hand, the subjective tolerance for channel distortion can actually be quite high
for natural images. We demonstrate in Chapter 4 that channel BER’s of about 3% are still
subjectively tolerable for natural images which have been compressed over 10:1 from 8
bits/pixel down to 0.75 bits/pixel. Together, the stringent delay requirement and the toler-
ance for channel distortion help motivate the decision to forward corrupt information as a
means of lowering the perceptual latency within our protocol design.

Wireless channels range from indoor picocellular wireless access links to outdoor
microcellular channels with mobile access from automobiles. The key digital performance
parameters of a wireless channel are its bandwidth and its BER. In addition, the variation
of the BER with time can also affect protocol design. Bit errors arise from analog impair-
ments in the wireless channel. A single user transmitting its data over a wireless link can
suffer from three roughly independent analog noise phenomena: shadowing, path loss, and
multipath fading [125]. Shadowing occurs when the line-of-sight signal is blocked by an
object such as a mountain or building or even a person. Path loss occurs because the power
of the signal falls off exponentially with distance. Multipath fading occurs when multiple
reflections of a transmitted signal arrive at the receiver and add destructively due to phase
shifts. In addition to these single user phenomena, in cellular systems there are multiple

users whose transmissions generate intercell and intracell interference for other users. Fre-



quency reuse in TDMA cellular systems introduces co-channel interference from other
cells. Also, imperfect isolation of users introduces adjacent-channel interference both
within and outside of the user’s cell. Direct sequence CDMA spread spectrum systems are
also well known to be interference-limited, in the sense that increased transmission power
dedicated to one user will add interference noise to all other users. Finally, for indoor pic-
ocellular systems, an individual user may also have to deal with prolonged shadowing due
to slow-moving/static objects (e.g. people, cubicle walls, etc.) interfering with line-of-
sight transmission. Indoor channels do not have to deal with Doppler effects characteristic
of outdoor mobile cellular systems. All of these phenomena create time-varying bursts of
errors.

An end-to-end protocol should be designed to handle this heterogeneity in behavior
over a variety of wireless access channels. However, our work makes some limiting
assumptions with regard to the channel bit rate, and the channel BER. Our discussion is
confined to wireless channels whose bit rates range from about 100 kbit/s to 1-2 Mbit/s.
This range of bit rates offers a reasonably sized image some chance of achieving the 100-
200 ms interactive latency bound. In addition, this range of bandwidth is likely to repre-
sent the typical wireless access link of future cellular networks. Currently, second-genera-
tion digital cellular standards like IS-54 digital TDMA, IS-95 CDMA, and Europe’s GSM
system support voice and data services at bit rates up to 13 kbit/s, though the raw channel
rates can be more than double these values due to error correction overhead [94]. Current
digital cordless standards, which support mobility in a more limited manner than cellular
systems, can sustain even higher bit rates. For example, Europe’s CT-2 system delivers
voice and data over a 32 kbit/s cordless link [29]. Japan’s Personal Handiphone System
(PHS) supports voice at 32 kbit/s and data services up to 64 kbit/s. The European DECT
standard transmits voice at 32 kbit/s, and data up to 384 kbit/s over one connection [121].

Several vendors have begun offering wireless LAN products whose radios operate at hun-
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dreds of kbit/s to one Mbit/s per user [29]. In the future, widely deployed global wireless
access systems will likely offer a similar range of bit rates. For example, plans are under-
way in Europe for a third-generation Universal Mobile Telecommunications System
(UMTS) that supports cellular, cordless and LAN access through a ubiquitous wireless
access network operating at rates of at least 2B+D ISDN (144 kbit/s), and possibly higher
(up to 2 Mbit/s).

Our second assumption is that wireless channels average at least 102 BER within a
fade. Designers of digital cellular systems have often cited 102 BER as a typical design
point for wireless audio [31][149]. In addition, the packet loss rate has been measured.at
1-2% under realistic fully loaded conditions in the IS-95 DS-CDMA digital cellular sys-
tem after rate- % convolutional FEC coding [69]. Our design philosophy is to support con-
tinuous interactivity with possibly noisy packetized image data at BER’s up to and slightly

exceeding 1072,

1.2 Joint source/channel coding for delay-sensitive wireless
data

Given the system assumed in Figure 1.1, the traditional approach is to separate the
design of compression/decompression algorithms, also called source coding and decod-
ing, from the design of FEC/ARQ error protection, also called channel coding and decod-
ing. For example, the still image coding JPEG standard is designed independently from
the underlying network. JPEG does not care whether the underlying error protection is a
linear Reed-Solomon block code, a convolutional code, or a retransmission-based ARQ
protocol with error detection. Conversely, an ARQ protocol like the Internet’s TCP has
been designed independently of any source compression standard. This independent

source and channel coding design philosophy is illustrated as the top picture in Figure 1.2.
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Figure 1.2 Joint source/channel coding (JSCC) (bottom figure (b)) compared to inde-
pendent/separated source and channel coding (top figure (a)). In JSCC,
compression and decompression algorithms “see” the channel’s charac-
teristics, e.g. its typical BER, and are designed to be robust. Channel FEC/
ARQ coders and decoders “see” the source’s statistics, and apply unequal
error protection to the data. In independent source and channel coding,
source coding/decoding only sees the input data, not the channel. FEC/
ARQ is designed with only the channel in mind, and is oblivious to the
source’s statistics.

The channel coding and decoding modules are designed with only the characteristics of
the network or channel in mind, i.e. they “see” only the channel impairments, and don’t
“see” anything about the source’s statistics, thereby simplifying the task of the network
protocol designer. Conversely, the source coding and decoding modules only “see” the
data they are compressing, and are designed without regard to whether the compressed
data is being sent over a wireless channel, thereby simplifying the task of the compression

algorithm designer.
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The traditional design philosophy of independent source and channel coding is justi-
fied theoretically by Shannon’s separation theorem [27]. The theorem states that transmis-
sion of a source (e.g. image) through a noisy channel (e.g. wireless link) can be made
arbitrarily close to reliable (arbitrarily close to zero probability of transmission error) as
long as the source’s information rate/entropy is less than the information-theoretic channel
capacity. Consequently, the source’s only duty is to aggressively compress the data below
the channel capacity, without regard to any other properties of the channel. Assuming a
suitably compressed source, the channel coder can design its FEC/ARQ error protection
independent of any knowledge of the source. The separation theorem implies that no loss
in performance, as measured by the reliability of the reconstructed data at the receiver, is
suffered by a separated source and channel coding approach.

In Chapter 2, we quantify the latency performance of a traditional ARQ protocol that
has been designed independently of source statistics. Two lower bounds on the delay that
would be suffered by data requiring fully reliable packet delivery over a wireless channel
are derived. At 102 BER, we show that even an ideally efficient retransmission-based pro-
tocol, called ideal SRP, cannot deliver its data within the interactive latency bound of 200
ms.

In Chapter 3, we quantify the minimum redundancy required by a traditional FEC lin-
ear block code, again designed independently of the image source, in order to adequately
protect a sequence of data blocks corresponding to an image. We quantify how much more
redundancy is required by binary BCH codes than optimal binary linear codes. For non-
binary Reed-Solomon (RS) codes, we show that at 3x1072 BER, the minimum redundancy
required will double the bandwidth of the source.

Further, we analyze Type-I Hybrid ARQ protocols which combine FEC and ARQ
together as a form of hybrid error protection. Assuming that RS codes perform the FEC

function, and assuming that ideal SRP performs the ARQ function, then we show that no



sufficiently powerful RS codes of length N<1024 output symbols could be found which
are capable of reliably delivering a full image by the interactive latency bound of 100 ms
at 3% BER for a Type-1 Hybrid ARQ protocol.

The analytical results from Chapters 2 and 3 help motivate our search for alternatives
to conventional FEC and ARQ channel coding schemes. In Chapter 4, we examine an
alternative method for delivering delay-sensitive data over a wireless channel called joint
source/channel coding (JSCC). First, we observe that the separation theorem was derived

under the following three assumptions:

* stationary memoryless channels

* unconstrained complexity of compression/decompression algorithms and FEC/ARQ

error protection techniques

* unconstrained delay in the operation of source and channel coders and decoders

Since our application of interest is interactive image browsing over time-varying wire-
less access links with practical limitations on compression efficiency and FEC error cor-
rection power, then each one of these assumptions of the separation theorem is violated.
Portable access to distributed visual multimedia, which has the potential of evolving into a
fairly common paradigm, calls into question the traditional philosophy of separating the
design of compression algorithms from the design of network FEC/protocols.

In addition, the appropriate quality criterion in our case is a subjective dual function of
delay and distortion. For example, progressive image transmission is a technique which
exploits the human user’s subjective tolerance for significant distortion in an initial version
of an image provided that the end user knows that the image will improve eventually in
quality over time. Progressively reliable packet delivery discussed in Chapter 5 represents
another example of progressivity. The human user’s changing tolerance for distortion over

time is difficult to measure in quantitative terms. The separation theorem makes no com-
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ment on such qualitative evaluation metrics, relying instead only on quantitative measures
of performance such as the loss probability which fail to capture the subjective complexity
motivating our theme of progressivity.

When one or more of the theorem’s assumptions are not satisfied, an approach called
joint source/channel coding can be shown to outperform separately designed source and
channel coders. The overall JSCC system is illustrated in the bottom portion of Figure 1.2.
The JSCC channel coder and decoder are designed with knowledge of the source as well
as the channel, i.e. they “see” the source’s statistics and the variation in error sensitivity of
different source bits and incorporate this knowledge into the design of an unequal error
protection (UEP) codec. Similarly, the JSCC source coder and decoder are designed with
knowledge of the channel as well as the source, i.e. they “see” the channel’s error statistics
and incorporate that knowledge into the design of an error-tolerant compression/decom-
pression scheme.

The literature has shown that when compression algorithms are constrained in com-
plexity and required to perform their operations quickly, then residual redundancy is left in
an imperfectly compressed image. Imperfect compression leaves certain bits more sensi-
tive to errors than others. Errors in sensitive bits will have a disproportionate effect on the
distortion in a reconstructed image. Given imperfect compression, Section 4.3.2 and Sec-
tion 4.3.3 cite references which show that JSCC channel coders and decoders that have
knowledge of the source’s statistics, e.g. UEP channel coders and source-cognizant chan-
nel decoders, produce images with lower end-to-end distortion than independent channel
coders and decoders which have no knowledge of the source’s statistics.

The literature has also shown that when the channel FEC coder and decoder are lim-
ited in error correction power due to constraints on complexity and the requirement that
they perform their task quickly, then there is some benefit to backing off on aggressive

compression and intentionally leaving some residual redundancy in an image. Section

11



4.3.4 cites the work by Xu, Hagenauer, and Hollman [155] which shows that error-tolerant
image coding is more beneficial than a separated system of aggressive compression and
aggressive FEC in terms of lowering the end-to-end image distortion when the channel is
very noisy and the error correction power is constrained.

Given error-tolerant image compression, then we claim that packets with corrupt bits
should not be thrown away. Current networks discard packets which have failed an error
detection check, either at the data-link layer of a wireless link, or at the receiver endpoint
of a connection. Discarding corrupt packets is done on the presumption that the payload
data has been aggressively compressed and is therefore not useful at the receiver. How-
ever, we have just shown that there is some benefit to error-tolerant image compression in
constrained-complexity constrained-delay systems. Given error-resilierit image coding,
then most of the payload is still useful at the receiver despite heavy channel noise. For
example, a 1% BER applied to an 8bits/pixel grayscale image would invalidate only about
8% of the bits in any packet payload, leaving over 90% of the pixels as still usable.

We implemented a Discrete Cosine Transform (DCT) compression scheme which
demonstrates the usefulness of error-tolerant compression and error-tolerant decoding of
corrupt image data at high BER’s. The DCT compression scheme was able to compress the
data from 8 bits/pixel (bpp) grayscale down to 0.75 bpp, a compression ratio of about
10:1. We were able to demonstrate that this error-tolerant encoding scheme could tolerate
BER’s of 102 without error concealment, and 3x102 with error concealment. Our conclu-
sion was that lossy quantization can achieve a reasonable compression ratio and still be
error-resilient. Lossless statistical compression increases the error sensitivity and requires
corresponding increases in FEC channel coding, thereby increasing the complexity of the
system. Moreover, the limited strength of FEC in practical systems causes the aggressive
compression/aggressive FEC approach to fail at heavy BER’s, while the error-resilient

image coding is still able to communicate information by the interactive latency bound.
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The end result of these observations is that payloads bearing error-resilient informa-
tion are still useful at the receiver for decoding despite severe BER’s. In addition, in a
JSCC system, UEP on packet payloads will leave some bits lightly error protected, result-
ing in possibly many packets being in error after UEP decoding. Therefore, in a JSCC sys-
tem, it is essential that corrupt information be forwarded to the endpoint application for
decoding. Given error-resilient data, the end-to-end distortion can actually be reduced by
accepting corrupt packet data in comparison to throwing this corrupt data away.

Forwarding and processing of corrupt packet data can also be motivated from the per-
spective of delay, not just end-to-end distortion. An end user willing to tolerate noisy
reconstructed images can receive and display corrupt information far faster than an end
user who will only accept fully reliable delivery of images and therefore must wait for an
error-free version due to retransmissions. The end user in a JSCC system will be able to
interact as soon as possible with a noisy representation of an image over a wide range of
BER’s.

The overall conclusion of Chapter 4 is that error-tolerant image coding, UEP, forward-
ing of corrupt error-resilient information, and application-level decoding of corrupt packet
data together constitute an approach which is more likely to provide continuous interactiv-
ity to the end user over a wide range of BER’s than a system which practices aggressive
compression, aggressive FEC, discards corrupt packets, and insists that an application pro-

cess only error-free data.

1.3  Progressively reliable packet delivery

Our end-to-end protocol is tightly integrated into the JSCC design philosophy in order
to realize the advantages of JSCC in terms of reducing the distortion and perceived latency

of delay-sensitive image data encoded by constrained-complexity systems and delivered
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Figure 1.3 Progressively reliable packet transport delivers an initial possibly noisy ver-
sion of a packet quickly to the receiver. Later, the protocol employs retrans-
missions to progressively improve the reliability of the delivered packet. An
image-based multimedia application can use a progressively reliable protocol
to display a noisy initial image (left) for immediate interactivity. Later, any per-
sistent artifacts on the screen can be removed by displaying progressively
cleaner image data provided by the protocol (right). The 8 bits/pixel color-
mapped image is corrupted at BER 102,

over very noisy wireless channels. Initially, our protocol forwards a possibly noisy first
version of a packet to the receiver. For bursty multimedia, artifacts due to reconstruction of
noisy data may persist on the screen for a very long time, until further user activity over-
writes or redraws that portion of the screen. To remove long-term artifacts, our protocol
delivers successively refined versions of a packet to the application by sending retransmis-
sion redundancy at some later time. Thus, each packet of image data is delivered to the
application in a progressively reliable fashion.

A multimedia application like Web-based image browsing would employ a progres-
sively reliable transport protocol to deliver a noisy initial version of an image for quick
interactivity. The assumption is that the application will code its image data in an error-tol-
erant manner in order to make use of corrupt forwarded data at the receiver. Eventually,
progressively reliable packet delivery will deliver a sufficiently clean version of an image

to remove any persistent artifacts. The overall effect perceived by the end user is shown in

14



Figure 1.3. Essentially, the protocol is trading off the user’s subjective priorities of delay
and distortion. Low-latency high-distortion packet delivery is followed eventually by
high-latency low-distortion delivery. The protocol permits the application to satisfy the
end user’s demand for continuous interaction with a possibly noisy initial image over a
wide range of BER’s. In addition, the protocol allows the application to asymptotically sat-
isfy the end user’s desire for distortionless packet delivery.

In Chapter 5, we identify the following four essential properties of progressively reli-

able packet delivery:

* Corrupt packets are forwarded to the application
* Multiple versions of each packet are delivered

* The reliability of these multiple versions improves over time (statistically fewer errors

with each successive version)

* Different packets are delivered out of order

Each of these properties has an impact on the design of the socket interface between
the multimedia application and the protocol. Applications must frame their data into appli-
cation data units (ADU’s). In addition, the error detection applied on the ADU header
must be distinct from the error detection applied to the ADU payload. In this way, the pro-
tocol can distinguish between packet corruption, i.e. useful ADU’s with noisy payloads
and error-free headers, and packet loss, i.e. useless ADU’s with errors in the header. Fur-
thermore, the property of increasing reliability requires that the receiver have memory so
that it can recall the level of noise in previous versions of ADU’s before delivering a newer
version with fewer errors.

Also in Chapter 5, we discuss three key additional features of progressive reliability
which improve its end-to-end delay performance. The transport latency of the first possi-

bly noisy version of an ADU can be reduced by:
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¢ delaying ADU retransmissions to minimize conflict with time-critical delivery of the

initial version of an ADU
¢ cancelling retransmissions associated with out-of-date ADU’s

* flow-based QOS scheduling of the sender’s traffic by delay and reliability constraints

The first possibly corrupt version of an ADU is classified as delay-sensitive, while the
later retransmissions employed to refine the first version are classified as delay-tolerant.
By choosing when to send retransmission redundancy, it is possible to translate retrans-
missions to a time when there is little or no delay-sensitive traffic. Delay-tolerant retrans-
missions can afford to be shifted around in time with little or no subjective impact.
Therefore, the progressively reliable protocol biases its delivery toward delay-sensitive
initial delivery of ADU’s, and transmits the retransmission redundancy so as not to con-
flict with initial delivery.

Furthermore, bursty multimedia has the property that new images often overwrite old
images. Because our progressively reliable protocol retains data in order to delay ADU
retransmissions, some ADU’s may contain out-of-date image data. Our progressively reli-
able protocol allows the user to apply correlation labels to ADU’s, so that the protocol can
identify when a packet has become stale. This allows the protocol to cancel any further
retransmissions of stale data, freeing up the connection to deliver other packet data.

Finally, flow-based scheduling permits the application to define more than just a single
stream of data. Instead, a multimedia application can generate a hierarchically coded
image, and send different parts of this image progressively along multiple substreams.
Each substream has its own quality-of-service (QOS) requirement in terms of delay and
reliability. The progressively reliable protocol incorporates a scheduler which can distin-
guish between the delay requirements of different substreams, as well as the separate

delay requirements of the initial and final versions of data within the same substream.
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An X windows server was modified to test the validity of these ideas. The X windows
server was modified to implement a progressively reliable encoder/decoder and a random
bit error channel model. The effect seen on the screen was similar to Figure 1.3, in which
any portion of the screen was drawn in an initially noisy fashion, followed eventually by
cleanup of artifacts. The X windows server provided a real-time platform to test our ideas
concerning the viability of progressive reliability as a concept. We found that we could tol-
erate the presence of channel distortion in the initial version and still conduct interactive
image browsing. Through experimentation, we discovered that the responsiveness of the
system could be improved by delaying retransmissions and cancelling stale retransmission
data. We constructed a dynamic software tool called a “performance manager” which
allowed the user to dynamically adjust the various bit rates, BER, and delay parameters
within the modified X server during run-time.

As part of our work on the X windows server, we also implemented a progressive col-
ormap source coding algorithm. This permitted some experimentation with the relation-
ship between progressive source coding and progressively reliable packet delivery, i.e.
progressive channel coding. The initial version was allowed to suffer not only channel dis-
tortion due to bit errors, but was also encoded in a way that introduced source coding dis-
tortion. For example, a typical sequence of events would be that the initial version would
not only be noisy, but would also be drawn as a black and white version of a color image.
The followup redundancy would overwrite the noisy b/w version with a clean color image.
We found that the overall effect was tolerable for natural images as long as the luminance
magnitude, i.e. the brightness level of the image, was preserved between the original and
final versions. More sophisticated versions of progressive source coding were not

attempted in this thesis. .
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We also experimented with video within our modified X server. The cancellation func-
tion proved especially useful and demonstrated how continuous media could exploit a pro-
gressively reliable protocol.

In Chapter 6, we discuss end-to-end implementation issues regarding a progressively
reliable transport protocol. Because such a protocol initially forwards corrupt information,
and later cleans these errors up, we call our proposed progressively transport protocol
“Leaky ARQ”. We observe that Leaky ARQ can be implemented as a form of memory
ARQ, also called packet combining, of which Type-II Hybrid ARQ is the most well-known
example. While implementing Leaky ARQ as a true transport protocol will optimize the
protocol’s performance, migrating a new layer 4 protocol in the Internet faces some practi-
cal challenges. As an alternative, we describe how Leaky ARQ could be implemented
within the context of the Internet on top of UDP, though certain modifications to UDP
would be required. Finally, we consider the impact of fragmentation, non-sliding win-

dows, and acknowledgments on the design of Leaky ARQ.
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2

Latency Bounds For Reliable
Network Protocols

In this chapter, we investigate the latency performance of end-to-end network proto-
cols which reliably deliver visual multimedia over connections that include a wireless
access link. Multimedia applications, such as Web-based image browsing, often require
rapid delivery of individual images in order to convey a genuine sense of interactivity to
the application’s user. Our goal is to quantify the time necessary to reliably deliver a finite
burst of packets corresponding to a single image over a noisy connection. In general, net-
work connections consist of a sequence of concatenated communication links, each char-
acterized by its own distinctive behavior. We consider the special case in which one of
these links is a wireless access link.

Network protocols that provide end-to-end reliability, i.e. reliability over a multi-hop
connection, are also known as Automatic-Repeat-Request (ARQ) protocols. ARQ proto-
cols implement a closed-loop retransmission scheme that guarantees reliable delivery of
packets (within error-detection limits).

In this chapter, we quantify the cost in latency associated with fully reliable packet
delivery. First, we consider the latency cost for reliable delivery of a single packet. Later,
we investigate the latency cost for reliable delivery of a burst of packets corresponding to a
packetized image. Two estimates of the image transfer latency are derived: a “loose” lower
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Figure 2.1 End-to-end fully reliable delivery over multiple concatenated net-
work links (some wired, some wireless) via closed-loop retrans-
mission-based ARQ protocols.

bound and a “tight” lower bound. Both bounds are based on the idealized Selective-Repeat
(SRP) retransmission protocol, the most efficient ARQ protocol. These lower bounds on
delay show that the minimum time to reliably deliver an image over a high bit error rate
channel can be so large that real-time delivery is largely precluded. The ARQ analysis of
this chapter serves as the basis for analyzing the hybrid FEC/ARQ protocol of a later

chapter.

2.1 Introduction to ARQ protocols

Retransmission-based ARQ protocols ensure fully reliable delivery of individual
images over connections which include a noisy wireless channel. Each of these closed-
loop techniques sends and resends packets until they have been correctly acknowledged by
the receiver. Figure 2.1 illustrates a sender transmitting packets and their repetitions in the
forward direction across a multi-hop connection that includes a wireless link. In the
reverse direction, the receiver sends the acknowledgments that correspond to the transmit-
ter’s packets. Some well-known examples of ARQ protocols include Stop-and-Wait (SW),
Go-Back-N (GBN), Selective Repeat (SRP) [129], and the Internet’s reliable Transmis-
sion Control Protocol (TCP) [25], each of which will be discussed later in this chapter.

20
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In ARQ, after a packet is transmitted to the receiver, the sender waits for an acknowl-
edgment for that packet from the receiver. If the receiver sends back a positive acknowl-
edgment that the packet has been correctly received, then the protocol proceeds onwards
to send a new packet waiting in the sender’s queue. If the receiver sends back a negative
acknowledgment (NACK) that the packet was corrupted, or if the sender times out waiting
for any acknowledgment, then the sender retransmits the original packet. This describes a
simple Stop-and-Wait (SW) protocol.

Windowed protocols like GBN and SRP improve upon the SW protocol by permitting
multiple packets (i.e. the sender’s window size W 2 1) to propagate toward the receiver.
Rather than wait the full roundtrip time until a single packet is acknowledged before send-
ing the next packet, SRP tries to keep the transmission pipe full by continuously transmit-
ting multiple distinct packets.

SRP’s response to the loss of a packet is to retransmit only the lost packet. For other
windowed protocols like GBN and TCP, loss of a given packet can trigger retransmissions
of packets besides the lost packet. For example, in GBN, a packet loss causes the protocol
to go back in the packet sequence to the lost packet, and start retransmitting sequentially
from the position of the lost packet. Some packets may wind up being retransmitted multi-
ple times even though they have already been correctly delivered to the receiver. These
unnecessary retransmissions lead to inefficient management of the connection’s band-
width. In contrast, the number of unnecessary retransmissions in SRP is zero, just as for
SW. Unlike SW, SRP permits a window size W 2 1. The combination of windowed per-
formance and zero unnecessary retransmissions make SRP the most efficient ARQ proto-
col possible. Moreover, the number of retransmissions in SRP for a given packet is
independent of the behavior of all other packets. This leads to a simplified analysis of the

expected or average number of retransmissions per packet.
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A special form of SRP called /deal SRP assumes transmitter buffers and receiver buff-
ers have infinite length. Ideal SRP also assumes that the sender’s window size is larger
than a single packet’s roundtrip time (more precisely, its equivalent measured in number of
fixed-length packets). This assumption allows the downstream pipe to be continuously
filled or saturated with multiple distinct packets.

How do we quantify the latency cost of a particular retransmission protocol over a
multi-hop connection that includes a noisy wireless link? Our approach is to view the
wireless link as the limiting factor in the connection both in terms of noise and bandwidth.
Hence, we confine our protocol analysis to this single link. This formulation of the prob-
lem permits two interpretations. First, our analysis could be interpreted to apply to a link-
layer ARQ protocol operating over a single wireless link. Alternatively, our analysis could
be interpreted as a lower bound on performance of an end-to-end protocol, in which only
the impact of the wireless link is studied, while the contributions to latency caused by the
other wired links have been abstracted out of the problem.

Our strategy is to develop a lower bound on the image transfer latency that applies
over all protocols, rather than investigate each protocol individually. From our previous
discussion, we observed that SRP is the most efficient protocol among all possible repeti-
tion-based non-hybrid ARQ protocols like GBN and SW [78]. Optimal efficiency trans-
lates into minimal delivery time. Therefore, by basing our latency analysis of reliable
protocols on ideal SRP, we will have determined a lower bound on latency over all proto-
cols. Any other protocol will incur a higher cost in delivery time. Ideal SRP has the addi-
tional property that it is mathematically tractable. We will apply this bounding strategy to
both our single-packet and multi-packet analyses of ARQ protocols.
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Figure 2.2 A typical retransmission protocol Is shown. Each (re)transmission of a
packet takes time PTT+RTT, where PTT=packet transmission time due to
the packet’s length, and RT7=roundtrip time that the sender has to wait
after sending the packet before an acknowledgment could arrive. In gen-
eral, multiple packets may propagate simultaneously toward the receiver.

2.2 Quantifying the single-packet latency of ideal SRP

In this section, we quantify the average latency experienced by a single packet reliably
delivered by an ideal SRP ARQ protocol over a noisy channel. A typical retransmission-
based ARQ protocol is shown in Figure 2.2. Let a packet consist of a block of K bits.
Assuming independent Bernoulli trials and a fixed Bit Error Rate (BER), the probability of
a K-bit error-free packet is P, = (1- BER)" . If we define a random variable Ny, = #
trials until the first good block is delivered, then Npacke: has a geometric distribution, i.e.
PIN pocrer= i1 = (1-P,)~1-P, , for i positive integers. The expectation of a geometric
Npacker is well known, so that the average # of trials until the first good packet is received
is given by

o1
P, = (1-BER)X

E [N packet] = (2—1)

For ideal SRP, the number of retransmissions for each packet can be considered to be
independent of all other packets. A conservative estimate of the average delay experienced
23



by a single fixed-length packet is simply the product of the average number of transmis-
sions E[Npgcie,] and the time required per packet. This conservative estimate ignores con-
tention at the sender among different packets, which will delay each packet beyond our
conservative estimate. However, as we shall see in the next section, this contention among
different packets is automatically taken into account during our analysis of the delay of a
group of packets corresponding to an image.

We can now obtain the average delay per packet. Define PTT as the fixed packet trans-
mission time due to the packet’s size. Let RTT be the additional roundtrip time that the
sender has to wait after each packet is sent until its acknowledgment returns to the sender
(stating whether or not the packet has been correctly received). In general, RTT is a sto-
chastic quantity consisting of at least the forward and reverse direction network queueing
delays along the multi-hop connection, the protocol processing and operating system
delays at the connection endpoints [22], and the reverse and forward direction propagation
delays. Also, even though a sender may be ready to retransmit a packet, congestion at the
sender due to a large number of packets awaiting transmission will add stochastic queuing
delay to RTT. It can be easily verified that the typical range of RTT across a multi-hop
Internet connection varies from tens of milliseconds to many hundreds of milliseconds.
Let us assume that RTT is fixed, so we can focus our analysis on the retransmission policy.
PTT and RTT are pictured in Figure 2.2.

Define T),4.4,, as the time between the commencement of packet transmissions and the
reception of the packet’s positive acknowledgment from the receiver. Our conservative

estimate of the average delay per packet is given by

E [Tpacker] = E[N packer] "(PTT +RTT) (2-2)

In order to gain some intuition about the effects of bandwidth, probability of bit error,

and header overhead on the single-packet latency E[Tpgcke), we temporarily make some
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simplifying assumptions. First, let us for the time being assume RTT=0. This means that
our estimate of the single-packet latency (PTT) will be a lower bound, since it will not
incorporate many sources of delay arising from RTT. We will return to the impact of RTT
on latency in Section 2.4, where we evaluate a tight lower bound on the latency of a pack-
etized image for several real-world values of RTT.

Also, let us choose the bandwidth and probability of bit error BER to represent the
weakest links in the connection, with the wireless link being the most likely limiting factor
in both instances. If we define BW = wireless bit rate, H = # header overhead bits/packet,
and P = # payload bits in the packet, then we can approximate the average delay until

delivery of the first error-free packet as

1 P+H

E[Tpackel] ZE[Npacket] PIT = (l _BER)(P+H) BW

(2-3)

Equation (2-3) summarizes the impact of bandwidth, bit error rate, and header over-
head on the single-packet latency of ideal SRP. It also represents a lower bound on the
expected delay.

Table 1. Minimum average delay estimates (RT7=0, ideal SRP) from
Egua’t’ion (2-3) for a single packet as a function of packet payload
size

Payload size(bits) 10 100 500 1000
—_— e —————————

lower bound estimate of 0.665 ms 2.99 ms 0.499 sec 139 sec
E [Tpacket]

In Table 1, we illustrate a sampling of the mean delays E[Tpacke] given by Equation
(2-3) as a function of payload size P, assuming a raw BER of 102 (a typical design point
of digital cellular systems [28][149]), header size H = 100 bits (TCP has at least 20 bytes
of header when uncompressed, UDP has 8 bytes of header), and wireless BW = 500 kbit/s
(on the high end of current wireless bit rates [94]). The results indicate that large packets

that are longer than several hundred bits experience prohibitively large non-real-time
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delay. Since the BER is 102, then on average large packets on the order of several hundred
bits will contain multiple bit errors, forcing many retransmissions and thereby increasing
the delivery time. Also, the single-packet delay rises exponentially as a function of the
payload size P. This exponential behavior suggests that a large image, on the order of
many tens of thousands of bits, should be packetized into many small packets instead of a
few large packets over a noisy wireless link. In the next section, we will examine in more
detail how this exponential behavior influences multi-packet image delivery.

While our protocol analysis has focused on latency performance, previous work on
ideal SRP has focused on characterizing SRP’s throughput performance (also called effi-
ciency or utilization). The throughput 1 is defined as the percentage of time spent trans-
mitting new packets [78](145]. High throughput implies that less time is spent on
retransmissions (E[Np,,] is small) and/or waiting for an acknowledgment or time-out,
and proportionately more time is spent on transmitting packets correctly the first time.
Conversely, if the expected number of transmissions per packet ElNpgacked) is large, then

the throughput will be low. Clearly, , where the precise relation depends

nes E—Um
on the protocol. Therefore, the single packet delay is closely related to the throughput
through E[N 4 1,,]. In fact, our estimate of the delay has leveraged off of previous through-
put derivations in order to obtain E[Np,4,,]. We will have more to say in the next section
about the relationship between throughput and our loose estimate of multi-packet image
latency.

Finally, single packet latency analyses of SW and GBN have been performed in
[116][134]. Single packet latency analyses of SRP have been performed in [78][145].
Other authors have undertaken a queueing analysis of the average wait time for a single
packet in SRP [72][117]. Our derivation of Equation (2-3) has been designed to emphasize
the intuitive dependence of latency upon BER, BW and overhead H, which will aid in

understanding the multi-packet SRP analyses of the next two sections.
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2.3 Aloose lower bound on the image transfer latency of ideal
SRP

In this section, we extend our single-packet latency analysis of ideal SRP to consider a
long image block that may need to be fragmented into multiple smaller packets for deliv-
ery by the network protocol. We develop a “loose” lower bound that estimates the image
transfer latency. The loose bound provides insight into the contributions to delay from the
bandwidth, BER, and header overhead factors. We show how our loose bound is related to
the throughput. The loose bound is also used to determine a closed-form solution that
specifies the optimal way to fragment an image so that delay is minimized.

For an image fragmented into multiple packets, the average delivery time for the
image is not simply the sum of the individual packet delivery times, due to overlapping
packet deliveries. Suppose T; is defined as the interval between the start of packet P;’s
transmissions and final reception of an acknowledgment of error-free delivery for that
packet. Ideal SRP fills any given packet’s RTT interval with the transmissions and repeti-
tions of other packets, in an effort to keep the downstream pipe completely filled. There-
fore, an estimate for the expected delay of a multi-packet burst which sums E[T;] over the
individual packets will overestimate the delay, since many overlapping times would be
counted multiple times. This overlapping is illustrated in Figure 2.3, in which packet P;’s
retransmissions overlap with packet P,’s repetitions.

Figure 2.3 suggests several ways to estimate the delivery time for a packet burst that
avoids overlapping summations. A fairly conservative estimate would simply sum the total
number of packet transmission times PTT. By counting the number of PTT slots occupied
during the transmission of a group of packets corresponding to an image, we obtain a
loose lower bound estimate of the average image transfer delay. Note that such an estimate

automatically incorporates the delay due to contention for bandwidth among different
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Figure 2.3 Retransmissions of different packets overiap In time. Define 7; as the time
between first transmission and final acimowledgment of packet P, The
expected delay E[packet burst] of packets P, through P, Is not the sum of
each packets’ E[ T}, since such an estimate would recount the same Intervals
due to overlapping T, PTT = (fixed-length) packet transmission time. RTT =

(fixed-length) roundtrip time after packet Is sent until its acknowledgment
retumns.

packets at the sender. Since packets are interleaved, and ideal SRP tries to keep the trans-
mission pipe filled with new transmissions and retransmissions, then the PTT time slots by
which a given packet is delayed due to contention are occupied by transmission of other
packets. The contention-based delay for each packet is automatically included by counting
the number of occupied PTT slots for the entire image burst.

Our loose lower bound estimate ignores the interstitial space (e.g. between the second
transmission of P, and the third transmission of P, in the figure) caused by the protocol’s
inability to keep the transmission pipe filled when the amount of data left to transmit is
less than RTT. In the next section, we will pursue analysis of a tighter delay estimate that
accounts for the interstitial space or idle time.

Continuing with our loose estimate of the average image delay, we define Timage 8s the

time to transmit a packetized image burst, including fragment-based retransmissions. Let
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F be the number of fragments that an image is divided into. Define E[Nfragment] as the
expected number of retransmissions for each fixed-length fragment.

The loose lower bound on delay is obtained by counting the amount of “air time”
when packets are actually transmitting over the channel. This is equivalent to counting the
number of packet transmissions PTT that occur, i.e. the time occupied by the shaded pack-
ets in Figure 2.3. Each fragment will be repeated on average E[Ngragmeny) times. Therefore,

E[N fragmen] - PTT is a conservative and non-overlapping estimate of the reliable per-
packet delivery time. The non-overlapping characteristic means that the per-packet deliv-
ery times can be summed across the F packets. In contrast, the overlapping estimate of
per-packet delay E[N,,. ., ] ' (PTT + RTT) from Equation (2-2) would have precluded
summation of the individual delays. Since all F packet fragments are assumed to be the
same length, then E[Np;omen ] is the same across all packets, then the loose estimate of the
average image delay is given by the product of the number of fragments per image, the
average number of retransmissions per fragment, and P77, i.e. F-E[N fragment] " PTT .

If we fragment the original image size / by a factor F, where H = number of header bits
then each packetized fragment will be size (//F + H) bits. Then Equation (2-1) is revised
into

1

E [N fragment] = (2-4)
S+H
(1 -BER)(F )
The loose estimate of the average reliable image delay is therefore given by
E [Timage] 2F-E[N fragmenl] ‘PTT fragment (2-5)
_ F FrE 1 I+F-H
1 BW 1 BW
(1- BER)("' ) (1- BER)( )
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Equation (2-5) neatly summarizes the various contributions to delay. It can be parti-
tioned into a BER factor (1 - BER)-G’ +4) and a BW factor %’ to emphasize the
independent contributions to delay from the channel noise and the limited channel band-
width respectively. The header overhead is shown to affect both factors.

This loose estimate is a lower bound on latency in two ways. First, it ignores the inter-
stitial spaces shown in Figure 2.3 caused by the inability of a finite image burst to keep the
protocol’s transmission pipe completely filled. The interstitial spaces appear near the tail
end of the image burst, causing partially empty transmission pipes. Second, it is a lower

bound over all protocols, because we have assumed ideal SRP, which minimizes the num-

ber of unnecessary retransmissions, and hence minimizes average transmission time of a

packet.
Table 2. Minimum average delay estimates for fragmented ideal SRP delivep[
of a 20 kbit image as a function of the image fragmentation factor F.
Fragmentation
factor F 10 20 50 100 1000 10000
non-header pay-
load size of packet 2000 1000 400 200 20 2
(bits)
“BER factor” 1E9 6EA4 152 204 334 2.79
“BW factor” 0.042 0.04 0.05 0.06 0.24 2.04
lower bound esti- 2.78E3
mate of ElT gge] 6E7 sec sec 7.61sec | 1.22sec | 0.802sec | 5.69 sec

In Table 2, we calculate a sampling of Equation (2-5) ’s lower bound on E[Tmagel fora
fragmented image as a function of the fragmentation factor F. The parameters BER, H, and
BW have the same values as before, and we assume an image size J = 20000 bits (say a
200x200 pixel small color image compressed to 0.5 bits/pixel).

Table 2 shows that the delay decreases exponentially as F increases, reaching a mini-

mum-delay value F,,, for the fragmentation factor (on the order of F=1000), before rising

30

“

U

1]

(e



Average image
transfer delay (sec)

1e+og
16407

Delay is dominated by noise

Delay is dominated
by header overhead

l

AllI.IIIlIIIIlIllILI

(<]
0 T T T T T 1T TrTrrrrrrrrT

3
2l

3 Te+02 3 Te+03 3
Fragmentation factor F

Figure 2.4 Log-log plot of average delay of the Image E[Timagel vs. Image fragmenta-
tion factor F using Equation (2-5) . Image size = 20 kbits, BER = 102, BW
= 500 kbit/s, and header H = 100 bits. A minimum delay of about half a
second emerges around a fragmentation factor of ~300.

again for large F. We plot Equation (2-5) as a function of the image fragmentation factor F
in Figure 2.4. The behavior of Figure 2.4 is governed by the two dominant factors due to
BW and BER. The BER factor declines exponentially as a function of F, while the BW fac-
tor increases only linearly with F. Hence, for very small F (large packets), delay is astro-
nomical due to the BER factor (many retransmissions). However, as F increases (smaller
packets), the retransmission delay due to the BER recedes exponentially, so that smaller
packets help to decrease image transfer latency. As F becomes very large (in the extreme,
1 bit payloads!), the BW factor causes the latency to rise again, due to the overhead caused
by the header H in comparison to the ultra-small payloads.

For the sake of completeness, we next derive a closed-form solution for the minimum-
delay fragmentation value. First, we take the derivative of Equation (2-5) with respect to
F. This results in a quadratic in F which can then be set equal to
zero, ;F(Equationu -5)) = 0. Our optimal F is given by
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Fop = g'm(l_BER).(—I-JI_H‘M(f-BER)) (2-6)

where we have eliminated the second root. F,,,, is shown to be a function of the image
size I, BER, and header overhead H.
Substituting default values, we obtain F,,, = 324. This value can be verified by con-

sulting Figure 2.4, which yields a graphical minimum near F=300. At this value Fopp our
optimal packet size (payload + header) is about 162 bits. The minimal-delay payload is
somewhat surprisingly smaller than the header overhead. This is because the protocol
needs to generate very small packets in order to avoid the exponential delay contributed by
the channel noise, even at the cost of suffering significant header overhead.

The minimum delay at F,, is ~0.53 seconds. If we estimate our real-time delivery
bound to be about 500 msec, then we are just barely meeting our objective. If we assume a
more realistic bound of 100 msec is needed to support “instantaneous” interactivity, then
ideal SRP will fail to meet the interactive delay objective by almost half a second even
under the most optimistic assumptions.

Previous work that derived the optimal packet length has been based on taking the
derivative of a throughput equation with respect to packet length in order to maximize
throughput (for SW [129] and GBN [116]). The maximal-throughput packet length is
found to be primarily a function of BER and header overhead H, though this depends on
the protocol. This is confirmed by our SRP analysis, in which the optimum payload size
1%,,, is found to be only a function of BER and H. Another time-based derivation of opti-
mal packet length minimizes the expected “wasted time” but does not consider header
overhead [89].

Finally, we relate Equation (2-5) to previous work on ideal SRP that has focused on

characterizing the protocol’s throughput performance Nisgp  defined as

_PTT
Nsrp = BT ]

j [78][145). Throughput analyses observe that any given packet’s
packet
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roundtrip time R7T is filled with the transmissions and repetitions of other packets. There-
fore, E[Tpycxe] should only count the actual “air time” necessary to transmit and retrans-

mit a given packet, ie. E[T pscter] = E[N]-PTT. Hence, Ngpp is given by

Moo = PTT
SRP = E[N]-PTT

Nsgp - BW . A simple estimate for the delay of an image / obtained from the throughput

would be —L _ =L.. L op LIFE G ie essentially Equation (2-5)

minus the overhead. Thus, we see that our time-based derivation is closely related to

=P,. The effective channel bit rate available to the sender is

throughput expressions. Our delay-based approach explicitly shows the dependence of
latency on BW, BER, and H. In addition, our time-based reasoning reveals that Equation
(2-5) (and the equivalent throughput-derived delay) underestimates the delay, foreshadow-
ing our analysis of the next section. Reliance on previous throughput-based derivations

would have missed the effect of a partially empty pipe for finite image bursts.

2.4 A tight lower bound on the image transfer latency of ideal
SRP

We develop in this section a more complete estimate of a protocol’s delivery time for a
finite image burst that also incorporates a measure of the idle time caused by a partially
empty transmission pipe. In Figure 2.5, we depict how a large burst of packets correspond-
ing to an image can initially keep the pipe full, under certain assumptions. However, the
tail end of the burst eventually causes interstitial spaces to appear in the delivery stream.
This tail effect occurs regardless of the burst size, and is a function of the roundtrip time
RTT. Our goal is to quantify the contribution of this tail effect to the overall latency.

