
 

 

 

 

 

 

 

 

 

Copyright © 1997, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



INTEGRATION OF ERROR DETECTION AND

CORRECTION IN THE INFOPAD: PROCEDURE

AND SPECIFICATION

by

Heather Bowers

Memorandum No. UCB/ERL M97/32

12 May 1997



INTEGRATION OF ERROR DETECTION AND

CORRECTION IN THE INFOPAD: PROCEDURE

AND SPECIFICATION

by

Heather Bowers

Memorandum No. UCB/ERL M97/32

12 May 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Integration of Error Detection and
Correction in the InfoPad:

Procedure and Specification

by

Heather Bowers

Master of Science

in

Electrical Engineering and Computer Science

University of California at Berkeley

Abstract

Error detection and correction can improve the reliability of
communication over the indoor wireless link of the InfoPad system.
This report discusses the implementation of a variable forward error
correction (EEC) scheme that uses (15,11,1) and (15,5,3) BCH codes.
This project involved integrating an FPGA implementation of these
EEC schemes with the InfoPad system. Integration of the new EPGA
was perfomed so as to maintain compatibility with an older EPGA
design and the ARM processor kemel. Hooks for a variable quality of
service (QOS) scheduler were also added in order to make bandwidth
and reliability tradeoffs through changes to the raC level. IMth the
addition of the error correction schemes, the InfoPad can be used for
measurements of error rates on the channel to characterize the effects

of short EEC codes on the reliability of indoor wireless
communication.



Table of Contents

CHAPTER 1. The InfoPad System Overview 9

1.1. Overview of the InfoPad Project 9
1.2. Overview of System DataPath 10
1.3. InfoPad Radios 14

1.3.1. Plessey 14
1.3.2. Proxim 15

1.4. Wireless Transmission Protocol 16

1.5. Error Detection and Correction (EDAC) 17
1.5.1. Background 17
1.5.2. Application to InfoPad 19
1.6. Report Format 20

CHAPTER 2. QOS Protocol 22

2.1. Overview 22

2.2. Communication Through the System 22
2.2.1. Static and Dynamic Data Types 23
2.2.2. Control Packet Protocol 24

2.3. ARM Kernel Modifications 25

2.3.1. Control Packet Handling 25
2.3.2. Changing the Pen ECC Level 25
2.3.3. Changing the Protection on the Pen Packets 26
2.3.4. Characterizing the Channel 26
2.4. Host Interface to the Error Correction System 28
2.4.1. Selecting the Error Correction Level 28
2.4.2. Selecting the Payload CRC Filter 28
2.4.3. Channel Characterization 29

2.4.3.1. UpUnk 29
2.4.3.2. Downlink 29

CHAPTER 3. Implementation 32

3.1. Hardware 32

3.1.1. Top Level 33
3.1.2. ARM Interface 34

3.1.2.1. Register Write Process 35
3.1.2.2. Register Read Process 37
3.1.3. Multi-timer Module 37

3.1.3.1. Generating the Transmit Clock 38
3.1.3.2. Generating the Receive Clock 38
3.1.3.3. Generating the Timer Clock 39
3.1.4. Transmit Data Path 40

3.1.4.1. Control Logic 42
3.1.4.2. Transmit Data Path 50

2



3.1.5. Transmit Interface for the Plessey Radio 54
3.1.6. Transmit Interface for the Proxim Radio 59
3.1.7. Receive Interfacefor the PlesseyRadio 60
3.1.8. Receive Interface for the Proxim Radio 68
3.1.9. RSSI 69
3.1.9.1. Initiating an RSSI Measurement 69
3.1.9.2. Control of RSSI Serial Data 70
3.1.9.3. Methods for Reading theResultant RSSI Measurement 72
3.1.10. Receive Data Path 73
3.1.10.1. Control Logic 76
3.1.10.2. Receive Data Path 79
3.1.11. RX chip Work-around 83
3.1.12. Interrupt Handling 84
3.1.13. General Purpose Timer 84
3.2. The ARM kernel 85
3.2.1. Register Mapping 85
3.2.2. Writing to theRF Xilinx Registers 85
3.2.3. Reading theRFXilinx Registers 86
3.2.3.1. Resolving Interrupts 86
3.2.3.2. Acknowledging Interrupts 86
3.2.3.3. Obtaining an RSSIValue 87
3.2.3.4. Reset 87
3.2.3.5. Loopback Mode 87
3.2.3.6. Plessey Interface 87
3.2.3.7. Proxim Interface 87
3.2.4. Using the Timer 88
3.2.5. Controlling theRX Chip Work Around 88
3.3. Debugging Procedure 90
3.3.1. Simulation of Timer with Software 90
3.3.2. Self-Test Infrastructure 90
3.3.3. LEDs 91
3.3.4. Probe of Internal Xilinx Signals 91
3.3.5. Gateway Test 92

CHAPTER 4. Analysis 93

4.1. Channel Statistics 93
4.1.1. Interference Test Description 94
4.1.2. Test Results 95
4.2. Area 101
4.3. Power 102

CHAPTERS. Conclusion 104

5.1. Summary 104
5.2. Future Directions 105



CHAPTER 6. Appendix 108

6.1. Pinout for RF Xilinx at Board Level 108

6.2. Pinout of RF Xilinx Functional Design Ill
6.3. Register Descriptions 114
6.3.1. Basestation Registers 114
6.3.2. Pad Registers 117
6.3.3. Wired Registers 120
6.4. Location of Design Files 123
6.5. Design Libraries 123



List of Figures
Figure 1-1. Overall System 10
Figure 1-2. Pad Hardware 12
Figure 1-3. InfoPad Data Path 13
Figure 1-4. Protocol Format 16
Figure 1-5. TypicalBCH Encoding Structure 18
Figure 1-6. TypicalBCH Decoder Structure 18
Figure 2-1. Control Panel (ipncontrol) 31
Figure 3-1. Top Level Schematic for RF Xilinx Design 34
Figure 3-2. Control Bus Control Signals 35
Figure 3-3. Register Select for Write Operation 36
Figure 3-4. TX Bus Control Signals 41
Figure 3-5. Encoder High Level Schematic 42
Figure 3-6. State Machine for the Main Control 43
Figure 3-7. High Level \^ew Of Transmit Data Path 50
Figure 3-8. CRC ...51

Figure 3-9. Medium ECC Encoder 52
Figure 3-10. Maximum ECC Encoder 53
Figure 3-11. State Diagram for Plessey Transmit Controller 57
Figure 3-12. State Diagram for Plessey Receive Controller 65
Figure 3-13. State Diagram for RSSI Controller 71
Figure 3-14. RX Bus Control Signals 75
Figure 3-15. Decoder High Level Schematic 75
Figure 3-16. State Machine for the Main Control 76
Figure 3-17. High Level \^ew Of Receive Data Path 79

Figure 3-18. CRC 82
Figure 3-19. Proxim Register Bit Definitions 88
Figure 3-20. Diagnostic LEDs 91
Figure 4-1. Breakdown of Burst Length in 15 Bit Blocks 97
Figure 4-2. Breakdown of Burst Length in 15 bit Blocks 98

Figure 4-3. Histogram of UpLink Errors 99
Figure 4-4. Histogram of Downlink Errors 100



List of Tables

Table 1-1. Plessey Radio Interface 14
Table 1-2. Proxim Radiolnterface 15

Table 2-1. Control PacketSubTypes Usedin EDAC System 24
Table 2-2. Counters maintained in ARM for Channel Characterization 27

Table 3-1. Write only Registers in the RF Xilinx 36
Table 3-2. Read Only Registers in the RF Xilinx 37
Table 3-3. I/O for VHDL Design of the Transmit Data Path 40
Table 3-4. I/O for Viewlogic Schematicof Plessey Interface on Basestation.. 55
Table 3-5. I/O for VHDL Design of the Plessey Interface on the Basestation. 56
Table 3-6. I/O for Viewlogic Schematic of the Proxim Interface on the Pad.... 60
Table 3-7. I/O for Viewlogic Schematic of the Plessey Interface on the Pad... 62
Table 3-8. I/O for VHDL Design of the PlesseyRadio Interface on the Pad... 63
Table 3-9. I/O for VHDL Design of the Clock Recovery Module 66
Table 3-10. I/O for Viewlogic Schematic of Proxim Interface on Basestation... 69
Table 3-11. I/O for the RSSI Controller 70

Table 3-12. I/O for the Viewlogic Schematic of the Receive Control Block 73
Table 3-13. I/O for the VHDL design of the Receive Data Path 74
Table 3-14. I/O for the Viewlogic Schematic of the Receive Control Block 83
Table 4-1. Statistics From System Test During Normal Operation 93
Table 4-2. Statistics from System Test with Added Interference 95
Table 4-3. Xilinx Resource Usage for Each Design 101
Table 4-4. Xilinx Resource Usage by Module 101
Table 4-5. Xilinx Resource Use for Tx/Rx Data Path without EDAC 102

