Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INTEGRATION OF ERROR DETECTION AND
CORRECTION IN THE INFOPAD: PROCEDURE
AND SPECIFICATION

by

Heather Bowers

Memorandum No. UCB/ERL M97/32

12 May 1997

INTEGRATION OF ERROR DETECTION AND
CORRECTION IN THE INFOPAD: PROCEDURE
AND SPECIFICATION

by

Heather Bowers

Memorandum No. UCB/ERL M97/32

12 May 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Integration of Error Detection and
Correction in the InfoPad:
Procedure and Specification

by

Heather Bowers

Master of Science
in
Electrical Engineering and Computer Science

University of California at Berkeley

Abstract

Error detection and correction can improve the reliability of
communication over the indoor wireless link of the InfoPad system.
This report discusses the implementation of a variable forward error
correction (FEC) scheme that uses (15,11,1) and (15,5,3) BCH codes.
This project involved integrating an FPGA implementation of these
FEC schemes with the InfoPad system. Integration of the new FPGA
was perfomed so as to maintain compatibility with an older FPGA
design and the ARM processor kernel. Hooks for a variable quality of
service (QOS) scheduler were also added in order to make bandwidth
and reliability tradeoffs through changes to the FEC level. With the
addition of the error correction schemes, the InfoPad can be used for
measurements of error rates on the channel to characterize the effects
of short FEC codes on the reliability of indoor wireless
communication. '

Table of Contents

CHAPTER 1. The InfoPad System OVerviewccoceeveveeeereneerrenseressessesonee 9
1.1. Overview of the INfoPad PTOJECE........cccceoveerirerieneenrecseeereccseesneersesnsesnsenne 9
1.2. Overview of System DataPathcccccceererenecruerenrecssranacn cresnosssnsonsssssaes 10
1.3, InfoPad Radioscccceererreenemnnenenrinecseessenseseessessessessasssssassasesessssnssassases 14
13,1, PIESSEY..ccoreueererreereecrsreeseesassncesessensessasssessessessessassessessassassassssssassssssssasssase 14
132, PIOXIM...ucuieirireecenreceestetecesenrenessesseassessesassesnsssessesassssnssssssssassasssssnsses 15
1.4, Wireless Transmission Protocol..........cccecceevecreecceerenessnssccsesusssssssssssseons 16
1.5. Error Detection and Correction (EDACQC)........cccceeveeerenecnecrnnreseecneesseenses 17
1.5.1. Background........cccccceeereecrceeneniiererrecssenenersessessecssessessessesssssassnsssssnessass 17
1.5.2. Application to INfoPad.........ccevcierirueivinccrunnsenisnncnnsessesesesscesassennns 19
1.6. ReEPOTt FOIMAL.........cocooeirerriniinieiesennrseesneneesnessaessesassassassnssssssasssssssssasasss 20

CHAPTER 2. QOS Protocolcoiiniiciiecrerenreereecsesessesssessessssssssssssesnesas 22
2.1 OVEIVIEW ettt neecnrsessnssessesessessessessesesssssassssesasssesssseonens 22
2.2. Communication Through the SYStem.........cccecververrerreereereereessesresseesassasas 22
2.2.1. Static and Dynamic Data TYPES........cceceererrererrereecreseeresenseraesesessesesesses 23
2.2.2. Control Packet PrOtOCOLcceeeerinerrerrvecrernesuesreeraesssraessessessasssasnesenses 24
2.3. ARM Kernel ModifiCations..........coueereerecveeierieseeseseesessesssessesnesssssasssssess 25
2.3.1. Control Packet Handling..........ccccoveeerveeruenrerersrenserreesasraessessassassassassasnes 25
2.3.2. Changing the Pen ECC Leveloiivnrniniininencnnnnsensnnsecnssessssesssnenes 25
2.3.3. Changing the Protection on the Pen Packets.........cc.cccmsercnvcserecisninnee 26
2.3.4. Characterizing the Channel.............coviirrecerrrnrinrecnnrinnscnenescsnsessenes 26
2.4. Host Interface to the Error Correction SyStem.........cccceveeeureceucnervscsecacene 28
2.4.1. Selecting the Error Correction Levelcoccvevueverrecrenecrnesssseesesssennes 28
2.4.2. Selecting the Payload CRC Filterc.cocevivueinencresncsenruncsensesernencens 28
2.4.3. Channel Characterization........c..ceeeeeeeererraesreeesessssssassesasssassassasssssssssessase 29
2.4.3.1. UPUDK ..oooueereecrerennineenenectecncsreeessessssessssssssssssssssasssssssesssssassassessssnsens 29
2.4.3.2. DOWILIK ...ccvoveereeriietrneesersseseneasessessessessersssessssssssesassessssssssssssnsssesessasass 29

CHAPTER 3. Implementation............ccccoceveeierenrerenrnreresererserssssnessssnsnsssssssessesces 32
3.1, HAardWarec..cceeceeereceeeesensnesssesesseeseesassnesssessesssssessssssssassssasssssssssassessassase 32
311 TOP LEVEL..eeiiiiiiiiieiecncnisecnasteseesesnennesesnsessssssnssssssssssssssssssassasasss 33
3.1.2. ARMINEEITACE ..couvruneniineeinriiincsnicstnsaennenennesssssunsssssssassssoressssssssssssssssse 34
3.1.2.1. Register WIIte PrOCESS...uoueiiiiinicnrieicensisrisissnssisenessesssssseesessessssanes 35
3.1.2.2. Register Read ProCessccoccverrecereerraesueseessessssessssessasssssssssesssssessses 37
3.1.3. Multi-timer MOdUIEcocieviiieienienienrieniereessnersessssissessasssasssasessessesaes 37
3.1.3.1. Generating the Transmit ClOCK.......cccccervrereeerrrerrursereraessssessessessisessesnes 38
3.1.3.2. Generating the Receive CloCKcceuirererceecseeeesenreesercsnessessnsacssssaes 38
3.1.3.3. Generating the Timer ClOCKcccecevtrrerrreerentrrerceressercsussossssesassesessesees 39
3.1.4. Transmit Data Pathcc.cccciieiiniiniinenninneecnnesssssssionsssasessessesssssessses 40
3.1.4.1. Control LOZIC.....ccccerviinrinriinunneiisninseecnenentnseesssssssosossssossnsssssssnssssssessans 42
3.1.42. Transmit Data Path........ccccccovivvrniininninninnnnncenncncnnnnsneneenessenne 50

3.1.5. Transmit Interface for the Plessey Radio.......ccevueecerenisrscnnccnncscsinnnes 54

3.1.6. Transmit Interface for the Proxim Radio......ccoceeveeevueveneccsecnneseisencnnen 59
3.1.7. Receive Interface for the Plessey Radioccovvueveeeenieccninncnccnnnnne 60
3.1.8. Receive Interface for the Proxim Radio........ccoceeveerentninenecencnccnscssene 68
31,9, RSSI..ceieeneeeresassesneaneesstsstssssesssssssesssnssnensssssssssnssssssssssssssnsans 69
3.1.9.1. Initiating an RSSI MEaSurement.........ccccereverreueessscsusasesuesesessorassanssases 69
3.1.9.2. Control of RSSI Serial Datacccocevenirenencnrennesenessssassnssscssisessenes 70
3.1.9.3. Methods for Reading the Resultant RSSI Measurement..................... 72
3.1.10. Receive Data Path.........ccccceiemcsinsinresnnenrnnsnnsessassessassncossssassscssessnes 73
3.1.10.1. COntrol LOGIC....c.cccneernerrisrisisreririssesronssnsnnsessessssessssssssssssssssassesnescansasans 76
3.1.10.2. Receive Data Path..........cccovevcninininiiiennnneennnenssecssssasssssscessnses 79
3.1.11. RX chip WOTK-around........c.cccevereruerenesesessssenesnssssssssssssassesnencacssssesssssnsas 83
3.1.12. Interrupt Handling......ccccoeernmeerneiirieeneninnrieseseensiscsssisesnsssessereresnenns 84
3.1.13. General Purpose TIMETcccovueririrismneesesnsriseransensssssssnenssesssssssnsssasns 84
3.2, The ARMKEIMEL.....ouceorcecerinriininriiesiisriiiesessesnssessssssssssssssenssnsssassasens 85
3.2.1. Register MappPing......ccccouivireiriiririsieresesesnmnssssesssssesssssssssssssssssssasasaensnes 85
3.2.2. Writing to the RF Xilinx REGISIEIScerueierentirinerenrinennssessesassesacscnnaenns 85
3.2.3. Reading the RF Xilinx REGISEIScccceererrenrecirrnresesrsnenencsisnsnnsnsanscscnnes 86
3.2.3.1. Resolving INtEITUPLS ...coceererririirirnnnirisneririensirneseasessessesassasssssssssssossosnes 86
3.2.3.2. Acknowledging INtEITUPLScoeueuerermruinrnesenseresesesnsnsneesnsassesssesscsennas 86
3.2.3.3. Obtaining an RSSI VAlUEcovuieiiiniiniernsierennnnnnsessnsssesssesssessccass 87
32314, RESEL.uucurcerereeeeeceerenereeaesessessssesssessssssseissessessessessossssssnssssssersesnensasasnes 87
3.2.3.5. Loopback Mode.......c.cccvuiinmiirinsinniiirieiesnnseniensssesssssesssncsnsscssssssassnans 87
3.2.3.6. Plessey INTErface.......cooivenveriiriininisesinnininesnsesessssnseesnsasssssssssestsenes 87
3.2.3.7. ProxXim INEITACEcccovrreereenisersuersenemieencsussussesiesssnssssnsssssessansssnsaseses 87
3.2.4. USING the TIMETcocourieeriniineninririsrisncsisieiesassessessssssnsssssssessssssssasasansssses 88
3.2.5. Controlling the RX Chip Work Around..........cccoeumenrereeenrnsennescsnsosanns 88
3.3. Debugging Procedure.........ccoviiirnenininnirinisisiesesesssisssessssessssssssssesnsass 90
3.3.1. Simulation of Timer with SOftWareccoceeeertenrenrrinrenrerinenenseiessennnes 90
3.3.2. Self-Test INfrastruCtureccovvevvsriressisnsissnssessessessorsesssssessssasssssssasoes 90
3,33, LEDS .ociiiirecertrceneeeeesssesssssssesessessessssssstssessessessessessesssasssasssessasansassanes 91
3.3.4. Probe of Internal Xilinx Signalscccoviiiinininninieniennnennssesiesssennes 91
3.3.5. GateWay TESt ...ucouroeerririnriiiiriiireniinssesreresseesnssissessssessssessesesassssssseons 92
CHAPTER 4. ANQAIYSIS....c.oocervereiiiiiiinnnininnssissiseseisesisssssnsiessssssssessessesasssssenns 93
4.1. Channel StatiStCScceeceeserrurrernusssnssiessesenssessesssessessuessossessassassassssssnasaeses 93
4.1.1. Interference Test DESCTIPHON......c.cocirverrinrinissensesuesesssessuessassassaesasssnans 94
4.1.2. TeSt RESUIS......coceererreeeecenenenrnteeeeneestessnssssssssnsssesseosesssessssssessassnossessanss 95
4.2, ATCA....occeeceeeereecreeeneesesssssatsstisassssssssnssesssessessssstessssestassssssasasssaassnentanns 101
4.3, POWET.....ocuvceeerrrnvcsissaennns rereereeestesessesnestsnsssssersesesraseseatsatestebesaarasenerne 102
CHAPTER 5. ConcCIUSiONcccooinirnininrinsericsncnisecsessisscsssssesessessessssssssessessosses 104
5.1, SUMMATY ..ceerieeecieceteceecevesesessssessssesssssessssesssossesssesssesssesssesssssrsessanas 104
5.2. Future Dir€COMS.cccevreeeererscnrersnresessssunsessssssssossssssssessssssesssssssssessases 105

CHAPTER 6. Appendix............cccceueueueunnee veesesnsnsenseniss ceertssesssssesssnnsssasassnsasns

6.1.
6.2.
6.3.
6.3.1.
6.3.2.
6.3.3.
6.4.
6.5.

Pinout for RF Xilinx at Board Level...............c.......
Pinout of RF Xilinx Functional Design........ reeessneastenesesertssss s besteneans
Register DESCTIPHONScooeiieriiiininstissisinninississsssssessossessissesssessessessens
Basestation REGISIETScceveeuervcencunssnsaesessesssnsassssersssssessses
Pad Registers.......c.oeveunrcrsunenne ceesrsssensetesesessrrestsnsssssrestesenasasss crevsens
Wired Registers............. coresresnenenianes veeresesaenernenes
Location of Design Files................ ceeesneesnessstsssssnerasenassnasssrssasesasesasersasess
Design Libraries tevesssssasessssanasnsesasanes cessssssnsssassertssssesessstsssssenssstens

108
111
114
114
117
120
123
123

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.

List of Figures

OVeErall SYStEM......cociiiniiriinnitncnsesessesnssisessesmsssssssessessssssessssessssesess 10
Pad Hardware..........cccccenveesennsumvuisssessenisaccsuessesssnssssessanssssssssssasssnsnssne 12
InfoPad Data Pathccccceveivenuevcensinsnnsenssnnssnensnnssecssecsnnssancsessass 13
ProtoCol FOIMALccccerericiisnrenanssnscssussesresuesuesansessassessossossssnessssennen 16
Typical BCH Encoding StTUCLUTEcccecereeresreruessessereersesesnsesessennes 18
Typical BCH Decoder STUCHUIeccoveererneesrsreenniesseesaesesesasasnns 18
Control Panel (Ipncontrol)ccceeeeemssesisisesesunseesussessessessessessssans 31
Top Level Schematic for RF Xilinx Design.........coceeevereeruerensensennes 34
Control Bus Control Signals.........cccuvicirinsenenessnsseseesansesessessenaes 35
Register Select for Write Operation.........oceceeeeeeruveseieruesessernenssens 36
TX Bus Control Signals........ccecvernrunveceresenensenreennnessesnessesserenes 41
Encoder High Level SchematiC.......covceviuenneincinsenseneecssensnesnnsanes 42
State Machine for the Main Controlcccevevvcvinvnsrennensecsnennes 43
High Level View Of Transmit Data Path.............cccceeccrvnvenvenenrennes 50
CRC ... ictiissssntssssnssissssssssssssssssssssssssssesssssasossasssssssssssonssseseses .. 51
Medium ECC EnCoder......ccccvvviniiceennenscnsinnsennseisniessisssssssesssessanesnes 52
Maximum ECC Encoder........ccoenivniinsiniinuinnienniniesensneenesnens 53
State Diagram for Plessey Transmit Controller...........coceccvurrverennnnes 57
State Diagram for Plessey Receive Controller.........ociciiciennnnnnn. 65
State Diagram for RSSI Controller.........cccevvurnvrnrenssessenesarrsrancennaees 71
RX Bus Control Signals.......c.ueeermicinnineesiniiiiniieninimens 75
Decoder High Level Schematic ..., 75
State Machine for the Main Controlcccecveeeeenrereenssscsnsnsoscosens 76
High Level View Of Receive Data Path..........c..cccoveveevcnsccnnerennnes 79
CRC ..eeteeeeceeteceeaesesnnesesessaesesseasssssesssssesssssessesseseessstessssssstossss 82
Proxim Register Bit Definitions..........cccceeceruercerceecnecercnerncrsecsaeseeees 88
DiIagnostiC LEDS.......cccceeirueeninrecsarcacssecsessassssssessescsssassssosssssessasssssaes 91
Breakdown of Burst Length in 15 Bit Blocks.........ccocevvninsunnniienes 97
Breakdown of Burst Length in 15 bit BIoCKScccceceeeecceccnecncraneees 98
Histogram of UpLInk EITOTIS.......cccceccvurneiiennnnsnseisacssssesensssesscsnoses 99
Histogram of Downlink EITOTSc..ccceeivuinenreiniosessscsassasosasssnsnens 100

Table 1-1.
Table 1-2.
Table 2-1.
Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.

Table 6-10.
Table 6-11.
Table 6-12.
Table 6-13.
Table 6-14.

List of Tables

Plessey Radio INterface..........c.cuceecemenenrncecerccrcneresesesesassensaesenssennns 14
Proxim Radio INterface...........cceeiveeveneeenvesenernnneceenenernesernseessesens 15
Control Packet SubTypes Used in EDAC System............ccccvevvuenenens 24
Counters maintained in ARM for Channel Characterization........... 27
Write only Registers in the RF XilinXcccceverereverererenenenrsereesenenes 36
Read Only Registers in the RF XilinXccccecveeurernensnecnsesseneneanne 37
1/O for VHDL Design of the Transmit Data Path.................cccuu.... 40

1/O for Viewlogic Schematic of Plessey Interface on Basestation.. 55
1/0 for VHDL Design of the Plessey Interface on the Basestation . 56
1/O for Viewlogic Schematic of the Proxim Interface on the Pad.... 60
1/O for Viewlogic Schematic of the Plessey Interface on the Pad ... 62
1/O for VHDL Design of the Plessey Radio Interface on the Pad ... 63

1/0 for VHDL Design of the Clock Recovery Module.................... 66
1/O for Viewlogic Schematic of Proxim Interface on Basestation... 69
1/O for the RSSI Controller.........c.coceeeeerereeererererereenereressesesesesenssenes 70
1/O for the Viewlogic Schematic of the Receive Control Block...... 73
1/0O for the VHDL design of the Receive Data Path......................... 74
1/0O for the Viewlogic Schematic of the Receive Control Block...... 83
Statistics From System Test During Normal Operation 93
Statistics from System Test with Added Interference.............c.cu..... 95
Xilinx Resource Usage for Each Designccccoveeveeeerrerneresnenens 101
Xilinx Resource Usage by Module..........coeeeerireereerirresreressesnenne 101
Xilinx Resource Use for Tx/Rx Data Path without EDAC............ 102
POWeETr MEASUTEIMENLScoceeeneererrerrereresrreeessesaessessnessessessessosses 103
Register 0x00 - XILRXSA, XILSTAT........ccoeverereererrererrerervennene 114
Register 0x01 - XILRXSB.........ccoveiinenrrrrnerenrerernesesnesersessssssessens 114
Register 0x02 - XILTXSA, XILRSSIMSB.........cccecererverenrerecrnsensens 114
Register 0X03 - XILTXSBcovveoiruineerreeeenrcrerneresressesaersesserersesseses 115
Register 0X05 - XILRXFB.......ccccceeveereereenerensersiseessessrsesssseserssnen 115
Register 0X07 - XILTXEBcccccovrenerenrersererarseressersesessesessssesess 115
Register 0x10 - XILCNTL......c.cccorurrrevereeereseseerereressesenesesssssesenes 115
Register 0x11 - XILRXCcoucvvevererinenrerenessnneraraessenessenessessssssesens 116
Register 0x12 - XILTXC.....uuoueriererererrenensenresreneesesseeseessesessesssssens 116
Register 0x13 - XILTIMERLSB............coieiiecereeceeriereerreresresnens 116
Register 0x14 - XILTIMERMSB...........ccccveveveneecnrceeeenrsnenesnenne 116
Register 0x15 - XILCMDREG..........ccoivievenicenrecrneceeveaeseenne 117
Register 0x17 - XILMISCREGc.cccevererrecrereererensenene teereesens 117
Register 0x00 - XILRXSA, XILSTATcccccererrrreneereerernnssnennnne 117

vi

Table 6-15.
Table 6-16.
Table 6-17.
Table 6-18.
Table 6-19.
Table 6-20.
Table 6-21.
Table 6-22.
Table 6-23.
Table 6-24.
Table 6-25.
Table 6-26.
Table 6-27.
Table 6-28.
Table 6-29.
Table 6-30.
Table 6-31.
Table 6-32.
Table 6-33.
Table 6-34.
Table 6-35.
Table 6-36.
Table 6-37.

Register 0x01 - XILRXSB, XILRSSILSBccoeevueecviuerercruesens 117
Register 0x02 - XILTXSA, XILRSSIMSB.......cccccevucrerrnnsenresnsnees 118
Register 0x03 - XILTXSB........cccccovnrinrennnsessensessanssessaessessssasssenns 118
Register 0X05 - XILRXFB.......ccccccvstssuerssnsarssrsssssasscssassssssssensensne 118
Register 0X07 - XILTXFBcccocvneneresenssssssescssssssssssssssscsssessesess 118
Register 0x10 - XTLCNTL.......cccceceevreeenmecenneesnsnrenssssssssesssssessosssseos 119
Register 0x11 - XTLRXCccvvvrimsmrerensecsissusssssnsassussassessassesassacss 119
Register 0x12 - XILTXC........ccccereerreraernecseeracsaceressassessssssassrssassasns 119
Register 0x13 - XILTIMERLSB.........cccccorereennnsessaossasssssscsseassasens 119
Register 0x14 - XTLTIMERMSB...........covirinincncsecncninancnens 119
Register 0x15 - XILCMDREGccccceerenueruecanecsesnececscssassasassens 120
Register 0x17 - XILMISCREGcccccceenirruinruessssacsussssssansessssosaens 120
Register 0x00 - XILRXSA, XILSTATcccceerereruesessassessassessssassase 120
Register 0x01 - XTLRXSB, XILRSSILSB...........cccceveveeererearannees 121
Register 0x02 - XILTXSA, XILRSSIMSB.........cccceveevevvervrererruenne 121
Register 0x03 - XILTXSBcccccceeerrrnerseereneniecseeseasssssessessessases 121
Register 0x10 - XILCNTL........cooivirineerenrrenecrensnssecsessnsssasnsssenns 121
Register 0x11 - XILRXC.......cccccenirveniensesennsssnesnossssacssssnesasessassnas 122
Register 0x12 - XILTXC......cccccevreerrerrecrescrsssceressnesrasssssssasssssssases 122
Register 0x13 - XILTIMERLSB...........cooveierinirercecreenennnseseernenes 122
Register 0x14 - XTLTIMERMSB.........ccovcevirveninreerecrenreneesesseraees 122
Register 0X15 - XILSTATccvceveerrerrererseerreerassessseseessassasssessessases 123
Register 0x17 - XILMISCoooiiverrreeccrnnninensessessacssnsnnssnssnssneens 123

vii

Acknowledgments

As with any endeavor, this research project could not have been completed without
the help and support of others. Foremost, I wish to thank my research advisor Professor
Robert Brodersen for his guidance throughout the course of this project. I would also like

to thank Professor Jan Rabaey for reviewing this thesis .