Define RTT as the roundtrip time after a packet transmission until its acknowledgment
returns, and PTT as the fixed-length packet transmission time. We assume R7T is a con-

stant value in the upcoming derivation. Define the total roundtrip time TRTT as
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Figure 2.5 A finite burst of packets cannot keep the protocol’s transmission pipe com-
pletely full. Assume that the window size W (# packets allowed In the pipe)
and Image burst of length / packets are large enough to Initially keep the
protocol’s plpe full, Le. W2PTT +RTT and I>PTT +RTT , where PTT
and RTT are measured In packet units. Eventually, the final PTT+RTT pack-
ets will be delivered through a partially empty pipe. In the figure, 4, W3,
PTT=1, and RTT=2 equivalent packet lengths. All packets except Py are
delivered correctly the first time. The significance of tpartition @nd ty Is
explained later in this section.

TRTT = PTT +RTT . Define the sender’s window size W as the number of packets that
are allowed to be simultaneously propagating toward the receiver in the transmission pipe.
We optimistically assume that the fixed window size is large enough so that the protocol
can completely fill any roundtrip time with multiple packets. Hence, W needs to exceed

the number of packets that could fit into TRTT, i.e. W > l%_’ .

Furthermore, we assume that only one version of each packet is in the pipe in any
given total roundtrip interval. For example, two retransmissions of a given packet are not
allowed simultaneously in the pipe. Certain ARQ protocols do indeed fill the pipe with
multiple copies of a given packet [13][62][133]. We do not consider such protocols, and
instead note that ideal SRP satisfies our restriction that only one version of each packet

may be allowed in the transmission pipe.
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Each of these packets is formed by fragmenting an image into F packets, where each
packet is of length }’-, +H , counting header overhead H. Given ideal SRP with sufficiently
large windows, then two scenarios are possible. Either the image size / is large enough to
allow ideal SRP to initially fill the transmission pipe, or the image is too small to ever fill
the pipe. In the first scenario, there are enough distinct packets from the fragmented image

to fill the transmission pipe during the first TRTT. This condition can be written as

PTT +RTT

FPTT <1 . Let us define o as the ratio of the total

F-PTT 2TRTT , or equivalently
roundtrip time to image burst size:

_ PTT +RTT

= =F.PTT 2-7)

2.4.1 Image burst is large enough to initially fill the transmis-
sion pipe

We begin by analyzing the case in which o < 1, namely the image is large enough to
initially fill the pipe during one complete roundtrip time 7RTT. For example, Figure 2.5
portrays a situation in which a < 1. The packetized image burst (4 packets long) is larger
than TRTT (equivalent to 3 packets). The packetized image is able to initially fill the pipe,
but only until one of the four packets is correctly received. At that point, the final TRTT (3)
packets would be unable to keep the pipe filled.

As the example suggests, one approach to obtaining a tighter latency bound would be
to try to partition our analysis into two non-overlapping estimates: calculate the delay
accumulated while there is enough image data to keep the pipe full/saturated; then esti-
mate the delivery time of the final “tail” packets through a non-saturated pipe. Without
loss of generality, we can set the window size to W = l_%@l J , which is the mini-
mal window size that still permits a full pipe, provided there is a sufficient amount of

source data.
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24.1.1  Delay due to the first ~W packets that keep the pipe full

We observe that the final W packets will be unable to keep the pipe full. Since the
image is fragmented into F packets, then F-W packets are transmitted under saturated pipe
conditions. These F-W packets are also the first to be correctly delivered. Each of the first
F-W correctly received packets will be retransmitted on average E[N] times, where E[N] is
given by Equation (2-4) . Since the pipe is full, then the expected time per packet is
E[N]-PTT, and the total delay for the F-W packets is given by (F - W)-E[N]-PTT .
This expression matches the conservative PTT-only estimate of the previous section (see

Equation (2-5) ) for the first F-W packets.

24.1.2 Delay due to the last W packets over a partially empty pipe

As the packetized image flows through the pipe, eventually the first moment in time
will arrive when precisely W packets are remaining in the sender’s queue and only one of
these packets still awaits its first transmission. We shall label this time f. We contend
that there exists a critical instant !pansition Telated to fiy that can serve as the partitioning
point which cleanly separates analyses of saturated and non-saturated pipes. First, we
observe that some of the W packets remaining in the tail may already have a history of sev-
eral transmissions by . For example, in Figure 2.5, # represents the first time that pre-
cisely W=3 packets are left in the sender’s queue and one packet (Pg) has yet to start
transmitting. At this instant, packet P; has already been transmitted twice, and Pj3 has been
transmitted once. This history of unsuccessful transmissions could complicate the analysis
if there was memory (in the probabilistic sense) in the ARQ process, so that the probabil-
ity of successful transmission varied depending upon a packet’s repetition history. Fortu-
nately, for any of the W packets, the number of attempts N; (i=1..W) until the first

successful transmission is governed by a geometric distribution, which is known to be

memoryless [154], i.e. Prob[(N;= (M +J)IN;2J)] = Prob[N;= M]. Therefore, a packet
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P;‘s history of J prior unsuccessful transmissions does not affect its future number M of
unsuccessful retransmissions until the first successful attempt. Moreover, the memoryless
property identifies this future distribution as still being geometric.

Based on the memoryless argument, our approach to analyzing the packet tail is to
ignore previous unsuccessful attempts and start our analysis as if W packets had just
arrived in the sender’s queue at time 7,,,;,;,,,. We still need to relate Ypartition 1O ty Figure
2.5 shows that if we backtrack in time from # by one roundtrip time R77, then ;he final
group of W packets can be viewed as initiating their transmissions at
tpartition = tw— RTT. The memoryless property permits us to ignore any unsuccessful
attempts prior t0 .40, SO that the final W packets appear from a probabilistic perspec-
tive as if they’re starting transmissions for the first time.

In the final group of W delivered packets, there will always be one “last” packet which
is the final one to be correctly delivered. Let N, be defined as the number of transmis-
sions experienced by this last packet. First, we would like to determine its distribution
Prob[N,,,= M]. From the distribution, we can find the average number of transmissions
E[N 45, which is useful for deriving the delivery time of the entire burst of W packets.

If N; (i=1..W) represent the number of repetitions for each of the independent and iden-
tically distributed W packets, then N, ., = max(N,, N,, ..., N;;). Most basic probability
texts show how to obtain the distribution of N, from the distributions of N;. We mention
the salient steps here. The generic geometric random variable N is used to represent the

ii.d. geometric N;. First, we find the cumulative distribution function for Niygse:
Prob[N,,,,SM] = Prob[N,<M, ..., Ny, <M] = {Prob[N s M]}¥ (2-8)

Next, we obtain the probability distribution of Ny, from the c.d f.:
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Prob[N,,,= M] = Prob[N,,,,<M] - Prob[N,,,, <M -1]

(2-9)
= [Prob[N <M1 - [Prob[N <M - 1]}

Let P, represent the probability of an error-free (I/F + H)-bit packet, defined by

P, = (1-BER)""*¥ . The c.df. of Nis given by
M .
Prob[N <M] = E (1-P,)~ ! ‘P, (2-10)

im]

Finally, the expected value of Ny, can be found from Equation (2-9) and Equation (2-
10) :

E[N;p5] = Z M - Prob[N,,,, = M) (2-11)
M=l
The expected time required to transmit the last packet is simply the product of the
expected number of repetitions and the total roundtrip delay TRTT per repetition, i.e.
E[N,.5]) - (PTT + RTT). This expression also represents the delivery time for the entire
set of W packets, because the last packet by definition is delayed the longest and therefore
spans the delivery periods of each of the other W-1 packets.

Note that by using the concept of a “last” packet to focus our analysis, we have
avoided the possibly complex task of having to quantify the interstitial spaces that arise in
a partially empty pipe. In addition, we have assumed that the protocol does not try to fill
the interstitial spaces with multiple copies of a packet, as stutter ARQ is designed to do
[13][62][128][133]. To support multi-copy retransmission, ideal SRP would have to be
modified to recognize when a pipe is about to become idle, and would then have to initiate
a specific stuttering strategy. This would likely increase E[N,,,], but would also manage to

reduce the latency, because the additional repetitions actually improve the speed of deliv-
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ery over a partially empty pipe in a single-user environment. We do not pursue this possi-

bility further.

2.4.1.3 Overall tight bound estimate on image transfer delay

Adding the two contributions to delay from the saturated pipe and the non-saturated
pipe from the precéding two subsections, we obtain the following estimate of the delivery

latency for large images:
E[T o] 2 (F - W) - E[N] - PTT + E[N,,,,) - (PTT + RTT) (as1)  (2-12)

The right hand side of Equation (2-12) is a lower bound on the image delay for several
reasons. First, we have neglected any retransmissions prior to ¢ partition 85SOCiated with the
final W packets, which will contribute to the delay. Second, we assumed that the window
size was large enough to permit a full pipe, which may not happen in practice. Third, we
failed to include in Equation (2-12) how long the “last” packet has to wait in the sender’s
queue after 1,,,..,;,, before it starts its retransmission cycle. Since the “last” packet could
turn out to be the last in the sequence of W packets to begin transmitting after L oaritions
then this packet will have to wait up to (W - 1) PTT seconds (almost one full TRIT)
before its retransmission cycle can start. The term E[N,,,] - (PTT + RTT) only measures
the delay due to the retransmission cycle, and fails to capture this waiting time.

Equation (2-12) is a tighter bound on the image transfer latency than Equation (2-5)
because the effect on delay due to a partially empty pipe is included. Also, the assumption
of ideal SRP makes Equation (2-12) a lower bound over all protocols.

We should note that Equation (2-12) measures the delay between the start of image
transmission and the final return to the sender of the last packet’s acknowledgment. The

perceived delivery time measured from sender to receiver will differ because the final

return trip (actually, there may be several attempts to return the last packet’s acknowledg-
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ment on the reverse channel) of the last acknowledgment is not included in the sender-to-
receiver delivery time. We do not pursue this alternative definition of image transfer

latency.

2.4.2 Image burst is too smalli to ever fill the transmission pipe

When a> 1, then the image size is too small to initially fill the pipe during the first
TRTT. The partially empty pipe suggests again that we apply a “last-packet” latency anal-
ysis. First, let W = lﬂ% J , S0 that the window size W is large enough to permit a
full pipe, even though there is not enough image data. There exists a “last” packet among
the F image fragments which is the final one reliably delivered. Define the number of
transmissions of this last packet as Nig(a»1) = max(Ny,N,, ..., N). Following the same
reasoning as before, the distribution of the number of transmissions N, for o> 1 is given

by
Prob[N a5 1= M] = [Prob[N < M11" - [Prob[N <M -1]] (a>1) (2-13)

Prob[N <M] can be obtained from Equation (2-10) . E[N,,,q> 1] can be obtained
from Equation (2-13) . Thus, the delay for a small image satisfies the following:

E[T inogel 2E[N g0 > 1)) - (PTT + RTT) (a>1) (2-14)

The right hand side of Equation (2-14) is a lower bound for many of the same reasons
that Equation (2-12) was a lower bound. However, Equation (2-14) differs from Equation
(2-12) in two ways: the full-pipe term (F - W) - E[N] - PTT has been eliminated; and the
distribution of N, differs from N, 1y thereby subtly affecting the second term
E[Ny45]) - (PTT + RTT). Together, Equation (2-12) and Equation (2-14) constitute the

“tight” bound on the image transfer latency.
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2.5 A comparison of the tight and loose lower bounds on
latency

How much more accurate is the “tight” bound of Section 2.4 than the “loose” bound of
Equation (2-5) ? To answer this question, we first fix the parameters to their default values:
=20 kbits, wireless BW=500 kb/s, H=100 bits, and BER = 102, For the loose bound, fix-
ing these quantities means that the estimated delay is only a function of the image frag-
mentation factor F, which was graphed in Figure 2.4. In contrast, the delay of the tight
bound is still a two-dimensional function of RTT and F. Our approach is to choose a few
representative values of RTT, and then plot the delay given by the tight bound as a function
of F for each fixed RTT. Such an approach permits the loose bound shown in Figure 2.4 to
be directly compared with the tight bound on the same graph.

2.5.1 Average image transfer latency

Figure 2.6 shows three log-log curves that plot average image transfer latency as a
function of fragmentation F. The latency curve L evaluates the loose bound described by
Equation (2-5) at the default parameters, and is almost identical to Figure 2.4, except that
only values F 250 are displayed.l Two graphs of the tight bound, T; and T, are also
shown corresponding to different values of RTT. T} is obtained by evaluating Equation (2-
12) and Equation (2-14) at RTT=100 ms, while T, corresponds to R77=10 ms. We also
evaluated the tight bound at RTT=1 ms, though these results are not pictured because they
follow the loose bound so closely as to be visually indistinguishable. We chose these val-
ues of RTT to roughly correspond to real-world network conditions. A value of 100 ms for

RTT approximates the end-to-end roundtrip delay experienced by packets across a multi-

1. Small values of F<50 caused numerical convergence problems in the evaluation of the tight bound’s
E[N},4] (see Equation (2-11) ). For comparison purposes, both loose and tight bounds were evaluated
over the same range of F>=50.
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Figure 2.6 Log-log plot of the loose lower bound delay estimate (curve L) and two
tighter bound delay estimates (curves T, (RTT=100ms) and T,
(RTT=10ms)) as functions of the Image fragmentation factor £ The
loose curve L Is obtalned from Equation (2-5) and reproduces Flgure
2.4, but over a slightly smaller range of F. The more accurate delay esti-
mates shown in T, and 7, are obtained from Equation (2-12) and Equa-
tion (2-14) . The loose bound Is shown to conslderably underestimate
the delay when the roundtrip time R7T becomes large relative to the
size of the packetized image (including overhead).

hop Internet connection. A value of 1 ms for RTT approximates the roundtrip time experi-
enced by packets at the data link layer, i.e. across a single wireless link.

Figure 2.6 shows that the difference between the loose lower bound L and the tight
lower bound can become quite large for sufficiently large RTT, For example, a comparison
of T; and L at the loose bound’s minimum delay point (F,p=300) shows that there is a
difference of approximately three seconds between the two estimates when RT7T=100 ms.
For such a large value of R7T, a considerable portion of the image will be delivered over a
partially empty pipe. The loose bound will fail to count the latency introduced by this par-
tially empty condition, and therefore will significantly underestimate the image transfer
time compared to the tight bound.
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Figure 2.7 A log-log plot of the ratio of the tight bound on image transfer delay to
the loose bound on average image transfer delay as a function of image
fragmentation F. The three curves R, R, and Rg correspond to R77=100
ms, 10 ms, and 1 ms respectively. R, shows that for large values of RTT
(relative to the image size), the loose bound underestimates the delay by
at least a factor of two for most reasonable values of F<1000. This figure
Is a normalized representation of Figure 2.6.

2.5.2 Ratio of average image transfer latencies

An alternative and more revealing way of comparing the tight bound to the loose
bound for various values of RTT is to normalize each of the curves with respect to the
loose bound. We form the ratio of the tight bound’s average image transfer delay to the
loose bound’s average image transfer delay at each point F, for fixed RTT. This ratio will
measure the extent to which the tight estimate exceeds the loose estimate. In Figure 2.7,
we plot this ratio as a function of F, and three values of RTT. Curves R;, R;, and R; corre-
spond respectively to R77=100 ms, 10 ms, and 1 ms. Figure 2.7 is directly related to Fig-
ure 2.6 since each point R(F) is obtained by dividing T;(F) by L(F).
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Figure 2.7 summarizes the answer to our original question of how much more accurate

the tight bound is than the loose bound. Curve R; shows that, for relatively large values of

RTT, the loose bound underestimates the latency by at least a factor of two for almost all
meaningful values of F. Consequently, end-to-end protocols with large RTT relative to the
image size would find the tight bound a far more accurate prediction of the minimum cost
in delay than the loose bound. In contrast, R3 shows that, for relatively small values of
RTT, the loose bound does as good a job as the tight bound in estimating the latency for all
values of F, due to the negligible amount of idle time. Therefore, data-link protocols with
a relatively small RTT would find the loose lower bound a useful tool for estimating their

minimum image transfer latency, without having to resort to evaluating the tight bound.

2.5.3 Conditions under which the loose bound is inaccurate

The loose bound is considerably easier to evaluate than the tight bound, since E[N,,]
in Equation (2-11) is difficult to calculate. Therefore, we would like to use the loose
bound as often as possible. However, we also need to know when the loose bound is inac-
curate. Specifically, at what value of RTT causes the loose bound to start to perform
“poorly”? As RTT increases, clearly there will come a point in which a significant portion
of the image is delivered over a partially empty pipe, corresponding to a poor estimate by
the loose bound. For example, for either of the cases RTT=100ms, and RTT=1ms, it 1s
immediately clear from their normalized curves R 1 and R3 respectively that either the
loose bound is a good estimate (R;), or it is a poor estimate (R;), for all values of F. How-
ever, when RTT=10ms, there is some ambiguity. Curve R, shows that the loose bound is
close to the tight bound for some values of F but not for others, i.e. it is not clear whether
RTT=10 ms is “large enough” to start causing the loose bound to perform poorly.

To help us determine when RTT is large enough to affect the accuracy of the loose
bound, we utilize theratio a defined by Equation (2-7) . Recall that o is the ratio of TRTT
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to image size (plus overhead). For values of o 2 1, then the roundtrip time is so large as to
cause the entire image to be delivered over a partially empty pipe. Therefore, for a.> 1 the
loose bound will significantly underestimate the delay. As o gradually decreases below
one, the percentage of the delay caused by the non-saturated pipe gradually decreases, and
the loose bound becomes more and more accurate. Let us define “poor” performance as
any ratio of the tight bound to the loose bound which exceeds a factor of 1.5x to 2x. There-
fore, our goal is to find the approximate value Otpgicq10r for which the tight bound is about
1.5x-2x of the loose bound.

The ratio a. is a function of F and RTT. Table 3 tabulates o for the three values of RTT
represented in Figure 2.7 over a sufficiently comprehensive range of F. For RTT=100ms,

Table 3. Values of the indicator a are shown as a function of
image fragmentation factor Fand roundtrip time RTT.

Image Fragmentation
Factor F

a20.2 for values of F <3000. Over this range of F, the tight bound exceeds the loose

bound by at least a factor of two according to curve R 1. For RTT=10ms, a.20.2 for values

around F < 50. Near this range of F, the tight bound exceeds the loose bound by a factor of

about 1.5 according to curve R;. Thus, in answer to the question concerning when the

loose bound begins to perform poorly, a rough rule of thumb would be that if the total
1

roundtrip time TR7T exceeds about 5 of the raw “image plus overhead” transmission
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time, then there is a high likelihood that the loose lower bound will considerably underes-

timate the minimum latency, possibly by a factor of 2x or higher.

26 Limitations of practical end-to-end ARQ protocols

In this section, we discuss several of the limitations to performance experienced by
practical realizations of end-to-end ARQ protocols. First, real-world protocol implementa-
tions like TCP often cannot approach the throughput of ideal SRP. Second, in practice it
may be difficult to determine the optimal packet fragmentation value. Third, protocol effi-
ciency may be limited by small window sizes that are less than the roundtrip time, or by

finite buffer sizes at the receiver.

Practical end-to-end fully reliable protocols will in general deliver data more slowly -

than ideal SRP. For example, the end-to-end reliable protocol used over the Internet, TCP,
has been shown to have a throughput bounded by the performance of GBN (for the case of
constant retransmission time-outs) [30][33]. Since GBN’s throughput is bounded by SRP
[78], and since throughput is inversely proportional to the expected number of transmis-
sions E[N] [78] and E[Tjp,4], then TCP will incur a higher latency cost than SRP. More-
-over, all of the other real-world implementations of transport protocols besides TCP that
are surveyed in [32] practice either some form of GBN, or some non-ideal form of SRP
(e.g. finite receiver buffers, finite transmit buffers, and limited window sizes [78]). There-
fore, all current real-world implementations of transport protocols ultimately incur a
higher latency cost than the ideal SRP analyzed here.

Next, recall that the optimal fragmentation derived in Equation (2-6) is a function of
both the BER and the image size /. Due to lack of feedback from the channel, the BER may
not be known. Or due to a lack of timeliness in feeding back the BER, Fypy may be an inac-

curate estimate that is not updated with sufficient rapidity. Furthermore, Fopy is also a
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function of the overall image size /. Unless the interface to the protocol specifically allows
the application to define arbitrary boundaries on the stream of packets that is sent to the
reliable protocol, then the underlying reliable stream protocol won’t be able to understand
the notion of an “image” nor of “image size”. For example, TCP’s reliable stream delivery
service views the data that it is transporting as a stream of bytes, and has no sense of the
embedded semantics of the data it is delivering. Hence, there is no means for TCP to
extract image boundaries.

Another limitation occurs if the protocol’s window size is less than the roundtrip time
measured in packet lengths. Under these circumstances, the windowing mechanism is arti-
ficially choking the pipe, thereby forcing interstitial space to appear in every RTT interval.
For example, previous implementations of TCP have had an upper bound on their window
sizes that is too small to keep the pipe full over satellite links that have a high bandwidth-
delay product [109]. Other concerns include finite receiver buffer space, which can cause
buffer overflow and packet loss at the receiver, thereby causing retransmissions and reduc-

ing throughput. A throughput analysis of finite buffer SRP has been performed [79].

2.7 On proposals to improve the performance of wireless TCP

To complete our examination of reliable protocols, we consider some efforts to
improve TCP for wireless links. The considerable latency costs of conventional ARQ pro-
tocols over connections with wireless access links have been documented in previous sec-
tions. TCP suffers from all of these problems and more. Another problem specific to TCP
which lowers its throughput and increases its delivery latency is that, in a wireless environ-
ment, TCP mistakes packet losses caused by bit corruption for packet losses caused by
network congestion. TCP responds to any packet loss by initiating congestion-avoidance

mechanisms like window throttling and “slow start”. However, if the packet losses were

47



caused by bit corruption, then there is no congestion on the link, and TCP is unnecessarily
lowering its throughput and increasing its image transfer latency in response to “phantom”
congestion. Several approaches to fix this problem and improve TCP’s wireless perfor-
mance have been proposed, and are summarized in [5).

Each proposal to improve TCP has its own drawbacks. One approach, called Indirect
TCP, violates end-to-end semantics, and requires intermediate proxies to be running
throughout the wired/wireless network interface to translate between TCP and the local
wireless transport-layer protocol. A second approach, called the “snoop” protocol, also
requires TCP-aware snoop agents to operate throughout the network at the wired/wireless
basestation interface, though in a less visible fashion than Indirect TCP. The snoop proto-
col also relies on the assumption that return acknowledgments will pass through the same
snoop agents. The presence of multiple forward and return data paths underlying a single
TCP connection may result in the snoop agent failing to filter acknowledgments properly,
thereby failing to hide packet losses from the TCP sender, which will react as before in a
congestion-avoidance manner.!

A third approach to improving TCP’s wireless performance relies upon data-link layer
protocols to improve the error performance of the wireless link, thereby helping out end-
to-end protocols like TCP [4]. End-to-end protocols like TCP are responsible for reliably
delivering a packet across multiple concatenated links. A data-link layer protocol only
provides error protection (via forward error correction (FEC) and/or ARQ) ovef a single
link. Conceptually, a link-layer protocol operates underneath the end-to-end protocol in
the protocol stack, possibly for each link in the connection. We will have more to say on
the use of FEC in the next chapter, and on link-layer issues in a later chapter.

For now, we consider several other issues concerning link-layer and end-to-end proto-

col interactions. One reference has pointed out that there can be inefficient coupling

1. This observation is gleaned in part from conversations with Venkat Padmanabhan at Berkeley.
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between TCP and link-level retransmissions [30). In addition, we ask: will wireless data-
link layer protocols be able to handle the heterogeneity of source data in an efficient man-
ner? For example, typically video and audio are delivered using the unreliable User Data-
gram Protocol (UDP) over the Internet because TCP is too slow for these stream-based
media. Other forms of data (e.g. file transfers using the fip application-level protocol,
email using smip, and Web-related transfers using http) are all delivered over the reliable
TCP protocol. If wireless link-layer protocols apply uniform error protection to all of
these different forms of data, then this can result in significant latency penalties and/or
inefficiencies. Uniform FEC will overprotect some forms of data and/or simultaneously
underprotect others. Link-layer ARQ reliability applied uniformly to all data can signifi-
cantly slow down UDP-based video.

Ideally, wireless data-link layer protocols would like to be able to distinguish between
different forms of data, and apply unequal error protection (UEP) to these data types to
improve link-layer protocol efficiency. To what granularity should the data-link layer be
informed about these different types of source data? One approach would be for the link-
layer protocol to simply differentiate between UDP and TCP packets, and thereby provide
a coarse two-tier approximation to UEP. This approach requires the link layer to under-
stand IP header semantics at the minimum, which technically violates Internet layering
principles. For IPv4, the data-link protocol must verify first that IP version 4 is being used,
and then to inspect the PROTOCOL field in the IPv4 header to determine if UDP or TCP is
embedded in the IP payload [25). But for IPv6, determining which upper layer protocol is
being used can be more complicated due to IPv6 header extensions. The IPv6
NEXT_HEADER field can be used to specify either various IPv6 header extensions, or
upper layer protocols like TCP/UDP [109]. In the worst case, multiple header extensions
create a linked list of NEXT HEADER fields that must be searched to its tail before the

correct upper layer protocol can be identified.
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Beyond these difficulties, link-layer protocols that implement protocol-granularity
UEP also fail to realize that not all UDP data should be treated the same. For example, a
variety of video coding techniques transmitted over UDP are possible, including MPEG-2
video, H.261 video, as well as various hierarchically coded/layered multicast video. Each
of these different video coders may generate multiple streams, with each stream requiring
a different degree of FEC. Multiple coded forms of audio may be delivered over UDP,
some of which may require little to no FEC, while others may require heavy FEC. Many
other non-audio and non-video applications may also be transmitting on top of UDP. Pro-
tocol-granularity FEC would apply the same error protection to each of these very differ-
ent forms of data, and suffer the same problems as uniform error protection.

Finer granularity application-specific UEP is somewhat problematic because no stan-
dard mechanism exists for communicating application-level quality-of-service (QOS)
information down through the Internet protocol stack (i.e. through the transport layer and
IP layer) to the data-link protocols. IPv6 “flow” labels [57] partially solve this problem,
but several issues remain unclear. It is unclear what role the transport layer should play in
mapping application-level QOS to IPv6 flows. Also, it is unclear to what extent IPv6 rout-
ers will be able to store per-flow QOS state information. In addition, the mechanisms for
providing the data-link protocol with access to this flow-based IP state information do not
currently exist. We discuss some of these issues in Chapter 7.

In summary, a transport layer protocol’s reliance on link-layer protocols to solve most
of its error problems over a wireless link can result in a variety of inefficiencies. The lack
of a practical mechanism for passing application-level QOS information through the trans-
port layer down to the data-link layer forces the link-level protocol to practice either uni-
form error protection, or protocol-granularity UEP, both of which can be very inefficient.

Finally, even if TCP is modified to incorporate elements of Indirect TCP and/or the

snoop protocol, the resulting increase in speed for TCP over wireless channels will not
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ultimately be sufficient to support strictly real-time delivery for instantaneous interactivity.
TCP’s latency performance will still be lower bounded by that of ideal SRP. We showed
earlier that ideal SRP incurs a latency of about half a second at 102 BER under the loose
bound estimate. Therefore, if our delay budget is 100 ms, i.e. we need to get our image
across the connection in less than 100 ms for interactivity purposes, then TCP as currently
realized with sliding windows and cumulative acknowledgments will be unable to meet
this latency objective.

2.8 Summary and conclusions

In this chapter, we have derived two lower bounds which quantify the minimum
latency required by the most efficient ARQ protocol, ideal SRP, to reliably deliver a frag-
mented image over a noisy BER bandlimited link. Since our derivations characterize the
channel generically through its parameters, then our analysis can be applied both to an
individual wireless link (i.e. data-link layer protocols) as well as to end-to-end connec-
tions which include a wireless access link (i.e. transport protocols).

The loose lower bound is useful for the intuition it provides, and also for its ease of
calculation. We have shown by using the loose lower bound that ideal SRP can take a min-
imum of half a second to deliver a 20 kbit image over a 500 kbit/s channel at 102 BER.

The tight lower bound is more accurate than the loose lower bound because the delay
due to a partially empty transmission pipe is also counted. This also makes the tight lower
bound more difficult to calculate. The tight lower bound should be used in place of the
loose lower bound when the total roundtrip time is a significant fraction (exceeding about

é ) of the time it would take to transmit an image (plus protocol overhead) once at the
channel bit rate. Under these conditions, much of the image is delivered over a partially

empty transmission pipe, which the loose lower bound fails to measure. For end-to-end
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protocols with a RTT of approximately 100 ms or more, the tight lower bound is a better
estimate by at least a factor of about two than the loose lower bound. For link-layer proto-
cols with a RTT on the order of 1 ms, then the loose lower bound will be adequate.

Also, we have listed practical limitations which will increase the image transfer
latency beyond the half second calculated by the loose lower bound. A real-world trans-
port protocol which implements a scheme like GBN will be more inefficient than SRP.
Moreover, non-ideal constraints such as finite receiver/transmit buffers and finite window
sizes will increase the delay beyond the estimated bounds, even if SRP is the protocol of
choice. Finally, our loose lower bound delay curve shows how imperfectly-sized fragmen-
tation can lead to increased latency.

These limitations are all suffered by the current implementation of TCP. In addition,
proposed fixes to TCP for wireless access have their own limitations, some of which we
have outlined here.

In our analysis, we have not addressed the use of multi-copy stutter ARQ techniques
which could be used to lower the latency incurred by reliable delivery of a fragmented
image. In addition, our analysis assumes fixed-length payloads and headers, and does not
account for variable-length packets. Finally, we have not considered in this chapter the
impact on the image transfer latency of adding forward error correction (FEC) to protect
against wireless bit errors. In the next chapter, we quantify the minimum FEC redundancy

needed to adequately protect a fragmented image for a given BER for both open-loop sys-
tems and closed-loop ARQ systems.
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3

Minimum Redundancy Evaluation of
Linear Block Codes

Our primary interest is the design of digital communication systems to deliver interac-
tive visual multimedia rapidly and with sufficient reliability across a noisy wireless chan-
nel. Our primary motivation for studying error protection techniques is to quantify the
increase in delay associated with adding error protection. Extra reliability often requires
the transmission of redundancy information in addition to the original data. This added
redundancy increases the transmission delay. |

In this chapter, we first quantify the minimum amount of redundancy required by open
loop error protection techniques to adequately protect a fragmented image from the trans-
mission errors introduced by a noisy channel. Open loop error protection, also called For-
ward Error Correction (FEC), lacks the feedback channel used by ARQ protocols to
guarantee end-to-end reliability. The scope of our work is confined to FEC via linear block
codes.

We derive an inequality which shows the minimum amount of error correction redun-
dancy that is required by linear block codes in order to keep the loss rates of transmitted
images acceptably low. We develop an algorithm based on this inequality that systemati-
cally determines the minimum code length for a wide range of input block sizes. Varia-
tions of this algorithm are applied to each of the following classes of codes: optimal
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(maximum code distance) binary linear block codes; binary cyclic codes; binary BCH
codes; and Reed-Solomon (RS) codes. For binary BCH linear block codes, we deduce that
the amount of FEC redundancy needed to adequately protect an image can triple the band-
width for moderately long block codes. For RS codes, our analysis shows that the FEC
overhead can double the bandwidth under the same channel conditions.

We complete our FEC analysis with an investigation of Type-I Hybrid ARQ protocols.
Such hybrid protocols combine FEC with retransmissions. Assuming RS codes are
employed by Type-I Hybrid ARQ protocols, then we show that no RS codes of length less
than 1023 output symbols can be found which will adequately protect a fragmented image
and deliver that image within the interactive latency bound of 100 ms at a severe 3% BER.

Consider the open-loop FEC system shown in Figure 3.1 that provides end-to-end
error protection across a multi-hop connection which includes a noisy wireless link. The
FEC block coder adds redundancy to each input block of data bits. These extra error pro-
tection bits are used at the FEC decoder to correct any bit errors that may be encountered
during transmission across multiple concatenated links. Since FEC is an open-loop error
protection technique, then no guarantee can made that a packet will arrive with full reli-
ability; the lack of a feedback channel means that the sender cannot know whether the

FEC has been sufficient to error-correct the data into a reliable packet. Following our

Packet transmission
R Ly -
FEC wired switch 1 wired switch 2 wireless | FEC
encoder link 1 link 2 link3 |decoder

Figure 3.1 End-to-end open-loop error protection via FEC over multiple con-
catenated network links (some wired, some wireless). There is no
guarantee of completely reliable delivery.
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approach to analyzing ARQ protocols, we focus on the impairments introduced by the
weakest link, e.g. the wireless link, and idealize the noise and packet losses introduced by
the other links of the connection. As noted in the previous chapter, one consequence of
this assumption is that both end-to-end and link-layer interpretations of our FEC analysis

are possible.

3.1 Areview of decoding techniques for linear block codes

In this section, we review two techniques for decoding linear block codes: maximum
likelihood decoding; and bounded-distance decoding. Practical decoding of moderately
long to long block codes is almost always a form of bounded-distance decoding. The prob-
abilistic performance of bounded-distance coding has been characterized, and we shall
apply those results to determine the minimum redundancy necessary to achieve a given
loss rate for a packetized image across a noisy channel.

The encoding and decoding processes for block codes have easy geometric interpreta-
tions. For every K input symbols, the (N,K) block coder generates a block of N>K output
symbols. We assume binary input values for now, i.e. that the symbols are bits. There are
2K input K-bit messages, so that a one-to-one mapping will produce 2X valid output N-bit
codewords or vectors. These codewords are scattered throughout the N-dimensional linear
space, which contains 2" total vectors. In general, this K-bit -> N-bit mapping can be non-
linear. That is, the 2X codewords in general do not have to form a linear subspace of the N-
dimensional linear space. However, almost all practical block codes are linear, i.e. they do
form linear subspaces (over finite fields) within the N-dimensional space [152]. The prop-
erty of linearity simplifies the task of encoding véctors, which becomes a straightforward
matrix multiplication of the input K-bit code vector with a K x N generator matrix that

completely describes all characteristics of the linear block code [79].
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Figure 3.2 Maximum likelihood decoding of linear block codes is equivalent to mini-
mum distance decoding over a binary symmetric channel. The received
vector R is mapped to the nearest codeword. An alternative form of decod-
ing, called bounded-distance decoding, only guarantees minimum distance
decoding of R when the number of errors satisfies [E] <7, i.e. only if R
lies inside a T radius sphere. If the received vector R lies outside any of
the codeword spheres, then bounded-distance decoding will make no fur-
ther effort at correction. '

3.1.1  Maximum-likelihood decoding
The decoding process maps the received N-bit vector R to the proper codeword. How-
ever, a noisy channel will cause bit errors, so that the received vector is the sum of the
original codeword C and the error pattern £ (with 1°s in the position of the bit errors), i.e.
R = T +E. The decoder’s task is to find a codeword € from R that maximizes the con-
ditional probability of correct decoding f (Rla) over all codewords a., also called the
maximum-likelihood (ML) decoding procedure. Assuming a binary symmetric channel
(BSC) that corrupts/flips bits independently of one another, then it can be shown that ML
decoding is equivalent to minimum distance or nearest-neighbor decoding [153]). ML
decoding maps the received vector R to the “nearest” codeword. The distance between
any two code vectors is measured as the number of vector indices in which the two vectors
have different bit values, also called the Hamming distance. The minimum Hamming dis-
tance between any two code vectors is called the minimum code distance D,,;,. For linear
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block codes, D,;, is also equivalent to the Hamming distance from the zero vector to the
codeword closest to the origin. The Hamming weight of a vector 9 is defined as the num-
ber of 1’s in that vector, i.e. the distance between the vector and the origin, namely the
norm of the vector [[9] . Therefore, D,,;, can also be interpreted as the minimum Hamming
weight codeword of the (N,K) linear block code.

In Figure 3.2, we illustrate several of these concepts. Minimum-distance decoding
would map R to the nearest neighboring code vector a Also, if codewords 5; and C";
happen to be the two closest code vectors among all possible pairs, then the distance
between them is labelled as the minimum code distance D,,;,,.

The minimum code distance is a key property of block codes which affects their error
correction and detection performance. We focus first on the error correction problem. Geo-

metrically, it is clear that if the number of errors (i.e. Hamming weight of the error pattern)

min
2
unambiguously closer to the original codeword than any other codeword. Conceptually,

is less than about , then for any transmitted codeword, the received vector R will be

min
2
, then the received vector R will not

we can form a sphere around each codeword that has radius about . If the error pat-

min
2
have changed enough to escape the sphere. Under these conditions, the received vector is

terns are of Hamming weight less than about

guaranteed to be unmistakably corrected to the original codeword.
More precisely, define the error correction power of an (N,K) block code
T = I-{'_)""s__l—l » Where the “floor” function | a] calculates the greatest integer less than
or equal to a. Every error pattern with Hamming weight || <7 can be unambiguously
corrected to the original codeword by the geometric reasoning presented above [153]. The
radius-T error correcting spheres centered around each codeword are shown in Figure 3.2.
If the error pattern has Hamming weight [2] > T, then R will either lie in another 7-
sphere, or in the interstitial space outside of all T-spheres. If the received vector lies in

another T-sphere, then minimum distance decoding will map R to the incorrect codeword
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associated with this other T-sphere. Given an independent error channel in which the prob-
ability of bit error is less than one-half, then the distribution of the number of errors in a
block will be biased towards fewer rather than more errors. Consequently, choosing the
closest codeword will help more often than it will hurt. So despite the possibility of incor-
rect decoding, the probability of incorrect decoding is relatively low, and minimum dis-
tance decoding still maximizes the overall likelihood of correct decoding because the
probability of few errors is high and the probability of many errors is low.

If R lies outside of all T-spheres, then either the received vector is unambiguously
closest to a single codeword, or it is equidistant from two or more codewords. In the
former case, nearest neighbor decoding will produce a unique result. In the latter case
where there is ambiguity, ML decoding must choose between two or more equally likely
codewords.

Error detection also lends itself readily to a geometric interpretation. An error is
detected whenever a received vector is not a codeword. An error goes undetected when-
ever the error pattern transforms the original codeword into another incorrect codeword.
For example, in Figure 3.2 the vector R would be detected as in error. However, an error
pattern could be added to C—; causing R to be identical to Z"; , leading to an undetected
error. Figure 3.2 shows that all error patterns with Hamming weight [E] <D, , -1 can be
detected. If the number of errors is strictly less than D,,;,, then it is impossible to trans-
form the two closest codewords into one another by adding the appropriate error pattern.
By extension, no other pair of codewords which are separated even further can be trans-
formed into one another under these conditions. Thus, if the number of errors
|2l<D

For linear block codes, ML decoding can be thought of as a table lookup operation: for

min— 1» €VeTY received vector with non-zero errors can be detected.

each received vector R, consult the table to find the pre-computed nearest codeword Z’t .

Rather than a two-column table lookup approach, the linearity of the block code permits
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an array-based ML decoding procedure called standard array decoding [141]. We men-
tion this technique only to note that both table lookup and standard array decoding of
(N,K) linear block codes require the storage of 2V vectors. Therefore, memory require-
ments can be prohibitively large for block lengths N>20.

A variation of standard array decoding, called syndrome decoding [79], further
exploits the linearity of the code to achieve a significantly smaller storage requirement.
Here, a syndrome 3 is calculated from the received vector R = € + 2. The syndrome has
the property that it is only a function of the error pattern E . Also, multiple error patterns
can map to the same syndrome, creating a group of error patterns per syndrome called a
coset. Each coset has a minimum Hamming weight error pattern called the coset leader

Eﬁ)e) - Hence, syndrome decoding can also be thought of as a table lookup operation:

calculate the syndrome; then consult the table to find the coset leader associated with this
syndrome. Provided that the decoder tries to decode an output codeword for every possible
syndrome (i.e. every possible coset leader is used), then syndrome decoding is equivalent
to ML decoding.

For an (N,K) block code, it can be shown that there are only 2V =X distinct syn-
dromes, a significant memory savings over standard array decoding. However, even syn-
drome decoding can result in large storage requirements. For example, for a (N = 90, K =
60) linear block code, up to VK= Gigaword of memory needs to be stored in the syn-
drome lookup table, making syndrome decoding impractical for codes with large redun-
dancy [24][153]. In practice, ML decoding is attempted only for a few restricted cases:
either for codes with a small amount of redundancy; or for certain special classes of linear
block codes that exhibit structural properties that make them amenable to certain ML
decoding algorithms. For example, table-lookup decoding of single-error-correcting Ham-
ming codes [79] is an ML decoding technique. Majority logic decoding of Reed-Muller
codes [152] and Meggitt decoding of the (23,12) Golay code [24] are both examples of
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fast, practical ML decoders. However, such codes typically have small error correcting

power, and/or poor performance (large redundancy for the number of errors corrected).

3.1.2 Incomplete bounded-distance decoding

Most practical methods for decoding long block codes with large error correcting abil-
ity sacrifice ML performance for lower complexity decoding, opting instead for what is
called (non-ML) incomplete bounded-distance decoding [24]1[871[152][153]. Bounded-
distance decoders only promise to correct all errors up to L, where L< T, and T is the
maximum permissible error correction limit T = I-DL';.'_I J . Error sequences with more
than L errors (R lies outside of any L-sphere) are not corrected, returning only informa-
tion that an error has been detected. This corresponds to applying syndrome decoding to
only some of the coset leaders, i.e. only coset leaders whose Hamming weight is less than
or equal to L are used for error correction. In Figure 3.2, true bounded-distance decoding
would correspond conceptually to correcting only those received vectors who fall within
an L-radius sphere (not shown) enclosed by the larger T-radius sphere (shown). Thus,
bounded-distance decoders do not always correct up to the maximum permissible radius T
determined by the code’s natural distance D,,;,. For the rest of this section, we will assume
that bounded-distance decoders have been designed to correct up to the maximum permis-
sible number of errors 7.

The popular and highly efficient Berlekamp algorithm for decoding binary BCH cyclic
codes, and the closely related Berlekamp-Massey algorithm for decoding Q-ary Reed-
Solomon cyclic codes, are bounded-distance decoders [9][152]. Peterson’s solution for
cyclic codes is also bounded-distance [152].

First, we characterize the performance of bounded-distance decoding of (N,K) linear
block codes. Given an N-bit received vector R , then the probability of correctly decoding

R is the probability that R lies within a T-sphere, i.e. that the error pattern has less than
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or equal to T errors. The number of error patterns with i errors in N bits is (1:’ ) Therefore,
if we define the BER as the probability of bit error, and assume a BSC memoryless error

model, then the probability, Pcp, of correctly decoding an N-bit vector is given by [87]

N

T
= Z(i).BER‘-(l-BER)”" (3-1)
i=0

Pcp = Prob Correct]

ecoding.