Table 4-6. Power Measurements 103

Table 6-1. Register 0x00 - XILRXSA, XILSTAT 114

Table 6-2. Register 0x01 - XILRXSB 114

Table 6-3. Register 0x02 - XILTXSA, XILRSSIMSB 114

Table 6-4. Register 0x03 - XILTXSB 115
Table 6-5. Register 0x05 - XILRXFB 115

Table 6-6. Register 0x07 - XILTXFB 115

Table 6-7. Register 0x10 - XILCNTL 115

Table 6-8. Register 0x11 - XILRXC 116
Table 6-9. Register 0x12 - XILTXC 116

Table 6-10. Register 0x13 - XILTIMERLSB 116

Table 6-11. Register 0x14-XILTIMERMSB 116

Table 6-12. Register 0x15 - XILCMDREG 117

Table 6-13. Register 0x17 - XILMISCREG 117
Table 6-14. Register 0x00 - XILRXSA, XILSTAT 117

VI



Table 6-15. Register 0x01 - XILRXSB, XILRSSILSB 117
Table 6-16. Register 0x02 - XILTXSA, XILRSSIMSB 118
Table 6-17. Register 0x03 - XILTXSB 118

Table 6-18. Register 0x05 - mRXFB 118
Table 6-19. Register 0x07 - XILTXFB 118
Table 6-20. Register 0x10 - XILCNTL 119
Table 6-21. Register 0x11 - XILRXC 119
Table 6-22. Register 0x12 - XILTXC 119
Table 6-23. Register 0x13 - XILTIMERLSB 119
Table 6-24. Register 0x14 - XILTIMERMSB 119

Table 6-25. Register 0x15 - XILCMDREG 120
Table 6-26. Register 0x17 - XILMISCREG 120

Table 6-27. Register 0x00 - XILRXSA, XILSTAT 120

Table 6-28. Register 0x01 - XILRXSB, XILRSSILSB 121
Table 6-29. Register 0x02 - XILTXSA. XILRSSIMSB 121

Table 6-30. Register 0x03 - XILTXSB 121

Table 6-31. Register 0x10 - XILCNTL 121
Table 6-32. Register 0x11 - XILRXC 122

Table 6-33. Register 0x12-XILTXC 122

Table 6-34. Register 0x13 - XILTIMERLSB 122
Table 6-35. Register 0x14-XILTIMERMSB 122

Table 6-36. Register 0x15 - XILSTAT 123

Table 6-37. Register 0x17-XILMISC 123

Vll



Acknowledgments

As with any endeavor, this research project could not have been completed without

the help and support of others. Foremost, I wish to thank my research advisor Professor

Robert Brodersen for his guidance throughout the course of this project. I would also like

to thank Professor Jan Rabaey for reviewing this thesis.

I am greatly indebted to the members of this project. Trevor Pering taught me a lot

about system level design, as well as how to have the patience and perserverance to debug

as complex a system as InfoPad. Thanks also to Tom Truman for our conversations on bas-

estation design and error correction. Jeff Gilbert was another great resource on the project,

and I am especially grateful for his TCL/TK application that enabled the demo at the last

InfoPad retreat to run smoothly. Brian Richards also contributed to the debugging process

and my system level understanding of InfoPad. Fred Burghardt was responsible for mesh

ing InfoNet with the hardware. I would also like to thank Sue Metiers, Kathy Lu, and Rich

ard Edell for their support throughout the project

In addition, I would like to thank my colleagues and friends Dennis Yee and Ian

O'Donnell. I would also like to thank Jonathan Maltz for his understanding and moral sup

port throughout the project. For their administrative support, Tom Boot, Elise Mills, and

Sheila Humphreys receive my sincere gratitude. I would also like to thank the Advanced

Research Projects Agency for their generous financial support.



1 The InfoPad System Overview

1.1. Overview of the InfoPad Project

Infopad is an indoor mobile computing solution that allows the user to communi

cate to a workstation via a pad terminal connected over a wireless link. A basestation serves

as a buffer between the wireless link to the pad and a networked link to a host computer

where the majority of the processing occurs. Users are able to work on a small, notepad

sized terminal via a pen input, while maintaining wireless connectivity to their accounts.

Hence, functionality is not sacrificed for portability.

The pad functions only as an I/O interface to remote computing resources which

reside on a high-speed, high-performance backbone network. All compute intensive oper

ations, application support, and network management are located in this host network. The

main role of the Pad is to provide the network with input from the user, and to provide the

user with output from the network.

The pad is a simplified device that consists of transmit and receive radios, a display,

a pen, and an audio system. Together, these components provide the user with a multime

dia interface to the InfoPad system.

The hardware components of the system are a pad terminal and a basestation whose

main purpose is to buffer the communications between the pad and network. The system

nature of this project has provided valuable insight on systems research, as well as serving

as a catalyst for supporting research in areas that enable the entire system operation. Devel

opments in low-power technology, protocols, and radio design have progressed as a result

of the InfoPad project. This master's project addresses the role of error correction in the

context of the InfoPad system.



1.2. Overview of System DataPath

The InfoPad systemconsists of the pad, basestation,and InfoNet. InfoNet is a term used to refer

to the general cloud of processing thatoccurs on the SunWorkstation, the software sideof the system

operation. FredBurghardt is nowresponsible for thispartof the system, andin thisdocument, InfoNet

can be conceived of as that part of the system which handles the exchange of data between the bases

tation and the application [Le95]. The basestation acts as a buffer between the wired GPIB connection

to the Sun Workstation and the wireless radio connection on the pad. The final component of the

systemis the pad itself, the user interface that provides a display to the user and acceptspen and audio

input.

Figure 1-1. Overall System

InfoNet

Basestation

Pad

This project addressed the hardware of the system, the pad and basestation. The pad and bas

estation hardware have identical architectures, so the following detail of the pad hardware in Figure 1-

2 can also be used to see the operation of the basestation. The main differences between the pad and

basestation are as follows: the radios used for transmitting and receiving in the pad have reversed oper

ation in the basestation, the basestation has an interface to the GPIB port, and the pad has an LCD dis

play and pen/audio inputs.

10



Specifically, this project addressed modifying the ARM kemel and the RF Xilinx

design in order to add error detection and correction to the transmit and receive datapaths

on the pad and basestation. These components are highlighted in Figure 1-2.

11



CO

9
n
a>

I

I
I
I

Processor
Interface

Receiver
Interface

Transmitter
Interface

Pen/Keyboard
Interface

Speech /
Audio
Interface

Text
Gr^hics
Interface

Video
Interface

Figure 1-2. Pad Hardware

CPU/RAM/EPROM

Xilinx FPGA

Synchronization
Error Correction
CRC

Buffer RAM

RF Xilinx

/
Debug
Port

Proxim Radio

Plessey Radio

Digitizer

Keyboard port

CODEC/
amplifiers

Frame
Buffer
RAMs(4)

Color \^deo Decompression
Chip Set (4)

l.Svolts

12

640x480

Color

AMLCD

Svolts



The ARM processor is responsible for the initial configuration of the RF Xilinx.

After the RF Xilinx is configured, then the data path processing occurs as follows.

Data can originate from several sources within the pad, such as the pen interface,

the keyboard interface, or the ARM processor. This data is sent over the IP bus to the TX

chip, where the header data is added. The newly packaged data is then sent to the RF Xil

inx. The RF Xilinx then optionally calculates and adds the header and body CRCs, as well

as performs forward error correction on the packet The header of each packet is always

forward error corrected. The RF Xilinx serializes the packaged data and passes it to the

transmit radio. In the case of the pad, the transmit radio is the Plessey, while on the bases-

tation the transmit radio is the Proxim (See Section 1.3.1. and Section 1.3.2 for more infor

mation on the radios.)

On the receive end, the data enters the receive radio (the Proxim radio on the pad,

the Plessey radio on the basestation) and then flows to the RF Xilinx. The RF Xilinx

decodes the incoming data stream and performs a serial-to-parallel conversion on the data.

This data is then sent to the RX chip. The RX chip sends the data over the IP bus to the

appropriate destination determined by the header data.

Figure 1-3. InfoPad Data Path

Data

Source

Data

Destination

IVansmit

ASIC

Receive

ASIC

13

RF Xilinx

RF Xilinx

Transmit

Radio

Ether

Receive

Radio



1.3. InfoPad Radios

1.3.1. Plessey

The InfoPad uses the GEC Plessey Semiconductors' DE6003 digital radio trans

ceiver (hereafter referred to as the Plessey radio) as the transmit radio on the basestation

and the receive radio on the pad. The Plessey radio is a 2.45 GHz spread spectrum, fre

quency hop, wireless transceiver designed for data rates up to 625 Kb/s. The radio will

operate over 101 channels spaced in 1 MHz intervals within the frequency band 2.400 to

2.500 GHz.

The radio has self contained RF functions but requires the host to provide control

signals for data management, hopping channel assignment, and receive/transmit mode

selection. The Plessey radio also requires the host to perform clock recovery. A table of all

the signals in the Plessey interface can be seen in Table 1-1. Although the Plessey is a hop

ping radio, hopping was not enabled on the current version of the ARM kernel in InfoPad.