I am greatly indebted to the members of this project. Trevor Pering taught me a lot
about system level design, as well as how to have the patience and perserverance to debug
as complex a system as InfoPad. Thanks also to Tom Truman for our conversations on bas-
estation design and error correction. Jeff Gilbert was another great resource on the project,
and I am especially grateful for his TCL/TK application that enabled the demo at the last
InfoPad retreat to run smoothly. Brian Richards also contributed to the debugging process
énd my system level understanding of InfoPad. Fred Burghardt was responsible for mesh-
ing InfoNet with the hardware. I would also like to thank Sue Mellers, Kathy Lu, and Rich-
ard Edell for their support throughout the project.

In addition, I would like to thank my colleagues and friends Dennis Yee and lan
O’Donnell . I would also like to thank Jonathan Maltz for his understanding and moral sup-
port throughout the project. For their administrative support, Tom Boot, Elise Mills, and
Sheila Humphreys receive my sincere gratitude. I would also like to thank the Advanced

Research Projects Agency for their generous financial support.

1 The InfoPad System Overview

1.1. Overview of the InfoPad Project

Infopad is an indoor mobile computing solution that allows the user to communi-
cate to a workstation via a pad terminal connected over a wireless link. A basestation serves
as a buffer between the wireless link to the pad and a networked link to a host computer
where the majority of the processing occurs. Users are able to work on a small, notepad
sized terminal via a pen input, while maintaining wireless connectivity to their accounts.

Hence, functionality is not sacrificed for portability.

The pad functions only as an 1/O interface to remote computing resources which
reside on a high-speed, high-pérformance backbone network. All compute intensive oper-
ations, application support, and network management are located in this host network. The
main role of the Pad is to provide the network with input from the user, and to provide the

user with output from the network.

The pad is a simplified device that consists of transmit and receive radios, a display,
a pen, and an audio system. Together, these components provide the user with a multime-
dia interface to the InfoPad system.

The hardware components of the system are a pad terminal and a basestation whose
main purpose is to buffer the communications between the pad and network. The system
nature of this project has provided valuable insight on systems research, as well as serving
as a catalyst for supporting research in areas that enable the entire system operation. Devel-
opments in low-power technology, protocols, and radio design have progressed as a result
of the InfoPad project. This master’s project addresses the role of error correction in the

context of the InfoPad system.

1.2. Overview of System DataPath

The InfoPad system consists of the pad, basestation, and InfoNet. InfoNet is a term used to refer
to the general cloud of processing that occurs on the Sun Workstation, the software side of the system
operation. Fred Burghardt is now responsible for this part of the system, and in this document, InfoNet
can be conceived of as that part of the system which handles the exchange of data between the bases-
tation and the application [Le95]. The basestation acts as a buffer between the wired GPIB connection
to the Sun Workstation and the wireless radio connection on the pad. The final component of the
system is the pad itself, the user interface that provides a display to the user and accepts pen and audio
input.

Figure 1-1. Overall System

InfoNet

Basestation

This project addressed the hardware of the system, the pad and basestation. The pad and bas-
estation hardware have identical architectures, so the following detail of the pad hardware in Figure 1-
2 can also be used to see the operation of the basestation. The main differences between the pad and
basestation are as follows: the radios used for transmitting and receiving in the pad have reversed oper-
ation in the basestation, the basestation has an interface to the GPIB port, and the pad has an LCD dis-
play and pen/audio inputs.

10

Specifically, this project addressed modifying the ARM kernel and the RF Xilinx
design in order to add error detection and correction to the transmit and receive datapaths

on the pad and basestation. These components are highlighted in Figure 1-2.

11

InfoPad Low Voltage Bus

Figure 1-2. Pad Hardware

]
! RF Xilinx
|
|
Processo
Interfacer ' CPU /RAM / EPROM | Debug
' Port
[
|
Receiver | Xilinx FPGA Proxim Radio
Interface I Synchronization (Tx)
| Error Correction
| CRC
}
Transmitter | .
Interface I Plei;gl)Radlo
I Buffer RAM
}
|
Pen/Keyboard Pen
Interface | Digitizer /
-
: Keyboard port
----------- I.
Speech/ | CODEC /
Audio | amplifiers
Interface |
|
oJ]
|
Text Frame I LCD
Graphics Buffer
Interface RAMs (4) : 640x480
|
' Color
Video Color Video Decompression | AMLCD
Interface Chip Set (4) |
|
1.5volts <—|—>I Svolts

12

The ARM processor is responsible for the initial configuration of the RF Xilinx.
After the RF Xilinx is configured, then the data path processing occurs as follows.

Data can originate from several sources within the pad, such as the pen interface,
the keyboard interface, or the ARM processor. This data is sent over the IP bus to the TX
chip, where the header data is added. The newly packaged data is then sent to the RF Xil-
inx. The RF Xilinx then optionally calculates and adds the header and body CRCs, as well
as performs forward error correction on the packet. The header of each packet is always
forward error corrected. The RF Xilinx serializes the packaged data and passes it to the
transmit radio. In the case of the pad, the transmit radio is the Plessey, while on the bases-
tation the transmit radio is the Proxim (See Section 1.3.1. and Section 1.3.2 for more infor-

mation on the radios.)

On the receive end, the data enters the receive radio (the Proxim radio on the pad,
the Plessey radio on the basestation) and then flows to the RF Xilinx. The RF Xilinx
decodes the incoming data stream and performs a serial-to-parallel conversion on the data.
This data is then sent to the RX chip. The RX chip sends the data over the IP bus to the
appropriate destination determined by the header data.

Figure 1-3. InfoPad Data Path

Transmit
Radio

Data Receive
Destination ASIC

13

1.3. InfoPad Radios

1.3.1. Plessey

The InfoPad uses the GEC Plessey Semiconductors’ DE6003 digital radio trans-
ceiver (hereafter referred to as the Plessey radio) as the transmit radio on the basestation
and the receive radio on the pad. The Plessey radio is a 2.45 GHz spread spectrum, fre-
quency hop, wireless transceiver designed for data rates up to 625 Kb/s. The radio will

operate over 101 channels spaced in 1 MHz intervals within the frequency band 2.400 to
2.500 GHz.

The radio has self contained RF functions but requires the host to provide control
signals for data management, hopping channel assignment, and receive/transmit mode
selection. The Plessey radio also requires the host to perform clock recovery. A table of all
the signals in the Plessey interface can be seen in Table 1-1. Although the Plessey is a hop-
ping radio, hopping was not enabled on the current version of the ARM kemel in InfoPad.

Table 1-1. Plessey Radio Interface
Signal | 1{0] I Description

Antenna Select I Diversity Control used to overcome signal nulling from
destructive interference from multipath

Standby I Enables/Disables radio

Channel Select I Binary Frequency Channel Select. Channel Select values
range from 0 (2.400 GHz) to 100 (2.500 GHz) in 1 MHz
increments.

Channel Select Load Pulse | I Strobe for Channel Select data

Transmit Data In 1 Serial Data to be transmitted

Power Level Control I Selects high or low transmit power input to the antenna

Power Amp Control I Allows transmit amplifier to be turned on after the mode
has been set to transmit, eliminating unwanted emissions

Transmit/Receive Select I Switches between transmit and receive modes.

Receive Data Out o Serial Received Data

RSSI o Received Signal Strength Indicator

Synth Lock (8] Monitors lock condition of all PLLs to indicate if there is
an error condition

Clk o Synthesizer Clock Output

[Ples94]

14

1.3.2. Proxim :

The InfoPad uses the Proxim RDA-500/2 radio (hereafter referred to as the Proxim
radio) as the transmit radio on the pad and the receive radio on the basestation. The Proxim
radio is a direct sequence spread spectrum wireless transceiver designed for data rates up
to 242 Kb/s. The radio will operate over the frequency band from 902-928 MHz and has
three full channels. The Proxim RDA-500/2 was designed with a parallel data interface to
provide compatibility with a microprocessor. However, the InfoPad was designed with a
serial interface. Although the RDA-500/2 specification does not indicate the presence of a
serial mode, the serial mode from the Proxim RXA series is still accessible in the RDA
series. Hence, a return to the RXA specification is required to understand the serial inter-

face, which appears as grounded pins in the RDA specification.

The radio has self contained RF functions but requires the host to provide control
signals for data management, and receive/transmit mode selection. The Proxim radio pro-
vides its own clock recovery. A table of all the signals in the Proxim serial mode interface

can be seen in Table 1-2.

Table 1-2. Proxim Radio Interface

| Signal I /0 I Description |

TXDATA I Serial Data to be transmitted

SYNLD I When set high, SYNLD loads the data from the synthesizer’s shift register
into its control registers.

TXCLK (o) Transmit Clock used to shift the serial data into the radio.

SYNCLK |1 Synthesizer Clock. Used to clock SYNDATA into the synthesizer’s shift regis-
ter.

RXDATA 0] Serial Receive data.

SYNDATA | 1 Serial data to program the synthesizer’s frequency.

CDh (o) Carrier Detect. Active when a valid carrier has been detected.

TX/RX 1 Transmit/Receive Mode Select Line.

STANDBY | I When in Standby, the digital electronics are reset and the radio is put in a low
power state.

RSSI (0] Received Signal Strength Indicator from demodulator.

[Prox92],[Prox90]

15

1.4. Wireless Transmission Protocol

The transmission protocol over the InfoPad’s wireless link is packet based. The
packet begins with a 32 bit frame sync which is followed by the header of the packet. The
header of each packet can contain a pad alias, sequence number, data type, length, and
Header CRC. Only the type has to be included in the header. All other features are optional,
i.e they do not have to be included in the header. The packet of data is terminated by an
end-of-packet byte which can include the Body CRC. A

Figure 1-4. Protocol Format

Pad Alias | Sequence | Type | Length CRC Data |Body CRC

Pad Alias

As the basestations are capable of supporting multiple pads, it is necessary to have
an identification tag for each packet, hence the pad alias. A pad should only receive data
which has a corresponding pad alias which matches its own pad identification number.
When a pad transmits data, it also includes a pad alias in the headers of its transmit packets.
This enables the basestation to identify the source of its received data. The pad alias is a
one byte field in the header.

Sequence Number

The sequence number is included in the header in order to determine if packets
have been dropped over the wireless link. The ARM programs the Transmit ASIC with the
starting value of the sequence number, then the Transmit ASIC automatically increments
this value and places it in the header of each packet to be transmitted. This sequence

number is a one byte field in the header.
Type

The packet type is included in the header in order to determine the destination
within the pad or basestation for the received packet. Examples of packet types are pen,

16

keyboard, video, text graphics, and control packets. The type space is limited to the lower
6 bits of the 1 byte word. The type field is 1 byte wide, and the most significant bit of the
type field is the start of packet bit which is always set.

Length

Each packet type can be specified to have fixed or variable length. If the packet type
in question has a fixed length, then the length field does not have to be included in the
header. If the length of the payload is variable, then the length field must be present in the
header. The length field refers to the number of bytes in the data payload and is a 2 byte
wide field.

Header CRC

The header CRC is calculated on the header of the data packet by the RF Xilinx and
appended to the header. The header CRC is a 1 byte wide field.

Body CRC

The body CRC is calculated on the entire header and payload by the RF Xilinx and
is appended to the packet. The body CRC is a 1 byte wide field.

L.5. Error Detection and Correction (EDAC)

1.5.1. Background

The error correction codes used in this project are Bose-Chaudhuri-Hocquenghem
(BCH) forward error correcting codes. BCH codes are linear cyclic block codes that can
correct multiple random bit errors. They are the best known large class of linear cyclic
block codes, and they allow for simple decoding for most practical cases. BCH codes exist

for all integers m and t such that

n=2""-1
d=2t +1
n-Xx<m?™t,

17

where n is the number of bits per word, k is the number for information bits, n-k is the
number of bits of parity check bits (redundancy), m is the degree of the generator polyno-

mial, and t is the number of errors per block that can be corrected.

The generator polynomial for the BCH codes can be chosen from pre-calculated
code “cookbooks”, or they can be derived with knowledge of finite field theory.

The BCH encoder is most commonly implemented as a shift register with feedback
(Figure 1-5). The encoder adds redundancy to each message via this structure.

Figure 1-5. Typical BCH Encoding Structure

- r«d
i’%’%ﬂﬁﬂlﬂ%ﬂ

Shift Register

(x) = x10 4 x8 4 x5 + x4 4x2
g

+x+1

Decoding is a more complicated procedure that usually involves a lookup table.
The received word acts as the address to index the lookup table, whose output data is the
decoded message and the Hamming distance (number of errors) of the decoded message

from the received code word.

Figure 1-6. Typical BCH Decoder Structure

= 5

o

2
Received N Decoded Message
Code Word 7 & I Ei

§ Hamming Distance

18

1.5.2. Application to InfoPad

The focus of this project is to provide the InfoPad system with error detection and
correction (EDAC) in order to enable a more reliable data transfer across the wireless link.
The theory supporting the implementation of this project can be referenced in Kathy Lu’s
master’s thesis [Y1u93]. Three different levels of forward error correction are provided in
order to provide a variable, dynamic error correction scheme. The motivation for having
different levels of error correction derives from the varying degrees of error tolerance and
bandwidth that are inherent in each data type. For example, pen data might require a higher
level of error correction and will occupy less bandwidth than video data. Video data suffers
very little from errors, as the display is constantly being refreshed. Using forward error cor-
rection on an error tolerant, high bandwidth data type such as video data could be a waste
of resources. However, error correction could potentially benefit low bandwidth critical

data packets, such as control packets.

The packet headers could also be encoded to add only a small bandwidth increase
on the first 6 bytes of data, yet provide for more reliable packet routing. A CRC on the
header of each packet can also be used to filter packets with corrupted headers. If the
header is corrupted, then the destination for the packet and/or its length are uncertain, so
rather than process this packet, it should be thrown out. Body CRCs can also be used on
payloads in the same manner as header CRC:s filter bad headers. However, often if the pay-
load has a few errors, it is still acceptable for display, etc. and throwing out this packet

based only on the payload CRC could cause a substantial loss of usable data.

The implementation in the InfoPad EDAC system is summarized below. A CRCis
performed on the header and payload of the data packets. The header of each packet is
maximally error corrected with a (15,5,3) BCH code. The Payload data can be transmitted
using no encoding, a (15,11,1) BCH encoding scheme, or a (15,5,3) encoding scheme. The
(15,11,1) code operates on block lengths of 11 bits and outputs block lengths of 15 bits that
includes the added redundancy. These codes are capable of correcting 1 error per 15 bits
and occupy 1.36 times the bandwidth of uncoded data. The (15,5,3) code operates on block
lengths of 5 and outputs block lengths of 15 that includes the added redundancy. [LinCos-

tello] These codes are capable of correcting 3 errors per 15 bits and occupy 3 times the

19

bandwidth of uncoded data. These error correcting codes are quite short in order to facili-
tate a smaller, less complex design due to the limitations in design size imposed by the
Xilinx 4010 FPGA. Hence, the codes are block codes, implemented with a lookup table
contained in an off-chip ROM. The benefit of a short block code is the simplicity of imple-
mentation and compactness of the design. However, short block codes can be ineffective
in correcting burst errors. One proposed solution to this problem is interleaving the trans-
mit and receive data in order to disperse block errors and allow the short block code to

operate more effectively on the data.

Optimally, a scheduling algorithm would be developed to evaluate the bandwidth
requirements, error tolerance of each packet, and state of the wireless link in order to select

the most appropriate FEC level.

1.6. Report Format

This report serves as a specification for the EDAC (Error Detection and Correction)
RF Xilinx design as well as a project report on the system integration procedure. The RF
Xilinx design has evolved over time and is therefore the result of several people’s efforts.
This report is a summary of their past work, and a report on the latest developments con-
cerning the design. While the author of this report performed modifications and system
integration of the RF Xilinx design, the actual components were designed by other individ-
uals. Craig Teuscher is responsible for clock recovery, while Dennis Yee and Craig
Teuscher are responsible for the radio interfaces. Kathy Lu and Richard Edell implemented
the error detection and correction algorithm. Tom Truman was instrumental in the ARM
kernel, while Trevor Pering and Brian Richards maintained the RF Xilinx design since its
inception. Lastly, Jeff Gilbert is the author of the InfoNet Control Panel.

Chapter 1 includes the introduction and overview, while Chapter 2 discusses the
hardware implementation and software support necessary for the operation of the design.
Chapter 3 discusses the system level issues that are need to be addressed in order to take
advantage of the error correction capability in the RF Xilinx. Chapter 4 presents some mea-

surements that were made concerning BER, area, and power consumption. Chapter 5 con-

20

cludes the réport, and the Appendix includes the pin-out of the design in addition to the

register descriptions and a listing of the location of reference files.

21

2 QOS Protocol

2.1. Overview

It is necessary to develop a protocol for the InfoPad that could allow a scheduler to
provide varying qualities of service (QOS) to users. The actual algorithm for achieving this
goal is a topic for further research, but in order to look toward the future, one must consider
what hooks such an algorithm would need. The scheduler must have some knowledge of
the state of the channel, a knowledge of the quality of service requirements of the user, and

a way to relay feedback to the network infrastructure [Y1u96).

Using CRC information in combination with sampling the channel at regular inter-
vals yields a practical system approach to a channel characterization process. A coarse
knowledge of the channel can be obtained by accumulating the total of incorrect header
CRCs and body CRCs over a period of time. The sequence number can also be used to
determine how many packets have been dropped over the wireless link. Control packets
can be used to transport a request for channel statistics and subsequent data obtained from
this query. This is not a rigorous form of channel estimation, but it does provide a coarse
measure to determine what level of error correction would be recommended for the chan-

nel.

2.2. Communication Through the System

One of the major issues in the system level design was how to communicate com-
mands throughout the entire system, from an application running under InfoNet to the
embedded control software running on the pad. Two methods were decided upon, the

dynamic type system wherein the range of data types provided information about encoding

22

levels, and the control packet system which was used to communicate commands and

responses throughout the system.

2.2.1. Static and Dynamic Data Types
The type space of the data protocol was arranged to support static data types whose
error correction level is fixed (types 0x00 - 0x0f), and dynamic data types whose error cor-

rection is variable (types 0x10-0x3f).

The static data types are mapped to a fixed error correction level (that is usually the
maximum encoding). These static types are low bandwidth and often carry critical control
information, hence the bandwidth expansion of FEC has little significant effect and is jus-
tified by the theoretical gain in reliability.

Alternatively, the dynamic data types have optional forward error correction. A
good channel and a high bandwidth application would warrant that error correction be dis-
abled. For some applications, such as video, it is not apparent that forward error correction
provides a qualitative gain in performance. FEC can actually detract from system perfor-
mance by reducing the available bandwidth. Hence, types in the range of 0x10 to Ox1f are
mapped to have no error correction. Each type in the range of 0x20 to 0x2f is mapped to
medium error correction. Types in the range of 0x30 to 0x3f are mapped to the maximum
error correction level. For example, video without error correction is designated as type
0x19. Video with medium level (15,11,1) error correction is designated as type 0x29, while

video with the maximum level (15,5,3) of error correction is designated as type 0x39.

Specifying a dynamic range of data types based on error correction levels helps
eliminate synchronization problems; there is no associated state on the receiving end. A
request to change the error correction level results in a change of data type used on subse-
quent packet transmissions. The receive circuitry decides the error correction level based
only on the data type and does not have to rely on synchronizing with the transmit error

correction level.

23

2.2.2. Control Packet Protocol

As the type space defined in the transmission protocol is extremely limited, the

control packet type was expanded by adding a subtype to the first four bytes of the data

payload. Currently, the mobility control software shares this type space with the error cor-

rection control, however, only subtypes relative to error correction will be discussed here.

The types are described in Table 2-1.

Table 2-1. Control Packet SubTypes Used in EDAC System

I Control Subtype ! Description |
PACKET_TYPE_ERR_STAT_PAD_REQ Request for error statistics from the pad

PACKET_TYPE_ERR_STAT_PAD_ACK

Acknowledge from pad including payload data that
contains the error statistics

PACKET_TYPE_ERR_STAT_BASE_REQ

Request for error statistics from basestation

PACKET_TYPE_ERR_STAT_BASE_ACK

Acknowledge from basestation including payload
data that contains the error statistics

PACKET_TYPE_CHANGE_PEN_ECC_REQ

Request to change the ECC level on the pen pack-
ets.

0-NoECC
1- Medium Encoding
2 - Maximum Encoding

PACKET_TYPE_CHANGE_PEN_ECC_ACK

Acknowledge to a request for a change of the ECC
level on the pen packets

PACKET_TYPE_PROTECT_PEN_REQ

Request to the basestation requesting that pen
packets with corrupted payloads not be sent back
up through the network

0 - Protect
1 - Unprotected

PACKET_TYPE_PROTECT_PEN_ACK

Acknowledge from the basestation indicating that
pen packets will be protected according to the
request

Hence, the control packets are responsible for requesting and supplying data on the

channel characteristics. The control packets are also responsible for dynamically changing

the error correction level on the pen packets, as well as whether or not the basestation will
filter pen packets with corrupted payloads from the network. Note that because error cor-

rection levels are regulated at the source, uplink data traffic does not require some kind of

synchronization protocol.

24

2.3. ARM Kernel Modifications

The mechanisms for utilizing the control packets were added to user level code in
the ARM. This code performs the handling and decoding of the control packets that is nec-
essary for providing feedback on the channel statistics as well as commands necessary for

changing the error correction levels.

2.3.1. Control Packet Handling

A data stream dedicated to control packets was established in user code (user.c).
Handlers for this data stream were registered in the ECC user code (ECC.c), so whenever
a control packet arrives at the ARM on the control packet data stream, a handler is called
that examines the first four bytes of data in order to establish the subtype of the control
packet. Depending on the subtype, a specific subroutine is called to take action on the con-

trol packet’s request and generate an acknowledge.