Next we consider how ML decoding would modify Equation (3-1) . Since ML decod-
ing can correct some error patterns with Hamming weight > 7, then the summation for
Pcp would include some additional terms. Hence, P¢p for ML decoding would be larger
than the quantity shown in Equation (3-1) . As stated earlier, each syndrome and its corre-
sponding coset leader is needed for ML decoding. Correct decoding occurs if and only if
the error pattern matches the coset leader. Hence, if we can find the distribution A; of the
Hamming weights of the cose}v error pattern leaders, i.e. A; is the number of coset leaders
with weight i, then P¢, = Y A,- BER'- (1-BER)" ™" [79].

In the rest of our derivat‘i;r?, we assume non-ML bounded-distance decoding of the
general class of linear codes. Even though Berlekamp’s iterative bounded-distance
decoder only applies to the subclass of cyclic linear codes, we extend the bounded-dis-
tance analysis of Equation (3-1) to the general class of linear codes because Berlekamp’s'
method represents the primary means of computationally efficient decoding of the large
powerful efficient linear codes of interest to us. In some special cases, ML decoding of
weak, small, and/or specially structured codes may still be possible and will outperform
bounded-distance decoding. Bounded-distance analysis also has the advantage that know]-
edge of the internal structure and weight distribution of the code’s coset leaders is not nec-

essary, as evidenced by Equation (3-1) .
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3.2 Bounded-distance decoding of a fragmented image
encoded by optimal binary linear block codes

Given bounded-distance decoding, we would like to relate the probability of correctly
decoding a single N-bit packet to the probability of correctly sendiné and decoding a much
larger image. Following the same reasoning that we applied for ARQ protocols in the pre-
vious chapter, we fragment an /-bit image into [1/K7 fragments, each K bits long. Each
K-bit fragment is encoded using an (N,K) linear block code.

The probability of correctly sending the entire image over an unreliable link is the
probability that each of the individual K-bit fragments was decoded correctly after error
correction. There are approximately J/K fragments, and assuming a BSC error model, then

Prob I:‘:;:‘] = [PCD]' /K, where Pcp is the probability of correctly decoding an N-bit
fragment defined in Equation (3-1) . Suppose we desire that the probability of correctly
transmitting an image equal or exceed some subjectively tolerable threshold Py, so that

[Pepl% 2 P¢; . Combining this equation with Equation (3-1) , we obtain the inequality

T
Y (’:’ ) .BER'- (1-BER"" 2 [P, )*" (3-2)
i=0

Equation (3-2) is the key expression which relates the error correction power T of the
(N,K) linear block code to the other parameters of interest, namely the image size I, proba-
bility of bit error BER, and desired probability of correct image transmission P ;. For our
purposes, N, K, and T are the only parameters necessary to characterize the error perfor-
mance of a linear block code. Under our previous “weakest” link assumptions, Equation
(3-2) only captures the effect of corruption along a single noisy link, and does not attempt
to capture the effect of packet losses caused by congestion along other links in the connec-

tion.
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Equation (3-2) is used to construct a “minimum-redundancy” function of K. For each
K, we want to find the (N,K,T) binary linear code with the smallest amount of redundancy
N - K that still manages to satisfy Equation (3-2) , i.e. its error correction power T is suffi-
ciently large to achieve the desired rate of successful image transmission. For a fixed K, a
systematic procedure for determining the minimum-redundancy code would be to start
from N = K+1 and increment N, testing at each N >K for a code which satisfies Equa-
tion (3-2) . The first suitable code found will be the minimum redundancy code for this
value of K.

As N is incremented, at each value of N>K it is sufficient to evaluate Equation (3-2) at
a single value of 7, namely at the strongest possible correction power TopN.K) for the
given (N,K) pair. If the test passes, then we will have found at least one code at this (N,K)
pair which is sufficiently powerful to satisfy the inequality and can stop further testing.
This (N.K,T,,(N,K)) code will have the minimum redundancy. If the test fails at
(N,K,Top,(N,K)), then no other codes with the same values of N and K and weaker error
correction ability T < T,,(N, K) will be able to satisfy Equation (3-2) , and we can con-
tinue to increment N.

The key to finding the strongest possible error correction power Top(N.K) for a given
(NV.K) pair is to observe that the error correction ability T has an upper limit that is a func-
tion of N and K. Recall that T is a function of D,;,, T = l% J . The minimum spac-
ing D,p;, between any two codewords is upper bounded by N and K. For example, a simple
upper bound would be N, because the distance between any two codewords cannot exceed
the number of bits N in the vector. Thus, the minimum code distance D,,;, has an upper
bound as a function of N and K, D,,;, < f(N, K) , and T also has an upper limit. Provided
that tighter more realistic upper bounds can be found for D,,;, and 7, then Tops can be eval-

uated directly at these upper bounds.

63



A variety of bounds on D,,;, have been derived for linear block codes, and usually are
expressed in the form of D,,;, < f(N, K) . No linear block code can have a D,,;,, which
exceeds these bounds. In later sections, we’ll investigate how much the additional imposi-
tion of cyclic and BCH structure on linear codes reduces D,,;,, below these upper bound
values. Below, we list some of the more important upper bounds on D,,,;,, [9][87][153]. For
now, we assume that the number of levels per symbol Q = 2, i.e. that we are dealing with
binary linear block codes. Later, in our analysis of Reed-Solomon codes, we consider

codes for which 0>2.

* Hamming Sphere-Packing Bound
T

> (1) @-1'so"*

i=0

¢ Plotkin Bound

b <n. 2 @-1
min QK—l

* Singleton Bound
D,;,,SN-K+1

¢ Griesmer Bound
K-1

Y, IV%.’ <N
i=o| Q'

References [9] and [153] plot these bounds on the same graph and show the different
regions where they produce the smallest D,,,;,,. Some bounds are tighter for high rate codes
( % close to one), while other bounds are tighter for low-rate codes ( II—{V close to zero).
Since the D,,;, of every binary linear code obeys each of these four upper bounds, then the
maximum permissible D,,;,, will also obey the tightest (lowest) of these upper bounds. We
define the tightest of these bounds as D,,;,(N,K) = min (D,,;,,’s obtained from the Single-

ton, Plotkin, Hamming, and Griesmer bounds).
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T,p(N.K) is obtained from the tightest overall bound D,,;,(N,K). Since there may be
other even tighter bounds than the four listed above, then it is possible that D,,;,(N,K) rep-
resents a fairly loose bound, and in actuality no (N,K) binary linear codes exist with a min-
imum code distance of D,,;,(N,K). By evaluating Top,(N,K) at Dp,;,(NK), we are
optimistically choosing the theoretically best set of parameters (N,K, TopN.K)), even
though a binary linear block code may not exist at these upper bounds.

Now, we can summarize the complete algorithm for determining the minimum-redun-
dancy function of X over all binary linear block codes. Let N,,;,(K) represent the minimum
number of output bits for which Equation (3-2) is satisfied for a given K. The minimum

amount of redundancy willbe N . (K)- K . Assume that I, BER, and Py are fixed. Algo-

min
rithm I finds N,,;,(K) over all binary linear codes based on the previous list‘ of upper
bounds.
Algorithm I:
1. Select a range [K,,;,,K0,] for K. Initialize K = K,,,;,-1.
2. Iterate K = K+1. Initialize N=K.
3. Iterate N= N+1.

4. Find the optimal D,,;,(N,K) = min (D,;,’s obtained from the Singleton,

Plotkin, Hamming, and Griesmer bounds). Let

D_. (N,K)-1
Top:(N,K)=|. mm(2 ) J

5. Is Equation (3-2) satisfied at (N,K,Top,)? If no, go back to step 3.

6. If yes, then we have obtained the lowest N,,;,(K) that creates a large
enough D,,;, to satisfy Equation (3-2) . Go back to step 2 until K

exceeds K.
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The inner loop finds the minimum code length for a fixed K, while the outer loop iter-
N min(K )

—x
a function of K. The redundancy ratio measures the minimum bandwidth expansion factor

ates over a range of K. Given N,,;,(K), then we can plot the redundancy ratio

required by the best binary linear block codes to adequately protect a fragmented image
over a noisy link.

The results from Algorithm I for K<100 are shown in Figure 3.3, in which three sepa-
rate curves are pictured. All three plots assumed an image size I equal to 20 kbits. The
“Baseline” function assumed a BER of 102 and a desired probability of correct image
transmission Py of 0.999 (i.e. the user desires that at most 1 out of every 1000 images is
undecodable due to bit errors). The “Worse BER” curve assumed a BER of 3x102 and a
Py of 0.999, while the “Relaxed P¢;” curve assumed a BER of 102 and a Pcyof 0.99 (ie.
the user tolerates loss of at most 1 out of every 100 images due to corruption). We evalu-
ated the left hand side of Equation (3-2) both by direct Binomial sums and by Poisson
approximations to Binomial sums in order to verify the numerical precision of the our
results.

Considering the baseline function alone, we find that an input packet of size 10 bits
would require at least about three times expansion factor in bandwidth, equivalent to a
minimum code length of N = 30 output bits. An input packet of size K = 100 bits would
require at least about 1.5 times more bandwidth, equivalent to a minimum code length of
N =150, and a minimum redundancy of 50 redundancy bits.

Generally, for each curve, as the size of the X-bit input word increases, the redundancy

min(K)

K
tive cost in overhead required to successfully error-protect a fragmented image is signifi-

ratio required to satisfy Equation (3-2) decreases. This trend states that the rela-

cantly smaller for longer linear block codes than for shorter linear block codes. Since all

the codes in Figure 3.3 achieve the same error correction performance (i.e. they all just
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Figure 3.3 The redundancy ratio "",:,' ) is plotted vs. the number of input bits K
for different BER’s and different desired probabilities of correct image
transmission P¢;. The redundancy ratio measures the minimum expan-
sion factor required by the strongest binary linear codes to adequately
error-protect a fragmented image transmitted across a noisy channel.
Npmin(K) is the minimum number of output bits obtained by running
Algorithm |. The Baseline, “Worse BER”, and “Relaxed P¢,” curves are

the middle, top and bottom functions respectively.

barely satisfy Equation (3-2) ), then the designer should choose the longer (N,K) linear
codes in order to achieve reasonably low levels of overhead.

Since we are searching over all binary linear codes, then any other sub-class of binary
linear codes, such as the binary cyclic linear codes and binary BCH cyclic linear codes,
will require an even higher bandwidth expansion factor. Therefore, each of the curves
shown in Figure 3.3 represents a lower bound (for its set of parameters) on how much
redundancy is required to successfully error-protect and transmit a fragmented image

across a noisy wireless link.
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The “Worse BER” curve tests the sensitivity of Equation (3-2) and Algorithm I to
variations in BER. The probability of bit error is increased to 3x1072 from the baseline case
of 102, while Pcy remains fixed. The resulting dotted (top) curve shows a significant
increase in the redundancy requirement. An input packet of size K = 10 bits would require
at least about 4.5x redundancy, or a block code of length N greater than about 45 bits. An
input packet of length X = 100 bits would require at least about 2x redundancy, or N
greater than about 200 bits. Thus, for K = 100, the increase in BER leads to a hefty 50%
increase in redundancy, requiring a (200,100) code instead of a (150,100) code.

The “Relaxed P¢y” curve tests the sensitivity of Equation (3-2) and Algorithm I to
variations in the desired probability of correct image transmission Pc;. The BER remains
the same as the baseline case, while the P threshold is relaxed from 0.999 to 0.99, i.e. the
permissible image loss rate is -1(1)—0 instead of ﬁ The result is plotted as the third
dashed curve lying just below the baseline function. Figure 3.3 indicates that this extra tol-
erance for image errors does not substantially decrease the required power of the error cor-
rection code. In fact, a similar curve (not shown) evaluated for Py = 0.9999 also showed
very little variation from the baseline function. At K = 100 bits, large variations in the
probability of image loss (1-P; varies from 0.01 to 0.0001) result in only small changes
in code size (N = 142 and 151 at the respective bounds). Conversely, a very small increase
in the redundancy ratio, at a fixed BER, can dramatically lower the probability of a lost

image.

3.3 Bounded-distance decoding of a fragmented image
encoded by binary BCH codes

In this section, our goal is to quantify how much more redundancy is required by

binary BCH linear codes to adequately protect a fragmented image than the general binary
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linear codes analyzed in the previous section. BCH codes are of great practical importance
because a fast bounded-distance decoding algorithm has been developed by Berlekamp for
these codes, as noted in Section 3.1. Binary BCH codes form a subset of the class of
binary cyclic codes, which are themselves a subset of the general class of binary linear
codes. Therefore, the largest code distance that binary BCH codes can attain is limited by
the upper bounds on D,,;, for general binary linear codes for a given N and K.

Practical values of D,,;, for binary BCH codes over a wide range of N and K show that
indeed some error correction power is lost by imposing cyclic structure and then BCH
structure on general binary linear codes. BCH codes are designed using a lower bound on
the minimum code distance called the BCH design distance & [153]. Up to T errors are

corrected, where T = lS__Z_IJ and the code’s true minimum distance satisfies D_. > § .

min
Even though the true minimum distance D,,;, resulting from the BCH coding structure
may be greater than J, the bounded-distance decoder is unable to exploit this extra dis-
tance, and only corrects up to T errors. The effective code distance seen at the output of the
receiver’s decoder is therefore only 8. Hence, fast decoding of binary BCH codes can
waste some error correction power, resulting in lower performance and/or higher overhead
than general binary codes. The constraints on D,,;, and T suggest that a minimum-redun-
dancy function of X for binary BCH codes will lie above the curves shown in Figure 3.3.
The cumulative efforts of several authors have resulted in an exhaustive tabulation of
the minimum distance for all binary cyclic and binary BCH codes with odd N<128! as a
function of N and K [17][98][99]. These tables show that binary BCH codes do not exist
for some (N,K) combinations. These tables also show that there can exist more than one

binary BCH code for a given (N,K) pair. The binary BCH code with the largest D,,,;, for a

fixed N and X (if there is more than one code) should be the candidate tested at each step

1. Only odd-N codes are considered because the construction properties of primitive and non-primitive BCH
codes result in odd-N overall block lengths [87).
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in the minimum-redundancy search algorithm, for the same reason that the binary linear
code with the largest permissible D,;,(N,K) (taken from the upper bound) was tested at
each step in Algorithm L.

The procedure employed to obtain the minimum code length function N,,;,(K) for
binary BCH codes very much resembles Algorithm I from the prévious section. The only
significant change is to step 4. Rather than computing the largest D,,;,(N,K) for a fixed N
and X from the upper bounds, we search the tables to find the largest D,,;, over all binary
BCH codes with the same values of N and X (e.g. there are thirty-four (85,45) binary BCH
codes but only two (111,75) binary BCH codes)]. Table lookup is a somewhat laborious
procedure and is one of the reasons that we confined our search range of K to 35<K<46.
The other reason is that the tables only list block lengths up to 127. As we will show, for
some of the KX in this range, we were unable to find any binary BCH codes with N<128 of
sufficient power to satisfy Equation (3-2) . If we were to test values of K>45, the search
algorithm would with increasing likelihood stop at N<128 without being able to find a suf-
~ ficiently powerful binary BCH code. Though such a determination is useful, it is less
informative than obtaining a precise value for N,,,;,,(K).

Our minimum-redundancy evaluation algorithm for binary BCH codes is summarized
below. Again assume that I, BER, and Py are fixed.

Algorithm II:
1. Choose a range [K,;n.K g, for K. Initialize K = K,,;,-1.
2. Iterate K = K+1. Initialize N= K.
3. Iterate N=N+1.

4, Consult the reference tables to see if an (N,K) BCH code exists. If not,

return to step 3. If so, then let D,,;, = the minimum distance of the

1. For completeness, (N,K-1) expurgated codes (generated by the polynomial (1+X)g(X) and listed as col-
umns D2 and DB2 in [98]{99]) derived from (¥,K) codes are included into our calculations.
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code with the largest BCH design distance among all (N,K) binary
BCH codes. Let T = l?mz_‘lj

5. Is Equation (3-2) satisfied at (N,K,T)? If not, go back to step 3.

6. If yes, then we have obtained the lowest N,,,;,(K) such that there exists a
binary BCH code with a large enough D,,;, to satisfy Equation (3-
2) . Go back to step 2 until K exceeds K,,,,,.

The inner loop finds the minimum code length for a fixed K, while the outer loop iter-
ates over a range of K, just as for Algorithm I. The above procedure can be applied to
binary cyclic codes as well, with the small modification in step 4 that D,,;, is set to the
minimum distance of the code with the largest minimum distance among all binary cyclic
codes with the same N and K.

Because the reference tables are limited to block lengths of N<128, then for our partic-
ular situation step 3 should be modified to iterate only up to N= 127. If N =128 , then
the algorithm should declare that no binary BCH code with length N<128 could be found
for this K which was sufficiently powerful to satisfy Equation (3-2) . The algorithm should
then return to step 2 and iterate K. When the algorithm fails to find a sufficiently powerful
binary BCH code, then the limited conclusion is that N,,;,(K) 2128 for this particular K.
Under these conditions, plotting N,,;,(K) as a function of X, or even the redundancy ratio

NL}';,(E-Z as a function K, becomes more difficult since it is not certain what value should
be substituted for N,,;,(K) for these points. For this reason, we choose to display Npin(K)
in tabular rather than graphical format.

Algorithm II is performed over a range 35<K<46 for both binary cyclic codes and
binary BCH codes. Assuming values of BER = 102, P, = 0.999, image size I = 20 kbits,
then the minimum code length N,,;,(K) results are listed in Table 4. The middle column

lists the minimum number of output bits required by odd-N binary cyclic codes, and the
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right column lists N,,;,(K) for binary BCH codes. The left column does the same for the

best possible (D,,;, evaluated at the upper bounds) binary linear codes, using the same val-

ues generated earlier by Algorithm I to construct Figure 3.3.

Table4.  The minimum number of output bits N,,;,(K) generated by Algorithm
Il for all binary cyclic (middle column) and binar{eBCH codes 4ﬂght
column) satisfying 35<K<46, N odd, and N<128. Let BER = 10", P¢,=
0.999, /= 20 kbits. For comparison, N,,(K) generated by Algorithm |
for optimal (D, at upper bounds) bi’l'l'ary inear codes is shown in
the left column. The error correction power T of the minimum-length
(Nmin(K),K) code is shown In parentheses.

Minimum code length N,,;,(K)
Number of q Optimal Binary | Binary Cyclic Odd-N Binary BCH
input bits X || Linear Codes Linear Codes, N<128 Linear Codes, N<128
_
36 66 (T=7) 13 (Teyclic=T.Tops=9) | 105 (Tgcy= 10,755, = 17)
37 67 (7) 85 (8,12) 93 (8,14)
38 69 (7) 93 (8,14) 93 (8,14)
39 70 (7) 79 (1,9) 117 (10,20)
40 71 (7) 79 (7,9) 105 (8,16)
4] 72 (7) 105 (9,16) none found for N<128
42 'j 73 (7) 105 (8,16) 127 (14,22)
43 74 (7) 105 (8,15) 127 (14,21)
44 76 (7) 89 (8,10) none found for N<128
45 77 89 (8,10) none found for N<128

We interpret the table as follows. At K = 40, the minimum-redundancy search over all

(N,40) optimal binary linear codes employing Algorithm I produces a (71,40) binary lin-

ear code with

an error correction power T’ = 7 bit errors. A minimum-redundancy search

employing Algorithm II over odd-N binary cyclic codes produces a (79,40) code that can

correct T =7

errors. Algorithm II applied to binary BCH codes produces a minimum-

redundancy (105,40) code that can correct T = 10 errors. The error correction capability

corresponding to the (N,,;,(K),K) code is shown in parentheses. For binary cyclic and
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BCH codes, an additional parameter Tope is shown paired with T, in the form (Z,T,,). Topt
corresponds to the theoretically optimal error correction ability that could be obtained
from the upper bounds on minimum code distance for this (N,,;,(K),K) pair.

The imposition of cyclic structure and BCH cyclic structure on binary linear block
codes causes the minimum code distance of cyclic and BCH codes to shrink below the the-
oretically best upper bounds on D,,;, for each N and K. This weakens the error correction
ability of (N,K) cyclic and BCH codes relative to optimum-distance (N,K) codes. For
example, the minimum-redundancy (79,40) cyclic code can correct up to Teyetic =1 errors,
while the optimal (79,40) binary code with the maximum permissible D,,;, can correct up
to Ty = 9 errors. The loss in error correction performance is even more marked for binary
BCH codes. The table shows that the minimum-redundancy (105,40) BCH code that satis-
fies Equation (3-2) can correct up to Tgey = 8 errors, while the optimal (105,40) binary
code derived from the upper bounds should be able to correct up to Topr= 16 errors.

As we move from left to right across columns in Table 4, the weaker error correction
performance of binary cyclic and BCH codes relative to optimal binary linear codes
causes an expansion in minimum code length N,,,;,(K) and hence increases the overall cost
in overhead. For example, at K = 40, the (71,40) optimal linear code incurs an overhead of
31 bits, and a redundancy ratio M equal to 1.8. The best cyclic (79,40) code
requires an additional 8 bits of redundancy over the binary linear code, and a redundancy
factor of about 2.0. The best binary BCH (105,40) code requires an additional 26 bits of
overhead over the best cyclic code, and an overall bandwidth expansion factor of 2.6. The
same pattern is exhibited throughout the selected range of K.

Table 4 indicates that optimal binary linear codes require about a doubling of the band-
width for this range of X in order to adequately protect a fragmented image. The perfor-
mance of binary cyclic codes varies widely, occasionally approaching that of the optimal

codes(e.g. K = 36) but other times matching the poor efficiency of binary BCH codes (e.g.
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K = 38), though usually lying somewhere in between (e.g. K = 42). For binary BCH codes,
we can conclude that bounded-distance decoding of moderately long binary BCH codes
requires a minimum bandwidth expansion of about 2.5 in order to satisfy Equation (3-2)
for the chosen range of K, though the more common case resulted in a tripling of band-
width.

Another reason for the high overhead cost of binary BCH codes, besides their rela-
tively weak error correction performance, is the relatively sparse distribution of existing
binary BCH codes in (N,K) space. Binary BCH codes do not exist for all possible N and X.
For example, the reference tables show that at X = 41, binary BCH codes only exist for N=
51, 55, 63, 65, 95, and 105 in the range N<128. At K = 36, binary BCH codes only exist
for N= 57, 63, 65, 69, 71, 73, 77, 85, 105, 119, and 127 in the range N<128. While one of
the perceived advantages of BCH codes is that there is an ample selection of block lengths
and code rates [153], for our purposes the scattering of codes is sparse enough to cause
large jumps in calculated redundancy. When Algorithm II was applied at K = 36, the
(85,36) binary BCH code failed the test in step 5 of Algorithm II. The next largest code
available for testing was the (105,36) binary BCH code, which also turned out to be the
minimum-length code. The sparse distribution of BCH codes in this case permitted a gap
of 20 bits to arise between tested codes and in general contributes to the sudden jumps in
N,.in(K) as we move from left to right in a row in the table.

The scattering of BCH codes in (N,K) space also is responsible for the unevenness of
N,,in(K) as we move down a column in Table 4. As K increases, the minimum code length
should also increase. However, N,,;,(K) is not a monotonically increasing function of X
due to the sparseness property, though the general trend is towards lengthening N,,,;,(K). In
ﬁ;’é—(l{—) ) is a relatively

smooth monotonically non-decreasing function of K, since the optimal codes were

contrast, for the optimal linear codes, N,,;,(K) (and by extension
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assumed to exist for each N and K, N>K, and were derived from well-behaved mathemati-
cal bounds.

Table 4 does not provide sufficient information to determine whether longer BCH
codes are necessarily better (i.e. have a higher rate % for the same error correction perfor-
mance) than short BCH codes. While N,,,;,(K) roughly increases with K, we cannot con-

M decreases with
K

clude from the table that the bandwidth expansion factor
increasing K for binary BCH codes in the same manner as we had found for optimal
binary codes (depicted in Figure 3.3). A number of factors interfere with our ability to
make a definitive statement. First, the sampling range of X is relatively small. In addition,
for several values of K no sufficiently powerful BCH code could be find for N<128. This
uncertainty reduces even further our set of available data points. Moreover, the unevenness
of Npn(K) also leads to an fluctuating redundancy ratio N"’+(K)

(105,36) and (127,43) minimum-length codes both triple the bandwidth, while the (93,37)

. For example, the

code in between only expands the bandwidth by a factor of 2.5, making it difficult to show

N, ;. (K
that -%() decreases as K increases. Finally, it is known that BCH codes are asymptot-
D._.
ically weak, in the sense that for a fixed rate I—{, the ratio of —= for BCH codes

N N
approaches zero in the limit as block length N increases [24][153]. For these reasons, our

data does not support a conclusion that longer binary BCH codes are necessarily better
than short binary BCH codes.

Next, we consider the sensitivity of Algorithm II to variations in the parameters P,
and BER. We confine ourselves to analyzing binary BCH codes only. Four cases are con-
sidered and presented in tabular form in Table 5. The baseline case with parameters
BER = 107> and Pcp=0.999 was same one used to generate Table 4.

If we relax P¢y to 0.99, and keep BER at 10°2, then we obtain the far right “Relaxed
Py’ column. If we are willing to tolerate an image loss rate of 1 in 100 instead of 1 in

1000 (baseline Pcy), then a significant reduction in overhead can be achieved for many
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values of K, though not all. For example, the best baseline BCH code at K = 42 has

N,,in(42) = 127. By relaxing the Py objective, the new N,,;,(42) can be reduced to 93. At-
this higher image loss rate, the binary BCH code with the smallest redundancy ratio is the

(73,36) code, which would require at the minimum a doubling of bandwidth.

Table 5.  For binary BCH codes only, test the sensitivity of N,;;,(K) generated
by Algorithm Il to variations in BER and P, All codes sat sfy
35<K<46, N odd, and N<128. Let /= 20 kbits. BER and P, vary

across columns.
Minimum code length N,,;,(K)

N u.mber Baseline.:2 “Worse BEI:!;’ “Worse BER & | “Relaxed Ptgf’
of input BER = 1074, BER=2x10"%, | Relaxed P¢;” BER =107,
bits K Pc;=0.999 Pc;=0999 | BER=2x102, | P=0.99

" Pcy=0.99
36 105 127 105 73
37 93 NF NF 85
38 93 NF NF 93
39 117 NF NF 105
40 | 105 NF NF 105
41 None Found for NF NF NF
N<128
42 127 127 127 93
43 127 127 127 93
44 NF NF NF 117
45 NF NF NF NF

If the BER is increased slightly to 2x10°2, and we keep Py at its baseline value of
0.999, then we obtain the “Worse BER” column. No sufficiently powerful binary BCH
codes with N<128 could be found for most X in this column. In comparison, for only a few
values of K in the baseline column does N,,;,(K) exhibit the label “None Found”. There-
fore, similar to our conclusion for the optimal codes in Section 3.2, the minimum code

length for binary BCH codes is extremely sensitive to small increases in the probability of
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bit error at these levels of BER. Under these slightly noisier conditions, the binary BCH
code with the smallest redundancy factor is the (127,43) code. In order to adequately pro-
tect an image at this BER using binary BCH codes, the minimum overhead cost would

require approximately a tripling of bandwidth.

3.4 Bounded-distance decoding of a fragmented image
encoded by Reed-Solomon codes

Reed-Solomon (RS) codes constitute an important subset of Q-ary (non-binary) BCH
codes. Reed-Solomon codes derive much of their importance from the fact that the fast
Berlekamp-Massey decoding algorithm can be applied to them. The relative ease of hard-
ware implementation of RS coders and decoders has led to their wide application in con-
sumer products like compact discs and to their use over deep-space and satellite
communiéation links [152]. RS codes are also popular because of burst error correction
and erasure detection properties.

The non-binary nature of RS codes means that Equation (3-2) needs to be revised to
account for symbol-based error correction, where there are M bits per RS code symbol, i.e.
the number of possible symbols Q = 2M. Again assuming a BSC error model, then the
probability of symbol error, or symbol error rate SER, is given by SER = 1-(1-BER).
Some texts have used Q-ary symmetric error channel models instead of the BSC model,
where the probability of transitioning to any symbol other than the original symbol is
given by p, and SER = p(Q-1) [87][152]. We do not use this model, and instead continue to
adhere to the BSC model used by other texts [46][100). For Q-ary codes, Equation (3-2)

is transformed into the following relation:
T -
Y (’:’ ) .SER' - (1-SER)" "2 [P, ]* V! (3-3)
i=0
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Next, we evaluate this equation for various values of N, K, and M, applying a proce-
dure similar to the one used for binary BCH codes. One key property of RS codes is that
the code length N is directly related to the finite field size Q by N = Q-1 [153). We con-
sider the standard non-extended non-shortened case where Q = 2™ and N = 2-1. Another
key property of RS codes is that their minimum code distance D,,,;, is determined directly
by the following relation: D,,;, = N-K+1. Thus, unlike binary BCH codes, there is no need
to consult tables to find D,,;,, because the D,,;, of RS codes can be computed precisely
from the Singleton bound [153] (see Section 3.2).

Our minimum-length evaluation algorithm for RS codes is summarized below.

Algorithm Ill:
1. Choose a range [Kiyin.Kpg,] for K. Initialize K = K,,,;,-1.
2. Tterate K = K+1. Find J, the first power of 2 such that 2’-1 > K. Initial-
izeM=J-1.

Iterate: M = M+ 1. Let N=2M.1. (We are increasing N by powers of 2).

>

Dy =N-K+1.Let T = le_z‘_IJ

o

Is Equation (3-3) satisfied at (N(M),K,T)? If no, return to step 3.

o

If yes, then we have obtained the lowest N,,,;,(K) for this K that creates
a large enough D,,;, for an RS code to satisfy Equation (3-3) .

Return to step 2 unless K exceeds K,,,;,.

The results of our iterative evaluation algorithm are plotted in Figure 3.4, for the
parameters BER = 1072, a relaxed Pcy=0.99, I = 20 kbits. The stairstep pattern is a direct
consequence of the sparseness of the available code lengths (separated by powers of two).
Note that on each “stairstep” the point K farthest to the right just before the step jump is

optimal in terms of reducing the overhead ratio for the constant “stairstep” code length N.
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Figure 3.4 Minimum number of output symbols N,,(K) required by Reed-Solomon
codes to satisfy Equation (3-3) , i.e. deliver images of size 20 kbits at an
image success rate Pg; exceeding 0.99 over a 102 BER link (solid plot). A
second dotted plot is also shown for BER = 3x10°2, RS redundancy = N-K.

For 256-ary RS codes (N = 255), the minimum-length code with the lowest redundancy
ratio was found to be the (255,175) code. Therefore, in order to deliver our image data
with acceptably low image loss rates, about 1.5 times bandwidth expansion is required. In
general, Figure 3.4 indicates that longer RS codes more effectively use redundancy, result-
ing in lower redundancy ratio N"‘—'I'é(l-{—) . We also note that standard primitive RS codes
have a relatively sparse set of available code lengths that is even more thinly distributed
than binary BCH codes, an observation that inflates the RS redundancy ratio.

Next, we consider the sensitivity of RS codes to variations in BER. The second dotted
curve in Figure 3.4 evaluates Equation (3-3) for BER = 3x1072, at the same Pcy and image
size I as the lower curve. The best code for the stairstep length of N = 511 is about a

(511,200) code, or about a 2.5x redundancy code. Similarly, the best (255,*) RS code is
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about a (255,100) code, again about 2.5x redundancy. RS codes exhibit the same sensitiv-
ity to small increases in probability of bit error at this level of BER as binary linear block
codes and binary BCH codes. We can arrive at roughly the same conclusion by inspecting
the family of “waterfall” curves [8][46] which plot the output BER performance of a fam-
ily of RS codes, say the (64,*) RS codes, as a function of the input BER. Because the
curves are tightly packed around 102 input BER, a slight increase in the input BER can
éause force a large jump in code redundancy in order to preserve the same output BER.
While these waterfall curves are useful in confirming our intuition, they only consider the
effect of single-packet delivery, and do not consider the impact of multi-packet image
delivery captured in Equation (3-3) .

We would also like to compare RS code performance to binary BCH performance.
Since there are M bits per symbol, then a (255,175) RS code is in fact a (255*8,175*8) =
(2040,1400) binary code, though arithmetic operations are performed on a different finite
field. Consequently, these RS codes are considerably longer than the (N<128) binary BCH
codes considered in the previous section. Comparing similarly sized codes, we find that at
K =11 input symbols, the minimum-length RS codes are of length 31, so that they have 5
bits per symbol. The (31,11) symbol-based code is equivalent to a (155,55) binary code,
and the overall cost in overhead approximately triples of the bandwidth. In comparison, at
K = 45, minimum-length binary BCH codes require at least a (128,45) code for a several
different combination of BER and Pc;. So both binary BCH codes and RS codes require a
minimum tripling of bandwidth for moderate-length codes when the image size is several
tens of thousands of bits, the BER is near 102, and the subjectively acceptable image loss

rates are less than 1 in 100.
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Figure 3.5 Type-l Hybrid ARQ. A fixed-rate FEC coder is embedded within the
retransmission loop of a conventional ARQ protocol. The FEC coder
helps to correct wireless bit errors, and can be applied in both the for-
ward and reverse directions.

3.5 Minimum redundancy evaluation of a Type-l Hybrid FEC/
ARQ protocol

So far in this chapter, we have considered only open-loop FEC systems based on linear
block codes which lack feedback from the receiver. In this section, we consider a hybrid
FEC/ARQ closed loop error protection scheme that integrates closed-loop ARQ protocols
with FEC.

A straightforward way of combining FEC and ARQ, called Type-I Hybrid ARQ, is to
embed an FEC coder operating at a fixed coding rate within the retransmission loop of any
repetition-based ARQ protocol [78]. The Type-I Hybrid-ARQ protocol is shown in Figure
3.5, where FEC is applied in both directions over the wireless link. Our goal is to deter-
mine the minimum redundancy required by the inner FEC coder in order to deliver an

image reliably across the noisy link within the interactive latency bound.

3.5.1 Optimal binary codes
The performance of a Type-I Hybrid ARQ protocol will depend on the choice of

retransmission protocol as well as the type of FEC employed. Our choice of protocol is
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ideal SRP due to its optimal latency performance. For the type of FEC scheme, we choose
the class of optimal binary linear codes studied in Section 3.2 because they minimize the
redundancy over all binary linear codes. Together, these two choices form an ideal T-I H-
ARQ protocol that serves as a lower bound on the amount of redundancy required for all
T-I H-ARQ protocols. In addition, these two choices are both mathematically tractable,
and we can reapply the equations from Chapter 2 and Section 3.2 here. We must also
decide whether to evaluate the T-I H-ARQ protocol at the loose latenqy bound or the tight
latency bound of the previous chapter. Again, we make the most optimistic choice, namely
the loose lower bound represented by Equation (2-5) , in order to maintain the claim that
this section’s analysis produces a lower bound on redundancy.

Analyzing T-I H-ARQ requires some modifications to Equation (2-5) in order to
account for the embedded fixed-rate FEC coder. Equation (2-5) represented a lower bound
on the minimum amount of delay suffered by retransmission-based protocols over noisy
channels. Two components contributed to the delay in Equation (2-5) : a BER factor
caused by multiple retransmissions due to bit errors; and a BW factor due to the wireless
channel’s limited bit rate. The BER factor dominated the delay when the protocol’s pack-
ets were large enough relative to the BER to cause multiple bit errors per transmitted
packet. If FEC were applied to combat wireless bit errors, then the effective BER affecting
each packet sent by the protocol could be reduced to the point that the number of retrans-
missions caused by link noise would no longer dominate the protocol’s delivery latency.
However, any increase in error correction also expands the bandwidth. Both effects must
be accounted for in our T-I H-ARQ analysis.

First, we investigate how FEC affects the BER factor. If we assume ideal SRP as the
retransmission protocol for T-I H-ARQ, then from the previous chapter the number of
attempts A required to send one reliable version of an N-bit packet through a noisy BSC is

geometrically distributed, i.e. P[A= i] = (1-P,)'~1.P,, where P, is the probability of
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correctly receiving the N-bit packet after one transmission. We found that E[A] = 1 ,

Py

and later used this result to derive Equation (2-5) , the loose lower bound on the average
amount of time required for reliable image transmission. We summarize the bound here as
ElTimage) 2 F - ElA fooment) PTT progment -

In Chapter 2, we assumed that no FEC was applied to each J-bit packet, so that the
BER of the channel directly affected each packet, and P,=(1 —BER)J . Assume that an
image I is fragmented into F fragments. Define the size of each image fragment J = %, ,
H = header overhead, and the number of input bits to the FEC encoder X = J+H.In T-I
H-ARQ, each J-bit image fragment will be protected by an (N,J+H) code. Therefore, Pg
must be modified to account for the error correction abilities of the code.

The probability of correctly receiving J+H bits is the probability of correctly decoding
an N-bit packet, which is given by Equation (3-1) under the assumption of bounded-dis-
tance decoding and BSC errors. We repeat Equation (3-1) below, and change P, to the

following value:.

Correct Decoding

P, = Prob[
g of (N-bit) packet

T
1= 2(’;’)-35#-(1 ~BER"™'  (3-4)
i=0
Next, we investigate how FEC affects the BW factor. We need to account for the band-
width expansion caused by FEC. This problem is easily solved by changing the packet
transmission time PTT to —v-. Thus, Equation (2-5) is transformed into the following

BW
form for Type-1 Hybrid-ARQ:
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E[Timage] 2F. E[Afragment] ' PTTfmgmem (3-5)

1 N 1 F-N

=Fp BwWw=T N ) o, BW
Z('.)-BER'-(I—BER) -
i=0

P, BW

The number of output bits N = ?I" + H + R , where R equals the number of redundancy
bits added, and N>K. Summarizing, our independent variables are image size I, header
length H, wireless bandwidth BW, wireless probability of bit error BER, the number of
input bits X, the number of output bits N, and the choice of linear block code. F is a depen-
dent variable of 1, H and K. The dependent redundancy variable R is a function of N and X.
The dependent error correction power variable T is a function of N, K, and also of the lin-
ear code chosen.

A systematic procedure for determining the minimum redundancy is to follow the dou-
ble loop approach developed in previous sections for analyzing open-loop FEC systems.
Fix I, H, BW, BER, and fix the choice of linear block code to be the class of optimal maxi-
mum-permissible-D,,;, binary codes. The remaining independent parameters that can be
varied are K and N. Iterate K in the outer loop, and iterate N in the inner loop. By fixing K,
we fix the fragmentation factor also, since K = 1-17+ H . For each fixed K, increment N and
test to see if the latency predicted by the loose lower bound in Equation (3-5) for this opti-
mal (N,K) code falls below the desired interactive latency threshold L;,,,4csive- If nOt, con-
tinue to increase N until the minimum-redundancy code of length N,,;,(K) is found that

produces a small enough image delivery latency. The algorithm is detailed below.

Algorithm IV:
1. Choose a range [Jyin/ima,] for J. Initialize J = J,,,;,-1. J represents the

number of bits per image fragment, i.e. J = %, .
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2. TIterate J = J+1. Set the number of input bits K = J+H. Initialize N= K.
3. Iterate N=N+1.

4. Find the optimal D,,;,(N,K) = min (D,,;,’s obtained from the Singleton,

Plotkin, Hamming, and Griesmer bounds). Let

D_. (N, K)-1
Tapt(Ns K) = l min ) J .

5. Calculate the delay from the loose lower bound in Equation (3-5) for
(N.K,T,,p). Does the estimated delay fall below the desired interac-

tive latency threshold L;,,,,4crive? If nOt, go back to step 3.

6. If yes, then we have obtained the lowest N,,,;,(K) that has sufficient
error correction to reduce the delay predicted by Equation (3-5)

below Lo racrive- GO back to step 2 until J exceeds J,,,,,.

Algorithm IV is performed with the following parameters: I = 20 kbits, BW = 500
kbits/s, BER = 102, header size H = 100 bits, and the desired interactive latency bound
Lipteractive = 100ms. For these parameters, the resulting behavior of N,,;,(K) partitions
the K axis into three regions. In the first region, the header overhead is so large relative to
the size of each image fragment that the delay predicted by Equation (3-5) exceeds
Lipteracrive Tegardless of whether FEC is applied or not, and therefore N,,;,(K) does not
exist for these K. In the second region, the error correction is insufficient to reduce the
delay below L,,,,.4..ive » and again no finite N,;,(K) can be found for these K. Only for the
third region can a sufficiently powerful code be found which manages to lower the image
transfer delay below the interactivity threshold. We examine in detail each of these three
regions of K below.

Since K = 'II"" + H, then it follows that when the number of image bits Iis very small

F
relative to the header overhead H, then the resulting bandwidth expansion can inflate the
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image delivery time above the desired limit L;,,,, ., - For example, if there are 50 bits of
image data and 100 bits of header per K-bit packet prior to FEC, then the header overhead
essentially triples the bandwidth. Since the original 20 kbit image requires a minimum of
40 ms to transmit over the 500 kbit/s channel, then the packetized image with overhead
will require 120 ms, exceeding our objective L,,,,,...... Without even considering FEC.
Thus, Algorithm IV need not even be executed for these K.

To find the valid range of K over which FEC can be applied, we define a bandwidth
YF+H 1o g I

7 5> L;peractive » then bandwidth expansion alone

due to header overhead per fragment will exceed our desired delay. Substituting parameter

expansion factor B =

values, we find that when the size of each image fragment I/F < 66 , then the header over-
head per fragment pushes the image transfer delay above L,,,.,,..i,. - Equivalently, when
K <166 then Algorithm IV need not be run.
In the range K > 166, the header overhead is a small enough percentage of each image
fragment to permit FEC on each fragment. We executed Algorithm IV in the range
K > 166 and found that N,,;,(K) could not be obtained for values of N near 166. Specifi-
cally, evaluation of Equation (3-5) reveals that for the range 166 <K <193, no optimal
binary linear (N,K) block code could be found such that the loose lower
bound E[T 5.1 < Lipseracrive - AN investigation as to why the algorithm did not produce a
finite N,p,;,(K) in this narrow region of K shows that the error correction power of any
(N,K) optimal binary code is too weak to lower the image transfer delay below the interac-
tivity threshold. We come to this conclusion both from theoretical analysis of Equation (3-
5) as well as empirical inspection of the generated values of delay. For a fixed K, we
observe that, as N increases, the delay E[T ippg.] decreases exponentially, since the
improving error cormrection ability helped reduce the retransmission BER factor
E[A] = % in Equation (3-5) . Eventually, the delay reached a minimal value before start-

g
ing to rise again for large N, when the linear dependence upon the 37]!‘; factor in Equation
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(3-5) begins to dominate. This behavior is very similar to Figure 2.4, and the resemblance
is not surprising since they are both governed by the same loose lower bound equation. If
E[Tmgg.] exceeds L;,,,.qciv. 8t the value of N which minimizes the delay, then it will be
impossible to find any optimal binary linear (N,K) block code for this value of K that
delivers an image within the L,,,,,....,. bound. An empirical inspection of the values of
delay generated by Algorithm IV verified this predicted behavior as a function of N for the
range of input values 166 <K <193.
In the range K > 193, Algorithm IV was able to find a finite minimum code length
Npin(K) for each K. In Figure 3.6, we plot two redundancy ratios as a function of K, the

min(K) Nmin(K)
'—K— mea-

traditional NL‘I’;(—K) as well as a second metric % . The first metric
sures the bandwidth inflation factor caused by an (N,,;,(K),K) optimal binary block code
embedded within the T-I H-ARQ protocol. The second metric measures the total amount
of bandwidth expansion due to both the header overhead as well as the FEC overhead. By
comparing the two curves, we can deduce the proportion of overhead due to headers and
the proportion due to block coding redundancy.