Table 1-1. Plessey Radio Interface

Signal I/O Description

Antenna Select I Diversity Control used to overcome signal nulling from
destructive interference from multipath

Standby I Enables/Disables radio

Channel Select I Binary Frequency Channel Select Channel Select values
range from 0 (2.400 GHz) to 100 (2.500 GHz) in 1 MHz
increments.

Channel Select Load Pulse I Strobe Iot Channel Select data

Transmit Data In I Serial Data to be transmitted

Power Level Control I Selects high or low transmit power input to the antenna

Power Amp Control I Allows transmit amplifier to be turned on after the mode
has been set to transmit, eliminating unwanted emissions

'Dansmit/Receive Select I Switches between transmit and receive modes.

Receive Data Out 0 Soial Received Data

RSSI 0 Received Signal Strength Indicator

Synth Lock 0 Monitors lock condition of all PLLs to indicate if there is

an error condition

Clk 0 SynthesizerClock Ouqjut

[Ples94]

14



1.3.2. Proxim

The InfoPad uses the Proxim RDA-500/2 radio (hereafter referred to as the Proxim

radio) as the transmit radio on the pad and the receive radio on the basestation. The Proxim

radio is a direct sequence spread spectrum wireless transceiver designed for data rates up

to 242 Kb/s. The radio will operate over the frequency band from 902-928 MHz and has

three full channels. The Proxim RDA-500/2 was designed with a parallel data interface to

provide compatibility with a microprocessor. However, the InfoPad was designed with a

serial interface. Although the RDA-500/2 specification does not indicate the presence of a

serial mode, the serial mode from the Proxim RXA series is still accessible in the RDA

series. Hence, a return to the RXA specification is required to understand the serial inter

face, which appears as grounded pins in the RDA specification.

The radio has self contained RF functions but requires the host to provide control

signals for data management, and receive/transmit mode selection. The Proxim radio pro

vides its own clock recovery. A table of all the signals in the Proxim serial mode interface

can be seen in Table 1-2.

Table 1-2. Proxim Radio Interface

Signal I/O Descriptfon

TXDATA I Serial Data to be transmitted

SYNLD I When set high, SYNLD loads the data from the synthesizer's shift register
into its control registers.

TXCLK 0 Transmit Clock used to shift the serial data into the radio.

SYNCLK I SynthesizerClock. Used to clock SYNDATA into the synthesizer's shift regis
ter.

RXDATA 0 Serial Receive data.

SYNDATA I Serial data to program the synthesizer's frequency.

CD 0 Carrier Detect. Active when a valid carrier has been detected.

TX/RX I Transmit/Receive Mode Select Line.

STANDBY I When in Standby, the digital electronics are reset and the radio is put in a low
power state.

RSSI 0 Received Signal Strength Indicator from demodulator.

[Prox92],lProx90]

15



1.4. Wireless IVansmission Protocol

The transmission protocol over the InfoPad's wireless link is packet based. The

packetbegins with a 32 bit frame syncwhich is followed by the headerof the packet. The

header of each packet can contain a pad alias, sequence number, data type, length, and

HeaderCRC. Onlythetypehasto beincluded in theheader. Allotherfeatures areoptional,

i.e they do not have to be included in the header. The packet of data is terminated by an

end-of-packet byte which can include the Body CRC.

Figure 1-4. Protocol Format

Pad Alias Sequence Type Length CRC Data Body CRC |

Pad Alias

As the basestations are capable of supporting multiple pads, it is necessary to have

an identification tag for each packet, hence the pad alias. A pad should only receive data

which has a corresponding pad alias which matches its own pad identification number.

When a pad transmitsdata, it also includesa pad alias in the headersof its transmitpackets.

This enables the basestation to identify the source of its received data. The pad alias is a

one byte field in the header.

Sequence Number

The sequence number is included in the header in order to determine if packets

have been dropped over the wireless link. The ARM programs the Transmit ASIC with the

starting value of the sequence number, then the Transmit ASIC automatically increments

this value and places it in the header of each packet to be transmitted. This sequence

number is a one byte field in the header.

IsBfi

The packet type is included in the header in order to determine the destination

within the pad or basestation for the received packet Examples of packet types are pen,

16



keyboard, video, text graphics, and control packets. The type space is limited to the lower

6 bits of the 1 byte word. The type field is 1 byte wide, and the most significant bit of the

type field is the start of packet bit which is always set.

Lfiosm

Each packet type can be specified to have fixed or variable length. If the packet type

in question has a fixed length, then the length field does not have to be included in the

header. If the length of the payload is variable, then the length field must be present in the

header. The length field refers to the number of bytes in the data payload and is a 2 byte

wide field.

Header CRC

The header CRC is calculated on the header of the data packet by the RF Xilinx and

appended to the header. The header CRC is a 1 byte wide field.

Body CRC

The body CRC is calculated on the entire header and payload by the RF Xilinx and

is appended to the packet. The body CRC is a 1 byte wide field.

1.5. Error Detection and Correction (EDAC)

1.5.1. Background

The error correction codes used in this project are Bose-Chaudhuri-Hocquenghem

(BCH) forward error correcting codes. BCH codes are linear cyclic block codes that can

correct multiple random bit errors. They are the best known large class of linear cyclic

block codes, and they allow for simple decoding for most practical cases. BCH codes exist

for all integers m and t such that

0 = 2"^-!

d = 2t + 1

n - k < m * t,

17



where n is the number of bits per word, k is the number for information bits, n-k is the

number of bits of parity check bits (redundancy), m is the degree of the generatorpolyno

mial, and t is the number of errors per block that can be corrected.

The generator polynomial for the BCH codes can be chosen from pre-calculated

code "cookbooks", or they can be derived with knowledge of frnite field theory.

The BCH encoder is most commonly implemented as a shift register with feedback

(Figure 1-5). The encoder adds redundancy to each message via this structure.

Figure 1-5. Typical BCH Encoding Structure

Fcedbtck

Shift Register

g(x) = + X® + X^ + X^ +X^ +X+1

Decoding is a more complicated procedure that usually involves a lookup table.

The received word acts as the address to index the lookup table, whose output data is the

decoded message and the Hamming distance (number of errors) of the decoded message

from the received code word.

Figure 1-6. Typical BCH Decoder Structure

Received
Code Word

18

Decoded Message

Hamming Distance



1.5.2. Application to InfoPad

The focus of this project is to providethe InfoPad system witherror detection and

correction (EDAC) in order to enable a more reliable data transfer across the wireless link.

The theorysupporting the implementation of thisprojectcan be referenced in KathyLu's

master*s thesis [Ylu93]. Three different levels of forward error correction are provided in

order to provide a variable, dynamic error correction scheme. The motivation for having

different levels of error correction derives from the varying degrees of error tolerance and

bandwidth that are inherent in each data type. For example,pen data might require a higher

level of error correctionand will occupyless bandwidththanvideo data.Videodata suffers

very little from errors, as the display is constantly being refreshed. Using forward error cor

rection on an error tolerant, high bandwidthdata type such as video data could be a waste

of resources. However, error correction could potentially benefit low bandwidth critical

data packets, such as control packets.

The packet headers could also be encoded to add only a small bandwidth increase

on the first 6 bytes of data, yet provide for more reliable packet routing. A CRC on the

header of each packet can also be used to filter packets with corrupted headers. If the

header is corrupted, then the destination for the packet and/or its length are uncertain, so

rather than process this packet, it should be thrown out. Body CRCs can also be used on

payloads in the same manner as header CRCs filter bad headers. However, often if the pay-

load has a few errors, it is still acceptable for display, etc. and throwing out this packet

based only on the payload CRC could cause a substantial loss of usable data.

The implementation in the InfoPad EDAC system is summarized below. A CRC is

performed on the header and payload of the data packets. The header of each packet is

maximally error corrected with a (15,5,3) BCH code. The Payload data can be transmitted

using no encoding, a (15,11,1) BCH encoding scheme, or a (15,5,3) encoding scheme. The

(15,11,1) code operates on block lengths of 11 bits and outputs block lengths of 15 bits that

includes the added redundancy. These codes are capable of correcting 1 error per 15 bits

and occupy 1.36 times the bandwidth of uncoded data. The (15,5,3) code operates on block

lengths of 5 and outputs block lengths of 15 that includes the added redundancy. [LinCos-

tello] These codes are capable of correcting 3 errors per 15 bits and occupy 3 times the

19



bandwidth of uncoded data. These errorcorrecting codesare quite shortin orderto facili

tate a smaller, less complex design due to the limitations in design size imposed by the

Xilinx 4010 FPGA. Hence, the codes are block codes, implemented with a lookup table

containedin an off-chipROM.The benefit of a short blockcode is the simplicityof imple

mentation and compactness of the design. However, short block codes can be ineffective

in correcting burst errors. One proposed solution to this problem is interleaving the trans

mit and receive data in order to disperse block errors and allow the short block code to

operate more effectively on the data.

Optimally, a scheduling algorithm would be developed to evaluate the bandwidth

requirements, error tolerance of each packet, and state of the wireless link in order to select

the most appropriate FEC level.