2.3.2. Changing the Pen ECC Level

The host generates a Change Pen ECC Level request which is sent over the GPIB
link to the basestation. Upon encountering this particular control packet, the basestation
forwards it to the pad, unchanged. The pad receives the control packet, identifies it, and
examines the payload to determine which level of error correction is requested. Based on
the level requested, the pen data type for the corresponding level of error correction is writ-
ten to the Pen Chip. Hence, all subsequent data types from the pen interface correspond to
this newly written data type. For example, the data type for a pen packet with no error cor-
rection is type Ox1b, while pen packets with medium error correction levels are of type
0x2b, and pen packets with maximum error correction correspond to type 0x3b. The pad
then generates an acknowledge signal which goes to the basestation. The basestation, upon
receiving the Acknowledge a Change of Pen ECC Level packet, forwards this packet to the
GPIB interface and onward to the host. The acknowledge is used to ensure that the change
of error correction level takes effect. The host also requires this acknowledge because the

original request was implemented with an RPC protocol.

25

2.3.3. Changing the Protection on the Pen Packets

The host generates a Change Pen Protection request which is sent over the GPIB
link to the basestation. Upon encountering this particular control packet, the basestation
examines the payload to determine whether or not to forward pen packets with invalid pay-
load CRC:s to through the GPIB link to the host. Upon receipt of the control packet request,
a call to the function common_PassBadPen (common.c in the kernel) is performed, and the
protect/unprotected flag from the payload of the request control packet is passed to this
function. If protection is selected, this function causes the basestation to discard pen pack-
ets originating from the pad if the payload CRC is invalid. If unprotection is selected, all
pen packets are relayed back to the host, regardless of the validity of the payload CRC.
Regardless of the protection level, the basestation generates an acknowledge signal that is
sent to the GPIB interface and onward to the host. Again, the host requires this acknowl-
edge because the original request was implemented with an RPC protocol.

2.3.4. Characterizing the Channel

The receive chip in the InfoPad has the capability to duplicate the headers on all
received packets and send these headers to the arm on a pre-defined data stream. In this
manner, the ARM can maintain counters that gather statistics on the uplink or downlink
data (depending on whether the ARM is on the basestation or the pad). The number of
packets with bad payload CRCs, the number of packets dropped over the wireless link, and
the total number of packets that are received in a particular sample period are recorded.
These values can be used to calculate the drop rate of packets across the uplink and down-

link channels, as well as provide a sense of how many packets have errors in the payload.

This data would then ideally be fed to a variable QOS scheduler which could
threshold the packet drop rates according to the quality of service required by the user. For
example, if the user needed very high QOS, then a moderate packet drop rate would be
identified with the need for maximum error correction. The scheduler would then monitor
the packet drop rates, and change error correction levels based upon these predetermined
thresholds.

26

Table 2-2. Counters maintained in ARM for Channel Characterization

Counter Description

Header Count Increments whenever a header is received

Bad Header Count Increments whenever an invalid header CRC occurs

Transmit Count Calculates how many packets were transmitted from
sequence numbers received from packets with valid header
CRCs
ECC _Tx_cnt += (seq -_ECC_seq_num + 256) % 256

Pen Packet Count - Increments whenever a pen packet is received with a valid
header CRC

Bad Pen Packet Count Increments whenever a pen packet is received with a valid
header CRC but an invalid payload CRC

Protected Text Packet Count Increments whenever a protected text packet is received
with a valid header CRC

Bad Protected Text Packet Count | Increments whenever a protected text packet is received
with a valid header CRC but an invalid payload CRC

Text Packet Count Increments whenever a text packet is received with a valid
header CRC

Bad Text Packet Count Increments whenever a text packet is received with a valid
header CRC but an invalid payload CRC

When the host queries the basestation statistics, a Basestation Error Statistics
Request control packet is sent across the GPIB link to the basestation ARM. The ARM
packages the information from the counters into a Basestation Error Statistics Acknowl-
edge control packet and sends this packet back through the GPIB link to the host. The

ARM then clears the counters and begins collecting data for the next sample request from
the host.

Similarly, when the host queries the pad statistics, a Pad Error Statistics Request
control packet is sent across the GPIB link to the basestation ARM and forwarded to the
pad. The pad generates a Pad Error Statistics Acknowledge control packet and sends this
packet back to the basestation ARM, which forwards the packet back to the host. The pad

ARM has meanwhile cleared its counters and begun collecting data for the next sample.

27

2.4. Host Interface to the Error Correction System

The control panel is an InfoNet utility that can be used to control FEC and ECC
levels (Figure 3-1). The control panel communicates with the InfoNet monitor. As an auto-
matic scheduler does not yet exist, the control panel acts as a manual interface to the error
correction system. It allows the user to select the forward error correction level for the text
graphics data packets, the protected text graphics data packets, and the pen packets. The
user can also choose to utilize the payload CRCs to filter corrupted packets. The control
panel also provides information on the channel characteristics via an automatic query or a
manual query. The control panel performs other control related tasks, but as these are not
directly related to the error correction system, further information can be found in Fred

Burghardt’s discussions on InfoNet.

2.4.1. Selecting the Error Correction Level

Whenever an error correction level for text graphics or protected text graphics data
is chosen, the control panel sends a message to the monitor which re-maps the dynamic
data type to the proper error correction level and sends this re-mapped type down to the
basestation. This simple re-mapping in the monitor will not suffice for pen packets, how-
ever, as they originate from the pad itself. Hence, in order to change the error correction
level on pen packets, the control panel sends a Change Pen ECC Level Control Packet
down through the system to the hardware via an RPC protocol.

2.4.2. Selecting the Payload CRC Filter

Similar to the error correction level selection, in order to select a filter on text
graphics data packet, a protected text graphics packet is sent down to the pad instead of the
unprotected text graphics types. The re-mapping is performed in the InfoNet monitor.
When the Text/Graphics chip receives the protected text graphics data type, it examines
the payload CRC to determine if the data should be sent to the display. When filtering of
pen packets based on the payload CRC is desired, the host sends a Protect Pen Control
Packet down through the system to the hardware via an RPC protocol. When the ARM

receives this control packet, it processes the request as described earlier in Section 2.3.3.

28

2.4.3. Channel Characterization

The control panel can be used to generate a single manual query of the channel sta-
tistics or a timed update that provides a new sample every second. Whether the manual or
times query is used, the process for obtaining the samples is the same. A request for the
channel statistics is sent to both the pad and basestation in the form of a control packet sent
with the RPC protocol. The pad and basestation acknowledge the request with a packet that
contains the data from the ARM’s counters discussed in Section 2.3.4. The control panel
application processes this data and displays the uplink and downlink characteristics. If a
query is lost over the wireless link, then the acknowledge is never received by the host. In
this situation the query is resent until a valid acknowledge is obtained. The question mark
symbol (““?”) is displayed in this instance, as not valid data is present. Divide by zero errors

which are encountered in processing are displayed by a dotted line (“---).

2.4.3.1. Uplink
The uplink characteristics displayed are the transmit rate, the percent of packets
received as compared to how many packets were transmitted, the receive rate of pen pack-

ets, and the percent of pen packets received that were error free.

The transmit rate is simply the value of the transmit counter that itself was derived
from packet sequence numbers. Since the queries are approximately every second, this
yields the approximate transmit rate in units of packets per second. This value is intended
to indicate a coarse estimate of uplink traffic volume. The percent of packets received is
calculated by dividing the header count by the transmit count. Additionally, pen packets
receive rate is examined. This value is simply the value of the pen packet counter in the
ARM at the time of sampling. The percent of error free pen packets received is calculated
by dividing the number of good pen packets (pen packets received minus bad pen packets)
by the number of pen packets received.

2.4.3.2. Downlink

The downlink characteristics displayed are the transmit rate, the percent of packets

received as compared to how many packets were transmitted, the receive rate of protected

29

and unprotected text graphics packets, and the percent of protected and unprotected text

graphics packets received that were error free.

Similar to the uplink case, the transmit rate is simply the value of the transmit
counter that itself was derived from packet sequence numbers. Since the queries are
approximately every second, this yields the transmit rate in units of packets per second.
This value is intended to indicate the coarse estimate of downlink traffic. The percent of
packets received is calculated by dividing the header count by the transmit count. Addi-
tionally, protected and unprotected text graphics receive rates are examined. These values
are simply the value of the corresponding text graphics packet counter in the ARM at the
time of sampling. The percent of error free text graphics packets received is calculated by
dividing the number of good text graphics packets (text graphics packets received minus
bad text graphics packets) by the number of text graphics packets received.

30

Figure 2-1. Control Panel (ipncontrol)

oR ShOGSRAA ot b a8

31

3 Implementation

3.1. Hardware

The RF Xilinx in the InfoPad originally did not support error detection and correc-
tion. It did, however, perform several crucial functions in addition to interfacing to the
radios. A general purpose timer was implemented, as was an interface to the A/D converter
in order to provide RSSI measurements. Serial-to-parallel conversion was performed on
incoming data, and parallel-to-serial conversion was inversely performed on outgoing
data. The RF Xilinx also provided the flexibility to perform work-arounds that were
needed when problems with the custom chips were discovered. An example of this is when
the frame sync was lengthened due to noise being mistakenly identified as the frame sync
pattern for a data packet. Another example is when the Receive ASIC incorrectly received
an infinite length packet. (The solution to this problem was realized by adding a kick cir-

cuit to the Xilinx that activates whenever an unreasonably long packet is detected).

This original RF Xilinx was in an evolutionary state due to the flexibility in debug-
ging that it provided, hence the design was not frozen when the task of adding EDAC to
the system was initiated. Further changes in the ARM kernel also impeded system integra-
tion. Another student, Kathy Lu, began the implementation of EDAC, but when her design
was completed, her work was not compatible with the ARM processor’s software kernel
and the original Xilinx design.

This project addresses the integration of the EDAC RF Xilinx design with the
requirements of the InfoPad system and includes the specifications for the resultant design.
This new design has the feature that one combinational design maintained three separate

designs for basestation, pad, and wired versions. While this combinational design mini-

32

mized design maintenance, it imposed a register file that differed from that driven by the
ARM kernel. The timer was also missing from the design, as were the work-arounds of the
receive kick circuit and the extended frame sync. A new method for reading RSSI values
from the A/D converter was added in the EDAC RF Xilinx that proved to be incompatible
with the ARM kernel. The different subsystems of the RF Xilinx will be discussed below.

3.1.1. Top Level

There are three separate RF Xilinx designs maintained by a combination design in
Viewlogic (combo.I). The first design is used in the pad when operating in wireless mode
(ecc_pad.l). Likewise, there is a design for the basestation operating in wireless mode
(ecc_base.I). Lastly, there is a design that can be used on either the pad or basestation that
is used when operating in “wired” mode, i.e. the pad and basestation communicate via a
cable, rather than over the wireless link (ecc_wire.I). The three different designs are nec-
essary because the pad, basestation, and wired designs have differing interfaces to the

radios.

The combination design contains several submodules that will be discussed in later
sections. The radio interface submodules are black boxes that have the appropriate design
placed in them during the make operation. In this manner, high level changes can be per-

formed once, instead of on all three designs.

The Viewlogic diagram for the combination design can be seem in Figure 3-1.

33

Figure 3-1. Top Level Schematic for RF Xilinx Design

ARM Interface

f—— .

Multi-Timer

=.‘_._£—EF:

—

=

y—am

= —

Transmit Control Receive Control
=SV
=] | i ==
=Y 1 ” v =
e | Fe S i Y Rx = I =
[— e .~ 2
,=_,_:: Tx Radio Interface Rx Radio Interface)
—h—&—a- .

" ——— Interrupt/Timer

[ey~ | : . .
s e —] —bee L)

. LED’s and Heartbeat Debug Signal

3.1.2. ARM Interface

The ARM interface subsystem of the RF Xilinx is responsible for providing an
interface to the ARM and maintaining a register file that is used by the ARM, the RF Xil-
inx, and the radios. When the ARM desires to write to a register in the RF Xilinx, the chip

34

select for the RF Xilinx must be driven high and the proper address for the register must
be placed on the 4-bit wide CADDR line. The ARMIF module’s operation is described in
VHDL (armif.vhd) and then depicted with a Viewlogic symbol in the top level of the RF
Xilinx design (combo.1, ecc_base.1, ecc_wire.1, ecc_pad.l).

The ARM Interface block has basically two functions which are controlling reads and
writes to the registers in the RF Xilinx.

Figure 3-2. Control Bus Control Signals

- X read X write RO Rend B
L —
= /CRD £
E i
/CWR e
—
/CCS
BRI Addr #1 Addr #2RXXXXXXXKI Addr #3
CADDR
[TPBook]

3.1.2.1. Register Write Process

Internally, the RF Xilinx chip select, write strobe line, and the address from the
ARM index a lookup table that outputs an internal write strobe line for each register
(Figure 3-3). There are sixteen internal write strobe lines in the RF Xilinx, and sixteen 8-
bitregisters that are available for access. However, only thirteen registers are actually allo-

cated for some purpose. These registers can be seen in Table 3-1.

35

Figure 3-3. Register Select for Write Operation

E Chip Select -
< Write Strobe I Look-U
“ — ™ N WS
s Caddr Table
= —f 16
1
I
|
B s o oy ey et o o o i i i i Bl it it ot
Table 3-1. Write only Registers in the RF Xilinx
Internal Register Name Description
Wn‘te
Strobe
Line
0 Rx Sync Word (MSB) | Upper byte of the frame sync pattern for the
receive radio
1 Rx Sync Word (LSB) Lower byte of the frame sync pattern for the
receive radio
2 Tx Sync Word (MSB) | Upper byte of the frame sync pattern for the
transmit radio
3 Tx Sync Word (LSB) Lower byte of the frame sync pattern for the
transmit radio
4 Unused
5 Rx Frequency Divider | Used for programming the receive radios
6 Unused
7 Tx Frequency Divider | Used for programming the transmit radios.
8 Control Text Graphics Reset. This test pin causes an
active low reset for debugging purposes.
Loopback Mode Enable. This bit causes the RF
Xilinx to enter loopback mode which causes the
transmit data to be routed back as received data,
bypassing the radios.
Multi-Time Reset.Resets the multi-time module
in the RF Xilinx.
System Reset. This is an internal system reset for
the entire RF Xilinx.

36

Table 3-1. Write only Registers in the RF Xilinx

Internal Register Name Description
Write
Strobe
Line
9 Rx Clock and Control | Receive Clock Divider Word. Used for program-
ming the radios.
Hop Reset (on the pad design)
10 Tx Clock and Control | Transmit Clock Divider Word. Used for pro-
gramming the radios.
Hop Reset (on the basestation design)
11 Timer (LSB) General Purpose Timer Value (lower byte)
12 Timer (MSB) General Purpose Timer Value (upper byte)
13 Interrupt Acknowledge | RSSI Interrupt Acknowledge
Timer Interrupt Acknowledge
14 Unused
15 LED Control Control of the LEDs on the board. Used for feed-
back and debugging.

3.1.2.2. Register Read Process

There is one read port in the ARM interface register file that the ARM can access.
When the ARM wishes to read a register, the ARM sets the lower two bits of the CADDR
line to the appropriate register (Table 3-2). Only four registers are available for reading,

and of these four only three are used.

Table 3-2. Read Only Registers in the RF Xilinx

CADDR[1:0] Output Description

00 Interrupt Status | Allows ARM to resolve which event
(timer or rssi measurement) generated an
interrupt.

01 RSSI(LSB) Least significant byte of an RSSI read-
ing.

10 RSSI(MSB) Most significant byte of an RSSI reading

11 Unused

3.1.3. Multi-timer Module

The multi-timer module is basically a set of clock dividers that take a 20 MHz clock
input and convert it to the clock for the receive data path, the clock for the transmit data
path, and the 1 MHz clock for the timer module. The multi-timer module can be reset by

an internal reset called the Multi-Timer Reset. This reset is performed when the ARM

37

writes to the Multi-Timer Reset Register in the Control Register of the Xilinx.The multi-
timer module is implemented entirely in a Viewlogic schematic (multitime.1). The
counters and clock dividers used in the multi-timer module are implemented with Xilinx
XBLOX macros to help ensure improved routing for the time critical clocks. Since the
Multi-Timer module does address the problem of clock generation, it is important to men-
tion the buffering entailed in the clock distribution. Since the Xilinx has a limited number
of global buffers, they must be used prudently. The 20 MHz clock input enters the Xilinx
on a pin that does not support a global buffer. Hence, this pin is re-routed to another pin
that does have a dedicated global buffer at its I/O pad. This internal routing renders the
input pin with the global buffer unusable, as its buffer is being occupied by the 20 MHz
clock. The clocks that are output from the multi-timer module are buffered external to the

multi-time module, often within the module that they are used to drive.

3.1.3.1. Generating the Transmit Clock

The transmit clock is generated by a 6 bit up counter that is implemented with an
XBLOX counter module. The terminal count is determined by the value in the Transmit
Clock Rate Register. Whenever the multi-timer reset occurs or the terminal count value is
reached, the terminal count value is reloaded from the Transmit Clock Rate register. The
counter is driven by the 20 MHz clock. In the present version of the InfoPad, the Transmit
Clock Rate register value for the basestation (using the Plessey radio) is the decimal value
of 48, corresponding to a 625 KHz transmit frequency. The Transmit Clock Rate register
value for the pad (using the Proxim radio) is the decimal value of 14, corresponding to a

200 KHz transmit frequency.

3.1.3.2. Generating the Receive Clock

The receive clock is generated by a 4 bit up counter and includes the feature of an
optional stall every sixteen cycles. The 4-bit up counter is implemented with an XBLOX
counter module. The terminal count is determined by the value in the Receive Clock Rate
Register. Whenever the multi-timer reset occurs or the terminal count value is reached, the
terminal count value is reloaded from the Receive Clock Rate register (if the stall cycle
option is disabled). The Xilinx can be programmed so that every 16 cycles the Receive

38

clock will stall for a cycle. This stall enable can be performed by writing to the Receive
Control register of the Xilinx register file. The stall counter is implemented with an
XBLOX module that counts to 16 before generating a terminal count signal. Both counters
are driven by the 20 MHz clock. Whenever the stall enable occurs, the receive clock and
the update of the Receive Clock Rate are disabled for one cycle. In the present version of
the InfoPad, the Receive Clock Rate register value for the basestation (using the Proxim
radio) is the decimal value of 6, corresponding to a 2 MHz receive frequency. The stall
enable option is disabled so the Stall Enable register in the Receive Control Register must
be zero. The Receive Clock Rate register value for the pad (using the Plessey radio) is the
decimal value of 13, corresponding to a 6.25 MHz receive frequency. However, the stall
option is enabled on the Plessey receive radio, so the Stall Enable Register must be set in

the Receive Control Register.

3.1.3.3. Generating the Timer Clock

The Timer clock for the general purpose timer on the Xilinx is generated by using -
an XBLOX clock divider module. This module takes the 20 MHz clock input and divides
it down to 1 MHz.

39

3.1.4. Transmit Data Path

The transmit control block is at the heart of the transmit data path. It is responsible
for formatting the transmit data for the radios, performing forward error correction, and
calculating hardware CRCs. This block is described in VHDL (txpath_ecc.vhd) and is
instantiated in a Viewlogic schematic (txctrl_ecc.l). It begins processing of data whenever
the transmit packet (TXP) line from the Transmit Chip is asserted. A parallel to serial con-
version is performed on the data in order to format it for the transmit radio. Whil,e this par-
allel to serial conversion is being performed, the first eight bytes of every packet (the
packet header) are forward error corrected (FEC) to the maximum FEC level. Subsequent
bytes of transmit data are error corrected to the level specified by the TXECC signal. CRCs
are calculated on the serial data stream, but are only injected when the TXCRC signal is
asserted by the Transmit Chip. CRCs can be calculated on the header and on the entire
packet. The final stage before sending the transmit stream to the radios is to exor the data

with a code word that helps DC balance the signal in order to aid in transmission.

The I/O for the VHDL design is described below. The Viewlogic schematic merely repli-
cates these input and output signals and does not include additional logic, so the schematic
I/O description has been omitted.

Table 3-3. 1/O for the VHDL Design of the Transmit Data Path

VHDL Signal [I/O Description
Name

CLK I |Transmit Clock

RST I |Reset

TXP I |Transmit Packet. Generated by TX Chip. High for the duration of a packet.

TXS I | Transmit Strobe. Generated by TX Chip. Data Strobe for each byte of transmit
data.

DIN[7:0] 1 |Transmit Data from TX Chip. An acknowledge from the transmit radio indicat-
ing it is ready to transmit data.

TXECC[1:0] I |Transmit Error Correction Level for Body Payload.
0 - No Error Correction
1 - Undefined
2 - Medium Level Error Correction (15,11,1)
3 - Maximum Level Error Correction (15,5,3)

TX_GRNT I |Transmit Grant.

FRAME[15:0] I |Frame Sync. Stored in the RF Xilinx register file in the TXSYNC register which
was programmed by the ARM.

TXCRC I |Transmit CRC. When this signal is asserted, the RF Xilinx injects the CRC into
the data stream to the radios.

ZERO I {Logical zero. Driven by ground.

ONE I |Logical one. Driven by 5V.

DOUT O |Output serial transmit data to transmit radio.

TX_REQ O | Transmit request. A request from the RF Xilinx to the radio for a transmission.

The interface timing signals for the TX Chip/RF Xilinx interface can be seen in the follow-

ing Figure 3-4.