At K = 250 input bits, there are 100 header bits and 150 image-related payload bits.
The lower curve predicts that a minimum of about 1.1 times bandwidth inflation is
required, corresponding to a minimum output code length of about N = 280 bits, or a

(280,250) code. The upper curve represents the ratio of N to the number of payload bits,

280
150

When both block coding redundancy and header overhead are considered, the upper

and equals = 1.9 at K =250.

curve shows that roughly a doubling of bandwidth is required by a T-I H-ARQ protocol in
order to deliver an image reliably within the interactive latency threshold. Comparing the
two curves, we see that most of the redundancy is due to header overhead, rather than error
correction redundancy. For example, at K = 250 bits, the per-packet header overhead is

100 bits, while the per-packet FEC overhead is only 30 bits.
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Figure 3.6 The minimum bandwidth expansion factor for a Type-l Ideal SRP
Hybrid ARQ protocol is plotted as a function of the number of input
bits K. The upper curve shows the inflation caused by the combined
overhead of headers and FEC redundancy. The lower curve shows the
bandwidth inflation due to FEC redundancy alone. The curves were
generated by Algorithm IV.

The closed-loop redundancy rates of Figure 3.6 can be compared with the open-loop
redundancy rates obtained for the best binary linear block codes in Chapter 2. First, the
algorithm of Section 3.2 needs to be applied to the appropriate range of K>193. Further-
more, this algorithm, as well as Equation (3-2) , needs to be modified to account for the
effects of header overhead, in order to achieve a fair comparison. We can redefine N in
Equation (3-2) to equal K+H+R, where R consists of the block code’s redundancy bits.
Also, the algorithm is modified to start from K+H input bits, instead of K bits. The results
of the new header-cognizant open-loop analysis can then be used for comparison. For

example, for K=200 (and BER = 102, Pcr=0.999), the open-loop system would require

about 70 redundancy bits, at an image loss rate of 103, and a delay of
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Figure 3.7 The expected number of transmissions E[A] for a Type-l Hybrid ARQ
protocol falls off rapidly as the size N of the error correcting (N,200)
code is increased. E[A] = % (assumes ideal SRP). Py is defined in
Equation (3-4) . g

N 20K 260
BW ~ 200-100 500K
ARQ system requires 27 redundancy bits, transmits images with complete reliability, and

F

= 104ms . In comparison, at X = 200, the closed-loop T-I H-

delivers the image with a delay of ~100 ms. Thus, the closed-loop T-I H-ARQ system
exhibits an improvement over the open-loop FEC system in all respects: lower redundancy
rate, higher reliability, and faster delivery.

To see how the T-I H-ARQ protocol is managing to achieve such a low FEC redun-
dancy rate of around 1.1 to 1.2, we examine Equation (3-5) . Error correction coding is
responsible for reducing the number of retransmissions E[A] required by the protocol. For
a fixed point X = 200, we plot E[A] = P-l—g as a function of the code length N in Figure

3.7. As N is allowed to increase, the error correction power of the optimal binary code

should improve, and the number of retransmissions E[A] should correspondingly fall. Fig-
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ure 3.7 shows that E[A] falls very rapidly, below a value of 1.5 within the first 30 redun-
dancy bits. An optimal (227,200) block code will create a sufficiently clean channel so that
on average only ~1.1 repetitions are needed per fixed-size packet to send one clean version
of that packet through the dirty link. Since E[A] = T“l_ for ideal SRP, then an alternative

]
interpretation is that the probability of error-free decoding of a corrupt packet will rise

above 90% by adding about 30 error protection bits. Thus, FEC coding is able to dramati- ‘

cally reduce E[A] with only a relatively minor cost in overhead.

The stairstep appearance of Figure 3.7, and the slight rising slope in each step, can be
attributed to the behavior of the error correction variable T. Recall that T is derived from
upper bounds on D,,;,,, which happen to change slowly as N is increased. For a fixed K, as
N increases the error correction power T will remain constant over a long interval of N
between increments. Each increment in T corresponds to the ability to correct one addi-
tional error, and results in a large improvement in the probability of correct packet decod-
ing, hence the visible drop in E[A]. Also, all codes along a stair step share the same 7, so
that the longest codes (farthest to the right in the figure) will be the least efficient, thereby
causing the slight upwards slope along each stair step.

While Figure 3.6 suggests that about a doubling of bandwidth is necessary to support

T-I H-ARQ delivery over a noisy link, there are several ways to reduce this bandwidth cost
N mi n(K )
K-H
decreases as the code length increases, which indicates that longer block codes can help

and make T-I H-ARQ delivery more efficient. First, we note that the upper curve

reduce the overhead penalty. Second, our analysis of T-I H-ARQ has assumed that an
(N.K) code is only applied once per packet, and therefore the header overhead is suffered
for each (N,K) encoding operation. It is possible for different sections of a packet to
undergo separate (N,K) encodings, so that the header overhead is confined to a single

(N,K) encoding, or equivalently the header overhead is thinly distributed across multiple
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encodings. Under these conditions, then the overall bandwidth expansion may be much
smaller than the doubling derived here.

Finally, we observe that several factors which we ignored in our analysis will tend to
make it more difficult for T-I H-ARQ protocols to meet the interactive latency bound. For
example, we used the loose lower bound on latency to analyze a T-I H-ARQ protocol. For
finite length image bursts, the tight bound on latency derived in Section 2.4 may be a much
better estimate of the image transfer delay. The higher delay estimate will further limit
how much FEC redundancy can be added before the interactive latency bound is exceeded.
Also, our derivations assumed that the very best binary linear codes with the maximum
permissible D,,;, were used. If instead binary BCH codes are employed, then we recall
from Section 3.3 that the error correction performance can suffer, leading to a bandwidth
inflation effect. In addition, if the retransmission scheme of the T-I H-ARQ protocol is ﬁot
SRP, or has finite window and/or buffer sizes, then the T-I H-ARQ protocol will have
greater difficulty meeting the interactive delay bound. Finally, T-I H-ARQ protocols oper-
ate with fixed FEC, and therefore have a well-known problem handling the bursty errors of
time-varying wireless channels. We will discuss this classic problem in more detail in

Chapter 6.

3.5.2 Reed-Solomon codes

In this section, we analyze RS codes within a T- H-ARQ context. In particular, we are
interested in the minimum-redundancy RS code for a given K which can deliver a frag-
mented image within the delay bound of 100 ms at severe BER’s. For RS (N,K) codes,
there are M bits per symbol, and the symbol error rate SER differs from the BER, i.e.
SER = 1-(1 -BER)M. However, the rest of the analysis is comparable to the previous
subsection’s analysis for optimal binary codes. Therefore, assuming the same parameters

definitions as before, we can rewrite the expected image transfer delay as follows:
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E[Timage] 2F- E[Afragment] * PTTfragmem (3'6)

1N
I_ 1 N-M BW K

KM T BW T T ,
> (1) -ser'- 1 -sER)™! Y (%) ser' 1 -seRy"""
i=0 i=0

i

Equation (3-6) was evaluated at 3x10"2 BER, an image size of 20 kbits, and a band-
width of 500 kbit/s. The results for a selected few values of K are shown in Table 6. We

Table 6. Minimum-redundancy RS codes embedded within a T-| H-ARQ
protocol which can deliver an image within 100 ms.

Minimum-redundancy RS BER
(N:K) code 102 3x10°2
Input Symbols K = 50 (63,50) None Found (NF)
100 (127,100) NF
150 (255,150) NF
200 (255,200) NF

only searched RS code lengths in powers of two (corresponding to primitive RS codes) up
to N=1023, equivalent to 10 bits/symbol. At 3% BER, RS codes with less than length 1023
output symbols are basically unable to deliver the fragmented image by the interactive
latency bound of 100 ms. Basically, we are near the failure point for RS codes. This means
that comparatively large percentages of FEC redundancy must to be added in order to
reduce to an acceptably low level the expected number of retransmissions per fragment
ElAfragment), Which depends on the BER. Unfortunately, increasing the FEC redundancy
inflates the bandwidth faster than retransmission delay can be reduced, so that the overall

image transfer delay is never reduced below the interactive latency bound.
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For example, consider in Table 7 what happens at K=100 input symbols. At N=127, we
find that ElAfragmeni is 217, while the overhead factor B_IW—NK only registers 50 ms of
delay. However, because the FEC is insufficiently strong, the total image delay is on the
order of tens of seconds due to the exorbitant number of retransmissions. Next, at N=255,
the number of retransmissions has been dramatically lowered to one, but the bandwidth is
expanded by a factor of ~2.5. Since our 20 kbit image will take 40 ms to transmit through
a 500 kbit/s channel, then the overall latency will just exceed 100 ms due to the FEC band-
width expansion. At N=511, there is no reduction in the number of retransmissions.
Instead, a latency penalty of 204 ms is paid in terms of bandwidth expansions, so that it
will be impossible to deliver the image with redundancy rates of 5 times or higher. The
values in the column farthest to the right do not match the product of the middle two col-

umns because of integer truncation effects not taken into account by the overhead factor.

Table 7. Contributions to delay in a T- H-ARQ protocol employing RS
(N,100) codes at 3% BER. Retransmissions and expanded
bandwidth/FEC overhead both contribute to delay.

Number of FEC Overhead Total Image
|| retransmissions factor Delay (sec)
L _ E[Afragmem] (ms)
N=127 217 50 15.8
255 1.00 102 0.128
511 1.00 204 0.227
1023 1.00 409 0.409

Some final qualifying comments should be made. In our analysis of RS codes for T-I
H-ARQ protocols, we have not considered the effect of header overhead, which compli-
cated our earlier study of optimal binary codes for T-I H-ARQ protocols in Section 3.5.1.
Also, while we have concluded that RS codes are unable to meet the stringent 100 ms
latency bound at 3% BER, Table 7 shows that a (255,100) RS code can lower the latency to

128 ms, which may be close enough for interactivity purposes. In this case, two to three
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times bandwidth expansion would be suffered. Finally, while the analytical results of this
subsection assume a constant average BER, real-world wireless links will produce a time-
varying BER which depends on the depth and frequency of fades. Though 1% BER is
arguably accepted as a design point for digital cellular voice, we lacked the measurement
data to determine whether 1-3% BER constituted a likely or unlikely occurrence over a

wide variety of indoor and outdoor wireless links.

3.6 Summary and conclusions

In this chapter, we have derived an expression (Equation (3-2) ) that determines the
(Npin-K) linear block code with ihe minimum redundancy which keeps the loss rate for a
fragmented image below a desired threshold probability. For practical reasons, this expres-
sion assumed bounded-distance decoding of FEC linear block codes, instead of maxi-
mum-likelihood decoding. This expression was evaluated for three classes of linear block
codes: optimal binary codes; binary BCH codes; and Reed-Solomon codes.

We found that moderately-sized optimal codes of input length K<100 bits required an
output length N at least ~1.5 times greater than X, i.e. a minimum-redundancy (~150,100)
code was required to deliver a fragmented image across a 102 BER channel at an image
loss rate of less than about 1 in 1000. At 3x10"2 BER, the output length N was multiplied
by a factor of about 2, i.e. a (~200,100) optimal code was required for adequate protection.

For binary BCH codes over a small range of K, we quantified how the imposition of
BCH structure weakens the error correction ability compared to optimal binary codes. For
example, at K =40 input bits, the minimum-redundancy optimal binary code for 102 BER
which adequately protects the fragmented image is a (71,40) code (~1.75 times bandwidth
expansion), while the minimum-redundancy binary BCH code at the same BER and
desired loss threshold is a (105,40) code (over 2.5 times bandwidth expansion).
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For Reed-Solomon codes, we found similarly that at least a doubling of bandwidth
was required at severe BER's. For example, at K = ~200 input symbols, the minimum-
redundancy RS code for a channel BER of 3% was a (511,~200) code. This doubling or
tripling of bandwidth was characteristic of all minimum-redundancy RS codes in the
range of K<255 input symbols. In essence, RS codes are near their point of complete fail-
ure at 3% BER. _

Finally, we have performed an analysis of a Type-I Hybrid ARQ protocol which com-
bines reliable ARQ delivery with FEC. Our analysis of RS codes from this chapter is com-
bined with our latency evaluation of ideal SRP protocols from the previous chapter. Using
the loose lower bound on latency, we found that no RS codes of length N<1023 could be
found at 3% BER for a variety of K which could lower the overall image transfer latency
below the desired interactivity threshold of 100 ms. The FEC overhead required to reduce
the delay due to retransmissions didn’t fall fast enough to compensate for the increased
delay due to bandwidth expansion.

In view of the failure of practical FEC codes at severe BER’s, we consider in the next
chapter an alternative technique which combines error-tolerant encoding and decoding of
image sources, forwarding of corrupt packet data by the underlying network, and unequal
error protection (UEP-based FEC) to convey delay-sensitive multimedia quickly to the

destination over very noisy channels.
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a4

Error-Tolerant Encoding and Decoding for
Delay-Sensitive Wireless Multimedia

Our primary objective is the design of end-to-end communication systems for suffi-
ciently rapid and sufficiently reliable transport of interactive visual multimedia across con-
nections that include wireless links. One of the major subjective criteria that must be
satisfied is that the visual information needs to be communicated quickly in order to give
the human user viewing the image at the receiver a genuine feeling of interactivity.

In this chapter, we consider how the constraint of low latency delivery forces delay-
sensitive multimedia applications to accept less than completely reliable packet delivery.
Real-time video/audio conferencing applications accept unreliable packet delivery over
the wired Internet in order to achieve low-latency packet delivery. We assert that the same
principle of accepting increased channel distortion (i.e. image distortion due to channel
impairments) for lower latency applies to interactive Web-based image browsing. Given
the additional constraint of wireless access, we show how error-tolerant image coding,
unequal error protection (UEP), source-cognizant channel decoding, and application-level
decoding of corrupt error-resilient packet data are beneficial for delay-sensitive multime-
dia operating over wireless links both in terms of lower end-to-end distortion as well as
lower perceptual delay. Our contention is that continuous interactivity with a noisy screen
whose distortion varies with channel conditions is subjectively more preferable than inter-
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mittent interactivity depending on channel conditions with a constant quality error-free

image for delay-sensitive applications.

4.1 Decreasing transport latency by tolerating packet loss

Distributed interactive multimedia applications and the network protocols that support
them are designed to provide subjectively acceptable performance under the resource con-
straints posed by the network connection. The subjective performance of the joint applica-
tion-protocol system is typically evaluated in terms of the perceived delivery time (either
roundtrip response time or one-way delay) and the quality of the received data. For inter-
active image-based applications, the performance metrics are the perceived visual
response time, i.e. how soon the image is displayed, and the perceived end-to-end distor-
tion introduced by image quantization coding and transmission errors, i.e. how “good”
does the image look. When the network connection includes a wireless link, then image
coding algorithms and packet delivery protocols are faced with the challenge of meeting
the subjective latency and distortion objectives within the constraints of limited wireless

bandwidth, a high bit error rate, and time-varying noise behavior.

4.1.1  Reliable Internet packet delivery can exceed the tolerable
latency bound

For delay-sensitive visually-based multimedia applications, reliable packet delivery
can be too slow to meet interactive latency bounds, and unreliable packet delivery alone
can introduce too much long-term distortion into the reconstructed image. Closed-loop
retransmission-based protocols implement fully reliable end-to-end packet transport but
invariably introduce latency over noisy and/or congested communication links. Distrib-
uted multimedia applications like interactive video and audio conferencing require

roundtrip response times of less than about 100-200 ms [41][132]. Our measurements of
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average roundtrip packet latencies on the Internet! range from ~5 ms on our own LAN, to
~50 ms Berkeley-Southern California, to ~150 ms Berkeley-MIT, and ~300 ms Berkeley-
London, where the observed delays will vary with distance (propagation delay), conges-
tion (queueing delay in network switches), etc. For many connections even one retrans-
mission will cause the overall delay to exceed the 100-200 ms delay bound. We observed
peak packet loss rates of ~15% for the Berkeley-Southern California, Berkeley-MIT and
Berkeley-London connections, which again vary with congestion conditions. Our mea-
surements suggest that packet losses happen frequently enough on the statistically multi-
plexed Internet that fully reliable packet delivery cannot be depended upon to deliver a
sufficiently large number of packets below the latency bounds required by conferencing
applications. In addition, most practical reliable protocols like TCP preserve the order of
delivery of packetized information, a property also known as stream-based delivery. If a
particular packet is lost and must be retransmitted, then all subsequent packets that have
already been correctly received will also be delayed until the lost packet is correctly deliv-
ered, thereby adding resequencing delay to all the packets already cached at the receiver.

4.1.2 Unreliable packet delivery for real-time video conferenc-
ing applications

Faced with these network constraints, designers of audio/video conferencing applica-
tions have chosen to forgo reliable packet delivery, and instead have opted to transmit real-
time continuous media over unreliable packet delivery protocols [83]. Low-latency deliv-
ery is achieved at the cost of compromising on the reliability of the delivered data. Impair-
ments into the transported image caused by uncontrolled channel-related distortion, e.g.

packet loss, are tolerated. Error concealment algorithms are used to mitigate the subjective
effect of lost video packets [39][70].

1. Measm'?:ems taken using the UNIX “ping” utility, sending one 6400 byte packet every second, for 100
seconds.
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Developers of interactive Web-based image browsing have also exploited this trade-off
between distortion and latency. Such delay-sensitive applications are also willing to com-
promise on the amount of distortion introduced into an image in order to obtain faster per-
ceptual response time. For example, many Web browsers now allow text and images in a
Web page to be only partially loaded before the user can jump to a new Web page. In prin-
ciple, the user is willing to accept higher distortion in the reconstructed Web page in order
to maintain a higher degree of interactivity with the displayed information. Some older
versions of Web browsers (e.g. Mosaic [56]) did not have this ability to interrupt the load-
ing of a graphics-intensive Web page. Frustrated users were either forced to wait for reli-
able delivery of the entire possibly image-laden Web page, or they could use an option that
a priori suppressed delivery of any image. Neither option was particularly attractive.

The same subjective trade-off of interactivity and distortion has been applied to the
images that are embedded within a Web page. Web-based image browsers have employed
progressive source coding methods, also called progressive image transmission (PIT)
algorithms [138], in order to lower the perceptual delay seen by the end user, at the cost of
tolerating greater initial distortion. Both partial loading of Web pages and progressive
image coding represent examples in which distortion is introduced by some form of lossy

quantization of the original source data in order to improve the perceived interactivity.

4.1.3 Unreliable packet delivery for interactive Web-based
image browsing

While progressive image coding can help reduce the perceived delay, current versions
of Web browsers implement this progressivity on top of a reliable packet delivery protocol
[115]. As noted earlier, real-time video conferencing applications have already come to
the conclusion that reliable packet delivery cannot dependably meet their subjective delay

constraints over multi-hop Internet connections and have therefore opted for unreliable
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packet delivery. Since interactive bursty-media applications like image browsing share
essentially the same 100-200 ms delay constraints as video conferencing applications, and
generate the same volume of traffic over the duration of a single image burst, then it is our
contention that a distributed delay-sensitive image browsing application can only hope to
provide consistent interactivity via an unreliable packet delivery protocol over an end-to-
end Internet connection!. Previous work has also suggested that image response time can
be improved by tolerating Internet packet loss [137]. Over noisy access wireless links, it is
even more uncertain whether reliable packet delivery can hope to provide consistent inter-
activity. Again unreliable packet delivery appears to be the most reasonable option for
delay-sensitive media.

Properly designed image encoding and packetization algorithms combined with error-
concealment algorithms should permit interactive image browsers to tolerate the effect of
channel distortion introduced by an unreliable packet protocol. In Figure 4.1, we demon-
strate how an intelligent packetization algorithm can help mitigate the effect of lost pack-
ets. First we explain the encoding process, before describing the packetization algorithm.
An 8 bits/pixel grayscale image is divided into 8x8 blocks. Each block is transformed into
the frequency domain using a Discrete Cosine Transform (DCT). The resulting DCT fre-
quency coefficients F(u,v) are then quantized to the number of bits shown in the quanti-
zation matrix in Figure 4.1. The quantized DCT image is logically transmitted across 5
channel which introduces packet losses. An inverse DCT transform is applied to the quan-
tized frequency coefficients at the receiver in order to reconstruct the quantized DCT
image.

The middle image shows the effect of lossy quantization on DCT coefficients (no
packet losses). The quantization matrix removes high frequency components (also called

zonal coding), which appears to be reasonably tolerable for natural images (Enya, San

1. It should be clear that unreliable packet delivery is intended for transport of images and not text.
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Evening sky/North America
=

Initial 8 bits/pixel grayscale
image

Quantized DCT image @ 0.75 bpp.
Each DCT frequency coefficient is
quantized to the number of bits shown.
(DC coefficient is in upper left corner)
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Figure 4.1 The effects of quantlzatlon and packet loss on a DCTcoded grayscale image
are shown. The original 8 bits/pixel image (top) is quantized to 0.75 bits/pixel (middie
Image) using the quantization matrix for frequency coefficients on the right. The bot-
tom image suffers from packet loss of some of the quantized DCT coefficients. Fre-
quency coefficients from the same 8x8 block are placed In different packets. The
coefficients corresponding to the 1’s In the drop matrix are assumed to be the only
ones lost during transmission. Packet loss of these few AC coefficients (recon-
structed at their average value) does not appear to be too objectionable for DCT-
coded natural images. Both natural and embedded text/graphic images are shown.
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Francisco) but does appear to adversely affect the quality of embedded text/graphics
images with high frequency edges (Hale-Bopp). The lowest frequency DC coefficient was
quantized uniformly. All other AC frequency coefficients were non-uniformly quantized
according to the following rule. We calculate each coefficient’s mean p(u,v) and average
absolute deviation from the mean AAD(u,v) = ; 1. |F(u, v) - w(u, v)|, where N is
the total number of blocks in the image. Two quan:iI;a:iZ‘; levels were reserved for extreme
variations of AC coefficients at +5- AAD(u,v) while the remaining quantization levels
were uniformly distributed between [2.5:AAD(u,v), -2.5 - AAD(u, v)]. This simple non-
uniform quantization scheme improved the quality of the reconstructed image over uni-
form quantization of both AC and DC coefficients. This is because non-uniform quantiza-
tion is based on the input signal’s statistics and generally produces a smaller error variance
in the quantized signal than uniform quantization [60]. More elaborate optimal Lloyd-Max
non-uniform quantization was not attempted [102]). The matrix does not contain any 1-bit
quantization components because we found that a noticeable amount of graininess due to
quantization noise was introduced throughout the image. The fixed quantization matrix
results in 0.75 bits/pixel, or about 11:1 compression.

If all DCT frequency coefficients from the same block are placed in the same packet,
then a lost packet will cause “holes™ to appear in the reconstructed image for each block
that was contained in the lost packet. Our subjective experimentation has shown that
spreading the effect of channel noise across an image is more acceptable than concentrat-
ing the distortion into “holes” in the displayed image. A more intelligent packetization
algorithm would distribute the frequency coefficients from the same block across different
packets. Similar approaches have been developed for packet video [131] and for pack-
etized still image delivery [137]. A single packet loss will cause some coefficients from
many blocks to be lost, but each block will hopefully have enough surviving coefficients to

reasonably estimate the affected image block. We can emulate the effect of packet loss on
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such a system by dropping sets of coefficients. Our error concealment algorithm consisted
of replacing the lost frequency coefficients with a pre-computed average value based on
image statistics that differs for each coefficient. However, analysis of the mean and aver-
age absolute deviation of each frequency coefficient showed that all the AC coefficients
had a mean value very close to zero. The error concealment strategy can be simplified and
made image-independent by zeroing lost AC coefficients.

The lower image in Figure 4.1 illustrates how dropping the four coefficients indicated
in the dropping matrix affects the reconstructed image. As expected, the results are gener-
ally blurrier due to the removal of even more high frequency information. However, the
natural images are largely intact and decipherable. Figure 4.1 demonstrates that packet
loss can indeed be tolerated when DCT coefficients are intelligently interleaved across dif-
ferent packets, though the method is only effective when the lost components are higher
frequency AC coefficients and not the lowest frequency DC coefficient.

Another method of compensating for packet loss is to code the image in such a way
that geographical information is naturally spread out into each packet due to the coding
technique. For example, subband image coding separates an image into subsampled fre-
quency subbands, and is usually applied more than once to generate multiple layers of
multiresolution encoded information [102]. Each frequency subband in each resolution
layer naturally contains geographical elements from every region of the image. Normal
sequential packetization will naturally place these subbands into different packets. Loss of
a single packet that contains one or more subbands will create an effect that resembles Fig-
ure 4.1 in the sense that no “holes” will appear in the reconstructed image, only a general
blurring effect as high frequency subbands are lost. Subband coding with sequential pack-
etization is useful for dealing with packet loss that corresponds to high frequency sub-
bands, but not for the lower frequency “LL” subband. Hence, packetization algorithms

have been proposed that scatter components of the “LL” subband across different packets
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[76). Error concealment algorithms can then be applied to further improve the error resil-
ience of subband encoding and intelligent packetization.

Finally, even though subband coding and DCT frequency coefficient interleaving try to
avoid the creation of “holes” in the reconstructed image, some elaborate error conceal-
ment algorithms deal directly with this problem of lost image blocks. Advanced interpola-
tion operations that use surrounding blocks are capable of reconstructing a good
approximation of both the DC component and the high frequency edges in lost blocks
[157].

4.1.4 Erasure codes

We describe briefly an FEC technique called erasure coding that has been proposed to
combat Internet packet loss. Erasure coding is a form of FEC in which B blocks of user
data (each block of length W words) are coded into N packets (each packet of length W
words), where B <N . The erasure code has the property that the original B blocks of user
data can be recovered from any B coded packets. Therefore, up to N-B packets can be lost,
or erased, without affecting recovery of the original B blocks of data.

While erasure coding has been proposed to cope with packet loss on the Internet [2], it
is ineffective in dealing with packet corruption over a noisy wireless link. Many of the era-
sure-coded packets will likely suffer some bit corruption when the BER is high. The error
correction ability of erasure codes is focused on locating and correcting erasures. Conse-
quently, much of the ability to correct corrupt bits is sacrificed. Corrupt packets that have
been strictly erasure-coded cannot be decoded at the receiver due to the assumption that
received packets will be error-free. The corrupt packets would either need an additional
layer of FEC to protect against bit corruption, or perhaps a very long Reed-Solomon code

which could simultaneously handle both error correction and erasure detection and correc-
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tion. In the absence of such error correction, erasure-coded packets would be highly inef-

fective over an Internet connection with a wireless access link.

4.2 On the traditional separation of compression algorithm
design from network/error protection design

In this section, we consider the traditional approach of separating the design of com-
pression algorithms (source coding) from the design of the network’s protocols and other
error protection functions (channel coding). This approach is also called independent
source and channel coding. The background provided here will help us compare joint
source/channel coding to independent source and channel coding over wireless links in the
next section.

The rationale behind the principle of separate source and channel coding is derived
from Shannon’s separation theorem, also called the channel coding theorem [27]. The the-
orem states that transmission of the source (e.g. image) through a noisy channel (e.g. wire-
less link) can be made arbitrarily close to reliable (arbitrarily close to zero probability of
transmission error) as long as the source’s information rate/entropy is less than the infor-
mation-theoretic channel capacity. The source coder’s primary responsibility is to com-
press the input data below the channel’s capacity, and the channel coder’s primary
responsibility is to adequately protect the compressed data up to the arbitrary limit of
channel distortion tolerated by the source. Thus, the source coder’s compression algorithm
can be designed independently of all characteristics of the downstream channel except its
capacity. Assuming that the post-compression entropy is less than the channel capacity,
then the channel coder can design its FEC andfor ARQ protocols independent of any
information about the upstream source except its maximum tolerance for channel distor-

tion. The separated source and channel system is depicted in Figure 4.2. One consequence
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Figure4.2 The four components of an Independent source and channel coding sys-
tem: an aggressive source compression algorithm; a uniform FEC/ARQ
channel encoder; an FEC/ARQ channel decoder; and source decompres-
sion. If reliable transmisslon Is the only concern, then ideally the only chan-
nel information used in the source coder’s design is the channel capacity.
The only source information used In the channel coder’s design Is the toler-
ated probability of transmission error.

of this separability is that there is no need to design error tolerance into the compression
algorithm, since the channel coder can already guarantee an arbitrarily small probability of
transmission error using FEC and/or ARQ if the source entropy is less than the capacity.
While the separation theorem addresses the issues of information rate (source com-
pression followed by channel coding redundancy) and distortion (source coding intro-
duces controlled distortion while channel coding protects against uncontrolled distortion),
it does not deal with the third dimension of delay. In order to guarantee an arbitrarily small
probability of transmission error, the separation theorem basically assumes that the source
coder/decoder and channel coder/decoder can all be arbitrarily complex and that all can
take an arbitrarily long time to implement compression and error protection respectively.
Practical compression algorithms and network FEC/ARQ mechanisms are designed inde-
pendently of one another under the separation principle, but typically also have to operate

under delay constraints imposed by the user. The approach taken to minimize the overall
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delay in such de facto separated systems is to have the source coder and channel coder
independently minimize their individual contributions to delay.

From the source coder’s perspective, delay is minimized by minimizing the bit rate of
the compressed data. Lossy quantization and lossless statistical coding are applied in tan-
dem to reduce the information rate of the coded source down to the minimum rate which is
still subjectively tolerable. For many images, the subjectively tolerable distortion limit is
taken as the Just-Noticeable Distortion (JND) threshold [20], which is the threshold below
which reconstruction errors are rendered imperceptible. The theoretically minimum bit
rate corresponding to a given distortion limit is called the rate-distortion limit [47][102].
In practical systems, minimizing the bit rate subject to the JND threshold helps to mini-
mize the transmission delay and also hopefully compresses the source’s bit rate below the
channel’s capacity so that the separation theorem holds. A consequence of minimizing the
bit rate at or near the rate-distortion limit corresponding to the JND threshold is that cor-
rupt information tends not to be very useful at the receiver.

From the channel coder’s perspective, delay is minimized by increasing the operating
speed of network switches, increasing the bandwidth of the network trunk lines (e.g. opti-
cal fiber), expanding the buffer sizes in network switches (which reduces packet loss and
therefore retransmission-based latency), improving signal processing techniques to make
each link in the connection appear less noisy, and designing stronger realizable FEC codes
that operate at minimal redundancy.

The independent source and channel coding approach has been implicitly extended to
wireless access to the Web [77]. In this approach, images are heavily compressed for
delivery over the wireless link in order to reduce the transport latency over a bandlimited
wireless link. The implicit assumption is that heavy FEC will keep the channel relatively
clean so that heavily compressed error-sensitive data are still useful at the receiver. In the

next section, we show that heavy compression/heavy FEC does not necessarily equate
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Figure 4.3 The four components of a joint source/channel coding (JSCC) system: an
error-tolerant source encoder; an unequal error protection (UEP) channel
encoder; a source-cognizant channel decoder; and an application-level
source decoder that tolerates packet loss and processes corrupt informa-
tion. The source shares information about Its statistics and error sensitivi-
ties to the channel encoder and decoder. The channel shares Information
about liself to the source encoder and decoder. In the simplified case, a
static description of the channel is sufficient for designing the source coder
and error concealment algorithms at the source decoder. Compare to Figure
4.2

with low latency delivery over a heavy BER wireless link. Constraints on complexity and
the demand for speedy operation limit the power of FEC, causing FEC to fail and resulting
in a large image transfer delay at a certain BER. For the same BER, error-tolerant image
coding/decoding can still deliver an image successfully with smaller delay since retrans-

missions are unnecessary.

4.3 Joint source/channel coding

In this section, we investigate the motivation for each of the four components of joint
source/channel coding (JSCC) shown in Figure 4.3. Given complexity and delay con-
straints on the design of FEC channel coding as well as compression algorithms, and given

the often severe raw BER suffered over nonstationary wireless links, then error-tolerant
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coding combined with loss-tolerant and corruption-tolerant decoding of noisy payload
information can be shown to produce images with lower end-to-end distortion than the
classic approach of aggressive image compression, aggressive FEC channel coding, and
decoding of only error-free information. We demonstrate that robust image coding can
achieve a reasonable degree of compression and yet can be tolerant to high BER’s in the
absence of any FEC on the compressed data. Therefore, corrupt packets bearing error-
resilient data are inherently useful and need not be thrown away. Over wireless links, the
combination of robust image coding and application-level decoding of corrupt packets can

help reduce the end-to-end distortion as well as reduce the perceptual delay

4.3.1 Introduction
The separation theorem discussed in Section 4.2 was derived under the following three
assumptions:

* stationary memoryless channels

* unconstrained complexity of the compression/decompression algorithms and FEC/

ARQ error protection techniques

* unconstrained delay in the source and channel coders and decoders

If any of these assumptions underlying the separation theorem are violated, then it
becomes questionable whether the best design policy is completely separate source and
channel coding. Recent work has suggested that care should be exercised before applying
the separation theorem to nonstationary channels [142]. Wireless links that suffer time-
varying shadowing and time-varying co-channel interference fit into this category of non-
stationary channels. Moreover, since our application of interest is interactive image brows-
ing over time-varying channels with constraints on the complexity and delay of
compression and network FEC/ARQ, then each one of the three assumptions of the sepa-

ration theorem is violated.
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In addition, the appropriate quality criterion in our case is a subjective dual function of
delay and distortion. For example, progressive image transmission is a technique which
exploits the human user’s subjective tolerance for significant distortion in an initial version
of an image provided that the end user knows that the image will improve eventually in
quality over time. Progressively reliable packet delivery discussed in Chapter 5 is a similar
example which introduces significant channel-induced distortion into an initial image, and
follows that up with a cleaner image at some later time. Such subjective tolerances and
their associated metrics are not addressed by the separation theorem.

An approach called joint source/channel coding(JSCC) can be shown to outperform
separate source and channel coding when one or more of the theorem’s assumptions are
not satisfied. The JSCC channel coder is designed with some knowledge of the source’s
statistics in mind, and conversely the JSCC source coder is designed with some awareness
of the channel’s error statistics. In comparison, the only knowledge shared between inde-
pendently designed source and channel coders are the channel capacity and tolerable
channel distortion limit.

The four major components of a JSCC system are pictured in Figure 4.3. A robust
source encoder generates error-tolerant data, which is then passed to a channel coder
which implements unequal error protection (UEP), protecting the more sensitive source
bits with stronger error protection. After corruption from the transmission channel, the
FEC channel decoder attempts to reconstruct a best estimate of the noisy data using in-
depth knowledge of the source statistics. Finally, a corruption-tolerant and loss-tolerant
source decoder operates on the possibly noisy decoded bits. The information shared
between the source and channel is also shown, and will be described later as we discuss
each of the components. Note that there is no constraint in Figure 4.3 on the layer at which
the channel encoders and decoders should be placed. This permits data-link and physical

layer source-cognizant channel encoding and decoding that can provide some form of
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lower level variable quality-of-service to the application’s data. In addition, end-to-end
FEC/ARQ can also be practiced simultaneously if desired.

In this section, we discuss how the practical constraints of complexity, delay and non-
stationary wireless channels motivate the development of each of the four components of
JSCC. We contend that a JSCC system that practices robust image coding and forwards
corrupt error-tolerant information to the receiver is a better means for achieving low-
latency and sufficiently reliable delivery of visual multimedia across time-varying wireless
channels than the traditional separated approach of aggressive compression and aggressive

channel coding.

4.3.2 Unequal error protection for imperfectly compressed
data

Standard compression algorithms typically are unable to fully compress images,
speech, and video down to the rate-distortion limit, due to constraints on the complexity
and speed of practical software and/or hardware encoders and decoders, and also due to
imperfect knowledge of the input image/speech/video statistics. This means that the com-
pressed data still contains some statistical correlation after coding. For example, the JPEG
image compression standard still leaves some residual redundancy after aggressive lossy
and lossless compression. Differential encoding of DC DCT coefficients does not com-
pletely remove correlation among neighboring DC coefficients [113]. There is also resid-
ual correlation between DC and AC DCT coefficients in the same block [135].

Also, most motion-compensated DCT video coding standards like MPEG-2 and H.261
leave residual redundancy as a compromise for practical implementation. For example,
computing DCT’s on an 8x8 block basis is done for the sake of implementation simplicity.
However, ideally a DCT should be computed on the entire image to achieve the greatest

compression, since this will most comprehensively exploit spatial redundancy and pack
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energy in the lower frequency coefficients. In addition, the motion compensation used to
generate differential frames typically only uses a single frame to predict the current frame.
Ideally, we would like the entire sequence of video frames, or at least two or three frames,
in order to generate a more accurate motion-compensated prediction. Again, complexity
constraints force the video coder/decoder to compromise, resulting in residual redundancy.
Even if there were no complexity constraints, there is still a delay constraint for real-time
applications. In real-time video conferencing, the motion-compensated predictor cannot
queue up more than a few frames, which is about 60-90 ms worth of delay, before a coded
frame must be transmitted in order to meet the conferencing application’s latency bound
of a couple hundred milliseconds. This delay constraint forces the compression algorithm
to compromise and leave residual redundancy in the coded video.

The residual source redundancy left by imperfect compression means that some code-
words are more sensitive to channel errors than other codewords. In this distortion sense,
some bits are perceptually more important than others. All bits are not equal. A natural
approach to channel coding is to place stronger error protection on the perceptually more
important source bits and weaker error protection on the perceptually less important
source bits. This approach to channel coding is called unequal error protection (UEP).
Since the channel coder has explicit knowledge of the source’s different error sensitivities,
then clearly UEP is a form of JSCC.

Recent studies have compared the performance of UEP linear block codes to more tra-
ditional equal error protection (EEP) block codes when both are applied to compressed
images with residual redundancy transmitted across noisy channels [38)[126]. UEP and
EEP block codes with approximately the same redundancy rate are applied to the same
coded image. The error-protected images are then corrupted at the same BER. Both objec-

tive measures (peak signal-to-noise (PSNR) ratios) and subjective measures (reconstructed
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image quality) show that the JSCC approach of UEP outperforms the EEP channel coding
approach that is designed independently of the source’s statistics.

While digital block and convolutional codes offer one way to implement UEP, another
way to support variable reliability is to adjust the analog power of the signal according to
the error sensitivity of the data. Several authors have shown that a QAM signal constella-
tion that is designed with knowledge of the distribution of a vector quantized Markov
source (i.e. a source with residual redundancy) considerably lowers end-to-end distortion
compared to a standard system that employs independently designed VQ and QAM modu-
lation signal sets [80][140]. Again, JSCC via UEP outperforms independent source and
EEP channel coding for practically compressed sources.

UEP has been implemented or proposed as a channel coding solution for several real-
world systems. Working examples of UEP can be found in both the GSM and IS-54 digital
cellular systems. The speech coder in both systems generates two classes of audio data
that are error-protected differently. In both systems, the perceptually most important audio
bits are protected with a rate % convolutional error correction code, while the perceptu-
ally least important bits are left completely unprotected [85]. Another example of UEP can
be found in a proposal for the design of broadcast digital HDTV [104]. Hierarchical mod-
ulation is proposed as a means of providing UEP for multiresolution broadcast of digital
HDTYV, so that users far away from a broadcaster can still obtain a coarse version of the
HDTYV signal while users nearer to the broadcaster can obtain a complete “coarse+fine”
HDTYV signal.

4.3.3 Source-cognizant channel decoding for imperfectly com-
pressed data
In addition to JSCC UEP encoders, JSCC channel decoders have also been designed

to exploit a source’s residual redundancy. Recent studies have shown that sophisticated
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soft-decision Viterbi decoders that exploit knowledge of the source’s correlated behavior
can substantially improve the quality of a reconstructed image compared to traditional Vit-
erbi decoders that ignore all source characteristics [50][96][114]. Sources with residual
redundancy exhibit memory or correlated behavior, much like the output of convolutional
coders with memory. Hence, the path metric of Viterbi decoding, normally optimized for
decoding sequences with convolutionally encoded memory, can be modified to incorpo-
rate additional knowledge of source sequences with memory. Certain sequences of source
codewords may be closely correlated due to spatial or temporal relationships, so that cer-
tain paths through the trellis will be more likely than others once the source statistics are
taken into account. Again, the conclusion is that JSCC outperforms separately designed
source and channel coders and decoders when there is residual redundancy to exploit at
the decoder.

4.3.4 Error-tolerant image coding over noisy channels with
constrained-complexity FEC

In the previous section, residual redundancy after compression was viewed as an
unavoidable necessity dictated by practical constraints on complexity and delay. Recent
work has added the constraint of very noisy channels to the constraints on delay and com-
plexity. Xu, Hagenauer, and Hollmann show that it is in fact desirable to purposely leave
residual redundancy in a coded image over very noisy channels rather than aggressively
compress the data to remove all possible redundancy [155]. The authors compare a base-
line JSCC approach to a second approach which practices further compression and FEC
on the compressed data. In the first JSCC approach, a quantized DCT encoder leaves some
redundancy in the AC coefficients. A UEP channel encoder is applied to the quantized
data, and specialized source-cognizant Viterbi decoding helps reconstruct the corrupted

image data. In the second more traditional approach, the AC coefficients in the quantized
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DCT data are further compressed using Lempel-Ziv variable-length coding, and then rate

~——

{ “convolutional error protection is applied. At the decoder, standard Viterbi decoding
helps reconstruct the noisy image data. In order to compare the two techniques, the overall

~ sum of the source and channel coding rates in bits/symbol is constrained to be constant
across both the JSCC and independent source and channel coding approaches. The pri-
mary difference between the two techniques is that the JSCC approach devotes a higher
proportion of bits to source coding than channel coding. The reconstructed images show
that the traditional approach of aggressive compression and aggressive FEC suffers con-
siderably more channel distortion over very noisy channels than the JSCC approach of
moderately compressed image coding, UEP, and source-cognizant channel decoding given
the same overall encoding rate.

The intuition behind this result is that the constraint on the overall encoding rate limits
the aggressiveness of FEC, causing the channel coding to fail frequently at noise levels at
which error-tolerant coding is still comparatively beneficial. For example, the failure point
of practical linear block codes (e.g. binary BCH and Reed-Solomon codes) limited to
lengths less than about a few thousand bits long and code rates greater than about i is
approximately 5x102 BER. Around this range of BER, the “waterfall” curves for linear
block codes show that the post-error correction BER is little better than the original chan-
nel BER [87] (and sometimes worse!). For example, the failure point for the (63,47) RS
code employed by the Cellular Digital Packet Data (CDPD) standard’s MAC layer [122] is
approximately 2x102 BER. We believe the same reasoning can be extended to practical
convolutional codes which are limited by small constraint lengths (5 for GSM, 6 for IS-54,
9 for IS-95 CDMA) and code rates exceeding % on the forward link in all conventional
digital cellular systems [105]. For block codes, once the BER nears 5x10°2, then the com-

pressed data will essentially become unusable. On the other hand, for channel error rates

of this approximate severity, error-tolerant coding can ideally still exploit residual source
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/ - undancy, i.e. 95% of bits are viewed as ideally still being useful at 5x102 BER, and

99% of bits at 102 BER. Consequently, for multimedia applications that desire continuous
operation over a wide range of BER’s and for practical networks that have limited FEC
capability to combat relatively severe fading on wireless channels, the approach of error-
tolerant image coding integrated with JSCC channel coding and decoding offers the low-
est-distortion solution for encoding and decoding multimedia over wireless links.