1.6. Report Format

This report serves as a specification for the EDAC (Error Detection and Correction)

RF Xilinx design as well as a project report on the system integration procedure. The RF

Xilinx design has evolved over time and is therefore the result of several people's efforts.

This report is a summary of their past work, and a report on the latest developments con

cerning the design. While the author of this report performed modifications and system

integration of the RF Xilinx design, the actual components were designed by other individ

uals. Craig Teuscher is responsible for clock recovery, while Dennis Yee and Craig

Teuscher are responsible for the radio interfaces. Kathy Lu and Richard Edell implemented

the error detection and correction algorithm. Tom Truman was instrumental in the ARM

kernel, while Trevor Pering and Brian Richards maintained the RF Xilinx design since its

inception. Lastly, Jeff Gilbert is the author of the InfoNet Control Panel.

Chapter 1 includes the introduction and overview, while Chapter 2 discusses the

hardware implementation and software support necessary for the operation of the design.

Chapter 3 discusses the system level issues that are need to be addressed in order to take

advantage of the error correction capability in the RF Xilinx. Chapter 4 presents some mea

surements that were made concerning BER, area, and power consumption. Chapter 5 con-

20



eludes the report, and the Appendix includes the pin-out of the design in addition to the

register descriptions and a listing of the location of reference files.

21



2 QOS Protocol

2.1. Overview

It is necessary to develop a protocol for the InfoPad that could allow a scheduler to

provide varying qualities of service (QOS) to users. The actual algorithm for achieving this

goal is a topic for further research, but in order to look toward the future, one must consider

what hooks such an algorithm would need. The scheduler must have some knowledge of

the state of the channel, a knowledge of the quality of service requirements of the user, and

a way to relay feedback to the network infrastructure [Ylu96].

Using CRC information in combination with sampling the channel at regular inter

vals yields a practical system approach to a channel characterization process. A coarse

knowledge of the channel can be obtained by accumulating the total of incorrect header

CRCs and body CRCs over a period of time. The sequence number can also be used to

determine how many packets have been dropped over the wireless link. Control packets

can be used to transport a request for channel statistics and subsequent data obtained from

this query. This is not a rigorous form of channel estimation, but it does provide a coarse

measure to determine what level of error correction would be reconunended for the chan

nel.

2.2. Communication Through the System

One of the major issues in the system level design was how to communicate com

mands throughout the entire system, from an application running under InfoNet to the

embedded control software running on the pad. Two methods were decided upon, the

dynamic type system wherein the range of data types provided information about encoding

22



levels, and the control packet system which was used to communicate commands and

responses throughout the system.

2.2.1. Static and Dynamic Data l^pes

The type spaceof the data protocolwas arranged to supportstaticdata typeswhose

error correction level is fixed (types0x00 - OxOf), and dynamic data types whose error cor

rection is variable (types 0xl0-0x3f).

The static data types are mappedto a fixed error correction level (that is usually the

maximum encoding).These static types are low bandwidthand oftencarry critical control

information, hence the bandwidth expansion of FEC has little significant effect and is jus

tified by the theoretical gain in reliability.

Alternatively, the dynamic data types have optional forward error correction. A

good channel and a high bandwidthapplicationwould warrant that error correction be dis

abled. For some applications, such as video, it is not apparent that forward error correction

provides a qualitative gain in performance. FEC can actually detract from system perfor

mance by reducing the available bandwidth. Hence, types in the range of 0x10 to Oxlf are

mapped to have no error correction. Each type in the range of 0x20 to 0x2f is mapped to

medium error correction. Types in the range of 0x30 to Ox3f are mapped to the maximum

error correction level. For example, video without error correction is designated as type

Ox19. Video with medium level (15,11,1) error correction is designated as type 0x29, while

video with the maximum level (15,5,3) of error correction is designated as type 0x39.

Specifying a dynamic range of data types based on error correction levels helps

eliminate synchronization problems; there is no associated state on the receiving end. A

request to change the error correction level results in a change of data type used on subse

quent packet transmissions. The receive circuitry decides the error correction level based

only on the data type and does not have to rely on synchronizing with the transmit error

correction level.

23



2.2.2. Control Packet Protocol

As the type space defined in the transmission protocol is extremely limited, the

control packet type was expanded by adding a subtype to the first four bytes of the data

payload. Currently, the mobility control software shares this type space with the error cor

rection control, however, only subtypes relative to error correction will be discussed here.

The types are described in Table 2-1.

Table 2-1. Control Packet Subiypes Used in EDAC System

Control Subtype Description

PACKET_TYPE_ERR_STAr_PAD_REQ Request fen* error statistics from the pad

PACKET_TYPE_ERR_STAr_PAD_ACK Acknowledgefrom pad including payload data that
contains the error statistics

packet_type_err_stat_base_req Request for error statistics from basestation

packet_type_err_stat_base_ack Acknowledge from basestation including payload
data that contains the error statistics

PACKET_TYPE_CHANGE_PEN_ECC_REQ Request to change the ECC level on the pen pack
ets.

0-NoECC

1- Medium Encoding

2 - Maximum Encoding

PACKET_TYPE_CHANGE_PEN_ECC_ACK Acknowledgeto a request for a change of the ECC
level on the pen packets

PACKET_TyPE_PROTECT_PEN_REQ Request to the basestation requesting that pen
packets with corrupted payloads not be sent back
up through the network

0 - Protect

1 - Unprotected

PACKET_TYPE_PROTECT_PEN_ACK Acknowledge from the basestation indicating that
pen packets will be protected according to the
request

Hence, the control packets are responsible for requesting and supplying data on the

channel characteristics. The control packets are also responsible for dynamically changing

the error correction level on the pen packets, as well as whether or not the basestation will

filter pen packets with corrupted payloads from the network. Note that because error cor

rection levels are regulated at the source, uplink data traffic does not require some kind of

synchronization protocol.

24



2.3. ARM Kernel Modifications

The mechanisms for utilizing thecontrol packets were added to userlevel codein

theARM. Thiscodeperforms thehandling anddecoding of thecontrol packets thatis nec

essary forproviding feedback on thechannel statistics as well as commands necessary for

changing the error correction levels.

2.3.1. Control Packet Handling

A data stream dedicated to control packets was established in user code (user.c).

Handlersfor this data streamwere registered in the EGG user code (ECC.c), so whenever

a control packet arrives at the ARM on the control packet data stream, a handler is called

that examines the first fom bytes of data in order to establish the subtype of the control

packet. Depending on thesubtype, a specific subroutine is called to takeaction on thecon

trol packet*srequest and generate an acknowledge.

2.3.2. Changing the Pen EGG Level

The host generates a Change Pen ECCLevel request which is sent overthe GPIB

link to the basestation. Upon encountering this particular control packet, the basestation

forwards it to the pad, unchanged. The pad receives the control packet, identifies it, and

examines the payload to determine which level of errorcorrection is requested. Basedon

thelevelrequested, thependata typefor thecorresponding leveloferrorcorrection is writ

ten to the Pen Chip. Hence, all subsequent data typesfromthe pen interface correspond to

this newlywritten data type. For example,the data type for a pen packetwith no error cor

rection is type Ox lb, while pen packets with medium error correction levels are of type

0x2b, and pen packets with maximum error correction correspond to type Ox3b. The pad

then generates an acknowledge signal whichgoesto thebasestation. The basestation, upon

receiving Acknowledge a Change ofPen ECC Levelpacket, forwards this packet to the

GPIB interface and onward to the host. The acknowledge is used to ensure that the change

of error correction level takes effect. The host also requires this acknowledge because the

original request was implemented with an RPC protocol.

25



2.3J. Changing the Protection on the Pen Packets

The host generates a Change Pen Protection request which is sent over the GPIB

link to the basestation. Upon encountering this particular control packet, the basestation

examines the payload to determine whether or not to forward pen packets with invalid pay-

load CRCs to through the GPIB link to the host Upon receipt of the control packet request

a call to the function common PassBadPen (commonx in the kernel) is performed, and the

protect/unprotected flag from the payload of the request control packet is passed to this

function. If protection is selected, this function causes the basestation to discard pen pack

ets originating from the pad if the payload CRC is invalid. If unprotection is selected, all

pen packets are relayed back to the host, regardless of the validity of the payload CRC.

Regardless of the protection level, the basestation generates an acknowledge signal that is

sent to the GPIB interface and onward to the host. Again, the host requires this acknowl

edge because the original request was implemented with an RPC protocol.

2.3.4. Characterizing the Channel

The receive chip in the InfoPad has the capability to duplicate the headers on all

received packets and send these headers to the arm on a pre-defined data stream. In this

manner, the ARM can maintain counters that gather statistics on the uplink or downlink

data (depending on whether the ARM is on the basestation or the pad). The number of

packets with bad payload CRCs, the number of packets dropped over the wireless link, and

the total number of packets that are received in a particular sample period are recorded.

These values can be used to calculate the drop rate of packets across the uplink and down

link channels, as well as provide a sense of how many packets have errors in the payload.