Figure 3-4. TX Bus Control Signals

l

|

T

TXCRC

 ——
TXECC

Transmit Chip

TXCLK [1]

First Byte & (CRC) Last Byte & (CRC) X

RF Xilinx

Body Encoding m

[IPBook]

41

Figure 3-5. Encoder High Level Schematic

Counter Block Counter
(0-14)
(0-15)
E[1 _[¢
g m| 2 2 +blkConuntState
F- £
g1 3| = g
2 , ,
TXS CC Select DIN[7:0]
] g ECC Select L
EOP . Output Select TXECC[1:0]
—TXp Main | sri:u;:ll::abl
e
RRaay | COMOOL === Datapath | Doy
| shift o
Load TXCRC
—=» ———
K]
o h
g g€
&) w5
=
@
Counter
(0-7)

3.14.1. Control Logic

in I Machin

The transmit control block is driven by a state machine with ten states called Main
Control, given that it is the main control of the design. The simplified state diagram is pre-

sented below, and each state is discussed in more detail in the following section.

42

Figure 3-6. State Machine for the Main Control

“1,2” Bit Sync
Transmit
(2 bytes)

!

“3, 4,5, 6” Frame Sync
Transmit

(4 bytes)

i NO FEC (15,5,3) FEC

“8” | (15,11,1) FEC

/X

Idle, State “0”

The select for the Input Mux is set to select the bit sync pattern, and the load signal
is asserted. When load is asserted, the Bit Sync value is latched into the Input Data Shift
Register. The Count8, Countl5, and Block counters are initialized. The count15 and block

counters are not actually used in this state, since they are mainly used for control of the

43

encoding.The state machine automatically advances to the Bit Sync state which begins the

transmission of the bit sync.
Bit Sync, State “1, 2”

The bit sync is a two byte value that is sent to the transmit radio before any data is
transmitted. The bit sync pattern is 0101010101010101. Once the state machine enters
State “1”, the Countl5 and Block counters are restarted. These counters are not used for
the Bit Sync because the Bit Sync is not forward error corrected. The shift signal is asserted
for each bit of the bit sync that is shifted out of the Input Data Shift Register. Shift begins
the parallel to serial conversion of the data that was latched in State “0”, i.e. causing a shift
of the Input Data Shift Register and hence an introduction of a new bit of data into the pro-

cessing path. The select for the Output Mux is set to select non error corrected data.

" The select for the Input Mux is set to select the second byte of the bit sync pattern
(which is identical to the first byte) to be processed later in State “2”. When the EndofByte
signal is asserted by the count8 counter indicating the processing of the first byte of the bit
sync has been completed, the load signal is asserted to load this next byte of the bit sync
into the Input Data Shift Register.

After the first byte of the bit sync has been transmitted, the state machine waits in
State “I’ until TXP is asserted by the TX Chip, indicating a packet has arrived and is ready
to be processed. When TXP is asserted, the RF Xilinx generates a transmit request for the
transmit radio. When the radio responds with a transmit grant, then the state machine
advances to State “2’ in order to shift out the second byte of the bit sync and to latch the

first frame sync byte.

When the state machine enters State “2”, it performs similarly to State “1”. The
countl5 and block counters are cleared to 1, although they are not needed since FEC is not
enabled. A transmit request is generated for each bit of data, and the shift signal is asserted
to clock each bit of the bit sync out of the Input Data Shift Register. The SetMoreStuff
signal is set high to indicate the processing of the byte was not completed, i.e. data is

expected after the current bit being processed, which is also not needed unless FEC is per-

44

formed. The Output Mux select chooses non error corrected data output, and the Input Mux
select chooses the first byte of the frame sync. When the entire byte of the bit sync has been
clocked out of the shift register, i.e. EndOfByte is asserted, then the least significant byte
of the frame sync is loaded into the input shift register. The state machine then advances
to State “3”.

Frame Sync, States “3, 4, 5, 6”

The frame sync is 4 bytes wide. In an earlier implementation of the RF Xilinx, the
frame sync was 2 bytes wide. These two bytes are programmable by the ARM and are
stored in the RF Xilinx register file. However, problems arose when random noise in the
transmit path was being falsely identified as the frame sync. Hence the original 2 byte pat-
tern was repeated internally within the RF Xilinx to result in the current 4 byte pattern.

The state machine begins in state “3” by restarting the count15 and block counters.
These counters are not used for the Frame Sync states because the frame sync is not for-
ward error corrected. The state machine generates a transmit request to the radio for each
bit of data to be transmitted. The shift signal is enabled on each transmit clock to advance
the frame sync data out of the shift register. The select for the Output Mux is set to choose
non error corrected data. The select for the Input Mux is set to choose the most significant
byte of the frame sync from the RF Xilinx register file. The state machine stays in State
“3” until the EndOfByte signal is asserted by the count8 counter. When the EndOfByte
signal is asserted, the most significant byte of the frame sync is again loaded into the Input
Data Shift Register. The state machine advances to State “4”.

The state machine begins in State “4” by restarting the count15 and block counters.
Again, these counters are not used because FEC is not enabled. The state machine gener-
ates a transmit request to the radio for each bit to be transmitted. The shift is enabled on
each transmit clock to advance the frame sync data out of the Input Data Shift Register.
The state machine stays in State “4” until the EndOfByte signal is asserted by the count8
counter. The select for the Output Mux is set to choose non error corrected data. The select
for the Input Mux is set to load the least significant byte of the frame sync pattern after the
current byte is finished processing. As soon as the EndOfByte signal is asserted, the least

45

significant byte of the frame sync is loaded into the Input Data Shift register, and the state
machine advances to State “5”.

In State “5”, the state machine operates exactly as in State “3”. The least signifi-
cant byte of the frame sync is again transmitted, and the most significant byte is latched
after the EndofByte signal is asserted (for processing during the next state). The state
machine then proceeds to State “6”.

In State “6”, the state machine operates similarly to the operation in State “4”. The
most significant byte of the frame sync is again transmitted. This state completes the frame
sync processing, and the first byte of input data is now latched into the Input Data Shift
Register after the EndofByte signal is asserted (for processing during the next state). Since
this state marks the beginning of the packet data, the CRC is initialized to a cleared state.
The transmit strobe is also asserted to advise the TX Chip that the RF Xilinx is ready for
the second byte of packet data, having already latched the present byte. The state machine

then progesses to State “7”.
No FEC, State “7”

State “7” is a data processing state for data with disabled FEC. However, it is also
a disembarkation state that is used for one clock after the processing of the frame sync is
éompletcd, regardless of the FEC level. When a transition from state “6” to state “7”
occurs, the first byte of data is shifted serially out of the Input Data Shift Register. It is
important to recognize that processing of the different levels of FEC occur simultaneously,
and the only difference between choosing the FEC level is the select value present at the
Output Mux and the differing control signals from this state machine. Hence, it is under-
standable how all levels of error correction share this state for the one cycle after the frame

sync processing is completed.

This state begins like previous states, by performing the requisite shifts from the
Input Data Shift Register, setting the Input Mux select to data for the next byte’s process-
ing, and setting the Output Mux select to non error corrected data. A transmit request is
similarly generated for each bit of data to be transmitted. When the EndofByte signal is

46

asserted, the next byte of data from the TX chip is loaded into the input shift register, if
there are remaining bytes to be transmitted. Otherwise the signals that indicate that more

data is present are cleared.

If the end of an encoding block occurs, i.e. the countl5 counter has counted down
from 15 to 1, then the state machine will advance to the state corresponding to the
requested error correction level as determined by the ECCSelect signal. If no error correc-
tion is desired, then the next state remains at State “7”. However, if maximum (15,5,3)
error correction is desired, the state advances to State “9”, while the state advances to State
“8” for medium level (15,11,1) error correction. If no data is remaining, i.e. the TX chip

has not provided the next byte of data, then the state machine returns to the Idle state.
Medium Level FEC, State “8”

In State “8”, the state machine shifts the data out of the Input Data Shift register
and selects non error corrected output data for the Output Mux until the Endl1bit signal is
asserted by the count15 down counter. At this point, the Output Mux selects medium error '
corrected data, and this data begins to be transmitted. The transmit request is still continu-
ally generated for the transmit radio for each bit to be transmitted. When the end of a byte
of input data occurs, the RF Xilinx loads the next byte of data and a transmit strobe (TXS)
is generated for the TX Chip to indicate that the RF Xilinx is ready for another byte of data,
if additional data is present to transmit. If the TX Chip does not require further data to be
transmitted, i.e TXP is unasserted, then the signals indicating that additional data is

remaining are cleared.

When the EndEncoding signal is asserted by the countl5 counter, then the error
correction level is re-evaluated if there is additional transmit data to process. If no error
correction is desired, then the next state transitions to “State “7”. However, if maximum
(15,5,3) error correction is desired, the state advances to “State “9”, while the state
remains in “State “8” for medium level (15,11,1) error correction. If no data is remaining,
i.e. the TX Chip has not provided the next byte of data, then the state machine returns to
the Idle state.

47

Maximum Level FEC, State “9”

In State “9”, the state machine shifts the data out of the input shift register and
selects non error corrected output data for the Output Mux while the End5bit signal is unas-
serted by the count15 down counter. When the End5bit signal is asserted, the Output Mux
selects maximum error corrected data, and this data begins to be transmitted. The transmit
request is still continually generated for the transmit radio for each bit to be transmitted.
When the end of a byte of input data occurs, the RF Xilinx loads the next byte of data and
a transmit strobe (TXS) is generated for the TX Chip to indicate that the RF Xilinx is ready
for another byte of data, if additional data is present to transmit. If the TX Chip does not
require further data to be transmitted, i.e TXP is unasserted, then the signals indicating

additional data is remaining are cleared.

When the EndEncoding signal is asserted by the countl5 counter, then the error
correction level is re-evaluated if there is additional transmit data to process. If no error
correction is desired, then the next state transitions to “State “7”. However, if maximum
(15,5,3) error correction is desired, the state remains in “State “9”, while the state
advances to “State “8” for medium level (15,11,1) error correction. If no data is remain-
ing, i.e. the TXchip has not provided the next byte of data, then the state machine returns
to the Idle state.

ntrol nter

The Transmit Control has several counters that help to implement the control of the
transmit data path. These are the count8, the count15, and the block counters. Each counter

is implemented as a state machine in VHDL and is described separately below.

Count8

The count8 counter is a 2 bit up-counter that is initialized to 0 by the control logic
in the Main Control state machine. The counter increments whenever the shift signal (also
from the Main Control state machine) is asserted, and a flip flop latches the counter value
at the rising edge of the transmit clock. When the counter reaches 7, an EndOfByte signal

is generated, and the counter wraps around to 0.

48

Countls

The countl5 counter is a 3 bit down counter that is initialized to 14 by the control
logic in the Main Control state machine. The countl5 counter is necessary because the
encoded data is output in 15 bit blocks. The counter is decremented every transmit clock,
and a flip flop latches this value. Before each decrement, however, a line balance signal is
set within this state machine. The line balance pattern is ultimately exor’ed with the output
data in an attempt to help DC balance the transmitted data signal. Several other control sig-
nals are also determined by the count15 counter. After the countl5 has counted down four
states, the End4bit signal is generated. Similarly, after the count15 has counted down to the
requisite state, the End5bit, End]0bit,and Endl 1bit signals are asserted. These signals help
synchronize when to enable and disable encoding. When the counter reaches the value of

0, the counter generates the EndEncoding signal and wraps around to begin at 14 again.
Block Counter

The block counter is used to determine when to switch from the header encoding
level to the encoding level prescribed by the TXECC signal. The block counter is an up-
counter that counts from 0O to 15. The counter increments whenever the EndEncoding
signal is generated. When the counter reaches 15, it does not wrap back around to 0. Instead
it stays locked at 15, unless the counter is reinitialized by the Main Control state machine.

49

3.1.4.2. Transmit Data Path
Figure 3-7. High Level View Of Transmit Data Path

FEC (155.3)
:"3. D> DC Balance
Bit Sync Re] .
Frame Sync 0 FEC(15,11,1) Tx
Data In f ¢ Data
S'.E‘
“i
P
Serial Data
i | ; CRC
CRC/Data Mux
Input Mux

The input mux is used to select the 1 byte input to the Input Data Shift register. The
choices include the bit sync, the MSB of the frame sync, the LSB of the frame sync, and
the input transmit data.

CRC/Serial Data Mux and CRC Control

When the TXCRC line is pulsed high by the TX Chip, the RF Xilinx begins the
transmission of the CRC instead of the serial input data. The RF Xilinx selects the CRC
input of the CRC/Serial Data Mux for 8 cycles after the initial raising of the TXCRC signal.
During the transmission, calculation of the CRC is suspended, i.e. feedback is set equal to

zero. After 8 transmit clock cycles have passed, the CRC Shift Register is cledred, and the
CRC/Serial Data Mux is set to pass the data from the Input Data Shift Register. The TX

50

Chip only raises the TXCRC signal for the header and body CRC:s if the data type to be
transmitted is configured to include CRCs.

CRC Algorithm

When the CRC Clear signal is asserted by the Main Control state machine, the CRC
Shift Register is cleared to a value of 0. The CRC is implemented with an 8-bit shift regis-
ter. The feedback signal for the CRC is generated by exor’ing the MSB of the CRC shift
register with the input serial data, provided the CRC is not being transmitted. If the CRC
value is being transmitted, the CRC feedback signal is disabled. The CRC is calculated by
writing the feedback signal to the LSB of the shift register, writing the exor of the LSB and
the feedback signal to the second bit in the shift register, and writing the exor of the feed-
back and the second bit of the shift register to the third bit of the shift register. Each time

a new bit of data is shifted out of the input shift register, the CRC shift register updates its
values. The MSB of the CRC shift register is the serial output of the CRC data stream.

Figure 3-8. CRC

CRC Regpister [7]

Output fro;leedmk

Inpxl:t Data CRC Shift Register Input to

Shift Register 1(51 C/Data
gx)=x8+x"+x0+1 "

51

Medium ECC Encoder

The medium ECC encoder is implemented with a 4 bit shift register. The output of
the CRC/Data Mux is exor’ed with the most significant bit of this shift register to generate
the encoder feedback. The encoder feedback signal is only valid while the End]1bit signal
is zero, i.e. after count15 counts off the 11 bits of input data in an encoding block, the feed-
back is disabled. At the start and end of the encoding block, the Medium ECC Shift Reg-
ister is cleared to zero. Otherwise, the encoder shifts in the feedback signal to displace the
least significant bit (LSB) of the Medium ECC Shift Register. The feedback signal also is
exor’ed with the LSB of the Medium ECC Shift Register and to constitute the second bit
in the Medium ECC Shift Register.

Figure 3-9. Medium ECC Encoder

Medium E(i: Enable Medium ECC Reg(3
0 —&1—)—> N 1™ L
‘eedback 101 [1] (21 (3] Input to
Output from &'::f“‘
CRC/Serial Medium ECC Shift Register

Input Data Mux
gx)=x*+x+1

52

Maximum ECC Encoder

The maximum ECC encoder is implemented with a 10 bit shift register. The output
of the CRC/Data Mux is exor’ed with the most significant bit of this shift register to gen-
erate the encoder feedback. The encoder feedback signal is only valid while the End5bit
signal is zero, i.e. after count15 counts off the 5 bits of input data in an encoding block, the
feedback is disabled. At the start and end of the encoding block, the Maximum ECC Shift
Register is cleared to zero. Otherwise, the encoder shifts in the feedback signal to displace
the least significant bit (LSB) of the Maximum ECC Shift Register. The feedback signal
also is exor’ed with the bits [0:1], [3], and [7] of the Maximum ECC Shift Register in order
to generate the subsequent bits [1:2], [4], and [8] of the Maximum ECC Shift Register.

Figure 3-10. Maximum ECC Encoder

Maximum ECC Enable
<

Maximum ECC Regl9]

Output from '
CR&/Serial Maximum ECC Shift Register Input to

Input Data Mux 0 4 2 Output
g(x):xl + x84+ et xtex+1 Mux

ECC Selection

The EccReg register contains the value for the error correction level. This value
normally is latched from the TXECC input; however, the first eight bytes of the data pay-
load (corresponding to the header) have a fixed forward error correction that is set to the

maximum level of FEC.

Output Mux

The Output Mux chooses between the maximally error corrected data stream, the
medium error corrected data stream, and the data stream without error correction based on
the setting in the EccReg register. This selection becomes the serial output transmit data

stream.

53

DC Balance

The output transmit data stream is exor’ed with the line balance pattern generated

by the count15 counter. This pattern is used to aid in DC balancing the transmit data.

3.1.5. Transmit Interface for the Plessey Radio
Overview

The basestation uses the Plessey radio as the transmitter radio. In order to use the
Plessey radio in transmit mode, it must first be programmed to a particular transmit fre-
quency whose value is contained in the RF Xilinx register file. After the transmit frequency
is programmed, the Plessey waits until a transmit request arrives from the RF Xilinx. When
the transmit request arrives, the radio switches from a low power mode to a higher powered
transmit mode and begins transmitting data until the transmit request line is driven low
again by the RF Xilinx. The Plessey Transmit Interface block is responsible for this pro-

gramming and implements the appropriate delays required.

The interface to the Plessey radio is designed in VHDL (plessey_x.vhd) with a
schematic top level in Viewdraw (txradio_plessey.1). The VHDL design was implemented
with a state machine that contains seven states, as illustrated below in Figure 3-11. In addi-
tion to the state machine, the VHDL design contains a 7-bit counter that is used to imple-
ment the delays needed when programming the Plessey radio. The VHDL design for the
Plessey interface also drives the antenna select and the radio standby signals. The sche-
matic top level for the Plessey transmit interface for the basestation instantiates the VHDL
design and routes the outputs of the design to the pins on the RF Xilinx that control the
Plessey radio. The transmit serial data line is also brought into the schematic from the
Transmit Control block and is passed out to the serial data transmit pin for the Plessey. The
transmit clock from the mult-timer module is also buffered in the Plessey top level sche-
matic with a global clock buffer before it is used to drive the VHDL design.

54

Table 3-4. 1/O for the Viewlogic Schematic of the Plessey Interface on the Basestation

Signal Name |[I/O Description

TX_CLKIN I |Transmit Clock from Multi-timer block

RESET I |Internal System Reset. Controlled by RF Xilinx register file.

HOP_RESET I |Hop Reset. Controlled by RF Xilinx register file.

TX_REQUEST I |Maps to REQUEST in the VHDL block.

TX_FREQ[15:7] I |Not used.

TXFREQ[6:0] I |Maps to channel_in in the VHDL block.

TX_DOUT 1 |Serial Transmit Data. Originates in Transmit Control Block and is routed to the
Plessey Transmit Data output pin on the RF Xilinx.

TXCNTL([7:0] 1 {Not used.

PL_ANTSEL O |Output to the Plessey Radio. Antenna Select. Maps to antsel in Plessey Transmit
Controller VHDL block.

PL_POW_LEVEL | O |Output to the Plessey Radio. Power Level Select. Maps to power_level in
Plessey Transmit Controller VHDL block.

PL_TX_RX O |Output to the Plessey Radio. Transmit/Receive Mode Select. Maps to tx_rx in
Plessey Transmit Controller VHDL block. .

PL_PA_OFF O {Output to the Plessey Radio. Power Amplifier On/Off Select. Maps to pa_off in
Plessey Transmit Controller VHDL block.

PL_STDBY O |Output to the Plessey Radio. Standby. Maps to stdby in Plessey Transmit Con-
troller VHDL block.

PL_LOADB O |Output to the Plessey Radio. Active Low Load Line. Maps to loadb in Plessey
Transmit Controller VHDL block.

PL_SD[6:0] O |Output to the Plessey Radio. Input Data Bus for Programming the Plessey
Radio. Maps to channel_out in Plessey Transmit Controller VHDL block.

PL_TXD O |Serial Transmit Data to the Plessey Radio. From the Transmit Control Block.

TX_CLKOUT O |Buffered TX_CLKIN. Used to drive Plessey Transmit VHDL design and the
Transmit Control Block.

TX_GRANT O [Maps to GRANT in the VHDL block.

55

Table 3-5. /O for the VHDL Design of the Plessey Interface on the Basestation

VHDL Signal
Name

v
0

Description

clk

I

Input Clock to the Plessey Radio Interface on the Basestation. Driven by a buff-
ered transmit clock from the multi-time module.

RESET

Internal System Reset. Controlled by RF Xilinx register file (XILCNTL[7]).

HOP_RESET

Hop Reset. Controlled by RF Xilinx register file.

REQUEST

Transmit Request. Controlled by REF Xilinx Transmit Control Block.

xmit_pow_level

Gt) bnt | et | ey

Transmit Power Level. Output directly to the output pin on the RF Xilinx.
0-Low Power Mode (Receive/Idle)
1-High Power Mode (Transmit)

channel_in[6:0]

Transmit Frequency for Plessey Radio. From the RF Xilinx register file.

channel_out[6:0]

Transmit Frequency for Plessey Radio. Latched from channel_in. Output
directly to the output pin on the RF Xilinx using the SD(6:0] bus described in
the Viewlogic schematic.

loadb

Active low load line used to load the Plessey Radio with the Transmit Fre-
quency. Output directly to the output pin on the RF Xilinx.

stdby

Standby signal for the Plessey Transmit Radio. The radio should always be on
standby when this interface is used, hence this value should always be set to one.
Output directly to the cutput pin on the RF Xilinx.

pa_off

Power Amplifier on/off Select. When this signal is zero, the power amplifier on
the Plessey is turned off. Conversely, when this signal is one, the power ampli-
fier is turned on in preparation for transmission. Qutput directly to the output pin
on the RF Xilinx,

Receive/Transmit mode select for the Plessey. Should be set to Transmit for this
interface block. Output directly to the output pin on the RF Xilinx.

0 - Transmit
1 - Receive

power_level

Power Level to the Plessey Radio. Output directly to the output pin on the RF
Xilinx.

0 - Low Power Mode (Idle Mode)

1 - High Power (Transmit Mode)

antsel

Antenna Select. Originally intended to help provide antenna diversity, this sig-
nal is statically driven to a value of zero, corresponding to a choice of Antenna
1. Any future work on antenna diversity would dynamically control this signal.
Output directly to the output pin on the RF Xilinx.

GRANT

Transmit Grant. This signal is an input to the Transmit Control block. It is
asserted by the Plessey Interface while the radios are in transmit state, 1.e. are in
the process of actually transmitting the data.