Finally, we observe that there are two ways to achieve a reduction in bit rate: lossy
compression and lossless statistical compression. Lossy image coding achieves its com-
pression through dropping of perceptually unimportant information and through fixed-
length scalar and vector quantization of the remaining information. This approach limits
error propagation. Lossless compression removes statistical correlation in the data and is
synonymous with variable-length arithmetic or Huffman coding. This approach will
increase the error sensitivity of the data. Error-tolerant coding typically will concentrate
on lossy techniques and limit the contribution from lossless compression. For example, the
general approach to error-tolerant DCT or subband coding will drop perceptually unim-
portant higher frequency coefficients or subbands, and then apply fixed-length vector
quantization to the remaining lower frequency coefficients or subbands. In the next sec-

tion, we demonstrate an example of error-tolerant DCT compression,

4.3.5 Application-level decoding of corrupt image data for
noisy channels

The previous section demonstrated the desirability of error-tolerant image coding
when the channel BER is severe and practical FEC is constrained in its error correction
ability. For a source that has been encoded in an error-tolerant manner, the error-resilience
of the coded data will support decoding of corrupt packet payloads at the receiver. In a
noisy packet, only a fraction of the codewords are typically in error while the majority of
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codewords are free of bit errors. The error-resilience of the coded data will localize any
visual artifacts caused by decoding of corrupt codewords. The robustness of the data pre-
vents errors from propagating. As a result, error-tolerant source decoders can extract a
great deal of useful information, based on the error-free segments of the payload, from a
noisy packet.

For example, a compression scheme that generates fixed-length codewords after quan-
tization would allow an error-tolerant decoder to make use of nearly all of the error-free
codewords in a noisy payload. Consider the image from Section 4.1 that is transformed by
a DCT and non-uniformly quantized using the fixed bit allocation matrix shown in Figure
4.1. This is an example of robust image compression, because some residual redundancy
is left within the coded image (e.g. neighboring DC coefficients are not differentially
encoded). We map the non-uniform quantization levels onto binary codewords using a nat-
ural binary code (NBC)! [60]. For example, if two bits are devoted to a frequency coeffi-
cient, then the lowest magnitude level is assigned to ‘00’ and the highest to “11°. All coded
bits are corrupted at 102 BER, a commonly referred to design point for cellular voice
[50][149]. No FEC is applied. At the receiver, the error-tolerant decoding procedure uses
every received fixed-length codeword, whether corrupt or not, in the inverse DCT.

The resulting noisy reconstruction is shown as the top image in Figure 4.4. The major
visible artifacts in the image correspond to corruption of the DC coefficients (not to lost
packets). Despite the heavy BER, lack of FEC, and error sensitivity due to compression
down to 0.75 bpp, our error-resilient image coding technique permits the decoder to recon-
struct a reasonable approximation to the transmitted image. Errors are localized due to the
fixed-length coefficients, which limit the ability of errors to propagate throughout the

entire image. For example, an error in one DC coefficient does not propagate to cause

1. Alternative mappings that would produce less distortion are the Folded Binary Code (FBC) and Gray
code [60].
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0.75 bpp quantized DCT image
corrupted @ BER 1072. Corrup-
tion of DC coefficients is
responsible for the worst arti-
facts.

Corrupted image @ BER 1072
with simple error concealment.
Sudden isolated jumps in DC
coefficients are assumed to be in
error and are replaced by a local
DC average.

Corrupted image @ BER 3x1072
with simple DC error conceal-
ment.

Figure 4.4 A quantized DCT Image Is corrupted at BER 102 (top image). The Image Is
encoded by a DCT followed by the fixed quantization matrix shown In Figure
4.1 and the frequency coefficients are then corrupted. The most objectionable
artifacts are due to corruption of DC coefficlents. A simple error concealment
algorithm based on DC interpolation can eliminate most of the worst artifacts.
If the difference between a DC coefficient and each of lts eight neighbors
exceeds a threshold, then the DC coefficient is replaced with an average,
thereby removing completely isolated jumps in DC values.
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errors in other DC or AC coefficients. This localization of errors permits the application-
level error-tolerant decoder to extract all of the error-free codewords. Consequently, a rea-
sonable facsimile of the transmitted quantized DCT image can be reconstructed despite
the heavy BER.

If corrupt packets bearing error-resilient data were discarded by the underlying net-
work, then all of the error-free codewords in each noisy packet would be thrown away.
Typically, the proportion of usable error-free codewords will far exceed the fraction of cor-
rupt codewords in a noisy packet. For example, if each DCT coefficient were quantized at
8 bits/coefficient, then the overall coefficient error rate would be about 8% given 1% chan-
nel BER. If each coefficient were quantized according to the bit-allocation matrix of Fig-
ure 4.1, then the overall coefficient error rate is closer to 4% given 1% channel BER. In
either case, well over 90% of the AC and DC coefficients in each noisy packet are still
usable on average by the decoder at a 1% BER. Channel distortion will be needlessly
introduced into the reconstructed image if any coefficients, especially DC coefficients, are
unnecessarily thrown away by the underlying wireless network. Hence, we contend that
corrupt packets identified as containing error-resilient data should be forwarded by the
underlying wireless network to the application for error-tolerant decoding.

A survey of the literature on robust image coding confirms that error-resilient images
corrupted at 10 BER are still presentable despite the lack of any FEC error protection.
This has been shown for a variety of DCT [139], subband [18][107], and VQ [58] source
coding techniques that achieve 0.5-1.0 bpp compression. One property common to each of
these error-resilient compression algorithms is that source-based redundancy is distributed
throughout the coded data. An alternative approach to error-resilient coding is to concen-
trate source-based redundancy in a few resynchronizing codewords whose job is to stop
error propagation. For example, JPEG image coding first compresses the data, and then
allows the insertion of uniquely identifiable byte-aligned reset markers between groups of
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blocks of entropy-coded DCT coefficients in order to stop error propagation [95]. Other
forms of synchronizing codewords have been described for standards like Fax, H.261
video and MPEG video [74].

While the corrupted image in Figure 4.4 conveys a significant amount of information
despite the visual artifacts, its presentation can be improved significantly by applying error
concealment. Our knowledge of image statistics, specifically spatial correlation, can be
combined with the noisy received data to detect and mask erroneous image artifacts. For
example, we know that neighboring DC coefficients are typically highly correlated. Sud-
den isolated changes in the DC coefficient are statistically unlikely, and can be interpreted
as being erroneous.

A simple error concealment mechanism resembling median filtering was applied to the
DC coefficients only. If the difference between a DC coefficient and each of its eight clos-
est DC neighbors exceeds a given threshold, then we replace the DC coefficient with an
average of the eight neighboring blocks’ DC coefficients. We applied this error conceal-
ment filter to the corrupted image and the result is shown as the middle image in Figure
4.4. Our elementary filtering removes most of the worst artifacts from the image, leaving
only a few DC artifacts and various AC-related artifacts. More advanced concealment
algorithms could be applied to detect and correct irregularities in AC coefficients, to fur-
ther reduce the effect of channel distortion. Error concealment algorithms have also been
applied to heavily compressed JPEG images, and, in conjunction with resynchronizing
markers, have been shown to significantly improve the quality of the reconstructed image
in the presence of channel noise [74][148]. We observe that throwing away corrupt packet
payloads will not only discard decodable information, but will also hinder error conceal-
ment by reducing the amount of error-free information available at the receiver for mask-

ing operations like spatial interpolation.
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Several precedents exist for processing of corrupt information in today’s digital wire-
less systems. As we noted in Section 4.3.2, both the IS-54 and GSM digital cellular
TDMA standards employ UEP on compressed audio data [36][85]. The perceptually more
important speech bits are protected via a rate % convolutional coder, while the perceptu-
ally least important speech bits have no error protection, not even error detection. There-
fore, there is no means for the speech decoder to know whether the perceptually least
important bits are corrupt or not. Hence, possibly noisy data will be used in the audio
reconstruction algorithm, much like noisy frequency coefficients were used in our inverse
DCT example.

Application-level decoding of corrupt information will likely represent the primary
practical means of realizing the benefits of JSCC on the decoding side of a noisy connec-
tion. Source-cognizant channel decoding described in Section 4.3.3 depends upon the
channel FEC decoder having in-depth knowledge of the source’s statistics. However, the
multiple protocol layers separating the channel decoder from the application-level source
decoder will likely prevent the channel decoder from obtaining explicit knowledge of the
source’s statistics. However, application-level decoding of corrupt packet data can be
applied as a surrogate to source-cognizant Viterbi decoding due to the similarities in func-
tion. Both approaches attempt to reconstruct the best possible estimate of the transmitted
image data given a noisy received data stream and given in-depth knowledge of the
source’s statistics. The difference is that source-cognizant Viterbi decoding operates on
soft-decision information, which is more efficient, while application-level decoding of
corrupt packets operates on hard-decision bits. The resemblance is close enough for us to
contend that application-level processing of corrupt packet payloads can help to minimize
end-to-end distortion in a JSCC system in much the same manner as source-aware channel

decoding of robust data.
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4.3.6 Forwarding corrupt packet data to enhance the per-

ceived interactivity

Our analysis of JSCC in preceding sections of this chapter has established that the
combination of error-tolerant encoding, UEP, and error-tolerant decoding of corrupt
packet data reduces the end-to-end distortion compared to an independent source and
channel coding approach when the wireless channel is very noisy and both FEC and com-
pression are constrained in their complexity and delay. One of the major implications of
the JSCC approach is that the perceived interactivity of delay-sensitive distributed multi-
media applications will be relatively continuous over a wide range of BER’s, while the dis-
tortion suffered by packetized images will be vary according to channel conditions.
Forwarding of corrupt packet data to the application for decoding allows the end user to
interact almost immediately with a potentially noisy image, instead of having to wait for
an error-free version of the image to arrivel. The end user will perceive a relatively con-
stant transport delay due to the continuous interaction. The impact of time-varying nature
of the wireless channel will be on the quality of the displayed image, which will degrade/
improve gracefully as channel conditions worsen/improve.

Compare this continuous interactivity/variable distortion approach to a wireless sys-
tem whose focus is on low-distortion delivery. Such a system throws away corrupt packet
data and relies on either link-layer or end-to-end retransmissions to recover discarded
packets. The end user must wait for the underlying network to reliably deliver each packet.
Such a system provides constant minimum-distortion service at the cost of variable delay
over a time-varying wireless channel. The JSCC design philosophy of forwarding corrupt
packets in order to provide continuous interactivity/variable distortion is arguably a better

fit for delay-sensitive applications than the intermittent interactivity/minimum-distortion.

1. Forwarding of corrupt packet data is only designed for natural or pre-rendered artificial images, and not
for plain text or graphics drawing commands.
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First, we want to establish that forwarding packets with corrupt payloads reduces the
delay close to the interactive latency bound of several hundred milliseconds. Recall from
Chapter 2 that we calculated the loose lower bound on the image transfer latency using
ideal SRP. An image of size J bits was divided into F packet fragments, each of length é
bits. Define the channel bandwidth as BW, probability of bit error as BER, and header size
per packet as H. Let E[N ] represent the number of times on average that a fixed-
size packet must be retransmitted. Let PTT pqcke; represent the time required to transmit a
packet (payload + header bits) once over a link. In Chapter 2, we showed that the average
amount of time to reliably transmit a packetized image E[T nag.] was lower bounded by

E[T nage] 2 F *E[N pgepe,] - PTT 4-1)

packet

| I+F-H
(1 -BER)(’£’+H) o

By forwarding packets with corrupt payloads, we are in effect requiring that the ARQ
protocol only needs to ensure that the headers on packgts are free from errors. Therefore,
the BER factor that triggers the retransmissions is only dependent on the header size, not
the payload size % . The revised average delay required to reliably transmit an image that

only needs the headers on all packets to be error-free is given by

1 I+F-H

ElT iuage] 2(1 -BERY  BW

4-2)

Assume that the image size / is 20 kbits, channel BW is 500 kbit/s, and header size H is
100 bits, the same parameter values we chose in Chapter 2. Also, assume that the payload
length é is 1000 bits (i.e. the number of fragments F=20) and the channel BER is 1072,

For these values, the image transfer delay for error-free header/corrupt payload delivery
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given by Equation (4-2) is calculated as 120 ms. By forwarding packets with possibly
noisy payloads yet error-free headers, we are able to deliver the entire image close to the
interactive latency bound of a couple hundred milliseconds despite the heavy BER and
without any assistance from FEC. Though practical limitations will push the delay above
this ideal lower bound, we contend that forwarding of corrupt-payload header-valid pack-
ets will allow image transfer latencies of close to the interactive latency bound over very
noisy channels without the help of FEC.

Next, we would like to quantify the reduction in delay achieved by forwarding corrupt
information in comparison to throwing away corrupt packets and retransmitting the dis-
carded packets. By taking the ratio p of Equation (4-1) to Equation (4-2) , we can com-
pare the latency reduction obtained by forwarding corrupt packet payloads (requiring only
reliable header transmission) to the approach which requires that both payload and header

be error-free. This ratio p is given by

_ E[Timale](header+payload) _ 1
E[T iyog.1(header —only)  ~ (1- BER)/F

(4-3)

Note that p only depends on the BER and payload length é . We tabulate p as a func-
tion of Ié and BER in Table 6.1. The reduction in latency can be quite dramatic, exceeding

Table 6.1: Factor by which delay is reduced by forwarding corrupt information, plotting
p from Equation (4-3) for different BER and payload lengths.

p Payload length J/F (bits)
factor by which delay is reduced 10 100 1000 10000
5x10° 1.1 1.7 1.5x10% | 5.9x10%!
BER 102 1.1 27 2.3x10° | 4.4x10%
5x1072 17 1.7x10% | 1.9x10% -
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a factor of 100 for various combinations of BER and payload length. For example, con-
sider the point 102 BER and payload length % of 1000 bits. For this point, the delay cal-
culated earlier as 120 ms is a factor of 2.3x10° less than the latency that would have been
suffered if the entire payload and header were required to be error-free. The table provides
some perspective on how much faster the response time is by forwarding corrupt informa-

tion.

4.4 Implications of forwarding corrupt data on the design of
data-link layer error protection

Forwarding corrupt error-resilient packets has several implications on the design of
FEC channel coding at the data-link layer. First, while the payload may contain error-resil-
ient data, the header is still very sensitive to errors. While we have shown that in the
absence of any FEC it is still possible to transfer a complete image by the interactive
latency bound despite a heavy BER, FEC on the header can help improve that probability
of successful packet transmission with a minimal cost in overhead. The overhead cost of
FEC redundancy is only suffered by the relatively small header, not the entire payload.
This means that very strong FEC block/convolutional codes with coding rates of % or
even less can be applied with little expansion of the bandwidth.

Also, in order to distinguish payload-based corruption from header-based corruption,
the protocol needs at least an error detection mechanism that operates just on the protocol
header. As we mention below, it is also helpful to know whether the payload is in error at
the channel decoder. Therefore, both header error detection, usually in the form of a cyclic
redundancy code (CRC), and some form of payload error detection (though it need not be
in the explicit form of a CRC) are required at the data-link level in order to implement for-

warding of corrupt packet payloads.
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In a sense, header-only FEC is a form of UEP, since the header is error-protected while
the payload is not. The JSCC approach permits finer-granularity UEP-based FEC on the
payload as well. However, care should be taken in choosing the type of FEC decoding to
avoid the catastrophic effect of multiplying errors. Recall from Chapter 3 that an (V,K) lin-
ear block decoder attempts to find the code vector in N-dimensional space that is closest in
Hamming distance to the noisy received vector. If the wrong code vector is chosen, then
even though the transmitted code vector and the received code vector may be neighbors
and differ by only one bit in N-dimensional space, the corresponding decoded K-dimen-
sional codeword may differ by many bits from the original K-dimensional input codeword.
Once the FEC decoder fails, then the effect is catastrophic, causing a multiplicative effect
on the number of channel errors in the decoded corrupt packet. For example, transform-
based decoding of RS codes can completely scramble the decoded packets if the RS
decoder fails to correct the sequence [46]. Even though the corrupt packets contain robust
encoded data, this multiplicative effect is still highly undesirable.

Fortunately, systematic RS codes offer one solution that permits error correction and
forwarding of corrupt packets whose bit error rate is no worse than the channel BER. Sys-
tematic block codes encode a K-bit input word by appending N-K redundancy bits on to
the original K-bit input word. Therefore, at the receiver it is possible to extract the original
possibly noisy K-bit codeword even if the N-dimensional RS decoding fails. For non-sys-
tematic codes, the original codeword is not visible after encoding, and can only be
extracted by decoding the N-dimensional received vector. With reasonable likelihood, RS
codes can detect when their error correction ability has been exceeded. Therefore, once a
RS decoder detects that error correction failure, then a suitable policy is to forward the
original K-bit packet recovered from the noisy N-bit received codeword, rather than for-
warding the possibly noisier K-bit vector from the output of the RS decoder. Under this

policy, the forwarded corrupt packet will have no worse BER than the channel BER.
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We observe that link-level retransmissions are not necessarily incompatible with for-
warding of corrupt information. Several authors have described partial retransmission
strategies which do not provide full reliability, but do make some effort to provide a
cleaner version of each corrupted packet [69][103]. If partial retransmission is still unsuc-
cessful after a finite number of attempts, then the policy is to typically discard dirty pack-
ets. Within a JSCC system, this policy can be modified to forward onwards to the
application the final corrupt packet leftover after partial retransmission.

Also, while it may be tempting to employ a few link-layer retransmissions, we caution
that over certain cellular links this can lead to large increases in delay. For example, the
interleaving delay is near 40 ms each direction on the GSM system [85]. Given that
roundtrip latencies of many multi-hop Internet connections are already at or near the inter-
active latency bound of about 200 ms, then there is very little margin left for additional
retransmissions. If the retransmission loop at the link-level is very tight, then partial link-
layer retransmissions can be employed to use up the rest of the delay budget for time-crit-
ical data. However, each retransmission over a GSM link will incur 80 ms roundtrip delay.

Finally, we observe that forwarding corrupt information across a noisy wireless link is
ideal for low-latency packet transport, it can leave artifacts in a reconstructed still image.
The end user of such a bursty media application would prefer that the screen presentation
ultimately be cleaned of artifacts that were initially tolerated for the sake of interactivity.
In the next chapter, we propose an end-to-end progressively reliable protocol which ini-
tially utilizes the corrupt packet payloads forwarded by the data-link layer yet eventually
sends enough end-to-end redundancy to clean up noisy received data. In effect, the parti-
tioning of responsibilities between the data-link layer and the end-to-end protocol is to
make the link-layer responsible for header-valid packet delivery and the end-to-end proto-

col responsible for eventually error-free delivery of payload data.
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4.5 Summary and conclusions

First, we have described how real-time distributed audio/video conferencing applica-
tions have been designed to tolerate unreliable packet delivery (e.g. packet loss) over the
wired Internet in order to deliver their data quickly. We have shown that end-to-end
roundtrip times on the Internet can exceed 100-200 ms and packet loss rates can range up
to 15%, which suggest that reliable delivery via retransmission-based end-to-end proto-
cols can take too long to transport packets for delay-sensitive applications. We have shown
that bursty imaging applications, such as interactive Web-based image browsing, can also
be designed to tolerate significant packet loss for the sake of rapid delivery.

The same trade-off of accepting increased channel distortion (i.e. image distortion due
to channel impairments) for lower latency can be applied to the situation of wireless
access to the Internet. Rather than waiting for reliable delivery over a noisy wireless link,
the user can interact immediately with a possibly corrupt image. For delay-sensitive appli-
cations, we contend that consistent interactivity with a possibly noisy displayed image is
subjectively preferable to intermittent interactivity with an error-free image. Thus, over
wireless access links, the perceived latency can be lowered not only by tolerating packet

loss, but also by tolerating packet corruption.

We outline the theoretical joint source/channel coding (JSCC) framework which sup-

ports the notion of forwarding and displaying corrupt data. We call into question the tradi-
tional separation of image compression design from network protocol/FEC design, also
called independent source and channel coding, that is based on Shannon’s separation the-
orem. This information-theoretic theorem was derived based on the assumptions of sta-
tionary memoryless channels, unconstrained complexity in the design of FEC encoders/
decoders and compression/decompression, as well as unconstrained delay in the operation

of each of these elements. Since our application of interest is interactive Web-based image
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browsing across time-varying wireless access channels with real-world limitations on
complexity, then each of these assumptions is violated in practice. Moreover, the separa-
tion theorem is based on quantitative metrics like the loss probability, while the theme of
progressivity developed in this thesis is motivated largely by a subjective performance
metric which is a complex function of perceptual delay and perceived image distortion.

As an alternative, we outline the framework of joint source/channel coding, in which
image encoders and decoders are designed to be error-tolerant, and FEC/ARQ channel
encoders and decoders are designed with some knowledge of the image source’s statistics
in mind. The literature shows that the JSCC approach reconstructs images with lower dis-
tortion than the independent source and channel coding approach at severe BER’s. An
important outcome of the JSCC approach is that the underlying network should not throw
away corrupt packets containing error-tolerant image data, but instead should forward
packets with corrupt payloads to the destination for decoding/error concealment. We dem-
onstrate that error-tolerant image coding can achieve reasonable compression via lossy
quantization alone (variable-length statistical compression is left out) as well as tolerate
BER’s up to at least 3% - the same approximate BER at which RS codes that tripled the
bandwidth were determined to fail in the previous chapter. Corrupt yet robust image data
that is forwarded quickly to the receiver can be displayed immediately, thereby improving
the perceived interactivity of the system in comparison to error-free delivery.

Finally, having established the advantages of forwarding corrupt information in a
JSCC framework, we explore the implications on the design of data-link layer protocols of
forwarding corrupt data. In particular, we note that systematic FEC codes are especially
useful over noisy wireless links, because if the error correction fails, the systematic por-
tion of the payload can be forwarded without magnifying the post-decoding BER, as
would occur for decoding failures in non-systematic FEC codes.
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In the next chapter, JSCC and forwarding of corrupt packet data serve as the founda-
tion for the concept of progressively reliable packet delivery.
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Progressively Reliable
Packet Delivery

In this chapter, we introduce progressively reliable packet delivery. The observations
made in the previous chapter concerning the usefulness of processing corrupt packetized
image data over wireless channels serve as the starting point. We showed that forwarding
and displaying error-tolerant corrupt image data can reduce the delay and distortion of the
reconstructed image over very noisy channels given constraints on the complexity and
delay of compression algorithms and FEC/ARQ channel coding. Forwarding corrupt
information allows the end user to interact immediately with a possibly noisy image. For
bursty multimedia applications like Web-based image browsing, subjectively harmful arti-
facts can persist indefinitely on the screen if no mechanism is available to clean up these
initial artifacts. Hence, we add the idea of eventually reliable packet delivery to the idea of
initially forwarding and displaying corrupt packetized image data to obtain the overall
concept of progressively reliable packet delivery.

Following the overview, Section 5.2 identifies the essential properties that describe the
progressively transport service, or socket interface, seen by a multimedia application and
supported by the underlying progressively reliable transport protocol. These properties
include forwarding corrupt information, delivering multiple noisy versions of a given
packet, ensuring that the delivered versions are increasingly reliable, and delivering differ-
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ent packets out-of-order. Section 5.3 describes our modifications to an X windows server
that implement a simple version of progressive reliability which adheres to each of the
essential properties. Section 5.4 proposes that three performance-enhancing functions be
added to the transport service interface in order to improve the end-to-end delay perfor-
mance of the underlying progressively reliable protocol. These functions were motivated
by experimentation and subjective evaluation within the X server emulator. These three
new functions allow the application to parameterize the protocol to delay retransmissions,
cancel out-of-date, or stale, retransmissions, and partition application data into multiple
flows which are each served with a different quality of service by the protocol. Finally, in
Section 5.5 and Section 5.6, we discuss three examples of how multimedia applications
would utilize progressively reliable packet delivery. Progressive image transmission for
bursty multimedia is tested in conjunction with progressively reliable packet delivery
within our modified X server. In addition, we consider how continuous video and audio
can parameterize a progressively reliable protocol to suit their needs, and implement this

parameterization for the case of video.

5.1  Overview of progressive reliability

The advent of wireless access to the Internet poses a new challenge to interactive mul-
timedia applications like Web-based image browsing originally designed to operate over
end-to-end wired Internet connections. Such delay-sensitive applications require fast
packet transport in order to provide the end user with genuine interactivity. Over a noisy
wireless link that introduces bit errors, ihere is a fundamental trade-off between the
desired reliability of a packet and the desired speed of delivery. A design philosophy
which emphasizes error-free delivery of packets will have to incur variable packet latency

over a time-varying wireless channel. The number of retransmissions generated by an
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ARQ protocol in order to guarantee error-free delivery will vary according to the severity
of the channel noise, thereby causing the delivery latency to fluctuate.

An alternative design philosophy is to back off on the guarantee of complete reliability
and apply only FEC to mitigate the effect of channel errors. Such an open-loop approach
supports distortionless delivery up to the point of failure of the error correction code. As
we pointed out in Chapter 4, the failure point for this “brittle” FEC approach is about
5x10°2 BER for rate % linear block codes, and about 3% BER for higher rate % practical
FEC codes. From Figure 3.4 in Chapter 3, an RS (255,127) code with 8 bits/symbol fails
around 3x10°2 BER. Such an open-loop approach also supports constant transport delay up
until the failure point of the code. However, when heavy channel noise causes the FEC to
fail, packets are catastrophically lost, and the delay becomes exponentially large.

The JSCC design philosophy outlined in Chapter 4 consisted of error-tolerant image
encoding, UEP, forwarding of corrupt packet data, and error-tolerant image decoding of
noisy received packets. JSCC supports constant transport delay by forwarding corrupt
packet data. Moreover, as we showed in the previous chapter, images can still be recon-
structed at 3x10"2 BER given error-tolerant compression to 0.75 bpp. Therefore, the JSCC
design philosophy supports continuous interactivity over a wider range of BER’s than
practical FEC systems. Constant transport delay is again achieved at the cost of variable
channel distortion. However, in comparison to the FEC approach that fails catastrophi-
cally, the JSCC approach allows the quality of the image to gracefully degrade as a func-
tion of BER, over a wider range of BER’s than practical FEC systems.

Our JSCC approach of forwarding and displaying corrupt error-tolerant information
has been tailored for delay-sensitive multimedia applications like interactive Web-based
image browsing. Channel distortion is tolerated initially in order to transmit a quick first
version of an image to the end user. However, for such bursty-media applications, artifacts

caused by channel noise can remain on screen indefinitely, until some user action over-
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Figure 5.1 Progressively reliable packet transport delivers an initial possibly noisy ver-
sion of a packet quickly to the receiver. Later, the protocol employs retrans-
missions to progressively improve the reliability of the delivered packet. An
image-based multimedia application can use a progressively reliable protocol
to display a noisy initial image (left) for immediate interactivity, and later
remove any persistent artifacts on the screen by displaying progressively
cleaner izmage data (right). The 8 bits/pixel colormapped image is corrupted at
BER 107~

writes the displayed noisy image. In contrast, for continuous video, artifacts may not per-
sist either because the next frame overwrites the current frame, or because error
concealment has been applied to compressed video to reduce error propagation, e.g. by
interpolating from the previous frame or by leaky motion compensation [54]. In order to
clean up these artifacts and provide eventually distortionless packet delivery, we observe
that an asymptotically reliable cle-anup mechanism based on retransmissions can be com-
bined with forwarding of corrupt packet data to form a progressively reliable end-to-end
protocol for packet delivery.

In Figure 5.1, we demonstrate the perceptual effect seen by the end user of a progres-
sively reliable JSCC system. An application which employs a progressively reliable proto-
col would code its image data in error-tolerant fashion using lossy compression techniques
like fixed-length quantization. The packetized image data would be forwarded to the
receiver even if corrupted by an intervening wireless channel. At the receiver, the applica-

tion decoder would display a possibly noisy first version of an image immediately. Over
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time, the progressive function of the protocol will eventually deliver a distortionless ver-
sion of each packet, thereby cleaning up any artifacts on the screen. It should be clear that
progressive reliability is designed to be used with coded pixel-mapped images, and not
with text or graphics commands, though progressive reliability could be used to deliver
images with pre-rendered embedded text/graphics.

Progressively reliable packet delivery can be seen as a form of progressive channel
coding, analogous to how progressive image transmission is interpreted as a form of pro-
gressive source coding. In both cases, an initial high-distortion version of the image is
transmitted and displayed quickly at the receiver in order to lower the perceptual delay
observed by the end user. And in both cases, ultimately enough redundancy is sent to
remove the distortion in the initially “noisy” displayed image. The difference of course is
that progressive source coding introduces controlled distortion into the image while pro-
gressive channel coding introduces uncontrolled distortion.

Progressively reliable packet delivery offers an alternative to completely reliable and
unreliable packet services over noisy time-varying channels. Fully reliable delivery will
suffer variable delay, while unreliable delivery will suffer variable distortion and will leave
persistent artifacts. Progressive reliability offers an intermediate solution adapted initially
to meet the latency requirements of the delay-sensitive data, and adapted ultimately to sat-
isfy the subjective distortion requirements of the data.

While this technique is primarily designed for natural images, ultimately some images
will include embedded text/graphics. Therefore, we have included embedded text/graphics
in Figure 5.1 to illustrate the impact of channel noise on these artificially rendered objects.
The reader can also refer to Figure 4.1 and Figure 4.4 to study the impact of channel noise

at 102 BER on compressed images for both natural and embedded artificial images.
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5.2 Essential properties of a progressively reliable service

interface

In this section, we identify the core properties which define a progressively reliable
service interface between the multimedia application and the underlying network trans-
port protocol that implements progressive reliability. At this point, we are not defining the
precise implementation details of how a progressively reliable end-to-end protocol could
be built, which will be left for the next chapter. Instead, we define the essential list of ser-
vices and functions across the application/transport interface (ATI) which an application
subscribing to a progressively reliable packet delivery service would expect to be pro-
vided. This distinction between transport service and transport protocol is an important
one [129], and is evident in real-world systems. For example, the UNIX socket service
interface is distinguished from the implementation details of the underlying transport pro-
tocol [123]. Applications that set up a reliable stream (in-order) socket connection across
the Internet do not need to understand the protocol implementation details about how TCP
supports reliable stream service. Finally, the service features outlined in this section only
define the bare minimum ATIL The performance of progressively reliable packet delivery
can be enhanced by adding an extra set of primitives to the AT that allow the application
to choose when and if retransmission redundancy should be sent. These important “added-
value” ATI functions are described in Section 5.4.

In Figure 5.2, the progressively reliable service interface, or ATI (dotted line), is dis-
tinguished from the underlying transport protocol that implements progressive reliability.
The application sends a packet across the source ATI to the transmitting end of the pro-
gressively reliable protocol. At the receiver, the application must be prepared to process

multiple noisy versions of each packet which improve in reliability over time across the
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Figure 5.2 The end-to-end progressively reliable protocol provides four core services
to the application through the applicationftransport interface (ATI): 1) cor-
rupt data is forwarded to the application 2) multiple versions of each packet
are delivered to the application 3) these multiple versions are increasingly
reliable (fewer errors with each successive version) 4) different packets will
arrive out of order (not shown). Other added-value functions which
improve the efficiency of progressively reliable packet delivery (not shown)
are described in Section 5.4.

destination ATL Therefore, the essential properties of a progressively reliable packet deliv-

ery service are:
* Corrupt packets are forwarded to the application
* Multiple versions of each packet may be delivered

* The reliability of these multiple versions improves statistically over time (fewer errors
with each successive version)
* Different packets may be delivered out of order

In the rest of the section, we discuss the implications of each of these properties on the

design of the progressively reliable service interface.
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5.2.1 Forwarding corrupt information
At the sender, the multimedia application transfers data through the source ATI to the
underlying protocol for transmission. At the receiver, the transport protocol must support

forwarding of possibly corrupt received data across the destination ATI to the application

decoder.
5.2.1.1 Application-level Sequence of Delivery to
framing Application

>

Suppose that the application Corrupted Image #1  Error-free Image #2

sends a sequence of two images I

through the source ATI. At the (.Ly) | Payload#1 | (..L,) | Payload #2
receiver, assume that the two possi- * ’

bly corrupt images are forwarded to  Corrupt Header Error-free Header

the application through the destina- Figure 5.3 Lack of framing support from the

tion ATI. Also, assume there is no transport service means the application can
lose track of where a message begins. Once
support from the transport service to the length field L, is corrupted, then all sub-
sequent messages (images Iin this example)
help identify the original image or cannot be identified.

packet boundaries. Given a received

sequence of noisy variable-length images, the application decoder can lose track of where
an image begins and ends. The lack of framing support from the transport service means
that the application must embed its own application-level header within the payload so
that the length of the image can be extracted at the receiver. However, this length field can
still be corrupted, even taking into account error correction, as shown in Figure 5.3. Once
the application-level header is corrupted, then all subsequent information is lost because
the decoder cannot identify the length of the current image, and therefore can no longer

identify where subsequent images begin and end.
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In order to avoid losing synchronization with the data, the application decoder needs
the transport service to preserve application-specified boundaries end-to-end. The source
application must first parse its data into a sequence of variably-sized messages, called
application data units (ADU’s). This segmentation process is also called application-level
Jframing (ALF) [23]. ALF does not exclude the possibility that the underlying transport
protocol will fragment the ADU into smaller pieces in order to transmit the data. Indeed,
we shall discuss later the role of ADU fragmentation in the design of a progressively reli-
able protocol. For now, we note that the ADU is the basic unit of data exchange across
both the source and destination ATI’s and a necessary function to support forwarding of
corrupt packetized image data.

In the absence of corruption, reconstruction of an ADU in its entirety end-to-end
despite fragmentation by the underlying transport pfotoco] is relatively straightforward.
Consider the real-world example of IP delivery of a UDP datagram. IP encapsulates a
UDP datagram with an IP header. The combined IP header and UDP datagram is called an
“IP datagram” [124]. The IP datagram may be divided into smaller IP fragments. Each IP
fragment contains a header field specifying the length of the entire IP datagram. Assuming
a fixed IP header length, then each IP fragment is implicitly aware of the original length of
the higher layer packet entity, or UDP datagram. At the receiver, IP reassembles the IP
datagram, and then strips off the IP header to reconstruct the UDP datagram. By analogy,
the ADU represents the higher layer packet entity in our scenario which may be frag-
mented by the transport layer. Since each transport layer fragment contains implicit infor-
mation on the original ADU’s length within the fragment header, then the transport
protocol is equipped to identify ADU boundaries and reconstruct each ADU in its entirety

at the receiver.
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5.2.1.2 ADU header and ADU payload

In the presence of bit corruption, preserving ADU boundaries end-to-end becomes a
little more complicated. Preserving ADU boundaries is equivalent to communicating each
ADU?’s length to the application decoder free from errors. Our approach is to first partition
the ADU into an ADU header and an ADU payload. The ADU header will contain error-
sensitive information like the ADU length, as well as error-sensitive image coding infor-
mation like the image width or starting (x,y) coordinates. The ADU payload will contain
error-tolerant coded image data, such as vector quantized pixels/blocks, frequency coeffi-
cients, or subbands. In addition, at the receiver, we propose to forward an ADU only if its
ADU header is error-free. This combination of ADU partitioning at the sender and header-
valid forwarding of ADU’s at the receiver will permit corrupt ADU payloads to be passed
to the application decoder without suffering our earlier problem of lost synchronization
due to corrupt length fields.

Separating error-sensitive data from error-tolerant data supports the implementation of
UEP on the ADU. Heavy FEC can be confined to the ADU header, thereby avoiding a
large cost in overhead if the entire ADU were protected by heavy FEC. Similarly, minimal
FEC can be applied to the error-tolerant ADU payload, thereby avoid possibly intolerable
channel distortion if insufficient FEC were applied to the entire ADU. More generally, the
FEC coding rate can be varied throughout the ADU payload.

At the sender, a CRC error detection checksum is appended to the ADU header and the
combination is encoded via FEC. At the receiver, FEC decoding is followed by error
detection on the post-correction ADU header. The entire ADU (header and payload) is for-
warded to the application for further decoding only if the ADU header is error-free. In
part, this is because an error in the ADU header essentially renders the information in the
packet useless, e.g. if the (x,y) starting point of an image in the ADU header is corrupted,

then the rest of the image data in the ADU payload will be drawn in the wrong location.
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Figure 5.4 A method for forwarding corrupt packet data which keeps the receiver syn-
chronized: (a) the application sends messages called application data units
(ADU’s) to the socket buffer. These ADU’s are partitioned into an ADU
header (error-sensitive data) and an ADU payload (error-tolerant data). (b)
UEP is applied by the transport protocol. Header-only FEC can be applied
on both the ADU header (shown) and the transport header (not shown) (c) a
transport header is appended to the expanded ADU (d) the transport “data-
gram” is fragmented for network packet delivery (e) Noisy fragments are
reassembled (f) If after error correction decoding the ADU header is free
from errors, then the ADU header and noisy ADU payload are forwarded to
the receiving socket buffer.
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More importantly, forwarding only ADU’s with clean headers allows the application
decoder to remain synchronized with the ADU boundaries, because the ADU length field
is cleanly reproduced at the receiver without any errors. The application decoder will per-
ceive an alternating sequence of error-free ADU header and possibly noisy ADU payload,
from which the ADU boundaries can always be extracted. Figure 5.4 shows how the con-
cepts of application-level framing, ADU headers, ADU payloads, and header-only error
detection can be combined to implement forwarding of corrupt packet payloads to the
receiver in a manner that still preserves ADU boundaries end-to-end.

As part of the transport service of forwarding corrupt packet data, it is necessary to
define the length of the ADU header. This length can either vary with each ADU, or can be
fixed during setup of the progressively reliable connection. We propose that the ADU
header, unlike the payload, be a fixed length that is configurable during setup of the pro-
gressively reliable connection. This approach simplifies the FEC decoding required for
each ADU header. Variable-length ADU headers can be emulated by creating multiple
connections that differ in the length of their ADU headers.

Table 7 summarizes the various transport service elements and the source and destina-
tion ATI boundaries across which they are defined. All three of the elements discussed in
this section - the ADU payload, ADU header, and ADU length field - propagate end-to-
end. The other elements will be described in Section 5.4.

Table 7. A listing of transport service elements and the ATI's across
which they are defined

Source ATI Across Network Destination ATI
ADU payload ADU payload ADU payload
ADU header ADU header ADU header
ADU length ADU length ADU length
ADU correlation label | ADU correlation label
ADU flow header ADU flow header
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5.2.2 Multiple versions of each ADU

Another key property of a progressively reliable packet delivery service is that multi-
ple noisy versions of a single ADU may be forwarded to the application. The application
must be prepared to process multiple versions of the same ADU. This multiple-copy prop-
erty is fundamentally different from the single-copy services offered by today’s Internet.
For example, TCP implements single-copy reliable stream service, while UDP supports
single-copy unreliable datagram service. In both of these services, each message sent into
the system produces at most one output message. In contrast, progressively reliable packet
delivery generates possibly more than one output version of each input message.

The transport service should allow the application to parameterize progressive reliabil-
ity to suit its needs. What constitutes “sufficient reliability” for one application may differ
sharply from the tolerance for distortion of another application. The application should be
able to parameterize whether the final version of each packet is completely free of errors,
or whether the final version can contain some residual distortion. In the former case,
retransmissions will be attempted indefinitely, much like a conventional ARQ protocol. In
the latter case, the application should be able to specify an upper bound on the number of
retransmission attempts. For example, certain delay-sensitive continuous-media applica-
tions like audio and video are not likely to benefit from indefinite retransmissions, and

therefore progressive reliability should stop trying after a specified number of attempts.

5.2.3 Increasingly reliable versions of each ADU

Forwarding of multiple corrupt versions of an ADU to the application decoder without
any further filtering has the undesirable property that the quality of more recent ADU ver-
sions may actually be worse than earlier ADU versions. The quality of an ADU which is
forwarded directly to the application will depend entirely upon the severity of the channel

noise during the time that this particular version of the ADU was retransmitted over the
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channel. This direct dependence on the channel noise can lead to a displayed image whose
quality actually degrades over time despite retransmissions.

In order to avoid random fluctuations in ADU quality, a progressively reliable trans-
port service needs to ensure that the multiple versions are statistically more reliable over
time. The ADU versions delivered to the application no longer correspond directly to the
data that is retransmitted over the noisy channel. Instead, there is an intervening filter
implemented by the transport protocol which successively refines an ADU as more infor-
mation brought by retransmissions arrives at the receiver. The end user will perceive that
successive versions of an ADU have statistically fewer and fewer bit errors. This effect is
pictured in Figure 5.2 as packet versions that have progressively lighter shades.

The requirement of monotonically improving reliability (in a probabilistic sense)
means that the receiver must have some form of memory at the receiver that tracks the his-
tory of each packet. The decoding process can only ensure that the most recent ADU ver-
sion has fewer errors than previous versions if it can remember the noise level of one or
more of the previous noisy ADU versions. This knowledge is obtained by storing previous
ADU versions, or by storing some noise metric associated with these previous ADU ver-
sions. ARQ protocols which exhibit this feature of saving previous packet versions to
improve decoding are called memory ARQ, of which the Type-II Hybrid FEC/ARQ proto-
cols are the best known example [78]. Another name for memory ARQ is packet combin-
ing, since ADU’s are successively refined by combining the noisy data associated with
several previous packet retransmissions. In order to make clear how successive refinement
can be carried out by employing memory at the receiver, we discuss some examples
below.

The simplest two-tiered scheme for ensuring that ADU’s improve in reliability is to
forward only one initial noisy version of an ADU and then wait until a final error-free ver-

sion can be delivered to the application. The receiver keeps a single bit of memory per
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ADU which remembers whether a noisy version has already been forwarded to the appli-
cation decoder. Once an initial corrupt ADU has been delivered, then any subsequent
retransmitted noisy ADU versions are discarded. The transport protocol waits until the
ADU is successfully retransmitted before forwarding a final error-free ADU version to the
application.

A more advanced approach would cache recent versions of the actual packets, rather
than keeping an indirect noise metric. For example, a simple scheme would cache the two
most recent corrupt packet versions, and combine them with the current received version.
Majority-logic decoding can be applied bit-by-bit on these three packets. Given an odd
number of packets, then for each bit decode a ‘1’ if there are more ones, or a ‘0’ if there
are more zeros. This example illustrates one of the major features of memory ARQ,
namely that by storing the received packet history, the protocol can more quickly converge
to a clean representation of a packet. Consequently, fewer retransmissions are needed
when a protocol employs packet combining compared to a protocol which ignores the
received packet history.