This data would then ideally be fed to a variable QOS scheduler which could

threshold the packet drop rates according to the quality of service required by the user. For

example, if the user needed very high QOS, then a moderate packet drop rate would be

identified with the need for maximum error correction. The scheduler would then monitor

the packet drop rates, and change error correction levels based upon these predetermined

thresholds.

26



Table 2-2. Counters maintained in ARM for Channel Characterization

Counter Description

Header Count Increments whenever a header is received

Bad Header Count Increm^ts whenever an invalid head^ CRC occurs

Transmit Count Calculates how many packets were transmitted from
sequencenumbers received frompacketswith validheader
CRCs

ECC_Tx_cnt += (seq-_ECC_seqjium+ 256)%256

Pen Packet Count Increm^ts whenever a pen packet is received with a valid
header CRC

Bad Pen Packet Count Increments whenevera pen packet is received with a valid
header CRC but an invalid payload CRC

Protected Text Packet Count Increments whenever a protected text packet is received
with a valid header CRC

Bad Protected Text Packet Count Increments whenevera protected text i^ket is received
with a valid header CRC but an invalid payload CRC

Text Packet Count Increments whenevera text packet is received with a valid
header CRC

Bad Text Packet Count Increments whenevera text packet is received with a valid
header CRC but an invalid payload CRC

When the host queries the basestation statistics, a Basestation Error Statistics

Request control packet is sent across the GPIB link to the basestation ARM. The ARM

packages the information from the counters into a Basestation Error Statistics Acknowl

edge control packet and sends this packet back through the GPIB link to the host. The

ARM then clears the counters and begins collecting data for the next sample request from

the host.

Similarly, when the host queries the pad statistics, a Pad Error Statistics Request

control packet is sent across the GPIB link to the basestation ARM and forwarded to the

pad. The pad generates a Pad Error Statistics Acknowledge control packet and sends this

packet back to the basestation ARM, which forwards the packet back to the host. The pad

ARM has meanwhile cleared its counters and begun collecting data for the next sample.

27



2.4. Host Interface to the Error Correction System

The control panel is an InfoNet utility that can be used to control FEC and ECC

levels (Figure 3-1). The control panel communicates with the InfoNet monitor. As an auto

matic scheduler does not yet exist, the control panel acts as a manual interface to the error

correction system. It aUows the user to select the forward error correction level for the text

graphics data packets, the protected text graphics data packets, and the pen packets. The

user can also choose to utilize the payload CRCs to filter corrupted packets. The control

panel also provides information on the channel characteristics via an automatic query or a

manual query. The control panel performs other control related tasks, but as these are not

directly related to the error correction system, further information can be found in Fred

Burghardt's discussions on InfoNet.

2.4.1. Selecting the Error Correction Level

Whenever an error correction level for text graphics or protected text graphics data

is chosen, the control panel sends a message to the monitor which re-maps the dynamic

data type to the proper error correction level and sends this re-mapped type down to the

basestation. This simple re-mapping in the monitor will not suffice for pen packets, how

ever, as they originate from the pad itself. Hence, in order to change the error correction

level on pen packets, the control panel sends a Change Pen ECC Level Control Packet

down through the system to the hardware via an RFC protocol.

2.4.2. Selecting the Payload CRC Filter

Similar to the error correction level selection, in order to select a filter on text

graphics data packet, a protected text graphics packet is sent down to the pad instead of the

unprotected text graphics types. The re-mapping is performed in the InfoNet monitor.

When the Text/Graphics chip receives the protected text graphics data type, it examines

the payload CRC to determine if the data should be sent to the display. "When filtering of

pen packets based on the payload CRC is desired, the host sends a Protect Pen Control

Packet down through the system to the hardware via an RPC protocol. When the ARM

receives this control packet, it processes the request as described earlier in Section 2.3.3.

28



2.43. Channel Characterization

The control panel can be used to generate a single manual query of the channel sta

tistics or a timed update that provides a new sample every second. Whether the manual or

times query is used, the process for obtaining the samples is the same. A request for the

channel statistics is sent to both the pad and basestation in the form of a control packet sent

with the RPC protocol. The pad and basestationacknowledgethe request with a packet that

contains the data from the ARM's counters discussed in Section 2.3.4. The control panel

application processes this data and displays the uplink and downlink characteristics. If a

query is lost over the wireless link, then the acknowledge is never received by the host In

this situation the query is resent until a valid acknowledge is obtained. The question mark

symbol ("?") is displayed in this instance, as not valid data is present Divide by zero errors

which are encountered in processing are displayed by a dotted line ("—").

2.43.1. Uplink

The uplink characteristics displayed are the transmit rate, the percent of packets

received as compared to how many packets were transmitted, the receive rate of pen pack

ets, and the percent of pen packets received that were error free.

The transmit rate is simply the value of the transmit counter that itself was derived

from packet sequence numbers. Since the queries are approximately every second, this

yields the approximate transmit rate in units of packets per second. This value is intended

to indicate a coarse estimate of uplink traffic volume. The percent of packets received is

calculated by dividing the header count by the transmit count. Additionally, pen packets

receive rate is examined. This value is simply the value of the pen packet counter in the

ARM at the time of sampling. The percent of error free pen packets received is calculated

by dividing the number of good pen packets (pen packets received minus bad pen packets)

by the number of pen packets received.

2.4.3.2. Downlink

The downlink characteristics displayed are the transmit rate, the percent of packets

received as compared to how many packets were transmitted, the receive rate of protected

29



and unprotected text graphics packets, and the percent of protected and unprotected text

graphics packets received that were error free.

Similar to the uplink case, the transmit rate is simply the value of the transmit

counter that itself was derived from packet sequence numbers. Since the queries are

approximately every second, this yields the transmit rate in units of packets per second.

This value is intended to indicate thecoarse estimate of downlink traffic. The percent of

packets received is calculated by dividing the header count by the transmit count Addi

tionally, protected and unprotected text graphics receiverates are examined. Thesevalues

are simply the valueof the corresponding textgraphics packetcounter in the ARM at the

time of sampling. The percent oferror free text graphics packets received is calculated by

dividing the number of good text graphics packets (text graphics packets received minus

bad textgraphics packets) by the number of textgraphics packets received.

30



Figure 2-1. Control Panel (ipncontrol)

|V Thrvshoidsj pr fiata Limits! WGontruts! 0 Status! Wtrr» Statistics

' Scan: |l3S StatusKoq: |ui

DownBnk: | '

Vtfteo: I

Text / Graph: p

Refrash Rate: p ««—--•

Hystorssts: ^

♦ 500.0 Kbits/sec

"'j 401.0 Kbits/iCC

37l 5™ " KbIts/SfiC
T" 360.0 Khits/sec

Refresh Screen | a Protect T/G V F^utect Pen ., Dr^ Late

FFC: Reg T/G: 5/16 F^t T/G: S/IS Pen: 15/15

PAKH1? SUtus: OK

BARM 1? Status: OK

Monitor 1? SLUus: OK
I ^ ^ ^ '

Emulator 1? Status: imulator ttxSOOc Is unraachabie

PadServer 12 Status: OK

T/G Server 12 Status: Nut supporbert by Sunos X servers

Tx Rate: 3 pkt/s

% Recvd: 100.000%

Uplfnk Statistics

Pen Recv: t0 pXUs

% Uncorropt:

Manual Update |
j Timed Update!

Downlink Statistics

TxRate: Opkt/S Reg T/G Recv: OpKL's m>t7/GRecv: Opkt's

% Rucvd; % % Uncorropt: —-% % Uncorrupt: —.



^ Implementation

3.1. Hardware

The RF Xilinx in the InfoPad originally did not support error detection and correc

tion. It did, however, perform several crucial functions in addition to interfacing to the

radios. A generalpurposetimer was implemented, as was an interface to the A/Dconverter

in order to provide RSSl measurements. Serial-to-parallel conversion was performed on

incoming data, and parallel-to-serial conversion was inversely performed on outgoing

data. The RF Xilinx also provided the flexibility to perform work-arounds that were

needed when problemswith thecustomchips werediscovered. Anexampleof this is when

the frame sync was lengtheneddue to noise being mistakenlyidentified as the frame sync

pattern for a datapacket. Another example is when theReceive ASIC incorrectly received

an infinitelength packet. (The solution to this problem was realized by adding a kick cir

cuit to the Xilinx that activates whenever an unreasonably long packet is detected).

This originalRF Xilinxwas in an evolutionary statedue to the flexibility in debug

ging that it provided, hence the design was not frozen when the task of adding EDAC to

the systemwasinitiated. Furtherchanges in the ARMkernelalso impededsystemintegra

tion. Another student, KathyLu, beganthe implementation of EDAC,but whenher design

was completed, her work was not compatible with the ARM processor's software kernel

and the original Xilinx design.

This project addresses the integration of the EDAC RF Xilinx design with the

requirements of theInfoPad system andincludes thespecifications for theresultant design.