56

Figure 3-11. State Diagram for Plessey Transmit Controller

F

Transmit

Reset

In the Reset state, the state machine waits for two consecutive resets. These resets
are driven by the ARM kernel in the iprf.c file. The first reset can be either a hop reset or
a system reset, and the second reset in the series must be a hop reset. When this condition

occurs, the state machine clears the delay counter and advances to the Load Delay State.
Load Delay

In the Load Delay state, the state machine waits until the delay counter reaches the
value specified in order to allow the proper time elapse after reset. In this design, the load
delay value is 2 cycles of a clock with a frequency of approximately 1 MHz (using the
transmit clock from the multi-timer). The load delay is approximately 2 pis. When the
counter reaches this value, it is resets the delay counter to zero, lowers the active low load
line, and outputs the desired transmit frequency to the data input bus of the radio
(channel_out[6:0] internal to the interface block, SD[6:0] in the higher level schematic).
The state machine also clears the internal reset signal that was used to detect the first reset
in the Reset Stare. The state machine then advances to the Synth Settle State.

57

Synth Settle

In the Synth Settle State, the active low load line is raised, and the radio is allowed
to settle for approximately 80 ps. This delay is counted by using the delay counter, in the
same manner as it was used in the Load Delay State. The settling time is 85 cycles in the
present design. In this state, the radio is in low power mode, the power amplifier is turned
off on the radio, and the transmit is disabled. When the settling time has elapsed, the delay

counter is reset to zero, and the state machine advances to the Wait State.
Wait State

In the Wait State, the state machine waits for either a reset (system or hop) or a
request to transmit from the Transmit Control Module of the RF Xilinx. The transmit
power mode for the radio is switched from low power to high power in this state, i.e. The
one bit output signal pwr_level is driven to the value of the input signal xmit_pwr_level.
The xmit_pwr_level signal is driven externally by the 5 V power supply, VDD. If a reset
condition occurs, the state machine will return to the Reset state. However, if a transmit
condition occurs, i.e. the Transmit Control Module raises the TX_REQUEST line, then the

state machine advances to the Power Amp Delay state.

Power Amp Delay

In the Power Amp Delay State, the state machine enables the transmitter by select-
ing the transmit mode of the radio (as opposed to the receive mode). This is accomplished
by writing a zero to the &x_rx output signal. The state machine then delays the transmission
of data by 2 ps. This delay is implemented by using the delay timer to count the value for
the Power Amp Delay. The value used in the design is 2, since each cycle is approximately
1 ps. When the counter reaches the Power Amp Delay value, the delay counter is cleared,

and the state machine advances to the Transmit state.

Transmit

In the transmit state, the power amplifier in the radio is turned on by writing a one
to the pa_off output signal. The transmitter stays enabled and the GRANT output is driven

58

high while in this state. The state machine stays in this state until the REQUEST signal is
lowered. When the REQUEST signal is driven low, the state machine advances to the
Ramp Off state.

Ramp Off

In this state, the GRANT signal is driven low, and the delay counter counts 5 cycles
in order to turn the power amplifier in the radio off and wait for the decay. If the hop reset
is asserted, the state machine returns to the Reset state, otherwise the state machine returns
to the Synth Settle State. When in the Synth Settle state, the radio is switched back to a low

power mode.

3.1.6. Transmit Interface for the Proxim Radio

The Transmit interface for the Proxim radio on the pad is considerably simpler than
the Plessey’s transmit interface. The loading of the Proxim’s configuration registers is per-
formed serially and is under software control in the ARM kernel, iprf.c. The kemel pro-
grams the RF Xilinx registers that control the load signal, the data strobe, the serial
configuration data, the recciQe/mnsmit mode select, the standby signal, and the ready
signal for the Proxim. The kernel also handles the timing requirement for the programming
of the Proxim radio. The Proxim radio generates its own transmit clock, so on the pad the

transmit clock from the multi-timer module is not used.

In order to write to the Proxim’s registers, the ARM kernel must serialize the data
to be written. The Proxim must be initialized while not in standby mode. Standby
(TX_FREQI4]) is a low power, reset mode for the Proxim. While the Proxim is not in
standby, the kernel then takes each bit of the serial data and writes it to the serial configu-
ration data register of the RF Xilinx (TXFREQ[2]). Then two writes are performed to
toggle the data strobe (TXFREQI[1]). When the entire word is strobed into the Proxim, the
load signal (TXFREQIO]) is asserted. This procedure of strobing in serial data and then
asserting load is continued until all registers in the Proxim have been programmed. In addi-
tion to programming the Proxim with serial data, the receive/transmit mode select
(TXFREQ[3]) signal must be set to transmit mode. After the Proxim has been pro-
grammed, the ready signal (TXFREQ[5]) should be asserted. When the ready signal is high

59

and a transmit request (TX_REQUEST) arrives from the Transmit Control Block, the
TX_GRANT line is asserted.

The Proxim Transmit Radio interface for the Pad is specified entirely by a View-

logic schematic (txradio_proxim.I), and the 1/O for the schematic block can be seen below.

Table 3-6. 1/O for the Viewlogic Schematic of the Proxim Interface on the Pad

Signal Name |I/O Description
TX_CLKIN I |Not used.
RESET I |Not used.
HOP_RESET I |Hop Reset. Controlled by RF Xilinx register file.
TX_REQUEST I |Originates from the Transmit Control Block. ANDed with the Proxim_Ready

signal to generate TX_GRANT output.
TX_FREQ[15:6] I |Not used.

TXFREQI[5] I [Proxim Ready signal. Should be asserted after the transmit frequency has been
loaded into the Proxim.

TXFREQ[4] I |Proxim Standby. Active low. When this signal is low, all digital electronics are
reset, and the radio is put into its low power state.

TXFREQI3] I [Proxim TX/RX select. When this signal is high, the radio’s transmitter is
enabled.

TXFREQI2] I |Proxim Serial Data.

TXFREQI1] I [Proxim Serial Data Strobe

TXFREQIO0] I |Proxim Sync Load. When this signal is high, a write of the accumulated serial
data in the radio is performed to the intemal registers of the Proxim.

TX_DOUT I |Serial Transmit Data. Originates in Transmit Control Block and is routed to the

Proxim Transmit Data output pin on the RF Xilinx.
TXCNTL([7:0] I [Not used.

TX_CLKOUT O |Transmit Clock for the Transmit Control Block. Driven by an external pin by the
Proxim’s Transmit clock.

TX_GRANT O |Asserted when the Proxim is Ready and TX_REQUEST is high.

3.1.7. Receive Interface for the Plessey Radio
Overview

The pad uses the Plessey radio as the receive radio. In order to use the Plessey radio
in receive mode, it must first be programmed to a particular receive frequency whose value

is contained in the RF Xilinx register file. After the receive frequency is programmed, the

Plessey enters a receive mode that terminates only when a hop reset occurs and a packet is

60

not being received. The Plessey Transmit Interface block is responsible for the program-

ming of the Plessey and implements the appropriate delays required.

The interface to the Plessey radio is designed in VHDL (plessey_r.vhd) with a sche-
matic top level in Viewdraw (rxradio_plessey.l). The VHDL design was implemented
with a state machine that contains four states, as illustrated below in Figure 3-12. In addi-
tion to the state machine, the VHDL design contains a 7-bit counter that is used to imple-
ment the delays needed when programming the Plessey radio. The VHDL design for the
Plessey interface also drives the antenna select, receive/transmit mode select, standby, and
low/high power mode select. The schematic top level for the Plessey receive interface for
the pad instantiates the VHDL design and routes the outputs of the design to the pins on
the RF Xilinx that control the Plessey radio. The receive serial data line from the Plessey
is output from the schematic to the Receive Control block. The receive clock from the
mult-timer module is also buffered in the Plessey top level schematic with a glbbal clock
buffer before it is used to drive the VHDL design.

In addition to the Plessey Receive Interface VHDL design, the top level schematic
of the Plessey Receive Block instantiates two other VHDL designs, the RSSI controller
and the Clock Recovery module. The RSSI controller takes the serial input from the
Plessey receive radio, and with the help of an A/D converter on the board, outputs the RSSI
measurement for the receive data packet. The RSSI system is used for both Plessey and

Proxim designs and is discussed in detail in Section 3.1.9. on page 69.

Since the Plessey does not have its own clock recovery circuitry, a clock recovery
system had to be implemented. Serial data is received from the Plessey radio and is directly
input to this system. The recovery algorithm uses digital interpolation to determine the
optimal sampling point. It also includes a closed-loop update that allows tracking of small
frequencies. The clock recovery algorithm will be discussed later in this section.

61

Table 3-7. I/O for the Viewlogic Schematic of the Plessey Interface on the Pad

Signal Name |I/O Description

RXCLK_IN 1 |Receive Clock from Multi-timer block

RESET 1 |Internal System Reset. Controlled by RF Xilinx register file. Maps to reset in the
Plessey Receive Controller design.

HOP_RESET I JHop Reset. Controlled by RF Xilinx register file (XILCNTL([7]). Maps to
HOP_RESET in the Plessey Receive Controller VHDL design.

RX_FREQ[15:7] | I |Not used.

RXFREQI[6:0) I |Maps to channel_in in the Plessey Receive Controller VHDL design.

RXCNTL[7:0] I {Not used.

RXP I [Received packet signal. This signal is generated by the Receive Control Block
and set high whenever a frame sync matches on the incoming received data.
RXP stays high during the duration of the reception of the packet, when it is
then set low. Maps to RXP of the Plessey Receive Controller VHDL design.

RA17 I |Serial RSSI Data Input from the Plessey Radio via the A/D Converter

CR_IN I |Serial Receive Data Input from the Plessey Radio.

PL_ANTSEL O |Output to the Plessey Radio. Antenna Select. Maps to antsel in Plessey Receive

. Controller VHDL block.

PL_POW_LEVEL | O |Output to the Plessey Radio. Power Level Select. Maps to power_level in
Plessey Receive Controller VHDL block.

PL_TX_RX O [Output to the Plessey Radio. Transmit/Receive Mode Select. Maps to tx_rx in
Plessey Receive Controller VHDL block.

PL_PA_OFF O |Output to the Plessey Radio. Power Amplifier On/Off Select. Maps to pa_off in
Plessey Receive Controller VHDL block.

PL_STDBY O |Cutput to the Plessey Radio. Standby. Maps to stdby in Plessey Receive Con-
troller VHDL block.

PL_LOADB O |Output to the Plessey Radio. Active Low Load Line. Maps to loadb in Plessey
Receive Controller VHDL block.

PL_SD[6:0] O [Output to the Plessey Radio. Input Data Bus for Programming the Plessey
Radio. Maps to channel_out in Plessey Receive Controller VHDL block.

RSSICLK O |Output Clock for the A/D Converter. Used to Strobe in the converted RSSI Mea-
surement Data. Maps to ser_clk of RSSI Controller Block.

RSSICNVT O |Active low Convert Signal that issues a start of conversion command to the A/D
converter. Maps to convt_{ in the RSSI Controller Block.

RX_READY O |Maps to ready in the Plessey Receive Controller VHDL block.

RSSI_VALID O |Active high signal indicating that the value in the RSSI register is the current
RSSI measurement. Used to generate an RSSI interrupt in the IRQ module.Gen-
erated by the RSSI Controller VHDL design.

RSSI[11:0] O |RSSI measurement data. Generated by the RSSI Controller VHDL design and
output to the ARM interface module of the RF Xilinx.

RX_DIN O |Serial Receive Data. Originates from Plessey radio input to RF Xilinx. with a

destination of the Receive Control Block.

62

RXCLK_BUF

Buffered RXCLK_IN

RXCLK_OUT O [Clock used to drive the Receive Control Block. Derived from feeding
RXCLK_IN through the Clock Recovery Block.

RX_READY O |Maps to ready in the Plessey Receive Controller VHDL block.

RSSI_VALID O |Active high signal indicating that the value in the RSSI register is the current
RSSI measurement. Used to generate an RSSI interrupt in the IRQ module.Gen-
erated by the RSSI Controller VHDL design.

RSSI[11:0] O |RSSI measurement data. Generated by the RSSI Controller VHDL design and
output to the ARM interface module of the RF Xilinx.

RX_DIN O |Serial Receive Data. Originates from Plessey radio input to RF Xilinx, with a

destination of the Receive Control Block.

Table 3-8. I/O for the VHDL Design of the Plessey Radio Interface on the Pad

VHDL Signal
Name

/o

Description

clk

Input Clock to the Plessey Radio Interface on the Basestation. Driven by a buff-
ered receive clock from the multi-time module.

reset

Internal System Reset. Controlled by RF Xilinx register file.

HOP_RESET

Hop Reset. Controlled by RF Xilinx register file.

RXP

Received packet signal. This signal is generated by the Receive Control Block
and set high whenever a frame sync matches on the incoming received data.
RXP stays high during the duration of the reception of the packet, when it is
then set low.

stdby

Standby signal for the Plessey Receive Radio. The radio should always be on
standby when this interface is used, hence this value should always be set to one.
Output directly to the output pin on the RF Xilinx.

pa_off

Power Amplifier on/off Select. When this signal is zero, the power amplifier on
the Plessey is turned off. Conversely, when this signal is one, the power ampli-
fier is turned on in preparation for transmission. Output directly to the output pin
on the RF Xilinx.,

Receive/Transmit mode select for the Plessey. Should be set to Receive for this
interface block. Output directly to the output pin on the RF Xilinx.

0 - Transmit
1 - Receive

power_level

Power Level to the Plessey Radio. Output directly to the output pin on the RF
Xilinx.

0 - Low Power Mode (Idle/Receive Mode)

1 - High Power (Transmit Mode)

antsel

Antenna Select. Originally intended to help provide antenna diversity, this sig-
nal is statically driven to a value of zero, corresponding to a choice of Antenna
1. Any future work on antenna diversity would dynamically control this signal.
Output directly to the output pin on the RF Xilinx.

ready

Active high signal that indicates the Plessey radio is ready to receive data.

63

channel_in[6:0]

Receive Frequency for Plessey Radio. From the RF Xilinx register file.

channel_out{6:0]

Receive Frequency for Plessey Radio. Latched from channel_in. Output directly
to the output pin on the RF Xilinx using the SD[6:0] bus described in the View-
logic schematic.

Active low load line used to load the Plessey Radio with the Receive Frequency.
Output directly to the output pin on the RF Xilinx.

stdby

Standby signal for the Plessey Receive Radio. The radio should always be on
standby when this interface is used, hence this value should always be set to one.
Output directly to the output pin on the RF Xilinx.

pa_off

Power Amplifier on/off Select. When this signal is zero, the power amplifier on
the Plessey is turned off. Conversely, when this signal is one, the power ampli-
fier is turned on in preparation for transmission. Cutput directly to the output pin
on the RF Xilinx.

Receive/Transmit mode select for the Plessey. Should be set to Receive for this
interface block. Qutput directly to the output pin on the RF Xilinx.

0 - Transmit
1 - Receive

power_level

Power Level to the Plessey Radio. Output directly to the output pin on the RF
Xilinx,

0 - Low Power Mode (Idle/Receive Mode)

1 - High Power (Transmit Mode)

antsel

Antenna Select. Originally intended to help provide antenna diversity, this sig-
nal is statically driven to a value of zero, corresponding to a choice of Antenna
1. Any future work on antenna diversity would dynamically control this signal.
Output directly to the output pin on the RF Xilinx.

ready

Active high signal that indicates the Plessey radio is ready to receive data.

Figure 3-12. State Diagram for Plessey Receive Controller

2

Receive

Reset

In the Reset state, the state machine waits for two consecutive resets. These resets
are driven by the ARM kernel in the iprf.c file. The first reset can be either a hop reset or
a system reset, and the second reset in the series must be a hop reset. When this condition

occurs, the state machine clears the delay counter and advances to the Load Delay State.
Load Delay

In the Load Delay state, the state machine waits until the delay counter reaches the
value specified in order to allow the proper time elapse after reset. In this design, the load
delay value is 2 cycles of a clock with a frequency of approximately 1 MHz (using the
receive clock from the multi-timer). The load delay is approximately 2 ps. When the
counter reaches this value, it is resets the delay counter to zero, lowers the active low load
line, and outputs the desired receive frequency to the data input bus of the radio
(channel_out[6:0] inside the interface block, SD[6:0] in the higher level schematic). The
state machine also clears the internal reset signal that was used to detect the first reset in

the Reset Stare. The state machine then advances to the Synth Settle State.
65

Synth Settle

In the Synth Settle State, the active low load line is raised, and the radio is allowed

to settle for approximately 80 ps. This delay is counted by using the delay counter, in the

same manner as it was used in the Load Delay State. The settling time is 85 cycles in the

present design. In this state, the radio is in low power mode, the power amplifier is turned

off on the radio, and the transmit is disabled. When the settling time has elapsed, the delay

counter is reset to zero, and the state machine advances to the Receive State.

Receive

In the Receive state, the ready line is pulled high. The Plessey radio stays in this

receive mode until a hop reset occurs and a latched version of RXP (start_rcv) goes low,

i.e. reception of the packet has completed. When this occurs, the state machine advances

to the Reset State.

Table 3-9. 1/O for the VHDL Design of the Clock Recovery Module

VHDL Signal |I/O Description
Name

clk I |Input Clock to the Plessey Radio Interface on the Basestation. Driven by a buff-
ered receive clock from the multi-time module.

reset I |Intemnal System Reset. Controlled by RF Xilinx register file.

data_in I |Serial input data from the Plessey Receive Radio

rxsync_enb I |Receive Sync Enable. Maps to RXP in the schematic. Clock recovery is only
enabled when a packet is being received.

clock_out O |Recovered Received Clock. Passed to Receive Control Block.

data_out O |Recovered Serial Receive Data. Passed to Receive Control Block.

Clock Recovery Module

The clock recovery module is necessary only for the Plessey receive radio, because

the Proxim provides its own clock recovery. The design was performed in VHDL and can

be found in clk_recovery.vhd. This algorithm is designed to be tolerant to spurious noise,

as well as frequency offsets that can occur when the transmit and receive frequencies drift.

This drift is due to limited precision in the oscillators during receipt of long packets.

66

A free running phase counter (phase_c) is started in order to provide a reference
point for the phase0 mark used in the clock recovery. The input data stream data_in is first
oversampled 10 times by a sample clock with a 10% duty cycle. The oversampled data is
shifted into the 10-bit wide data_reg shift register. Another register called clock is also 10-
bits wide, and it stores a 1 in the location of the bit that should be sampled in the data_reg
shift register.

An accumulator (sum) is used to obtain data for the clock recovery decision. Data
in the accumulator is changed if the data_in value and the data point ten samples ago are
different. Whenever a 1 is shifted into the data_reg shift register, and a 0 is shifted out, the
sum register is incremented. Likewise, if a 0 is shifted in, and a 1 is shifted out, sum is dec-
remented. If a 1 is shifted in and out (or a O is shifted in and out), then the sum is
unchanged. In this fashion, the integral of the samples can be obtained.

Before reception of a packet occurs, a new sampling point is determined (i.e. the
bit in the data_in shift register that corresponds to the output data) whenever the accumu-
lator reaches a value greater than the largest value provided the largest value of the accu-
mulator is at least 6. (The maximum value the accumulator can reach is 10.) Whenever this
condition occurs, the value in the accumulator (sum) is latched to become the new largest

value, and the sample phase is latched from the phase counter (phase_c).

If the data stream becomes a stream of zeroes, the algorithm enters a low power
mode. The sample phase is not changed but the largest value is set to 6, which basically
causes the sampling point to be recalculated. In practice, the packets transmitted over the
InfoPad wireless length are not long enough to encounter the problem with frequency drift
that the low power mode addresses. A reduced complexity clock recovery system could be
implemented that only requires the calculation of the sampling point once during the entire

system operation.

The clock recovery algorithm outputs the sampled data (data_out) and the sample
clock (clk_out), which is ultimately passes through to the Receive Chip.

67

3.1.8. Receive Interface for the Proxim Radio

| The receive interface for the Proxim radio on the basestation is considerably sim-
pler than the Plessey’s receive interface. The loading of the Proxim’s configuration regis-
ters is performed serially and is under software control in the ARM kernel, iprf.c. The
kernel programs the registers in the RF Xilinx that control the load signal, the data strobe,
the serial configuration data, the receive/transmit mode select, the standby signal, and the
ready signal for the Proxim. The kernel also handlés the timing requirement for the pro-
gramming of the Proxim radio. The Proxim radio generates its own receive clock, so on

the basestation the receive clock from the multi-timer module is not used.

In order to write to the Proxim’s registers, the ARM kemnel must serialize the data
to be written. The Proxim must be initialized while not in standby mode. Standby
(RX_FREQ[4]) is a low power, reset mode for the Proxim. While the Proxim is not in
standby, the kernel then takes each bit of the serial data and writes it to the serial configu-
ration data register of the RF Xilinx (RXFREQ(2]). Then two writes are performed to
toggle the data strobe (RXFREQ[1]). When the entire word is strobed into the Proxim, the
load signal (RXFREQI0]) is asserted. This procedure of strobing in serial data and then
asserting load is continued until all registers in the Proxim have been programmed. In addi-
tion to programming the Proxim with serial data, the receive/transmit mode select
(RXFREQ([3]) signal must be set to receive mode. After the Proxim has been programmed,
the ready signal (RXFREQ[S5]) should be asserted.

The Proxim Receive Radio interface for the Pad is specified entirely by a View-

logic schematic (rxradio_proxim.1), and the 1/O for the schematic block can be seen
below.

68

Table 3-10. 1/O for the Viewlogic Schematic of Proxim Interface on the Basestation

Signal Name |IJO Description

RX_CLKIN I |Not used.

RESET I |Not used.

HOP_RESET I |Hop Reset. Controlled by RF Xilinx register file.

RX_FREQ[15:6] I |Not used.

RXFREQ[5] I |Proxim Ready signal. Should be asserted after the receive frequency has been
loaded into the Proxim.

RXFREQ[4] I |Proxim Standby. Active low. When this signal is low, all digital electronics are
reset, and the radio is put into its low power state.

RXFREQ[3] I |Proxim TX/RX select. When this signal is low, the radio is in receive mode.