Note that by replacing older ADU versions with more recent ADU versions, the major-
ity-logic decoding example does not strictly ensure improving reliability. A necessary
condition for successive refinement requires that the entire history used to decode previous
versions of an ADU be preserved so that subsequent ADU versions can be decoded with
increasing reliability. A recombining algorithm which caches only a partial history of
received packet versions will be unable to ensure monotonically improving reliability.
Unfortunately, this caching requirement can lead to an unbounded need for buffer space at
the receiver. As a practical compromise, limited memory at the receiver may not be able to
strictly ensure monotonically increasing reliability, but for engineering purposes the prop-

erty of increasing reliability can be closely enough approximated.
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In the next chapter on protocol implementation issues, more in-depth consideration of
successive refinement based on incremental transmission and combining of FEC coding

redundancy is presented.

5.2.4 Out-of-order delivery of different ADU’s

Another property of progressively reliable packet delivery is that different ADU’s will
be delivered out of order. Since multiple corrupt versions of each ADU are delivered to the
application, then the sequence of ADU'’s presented to the application will contain an inter-
leaved mixture of multiple noisy vcrsions“of multiple distinct ADU’s. For example, even
though ADU A is transmitted before ADU B, the protocol may deliver a sequence like
{noisy A, noisy B, error-free B, error-free A} to the application decoder. If both A and B
represent images to be displayed in the same region on screen, and B represents the newer
of the two images, then out-of-order multi-version delivery could result in an error-free
version of image A overwriting the newer error-free version of image B. An application
which subscribes to this progressively reliable delivery service must be designed to toler-
ate out-of-order delivery of ADU’s. This suggests that application-level sequence numbers
should be embedded within ADU headers to determine the most up-to-date ADU. For
example, video sequences label images by frame number. This semantic content would be
embedded within the ADU header, and would be completely transparent to the transport
service. '

However, as we shall discover in Section 5.4, by making the progressively reliable
transport service partially aware of ordering precedents, we can improve the performance
of the underlying transport protocol. We will provide a means for the application to iden-
tify out-of-date information to the end-to-end protocol. Therefore, in our example, the pro-

tocol would automatically stop trying to deliver the overlapped portion of the error-free
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version of image A, because it would know that the overlapping portion of image B super-

sedes the overlapped region of A in relevance.

5.3 An X windows server as a real-time simulator

In this section, we describe the X windows server which we modified to test in real-
time our ideas concerning progressive reliability. Our goal is to emulate the visual quality
and interactivity that an end user would experience operating an interactive multimedia
application across a noisy channel that forwards corrupt error-resilient data to the applica-
tion decoder for immediate display. The X windows server [82] provides a real-time plat-
form that permits us to evaluate the subjective impact of channel noise on the quality of
reconstructed images as well as on the perceived responsiveness of the system.

We modified a color X11R6 windows server which employed 8-bit/pixel colormaps.
The X server typically receives drawing commands like DrawText(), DrawRectangle(),
and Putlmage() from X client programs like editors, terminals, Netscape, Framemaker,
and a host of other applications. The X server translates these commands into pixel form
and then draws the rendered pixel-mapped image into the computer’s physical frame

buffer for display on-screen.

5.3.1 Overall structure of the progressively reliable X server
Our task is to insert a channel model, a progressively reliable encoding module, and a
progressively reliable decoding module into the X server. Figure 5.5 summarizes our mod-
ifications to the X windows server, which we describe in detail below.
Every rendering action which draws pixels into the frame buffer must be first inter-
cepted and diverted into our software coding modules rather than being allowed to write
directly into the physical frame buffer. We created a virtual frame buffer! (vfb) and redi-

rected all pixel-writing actions to the vfb. Each time a drawing command intends to update
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Figure 5.5 X windows server simulation environment for testing the subjective impact
on the end user of progressively reliable packet delivery. All normal pixel render-
ing operations are diverted from the physical frame buffer to a virtual frame buffer.
Newly updated blocks are recorded by a 3-state finite state machine (FSM). The
progressively reliable encoder generates an initial and final version of each image.
The initial version is corrupted using a random BSC error model. The final error-
free version is sent at some later time. Both versions are constrained by a limited
bandwidth channel

aregion of the screen, the resulting rendered image is deposited in the appropriate position
in the vfb. Equally important, a block-based state matrix is updated to record each block or
region in the vfb which was recently overwritten. We can label this state as “new data”

which is waiting to be transmitted over our noisy channel model. This state-based infor-

1. X11R6 has a virtual frame buffer extension, so we certainly take no credit for the idea. We implemented
our own vfb in order to embed a state matrix specifically tailored to our block-based progressively reli-
able encoder. We would also like to credit Brian Richards of the InfoPad project for modifying our
color server to work with the monochrome InfoPad. Also, we’d like to credit Jeff Gilbert of the InfoPad
project for implementing a really jazzy multithreaded split color X server with vfb subsequent to our ini-
tial crude implementation.
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mation is used by the progressively reliable encoder to send updates to the actual physical
frame buffer.

As implemented in UNIX, the X windows server waits in idle mode until there is some
new input data to process from X clients or from user actions (e.g. from a mouse/key-
board). The X server also has a self-wake time-out option which is invoked by prolonged
inaction so that a screen saver can be started. We modified the X server to execute the pro-
gressively reliable encoder every time the X server wakes up, whether it is due to a time-
out or new input. When there is no input data, then the time-out option permits us to con-
tinue to render images in a progressively reliable fashion. We set the time-out to 30 ms in
order to achieve reasonably continuous operation of the progressively reliable encoder/
decoder.

Each time the progressively reliable encoder is invoked, it checks the block-based state
matrix for any blocks that are in the “new data” state. Our implementation avoided a brute-
force search of all blocks by keeping a separate list of recently updated blocks, which
could be quickly consulted. The encoder sends all blocks in the list immediately over the
simulated error channel. The individual pixels in these initial block versions are corrupted
by a binary symmetric channel model, which introduces random bit errors with probabil-
ity BER. While a true fading wireless channel will introduce correlated bursty errors, we
did not simulate this effect, though it should be straightforward to replace our memoryless
BSC with a Markov channel model. We simulate the delay due to limited channel band-
width that would be experienced by the corrupt block and then draw the noisy image block
into the physical frame buffer. The state of the block is then changed from “new data” to
“sent the initial version”.

The progressively reliable encoder then searches the state matrix for blocks which
have “sent the initial version”. For all such blocks, the intent is to eventually send an error-

free version which overwrites the noisy version displayed earlier. Afterwards, the state of
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the block is changed from “sent the initial version” to “sent the final version (quiescent)”.
All blocks in this final quiescent state are left undisturbed by the encoder, since they have
already gone through the iterations of noisy and then error-free transmission to the
receiver.

This overall effect perceived by the end user is that an initially noisy version of an
image is displayed, followed by a refresh process which cleans up pixel errors at some
later time. This two-tiered approach provides a crude approximation to progressive reli-
ability. It emulates a protocol which forwards a single first noisy version of an ADU fol-
lowed by a single final reliable version of an ADU to the receiver. This simple example
was discussed in Section 5.2.3 as a means of guaranteeing increasing reliability.

The decision process that determines which of the “sent the initial version” blocks
should be transmitted may delay eligible blocks for a variety of reasons. In order to avoid
unnecessarily delaying time-critical data, we limit the number of reliable “refresh” blocks
which can be transmitted by any invocation of the encoder. This avoids clogging the con-
nection with a large number of reliable blocks, which would interfere with immediate
delivery of delay-sensitive data. In a sense, we are biasing the modified X server to deliver
delay-sensitive data with higher priority than delay-insensitive cleanup data. This limita-
tion on the volume of reliable data is implemented as an upper bound on the refresh rate.
This upper bound is parameterizable by the end user.

In addition, a minimum wait time parameter is associated with each block in the “sent
the initial version” state. Only blocks in this state whose minimum wait times in the vfb
have been exceeded are eligible for transmission. Thus, a minimum delay is established
between the time that the initial version is transmitted and the time the final error-free ver-
sion is transmitted. For example, if the wait time is set to zero, then the system defaults to
immediately sending the pertinent blocks. By including a generally parameterizable mini-

mum delay, we can adjust the gap in time between display of the initially unreliable image
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and display of the final reliable image. We will use this minimum delay parameter in Sec-
tion 5.4 to establish the rationale for spreading retransmission-based redundancy in time.

Once the decision has been made to send a final reliable block, this block is delayed by
the limited bandwidth channel, but is not corrupted with bit errors in order to emulate reli-
able packet delivery. Our assumption is that the delivery times for the refresh versions are
so relaxed that it is not necessary to emulate the effect of FEC expansion on the delivery
time of the final version. That is, if the reliable version takes many seconds to deliver, then
the additional latency burden of FEC that may increase the overall latency by several more
second will be largely imperceptible given that the delay is already many seconds long.
Similarly, we assume that FEC is only applied on the header of all packets associated with
first-time delivery of a noisy image. We assume that the increase in delay caused by FEC
on the header only is too small to warrant emulation by our modified X server system.
Also, we assume that the FEC is sufficiently strong on the header to reconstruct all pack-
ets, and hence all images, at the progressively reliable decoder, without packet loss.

The modified X server, with progressively reliable encoding/decoding and channel
model is able to perform in real-time subject to certain qualifications. By diverting pixel
writes into the vfb, we were unable to take advantage of the hardware graphics accelera-
tion that the X server typically employs on SUN workstations. This means that all lines,
text, and graphics, along with natural images and block copy functions, had to be rendered
in software. Software rendering slowed our simulation down to slightly less than real-time
for large screen updates, in which the redrawing of the screen could be seen, rather than
appearing instantaneous as in a hardware accelerated system. This effect was mild enough

that the system could be called interactive for most practical purposes.
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{9} Peformance Manager For Wireless Gr

Figure 56 A Tcl-based perfor-
mance manager hooks into
the X windows server, allow-
ing real-time variation of test
parameters. For the initially
noisy version of an image, the
channel BER, channel band-
width, and bit depth/pixel can
be varled. For the final reli-
able/refresh version of an
image, the minimum delay
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53.2 “Performance manager” tool for real-time evaluation

We took advantage of the interactivity of our modified X server to create a software
tool, which we call a “performance manager”, that communicates via a Tcl-DP UDP
socket with the X server during run-time. The performance manager allows the end user to
dynamically control parameters within the color X server while it is running. For example,
for the initial noisy version of an image, the user can vary the channel BER, the channel bit
rate, and the average bit depth/pixel. For the final “refresh” or error-free version of an
image, the user can vary the refresh bit rate, refresh burst length, and minimum wait time
between the initial and final versions. The Tcl interface includes scrollbars for dynamic
adjustment of test parameters and is illustrated in Figure 5.6.

By varying the bit rates of the first and final versions, we can investigate the trade-off

between devoting bandwidth to initial delivery of noisy delay-sensitive images, also called
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the initial substream, and devoting bandwidth to final reliable delivery of images, also
called the refresh substream. We used this tool to characterize the refresh burst length
threshold at which the perceived interactivity of the system was noticeably slowed down.
Holding the bandwidth of both initial and refresh substreams constant at about 2 Mbit/s,
we varied the maximum refresh burst length or duration, a critical parameter which con-
trols how many refresh image blocks can be transmitted upon each invocation of the pro-
gressively reliable encoder. If there are a large number of reliable blocks awaiting
transmission, then a large refresh burst duration will occupy the channel with refresh
blocks for a long time and prevent time-critical initial substream data from being dis-
played quickly.

The refresh burst duration indirectly establishes a relative proportion of the channel
bandwidth that is devoted to the refresh substream. This proportion varies depending upon
the number of initial images blocks that are eligible for transmission at the time of encoder
operation. When a large burst of initial data needs to be transmitted during a particular
invocation of the progressively reliable encoder, then the refresh burst length limits the
refresh substream to a small percentage of the channel bandwidth.

Our experimentation showed that small refresh burst lengths limited to less than about
30 ms were able to provide reasonable interactivity provided that the refresh bit rates
exceeded 1 Mbit/s. The general intuition is that refresh bursts should be broken up into
very fine-granularity segments so that possibly long bursts of initial substream data can be
interleaved between short refresh packets. The specific numbers produced by the simula-
tion are limited by the precision of the bit rate monitors and timers within the X server that
cap the transmission rate or measure the delay. These monitors and timers perform imper-
fectly in a non-real-time operating system like UNIX, in which other processes on the

workstation can arbitrarily steal CPU cycles. Specific values for such parameters as
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refresh bit rate, refresh burst duration, and minimum wait time between first and final
image versions should instead be interpreted as indicating a general range of operation.

The number of “sent the initial version” blocks which can be transmitted per invoca-
tion of the encoder can be calculated as the product of the refresh burst duration and the
refresh bit rate divided by the number of bits per block. Updates of this value are passed
during run-time to the progressively reliable encoder by the Tcl performance manager.

Using this tool, we also observed that if not enough transmission bandwidth is devoted
to refresh activity, then certain areas on the screen will take a very long time to clean up
the artifacts, on the order of half a minute to a minute, rather than in seconds. For example,
one of our earliest policies for limiting refresh activity was to suppress delivery of refresh
blocks if there was any amount of activity in the initial substream. The rationale for this
approach was that bursty user activity would eventually lead to intervals of no new image
data, allowing the final reliable image versions to be drawn. However, we observed that a
video stream which generated a continuous sequence of new initial image versions for
transmission would starve the refresh bit stream. The lesson learned was that a subjective
balance must be maintained between interactivity and distortion, in which delay-sensitive
data is given priority for transmission, but not to the complete exclusion of reliable deliv-
ery of data. This starvation issue is closely related to the concept of fairness developed for
scheduling policies in operating systems [119] and packet switches [159].

The X server checks for any new updates on parameters controlled by the performance
manager every time it is woken by a time-out related to “prolonged” inaction. Since we
changed the time-out value from minutes to 30 ms, then the updates actually occur quite
quickly. However, if there is continuous new input (e.g. video), then it is possible that the
X server never times out, and therefore never registers the newest updates sent by the per-
formance manager. In the current implementation of the X server, new parameter values

from the performance manager can only be registered between video sessions.
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5.4 Enhancing the performance of progressive reliability

In this section, we extend the set of essential functions described in Section 5.2 to
include new service primitives which improve the end-to-end delay performance of the
progressively reliable transport service. In particular, the perceptual delay of an image, as

measured by the delivery latency of the first version of an ADU, can be reduced by:
* delaying ADU retransmissions such that conflict with delivery of the initial version of
an ADU is minimized
* cancelling retransmissions associated with out-of-date data

* flow-based scheduling of the sender’s traffic by delay and reliability constraints

These primitives allow the application and underlying transport protocol to cooperate
to reduce the amount of traffic sent over a wireless channel, and to ensure that delay-sensi-
tive source traffic, such as the first version of an ADU, be given priority in transmission
over delay-insensitive traffic, such as the retransmitted versions of an ADU. The rationale
behind each of these primitives was developed based on experimentation with our modi-

fied X server simulator.

5.4.1 Delaying retransmissions

The progressively reliable transport protocol can control when follow-up redundancy
in the form of retransmissions are transmitted. The protocol shapes its transmitted traffic
pattern by delaying retransmissions so that they don’t conflict with the initial transmission
of an ADU’s information. Delivery of the initial version of an image is delay-sensitive,
since the end user desires to interact immediately with that image. Therefore, the sender
side of the protocol prioritizes its transmission to transmit the delay-sensitive traffic first.
The redundancy sent at a later time by the progressively reliable protocol to successively

refine noisy ADU’s has a comparatively relaxed latency requirement. Therefore, these
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retransmissions can be delayed in order to accommodate immediate delivery of delay-sen-
sitive initial transmissions.

We implemented a simple mechanism within our modified X server which delayed the
final refresh version of an image from being sent until after a minimum wait time had
expired. The effect emulated by this policy is that all retransmissions are initiated no
sooner than a minimum fixed delay. Given a bursty multimedia source, we reasoned that
this simple mechanism would more often than not translate retransmissions to a time win-
dow which is unoccupied by new delay-sensitive data. If the time window is occupied by
delay-sensitive traffic, then the other throttiing procedures like the refresh burst length and
refresh bit rate on the refresh substream will in effect delay retransmissions even more
than the minimum wait time. This “Refresh Delay” parameter is adjustable during run
time by one of the scrollbars in the performance manager shown in Figure 5.6.

Our experiments with the X windows server and performance manager revealed that it
is perceptually acceptable either to send the retransmission redundancy many seconds
after the initial delivery, or within about 100 ms of the initial version, but that any delivery
of the reliable version in between 100 ms to a couple of seconds after the initial version
produced subjectively annoying side-effects. The most attractive option is to send enough
retransmission redundancy so that a final reliable version can be reconstructed quickly at
the receiver within about 100 ms. However, in the presence of severe channel noise, even
retransmissions protected by practically constrained FEC will fail, so that the fully reliable
image will be unable to be delivered by the interactive latency bound.

A second option is to start retransmitting refresh redundancy at the first opportunity
possible, whenever there is no delay-sensitive data left to send. This opportunity will usu-
ally occur within a few seconds after the initial delivery. However, we found that there
were several annoying subjective side-effects which occurred when retransmissions were

delayed by between 100 ms to 1-2 seconds. First, for images containing rendered text, as
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the end user started to read the text, the refresh redundancy overwrote the noisy version
with the clean version. This subjective “flicker” effect forced the reader to stop and then
start reading again, thereby obviating the perceptual reduction in delay gained by early
noisy delivery of an image. To a lesser degree, the “flicker” effect also interrupted viewing
of natural images. Second, as our mouse cursor was moved around the screen, a “noise
trail” was left in its wake. By sending the refresh redundancy within 1-2 seconds after the
initial noisy version, the noise trail would chase the mouse cursor across the screen like a
“snake” in a video arcade game. This “snake” effect proved to be subjectively distracting.

Our experimentation suggested that the end user could tolerate very long delivery
latencies for the reliable version of an image, so long as the user had an initial version of
an image with which to interact. Delays on the order of 5 seconds and more were found to
be readily acceptable. Subjectively, the user’s desire to eventually see the visual presenta-
tion free from artifacts places an upper bound on the delay of the final version. We found
that about a 5 second cleanup delay was fast enough to satisfy this distortion criterion and
long enough to avoid the “snake” and “flicker” effects mentioned previously.

Given the end user’s tolerance for considerably relaxed delivery of the reliable follow-
up redundancy for an image, then our progressively reliable protocol can smooth the traf-
fic that it presents to the network, scheduling retransmissions to minimize their impact on
delay-sensitive delivery of initial packet versions.

Consider in Figure 5.7 how a traditional ARQ protocol responds to a high BER noisy
channel. A sequence of application data bursts corresponding to separate images is passed
to the underlying transport protocol for packet delivery (a). A traditional ARQ protocol
will concentrate retransmissions of a given packet as closely as possible to the original
transmission of that packet. The presumption is that the user desires reliable delivery as

soon as possible, so there is no reason to delay retransmissions.

157



This grouping of retransmissions in TTﬂic B3 nitial data

time slows down with the delivery of % E [SSNY Retransmissions
P-time

data in the tail end of the sequence (b).

The last of the three image bursts is

delayed by retransmissions associated

with the previous two image bursts.

The end user will perceive the screen to

inconveniently freeze as the underlying

network protocol is occupied with Figure 5.7 Traffic shaping of retransmissions:
(a) initial traffic burst (b) retransmissions
delay some initial data over noisy channel
(c) retransmissions are delayed so they
don’t slow delivery of the Initial burst.

retransmitting older image data, while
the most recent image waits in a queue
at the sender. In contrast, our progres-
sively reliable protocol can translate
retransmissions in time so that each new image does not have to wait in the sender’s queue
(). An initial version of each new image is transported quickly to the receiver, and any
needed retransmissions are sent later. If the overall perceptual latency of image delivery is
measured by the first appearance of an image, noisy or not, then Figure 5.7 indicates that
our retransmission-shifted progressively reliable protocol will on average have a lower
perceptual delay than a conventional ARQ protocol which concentrates retransmissions. |

Thus far, delaying retransmissions has been motivated by our subjective observations
of the end user’s tolerance for considerable delivery latency in the low-distortion version
of an image provided an initially noisy image is quickly delivered. In the past, protocols
have delayed retransmissions for other reasons, including congestion avoidance and chan-
nel state-dependent scheduling. For example, part of the congestion avoidance policy of
- TCP involves exponentially backing off on (e.g. doubling) the time-out value for retrans-

mitted segments [25]. The effect is to delay retransmissions so that they don’t add conges-
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tion to the already overcrowded network. Recent work has also proposed to effectively
delay the retransmissions of a data-link protocol based on the wireless channel state of a
particular user [10]. The assumptioﬁ is that the data-link protocol groups the packets from
different users into a single statistically multiplexed stream and attempts to sequentially
deliver the packets in this stream. A packet that is transmitted to a user with a very noisy
channel will have to be continuously retransmitted. Given a sliding window protocol, then
other users’ data will be quened up waiting for this bad-channel packet to be delivered
reliably, so that the window can be allowed to slide forward. The authors propose to adapt
the retransmissions to the state of the channel, and essentially delay retransmissions to
those users with a bad channel, on the presumption that these retransmissions will not get
through error-free anyway, and will only slow down other users’ data. Thus, we see that
translating retransmission redundancy in time is not a new phenomenon, but has previ-
ously been based only on channel considerations. In contrast, our proposal to delay
retransmissions is based on the end user’s subjective tolerances.

We propose that the transport service socket interface provide hooks into the progres-
sively reliable protocol so that the application can parameterize how long the protocol
should wait before initiating retransmissions of the follow-up image redundancy. This
crude translation approach does not fully prevent conflict with delay-sensitive data, once
retransmission data are eligible to be sent. Our observations of the modified X server
revealed that additional limitations on the refresh burst length and refresh bit rate were
necessary to preserve interactivity. A more sophisticated approach to providing a fair bal-
ance between interactivity and the pace of cleanup of visual artifacts is to treat the initial/
final trade-off as a packet scheduling issue. Initial header-valid packet versions are labeled
with a small delay budget, while final versions are labelled with a large delay bound.
Given this partitioning of delay sensitivity, packet scheduling algorithms like Earliest-

Due-Date/Least Slack [158] can implement the desired fairness policy. In general, we pro-
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pose that any fair packet scheduling policy implemented by the protocol be parameteriz-

able to suit the individual multimedia application.

5.4.2 Cancelling “out-of-date” retransmissions

In addition to delaying retransmissions, our progressively reliable protocol also pro-
vides the application with the ability to identify out-of-date or stale data, and to stop or
cancel retransmissions at the sender-side of the protocol associated with this out-of-date
data. The ability to annihilate stale retransmissions helps reduce the amount of bandwidth
devoted to unnecessary retransmissions of packet data that are no longer useful at the
receiver. Over a bandlimited wireless link, this bandwidth management tool permits more
timely delivery of delay-sensitive data because a sliding window protocol doesn’t have to
occupy itself with sending the final reliable version of an outdated image, and instead can
devote itself to immediate delivery of useful first-time ADU versions.

Experimentation with our modified X server demonstrated the importance of using
retransmission cancellation in conjunction with delayed retransmissions for bursty multi-
media. Many multimedia applications like Web-based image browsing often overwrite the
same region of the screen with new image data. If the protocol delays sending the reliable
retransmission redundancy by many seconds for an imagé, then the queued image data at
the sender can become out-of-date due to the arrival of new user data passed through the
socket buffer which invalidates the queued data. For example, if the final reliable version
of an image is delayed by five seconds, the amount found to be subjectively preferable in
the previous section, then a user who is browsing rapidly through a remote image database
at a rate of an image every few seconds would consistently cause the protocol’s queued
image data to become stale. Moreover, the interactivity of the system would be compro-
mised since in many cases retransmissions associated with stale packet data would com-

mence just as the end user has chosen a new image and desires its immediate display.
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the application through the transport ’
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function be implemented by labelling Figure 5.8 Packet annihilation uses correla-

) . tion labels to stop out-of-date retransmis-
related packets with a correlation sions. The incoming message with

. correlation label Z cancels retransmission
label. In this way, new ADU packet of any previous message with the same

arrivals given to the protocol for fabel.

delivery can be used to target, elimi-
nate, and replace old information at the sender’s queue.

Figure 5.8 illustrates how packet cancellation would work across the transport service
interface. The application segments its data into ADU’s for transmission as before. Each
ADU is assigned a correlation label by the application. The sender-side of the protocol
inspects the correlation label (Z) of the incoming ADU, and checks if it is currently
retransmitting any information with the same correlation label. If so, then the protocol
stops retransmitting this old data immediately, and removes this out-of-date data from the
sender’s queue, replacing it with the new ADU’s payload.

The modified X server emulated this cancellation function through its three-state FSM.
Recall from Figure 5.5 that each 16x16 block on the screen is described by one of three
states: “new data”, “sent initial version,” and “sent final version (quiescent)”. As new
image data arrives, the states corresponding to the redrawn blocks are updated to “new
data”, regardless of whether their previous state was “sent initial version” or “quiescent”.

In addition, the affected blocks in the vfb are redrawn with new data overwriting or replac-
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ing the previous image. If the previous state was “sent initial version”, then newly drawn
image blocks are in effect cancelling the retransmissions associated with the previous
image.

In this implementation of the cancellation function, the (x,y) drawing location of a
block implicitly serves as a correlation label which identifies this block as out-of-date,
stops retransmission of stale data by purging this block’s associated state, and replaces the
old ADU (i.e. block) with the new ADU’s information. Application of correlation labels
on a geographic block basis as implemented by the X server is depicted in Figure 5.9 (a)
and (b). Only those blocks which require redrawing will trigger annihilation of stale
retransmissions associated with overwritten.image data.

Recall from Section 5.2.4 that we suggested correlation labels would be useful to can-
cel an out-dated image A with a new image B. Given the context of the block-based corre-
lation labels described in this section, then it should now be clear that only the overlapped
portion of A that is overwritten by image B will trigger annihilation of stale retransmis-
sions. The non-overlapped portion of A will continue to be delivered in asymptotically
reliable fashion. Hence, images A and B need not coincide in order for correlation labels
to be effective. In Figure 5.9 (b), the new launched shuttle image completely overlaps the
old unlaunched shuttle image. Therefore, out-of-date retransmissions of the entire old
image will be halted, and no non-overlapped portion of the image remains to be delivered
with progressive reliability.

We verified that this block-based implementation of the cancellation function per-
formed as expected within the X server. For interactive bursty multimedia, our experimen-
tation showed that the combination of FSM, vfb, and (x,y) correlation labels always
stopped retransnﬁssion of out-of-date reliable redundancy. For example, we delayed
retransmission of the final reliable version of an image by five seconds. Recall that our

progressively reliable encoder operates on pixel-mapped images, and not commands.
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Figure 5.9 Possible uses of correlation labels by a multimedia imaging application. (a)
The screen/image is subdivided into blocks, each designated by a unique correla-
tion label. (b) Retransmissions associated with out-of-date (shaded) blocks are
cancelled and new image data are transmitted in their place. (c) Object-based
correlation labels allow the application to semantically identify objects within an
image. (d) When an object changes position/size, the application passes a new
ADU (e.g. with label B) to the protocol to automatically cancel retransmissions
associated with the out-of-date object. In addition, the new object data is trans-
mitted in place of the cancelled object’s ADU, resulting in the new object being

drawn and overwriting the old object.



Therefore, paging in a text editor causes new pixel-mapped images with rendered text to
be redrawn over the same region of the screen. Frequent paging at a rate faster than one
page every five seconds should result in cancellation of retransmissions associated with
the overwritten out-of-date images. We verified that this indeed took place. Also, by wait-
ing longer than the minimum wait time of five seconds, the final reliable version of an
image was appropriately drawn, indicating that the FSM was functioning as expected.

An alternative way of applying correlation labels is to associate each label with a
semantically-defined object within the image. As the object is moved, resized, or redrawn,
each new ADU with that object’s correlation label cancels any retransmissions associated
with stale drawing information for the object. For example, in Figure 5.9 (c) and (d), cor-
relation label B associated with the shuttle object is used to stop retransmissions that
would draw the unlaunched shuttle. In their place, new “launched shuttle” drawing data is
transmitted which renders the shuttle in a new screen position and overwrites the old shut-
tle image. Object-based ADU’s can be adapted to track moving objects and erase the trail
of rendered images left by the moving object. These could be applied to animation
sequences. For example, a distributed video game could draw a moving snake on screen
via object-based correlation labels. In addition, the correlation labels pose no restriction
on the shape of the drawn image data, so that these objects can be arbitrarily shaped, and
need not be block-based as in our X server implementation.

Correlation labels are not only applied at the sender; they are also propagated to the
receiving end of the transport protocol. This has the advantage of ensuring that out-of-date
ADU?’s are not forwarded to the receiving application. If only source-based annihilation
were carried out, then it is possible for a stale ADU to arrive at the receiver after a more
up-to-date ADU, due to network delay jitter. Without correlation labels, the receiving end
of the transport protocol would be unable to identify stale ADU’s, and hence would for-

ward out-dated information to the application. The destination application would have to
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implement its own sequencing scheme to detect stale ADU’s. We can eliminate out-of-date
delivery at the receiver by forwarding correlation labels to the receiver’s transport layer so
it can identify and discard stale ADU’s as they arrive. Another potential benefit of propa-
gating correlation labels is that stale ADU’s could possibly be purged at any point along
the connection, provided that sufficiently intelligent transport-aware agents were present
in the network as suggested in [S). Since the labels are already available at the receiver,
then no additional cost is incurred by forwarding these labels to the receiver’s transport
layer. We previously indicated the propagation of correlation labels across the network
connection in Table 7.

Though not shown in Figure 5.8, our transport service also permits an ADU to annihi-
late multiple other ADU'’s that have different correlation labels. The source application
might have multiple hierarchically coded versions of an image being serviced by the trans-
port layer. When a new image is transmitted, the application would like to simultaneously
cancel any of these out-of-date ADU’s. Or an image may be packaged as a macroblock,
and the application would like to annihilate a collection of smaller images that were previ-
ously packetized into ADU’s. In each case, we conveniently provide a primitive that can-
cels multiple other ADU’s. The convention is that each ADU may contain a list of
correlation labels. The first label is associated with the parent ADU. Any stale ADU’s with
correlation labels on the list are annihilated. For example, in Figure 5.8 the newly arriving
ADU identified with the correlation label Z could also contain other labels, e.g. both Z and
X. In this case, the newly arrived ADU will stop retransmissions on both ADU’s Z and X
queued in the sender’s buffer. In addition, since Z is the first correlation label listed, then
the newly arrived ADU will be queued at the sender under the parent label Z, and not X.

From a practical perspective, it is not certain whether the list of correlation labels
should also be propagated along with the ADU to the receiving end of the transport layer

to cancel any remaining stale data. While we proposed propagating correlation labels to
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the receiver when there is only one correlation label per ADU, the disadvantages of com-
plexity and overhead for propagating a list of correlation labels to the receiver for each
ADU may overwhelm the advantage gained in consistency by cancelling out-of-date at all

points along the connection.

5.4.3 Flow-based scheduling

Rescheduling retransmission traffic to minimize conflict with delay-sensitive initial
ADU deliveries represents a form a scheduling which discriminates between initial and
final versions of a packet. Scheduling initial transmissions and final retransmissions can be
interpreted as a two-flow scheduling problem. This scheduling problem can be generalized
to include scheduling multiple flows of data generated by a single application.

Traffic capacity can be improved by noting that multimedia applications often generate
heterogeneous data which have inherently different requirements for timely delivery and
end-to-end error protection. Recently, multimedia compression algorithms have started to
encode their data streams into multiple flows, or layers, where each flow requires a differ-
ent end-to-end QOS. Some examples of flow-based coding include asynchronous delay-
cognizant video coding [75][106] and multilayered multicast video coding [84]. In addi-
tion, hierarchical and progressive image transmission techniques can easily be adapted to
multi-substream transport services. Hence, our protocol should be able not only to sched-
ule initial transmissions and retransmission redundancy differently, but should also permit
flow-based multiplexing. This flow-based approach can result in retransmission redun-
dancy from one flow being serviced with different urgency than another flow’s retransmis-
sions.

To support traffic shaping of retransmissions, quality-of-service (QOS) configuration
information is communicated bet\.aveen the application and the underlying transport proto-

col across the ATI. Some socket interfaces have already begun to support QOS [11]. Other
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protocols also support some degree of QOS configuration at the transport level, as noted in
[26] and for OSI/TP4 [32]. A full discussion of QOS (setup, admission control, profiles,
etc.) is beyond the scope of this thesis, but we mention those items most relevant to our
progressively reliable wireless protocol. QOS parameters control the scheduling of
retransmission redundancy with initial transmissions but also permit finer grades of ser-
vice within the data stream.

We introduce a flow header to identify individual substreams within the general data
stream; these substreams at the transport level resemble IPv6 flows [57]. The flow header
alone completely characterizes the service required by that data; no knowledge of the
internal semantics of the packetized data is required. The per-flow QOS parameters that
we have found most useful include how much scheduling delay the first-time transmis-
sions can tolerate, how much initial corruption can be tolerated (i.e. how much FEC over-
head should be applied to the payload), how soon retransmissions can begin after
confirmed initial delivery, how much multiplexing delay that retransmission redundancy
can tolerate, and when to terminate retransmissions (e.g. after a finite number of trials, or
after a finite amount of time, or after a sufficiently reliable packet has been received).
Nearly every QOS parameter is specified either in terms of delay or reliability. We do not
explicitly support “priorities” across the ATI, since we believe that priorities and classes
can be derived from delay-based and reliability-based QOS parameters. The QOS parame-
ters are passed to our progressively reliable protocol, which can then employ an appropri-
ate scheduling policy to decide what packet to transmit next over the connection.

The protocol’s scheduling policy, in combination with the behavior of the wireless
channel, will dictate whether guaranteed service can be provided to the application across
the ATI. Deterministic guarantees of bounded delay cannot be made for certain multiplex-
ing disciplines like Fair Queueing and Virtual Clock, but can be made for others like EDD

for well-behaved sources practicing admission control over backbone networks [3][158].
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Even if a service discipline can guarantee delay bounds at the source, the wireless access
link will introduce uncontrollable delay. In wireless systems, delay is caused by random
shadowing and random multipath effects, leading to bit corruption, packet loss and uncon-
trollable retransmission delay. At best, a statistical characterization of the fading may pro-
vide a statistical bound on delay, but this assumes that the channel is predictable. We
prefer to view QOS parameters as passing useful hints from the application onto our pro-
gressively reliable protocol to help improve non-guaranteed performance. The protocol’s
scheduler will decide how best to meet these QOS objectives, but may occasionally fail to
satisfy them.

Flow headers are needed at the receiver by the transport layer, but not necessarily by
the receiving application. Over the network, transport-level flow headers are not necessary,
since QOS is properly provided by IPV6 flow headers. But at the receiver, the transport
layer will need flow headers to identify per-flow QOS parameters, like the ADU header
size, and the residual reliability criterion (which determines when to generate an acknowl-
edgment to cut off the source’s retransmissions). However, the receiving application does
not require the flow header. Since a flow is defined by its QOS parameters only, then it is
possible for multiple compression algorithms, or perhaps the same compression algorithm
operating at different quantization depths, to transmit different forms of encoded data over
the same flow. In order to differentiate and correctly decode each distinct data type within
the same flow, the destination application would need to agree a priori with the source
application on an application-level protocol that would label data so that the proper decod-
ing algorithm would be invoked. Hence, application-level identifiers would already pro-
vide the functionality to properly extract coded data, and transport-level flow identifiers
would not need to be passed across the destination ATI. Since there may still be a reason

for passing flow headers to the receiving application, such as reducing labelling overhead,
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then we do not dogmatically rule out passing flow headers to the application, even though
Table 7 would seem to recommend that.

Note that correlation labels can operate across flows, cancelling other flows’ data. A
hierarchically coded image (say progressive JPEG) may have partitioned its layers into
different flows. A correlation label need not be constrained to only annihilate within its
parent ADU’s flow. For example, suppose a given image is hierarchically coded into three
layers I, I, and III, and each layer is transmitted along a separate flow. Suppose also that
the three different layers also have three separate correlation labels A,B, and C, respec-
tively. If layer I of each new hierarchically coded image contains all three correlation
labels A,B, and C, then the retransmissions for all layers of the previous image will be
cancelled across different flows.

Though it may appear from the previous example that there is a one-to-one mapping
between source coding layers and flows, this is not necessarily the case. It should be
stressed that flows are a QOS concept, not a source coding concept. Therefore, each of the
three layers in our hierarchically coded image could have been sent along the same flow,

thereby receiving the same level of service from the underlying network protocol.

5.5 Progressive source and channel coding

Our progressively reliable packet protocol can be interpreted as a form of progressive
channel coding. As an analogy, progressive image transmission (PIT) constitutes a form of
progressive source coding. A natural research question is how the two concepts can be
integrated into a single system which achieves the advantages of both techniques in terms
of improved interactivity at the cost of high initial distortion, and in terms of eventually
low-distortion delivery. The work outlined in this section is a preliminary attempt to

address this issue of combined progressive source and channel coding. Specifically, we
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modified the X server to incorporate a progressive source coding algorithm for images, in
addition to the progressively reliable encoder described previously. We implemented a
rudimentary progressive colormap algorithm to explore the impact of progressively reli-

able delivery on progressive source transmission.

5.5.1 Limitations of conventional PIT algorithms

We begin by outlining some of the limitations of traditional PIT algorithms [138]
when applied to images that include embedded text/graphics. Again, it should be clear that
our modified X server is emulating progressively reliable transmission and delivery of ren-
dered images, and not of plain text nor graphics commands. In general, our interéctive
image browsing application emulated by the modified X server will display both natural
images and images with embedded text/graphics. A PIT algorithm should be chosen so
that it can support both types of visual data.

Many PIT algorithms depend on a pyramidal decomposition of the image, performed
either in the multiresolution [143], quantization [71], or transform [35] domains. Pyrami-
dal coders produce a multi-layered representation of an image. For example, a “coarse”
initial version of an image could be represented by the highest layer in the hierarchy, while
the “fine” version of an image could be represented by the lowest layer in the pyramid
with the fullest definition of the image. Only a few such pyramidal decompositions are
suitable for windows-based graphics, since the initial representation needs to support rea-
sonably legible text. In addition, this initial version needs to be error-tolerant, as discussed
previously.

Human users’ subjective and objective requirements for windowed graphics form an
important consideration in the choice of the PIT technique. Subjective image quality and
perceptual delay must be satisfied by any PIT method. In terms of image quality, interac-

tive graphics requires a reasonably high degree of fidelity in the coarse image if PIT is to
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be successful. This is true because much of the windowing environment is artificially and
procedurally generated and rendered. Text is an important component of all such applica-
tions. Normally text appears as a simple foreground and background two-color mixture
that is sufficiently contrasting to appear legible. Hence text consists of relatively high-fre-
quency information with extremely “important” information content to the human user.
Therefore, any PIT technique supporting windowed graphics should also support a coarse
representation which must be substantially legible

In view of these characteristics, not all PIT techniques are suitable for windowed
graphics. For example, transform-based progressive methods [35][95] like the JPEG algo-
rithm do not support graphics well. Most frequency domain approaches send low fre-
quency information first, resulting in blurry illegible initial versions. JPEG includes two
options for progressive transmission of DCT coefficients, namely spectral selection and
bit-plane separation. In both cases, observations of the initial coarse reconstructions of
progressive JPEG images reveal two phenomena. The low-frequency-only content smears
the visual data per block. One alternative could be to reverse the order of coefficient trans-
mission, and communicate high-frequency information first. However, such an approach
tailored for text would clearly backfire for natural images, which must also be supported
within the windowing milieu.

Progressive multiresolution coding offers an alternative to progressive DCT frequency
coding. Multiresolution coding can be defined either in wavelets/subband domain, or spa-
tial resolution domain. Subbands are filtered frequency bands which have been downsam-
pled since they have reduced frequency content [102]. Subbands can be recursively
filtered and subsampled, to create a multi-layered hierarchy of low frequency to high fre-
quency subbands. Unfortunately, this type of multiresolution algorithm, while performing
well for natural images, poorly supports text legibility when only the lowest frequency

coarsest resolution subbands are viewed first.
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Spatial subsampling techniques also suffer from the same inability to support legible
reproduction of text in the coarse low-resolution version. Progressive pyramidal subsam-
pling schemes in the spatial domain, while designed for natural images, are not well-suited

for the highly artificial windows environment [44][71].

5.5.2 Progressive colormap algorithm
Instead, we have settled on a simple spatial domain technique similar to tree-structured <
VQ [102] which is robust to errors, can favorably depict text, can be applied to both natu-

ral and artificial images, and is easily implementable in the X server environment.

5.5.2.1 Description of algorithm

Arguments in favor of spa-
tially-based VQ coding are its rel-
ative  robustness [127][136], R
compatibility with the X server’s
internal representation, and its
ability to confer initial text legibil-

ity. Colormaps represent a form of

per-pixel VQ, since the (Red, .
Figure 5.10 Progressive colormap algorithm in

Green, Blue), or RGB, color space RGB space. (a) initial color vector for
. X ) each pixel (b) final color vector for
is quantized into a few color vec- each pixel (c) displacement vector

between initial and final versions.
tors. We create a palette of

“coarse” colors, represented by a

>

coarse colormap smaller than the
default colormap. For each pixel, the graphics server will initially transmit the index of the -
closest “coarse” color to the pixel’s color. Later, the final set of bits will arrive, specifying

one of the full colors in the default colormap. In Figure 5.10, we picture how this progres-
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sive colormap scheme works in RGB color space for each pixel. Since the initial vector
could be corrupted by noise, then our assumption was the final colormap value for each
pixel would contain the full information vector (b), rather than the displacement vector (c).

Instead of defining a separate “coarse” colormap, the default colormap could be tree-
structured, so that the tree’s coarse elements inherently define our “coarse” palette. We did
not implement this extension. Also, we did not extend pixel-VQ to two-dimensional VQ,
which can achieve greater compression without compromising robustness, at some cost in
legibility.

In our case, we have chosen a palette of 16 “coarse” colors, or 4 bits of information for
the coarse colormap. Early color monitors were limited to approximately 16 colors. Color
quantization attempts in the range of approximately 16 colors appear to give subjectively
reasonable reconstruction for certain natural and most artificial images [16][45]. Hence
the size N=16 of the coarse colormap was recognized as the lower bound capable of
coarse image definition

The next stage is to properly choose this set of N,=16 colors. Fundamentally, this
involves the issue of color quantization, i.e. choosing a smaller set of colors to represent a
much larger color space. A wide variety of algorithms are available, including the fre-
quency and Median Cut algorithm [55], several variance-based methods [146][147], and
others [6][93]. Each of these methods seeks to partition RGB space by using a single
image’s statistics. Many of these techniques are computationally intensive, and hence ill-
suited to our latency-constrained environment.