This new design has the feature that one combinational design maintained three separate

designs for basestation, pad, and wired versions. While this combinational design mini-

32



mized design maintenance, it imposed a register file that differed from that driven by the

ARM kernel. The timer was also missing from the design, as were the work-arounds of the

receive kick circuit and the extended frame sync. A new method for reading RSSI values

from the A/D converter was added in the EDAC RF Xilinx that proved to be incompatible

with the ARM kernel. The different subsystems of the RF Xilinx will be discussed below.

3.1.1. Top Level

There are three separate RF Xilinx designs maintained by a combination design in

Viewlogic {combo.!). The first design is used in the pad when operating in wireless mode

{eccj)ad.l). Likewise, there is a design for the basestation operating in wireless mode

{eccjbase.l). Lastly, there is a designthat can be used on either the pad or basestation that

is used when operating in "wired" mode, i.e. the pad and basestation communicate via a

cable, rather than over the wireless link {ecc_wire.I).The three different designs are nec

essary because the pad, basestation, and wired designs have differing interfaces to the

radios.

The combinationdesign contains severalsubmodulesthat will be discussed in later

sections. The radio interface submodules are black boxes that have the appropriate design

placed in them during the make operation. In this manner, high level changes can be per

formed once, instead of on all three designs.

The Viewlogicdiagram for the combinationdesign can be seem in Figure 3-1.

33



I'L.J |i

I I |i

Figure 3-1. Top Level Schematicfor RF Xilinx Design

ARM Interface

Multi-Timer

Transmit Control Receive Control

Txf

Tx Radio Interface Rx Radio Interface

QU3-^

» a
t g

9 ea

LED's and Heartbeat

I ri I ii II

Interrupt/Timer

[• tr r~i

Debug Signal

3.1.2. ARM Interface

The ARM interface subsystem of the RF Xilinx is responsible for providing an

interface to the ARM and maintaining a register file that is used by the ARM, the RF Xil

inx, and the radios. When the ARM desires to write to a register in the RF Xilinx, the chip

34



select for the RF Xilinx must be driven high and the proper address for the register must

beplaced on the4-bitwide CADDR line. TheARMIF module's operation is described in

VHDL (armif.vhd) and then depicted with a Viewlogic symbol in the top level of the RF

Xilinxdesign {combo.1, eccJ)ase.L eccjvire.l, eccj>ad.l).

The ARM Interface block has basicaUy two functions which are controlling reads and

writes to the registers in the RF Xilinx.

Figure 3-2. Control Bus Control Signals

fiC
<

CD

/CRD

/CWR

/ccs

CADDR

X
c

u.

oc

Read 881 Write Read

Addr#l Addr#2 Addr#3

[IPBook]

3.1.2.1. Register Write Process

Internally, the RF Xilinx chip select, write strobe line, and the address from the

ARM index a lookup table that outputs an internal write strobe line for each register

(Figure3-3). There are sixteen intemal write strobe lines in the RF Xilinx, and sixteen 8-

bit registers that are availablefor access.However,only thirteenregisters are actually allo

cated for some purpose. These registers can be seen in Table 3-1.

35



Figure 3-3. Register Select for Write Operation

r — — — — ~

RFXilinx

Chip Select .

Write Strobe.

Caddr .

Look-Up
Table

Internal

Write

Strobe

Line

0

Table 3-1. Write only Registers in the RF Xilinx

Register Name Description

Rx Sync Word (MSB) Upper byte of the frame sync pattern for the
receive radio

Rx Sync Word (LSB) Lower byte of the frame sync pattern for the
receive radio

Tx Sync Word (MSB) Upper byte of the frame sync pattern for the
transmit radio

Tx Sync Word (LSB) Lower byte of the frame sync pattern for the
transmit radio

Unused

Rx Frequency Divider Used for programming the receive radios

Unused

Tx Frequency Divider Used for programming the transmit radios.

Control Text Graphics Reset. This test pin causes an
active low reset for debugging purposes.

Loonhack Mode Enable. This bit causes the RF

Xilinx to enter loopback mode which causes the
transmit data to be routed back as received data,
bypassing the radios.

Mnlri-Time Reset Resets the multi-rime modtile

in the RF Xilinx.

Svstem Reset. This is an intemal svstem reset for

the entire RF Xilinx.

36



Table 3-1. Write only Registers in the RF Xilinx

Internal

Write

Strobe

Line

Register Name Description

9 Rx Clock and Control Receive Clock Divider Word. Used for nrocram-

ming the radios.

Hop ReSOl the pad design)

10 Tx Clock and Control Transmit Clock Divider Word. Used for nro-

gramming the radios.

Hon Reset (on the basestalion de.sign)

11 Timer (LSB) General Purpose Timer Value (lower byte)

12 Timer (MSB) General Purpose Timer Value (upper byte)

13 Interrupt Acknowledge ;

14 Unused

15 LED Control Control of the LEDs on the board. Used for feed
back and debugging.

3.1.2.2. Register Read Process

There is one read port in the ARM interface register file that the ARM can access.

When the ARM wishes to read a register, the ARM sets the lower two bits of the CADDR

line to the appropriate register (Table 3-2). Only four registers are available for reading,

and of these four only three are used.

Table 3-2. Read Only Registers in the RF Xilinx

CADDR[1:0] Output Description

00 Interrupt Status Allows ARM to resolve which event
(timer or rssi measurement) generated an
interrupt.

01 RSSI(LSB) Least significant byte of an RSSI read-
ing^

10 RSSI(MSB) Most significant byte of an RSSI reading

11 Unused BiliiHiWiM

3.1.3. Multi-timer Module

The multi-timer module is basically a set of clock dividers that take a 20 MHz clock

input and convert it to the clock for the receive data path, the clock for the transmit data

path, and the 1 MHz clock for the timer module. The multi-timer module can be reset by

an internal reset called the Multi-Timer Reset. This reset is performed when the ARM



writes to the Multi-Timer Reset Register in the Control Register of the Xilinx.The multi-

timer module is implemented entirely in a Viewlogic schematic (multitime.l). The

counters and clock dividers used in the multi-timer module are implemented with Xilinx

XBLOX macros to help ensure improved routing for the time critical clocks. Since the

Multi-Timer module does address the problem of clock generation, it is important to men

tion the buffering entailed in the clock distribution. Since the Xilinx has a limited number

of global buffers, they must be used prudently. The 20 MHz clock input enters the Xilinx

on a pin that does not support a global buffer. Hence, this pin is re-routed to another pin

that does have a dedicated global buffer at its I/O pad. This internal routing renders the

input pin with the global buffer unusable, as its buffer is being occupied by the 20 MHz

clock. The clocks that are output from the multi-timer module are buffered external to the

multi-time module, often within the module that they are used to drive.

3.13.1. Generating the Transmit Clock

The transmit clock is generated by a 6 bit up counter that is implemented with an

XBLOX counter module. The terminal count is determined by the value in the Transmit

Clock Rate Register. Whenever the multi-timer reset occurs or the terminal count value is

reached, the terminal count value is reloaded from the Transmit Clock Rate register. The

counter is driven by the 20 MHz clock. In the present version of the InfoPad, the Transmit

Clock Rate register value for the basestation (using the Plessey radio) is the decimal value

of 48, corresponding to a 625 KHz transmit frequency. The Transmit Clock Rate register

value for the pad (using the Proxim radio) is the decimal value of 14, corresponding to a

200 KHz transmit frequency.

3.1.3.2. Generating the Receive Clock

The receive clock is generated by a 4 bit up counter and includes the feature of an

optional stall every sixteen cycles. The 4-bit up counter is implemented with an XBLOX

counter module. The terminal count is determined by the value in the Receive Clock Rate

Register. Whenever the multi-timer reset occurs or the terminal count value is reached, the

terminal count value is reloaded from the Receive Clock Rate register (if the stall cycle

option is disabled). The Xilinx can be programmed so that every 16 cycles the Receive

38



clock will stall for a cycle. This stall enable can be performed by writing to the Receive

Control register of the Xilinx register file. The stall counter is implemented with an

XBLOX module that counts to 16 before generating a terminal count signal. Both counters

are driven by the 20 MHz clock. Whenever the stall enable occurs, the receive clock and

the updateof the Receive ClockRate are disabled for one cycle. In the presentversionof

the InfoPad, the Receive Clock Rate register value for the basestation (using the Proxim

radio) is the decimal value of 6, coiresponding to a 2 MHz receive frequency. The stall

enableoptionis disabled so the StallEnableregisterin the ReceiveControl Register must

be zero.The ReceiveClockRate registervalue for the pad (using the Plesseyradio) is the

decimal value of 13, conesponding to a 6.25 MHzreceive frequency. However, the stall

option is enabled on the Plessey receive radio, so the Stall Enable Register mustbe set in

the Receive Control Register.

3.1.3.3. Generating the Timer Clock

The Timer clock for the general purpose timer on theXilinx is generated byusing

an XBLOX clock divider module. This module takes the 20 MHz clock input and divides

it down to 1 MHz.