RXFREQ[2] I |Proxim Serial Data.

RXFREQ[1] I |Proxim Serial Data Strobe

RXFREQ[0] 1 |Proxim Sync Load. When this signal is high, a write of the accumulated serial

data in the radio is performed to the internal registers of the Proxim.
RX_DIN I |Serial Receive Data. Originates from the Proxim Radio.
RXCNTL[7:0] I |Not used.

RX_CLKOUT O |Transmit Clock for the Transmit Control Block. Driven by an external pin by the
Proxim’s Transmit clock.

3.1.9. RSSI

The Plessey and Proxim radios each have an analog RSSI (Reduced Signal
Strength Indicator) output that is sent through an A/D converter on both the pad and the
basestation. The RF Xilinx provides the RSSI clock and the start of conversion signal to
the A/D and accepts the serial input of the digitized RSSI data for further processing. The
RSSI is mainly used in the mobility feature of the pad in order to determine to which cell

the pad should be assigned when operating over a region containing more than one cell.

3.1.9.1. Initiating an RSSI Measurement

The RF Xilinx generates a “start of conversion” signal (RSSI_START) by latching
the rising edge of the received packet (RXP) signal. The RXP signal is generated by the
Receive Control Module of the RF Xilinx. Hence, an RSSI measurement is performed by
the A/D converter at the start of every received packet. This circuitry is implemented with
discrete components in a Viewdraw schematic that is instantiated in the Receive Radio
Interface Module. This RSSI_START signal is one input to the RSSI Control Module, a

69

module that is described in VHDL and whose purpose is to control the reading of serial
data from the A/D converter.

3.1.9.2. Control of RSSI Serial Data

As was mentioned in the last section, the reading of serial data from the A/D con-
verter is controlled by the RSSI Control Module. This module is described in VHDL
(ad_cntl.vhd) and is instantiated in the Viewlogic schematic in the Receive Radio Module
(rxradio_plessey.1, rx_radio_proxim.1). The VHDL implements a state machine which
generates the appropriate control signals to the A/D.

Table 3-11. 1/O for the RSSI Controller

VHDL Signal |1/O Description
Name
Ext_Req I |Active high external request for an RSSI interrupt. This is one of the vestigial

remains of the original Xilinx design that is no longer used. Originally it
allowed for the host to initiate an RSSI measurement at times other than the start
of a received packet. The host wrote to a register in the Xilinx register file to
control this. Now this input is grounded in the Viewlogic schematic, although it

is still implemented in the VHDL.

Ser_Data_In I [Serial data from the A/D converter that constitutes the measurement of the RSSI
signal from the receive radio.

Start_Read 1 |Also RSSI_START. This active high signal causes the RSSI controller to initiate
the start of an RSSI measurement.

Reset I |System Reset.

Clk I |Receive Clock

Data_Valid O |Active high signal to indicates when the data in the RSSI measurement register

is valid. Once a measurement is completed, this signal is set high and remains
high until the start of the next measurement.

Data_Out[11:0} O |RSSI Measurement value,

Ser_Clk O |Also RSSI_CLK. This is the output from the RSSI Controller to the A/D Con-
verter, and it is used to strobe data from the A/D. The RSSI controller latches the
Ser_Data_In signal on the falling edge of this clock.

Convt_l O |Also RSSI_CONVT. This is an active low signal to the A/D converter to instruct
it to begin an A/D conversion on the RSSI signal.

70

Figure 3-13. State Diagram for RSSI Controller

Wait
Jfor

Conversion

_/

Initiate
Conversion

Ldle State

When the RSSI controller is in the Idle state, the serial clock and convert signals to
the A/D converter are inactive. The RSSI controller monitors the RSSI_START signal
which will advance the state machine to the Initiate Conversion State.

Initiate C ion St

When the RSSI_START (Read_Start) signal goes high, the RSSI_CONVERT
signal is pulsed low for one cycle (1 ps) and is output to the A/D converter. The
RSSI_VALID signal, which indicates whether or not the data in the RSSI register is a valid
measurement, is lowered to zero during the conversion process, thereby indicating that the
measurement in the RSSI measurement register is invalid until the present conversion is

completed.
Wait for C ion Stat

The RSSI Controller then raises the RSSI_CONVERT line and idles for 7 cycles (7 ps)
while waiting for the A/D converter to finish performing the conversion.

Strobe Data State

When these 7 cycles have elapsed, the RSSI_CLK is pulsed high for one cycle and
pulsed low for 1 one cycle. The data is latched when the clock is low and is fed into a 16-

71

bit shift register, MSB first. This process continues for a total of sixteen cycles, one cycle
for each bit of the RSSI measurement from the A/D converter.

Datg Valid State
When the entire measurement has been obtained, the RSSI_CLOCK signal is deac-

tivated and left at zero, and the RSSI_VALID signal is asserted. The RSSI Controller then
returns to its idle state to await the next activation of the RSSI_START signal.

3.1.9.3. Methods for Reading the Resultant RSSI Measurement

There are two separate methods for obtaining the RSSI Measurement from the RF
Xilinx. The first method saves the RSSI values to a register in the ARM interface module
of the RF Xilinx. An interrupt is generated by the IRQ block whenever the RSSI_VALID
signal is raised. Whenever the interrupt occurs, this value is written to the Status Register
in the RF Xilinx to indicate that an RSSIinterrupt has occurred, as opposed to a timer inter-
rupt. When the host receives this interrupt, it can read the RSSI register in the RF Xilinx
register file. The RSSI registers are implemented in VHDL (armif.vhd), while the interrupt
circuitry for the RSSI is in the Viewlogic schematic form (irgblock.1).

Alternatively, another method is implemented in VHDL (rxpath_ecc.vhd) so the
host can send an RSSI Measurement Packet down to the pad or basestation. This packet is
of a particular data type called RSSI_TYPE (presently type 0x04). This type is hard-coded
into the Receive data path of the RF Xilinx. When the third byte of the packet (the pad alias
and sequence number must be included for this to work properly) corresponding to the data
type arrives, the Receive Data Path performs a check to see if the data packet is of the RSSI
packet type. If a match occurs, the data from the RSSI register (armif.vhd) will be packaged
into a return packet also of the RSSI packet type and retransmitted across the wireless link.
The Receive data path will inject the RSSI Measurement into the received packet, over-
writing the previous data in the third and fourth bytes of the data payload. This alternative

for RSSI measurement was implemented in order to support antenna diversity.

72

3.1.10. Receive Data Path

The receive control block is at the heart of the receive data path. It is responsible
for formatting the received data from the radios, decoding the forward error correction, and
checking the hardware CRCs. This block is described in VHDL (rxpath_ecc.vhd) and is
instantiated in a Viewlogic schematic (rxctrl_ecc.]). An XBLOX component is also
instantiated within the VHDL file (rxpath_ecc_decode.1). The Receive Control Data Path
continually shifts data from the radios into its Input Data Shift Register. When the data in
the shift register matches the frame sync, the Main Control State Machine is activated, and
the RF Xilinx decodes the data via an external EPROM lookup table, performs a serial to
parallel conversion on the data, and generates the Receive packet signal (RXP) and receive
strobes for the RX Chip to use in order to latch the bytes of data from the bus. The RF
Xilinx also calculates the CRC on the incoming data and checks to make sure it matches
the previously calculated CRC. The RF Xilinx continues receiving data until the RX Chip
asserts the End of Packet signal (RX_EOP).

The 1/O for the Viewlogic schematic is described below. The Viewlogic schematic
also includes the Rx Kick circuitry described in Section 3.1.11, as well as 1/O to the
EPROM that serves as a lookup table for the error correction.

Table 3-12. 1/O for the Viewlogic Schematic of the Receive Control Block

Signal Name |I/O Description

F_SYNCI15:0] 1 |Maps to RXSYNC in RF Xilinx register file. Frame sync for the receive data
packets.

RESET 1 |System Reset controlled by RF Xllinx register file.

RSSI_VAL[11:0] | I |RSSI Measurement value supplied by Receive Radio Module

RX_CRC I |Receive CRC. When this signal is asserted by the RX Chip, the RF Xilinx iden-
tifies the current byte as a CRC value.

RX_DIN 1 |Receive Serial Data from the Receive radio

RX_ECC[1:0] I |Error Correction level for Received data payload - from RX Chip

RX_EOP I |Receive End of Packet signal from RX Chip. Indicates to the RF Xilinx that all
bytes of the packet have been received, and the end of the packet has occurred.

RXCLK_OUT 1 |Buffered Clock from the RXCLK provided by the multi-timer module

RX_KICK I |Resets the RXP line whenever an infinite length packet is suspected. Controlled
by the RX Kick register in the RF Register file. Discussed in Section 3.1.11.

ROM_DATA[7:0] | 1 |Decoded receive data from the external EPROM lookup table.

ROMADDR[16:0] | O |Address to the external EPROM used to decode the receive data

73

RX_DOUT[7:0]) | O |Received data output to the RX Chip

RXS O |Receive data strobe. Strobe high for each byte of received data to indicate that
the RX Chip can latch the data value.

RXP O |Receive packet signal. Indicates to the RX Chip that a packer is being received.

RXP2 O |Buffered RXP for use by the Receive Radio Module

DISTNOW O | When this signal is asserted, the bits from the external EPROM that indicate the

distance (i.e. the number of errors in a block) of the raw data from the decoded
data can be latched in order to calculate an error count. This signal is not cur-
rently used, but is available for future implementations.

Table 3-13. I/O for the VHDL design of the Receive Data Path

Signal Name |I/O Description

FRAME[15:0] 1 |Maps to RXSYNC in RF Xilinx register file. Frame sync for the receive data
packets. Maps to F_SYNC in Viewlogic schematic.

RESET I |System Reset controlled by RF Xllinx register file and RX Kick module.

RSSI_VAL[11:0] I |RSSI Measurement value supplied by Receive Radio Module

RXCRC I |Receive CRC. When this signal is asserted by the RX Chip, the RF Xilinx iden-

‘ tifies the current byte as a CRC value.

DIN I |Receive Serial Data from the Receive radio. Maps to RX_DIN in Viewlogic
schematic.

RXECC[1:0] I |Error Correction level for Received data payload - from RX Chip

EOP I |Receive End of Packet signal from RX Chip. Indicates to the RF Xilinx that all

bytes of the packet have been received, and the end of the packet has occurred.
Maps to RX_EOP in Viewlogic schematic.

CLK I |Buffered Clock from the RXCLK provided by the multi-timer module. Maps to
RXCLK_OUT in Viewlogic schematic.

RomData[7:0] 1 |Decoded receive data from the external EPROM lookup table.

RomAddr{16:0] O |Address to the external EPROM used to decode the receive data

DOUT(7:0] O |Received data output to the RX Chip. Maps to RX_DOUT in Viewlogic sche-
matic.

RXS O |Receive data strobe. Strobe high for each byte of received data to indicate that
the RX Chip can latch the data value.

RXP O |Receive packet signal. Indicates to the RX Chip that a packer is being received.

distNow O |When this signal is asserted, the bits from the external EPROM that indicate the

distance (i.e. the number of errors in a block) of the raw data from the decoded
data can be latched in order to calculate an error count. This signal is not cur-
rently used, but is available for future implementations.

The interface timing signals for the RX Chip/RF Xilinx interface can be seen in the
following Figure 3-4.

74

Figure 3-14. RX Bus Control Signals

oo TR B o B

75

h First Byte
RXD
h L E ------------ |
RXP
O e— P
5 EOP E - e
@ =
8 Rxs L
-

RXCRC
L —— Body Enc
RXECC
h
RXCLK [IPBook]|
Figure 3-15. Decoder High Level Schematic
Counter Block Counter
E g Q’"Q,, N ‘ blkCouuntState
= &) %,@
2 &
RXS DOUTI7:0]
EoP |
> Main RXECCI[1:0)
RXP ?
- Control Datapath Data In
RXCRC
————
—rr —r Q -
g 5 Ly EA =
ol & A
a "
Counter Byte Counter
0-7) (0-8)

3.1.10.1. Control Logic
Main Control State Machi

The receive control block is driven by a state machine with three states called Main
Control, which basically controls the signals to the RX Chip interface, i.e RXS and RXP.

The simplified state diagram is presented below, and each state is discussed in more detail

in the following section.

Figure 3-16. State Machine for the Main Control

Clear Counters
Wait for Frame Syn

“l”

Generate RXP

!

Check for end
of packet

v

“2”

State “0”

The state machine clears the counters in the design with the dpClear signal. If the
frame sync has been identified, the state machine sets the setRxActive signal high and
advances to State “1”.

State “1”

76

Once in State “1”, the state machine asserts the RXP line to indicate to the RX Chip
that a packet is being received. When the reception of the current 15 bit block is completed,
the state machine advances to State “2” to check to see if more data should be received.

State “2”

The state machine continues to assert RXP and verifies that there is still data to
receive, i.e. rxActive is not zero. If there is additional data to receive, the machine starts in
this state; however, if there is no further data, the state machine returns to state zero where
the RXP line is de-asserted.

Control Counters

The Receive Control has several counters that help to implement the control of the
receive data path. These are the count8, the countl5, byte, and block counters. Each

counter is implemented as a state machine in VHDL and is described separately below.

Count8

The count8 counter is a 2 bit up-counter that is initialized to 0 by the control logic
in the Main Control state machine. The counter increments whenever the shift8count signal
(also from the Main Control state machine) is asserted, and a flip flop latches the counter
value at the rising edge of the transmit clock. When the counter reaches 7, the receive
strobe (RXS) signal is asserted, and the counter wraps around to 0 and sets RXS back to

Zero.
Countl5

The countl5 counter is a 4 bit up counter that is initialized to 2 by the control logic
in the Main Control state machine (dpClear, i.e. Data Path Clear). The countl5 counter is
necessary because the encoded data is received in 15 bit blocks. The counter is incremented
every receive clock, and a flip flop latches this value. Before each increment, however, a
line balance signal is set within this state machine. The line balance pattern is ultimately
exor’ed with the input data to remove the DC balance applied to the transmitted data signal.
Other control signals are also determined by the countl5 counter. After the countl5 has

77

counted down fourteen states (to a count value of 13), the End14bit signal is generated.
This signal helps synchronize when to enable and disable decoding. When the counter
reaches the value of 14, the counter generates the Endl5bit signal and wraps around to
begin at 0. When the count15 value equals 0, the Input Data Shift Register is loaded (load-
InDatReg = 1). When the count15 value equals 14, the Error Correction Register is loaded
with the value for the decoding error correction level (loadEccReg = 1). When countl5
equals 1 or 9, the address for the external EPROM is loaded into the ROMOut Register
(loadROMOutReg = 1).

Byte Counter

The byte counter is used to determine when insert the RSSI measurement if the
received packet is of type RSSI_PACKET. This counter is a 4 bit up counter that counts

from O to 8. It is cleared to zero whenever the RXP signal is asserted.

Block Counter

The block counter is used to determine when to switch from the header decoding
level to the decoding level prescribed by the RXECC signal. The block counter is an up-
counter that counts from 0 to 15. The counter increments whenever the loadEccReg signal
is asserted. If the block counter is less than or equal to 7, the error correction level is set to
maximum error correction. Otherwise it is set to the value in the RXECC register. When
the counter reaches 15, it does not wrap back around to 0. Instead it stays locked at 15,
unless the counter is reinitialized to zero by the Main Control state machine via the dpClear
(Data Path Clear) signal.

78

3.1.10.2. Receive Data Path

Figure 3-17. High Level View Of Receive Data Path
Load —y ECC Type Load—'

e ~
S o s 2R
. ~ (=) —
DC Balance | <. S & 3
Sy — [
5115 | & & Q
- S e §
Serial Data In S % =
= Load
5 s
v g I
1
a '8
— &
41 §
;‘,E,
\ g
e Data Out
CRC/Data Mux CRC
ECC Mux Good/Bad
DC Balance

The Serial data input from the receive radios in exor’ed with the line balance pat-
tern generated by the count8 module. This removes the line balance added by the transmit

data path. The output is passed to the Input Data Shift Register (inputdataReg).

Input Data Shift Regi

The Input Data Shift Register is used to accumulate the data from the serial data
input. It is 15 bits wide which corresponds to the 15 bit blocks used in the error correction
encoding. The Input Data Shift Register has two outputs. The first is a serial data stream
that is used for data without encoding and as an input to the CRC calculation module. The
second is a 15 bit parallel input to a 15 bit register (parallln) that is used to latch the 15 bit

79

value. This latching occurs whenever the loadInDataReg signal is asserted. This signal is

asserted whenever the countl5 counter reaches a value of zero.

llel D

This register is loaded according to the previous section with a 15-bit block of input
data. This value becomes the lower 15 bits of the address used to index the external
EPROM. The upper two bits of the address are deteﬁnined by which error correction level
is chosen. This will be discussed in the following section on the Receive Decoding Com-

ponent.
Receive Decoding Component

The Receive Decoding Component is instantiated as a black box in the VHDL file,
and is specified by a Viewdraw schematic that uses XBLOX modules, most notably an
interﬁal PROM, not to be confused with the external EPROM that functions as the FEC
look up table. The error correction level and the value of the countlS counter are input to
an internal PROM whose contents are described by the rx_decode_ecc.mem file. Based
upon the inputs to the PROM, the two upper address lines to the external EPROM are gen-
erated (lutAddr), as well as a data signal (infobit) that acts as a flag to signal when bits of
data are present, as opposed to the added redundancy.

External EPROM LUT

The external EPROM is a AM27C010 EPROM that is programmed with the
epromdata.src file. The EPROM is has a 16-bit address. The EPROM can be thought to
have four “pages” of data that are indexed by the error correction type. Only two pages are
actually needed. A third page is mapped to non-error corrected data, while a fourth is unde-
fined. The data output is a 5 bit data value (DataOut[7:3]) accompanied by a 3 bit indicator
(DataOut [2:0])of how many errors were corrected in the decoding of that block. If more
than 1 error is present in medium error corrected data, this 3-bit value will be invalid. In
the case of the maximum error correction, if more than 3 errors are present, the 3-bit value

will also be invalid. This is due to the fact that if a greater number of errors than the code

80

can correct occurs in a block, an entirely incorrect code word may be selected. The contents

of the EPROM were generated by Kathy Lu in support of her master’s thesis.
EPROM Output Shift Regist

When the loadRomOutReg signal is asserted, the EPROM output shift register
loads the 8-bit data output from the external EPROM. When the load signal is not asserted,
the EPROM output shift register begins shifting data out of its serial port with a destination
of the ECC Mux.

ECC Mux

The Error Correction level is set to maximum when decoding one of the first eight
bytes of data. Otherwise, the error correction level is set to the value specified by the
RXECC signal.

If the error correction level is uncoded, the ECC Mux passes the serial input data
from the Input Data Shift Register on to the next stage of the datapath: the CRC and
ShiftRegOut shift register. If one of the error correction levels is selected, the serial output
from the EPROM Output Shift Register is instead passed on to the CRC and ShiftRegOut

shift register.

Whenever shiftS8count is asserted, i.e. the current byte has been processed and
relayed to the RX Chip, the output shift register begins shifting in the next byte of data.
This data originates from the ECC Mux.

Algori

When the CRC Clear signal (dpClear) is asserted by the Main Control state
machine, the CRC Shift Register is cleared to a value of 0. The CRC is implemented with
an 8-bit shift register. The feedback signal for the CRC is generated by éxor’ing the MSB
of the CRC shift register with the input serial data, provided the CRC is not being trans-
mitted. If the CRC value is being transmitted, the CRC feedback signal is disabled. The

81

CRC is calculated by writing the feedback signal to the LSB of the shift register, writing
the exor of the LSB and the feedback signal to the second bit in the shift register, and writ-
ing the exor of the feedback and the second bit of the shift register to the third bit of the
shift register. Each time a new bit of data is shifted out of the input shift register, the CRC
shift register updates its values. Whenever the RXCRC line is raised, the contents of the
CRC register are examined. If any of the bits is a 1, the CRC is invalid. An eight bit value
is generated to correspond to valid (0x00) or invalid (0xff). This byte is then sent to the

output mux.

Figure 3-18. CRC

CRC Register [7]

Output fmll:awdb'
Input Data CRC Shift Register
Shift Register 8 ”
gx)=x3+x" +x0+1
reshold for e Mu

The Output Mux selects between the CRC valid byte, the received data, and the
RSSI data. When RXS is strobed, the RXCRC line is examined to see if it has been pulsed
high by the RX Chip. If the RXCRC line is high, the CRCbad signal is checked. If the CRC
is invalid, Oxff is relayed in the data stream to the RX Chip. However, if the CRC is valid,
0x00 is relayed in the data stream to the RX Chip. This is true for both the header and pay-
load CRCs. The RX Chip only raises the RXCRC signal for the header and body CRCs if
the data type to be received is configured to include CRCs.

If the RXCRC signal is not high, the data type is examined to determine whether
or not the data is an RSSI packet. If the packet is of type RSSI, the third and fourth bits of

the payload are replaced with the value from the RSSI measurement from the receive radio.

82

The remaining bytes of the packet are untouched. If the packet is not an RSSI packet, then
the received data bytes are passed through to the RX Chip.

3.1.11. RX chip Work-around

With the Receive Control Block is the RX Chip work around. It is implemented
with a Viewlogic schematic (rx_unstick.1). It is necessary to recover from a possible
receiver chip lockup. If a packet received over the radio link has a length of Ox£fff or if the
Receiver EOP signal is not sent to the RF Xilinx, the receive state machine in the Xilinx
can lock up in the receiving state indefinitely. The ARM has to periodically call a routine
with a period longer than the longest possible packet (every second or so should be fine).
This activates a state machine in the Xilinx which detects if the RX_KICK register has
changed twice or more while RXP has stayed TRUE. If so, the receive state machine is
reset, and the unit continues as before. This condition often occurs at start-up, but is usually
not seen during operation. A sample of the ARM code used to perform this function can be

seen below.

void iprf_UnstickRXP(void)
{
*XILCNTL
*XILCNTL

}
The 1/O for the RX Kick module can be seen below.