An interesting alternative is to choose the set of coarse colormap data independent of
image statistics. Again, a wide variety of algorithms can be designed, many of which take
advantage of certain characteristics of the human visual system(HVS). One algorithm pro-
poses the uniform quantization of UVW luminance-chrominance space that is psychovisu-

ally uniform, based on HVS characteristics [73]. However, by simple experimentation, we
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found that a simple heuristically-defined palette of “likely” colors, based upon our accu-
mulated experience of human usage patterns for both natural and artificial images, was
subjectively reasonable. This is primarily due to the extremely limited size N =16 of the
static color palette.

Given a quantized set of colors, the final step in color quantization is the mapping of
the original image to the quantized image [146][147]. To do this, each color must be
mapped in some sense to its “closest” representative color, which is defined by its tristim-
ulus components or luminance and chrominance components.

In our case, given the size and constitution of the coarse colormap, the final step in
color quantization is to map each color in the default colormap to one of the 16 coarse col-
ors. Many techniques choose to minimize over an RGB Euclidean distance measure. It is
well-known that equal distances in RGB space do not reflect equal “just noticeable” sub-
jective color differences [97]. Hence, in order to emphasize certain HVS tendencies, a
luminance-chrominance color space was chosen as the basis for comparison..

The color metric chosen here minimizes the weighted YUV-distance between a given
color and the set of coarse colors:

min(0.6|cy—iy| +0.2|cy — iy +02|cy —iy))
c=1..16

where i is the index into the default colormap, with color components iy, iy, and iy; and

c is the coarse color index. The weighting factors reflect the HVS characteristics of the
eye, which is more sensitive to spatial variation in intensity than variation in chromaticity
[6]. While emphasizing nearness in luminance, the color metric also attempts to resolve
among colors with approximately equivalent luminance.

It has been recognized that this final mapping of original image to quantized image
requires a computationally intensive search, especially for large quantization maps [1].
Most of the time in color quantization is taken up by the latter search and remapping

phase, and not by the initial quantized color determination phase. In the worst case, each
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pixel must be compared to all quantized colors before an optimum match can be made.
However, the relatively small quantized set size of 16 should decrease search latency con-
siderably, in comparison to the normal search size of 256.

More importantly, this search needs only to be run once when the original color is first
allocated in the default colormap, and thus need not be run for every pixel referencing this
color. Observe that the colormap scheme requires all colors to first be allocated before
they can be used. Since all further references to the color are by index, then the search
need only be conducted once. This is in sharp contrast to the normal problem of mapping
a 24-bit RGB image into a 256-color colormap, where each original pixel stores a 24-bit
color instead of an index, so that the search must be conducted anew for each pixel. In
fact, the colormap scheme defers all of this quantization work to the application. Thus, the
colormap scheme allows us to effectively removes the worst contribution to coding latency
from color quantization.

The overall drawing process implemented by the X server is encapsulated in a simple
lookup table, pictured in Figure 5.11. When a pixel uses a value in the default 256-color
colormap, then the X server draws that pixel into the virtual frame buffer, and in addition
does a quick lookup to find the index for the 4-bit coarse color. This coarse color is drawn
immediately into the physical frame buffer. The effect seen by the end user is a progres-
sive transmission algorithm, within an initial color for each pixel closely followed by a
final color. From the source’s perspective, the 4-bit coarse color is first transmitted to the

receiver, and followed by a later progressive transmission of the final 8-bit color vector.

5.5.2.2 Lessons learned

We constructed a simple two-substream example to gain some intuition about the sub-
jective behavior of asymptotically reliable and progressively coded graphics that trades off
reliability, delay and bandwidth across substreams. We modified an X11R6 windows
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Figure 5.11 Lookup table that implements progressive colormap algorithm. For each
pixel, the X server saves the actual colormap value in the virtual frame
buffer, and writes the coarse colormap value into the physical frame
buffer. At some later time, the full colormap value stored in the vib is sent
through the progressively reliable encoder to be displayed on screen. Let
N. = # coarse colors, N; = # total colors. In our implementation, the
coarse colormap is embedded within the N; (=256)-color colormap, occu-
pying the first N, positions.

server to implement the progressive colormap algorithm and asymptotic reliability using
two substreams. A simulated channel introduces errors and constrains the bandwidth.

We experimented with several depths of initial colormap size. First, we found that
coarse colormaps of 16 colors were ill-suited for progressive transmission of natural
images. The coverage of the 16 colors over RGB space was too sparse to permit accurate
representation of both luminance, and hue/chrominance color components. Consequently,
both the luminance and color of the image would change between the initial and final rep-
resentation. As a compromise, we fixed the coarse colormap to only allow grayscale val-

ues. This would limit the change between initial and final versions of an image to only a
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color change, rather than a luminance change as well. We observed that this change signif-
icantly improved our PIT algorithm.

We also experimented with a 1-bit/2-color black and white coarse colormap. We found
that text could be easily reproduced in legible form by this two-tone initial colormap. This
is because the foreground and background colors of a text-based application are usually
chosen by the user to appear as highly contrasted, i.e. the luminance difference between
text and background is extreme. While natural images were less well reproduced, by and
large the essential subjective features of most such images were still easily discernible. By
expanding to 2-4 bit grayscale coarse colormaps, the coarse versions of natural images
were able to start conveying fine detail in addition to coarse detail reasonably well.

Interactivity of the progressive server at 100 kbit/s was much improved over the nor-
mal X server. Bursty activity like menu pulldown is conveyed quickly, thanks to the low-
quantization black and white initial version. We modified a second X server to incorporate
rate-limiting only, with no progressivity either in the source or channel coding domains.
This “normal” X server rate-limited at the same channel capacity experienced significant
interactivity problems by trying to send the fully quantized color version. At higher chan-
nel capacities exceeding 1 Mbit/s, the improvement in interactivity was less noticeable.

Unreliability of the initial image was tolerable despite a severe BER. Even text-based
images tolerated the noise, thanks to the robustness of the progressive colormap scheme.
We found that the pixel error rate at the limit of text legibility for noisy 12-point text was
about 3%. However, this legibility threshold depends on pixel resolution, pixel depth, and
text size, in addition to the channel noise, so it should not taken as an absolute. It was
derived by corrupting pixels for an 8-bit ~100 dpi display until a normal shell terminal’s
12-point text was no longer readable. Natural images could tolerate higher BER’s.

We found that the end user soon became accustomed to the transition effect from ini-

tial to final image. The most pronounced effect occurs for heavy quantization, i.e. the
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monochrome to color transition. We found this crude system usable, though certainly not
ideal. Clearly, more clever PIT algorithms could mitigate this transition effect. We also
tried grayscale “coarse” colormaps, which reduced the transition effect. Color-based
“coarse” colormaps were found to perform slightly worse subjectively than their grayscale
counterparts. We believe this to be a consequence both of the eye’s greater sensitivity to
luminance than chrominance (plus our mapping metric’s biases toward a luminance
match) and of the lack of dynamicity in the “coarse” colormap.

Another conclusion we came to is that two substreams insufficiently partition the
graphics source. For example, we ran mpeg_play to see how video performs. We observed
a pronounced annihilation effect due to the 5 second minimum delay -- the reliable version
is never sent thanks to the fast overwriting action of the video stream. However, we were
forced to watch a black and white video presentation indefinitely! Clearly, the progressive
colormap algorithm should not be applied uniformly to all applications’ data. To avoid
this, in the future we believe that data-dependent or application-dependent partitioning of
the graphics stream is needed, which is one of the motivating reasons for the development
of the flow labels described in Section 5.4.3.

To experiment with application-dependent source coding within the X server, we
included two hooks into the X server through the Tcl-based performance manager. First,
in Figure 5.6 we show that a “separate image coding” button is incorporated into the per-
formance manager. With this button, we were able to turn off progressive colormap coding
for video sequences, and natural images in general. For example, we could edit text in one
window, which would be sent in progressive colormap fashion, while the video in another
window would be playing at full color depth. The overall effect was far more pleasing than
applying a single coding scheme to all applications’ data.

In addition, we also incorporated a “progressive cursor” button in the performance

manager in order to remedy another subjective artifact introduced by uniform progressive
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colormap coding. We found that if progressive colormap coding is applied to cursor
redrawing, then as the mouse cursor is moved across the screen, it leaves not only a noise
trail due to progressive reliability (which produced the “snake” effect described in Section
5.4.1), but it also leaves a much more objectionable source coding trail. In the case of a
black and white coarse colormap, the blocks redrawn in black and white due to the passing
of the mouse cursor stood out in stark contrast to the surround color versions. To fix this
problem, we added state in the progressive encoder of the X server to detect when a cursor
was being drawn. If a mouse cursor was drawn into an affected block, then the previous
state was used to decide what depth the mouse cursor should be drawn at. If the previous
block state was “sent final data”, then we know that the final color version is being dis-
played for that block at the receiver. In this case, the mouse cursor is drawn a full color-
map depth rather than coarse colormap depth. If instead the previous block state was “sent
initial data”, then we assume that the receiver is viewing a coarse colormap version of that
block, and therefore the least objectionable approach is to redraw the cursor-affected block
at coarse colormap depth. The overall effect is that the cursor again leaves only a noise
trail, and no longer leaves a black and white, or grayscale, trail in its wake. If the cursor is
viewed as a separate application, then we see again that application-dependent coding can
reap large subjective benefits in terms of perceived quality.

Finally, we note that our progressive colormap scheme is quite simple, and that more
sophisticated progressive source coding schemes are possible that reproduce both embed-
ded text and natural images well, tolerate errors well, and achieve a larger degree of com-
pression in their first version. For example, we did not experiment in-depth with wavelet
image bases which might be able to capture text and natural images well. The objective
would be to find a transform that packs much of its energy into high and low frequency

components, but not much into middle frequency components.
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Figure 5.12 Video Is delivered over a progressive reliable protocol. While video is
streaming continuously, progressive retransmissions are shut off by com-
bining delayed retransmission redundancy with the ADU cancellation func-
tion. Each new frame effectively cancels any attempt to retransmit the
previous frame’s data. When video is suddenly paused, the progressively
reliable protocol naturally kicks in its retransmissions to clean up artifacts
on the final frozen frame.

5.6 Other application examples

In this section, we consider how continuous multimedia applications like video and
audio can parameterize our progressively reliable protocol to deliver their data sequences.
While progressively reliable packet delivery was designed with bursty multimedia in
mind, both video and audio can make use of two of progressive reliability’s functions,
controlling when retransmissions are sent (Section 5.4.1) and whether retransmissions are

initiated at all (Section 5.4.2).

5.6.1 Video

Video exhibits a natural cancellation property. As each new frame is displayed, the
previously visible frame is overwritten. We observe that a progressively reliable protocol
which implements cancellation of stale ADU’s and delayed retransmission of ADU redun-
dancy could be parameterized to deliver video unreliably without having to invoke pro-
gressive retransmissions on each frame. Consider the example shown in Figure 5.12.

Video is passed to the protocol as a sequence of image frames. Suppose the video applica-
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tion tells the protocol to delay retransmissions on a given frame by about 3 frame times, or
equivalently about 100 ms. Suppose that the video application subdivides its image into
blocks, and identifies each block in a frame by a separate correlation label (defined in Sec-
tion 5.4.2). Since a new video frame arrives every 30 ms, then the correlation labels cause
each new block associated with the next frame to cancel retransmissions of each corre-
sponding block in the old frame. Integrated over all blocks, each new frame effectively
cancels retransmissions of the old frame. In this way, a progressively reliable protocol can
be parameterized to shut off progressive retransmissions and deliver video without requir-
ing each noisy frame to be cleaned up by reliable follow-up redundancy.

Many video applications allow the user to pause the video in order to capture and edit/
composite a single image. As soon as the video is paused, retransmissions will no longer
be cancelled by the next frame. Following the minimum wait time, which is 100 ms in our
example, progressive retransmissions will automatically be initiated to clean up the arti-
facts in the freeze-frame image, as shown in Figure 5.12. The application need not estab-
lish a separate TCP connection to transmit the fully reliable freeze-frame image. Thus,
when a video application sends a continuous sequence of images, the progressively reli-
able protocol behaves like an unreliable datagram protocol and suppresses retransmis-
sions. When the video application is paused, the progressively reliable protocol behaves
like a reliable protocol and employs retransmissions to deliver a reliable version of thé

freeze-frame image.

5.6.2 Audio

The cancellation and delayed retransmission functions of our progressively reliable
protocol can also be parameterized to deliver continuous media audio. The intent is to cus-
tomize the progressively reliable protocol to partially retransmit audio until the desired

latency bound expires!, e.g. due to conversational interaction. In some connections, the
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Figure 5.13 Circular cancellation of audio packets. The progressively reliable protocol
attempts retransmissions for each audio packet up until the conversational
latency bound is exceeded. Suppose that by the time packet 4 is ready to
be transmitted, any further retransmissions of packet 1 will arrive too late
at the receiver. Therefore, packet 4 can be used to cancel retransmissions
of packet 1, and packet 5 to cancel retransmissions of packet 2, and so on
in circular fashion. The protocol is parameterized so that retransmissions
of an audio packet are sent immediately, rather than being delayed as for

interactive image browsing.

propagation and queueing delays may still be small enough to leave slack in the latency

budget for several end-to-end retransmission attempts.

In Figure 5.13, we illustrate how circular annihilation of progressively reliable pack-
etized audio works. Consider an audio sequence of four numbered packets or ADU’s. Sup-
pose that by the time packet four is ready to be sent that any further retransmissions of
packet one will arrive too late at the receiver, i.e. after the desired latency bound has been

exceeded. The time interval during which partial retransmissions can be attempted is

1. This idea of using a circular cancellation scheme for audio was proposed by Sanjoy Paul, currently at

Lucent Bell Labs, in a conversation with the author.
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therefore three packet lengths in our example. Within this window of three packets, each
new audio packet displaces the oldest of the three queued packets, cancelling retransmis-
sions associated with the oldest packet. For example, packet four will be labelled by the
application with the same correlation label A as packet one, packet five with the same cor-
relation label B as packet two, etc. This enables the protocol to stop retransmitting packet
one(two) as soon as packet four(five) has been passed to it through the transport service
interface. Cancellation proceeds in a circular fashion through the correlation labels, transi-
tioning from A->B->C->A->B->...

The same approach described here for audio can also be applied to partially retransmit
a frame of video. However, unlike the example of video in the previous section, retrans-
missions in this section are tightly concentrated within a couple hundred millisecond inter-
val, and the cancellation function is applied over multiple frames spread in time. By
analogy with the audio example above, video frame four would cancel video frame one. In
contrast, the previous section delivered video by parameterizing progressive reliability to
delay retransmissions by many seconds, and cancellation was employed for each succes-
sive frame, i.e. frame two cancels frame one, frame three cancels frame two, etc. The two
examples recounted here illustrate how parameterization of a progressively reliable proto-
col allows multiple applications to flexibly adapt this protocol to suit their individual

needs.

5.7 Summary and conclusions

In this chapter, we have discussed the following: our definition of progressively reli-
able packet delivery; the fundamental properties which characterize a progressively reli-
able delivery service; our modified X windows server that emulates in real-time a crude

version of progressive reliability; three added-value functions which improve the latency
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performance of a progressively reliable protocol; and examples of how multimedia appli-
cations (image, video, voice) could exploit a progressively reliable transport service.

Progressively reliable packet delivery delivers an initial possibly corrupt version of a
packet to the receiver immediately. Later, successively refined versions of that packet are
delivered with statistically fewer and fewer errors. An interactive Web-based image
browser would exploit progressively reliable packet delivery to display an initial possibly
noisy version of an image. Later, the displayed image would gradually be cleaned of any
persistent artifacts caused by channel noise.

There are four key properties to a progressively reliable service/socket interface as
seen by the application. First, corrupt information is forwarded to the application. This
requires that the application frame its data into application data units (ADU’s). Further, to
permit forwarding of ADU’s with corrupt payloads, there need to be separate error detec-
tion checksums for the ADU header and ADU payload. Second, multiple versions of each
ADU are forwarded. Third, these multiple versions have the property that they are mono-
tonically increasing in reliability, i.e. each successive ADU version is guaranteed to have
statistically fewer errors than previous versions. Fourth, the application must be able to
tolerate out-of-order delivery of different ADU’s.

We modified an X windows server to implement progressive reliability in real-time.
We also created a Tcl-based “performance manager” tool which could dynamically adjust
a variety of delay, bandwidth, and BER parameters as the X server was running.

Through experimentation, we discovered three additional functions which can be
incorporated into the socket interface to help parameterize the underlying progressively
reliable protocol and improve its latency performance. First, retransmissions of an ADU
that are used to provide successive refinement can be delayed so that they don’t conflict
with initial delivery of an ADU. Subjectively, once the end user has a noisy initial image

version with which to interact, then the final reliable version of that image can be retrans-
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mitted with a more relaxed delay objective, on the order of many seconds. This flexibility
can be exploited by our protocol to give priority to delivering the delay-sensitive first ver-
sion of an ADU. Second, retransmissions that have been delayed by the protocol can also
be cancelled if they are associated with out-of-date image data. This unique feature per-
mits an application sender to stop the protocol from retransmitting old image data that is
no longer useful to the receiver. We propose the use of “correlation labels” to implement
cancellation of stale ADU data. Third, we propose that applications be allowed to subdi-
vide their data into multiple flows, which are then scheduled differently according to their
delay and reliability quality-of-service (QOS) parameters by a progressively reliable pro-
tocol. Flow-based scheduling is a natural extension of progressive reliability, which inher-
ently makes a two-flow scheduling distinction between the virtual flow of initial delay-
sensitive ADU versions and the virtual flow of final relaxed-delay ADU retransmissions.

Finally, we describe several examples of how multimedia applications can take advan-
tage of progressively reliable packet delivery. Progressive image transmission (i.e. pro-
gressive source coding) can be combined with progressively reliable packet delivery (i.e.
progressive channel coding), and we describe a simple progressive colormap algorithm
which we implemented within the X server. In addition, video applications can make use
of the cancellation function to allow each succeeding frame to cancel retransmissions of
data associated with previous frames. Finally, audio applications can make use of the can-
cellation function to create a circular buffer, which pa.rtially retransmits packets within a
sliding window of eligible packets.

In the next chapter, we discuss some issues related to implementing a progressively

reliable end-to-end protocol, which we call Leaky ARQ.
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Leaky ARQ
Implementation Issues

In this chapter, our intent is to consider how a progressively reliable transport protocol
could be implemented to support the progressively reliable transport services described in
the previous chapter. The survey of implementation issues presented here is not intended
to be a rigorous treatment of the topic. Instead, specific implementation options are target-
ted and some of the trade-offs associated with these options are outlined. In Section 6.1,
we introduce Leaky ARQ and outline the modifications to a traditional retransmission-
based ARQ protocol needed to support the essential properties and added-value functions
of the progressively reliable transport service interface. In Section 6.2, we consider how
progressive reliability, particularly the successive refinement property, can be imple-
mented as a true transport protocol by appropriately modifying Hybrid FEC/ARQ proto-
cols. In Section 6.3, we detail some of the advantages and difficulties of implementing
progressive reliability as an end-to-end protocol lying above TCP and UDP in the Internet
stack. Finally, we consider other implementation issues such as fragmentation of ADU’s,

non-sliding windows, and acknowledgments.
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6.1 Leaky ARQ: a progressively reliable end-to-end protocol

Recall from the previous chapter that the essential properties that a progressively reli-

able end-to-end protocol must support at the transport service interface are:
* Corrupt ADU’s are forwarded to the application

* Multiple versions of each ADU are delivered

* The reliability of these multiple ADU versions improves over time (fewer errors with

each successive version)

* Different ADU’s are delivered out of order

In addition, the progressively reliable protocol should support the three following per-

formance-enhancing functions:

* delaying ADU retransmissions such that conflict with delivery of the initial version of

an ADU is minimized
* cancelling retransmissions associated with out-of-date ADU’s

* flow-based scheduling of the sender’s traffic by delay and reliability constraints

A retransmission-based ARQ protocol can be modified at the receiver to “leak” for-
ward corrupt ADU’s. We call such a protocol “Leaky ARQ” [51]. The retransmissions
contain the reliable redundancy which allow Leaky ARQ to improve the reliability of the
delivered data over successive versions. At the sender, Leaky ARQ needs to be modified to
support delaying of retransmissions, cancellation of retransmissions, and scheduling of
multi-flow application data. Figure 6.1 summarizes each of the major modifications that
need to be made to a traditional ARQ protocol in order to support progressively reliable
packet delivery. In order to support unordered delivery of packets, cancellation of specific
data, and successive refinement of packets, then the internal structure of Leaky ARQ

should be implemented as an acknowledged datagram protocol.
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Figure 6.1 Leaky ARQ Is a progressively reliable packet delivery protocol that modi-

fies a traditional ARQ protocol in four ways: (1) at the receiver, noisy
packets are Initially forwarded to the multimedia application and then
successively refined to remove errors (2) retransmissions are delayed at
the sender’s queue, while initial transmissions are sent immediately (3)
multiple flows are scheduled with different delay objectives (4) out-of-
date retransmissions can be annihilated at the sender.

6.2 Implementing Leaky ARQ as a hybrid FEC/ARQ transport

protocol

In this section, we consider implementing Leaky ARQ as a true transport protocol, i.e.

as a third alternative to either TCP or UDP for the Internet. Implementation as a true trans-

port protocol gives us the flexibility to employ a sophisticated hybrid FEC/ARQ scheme

for implementing the successive refinement property. Hybrid FEC/ARQ protocols com-

bine a retransmission-based ARQ protocol with FEC, either in the form of linear block

codes or convolutional codes. In the following subsections, we discuss Type-I Hybrid
ARQ, adaptive Type-I Hybrid ARQ, and Type-II Hybrid ARQ.
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Hybrid FEC/ARQ protocols are applied in situations where only one form of error
protection, e.g. FEC or ARQ, by itself would be insufficient to meet the end user’s reliabil-
ity and delay objectives. In the absence of FEC, a retransmission-based network ARQ pro-
tocol can take too long to reliably deliver an error-free packet to the destination. We
quantified in Chapter 2 the minimum latency introduced by an ideal protocol over a noisy
wireless link and showed that the delivery time for an error-free packetized image far
exceeded the interactive latency bound of 100 ms. Similarly, in the absence of ARQ-type
feedback, open-loop FEC can introduce considerable overhead in order to adequately pro-
tect an image over a noisy wireless link. As we showed in Chapter 3, fixed open-loop FEC
can double or triple the bandwidth. Moreover, practical limitations on the complexity of
FEC limit its effectiveness at high BER’s. A hybrid FEC/ARQ protocol can achieve higher
throughput and/or lower overhead compared to ARQ or FEC operating alone. In Table 8,

Table 8. A summary of digital error protection techniques

Description Examples
Conventional Retransmit lost packets SRP, GBN, SW, TCP
ARQ
Open-loop FEC || Linear block codes, convolutional codes | Reed-Solomon codes
Stutter ARQ Conventional ARQ + multiple transmis- see Chapter 2
sions of unacknowledged packets references
Type-I Hybrid Fixed FEC within a conventional ARQ | TCP over digital cel-
ARQ retransmission loop lular with fixed con-
Il volutional coding
Adaptive Type-1 || Adaptive FEC within a conventional ARQ see Chapter 6
Hybrid ARQ retransmission loop references
Type-II Hybrid || At sender, initially transmit packet with lit- see Chapter 6
ARQ (also tle/no FEC, only send FEC redundancy references
called Memory if original packet was corrupted.
ARQ or Packet || Atreceiver, save noisy packets and decode/
Combining) error correct by combining previous his-
tory of noisy received packets.
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we summarize in advance the major forms of digital error protection surveyed so far, and
also those to be explained later in this section. These comprise the menu of error protec-
tions options available for the design of Leaky ARQ. We shall see that Leaky ARQ can be
interpreted as a modified form of Type-II Hybrid ARQ.

6.2.1 Limitations of Type-1 Hybrid ARQ over time-varying chan-
nels

A Type-I Hybrid ARQ protocol is defined as having a FEC coder/decoder pair with
fixed coding rate embedded within the retransmission loop of an ARQ protocol. For exam-
ple, if an end-to-end ARQ protocol like TCP [25] is employed over an IS-54 digital cellu-
lar wireless link that has implemented a fixed rate % convolutional FEC code [36], then
together this TCP-FEC combination conceptually forms a Type-I Hybrid ARQ protocol,
even though the FEC and ARQ were designed separately and operate at different layers.
For T-1 H-ARQ protocols, we showed in Chapter 3 that header overhead and FEC redun-
dancy can together double the bandwidth under certain assumptions, though FEC redun-
dancy alone only added about 15% redundancy. However, we pointed out several
optimistic assumptions in our derivation that would make it more difficult for T-I H-ARQ
protocols to meet the interactive latency bound, either because of protocol inefficiencies,
increased overhead when non-optimal binary codes are considered, or severe BER’s that
cause the FEC to fail.

A potentially more objectionable problem with T-I H-ARQ is its relative inefficiency
over non-stationary fading wireless channels with time-varying probabilities of bit error.
Since the coding rate is fixed for T-I H-ARQ protocols, then when the BER is too low, the
FEC overhead is excessive and unnecessary. When the BER is too high, the error correc-
tion is insufficient. For example, practical digital cellular systems design the error correc-

tion to protect against heavy BER’s, resulting in a doubling and even tripling of the
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number of transmitted bits due to FEC overhead [29][36][101]. The fixed overhead will be
wasteful when the channel is in a relatively benign low BER state, which is often the case
[78]. If the protocol designer tries to compromise and reduce the overhead cost suffered
during good channel conditions, then the code will fail to sufficiently protect the data dur-
ing most wireless fades. Once FEC fails, then the repetition-based ARQ protocol will also
fail because most retransmissions will be corrupted by bit errors [8]. Under these condi-
tions, reliable packet delivery will suffer the exponential delays which we observed in
Chapter 2.

To help analyze the performance of T-I H-ARQ protocols over time-varying channels,
researchers have developed stochastic channel models. Real-world wireless channels
exhibit correlated or bursty errors, and hence exhibit a form of memory, unlike the random
memoryless BSC. The basic Gilbert-Elliott two-state Markov model assumes that the
wireless channel transitions back and forth between a “good BER” state and a “bad BER”
state. The transition probabilities control how often a given state is entered and exited.
More sophisticated multi-state Markov models [21][42], as well as other channel charac-
terizations like “gap error” models, have also been developed based on empirical measure-
ments of different types of wireless links, and are summarized in [67]. Previous work has
demonstrated that Markov-modeled channels are much better at predicting the probability
of decoding error for open-loop FEC block codes over actual wireless channels than the
memoryless BSC model [34][92]. Similarly, Markov models have been applied in the
study of the throughput performance of non-hybrid ARQ protocols like ideal SRP, GBN,
and SW over channels with memory [19][48][81].

The performance of T-I H-ARQ protocols in bursty error wireless environments has
been investigated by a number of authors [43][52][59]1[61][150]. Each of these studies dif-
fer in their choice of ARQ protocol, FEC type, underlying analog modulation technique,

and assumed channel fading behavior. The general consensus appears to be that a T-I H-
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ARQ protocol can outperform ARQ or FEC operating alone, but is still subject to the over-

head problem mentioned above.

6.2.2 Adaptive Type-l Hybrid ARQ

Recognizing the fixed overhead costs suffered by a T-I H-ARQ scheme when the chan-
nel is relatively clean, several authors have proposed heuristics to adapt the depth of FEC
channel coding to the level of noise, or the probability of bit error, posed by the time-vary-
ing channel [40][66][108][144]. Key design parameters of adaptive T-I H-ARQ protocols
include what metric(s) (e.g. BER, analog received signal strength indicator (RSSI), analog
signal-to-noise rate (SNR)) to use for adaptation, the granularity of adaptation rate, the
states of the metric that trigger adaptation, and the level of FEC overhead that is applied
for a given value of the metric. While such adaptive hybrid protocols hold great promise,
there are some practical limitations to consider. A partitioned communications system
design may hide the physical layer’s received analog “soft” symbol values from higher
layer “hard-decision” bit decoding. Even if the analog RSSI/SNR values are known to the
upper layers, the channel may be changing too rapidly for these values to represent the
current state of the channel. Also, the raw BER of the channel may be difficult to infer
from the received bit stream, because failure of FEC decoders can cause the number of
errors to be unknown in a packet, or even worse can magnify the number of errors in a
packet. One author has proposed deriving the BER from correctly decoded packets only,
and ignoring incorrectly decoded packets with too many errors. Such a metric is precise

only up to the BER failure point of the error correcting code [118].

6.2.3 Type-ll Hybrid ARQ incorporates variable-rate FEC

The progressively reliable protocol design is arguably best accomplished by basing it
on another type of adaptive hybrid ARQ protocol called the Type-II Hybrid ARQ protocol
[78]. In this type of scheme, redundancy is sent incrementally per packet as dictated by the
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channel noise conditions. At the sender, the original packet is transmitted with little or no
FEC. If the original packet cannot be decoded free from errors, then the sender transmits
more FEC redundancy bits, rather than simply repeating the original packet as practiced
by conventional ARQ. At the receiver, noisy packet versions are saved rather than dis-
carded. The possibly noisy FEC redundancy is combined with the noisy original packet in
order to decode the packet. BEach time the decoded version is in error, incrementally more
redundancy is conveyed to the receiver, which continues to store a history of received pay-
load and error correction bits in order to successively refine the decoded packet.

By sending FEC redundancy only when the channel BER is sufficiently severe, the T-II
H-ARQ approach is able to adapt to time-varying channel conditions, and therefore is sub-
stantially more efficient than a fixed FEC T-I H-ARQ protocol. In addition, caching of a
packet’s received history for packet combining further improves the performance of T-II
H-ARQ by reducing the number of retransmissions needed to decode a given packet.
Another outcome of packet combining is that the most recent estimate of a packet’s trans-
mitted bits is guaranteed to be statistically less error-prone than previous estimates, at the
cost of greater memory and processing at the receiver, a characteristic we will use to
implement progressive reliable delivery of images. The T-II H-ARQ approach is also
called memory ARQ [86][120], and/or packet combining.

A well-known example of T-I H-ARQ is Lin & Yu’s protocol, which alternates
between sending the original packet (say P;) of length N bits and the N error correction
bits (say P,) generated by a (2N,N) linear block code [78]. The receiver either caches a
corrupted P; and then uses the newly arrived P, to correct the cached P, or caches a cor-

rupted P, to correct the next P;. This approach has been generalized to cache and combine

more than two versions of a packet. Generalized maximum-likelihood code combining of

multiple cached packets is described in the literature [14][15].
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Both of the aforementioned techniques only consider the special case where the
retransmissions containing the FEC redundancy are all the same length as the original
payload. An alternative is to send FEC redundancy incrementally at granularities other
than strictly the payload length. Rate-compatible punctured convolutional (RCPC) codes
support incrementally redundant transmission and maximum-likelihood code recombina-
tion and have been proposed for use in T-II H-ARQ protocols [49]. In addition to support-
ing incremental transmission, RCPC codes also support unequal error protection (UEP),
i.e. different sections within a packet may be protected with varying degrees of error cor-
rection. Moreover, the diverse range of error correction supported by RCPC codes can be
generated by a single encoder and a single decoder. A mixed approach which integrates
payload-length repetition with incremental redundancy was proposed in [65]. The perfor-
mance of several T-II H-ARQ schemes over Markov-modeled channels has been studied
in [63][91][112].

Another form of packet combining called time diversity combining that is less power-
ful than code combining has also been discussed in the literature [151]. In time diversity
combining, decoding of a given packet from multiple cached versions is performed on a
bit-by-bit or symbol-by-symbol basis. For example, if there are three cached versions of a
packet at the receiver, then conceptually each bit can be thought of as having been encoded
with a (3,1) error correcting code, i.e. the redundancy is limited to error correcting a spe-
cific bit or symbol. In comparison, code combining permits redundancy bits to apply
across all bits in the original packet. For the same percentage of overhead, the conceptu-
ally simpler time diversity combining is weaker than code combining. An example of dig-
ital “hard-decision” time diversity combining is majority-logic bit-by-bit decoding.
Suppose that all retransmissions are the same length as the original packet, and that the
receiver stores an odd number of received versions of each packet. For each bit, a major-

ity-logic decoder will decode the value O or 1 that has the most occurrences, i.e. that is in
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the majority [12]. An example of an analog “soft-decision” time diversity combiner would
be computing a weighted energy average representation for each symbol in a packet. That
is, given multiple received copies of a packet stored in terms of their analog received sym-
bol values, compute an averaged representation of each symbol in a packet. This averaged
analog packet representation can then be fed into a maximum-likelihood soft-decision Vit-
erbi decoder [53]. An advantage of this analog technique is that the post-decoding output
will not fail catastrophically and magnify errors, as would occur for hard-decision decod-
ing of non-systematic linear block codes. A comparison of the efficiency of diversity com-
bining vs. code combining is found in [66] for the case of repetition coding with multiple
copy decoding.

Note that both time-diversity combining and code combining algorithms which do not
preserve the complete history of received packets will be unable to guarantee statistically
improving reliability. As discussed in Section 5.2.3, a necessary condition for successive
refinement requires that the entire history used to decode previous versions of an ADU be
preserved so that subsequent ADU versions can be decoded with increasing reliability. For
example, Lin & Yu’s T-II H-ARQ alternating parity protocol only preserves the most
recent corrupt packet at the receiver, and is therefore unable to strictly guarantee improv-
ing reliability. Unfortunately, the caching required to retain the entire history can lead to
an unbounded need for buffer space at the receiver. As a practical compromise, limited
memory at the receiver may not be able to strictly ensure monotonically increasing reli-
ability, but for engineering purposes the property of increasing reliability can be closely
enough approximated.

T-I H-ARQ schemes differ from adaptive T-I H-ARQ protocols in three areas:
whether receiver memory is used for packet combining; the metric used for adaptation;
and the rate of FEC adaptation. A common characteristic of all T-II H-ARQ protocols,

whether they apply code combining or time diversity combining, is that noisy packets are
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saved and the received history is used to enhance the power and efficiency of error decod-
ing. Adaptive T-I H-ARQ schemes do not employ this kind of memory at the receiver.

T-I H-ARQ methods also use a very simple error detection metric to estimate the
channel state; whether a packet has been detected in error or not is the only channel infor-
mation used by the protocol to adapt the level of FEC. In comparison, adaptive T-I H-ARQ
techniques can measure the channel state by a variety of more sophisticated analog (SNR,
RSSI) or digital (BER within a time window) metrics. Yet, the error detection metric can
be quite effective when used in conjunction with memory at both the transmitter and
receiver of a T-II H-ARQ protocol. The sender remembers how many retransmissions of a
packet have occurred and how much FEC redundancy has been incorporated in these
retransmissions. The sender can integrate this memory with the feedback from the receiver
about whether the latest version of the reconstructed packet still has errors to adjust the
incremental amount of redundancy incorporated in the next retransmission. Combining
error detection with memory is arguably as effective a metric as using a sophisticated
channel estimator without memory. Moreover, from a practical perspective, error detection
is considerably easier to implement than other analog SNR/RSSI or windowed BER met-
rics.

T-I H-ARQ protocols adapt the level of FEC on a per-packet granularity. Both the

channel estimation (error detection) and the decision whether to send more/no FEC are

carried out each time a packet is transmitted. In contrast, adaptive T-I H-ARQ schemes
have a great deal of latitude in choosing how often to estimate the channel state, under
what conditions to change the level of FEC, and to what degree FEC should be increased/
decreased. Most proposals for adaptive T-I H-ARQ that we listed in the previous section
continuously update the channel state estimate for each transmitted packet, but differ on
the criteria and depth for adaptation.
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Performance comparisons of adaptive T-I H-ARQ and T-II H-ARQ protocols are avail-
able in [64][111], which show that incrementally redundant transmission plus code com-
bining help T-II H-ARQ outperform even adaptive T-I H-ARQ protocols in terms of
throughput. Table 8 summarizes the different forms of digital error protection that we have
reviewed so far.

Leaky ARQ can be implemented by modifying any of the time-diversity combining,
maximum-likelihood code combining, and T-II H-ARQ schemes described above at the
receiver to forward noisy intermediate representations of a packet to the application. Such
memory ARQ protocols naturally refine the packets stored at the receiver. Rather than hid-
ing these intermediate representations from the application, these memory ARQ protocols
can be modified to forward intermediate noisy representations of packet data. Delivery of
multiple noisy yet increasingly reliable versions of a packet is a natural outcome obtained
by leveraging off of the successive refinement implemented by packet combining. In addi-
tion to modifying the receiver to forward corrupt information, the memory ARQ sender
can also be modified to implement delayed retransmissions, cancellation of out-of-date
data, and flow-based scheduling. In this way, T-IT H-ARQ protocols represent a useful

template for constructing our Leaky ARQ progressively reliable protocol.

6.3 Implementing Leaky ARQ above the transport layer

While implementing Leaky ARQ as a true transport protocol ideally maximizes its
performance potential, the reality of propagating a new transport protocol throughout the
Internet may force Leaky ARQ to be implemented as an application-level protocol built on
top of UDP and/or TCP. We discuss in the following subsections some of the disadvan-
tages of layering Leaky ARQ on top of UDP and/or TCP.
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6.3.1 Limitations of the combination of TCP and UDP

An end-to-end progressively reliable protocol can be layered on top of the combina-
tion of TCP and UDP. The initial version of an image can be sent via UDP, and a reliable
version can be transmitted at some later time via TCP. Unfortunately, once a packet is sent
to TCP, there is no way to stop TCP from sending that packet reliably to the receiver. This
poses two problems: we cannot stop TCP retransmissions from conflicting with the more
urgent delivery of the UDP image data (for immediate interactivity); and we cannot stop
retransmissions of out-dated image data. First, retransmissions of TCP packets will uncon-
trollably steal bandwidth from newly arrived UDP packets, increasing the delay of time-
sensitive UDP data. Hence, the combination of TCP and UDP cannot promise consistent
interactivity. Second, TCP can waste scarce wireless resources trying to reliably transport
out-dated information. Web-based image browsers and remotely rendered bitmapped edi-
tors like Framemaker overwrite the same screen location frequently with newly delivered
image data, so that visual data can become stale or out-of-date. After rapid image brows-
ing or paging/scrolling, the protocol’s buffers may contain a sizable backlog of stale image
data awaiting reliable delivery, especially if the channel is in a long fade. TCP does not
permit us to identify and “cancel” this stale redundancy, i.e. to stop further retransmis-
sions. Our protocol remedies both of these problems by cancelling stale retransmissions,
and by rescheduling redundancy/retransmissions so as not to conflict with initial delivery
of data. Finally, we note that TCP only provides full reliability. Image applications may be
able to tolerate a small degree of lasting residual errors. Therefore, our protocol should
support less than fully reliable asymptotic service. As we noted in Chapter 5, retransmis-

sions can be terminated after a finite number of trials, or a finite amount of time.
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6.3.2 Limitations of UDP

To avoid the limitations of TCP outlined in the previous subsection, an application-
level end-to-end protocol could implement progressive reliability entirely on top of UDP,
much like the application-level Real-Time Protocol (RTP) used by multicast video tools
[83]. However, UDP checksumming will have to be turned off in order to support forward-
ing of corrupt packet payloads. Once UDP checksums are turned off, then an application-
level protocol will have great difficulty confirming the validity of the IP and UDP headers
for received datagrams.

The UDP checksum is computed over the IP pseudo header plus the entire UDP data-
gram (UDP header plus UDP payload) [25]. IP routers often don’t calculate checksums;
IPv6 doesn’t even have IP-level checksums! [57]. Normally, UDP checksumming is relied
upon to eliminate packets that may have been accidentally routed to the application after
corruption of their IP and/or UDP headers. The application-level protocol that receives
UDP datagrams won’t have access to the source IP address or the source UDP address (the
destination IP address and destination UDP ports can be inferred). Once UDP checksum-
ming is turned off, then the application won’t be able to verify whether the datagram has
suffered IP and/or UDP header corruption, even if the application-level protocol imple-
ments its own error detection policy.

A solution practiced by designers of UDP is to incorporate the IP pseudo header into
checksum calculations, thereby violating Internet layering principles. An analogous solu-
tion for an application-level protocol would require UDP to forward both the IP pseudo
header as well as the UDP header to the application-level protocol for header verification.
A final difficulty is that once UDP is modified to turn off checksumming, other applica-
tions using UDP may not expect corrupt packet delivery, even though this is a clearly
specified option of UDP. Some poorly designed UDP applications may have built-in

assumptions that tolerate out-of-order and lost UDP datagrams, but because they assume
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UDP checksumming, they do not tolerate bit corruption within UDP payloads. Note that
building progressive reliability on top of the combination of TCP and UDP would suffer
many of these same problems.

A new version of UDP, dubbed “UDP-lite”, is in the process of development! at the
time of writing this dissertation. In this version of UDP, the UDP checksum is only calcu-
lated on the UDP and IP headers. The UDP payload is not included in the checksum calcu-
lation. A progressively reliable transport protocol could be built on top of UDP-lite, since
only header-valid payloads will be forwarded from UDP-lite to the progressively reliable
- protocol. Corruption will be confined to the UDP payload. Application-level Leaky ARQ
will need to implement its own error detection on the Leaky ARQ protocol headers
embedded within the UDP-lite payload. In order to improve the chances of header-valid
reception, FEC should be applied on headers throughout the protocol stack. Leaky ARQ
can apply FEC on its own protocol headers, but will be unable to protect lower layer UDP-
lite and IP headers. Therefore, UDP-lite can improve the chances of header-valid transport
over wireless links by implementing end-to-end FEC on the combination of UDP header
and IP pseudo-header. Linear block codes are ideally suited for FEC on fixed-length
packet headers.

Implementing an end-to-end protocol as an application-level library of functions on
top of UDP has been discussed in the literature [88]. Leaky ARQ built on top of UDP-lite
would require a similar set of design trade-offs. Of course, the socket interface between
Leaky ARQ and UDP-lite will introduce an additional level of indirection which will
reduce the efficiency of Leaky ARQ.

1. From conversations with Steve Pink, currently with the Swedish Institute SICS, on the end-to-end mailing
list in late 1996.
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6.3.3 SACK-TCP

Current implementations of TCP employ cumulative acknowledgments. Recently, a
new proposal to improve the performance of TCP has been made which replaces cumula-
tive acknowledgments with selective acknowledgments, called SACK-TCP [110]. A
selective-repeat (SRP) TCP sender combined with selective acknowledgments provides
the fundamental structure to implement a progressively reliable acknowledged datagram
protocol required by Leaky ARQ (observation by K.K. Ramakrishnan of AT&T Labs).
The ability to selectively identify specific fragments of a data stream is essential in order
to practice successive refinement or packet combining on these packet fragments, and to

support forwarding of multiple noisy versions of an ADU to the application.

6.4 Implementing transport services within Leaky ARQ

In this section, we survey several other issues related to Leaky ARQ implementation,
including fragmentation of ADU’s, acknowledgments, and non-sliding windows. Other
important design issues such as a complete time-out strategy, NAKs vs. ACKs, adaptive
resizing of congestion and flow control windows, and state machine design for both the

transmitter and receiver are not addressed in this dissertation.

6.4.1 Fragmentation of ADU’s

Application-level framing constrains leaky ARQ to operate as an acknowledged data-
gram protocol. Since Chapter 2 argued that fragmentation of large ADU’s into smaller
packets for transmission and reassembly can dramatically reduce transport latency, we
would like to fragment an ADU into smaller datagrams. In many respects, ADU fragmen-
tation is similar to the IP datagram fragmentation problem [25].