39



3.1.4. Transmit Data Path

The transmit control block is at the heart of the transmit data path. It is responsible

for formatting the transmit data for the radios, performing forward error correction, and

calculating hardware CRCs. This block is described in VHDL {txpath_ecc.vhd) and is

instantiated in a Viewlogic schematic (txctrljeccJ), It begins processing of data whenever

the transmit packet (TXP) line from the Transmit Chip is asserted. A parallel to serial con

version is performed on the data in order to format it for the transmit radio. While this par

allel to serial conversion is being performed, the first eight bytes of every packet (the

packet header) are forward error corrected (FEC) to the maximum FEC level. Subsequent

bytes of transmit data are error corrected to the level specified by the TXECC signal. CRCs

are calculated on the serial data stream, but are only injected when the TXCRC signal is

asserted by the Transmit Chip. CRCs can be calculated on the header and on the entire

packet. The final stage before sending the transmit stream to the radios is to exor the data

with a code word that helps DC balance the signal in order to aid in transmission.

The I/O for the VHDL design is described below. The Viewlogic schematic merely repli

cates these input and output signals and does not include additional logic, so the schematic

I/O description has been omitted.

Table 3-3. I/O for the VHDL Design of the Transmit Data Path

VHDL Signal
Name

I/O Description

CLK I Transmit Clock

RST I Reset

TXP I TransmitPacket Generatedby TX Chip. High for the durationof a packet

TXS I Transmit Strobe. G^eiated by TX Chip. Data Strobe for each byte of transmit
data.

DIN[7:0] I TransmitData from TX Chip. An acknowledgefrom the transmit radio indicat
ing it is ready to transmit data.

TXECC[1:0] I TransmitError Correction Level fw Body Payload.

0 - No Error Correction

1 - Undefined

2 - Medium Level Error Correction (15,11,1)

3 - Maximum Level Error Correction (15,5,3)

TX.GRNT I Transmit Grant.

40



FRAMEtl5:0] I FrameSync. Stored in theRFXilinx register filein theTXSYNC register which
was [H'ogrammed by the ARM.

TXCRC I Transmit CRC.Whenthis signalis asserted,the RF Xilinxinjects the CRC into
the data stream to the radios.

ZERO I Logical zero. Driven by ground.

ONE I Logical one. Driven by 5V.

DOUT O Output serial transmitdata to transmitradio.

TX.REQ 0 Transmit requestArequest fiom theRF Xilinx to theradio fora transmission.

Theinterface timing signals for theTXChip/RF Xilinx interface canbeseenin thefollow

ing Figure 3-4.

Figure 3-4. TX Bus Control Signals

a

0 ^
1 TXS

? TXCRC

TXD

TXP

TXECC

TXCLK [1]

[IPBook]

X
u.
oc

^First Byte ^ (CRC) ^ Last Byte (CRC)

J

n

41

^ >« txclk ^

11 R

Body Encoding

n



Figure 3-5. Encoder High Level Schematic

TXS

EOP

Counter

(0-14)

M

.s

•s fiB s
s'
o

U

i

€
iS'

ja J3

«o

es
0*

rx^
Main

Control
RRead)

Counter

Block Counter

see Select

Output Select

Input Select ^

Shift Out Enable

Shift

Load

blkCouuntState

Datapath

01^ DP<[7:C

TXEeeilrO]

^—

Data Out

TXCRC

3.1.4.1. Control Logic

Main Control State Machine

The transmit control block is driven by a state machine with ten states called Main

Control, given that it is the main control of the design. The simplified state diagram is pre

sented below, and each state is discussed in more detail in the following section.

42



Figure 3-6. State Machine for the Main Control

"1, 1

uy))

Idle, State "0"

Bit Sync
Transmit
(2 bytes)

Frame Sync
Transmit

(4 bytes)

(15,11,1) FEC

(15,5^) FEC

The select for the Input Mux is set to select the bit sync pattern, and the load signal

is asserted. When load is asserted, the Bit Sync value is latched into the Input Data Shift

Register. The CountS, Countl5, and Block counters are initialized. The countlS and block

counters are not actually used in this state, since they are mainly used for control of the

43



encoding.The statemachine automatically advances to theBit Sync statewhich beginsthe

transmission of the bit sync.

Bit Sync, State '7,2"

The bit sync is a two byte value that is sent to the transmitradio before any data is

transmitted. The bit sync pattern is 0101010101010101. Once the state machine enters

State "7", the CountlS and Block counters are restarted. These counters are not used for

the Bit Sync because the Bit Sync is not forward error corrected.The shift signal is asserted

for each bit of the bit sync that is shifted out of the Input Data Shift Register. Shift begins

the parallel to serialconversionof thedata that was latchedin State "0", i.e. causinga shift

of the Input Data Shift Register and hence an introduction of a new bit ofdata into the pro

cessing path. The select for the Output Mux is set to select non error corrected data.

The select for the Input Mux is set to select the second byte of the bit sync pattern

(which is identical to the first byte) to be processed later in State "2". When the EndofByte

signal is asserted by the counts counter indicating the processing of the first byte of the bit

sync has been completed, the load signal is asserted to load this next byte of the bit sync

into the Input Data Shift Register.

After the first byte of the bit sync has been transmitted, the state machine waits in

State "]' until TXP is asserted by the TX Chip, indicating a packet has arrived and is ready

to be processed. When TXP is asserted, the RF Xilinx generates a transmit request for the

transmit radio. When the radio responds with a transmit grant, then the state machine

advances to State "2' in order to shift out the second byte of the bit sync and to latch the

first frame sync byte.

When the state machine enters State "2", it performs similarly to State "7". The

countl5 and block counters are cleared to 1, although they are not needed since FEC is not

enabled. A transmit request is generated for each bit of data, and the shift signal is asserted

to clock each bit of the bit sync out of the Input Data Shift Register. The SetMoreStuff

signal is set high to indicate the processing of the byte was not completed, i.e. data is

expected after the current bit being processed, which is also not needed unless FEC is per-

44



formed. The Output Mux select chooses non error corrected data output, and the Input Mux

select chooses the first byte of the frame sync. When the entire byte of the bit sync has been

clocked out of the shift register, i.e. EndOfByte is asserted, then the least significant byte

of the frame sync is loaded into the input shift register. The state machine then advances

to State "5".

Frame Sync, States "3,4,5,6"

The frame sync is 4 bytes wide. In an earlier implementation of the RF Xilinx, the

frame sync was 2 bytes wide. These two bytes are programmable by the ARM and are

stored in the RF Xilinx register file. However, problems arose when random noise in the

transmitpath was being falsely identifred as the frame sync. Hence the original 2 byte pat

tern was repeated internally within the RF Xilinx to result in the current 4 byte pattern.

The state machine begins in state "3" by restarting the countl5 and block counters.

These counters are not used for the Frame Sync states because the frame sync is not for

ward error corrected. The state machine generates a transmit request to the radio for each

bit of data to be transmitted. The shift signal is enabled on each transmit clock to advance

the frame sync data out of the shift register. The select for the Output Mux is set to choose

non error corrected data. The select for the Input Mux is set to choose the most significant

byte of the frame sync from the RF Xilinx register file. The state machine stays in State

"3" until the EndOfByte signal is asserted by the countS counter. When the EndOfByte

signalis asserted, the mostsignificant byteof the framesyncis againloadedinto the Input

Data Shift Register. The state machine advances to State "4".

The state machine begins in State "4" by restarting the countl5 and block counters.

Again, these counters are not used becauseFEC is not enabled.The state machinegener

ates a transmit request to the radio for each bit to be transmitted. The shift is enabled on

each transmit clock to advance the frame sync data out of the Input Data Shift Register.

The state machinestays in State "4" until the EndOfByte signal is asserted by the countS

counter. The select for the Output Mux is set to choose non error corrected data. The select

for the Input Mux is set to load the least significant byte of the frame sync pattern after the

current byte is finished processing. As soon as the EndOfByte signal is asserted, the least

45



significant byte of the frame sync is loaded into the Input Data Shift register, and the state

machine advances to State "5".

In State "5", the state machine operates exactly as in State "3". The least signifi

cant byte of the frame sync is again transmitted, and the most significant byte is latched

after the EndofByte signal is asserted (for processing during the next state). The state

machine then proceeds to State "6".

In State "6", the state machine operates similarly to the operation in State "4". The

most significant byte of the frame sync is again transmitted. This state completes the frame

sync processing, and the first byte of input data is now latched into the Input Data Shift

Register after the EndofByte signal is asserted (for processing during the next state). Since

this state marks the beginning of the packet data, the CRC is initialized to a cleared state.

The transmit strobe is also asserted to advise the TX Chip that the RF Xilinx is ready for

the second byte of packet data, having already latched the present byte. The state machine

then progesses to State "7".

No FEC, State "7'^

State "7" is a data processing state for data with disabled EEC. However, it is also

a disembarkation state that is used for one clock after the processing of the frame sync is

completed, regardless of the PEC level. When a transition from state "6" to state "7"

occurs, the first byte of data is shifted serially out of the Input Data Shift Register. It is

important torecognize thatprocessing of thedifferent levels of REG occursimultaneously,

and the only difference between choosing the PEG level is the selectvalue presentat the

Output Mux and the differing control signals from this state machine. Hence, it is under

standablehow all levelsof error correction sharethis statefor the onecycle after the frame

sync processing is completed.