RF_UNSTICK_RXP_MASK | _xil_RunMask;
_xXil_RunMask;

Table 3-14. 1/O for the Viewlogic Schematic of the Receive Control Block

Signal Name |I/O Description !
RXCLK_OUT 1 |Buffered Clock from the RXCLK provided by the multi-timer module
RXP2 I |Buffered RXP for use by the Receive Radio Module
RESET I |System Reset controlled by RF Xllinx register file.
RX_KICK I |Resets the RXP line whenever an infinite length packet is suspected. Controlled
by the RX Kick register in the RF Register file.
NewReset O |System Reset or RX Kick if infinite length packet is suspected

83

3.1.12. Interrupt Handling

The RF Xilinx interrupts the ARM in two cases. The first case is whenever a timer
event occurs, and the second case is when an RSSI measurement is ready. A register (XIL-
STAT) stores which event causes the interrupt to occur, and the ARM is responsible for
reading this register and deciding which event to service. The interrupt remains high until
the ARM clears it by writing to the appropriate bit in the XILCMD register.

3.1.13. General Purpose Timer

The Xilinx contains a general purpose timer that is a 16-bit up counter which gen-
erates an interrupt whenever its terminal count is reached. The timer is implemented by a
Viewdraw schematic (irgblock.I) that uses an XBLOX module for an internal counter. The
XBLOX modules are used for the counter in order to help provide a tighter constraint on
the routing of time critical data paths. The timer is driven by a 1 MHz clock that is gener-
ated in the multi-timer module. The terminal count for this 16-bit up counter is loaded from

the 16 bit Timer Register in the Xilinx when any of the following three conditions occur:

1. Reset

2. ARM processor updates the Upper Byte of the Timer Register
3. The counter has reached the terminal value

There is also a fourth vestigial condition called an external load that is implemented
in the timer module, but is not used in the Xilinx design. This provides for some external
event controlling when the terminal count is updated from the Timer Register. The load
signal is generated by a logical OR of these events, and a one cycle load pulse is generated

to enable the data input port on the XBLOX counter module.

Whenever the terminal condition is reached, i.e. whenever the counter counts up to
the value in the Timer Register, an active high timer interrupt to the host is generated. Since
there is only one interrupt line to the host to support all events in the Xilinx that might cause
an interrupt, whenever the timer interrupt occurs, the Timer Interrupt Status Register is
updated. The host can then read this status register to determine which event has caused

the external interrupt. The interrupt stays high until it is cleared. The interrupt is cleared

84

when the host writes to the Timer Interrupt Acknowledge register or when a reset condition

occurs.

3.2. The ARM kernel

3.2.1. Register Mapping

The ARM kemnel was modified so that the register reads and writes corresponded
to the registers in the EDAC Xilinx. A complete listing of basestation, pad, and wired reg-
ister descriptions can be seen in the Appendix, Section 6.1. on page 108. This register re-
mapping resided mostly in modifying the masks and register addresses in the include files
of the kernel, however several changes were made in the ARM code in order to accommo-
date the EDAC Xilinx register mappings. In an attempt to maintain one design that was
currently undergoing development in addition to the EDAC integration, ifdef commands
were used to delineate the “non-ECC” code from the “ECC” code. In this manner, the flow
control and other developments to the kernel that were compatible with the original Xilinx
could continue, and the EDAC Xilinx was kept current. Relevant files for register mapping -
changes are rfxil.h, rfxil_masks.h, and rfxil_h.s.

3.2.2. Writing to the RF Xilinx Registers

Most of the registers in the RF Xilinx are write only registers. The ARM kemel
uses mask variables in order to shadow the value of each register write. In addition, bit
masks are maintained in an include file that correspond to writing to only a particular bit
in a register without overwriting all the other bits. When writes to the registers are per-
formed, the ARM kernel ORs the bit mask of the value to be written with the shadow vari-
able of the register. Hence, only the bit that is intended to be changed is altered in the
register write. This is especially important when clearing interrupts, avoiding resetting the

entire system, etc.

For example, in the include file rfxil_masks.h, the bit mask for the system reset is
defined. Reset is controlled by the first bit in the RF Xilinx Control Register (XILCNTL):

#define RF_XIL_RESET_MASK 0x01 //bit 0 of XILCNTL

85

A shadow variable is declared in iprf.c in order to shadow the XILCNTL register. Each
register in the RF Xilinx that contains separate functionalities per bit or groups of bits
needs a shadow register. The current design shadows the control register, the transmit con-

trol register, and the receive control register. The shadow variable can be seen below:
static int _xil_RunMask;

When a write to the Reset bit in the XILCNTL register is desired, the kernel ors the
RESET_MASK with the _xil_RunMask and then writes this value to the XILCNTL regis-
ter. In this manner, other bits like the Loopback bit which is also in the same register, are

not inadvertently cleared. An example is seen below:
*XILCNTL = RF_XIL_RESET_MASK | _xil_RunMask;

3.2.3. Reading the RF Xilinx Registers

Reading the RF Xilinx registers is accomplished in assembly code in the ihandler.s
file. Whenever an interrupt occurs, this code reads the RF Xilinx Status (XILSTAT) reg-
ister to determine which event has triggered the interrupt. If the interrupt is an RSSI inter-
rupt, then the XILRSSIMSB and XILRSSILSB registers are read. The C code in the kernel
can only access the RSSI value through a call to the RSSI handler.

3.2.3.1. Resolving Interrupts

As was discussed in the previous section, the assembly code is responsible for
resolving the interrupts. The Xilinx Status register contains two bits, one for the timer and
one for the RSSI. Whenever the Xilinx asserts its interrupt line, the appropriate event des-
ignator is set in the Status register (XILSTAT).

3.2.3.2. Acknowledging Interrupts

When an interrupt is received, it is acknowledged by writing to the appropriate
acknowledge bit in the XILCMDREG register. Again, the two events that can generate an
interrupt are the timer and the RSSI.

86

3.2.3.3. Obtaining an RSSI Value

An RSSI interrupt is generated on every received packet. In order to obtain the
RSSI value, it is only necessary to call the kernel’s interrupt service routine
(kernel_RegisterISR) and provide it with the interrupt mask for the RF Xilinx interrupt.

3.2.3.4. Reset

The active high reset for the RF Xilinx is maintained by an internal register that has
to be set by the ARM. A register write to the RF Xilinx reset register (XILCNTL[O0]),
causes an internal system reset in the RF Xilinx. This write operation is performed in iprf.c.

3.2.3.5. Loopback Mode

The RF Xilinx supports a loopback mode which enables testing of the InfoPad
hardware without sending data through the radios. Transmitted data is simply rqutcd back
through the RF Xilinx to the Receive ASIC, bypassing the radios. Loopback mode is acti-
vated by setting the RF Xilinx loopback register (XILCNTL[2]). This write operation is
performed in iprf.c.

3.2.3.6. Plessey Interface

The ARM must write the programming data for the Plessey Radio to the RF Xilinx.
The Plessey must be programmed with the transmit or receive frequency, depending on
whether the configuration is for the pad or the basestation. The transmit and receive fre-
quencies are programmed by writing to XILTXF and XILRXF, respectively. This pro-
gramming is performed in iprf.c.

3.2.3.7. Proxim Interface

The Proxim interface is not as simplified as the Plessey interface. The Proxim has
several tasks in the ARM associated with it. In order to set up the uplink or downlink, the
ARM executes a sequence of writes to the XILTXF or XILRXF registers. Each bit of these
register (when programming the Proxim) has a different meaning. These signals are dis-

cussed in detail in Section 3.1.6 and Section 3.1.8. This programming is performedv in
iprf.c.

87

Figure 3-19. Proxim Register Bit Definitions

Bit position

4 3 2 1 0

Stdby | Tx/Rx | Syn- Syn- | Synld
Data Clkk

Ready: Set high when the ARM has completed the programming of the Proxim Radio.

Standby: Set low when the radio is being programmed.

Tx/Rx: Set to 1 for Transmit, O for Receive

Syn_Data: Serial data input for programming the divider word into the Proxim
Syn_Clk: Data strobe for each bit of the divider word

SynLd: Load signal asserted when the divider word has been completely written

Initialization

* Take Proxim out of standby mode by writing a 1 to the active low Standby bit.

 Write the reference divider word to the register in order to program the frequency for
the radio. This is a serial write. Each bit that is written must be accompanied by a write
to the Strobe bit in the register. When the entire word has been strobed in, the ARM
writes a 1 to the Load bit in the register.

 Set the Rx/Tx option on the Proxim radio.
» Enable the radio by writing a 1 to the Ready bit.

3.2.4. Using the Timer

The terminal count for the timer is set by writing to the XILTIMERLSB and XIL-
TIMERMSB registers. These writes occur in timer.c. The timer will generate an interrupt
whenever this terminal value is reached. The timer will then wrap around to zero. It is

important to remember that the timer register is write only.

3.2.5. Controlling the RX Chip Work Around
In order to keep the RX chip from locking up, the iprf UnstickRXP function (in
iprf.c) is called every 10 seconds. The timer handler function is set up in the rx_Init func-

88

tion (in iprx.c) in order to set this 10 second periodicity. The iprf UnstickRXP function
writes a 1 to the RX Kick bit of the Xilinx Control Register (XILCNTL). This kicking
action ensures that if an infinite length packer is received, the system will not remain

locked up. See “RX chip Work-around” on page 83.

89

3.3. Debugging Procedure

3.3.1. Simulation of Timer with Software

At the onset of this project, the EDAC Xilinx did not support an internal timer. In
the initial phase of testing, timer controlled events were replaced by software looping that
estimated the duration of the original timer specification. A timer was added to the EDAC
Xilinx after the first stage of integration had been accomplished. The timer controlled

events in the kernel were then reinstated.

3.3.2. Self-Test Infrastructure

In order to aid the integration process, it was important to add a test function to the
kernel. This self test was activated by a switch in the command line, and once activated, it
caused data packets to be transmitted and received. This simple loopback test could be used
to verify basic functionality of the system, i.e. functioning receive and transmit packet sig-
nals. After the self-test was integrated, the next step was to modify the kernel to support
the new Xilinx register.

The self test that was added to the ARM kemel allowed the basestation and pad to
transmit and receive the same data and verify that the data was not corrupted. This was a
good litmus test for functionality, as it enabled print statements to be added to the kernel
as the testing and debugging progresses. When the loopback test worked, the transmission
and reception of a data packet had been verified. At first, CRC and ECC were kept deacti-
vated, but eventually they too were included in the loopback test.

90

3.3.3. LEDs

There are eight LEDs on the InfoPad circuit board that could be used for debugging
purposes.

Figure 3-20. Diagnostic LEDs

P192
P189
P188
P187
P186
P179
P178
P177

0]
0]
®)
0]
O
O
O
@)

Misc Reg[0]
Misc Reg[1]
Misc Reg|2]
Misc Reg[3]
Misc Regl[4]
RX Packet
TX Packet

RF Xilinx Heartbeat

The LEDs consist of a heartbeat controlled by the RF Xilinx, a receive packet LED, a trans-
mit packet LED, and 5 LEDs controlled by the register in the RF Xilinx register file. The
programmability of the LEDs provides for a more flexible testing environment. User level

code in the ARM can be used to control the five LEDs for debugging or status purposes.

3.3.4. Probe of Internal Xilinx Signals

The internal signals of the EDAC Xilinx design were brought out to test pins on the
board during critical parts of the debugging process. These signals were probed with an
oscilloscope or the DAS in order to determine where a state machine may have locked up,
the presence of the clock, and to ensure that the chip was not stuck in a reset state. Signals
could be brought out in one of two ways. If the signal was not synthesized into an interme-
diate signal of a CLB, it could be probed using XACT’s EditLCA tool. This helped to
verify problems in routing. In particular, the pin for the RSSI input from the A/D would
sometimes not route automatically, so the EditLCA was used to re-route hard to place sig-
nals as well as add the external probes that could be used to minimally modify the design
routing. Using EditL.CA also saved the enormous compile time required for modifying the

91

design. Unfortunately, some signals were unreachable from the LCA file. Many of the
counters were optimized to the extent that the original signal could not be accessed for
probing. It was then necessary to bring out certain signals by hand within the Viewlogic

schematics and resynthesize the entire design.

3.3.5. Gateway Test

The final test of the system was to boot the pad and basestation, and to then start
the gateway enabling the X-terminal link to the workstation. When this was accomplished,
the new EDAC Xilinx appeared to exhibit the same functionality as the original RF Xilinx.
The user was able to use the pen input successfully, view QuickTime text/graphics movies,
as well as take advantage of the other features of InfoPad. Although this was a subjective

measure, it did indicate that some degree of integration had occurred.

92

4 Analysis

4.1. Channel Statistics

Analysis on the channel statistics was performed by using user level code in the
ARM kermel in order to transmit and receive packets with known data. If errors were
present in the received packets, these errors were printed to the screen via a serial link and
logged. During normal operation of the InfoPad system in the laboratory environment, the
presence of errors in the packet payload was minimal to the extent that forward error cor-
rection was not necessary. These results can be seen in Table 4-1. The test included mea-

surements from 10,000 received packets (with 20-byte payload) on both the uplink and the

downlink.

Table 4-1. Statistics From System Test During Normal Operation

% of Packets with

Incorrect Body CRCs
(1]

% of Incorrect Payload Bits
(2]

[Downlink
No ECC 0 0
15,11,1ECC | 0 0
1553ECC |0 0
Uplink
No ECC 0.02% 0.00125%
15,11,1 ECC | 0 0
1553ECC |0 0

[1] Out of 10,000 packets received, the percent of the received packets with invalid body

CRCs and valid header CRCs.

[2] Out of 10,000 * 20 * 8 bits received in the payload of the packets, the percent of those

bits with errors

93

In order to obtain a better idea of how forward error correction could potentially
increase the reliability of packet transfer, interference was added by operating two bases-
tations and pads at the same frequency, and observing the error rates as forward error cor-

rection levels were varied on the payload.

4.1.1. Interference Test Description

Each pad and basestation transmitted 10,000 packets with 20 byte payloads. The
experimental basestation/pad pair transmitted payloads containing all zeroes. The interfer-
ence basestation/pad pair transmitted a 0x0002 in each 2 bytes of its payload. The experi-
mental basestation/pad pair were connected by serial cables to the workstation in order to
record whenever errors were received. The contents of the received packet were printed to
the screen if errors were noted by the test program running on the pad and basestation. The
interference and experimental systems were programmed with different frame syncs to
eliminate synchronization problems. It was difficult to perform a completely controlled
experiment due to the lack of exact knowledge about the injected errors. Other interference
was possible in the laboratory environment due to blocking and various other sources of
random noise. Hence, this aim of this experiment was to see if forward error correction
could in fact improve reliable reception under adverse conditions. It is important to note
that this experiment is introducing interference through jamming with another basestation/

pad pair operating at exactly the same frequencies.

94

4.1.2. Test Results

Table 4-2. Statistics from System Test with Added Interference
% of Packets with % of Incorrect Payload Bits

Incorrect Body CRCs [2)
(1}

No ECC 67% 1.7%
15,11,1 ECC | 57% 2.2%
1553 ECC | 10% 0.17%

TR
R

No ECC 0.84% 0.013%
15,11,1 ECC | 3.1% 0.16%
1553ECC | 7.5% 0.40%

[1] Out of 10,000 packets received, the percent of the received packets with invalid body
CRCs and valid header CRCs.

[2] Out of 10,000 * 20 * 8 bits received in the payload of the packets, the percent of those
bits with errors

The uplink experienced very few errors on the non error corrected test, so it is dif-
ficult to conclude anything from the received data on the basestation. The medium and
maximum levels of error correction appear to provide worse performance, but with such a
small sample of errors, this is quite possibly the effects of random burst errors. On the other
hand, the downlink experienced quite a few errors (67% of Body CRCs invalid) in the non
error corrected case, giving a much better sample for comparison. The maximum level of
error correction provided quite a significant improvement over no error correction. The
medium error correction level in fact performed worse on the average than having no error
correction. This will be discussed below. One must also remember that the errors were
somewhat random in nature, and more errors could have been introduced in a one time

interval than in another.

One possible explanation for the high percentage of errors on the downlink (and
very few on the uplink even operating under high interference conditions) is the fact the
uplink uses a direct sequence spread spectrum radio, while the downlink uses a hopping
spread spectrum radio with hopping disabled. Since the hopping is disabled on the down-

95

link, most of the benefits of spread spectrum are lost, hence the high error rate under jam-

ming conditions.

In order to provide a better understanding of the nature of errors in this test, a his-
togram of the data was performed to examine the burstiness of the channel using the non-
error corrected case. Pie charts were also compiled to see the how many 15-bit blocks con-
tained certain numbers of errors. In bursty channels, short error correcting codes can rarely
improve reliability in communication. The medium error correcting code fails if more than
one error in a 15 bit block occurs, while the maximum error correcting code fails if more
than three errors occur in a 15 bit block. The histogram below charts the probability of an
error occurring in each of the 14 bits following a bit error. Note: Bit errors only contribute
to the histogram once, hence only the first bit error in a cluster is used to start the histogram

measurement, i.e. each the starting point for the 15 bit block used in a histogram does not

re-initialize with every bit error.

96

Figure 4-1. Breakdown of Burst Length in 15 Bit Blocks

7 errors
6 errors

. 5 errors
3% 29

4 errors

3%

33%

3 errors

18%
2 errors

This chart show the percentage of 15 bit blocks in the experiment that contain various
numbers of errors. It is useful to see how many errors appear in a 15 bit block in order to
determine what level of error correction could be effective. A 15 bit block is defined as a
beginning with an error and continuing until 15 bits are counted. The next 15 bit block
begins with the occurrence of the next error.

From this pie chart, it appears that medium error correction would be beneficial
38% of the time, while maximum error correction would be beneficial 89% of the time.
The data in Table 4-2 does not confirm this, however, but it could be the result of a small
sample of actual errors. The errors are also time varying, as someone walking into a room,

a power supply activating, etc., can introduce noise.

97

Figure 4-2. Breakdown of Burst Length in 15 bit Blocks

> 4 errors
2%

39 4 errors

55%

1 error

This chart show the percentage of 15 bit blocks in the experiment that contain various
numbers of errors. It is useful to see how many errors appear in a 15 bit block in order to
determine what level of error correction could be effective. A 15 bit block is defined as a
beginning with an error and continuing until 15 bits are counted. The next 15 bit block
begins with the occurrence of the next error.

From this chart, one can see that 55% of the 15 bit blocks in the test contained only
1 error, while 94% of the blocks contained 3 errors or less. With this data, one can see that
the maximum level of error correction seems quite appropriate for this test, while medium
error correction would work in approximately half of the cases. When medium error cor-

rection is used when burst errors are present, medium error correction can actually intro-

98

duce errors to the data stream by incorrectly decoding the incoming data when a received
word has more errors than the error correcting code can accommodate. This appears to be

the case apparent in the statistics of Table 4-2.

Figure 4-3. Histogram of UpLink Errors

MNumber of Errors in Each Bit Position Throughout the Test

i 2 3 4 5 & 7] 9 10 N 12 13 14

Bit positions following the first bit in a 15 bit block

This histogram shows the distribution of bit errors in 15 bit blocks given that the first bit
in the block is an error (uplink). This is a histogram of the following 14 bits in the 15 bit
block.

Given one bit error, the histogram above (Figure 4-3) shows the number of occur-
rences of errors in the subsequent 14 bits of the block on the uplink. This data was accu-
mulated with the interference test setup described above over 10,000 packets. One can see

that the errors are quite bursty in nature. Given this data, it appears that even the maximum

99

level of error correction would not be sufficient, because following the first error of a 15

bit block, it appears very likely that the first three bits following that error will also have

errors. When the burst of errors exceeds lengths of 3 errors, problems occur with the decod-

ing when using short BCH codes without interleaving.

1800

-
>
Q
(=)

_.
1a
o
(=4

)
o
=]

1000

g 8

Number of Errors in Each Bit Position Throughout the Test
4o
8

- 200

Figure 4-4. Histogram of Downlink Errors

1 2 3 4 5 8 7 8 9 W n 12 13 14

Bit positions following the first bit in a 15 bit block

This histogram shows the distribution of bit errors in 15 bit blocks given that the first bit
in the block is an error (downlink). This is a histogram of the following 14 bits in the 15
bit block.

The errors on the downlink appear to be extremely bursty in nature. From this data

(Figure 4-4), the most striking data is the fact that given an error at the beginning of a 15

bit block, it is very likely that the second bit following that error will also contain an error.

100

This again indicates that medium error correction would be less suitable than maximum

error correction in this case.

4.2. Area
Table 4-3. Xilinx Resource Usage for Each Design
F/G H CLB Flip-flops
Totals Function Function (out of 800)
Generators Generators
(out of 800) (out of 400)
Pad 669 109 400
Pad (no EDAC) 491 76 388
Basestation 635 105 362
Base (no EDAC) 507 85 338
Wired 550 94 327

Each module in the RF Xilinx design occupies a certain number of function generators and
CLB flip-flops. A breakdown of the modules is shown in the table below to illustrate the
relative complexity of each module in the RF Xilinx. Some modules are common to all
three designs, but as the mapping varies slightly for even the same module, only the largest
value is included in the table below. For instance, the Multi-timer module occupies 22
F&G function generators in the pad design, but 23 in the basestation and wired designs.

Hence, the largest value is reported in the table below.

Table 4-4. Xilinx Resource Usage by Module

F&G H CLB Flip-
Module Function Function flops
Generators Generators
[Recoive Data Conwol | 48 | 30 | 108 |

Trasmit Data Control 165 53 60
Plessey Transmit Radio Interface 37 9 25
Plessey Receive Radio Interface 116 18 101
Proxim Transmit Radio Interface 0 0 0
Proxim Receive Radio Interface 44 6 38
Wired Mode Transmit Module 0 0 0

101

F&G H CLB Flip-
Module Function Function fiops
Generators Generators
Wired Mode Receive Module 4 8 43
ARM Interface 110 4 83
Timer/Interrupts 24 0 20
Multi-timer Module 23 3 25
LED Control 5 0 4

The main difference of the EDAC Xilinx design from its predecessor is the addition of the
FEC and CRC data paths. For a comparison, resource usage for the RF Xilinx transmit/

receive datapath without error correction and CRCs is shown in Table 4-5.