Internal to the protocol we define an ADU fragment. Figure 6.2 shows that each frag-

ment’s header will contain at least ADU-related information (flow header, correlation
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ADU | ADU | ADU | ADU |fragment|fragment |[fragment |fragment [fragment
sequence| flow |correla- | length | offset | header | total | header |payload
# header | tion pointer | length | length | CRC | CRC
label(s)

Figure 6.2 A subset of the header flelds defined for each fragment. The fragmented ADU
payload Is concatenated to the end of the fragment header.

labels, ADU length, ADU sequence number), fragment-related fields (fragment offset,
fragment total length, fragment header length, fragment payload CRC), and a fragment
header CRC that is calculated over all the non-CRC header fields. Recall from Figure 5.4
that the ADU header contains both application-dependent error-sensitive data, like (x,y)
location coordinates, in addition to control information like the ADU’s length field. The
protocol will extract only the control fields from the ADU header that are needed in the
fragment header to reassemble the fragmented ADU at the receiver. These fields are the
first four starting from the left shown in Figure 6.2, and do not include application-specific
data such as location information. The rest of the fields are fragment-specific. FEC is

applied on the header at a depth which is dependent upon the prenegotiated depth associ-

ated with that application’s flow. FEC may also be applied on the fragment payload

depending on how successive refinement is implemented and the prenegotiated depth
associated with that application flow.

Retransmissions, acknowledgments, and code combining can all be performed on
fragments rather than ADU’s. The various retransmission options are shown in Figure 6.3,
where an additional distinction is made between retransmission with and without incre-
mental redundancy. The initial transmission contains sufficient information to reconstruct
the payload, since the initial payload may be clean of errors and not require retransmission

at all. Subsequent retransmissions may only contain incremental parity check bits.
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As the receiver tries to reassemble an ADU from its fragments, the receiver first error
corrects the fragment header and then compares a computed fragment header CRC to the
received fragment header CRC (computed only on all non-CRC header fields). If the frag-
ment header is error-free, then the ADU sequence number in conjunction with the frag-
ment offset pointer are used to identify the individual fragment. The fragment’s payload
undergoes packet combining and the successively refined fragment is cached with the
other fragments of the same ADU, some of which may be corrupt and others clean. As
each fragment is successively refined, the reconstructed fragment is compared to the frag-
ment payload CRC (computed on the original fragment payload, not the current fragment
payload, which méy only contain incremental redundancy used for payload combining). If
the fragment payload is error-free, or if the refined fragment payload is sufficiently reli-
able, then the fragment is acknowledged as having been correctly received. Since each
fragment payload converges toward a more correct representation due to packet combin-
ing, then the ADU payload will also converge towards an error-free representation, fulfill-
ing our promise of successive refinement of ADU’s.

The ADU length field determines ADU framing boundaries. This helps the receiver
identify when all the fragments for an ADU have been received. The fragment total length

Original ADU | —— I - I | I ]

fregment1 fragment2 fragmentl fragment2
s 100 [0 [
Rerasmission#l [ [ [ [ C— 3
Rermnsmission®2 [ ][] [ 0 C—— O
(a) (b) © )
Figure 6.3 Retransmission granularity. (a) Fragment retransmission without Incre-

mental redundancy (IR) (b) Fragment retransmission with IR (c) ADU
retransmission without IR (d) ADU retransmission with IR.
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field only describes the size of the fragment, not the size of the ADU. Without further
information, the receiver would not know at what point all data for an ADU had been
received. IP solves this problem by using a “more-fragments” bit in conjunction with the
fragment offset. However, the IP approach can create a complicated reconstruction prob-
lem if one or more segments are lost. The receiver will be unable to determine the size of
the ADU for variably-sized segments, or for fixed-size segments when the final (variably-
sized) segment is lost. This unnecessarily delays delivery of the initial corrupt version of
the ADU. Hence, we explicitly specify the size of the ADU.

Variable-sized headers are supported by the fragment header length field. Observe that
once any of the fragments of an ADU have been received with valid headers, then much of
the information contained in the fragment header is redundant. For example, per-ADU
header fields like the ADU header, ADU length, flow header and correlation labels need
only be correctly transmitted once. Provided that a valid fragment header has already been
received, then only the ADU sequence number plus the per-fragment header fields are
needed to uniquely identify the fragment (along with port numbers, host addresses, etc.).
This minimal information is used to define a minimal fragment header with a fixed well-
known size. When the sender sets the fragment header length field to this minimal size,
then it is signalling that a compact header is being sent, instead of a full-fledged header. In
this way, retransmissions need only contain compact headers. This mechanism can be fur-
ther extended to transmit the ADU header only in the first fragment, instead of each frag-

ment.

6.4.2 Non-sliding windows

The sliding windows characteristic of most ARQ protocols can result in decreased per-
formance for bursty visual multimedia. In TCP, the sender is restricted not just by the win-

dow size W of outstanding unacknowledged bytes, but also by the sliding property of the
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sender’s window. The sender cannot transmit beyond W bytes past the lowest unacknowl-
edged byte. If W-1 of the previous words have been correctly received, but the oldest
sequence number has not been acknowledged, then the window stays fixed on this
sequence number until it has been acknowledged. Hence, available bandwidth is under-
utilized even as additional data may be queued waiting for transmission. The analogy
holds for ADU’s as well. The Leaky ARQ window merely specifies the number of bytes
outstanding at any given time, and not any additional ordering relationships among
ADU’s.

6.43 Acknowledgments

Since we’re supporting fragmentation of ADU’s, acknowledgments must be able to
identify individual fragments. In addition, acknowledgments should distinguish between
reception of a valid header with a dirty payload and a valid header with a sufficiently reli-
able payload. Such a distinction would enable abbreviated retransmission headers and
incremental redundancy. Once the transmitter has been informed that the first header-valid
payload has been reconstructed with errors, then it can begin sending incrementally coded
redundancy and/or shortened retransmission headers. Without this additional precision,
the sender would not know when to send the smaller-sized packets; retransmissions would
be limited to segment-sized granularity and retransmission headers would repeatedly carry.
possibly unnecessary fields.

6.5 Summary and conclusions

In this chapter, we have presented Leaky ARQ, a progressively reliable end-to-end
protocol, designed for conveying delay-sensitive image data quickly across noisy wireless
links, yet with eventual reliability. We have illustrated what modifications need to be made
to conventional ARQ in order to support Leaky ARQ. We have shown that Leaky ARQ
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can be implemented by modifying Type-II Hybrid ARQ protocols (also called memory
ARQ and/or packet combining) to forward corrupt intermediate renditions of a packet. We
have described briefly the drawbacks of implementing Leaky ARQ on top of UDP, possi-
bly in combination with TCP. Finally, we have discussed other implementation issues such

as fragmentation of ADU’s, acknowledgments, and non-sliding windows.
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7

Future Work

In this dissertation, we have proposed a progressively reliable end-to-end network pro-
tocol, which we call Leaky ARQ, for delay-sensitive high-bandwidth visual multimedia
delivered over a noisy and limited bandwidth wireless channel with time-varying bursts of
errors. Leaky ARQ forwards corrupt information to the application and eventually delivers
a sufficiently reliable final version of all forwarded data. We have justified Leaky ARQ’s
forwarding of corrupt information from a theoretical joint source/channel coding point of
view. We have also discussed practical implementation issues regarding Leaky ARQ. In
this chapter, we describe some of the more interesting theoretical and practical challenges

uncovered by our research into the concept of progressively reliable packet delivery.

7.1 Theoretical “Holy Grail” challenges

Information theory only addresses the issues of rate and reliability/distortion and
ignores the dimension of delay and subjective quality. The channel coding theorem
assumes that arbitrarily close to zero distortion delivery is possible provided the entropy
rate of the source lies below the channel capacity, and assumes that source and channel

encoders and decoders are unconstrained in delay, i.e. they can take arbitrarily long to per-
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Figure 7.1 Information theory and queueing theory address different Issues. Informa-

form their tasks. Thus, information theory essentially ignores the critical role of delay in

tion theory addresses the two elements of distortion/reliability and infor-
mation rate, but ignores the third element of delay. Queueing theory
addresses the issues of delay and Information rate, but ignores the third
dimension of unreliable noisy channels. The next great “Holy Grall” for
information and communication theorists is to develop a single theory
which encompasses delay, rellabllity, and rate. Such a theoretical frame-
work should be able to characterize progressive source and channel cod-

ing, which combine each of these three dimenslons.

the performance of the communication system.

On the other hand, queueing theory only concerns itself with delay/waiting time and
the rates of arrival (source) and servicing (channel), but ignores the unreliability intro-
duced by the downstream channel. In Figure 7.1, we illustrate how queueing theory and
information theory address different issues. No comprehensive theory exists which

encompasses simultaneously all three elements of rate, reliability/distortion, and delay.

Recently, an initial attempt has been made to combine the two theories [130].

Given the theme of progressivity in this dissertation, we observe that progressive

source coding and progressive channel coding represent techniques which combine all
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three elements of delay, distortion, and information rate into a single practical paradigm.
Any all-encompassing theory for delay, reliability, and information rate should be able to
characterize the theme of progressivity within its framework. We believe that a single
coherent theory which combines all three dimensions is the next “Holy Grail” for informa-
tion and communication network theorists.

Progressive source coding, also called successive refinement of source data, has been
characterized in information-theoretic terms in the literature [37]. This work establishes
conditions under which successive source refinement is theoretically possible, i.e. that the
rate-distortion limit is attained at each refinement step. Conceptually, over time, the user is
moving up the rate-distortion curve. However, this work does not fundamentally integrate
the notion of progressivity over time, and only considers successive refinement in the dis-
tortion domain. For example, we would like to know: can a given information rate suffer-
ing a given level of source coding distortion can be delivered within a given delay bound?
Moreover, for progressive coding, we would like to know if a sequence of three-dimen-
sionally constrained questions is achievable. Currently, even a single three-dimensionally
constrained question is only answerable by means of heuristic guesswork.

Similarly, progressively reliable packet delivery is a form of successive refinement
spread over time, though the distortion is introduced in a more uncontrolled fashion by
channel noise. Given a metric for measuring the impact of channel distortion, we would
again like to know if a given information rate suffering a given level of channel distortion
can be delivered within a given latency bound.

In fact, since we have demonstrated via our X server experimentation that progressive
image transmission can be combined with progressively reliable delivery, then our final
question is: can a progressive sequence of (information rate, source+channel distortion,
delay) points be achieved in (rate, reliability, delay) three-dimensional space? These are

all questions for theorists to answer.
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7.2 Lower-level infrastructure for Leaky ARQ

In the process of developing Leaky ARQ, we chose to analyze only a few design
issues, and deferred many design decisions until the future. In this section, we conjecture
about future research in the area of communicating link-level wireless state information up
the protocol stack to the endpoints of a Leaky ARQ connection, and conversely communi-
cating application-level source information down the protocol stack to the data-link level
for selective UEP and scheduling of multi-flow multi-user application data over the wire-
less link.

721 Communicating QOS parameters down to IP and data-
link layers

By emphasizing the virtues of joint source/channel coding (JSCC) in a constrained-
complexity constrained-delay non-stationary wireless environment, we have been con-
tending that equal error protection (EEP) is an inherently inefficient worst-case technique
that is poorly matched to the applications’ wide range of error and delay sensitivities. Con-
sequently, an important component of the JSCC architecture is that QOS information is
communicated up and down the protocol stack, so that UEP can be employed at the data-
link layer for the wireless channel.

Both IPV6 flow headers as well as the Protocol ID bit field in IP can furnish the data-
link protocol with some information about the error protection requirements of the appli-
cation data encapsulated within an IP datagram. These two pieces of information provide
part of the structure for communicating information from the transport layer down to the
data-link layer. Ideally, we would like to be able to communication enough information
down to the data-link layer of the wireless link so that fine-grained UEP via power control
[156] and scheduling could be practiced over the wireless link. Open issues include deter-

mining what else needs to be in place to communicate application-level QOS parameters
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through transport, network layers down to the data-link, and determining what parameters

will be most useful to the application at the connection endpoints.

7.22 Communicating channel state up to end-to-end proto-
cols and application endpoints

Finally, as we noted in Chapter 5, Leaky ARQ can not only delay retransmissions due
to the end user’s subjective tolerances, but our progressively reliable protocol can also
delay retransmissions in response to channel conditions. Moreover, feedback of the chan-
nel state to Leaky ARQ can also help the protocol distinguish between corruption-induced
loss and congestion-induced loss. This is one of the key practical problems which limits
TCP over wireless links, due to TCP’s implicit assumption that all packet losses are due to
congestion. We would like to avoid repeating the same mistake for Leaky ARQ, i.e. we
wish to avoid building in the assumption that all losses are due to bit corruption. Feeding
back channel statistics to the channel endpoints can help Leaky ARQ distinguish between
congestion and corruption.

In addition, it may also be helpful to feedback channel conditions all the way up to the
application. A wireless-aware multimedia application may be able to adapt its image/
speech/video coding in response to varying channel conditions. Or a wireless-aware multi-.
media application may be able to change the parameterization of Leaky ARQ in response
to a prolonged wireless fade.

Open research questions include: How should the channel state be passed back? What
parameters are useful? For example, a running window average of the BER could be main-
tained by the data-link layer, or a windowed packet loss count. How often should channel
updates be fed back? For example, channel state could be communicated only during con-
nection setup, i.e. long-term channel statistics, or channel state could be updated fre-

quently during the connection. We leave these questions as open research issues.

211



(1]

[2]

[3]

(4]

[5]

(6]

[71

(8l

(9]

Bibliography

T. Agui, M. Shimizu, M. Nakajima, “Speed-up Algorithm of Color Image Quantiza-
tion,” Systems and Computers in Japan, vol. 19, no. 3, pp. 73-78, 1988.

A. Albanese, J. Blomer, J. Edmonds, M. Luby, “Priority Encoding Transmission,”
Technical Report TR-94-039, International Computer Science Institute, Berkeley,
August 1994, See also http://www.icsi.berkeley.edu/PET/icsi-pet.html.

C. M. Aras, J. F. Kurose, D. S. Reeves and H. Schulzrinne, “Real-time Communica-
tion in Packet-Switched Networks,” Proc. of the IEEE, Vol. 82, No. 1, January 1994,
pp. 122-138.

E. Ayanoglu, S. Paul, T. LaPorta, K. Sabnani, R. Gitlin, “AIRMAIL: A link-layer
protocol for wireless networks,” ACM Wireless Networks, vol. 1, no. 1, pp. 47-59,
February 1995.

H. Balakrishnan, S. Seshan, R. Katz, “Improving Reliable Transport and Handoff
Performance in Cellular Wireless Networks,” ACM Wireless Networks, vol. 1, no. 4,
pp. 469-81, 1995.

R. Balasubramanian, C. Bouman, J. Allebach, “New Results In Color Image Quanti-
zation,” SPIE Image Processing Algorithms and Techniques i1, vol. 1657, pp. 289-
303, 1992.

J. Bartlett, “Experience with a Wireless World Wide Web Client,” COMPCON 95,
pp. 154-7, March 1995.

E. Berlekamp, R. Peile, S. Pope, “The Application of Error Control to Communica-
tions,” IEEE Communications Magazine, vol. 25, no. 4, pp. 44-57, April 1987.

E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.

212

4

o



-]

[10]

[11)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

P. Bhagwat, P. Bhattacharya, A. Krishna, S. Tripathi, “Enhancing Throughput Over
Wireless LAN’s Using Channel State Dependent Packet Scheduling,” INFOCOM
96, vol. 3, pp. 1133-1140, 1996.

M. Bickford, “WINSOCK 2: The New Face of Networked Applications,” Data
Communications, pp. 75-79, March 21, 1996.

R. Cam, C. Leung, C. Lam, “A Performance Comparison of Some Combining
Schemes for Finite-Buffer ARQ Systems in a Rayleigh-Fading Channel,” IEEE
International Conference on Selected Topics in Wireless Communications, pp. 88-
92, June 1992.

Y. Chang, C. Leung, “On Weldon’s ARQ Strategy,” IEEE Transactions on Commu-
nications, vol. 32, no. 3, pp. 297-300, March 1984.

D. Chase, “Code Combining - A Maximum-Likelihood Decoding Approach for
Combining an Arbitrary Number of Noisy Packets,” IEEE Transactions on Commu-
nications, vol. 33, no. 5, pp. 385-393, May 1985.

D. Chase, P. Muellers, J. Wolf, “Application of Code Combining to a Selective-
Repeat ARQ Link,” MILCOM 1985, vol. 1, pp. 247-252, October 1985.

W. Chau, S. Wong, X. Yang, S. Wan, “On the Selection of Small Color Palette For
Color Image Quantization,” SPIE Image Processing Algorithms and Techniques III,
vol. 1657, pp. 326-333, 1992.

C. Chen, “Computer Results on the Minimum Distance of Some Binary Cyclic
Codes,” IEEE Transactions on Information Theory, Vol. IT-16, No. 3, pp. 359-60,
May 1

N. Cheng, N. Kingsbury, “The ERPC: An Efficient Error-Resilient Technique for
Encoding Positional Information or Sparse Data,” IEEE Transactions on Communi-
cations, vol. 40, no. 1, pp. 140-148, January 1992.

213



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Y. Cho, C. Un, “Performance Analysis of ARQ Error Controls Under Markovian
Block Error Pattern,” IEEE Transactions on Communications, vol. 42, no. 2/3/4, pp.
2051-2061, February/March/April 1994.

C. Chou, C. Chen, “A Perceptually Optimized 3-D Subband Codec for Video Com-
munication Over Wireless Channels,” IEEE Transactions on Circuits and Systems
Jor Video Technology, vol. 6, no. 2, pp. 143-156, April 1996.

J. Chouinard, M. Lecours, G. Delisle, “Simulation of Error Sequences in a Mobile
Communications Channel with Fritchman’s Error Generation Model,” IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing, pp. 134-
137, June 1989.

D. Clark, V. Jacobson, J. Romkey, H. Salwen, “An Analysis of TCP Processing
Overhead”, IEEE Communications Magazine, pp. 23-29, June 1989.

D. Clark, D. Tennenhouse, “Architectural Considerations for a New Generation of
Protocols,” ACM SIGCOMM 1990, pp. 200-208.

G. Clark Jr., J. Cain, Error-Correction Coding for Digital Communications, Plenum
Press, 1981.

D. Comer, Internetworking with TCP/IP, Volume I, 2nd edition, Prentice-Hall, 1991.

P. Conrad, E. Golden, P. Amer, R. Marasli, “A Multimedia Cocument Retrieval Sys-
tem Using Partially-Ordered/Partially-Reliable Transport Service,” SPIE Multimedia
Computing and Networking,Proc. SPIE, Vol. 2667, pp. 136-147, January 1996.

T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, 1991.

D. Cox, “Wireless Network Access for Personal Communications,” IEEE Communi-

cations Magatzine, pp. 96-115, December 1992.

214

4]



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

D. Cox, “Wireless Personal Communications: What Is It?”, IEEE Personal Commu-
nications, vol. 2, no. 2, pp. 20-35, April 1995.

A. DeSimone, M. Chuah, O. Yue, “Throughput Performance of Transport-Layer
Protocols over Wireless LANs,” GLOBECOM 1993, vol. 1, pp. 542-549, November
1993.

R. Dixon, Spread Spectrum Systems With Commercial Applications, 3rd edition,
John Wiley & Sons, 1994.

W. Doeringer, D. Dykeman, M. Kaiserswerth, B.W. Meister, H. Rudin, R. William-
son, “A Survey of Light-Weight Transport Protocols for High-Speed Networks,”
IEEE Transactions on Communications, vol. 38, no. 11, pp. 2025-2039, November
1990.

B. Doshi, P. Johri, A. Netravali, K. Sabnani, “Error and Flow Control Performance
of a High Speed Protocol,” JEEE Transactions on Communications, vol. 41, no. 5,
pp. 707-720, May 1993.

A. Drukarev, K. Yiu, “Performance of Error-Correcting Codes on Channels with
Memory,” IEEE Transactions on Communications, vol. 34, no. 6, pp. 513-521, June
1986.

E. Dubois, J. Moncet, “Transform Coding For Progressive Transmission of Still Pic-
tures,” GLOBECOM 85, volume 1, pp. 348-352, December 1985.

EIA/TIA Interim Standard, Cellular System Dual-Mode Mobile Station-Base Sta-
tion Compatibility Standard, IS-54-B, April 1992, Telecommunications Industry

Association.

W. Equitz, T. Cover, “Successive Refinement of Information,” IEEE Transactions on
Information Theory, vol. 37, no. 2, pp. 269-275, March 1991.

215



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46)

[47]

K. Fazel, J. Lhuillier, “Application of Unequal Error Protection Codes on Combined
Source-Channel Coding of Images,” IEEE International Conference on Communica-
tions (ICC) 90, pp. 898-903, 1990.

J. Feng, K. Lo, H. Mehrpour, A. Karbowiak, “Cell Loss Concealment Method for
MPEG Video in ATM Networks,” GLOBECOM 95, pp. 1925-1929, 1995.

P. Feldman, V. Li, “An Adaptive Hybrid ARQ Protocol For Continuous-Time Mark-
ovian Channel,” MILCOM 87, vol. 2, pp. 502-8, 1987.

D. Ferrari, “Client Requirements for Real-Time Communication Services,” IEEE
Communications Magazine, pp. 65-72, November 1990.

B. Fritchman, “A Binary Channel Characterization Using Partitioned Markov
Chains,” IEEE Transactions on Information Theory, vol. IT-13, no. 2, pp. 221-227,
April 1967.

J. Gauvreau, C. Despins, “Optimal Coding Rate of Punctured Convolutional Codes
in Indoor Wireless TDMA Cellular Systems,” Third Annual International Confer-
ence on Universal Personal Communications (ICUPC), pp. 94-98, 1994.

M. Goldberg, L. Wang, “Comparative Performance of Pyramid Data Structures for
Progressive Image Transmission,” JEEE Transactions on Communications, vol. 39,
no. 4, pp. 540-548, April 1991.

N. Goldberg, “Colour Image Quantization For High Resolution Graphics Display,”
Image and Vision Computing, vol. 9, no.5, pp. 303-312, October 1991.

S. Golomb, R. Peile, R. Scholtz, Basic Concepts in Information Theory and Coding,
Plenum Press, 1994,

R. Gray, Source Coding Theory, Kluwer Academic Publishers, 1990.

216

(8



[48] N. Guo, S. Morgera, “Frequency-Hopped ARQ for Wireless Network Data Ser-
vices,” IEEE Journal on Selected Areas in Communications, vol. 12, no. 8, pp. 1324-
1337, October 1994,

[49] J. Hagenauer, “Rate-Compatible Punctured Convolutional Codes (RCPC Codes) and
their Applications,” IEEE Transactions on Communications, vol. 36, no. 4, pp. 389-
400, April 1988.

[50] J. Hagenauer, “Source-Controlled Channel Decoding,” IEEE Transactions on Com-
munications, vol. 43, no. 9, pp. 2449-2457, September 1995.

[51] R. Han, D. Messerschmitt, “Asymptotically Reliable Transport of Multimedia/
Graphics Over Wireless Channels,” SPIE Multimedia Computing and Networking,
Proc. SPIE, Vol. 2667, pp. 99-110, January 1996.

[52] J. Hanratty, G. Stuber, “Performance Analysis of Hybrid ARQ Protocols in a Slotted
Direct-Sequence Code Division Multiple-Access Network: Jamming Analysis,”
IEEE Journal on Selected Areas in Communications, vol. 8, no. 4, pp. 562-579, May
1990.

[53] B. Harvey, S. Wicker, “Packet Combining Systems Based on the Viterbi Decoder,”
MILCOM 1992, vol. 2, pp. 757-762.

[54] P. Haskell, D. Messerschmitt, “Resynchronization of Motion Compensated Video
Affected by ATM Cell Loss,” ICASSP 92, vol. 3, pp. 545-548, 1992.

[55]1 P. Heckbert, “Color Image Quantization For Frame Buffer Display”, Computer
Graphics (SIGGRAPH), vol. 16, no.3, pp. 297-307, 1982.

[56] http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCS AMosaicHome.html

[57] C. Huitema, IPv6: the New Internet Protocol, Prentice-Hall, 1996.

217



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. Hung, T. Meng, “Error Resilient Pyramid Vector Quantization for Image Com-
pression,” ICIP 94, vol. 1, pp. 583-587, 1994,

A. Jalali, G. Mony, L. Strawczynski, “Performance of Data Protocols for In-Building
Wireless Systems,” First International Conference on Universal Personal Communi-
cations, pp. 407-411, 1992.

N. Jayant, P. Noll, Digital Coding of Waveforms, Prentice-Hall, 1984.

S. Jiang, “A Novel Error Control Scheme for CDMA Wireless LANs,” 1994 IEEE
Region 10’s Ninth Annual International Conference, Theme: Frontiers of Computer
Technology, vol. 2, pp. 581-586, 1994.

M. A. Jolfaei, “Stutter XOR Strategies: A New Class of Multicopy ARQ Strategies,”
1994 International Conference on Network Protocols, pp.56-62, 1994.

S. Kallel, “Analysis of Memory and Incremental Redundancy ARQ Schemes Over a
Nonstationary Channel,” IEEE Transactions on Communications, vol. 40, no. 9, pp.
1474-1480, September 1992.

S. Kallel, “Efficient Hybrid ARQ Protocols with Adaptive Forward Error Correc-
tion,” IEEE Transactions on Communications, vol. 42, no. 2/3/4, pp. 281-289, Feb-
ruary/March/April 1994.

S. Kallel, D. Haccoun, “Generalized Type I Hybrid ARQ Scheme Using Punctured
Convolutional Coding,” JEEE Transactions on Communications, vol. 38, no. 11, pp.
1938-1946, November 1990.

S. Kallel, C. Leung, “Efficient ARQ Schemes with Multiple Copy Decoding,” IEEE
Transactions on Communications, vol. 40, no. 3, pp. 642-650, March 1992.

L. Kanal, A. Sastry, “Models for Channels with Memory and Their Applications to
Error Control,” Proceedings of the IEEE, vol. 66, no. 7, pp. 724-743, July 1978.

218

V]



H

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

C. Kantarjiev, A. Demers, R. Frederick, R. Krivacic, M. Weiser, “Experiences with
X in a Wireless Environment,” Proceedings of the USENIX Mobile and Location-
Independent Computing Symposium, pp. 117-128, 1993.

P. Karn, “The Qualcomm CDMA Digital Cellular System,” Proceedings of the
USENIX Mobile and Location-Independent Computing Symposium, pp. 35-39, 1993.

W. Keck, “A Method for Robust Decoding of Erroneous MPEG-2 Video Bit-
streams,” IEEE Transactions on Consumer Electronics, vol. 42, no. 3, pp. 411-421,
August 1996.

K. Knowlton, “Progressive Transmission of Grey-Scale and Binary Pictures by Sim-
ple, Efficient, and Lossless Encoding Schemes,” Proceedings of the IEEE, vol. 68,
no. 7, pp. 885-896, July 1980.

A. Konheim, “A Queueing Analysis of Two ARQ Protocols,” IEEE Transactions on
Communications, vol. 28, no. 7, pp. 1004-1014, July 1980.

B. Kurz, “Optimal Color Quantization for Color Displays,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 217-224, June 1983.

W. Lam, A, Reibman, “An Error Concealment Algorithm for Images Subject to
Channel Errors,” IEEE Transactions on Image Processing, vol. 4, no. 5, pp. 533-542,
May 1995.

A. Lao, A, J. Reason and D.G. Messerschmitt, “Asynchronous Video Coding For
Wireless Transport,” IEEE Workshop on Mobile Computing Systems and Applica-
tions, Santa Cruz, CA., December 1994,

H. Lee, J. Liu, A. Chan, C. Chui, “An Error Concealment Algorithm for Wavelet-
Coded Images Over Packet-Switched Networks,” SPIE Multimedia Computing and
Networking 1996, vol. 2667, pp. 222-233, 1996.

219



[77]1

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

M. Liljeberg, T. Alanko, M. Kojo, H. Laamanen, K. Raatikainen, “Optimizing
World-Wide Web for Weakly Connected Mobile Workstations: An Indirect
Approach,” Second International Workshop on Services in Distributed and Net-
worked Environments, pp. 132-139, 1995.

S. Lin, D. Costello, M. Miller, “Automatic-Repeat-Request Error-Control Schemes,”
IEEE Communications Magazine, vol. 22, no. 12, pp. 5-16, December 1984,

S. Lin, D. Costello, Error Control Coding: Fundamentals and Applications, Prentice
Hall, 1983.

FE Liu, P. Ho, V. Cuperman, “Joint Source and Channel Coding Using a Non-Linear
Receiver,” IEEE International Conference on Communications (ICC) 93, vol. 3, pp.
1502-1507, 1993.

D. Lu, J. Chang, “Performance of ARQ Protocols in Nonindependent Channel
Errors,” IEEE Transactions on Communications, vol. 41, no. 5, pp. 721-730, May
1993.

N. Mansfield, The Joy of X: An Overview of the X Window System, Addison-Wesley,
1993.

S. McCanne, V. Jacobson, “VIC: A Flexible Framework for Packet Video,” ACM
Multimedia, pp. 511-522, November 1995.

S. McCanne, M. Vetterli, “Joint Source/Channel Coding For Multicast Packet
Video,” International Conference on Image Processing, vol. 1, pp. 25-28, 1995.

A. Mehrotra, Cellular Radio: Analog and Digital Systems, Artech House, Inc., 1994.

J. Metzner, D. Chang, “Efficient Selective Repeat ARQ Strategies for Very Noisy
and Fluctuating Channels,” IEEE Transactions on Communications, vol. 33, no. 5,
pp. 409-416, May 1985.

220

o



-3

[87] A.Michelson, A. Levesque, Error-Control Techniques for Digital Communication,
John Wiley & Sons, 1985.

[88] Y.Miyake, T. Kato, K. Suzuki, “Implemention Method of High Speed Protocol as
Transport Library,” International Conference on Network Protocols, pp. 172-179,
1995.

[89] J. Morris, “Optimal Blocklengths for ARQ Error Control Schemes,” IEEE Transac-
tions on Communications, vol. 27, no. 2, pp. 488-493, February 1979.

[90] S. Narayanaswamy, S. Seshan, et al, “Application and Network Support for Info-
Pad,” IEEE Personal Communications, vol. 3, no. 2, pp. 4-17, April 1996.

[91] V. Oduol, S. Morgera, “Performance Evaluation of the Generalized Type-II Hybrid
ARQ Scheme with Noisy Feedback on Markov Channels,” IEEE Transactions on
Communications, vol. 41, no. 1, pp. 32-40, January 1993.

[92] K. Olson, P. Enge, “Forward Error Correction for an Atmospheric Noise Channel,”
IEEE Transactions on Communications, vol. 40, no. 5, pp. 863-872, May 1992.

[93] M. Orchard, C. Bouman, “Color Quantization of Images,” IEEE Transactions on
Signal Processing, vol. 39, no. 12, pp. 2677-2690, December 1991.

[94] J. Padgett, C. Gunther, T. Hattori, “Overview of Wireless Personal Communica-
tions,” IEEE Communications Magazine, vol. 33, no. 1, pp. 28-41, January 1995.

[95] W. Pennebaker, J. Mitchell, JPEG Still Image Data Compression Standard, Van
Nostrand Reinhold, 1993,

[96] N.Phamdo, F. Alajaji, S. Chen, T. Fuja, “Source-Dependent Channel Coding of
CELP Speech Over Land Mobile Radio Channels,” MILCOM 95, pp. 1041-1045,
1995.

[97] W. Pratt, Digital Image Processing, John Wiley & Sons, 1978.

221



[98] G.Promhouse, S. Tavares, “The Minimum Distance of All Binary Cyclic Codes of
Odd Lengths from 69 to 99,” IEEE Transactions on Information Theory, Vol. IT-24,
No. 4, pp. 438-442, July 1978.

[99] G.Promhouse, S. Tavares, “An Investigation of All Binary Cyclic Codes with Block
Lengths Less Than 127,” Masters of Science Thesis, Queen’s University, Kingston,
Ontario, Canada, 1977.

‘)

[100]M. Purser, Introduction to Error-Correcting Codes, Artech House, 1995,

[101]Proposed EIA/TIA Interim Standard, Wideband Spread Spectrum Digital Cellular
System Dual-Mode Mobile Station-Base Station Compatibility Standard, April 21,
1992, Qualcomm.

[102]M. Rabbani, P. Jones, Digital Image Compression Techniques, SPIE Optical Engi-
neering Press, 1991.

[103]G. Ramamurthy, D. Raychaudhuri, “Performance of Packet Video with Combined
Error Recovery and Concealment,” IEEE INFOCOM 95, pp. 753-761, 1995.

[104]K. Ramchandran, A. Ortega, K. Uz, M. Vetterli, “Multiresolution Broadcast for Dig-
ital HDTV Using Joint Source/Channel Coding,” IEEE Journal on Selected Areas in
Communications, vol. 11, no. 1, pp. 6-22, January 1993.

[105]T. Rappaport, Wireless Communications: Principles & Practice, Prentice-Hall,
1996.

[106])J.M. Reason, L.C. Yun, A.Y. Lao, D.G. Messerschmitt, “Asynchronous Video: Coor-
dinated Video Coding and Transport for Heterogeneous Networks with Wireless
Access,” Mobile Computing, H. F. Korth and T. Imielinski, Ed., Kluwer Academic
Press, Boston, MA., 1995.

[107]D. Redmill, N. Kingsbury, “Still Image Coding for Noisy Channels,” /CIP 94, vol. 1,
pp. 95-99, 1994,

222



9

[108]M. Rice, S. Wicker, “Adaptive Error Control For Slowly Varying Channels,” IEEE
Transactions on Communications, vol. 42, no. 2/3/4, pp. 917-926, February/March/
April 1994,

[1091REC 1323, TCP Extensions for High Performance, V. Jacobson, R. Braden, D. Bor-
man, May 1992.

[110]1RFC 2018, TCP Selective Acknowledgment Options, M. Mathis, J. Mahdavi, S.
Floyd, A. Romanow, October 1996.

[111]S. Sandberg, M. Pursley, “Retransmission Schemes for Meteor-Burst Communica-
tions,” Ninth Annual International Phoenix Conference on Computers and Commu-

nications, pp. 246-253, 1990.

[112]T. Sato, M. Kawabe, T. Kato, A. Fukasawa, “Throughput Analysis Method for
Hybrid ARQ Schemes Over Burst Error Channels,” IEEE Transactions on Vehicular
Technology, vol. 42, no. 1, pp. 110-118, February 1993.

[113]K. Sayood, J. Borkenhagen, “Use of Residual Redundancy in the Design of Joint
Source/Channel Coders,” JEEE Transactions on Communications, vol. 39, no. 6, pp.
838-846, June 1991.

[114]K. Sayood, F. Liu, J. Gibson, “A Constrained Joint Source/Channel Coder Design,”
IEEE Journal on Selected Areas in Communications, vol. 12, no. 9, pp. 1584-1593,
December 1994.

[115]H. Schulzrinne, “World Wide Web: Whence, Whither, What Next?,” IEEE Network,
pp. 10-17, March/April 1996.

[116]M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis,
Addison Wesley, 1988.

223



[117]N. Shacham, “Packet Resequencing Under Reliable Transport Protocols,” Proceed-
ings of the Twenty-Second Annual Hawaii International Conference on System Sci-
ences, vol. 3, pp. 716-723, 1989.

[118]N. Shacham, “Adaptive Link Level Protocol for Packet Radio Channels,” /IEEE
INFOCOM 86, pp. 626-635, 1986.

[119]A. Silberschatz, J. Peterson, P. Galvin, Operating System Concepts, Third Edition,
Addison-Wesley, 1991.

[120]JP. Sindhu, “Retransmission Error Control with Memory,” IEEE Transactions on
Communications, vol. 25, no. 5, pp. 473-479, May 1977

[121]O. Spaniol, A. Fasbender, S. Hoff, J. Kaltwasser, J. Kassubek, “Impacts of Mobility
on Telecommunication and Data Communication Networks”, IEEE Personal Com-
munications, vol. 2, no.5, pp. 20-33, October 1995.

[122]M. Sreetharan, R. Kumar, Cellular Digital Packet Data, Artech House Publishers,
1996.

[123]W. Stevens, UNIX Network Programming, Prentice-Hall, 1990.
[124]W. Stevens, TCP/IP lllustrated, Volume 1: the Protocols, Addison-Wesley, 1994,

[125]G. Stuber, Principles of Mobile Communication, Kluwer Academic Publishers,
1996.

[126]N. Suzuki, T. Sasaki, R. Kohno, H. Imai, “An Error-Controlling Scheme According
to the Importance of Individual Segments of Model-Based Coded Facial Images,”
IEICE Transactions on Fundamental of Electronics, Communications and Computer
Sciences, vol. E77-A, no. 8, pp. 1289-1297, August 1994,

[127]K. Takahashi, N. Ishii, “Robustness of Data Compression Coding Schemes for Still
Pictures Over Noisy Channels,” SUPERCOMM ICC, vol. 3, pp. 1035-1042, 1990.

224

Iq )



[\]

[128]H. Tanaka, “A Performance Analysis of Selective-Repeat ARQ with Multicopy
Retransmission,” Fourth IEEE International Conference on Universal Personal

Communications, pp. 472-475, 1995.
[129] A. Tanenbaum, Computer Networks, 2nd edition, Prentice-Hall, 1989,

[130]1. Telatar, R. Gallager, “Combining Queueing Theory with Information Theory for
Multiaccess,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 6,
pp. 963-969, August 1995.

[131] A Tom, C. Yeh, L. Shaw, “Packet Video for Cell Loss Protection Using Deinterleav-
ing and Scrambling, “ ICASSP 91, pp. 2857-2860, 1991.

[132]]. Touch, “Defining High-Speed Protocols: Five Challenges and an Example That
Survives the Challenges,” IEEE Journal on Selected Areas in Communications, vol.
13, no. 5, pp. 828-835, June 1995.

[133]D. Towsley, “The Stutter Go Back-N ARQ Protocol,” IEEE Transactions on Com-
munications, vol. 27, no. 6, pp. 869-875, June 1979.

[134]D. Towsley, J. Wolf, “On the Statistical Analysis of Queue Lengths and Waiting
Times for Statistical Multiplexers with ARQ Retransmission Schemes,” IEEE Trans-
actions on Communications, vol. 27, no. 4, pp. 693-702, April 1979.

[135]F Tse, W. Cham, “A DC Coefficient Estimation for Image Coding,” Fifth Interna-
tional Conference on Image Processing and Its Applications, pp. 569-573, 1995.

[136]E. Tsern, A. Hung, T. Meng, “Video Compression for Portable Communication
Using Pyramid Vector Quantization of Subband Coefficients,” Proceedings of IEEE
Workshop on VLSI Signal Processing, VLSI Signal Processing VI, pp. 444-452,
1993.

[137]C. Turner, L. Peterson, “Image Transfer: An End-to-End Design,” Computer Com-
munication Review/SIGCOMM 92, pp. 258-268, August 1992.

225



[138]K. Tzou, “Progressive Image Transmission: a Review and Comparison of Tech-

niques,” Optical Engineering, vol. 26, no. 7, pp. 581-589, July 1987.

[139]V. Vaishampayan, N. Farvardin, “Optimal Block Cosine Transform Image Coding
for Noisy Channels,” IEEE Transactions on Communications, vol. 38, no. 3, pp.
327-336, March 1990.

[140] V. Vaishampayan, N. Farvardin, “Joint Design of Block Source Codes and Modula-
tion Signal Sets,” IEEE Transactions on Information Theory, vol. 38, no. 4, pp.
1230-1248, July 1992.

[141]S. Vanstone, P. van Oorschot, An Introduction to Error Correcting Codes with Appli-
cations, Kluwer Academic Publishers, 1989,

[142]S. Vembu, S. Verduy, Y. Steinberg, “The Source-Channel Separation Theorem Revis-
ited,” IEEE Transactions on Information Theory, vol. 41, no. 1, pp. 44-54, January
1995.

[143]M. Vetterli, J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall, 1995.

[144]B. Vucetic, “An Adaptive Coding Scheme for Time-Varying Channels,” IEEE Trans-
actions on Communications, vol. 39, no. 5, pp. 653-663, May 1991.

[145]]J. Walrand, Communication Networks: A First Course, Aksen Associates Incorpo- |
rated Publishers, 1991.

[146]S. Wan, P. Prusinkiewicz, S. Wong, “Variance-Based Color Image Quantization for
Frame Buffer Display,” Color Research and Application, vol. 15, no. 1, pp. 52-58,
February 1990.

[147]T. Watanabe, “A Fast Algorithm for Color Image Quantization Using Only 256 Col-
ors,” Systems and Computers in Japan, vol. 19, no. 3, pp. 64-71, 1988.

226

(g

[



[148] V. Weerackody, C. Podilchuk, “Transmission of JPEG Coded Images Over Wireless
Channels,” SPIE Wireless Data Transmission, vol. 2601, pp. 157-168, 1995.

[149]D. Weissman, A. Levesque, R. Dean, “Interoperable Wireless Data,” IEEE Commu-
nications Magazine, vol. 31, no. 2, pp. 68-77, February 1993.

[150]J. Whitehead, R. Krishnamoorthy, “FEC, ARQ, and Throughput of Radio LANs,”
1994 IEEE 44th Vehicular Technology Conference, vol. 3, pp. 1430-1434, 1994,

[151]S. Wicker, “Adaptive Rate Error Control Through the Use of Diversity Combining
and Majority-Logic Decoding in a Hybrid-ARQ Protocol,” IEEE Transactions on
Communications, vol. 39, no. 3, pp. 380-385, March 1991.

[152]S. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-
Hall, 1995.

[153]S. Wilson, Digital Modulation and Coding, Prentice-Hall, 1996.
[154]R. Wolff, Stochastic Modeling and the Theory of Queues, Prentice-Hall, 1989.

[155]W. Xu, J. Hagenauer, J. Hollmann, “Joint Source-Channel Decoding Using the
Residual Redundancy in Compressed Images,” IEEE International Conference on
Communications (ICC) 96, vol. 1, pp. 142-148, 1996.

[156]L. Yun, D. Messerschmitt, “Power Control and Coding For Variable QOS on a
CDMA Channel,” IEEE MILCOM, vol. 1, pp. 178-182, October 1994.

[157]W. Zeng, B. Liu, “Geometric-structure-based Directional Filtering for Error Con-
cealment in Image/Video Transmission,” SPIE Wireless Data Transmission, vol.
2601, pp. 145-156, 1995.

[158]H. Zhang, S. Keshav, “Comparison of Rate-Based Service Disciplines,” SIGCOMM
‘91, vol.21, no.4, pp.113-121, 1991.

227



[159]L. Zhang, “VirtualClock: A New Traffic Control Algorithm for Packet Switching
Networks,” Computer Communications Review, vol. 20, no. 4, pp. 19-29, September

1950.

228



	Copyright notice 1997
	ERL-97-36