Table 4-5. Xilinx Resource Use for Tx/Rx Data Path without EDAC

F/G H
Totals Function Function CLB Flip-flops
Generators Generators
e ————————— m
Transmit Data Control 55 14 43
Receive Data Control 84 5 65

Hence, adding CRCs and the two levels of forward error correction impacted the RF Xilinx
design by using 4 times the function generators and 1.4 times the flipflops on the transmit
path, and 2 times the function generators and 1.7 times the flipflops on the receive path.

4.3. Power

An estimate of the power consumption of the RF Xilinx design was performed. The first
step in performing the analysis involved providing power to the basestation with a power
supply equipped with an ammeter in series. The system was booted through the serial link
with the RF Xilinx design in the test mode. The board consumed 5 V at .8 A while this
design was operational regardless of the degree of error correction selected. Next the board
was booted without the RF Xilinx design being initialized, and the board consumed 5 V at
.7 A. Hence, the RF Xilinx consumes approximately 0.5 W.

102

Table 4-6. Power Measurements

Test Voltage | Current | Power
Basestation without RF Xilinx design 5V 07A 35w
Basestation with RF Xilinx design 5V 08A 40W
RF Xilinx design alone (calculated from previous measurements) | 5V 0.1A 0.5W

103

5 Conclusion

5.1. Summary

The InfoPad system provides an excellent research platform for characterizing
trade-offs in error correction techniques. Not only is the error correction logic implemented
with an FPGA providing flexibility for design change, the InfoPad infrastructure allows
characterization of the wireless link. This master’s project included an integration of a new
FPGA design that added error correction and detection into the system. In addition to
system integration issues, a QOS protocol was also added to the InfoPad system to allow
round trip communication from host to pad and back. This protocol enables the system to
feedback information about the amount of errors encountered by the system in order to

determine what error correction level is most appropriate for the channel.

Although an error correction system may be a viable option for the InfoPad system,
significant improvement was only observed with the maximum error correction level on
the downlink channel. While this is an improvement, it is difficult to justify using these
short forward error correction codes that can only correct small bursts of errors. Without
interleaving, short codes are largely ineffective for correcting burst errors, and the addi-
tional bandwidth required can be prohibitive. It is recommended that more analysis be per-
formed to determine the most prevalent burst lengths encountered by the system, and an
error correction code should be designed with that in mind. During normal system opera-
tion, very few errors were encountered, indicating that error correction is unnecessary.
However, mobility and operation of the pad far from the basestation could warrant the error

correction, making a scheduler a critical part of the system.

104

5.2. Future Directions

Further research can be performed using the InfoPad as a test platform in order to
characterize the nature of noise bursts in indoor wireless environments. More extensive
measurements could be taken, with future emphasis on the performance of the CDMA
radio with different levels of error correction. By measuring the channel and acquiring real
data that reports the actual errors encountered in the system, this data can be used for stim-
ulus in simulation of different error correction techniques. This could lead to improved
knowledge of the actual effect of error correction on the system, which is far more valuable

than simulating with a Gaussian noise signal.

In addition to using the InfoPad as a measurement platform, the system feedback
protocol introduced in Chapter 2 can be used as hooks to a variable QOS scheduler. As the
number of users in a cells increases with the addition of the CDMA radio, bandwidth and
power consumption, scheduling will become increasingly important to the successful oper-

ation of the InfoPad system.

105

Bibliography

[ESP]
[Le95]

[LinCostello]
[YIu93]

[Y1u96]

[InfoPad]
[Ples94]

[Prox92]
[Prox90]

[Xill]
[Xil2]

“Implementing CRCs.” Embedded Systems Programming. 1992.

Le, M.T.; Burghardt, F.; Seshan, S.; Rabaey, J. InfoNet: The
networking infrastructure of InfoPad. nCOMPCON’95.

Technologies for the Information Superhighway, San Francisco,
CA, USA, 5-9 March 1995).

Lin and D. Costello, Error Control Coding. Englewood Cliffs, NJ:
Prentice-Hall, 1983.

Yuming Kathy Lu. “Error-control coding with applications for the
infopad : research project”, Master’s Project at UC Berkeley. 1993..

Yuming Lu; Brodersen, R. “Unified power control, error correction
coding and scheduling for a CDMA downlink system.” Proceedings
IEEE INFOCOM ‘96, San Francisco, CA, USA, 24-28 March
1996). Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 1996. p.
1125-32 vol.3.

InfoPad Book. Internal document. Description of InfoPad system.
1995. ~infopad/IP2/arm/IP2.book.

DE6003 Digtial Radio Transceiver Specification. GEC Plessey
Semiconductors. Scotts Valley, CA. Jan 1994.

RDA Series Reference Manual. Proxim, Inc. Mountain View, CA.
Oct 12, 1992.

RXA Series Reference Manual. Proxim, Inc. Mountain View, CA.
Oct 1, 1990.

XACT Viewlogic Interface Users Guide. Xilinx. April 1994.
XACT Libraries Guide. Xilinx. April 1994.

106

[Xil3] Xilinx User Guide and Tutorials. Xilinx. 1991.
[Xil4] The Programmable Logic Data Book. Xilinx. 1994.

107

6 Appendix

6.1. Pinout for RF Xilinx at Board Level

Pin# | Init | Oper [|Pin# | Init Oper JPin#| Iit | Oper
R R R ‘

4 Al6 | EDTI 5 Al7 (o) 6 RXEOP
7 RXCRC [8 TDI |[RXENCA| 9 | TCK | RXENCB |
10 RXCLK T 11 RXP [12 ~(70)
13 (1/0) 14 GND GND 15 CADDR3 |
16 RXS 17 TMS RXD7 18 "CADDR? |
19 1/0 20 1/0 21 CADDRI |
22 RXD6 [23 RXDS | 24 CADDRO |
25 | GND GND 26 VCC VCC 27 RXD4
28 “RXD3 29 RXD2 30 RXD1
31 70 32 0 1 33 RXDO
34 DICLK | 35 - DDIN | 36 DIDONE |
37 [GND | GND T 38 @ | 39 (/0)
40 EINO 41 EIN1 42 EIN2 |
43 EIN3 44 EIN4 45 EINS
46 EING 47 EIN7 48 M1 -

49 | GND | GND 50 MO - 51 NC NC
52 NC NC 53 NC NC 54 NC NC
55 | vCC VCC 56 M2 - 57 "DIDOUT |
58 | ADC | DIRST 59 DEENB | 60 ICLK
61 IDIN 62 LDC | IRST 63 IDONE |

108

VvCC

VCC

——

TXD4

RSSICLK

NC

NC

/PROG

g

D3

CCLK

NC

Pin # | Init Oper | Pin# | Init Oper Init Oper
157 NC NC 158 NC NC TDO --
160 | GND GN]inﬁl AO/WS /WS Al EDC1
163 EDCO § 164 EDC2 A2/CS1 -
166 A3 EDC3 167 RB13 RB14
169 {/0) 170 1/0) GND | GND
172 RB15 173 RB16 Ad EDC4
175 AS EDC5 176 RB17 TSTO
178 TST1 179 TST2 A6 EDC6
181 A7 EDC7 182 GND GND VCC VCC
184 A8 EDC8 185 A9 EDC9 TST3
187 TST4 188 TSTS 189 TST6
190 Al0 EDCI10 191 All EDCI1 192 TST7 |
193 MCLK ¥ 194 | GND GND |} 195 1/0)
196 (1/0) 197 /o 198 /o
199 Al2 EDCI12 I 200 Al3 EDC13 201 e
900 1/0 203 Al4d EDC14 204 AlS EDTO
205 VCC VCC 206 NC NC 207 NC NC
208 NC NC

110

6.2. Pinout of RF Xilinx Functional Design

Pin# | 1/O | Name Description
O | ROMADDR[16) Address to the Lookup Table in the EPROM

4

6 1 RXEOP End of Received Packet Signal

7 I RXCRC Receive CRC Enable

8 I RXENCA Receive Error Correction Level Select (RXECC[1})
9 I RXENCB Receive Error Correction Level Select (RXECC[0})
10 O | RXCLK2 Receive Data Clock

1 O |RXP Receive Packet Signal

15 1 CADDR[3] Address line from the ARM

16 O | RXS Receive Data Byte Strobe

17 O | RXD[T7] Received Data

18 I CADDR[2] Address line from the ARM

21 I CADDR[1] Address line from the ARM

22 O | RXDI6] Received Data

23 O | RXD[5] Received Data

24 1 CADDR[0] Address line from the ARM.

27 I RXD(4] Received Data

28 O | RXDI3] Received Data

29 O | RXD[2] Received Data

30 O | RXD[1] Received Data

33 O | RXDI[0] Received Data

40 I ROMDATA(0] Data from the Lookup Table EPROM

4] I ROMDATA[1] Data from the Lookup Table EPROM

42 I ROMDATA|2] Data from the Lookup Table EPROM

43 I ROMDATA(3] Data from the Lookup Table EPROM

44 I ROMDATA(4] Data from the Lookup Table EPROM

45 I ROMDATA[5] Data from the Lookup Table EPROM

46 I ROMDATA[6] Data from the Lookup Table EPROM

47 I ROMDATA[7] Data from the Lookup Table EPROM

69 | TXENCA Transmit Error Correction Level Select (TXECCI[1})
70 I TXENCB Transmit Error Correction Level (TXECC(0])
71 1 TXP Transmit Packet Signal

75 I TXD(7] Transmit Data

76 I TXDI6] Transmit Data

80 I TXDI5] Transmit Data

81 1 TXDI[4] Transmit Data

82 I TXDI[3) Transmit Data

111

Pin# | I/O | Name Description

83 I TXDI2] Transmit Data

84 O | RSSICLK Data Strobe for the A/D converter used to obtain RSSI data

85 O | RSSICNVT RSSI Conversion Start Signal. Initiates a conversion in the A/D.

86)| TXD[1] Transmit Data

87 I TXDI[0] Transmit Data

88 1 TXCRC Transmit CRC Enable

100 |1 PR_TXCLK Proxim Radio Transmit Clock

109 | 10 | D[7] ARM Data input/output bus

113 | 1/0 | D[6) ARM Data input/output bus

114 | O | PR_DATA Serial Transmit Data for the Proxim Radio

115 | O | PR_.SYNLD Active Low Load Line for the Proxim Radio

116 | O | PR_SYNDATA Serial Data for Programming the Proxim Radio

120 |1 DOIN([3] Input to the DOIN3 register which is not implemented in this
design.

121 | O | PR TX RX Proxim Radio Transmit/Receive Mode Select

122 | I/O | D[5] ARM Data input/output bus

123 |1 /CSO Chip Select for the RF Xilinx from the ARM

124 | O | PR_SYNCLK Data Strobe for Programming the Proxim Radio

125 | O | PR_STDBY Proxim Standby Signal

126 |1 RA17 Serial Input RSSI Measurement Data from A/D Converter

127 | O | PL_POW_LEVEL | Plessey Radio Power Level Select

128 | I/O | D[4] ARM Data input/output bus

129 | O | PL_ANTSEL Plessey Antenna Select

132 | /O | DI3] ARM Data input/output bus

133 |1 RS Read Strobe from the ARM. Not used in this design.

134 | O | PL_LTX_RX Plessey Transmit/Receive Mode Select

135 |1 CR_DIN Serial Receive Data from the Plessey Radio

136 | O | PL_PA_OFF Plessey Power Amplifier On/Off Select

138 | YO | D[2] ARM Data input/output bus

140 | O | PL_TXD Plessey Transmit Data

141 | O | PL_STDBY Plessey Standby signal

145 | O | PL_SDJ[0] Plessey Programming Data

146 | O | PL_SD[1] Plessey Programming Data

147 | /O | DI1] ARM Data input/output bus

148 | O | INTOUT Interrupt to the ARM for Timer and RSS! events

149 { O | PL_SD[2] Plessey Programming Data

150 | O | PL_SD[3] Plessey Programming Data

151 | I/O | D[0] ARM Data input/output bus

112

Pin # | /O | Name Description

161 I WS Write Strobe from the ARM

162 | O | ROMADDR][1] Address to the Lookup Table in the EPROM

163 | O | ROMADDR[0] Address to the Lookup Table in the EPROM

164 | O | ROMADDR[2] Address to the Lookup Table in the EPROM

166 |{ O | ROMADDR[3] Address to the Lookup Table in the EPROM

167 | O | PL_SD[4] Plessey Programming Data

168 | O | PL_SD[5] Plessey Programming Data

172 | O | PL_SD[6] Plessey Programming Data

173 | O | PL_LOADB Plessey Load Line

174 { O | ROMADDR[4] Address to the Lookup Table in the EPROM

175 | O | ROMADDRI[5] Address to the Lookup Table in the EPROM

176 | O | TG_RESET Text Graphics Active Low Reset. Used for Debugging Purposes.

177 | O | LED[0] Heartbeat signal for LED (D301) on the board

178 | O | LED{1] Transmit Packet signal driving LED (D302) on the board

179 | O | LED[2] Receive Packet signal driving LED (D303) on the board

180 | O | ROMADDR(6] Address to the Lookup Table in the EPROM

181 O | ROMADDR(7] Address to the Lookup Table in the EPROM

184 | O | ROMADDR(8] Address to the Lookup Table in the EPROM

185 O | ROMADDR({9] Address to the Lookup Table in the EPROM

186 | O | LED{3] Programmable LED (D304) on the board. Driven by XIL-
MISC[4] in the RF Xilinx register file.

187 | O | LED[4] Programmable LED (D305) on the board. Driven by XIL-
MISC[3] in the RF Xilinx register file.

188 | O | LED|5] Programmable LED (D306) on the board. Driven by XIL-
MISC[2] in the RF Xilinx register file.

189 | O | LED[6) Programmable LED (D307) on the board. Driven by XIL-
MISCI1] in the RF Xilinx register file.

190 | O | ROMADDR[10] Address to the Lookup Table in the EPROM

191 | O | ROMADDR(11] Address to the Lookup Table in the EPROM

192 | O | LED[7] Programmable LED (D308) on the board. Driven by XIL-
MISC(0] in the RF Xilinx register file.

193 |1 CLK20 20 MHz System Clock

199 | O | ROMADDR[12] Address to the Lookup Table in the EPROM

200 | O | ROMADDR[13] Address to the Lookup Table in the EPROM

203 | O | ROMADDR[14] Address to the Lookup Table in the EPROM

204 | O | ROMADDR[15] Address to the Lookup Table in the EPROM

113

6.3. Register Descriptions
The basestation, pad, and wired designs of the RF Xilinx have slightly different register

configurations. Hence, the register files for each design are described in separate sections.

6.3.1. Basestation Registers

Table 6-1. Register 0x00 - XILRXSA, XILSTAT

Bit position
R/W
7 6 5 4 3 2 1 0
A\ Least Significant Byte of Receive Sync Word
R | RSSI | Timer
Inter- | Inter-
rupt rupt
Mask | Mask
Table 6-2. Register 0x01 - XILRXSB
Bit position
R/W
7 6 5 4 | 3 2 1 l 0
w Most Significant Byte of Receive Sync Word
R Least Significant Byte of RSSI Value
Table 6-3. Register 0x02 - XILTXSA, XILRSSIMSB
Bit position
R/W : .
7 6 5 4 3 | 2 | 1 0
w Least Significant Byte of Transmit Sync Word
R Most Significant Byte of RSSI Value

114

Table 6-4. Register 0x03 - XILTXSB

Bit position

R/W
7 6 3 4 3 | 2 1 0
w Most Significant Byte of Tx Sync Word (XILTXSB) |

Table 6-5. Register 0x05 - XILRXFB

Bit position
R/W
7 6 5 4 3 l 2 I 0
W Rx Frequency Regis:er (Proxim Control) g
Ready | Stdby | Tx/Rx | Syn- Syn- | SynLd
Data Clk
Table 6-6. Register 0x07 - XILTXFB
Bit position
R/W
7 6 5 -4 3 2 1 0
W Txﬁcquency Register (Pless;Com:rol)
Table 6-7. Register 0x10 - XILCNTL
Bit position
R/W
7 6 5 4 3 2 1 0
W TG | RX | Loop- | Multi- | Sys

Reset Kick back Timer | Reset
Reset

115

Table 6-8. Register 0x11 - XILRXC

Bit position

7 6 | 5 4 3 2 1

Rx Clock Divider V&?ord

Table 6-9. Register 0x12 - XILTXC

Bit position
R/W
7 6 5 - 3 2 1
A Hop : Tx Clock Divider Word
Reset -
Table 6-10. Register 0x13 - XILTIMERLSB
Bit position
R/W
7 6 5 4 3 2 1
w Least Significant Byte of Timer
Table 6-11. Register 0x14 - XILTIMERMSB
Bit position
R/W
7 6 5 4 3 2 1
w Most Significant B;rte o; Timer

116

Table 6-12. Register 0x15 - XILCMDREG

Bit position

4

Table 6-13. Register 0x17 - XILMISCREG

Bit position

6.3.2. Pad Registers

LED Register

2 1 | 0

Table 6-14. Register 0x00 - XILRXSA, XILSTAT

Bit position
R/W
7 | 6 | 5 4 3 | 2 1 | 0

A Least Significant Byte of Receive Sync Word
RSSI | Timer
Inter- | Inter-
rupt rupt
Mask | Mask

Table 6-15. Register 0x01 - XILRXSB, XILRSSILSB

Bit position
R/W
7 6 B 4 3 2 | 1 0
w o Most Significant Byte of Receive Sync Word
R Least Significant Byte of RSSI Value

117

Table 6-16. Register 0x02 - XILTXSA, XILRSSIMSB

Bit position
R/W
7 6 5 3 3 " 1 0
' Least Significant Byte of Transmit Sync Word
R Most Significant Byte of RSSI Value
Table 6-17. Register 0x03 - XILTXSB
Bit position
R/W
% 6 5 4 3 2 1 0
A Most Significant Byte of Tx Sync Word
Table 6-18. Register 0x05 - XILRXFB
Bit position
5 4 I 3 2 1 0
Rx Frequency Register (Plessey Control)
Table 6-19. Register 0x07 - XILTXFB
Bit position
R/W
7 6 5 4 3 2 1 0
W Tx Frequency Register (Proxim Control)
Ready | Stdby | Tx/Rx | Syn- Syn- | SynLd
Data Clk

118

Table 6-20. Register 0x10 - XILCNTL

Bit position
R/W
7 6 5 4 3 2 1 0
w TG RX Loop- | Timer Sys
Reset Kick back Reset | Reset
Table 6-21. Register 0x11 - XILRXC
Bit position
R/W
7 6 5 4 3 2 1 0
Rx Clock Divider Word
Table 6-22. Register 0x12 - XILTXC
Bit position
R/W
7 6 5 4 ‘ 3 2 1 0
W Tx Clock Divider Word

Table 6-23. Register 0x13 - XILTIMERLSB

Bit position

R/w7|6|5J=4

3

2

W Least Significant Byte of Timer

Table 6-24. Register 0x14 - XILTIMERMSB

Bit position

7 6 5

4

3

2

A% Most Significant Byte of Timer

119

Table 6-25. Register 0x15 - XILCMDREG

Bit position
R/W
7 6 3 4 3 2 1 0
W RSSI | Timer
Ack Ack
Table 6-26. Register 0x17 - XILMISCREG
Bit position
R/W
7 6 5 4 3 2 1 0
LED Control Register
6.3.3. Wired Registers
Table 6-27. Register 0x00 - XILRXSA, XILSTAT
Bit position
R/W
7 6 5 4 3 2 1 0
w L-cast Significant Byte of Receive Sync Word
R RSSI | Timer
Inter- | Inter-
rupt rupt
Mask | Mask

120

Table 6-28. Register 0x01 - XILRXSB, XILRSSILSB

Bit position

6 5 <+

3

2

Most Significant Byte of Receive Sync Word

Least Significant Byte of RSSI Value

Table 6-29. Register 0x02 - XILTXSA, XILRSSIMSB

Bit position

6 5 4

3

2

Least Significant Byte of Transmit Sync Word

Most Significant Byte of RSSI Value

Table 6-30. Register 0x03 - XILTXSB

Bit position
6 5 4 3 2 1 0
Most Significant Byte of Tx Sync Word
Table 6-31. Register 0x10 - XILCNTL
Bit position
6 5 4 3 2 1 0
TG RX Loop- | Timer Sys
Reset | Kick back | Reset | Reset

121

Table 6-32. Register 0x11 - XILRXC

Bit position

6L—4|3’21

Rx Clock Divider Word

Table 6-33. Register 0x12 - XILTXC

Bit position
6 5 4 3 2 1
Tx Clock Divider Word

Table 6-34. Register 0x13 - XILTIMERLSB

Bit position

6 5 4 3 2_|'1

Least Significant Byte of Timer ik

Table 6-35. Register 0x14 - XILTIMERMSB

Bit position

6 5 4 | 3 2 1

Most Significant Byte of Timer

122

Table 6-36. Register 0x15 - XILSTAT

Bit position

¥/ 6 5|4|3 2 1 0

Table 6-37. Register 0x17 - XILMISC

Bit position

7 | 6 | 3 -+ 3 | 2 1 | 0

LED Control Register

6.4. Location of Design Files

The entire design is placed on the infopad account at ~infopad/IP2/rfxil_ecc. Under
this directory is a makefile that will make the wired, basestation, and pad designs simply
by typing “make all.” A README file is also present that includes a description of files
and directories. This report and the master’s report of Kathy Lu are also included in the doc
subdirectory. A simulation (in ViewSim) of the transmit and receive data path with

injected errors is also included in this directory under the subdirectory rxtx_sim.

6.5. Design Libraries
It is important to recall that these designs were compiled with the XC4000 libraries. If the
Xilinx libraries are upgraded, these libraries should be archived to maintain compatibility

with the old design in the event that the design is not upgraded to the new libraries.

123

	Copyright notice 1997
	ERL-97-32