This state begins like previous states, by performing the requisite shifts from the

Input Data Shift Register, setting the Input Mux select to data for the next byte's process

ing, and setting the OutputMux select to non error corrected data. A transmit request is

similarly generated for each bit of data to be transmitted. When the EndofByte signal is

46



asserted, the next byte of data from the TX chip is loaded into the input shift register, if

there are remaining bytes to be transmitted. Otherwise the signals that indicate that more

data is present are cleared.

If the end of an encoding block occurs, i.e. the count! 5 counter has counted down

from 15 to 1, then the state machine will advance to the state corresponding to the

requested error correction level as determined by the ECCSelect signal. If no error correc

tion is desired, then the next state remains at State "7". However, if maximum (15,5,3)

error correction is desired, the state advances to State "9", while the state advances to State

*'8" for medium level (15,11,1) error correction. If no data is remaining, i.e. the TX chip

has not provided the next byte of data, then the state machine returns to the Idle state.

Medium Level FEC, State "8'*

In State "8", the state machine shifts the data out of the Input Data Shift register

and selects non error corrected output data for the Output Mux until the Endllbit signal is

asserted by the count! 5 down counter. At this point, the Output Mux selects medium error

corrected data, and this data begins to be transmitted. The transmit request is still continu

ally generated for the transmit radio for each bit to be transmitted. When the end of a byte

of input data occurs, the RF Xilinx loads the next byte of data and a transmit strobe (TXS)

is generatedfor the TX Chip to indicatethat the RF Xilinx is ready for anotherbyte of data,

if additional data is present to transmit. If the TX Chip does not require further data to be

transmitted, i.e TXP is unasserted, then the signals indicating that additional data is

remaining are cleared.

When the EndEncoding signal is asserted by the count15 counter, then the error

correction level is re-evaluated if there is additional transmit data to process. If no error

correction is desired, then the next state transitions to ''State "7". However, if maximum

(15,5,3) error correction is desired, the state advances to "State "9", while the state

remains in "State "8" for medium level (15,11,1) error correction. If no data is remaining,

i.e. the TX Chip has not provided the next byte of data, then the state machine returns to

the Idle state.

47



Maximum Level FEC, State "9**

In State the state machine shifts the data out of the input shift register and

selects nonerrorcorrected outputdatafor the Output MuxwhiletheEndSbit signalis unas-

sertedby thecountlS downcounter. WhentheEndSbit signalis asserted, the Ou^ut Mux

selectsmaximum error corrected data, and this data beginsto be transmitted. The transmit

request is still continually generated for the transmit radio for each bit to be transmitted.

When the end of a byte of input data occurs, the RF Xilinx loads the next byte of data and

a transmitstrobe (TXS)is generated for the TX Chip to indicate that the RF Xilinxis ready

for another byte of data, if additional data is present to transmit. If the TX Chip does not

require further data to be transmitted, i.e TXP is unasserted, then the signals indicating

additional data is remaining are cleared.

When the EndEncoding signal is asserted by the count15 counter, then the error

correction level is re-evaluated if there is additional transmit data to process. If no error

correction is desired, then the next state transitions to "State "T\ However, if maximum

(15,5,3) error correction is desired, the state remains in "State "9", while the state

advances to "State "8" for medium level (15,11,1) error correction. If no data is remain

ing, i.e. the TXchip has not provided the next byte of data, then the state machine returns

to the Idle state.

Control Counters

The Transmit Control has several counters that help to implement the control of the

transmit data path. These are the countS, the countl5, and the block counters. Each counter

is implemented as a state machine in VHDL and is described separately below.

Counts

The counts counter is a 2 bit up-counter that is initialized to 0 by the control logic

in the Main Control state machine. The counter increments whenever the shift signal (also

from the Main Control state machine) is asserted, and a flip flop latches the counter value

at the rising edge of the transmit clock. When the counter reaches 7, an EndOfByte signal

is generated, and the counter wraps around to 0.

48



CountlS

The countlS counter is a 3 bit down counter that is initialized to 14 by the control

logic in the Main Control state machine. The countlS counter is necessary because the

encoded data is output in 15 bit blocks. The counter is decremented every transmit clock,

and a flip flop latches this value. Before each decrement, however, a line balance signal is

set within this state machine. The line balance pattern is ultimately exor'ed with the output

data in an attempt to help DC balance the transmitted data signal. Several other control sig

nals are also determined by the countlS counter. After the countlS has counted down four

states, the End4bit signal is generated. Similarly, after the countlS has counted down to the

requisite state, the EndSbit, EndlObiUdind End!]bit signals are asserted. These signals help

synchronize when to enable and disable encoding. When the counter reaches the value of

0, the counter generates the EndEncoding signal and wraps around to begin at 14 again.

Block Counter

The block counter is used to determine when to switch from the header encoding

level to the encoding level prescribed by the TXECC signal. The block counter is an up-

counter that counts from 0 to IS. The counter increments whenever the EndEncoding

signal is generated.When the counterreaches IS, it does not wrapback aroundto 0. Instead

it stayslocked at IS, unless the counteris reinitialized by the MainControl statemachine.

49



3.1.4.2. IVansinit Data Path

Figure3-7. HighLevel \^ew Of Transmit DataPath

Bit Sync -
FrameSync-

Data In -

Serial Data

FECllS^J)

FEC(I5,I1,1)

tXoSo--0-IIK>4^ CRCIData Mux

DC Balance

Input Mux

The input mux is used to select the 1 byte input to the Input Data Shift register. The

choices include the bit sync, the MSB of the frame sync, the LSB of the frame sync, and

the input transmit data.

CRC/Serial Data Mux and CRC Control

When the TXCRC line is pulsed high by the TX Chip, the RF Xilinx begins the

transmission of the CRC instead of the serial input data. The RF Xilinx selects the CRC

input of the CRC/Serial Data Mux for 8 cycles after the initial raising of the TXCRC signal.

During the transmission, calculation of the CRC is suspended, i.e. feedback is set equal to

zero. After 8 transmit clock cycles have passed, the CRC Shift Register is clewed, and the

CRC/Serial Data Mux is set to pass the data from the Input Data Shift Register. The TX

50



Chip only raises the TXCRC signal for the header and body CRCs if the data type to be

transmitted is configured to include CRCs.

CRC Algorithm

When the CRC Clear signal is asserted by the Main Control state machine, the CRC

Shift Register is cleared to a value of 0. The CRC is implemented with an 8-bit shift regis

ter. The feedback signal for the CRC is generated by exor'ing the MSB of the CRC shift

register with the input serial data, provided the CRC is not being transmitted. If the CRC

value is being transmitted, the CRC feedback signal is disabled. The CRC is calculated by

writing the feedback signal to the LSB of the shift register, writing the exor of the LSB and

the feedback signal to the second bit in the shift register, and writing the exor of the feed

back and the second bit of the shift register to the third bit of the shift register. Each time

a new bit of data is shifted out of the input shift register, the CRC shift register updates its

values. The MSB of the CRC shift register is the serial output of the CRC data stream.

Figure 3-8. CRC

X— CRC Read
^ CRC Rcgfater f71

Output from
InputData Register limutto
Shift Register , CRC/Data

g(x) = + 1

51



Medium ECC Encoder

The medium ECC encoder is implemented with a 4 bit shift register. The output of

the CRC/Data Mux is exor'ed with the most significant bit of this shift register to generate

the encoder feedback. The encoder feedback signal is only valid while the Endllbit signal

is zero, i.e. after countlS counts off the 11 bits of input data in an encoding block, the feed

back is disabled. At the start and end of the encoding block, the Medium ECC Shift Reg

ister is cleared to zero. Otherwise, the encoder shifts in the feedback signal to displace the

least significant bit (LSB) of the Medium ECC Shift Register. The feedback signal also is

exor'ed with the LSB of the Medium ECC Shift Register and to constitute the second bit

in the Medium ECC Shift Register.

Input Data Mux

Figure 3-9. Medium ECC Encoder

Medium ECC Shift Register

g(x) = + X+ 1

Medium ECC Shift Register

52

Medium ECC Reg[31

Input to
Output
Mux



Maximum ECC Encoder

The maximum ECC encoder is implemented with a 10 bit shift register. The output

of the CRC/Data Mux is exor^ed with the most significant bit of this shift register to gen

erate the encoder feedback. The encoder feedback signal is only valid while the EndSbit

signal is zero, i.e. after countlS counts off the 5 bits of input data in an encoding block, the

feedback is disabled. At the start and end of the encoding block, the Maximum ECC Shift

Registeris clearedto zero.Otherwise, the encodershifts in the feedbacksignalto displace

the least significant bit (LSB) of the Maximum ECC Shift Register. The feedback signal

also is exor'ed with the bits [0:1], [3], and [7] of the Maximum ECC Shift Register in order

to generate the subsequent bits [1:2], [4], and [8] of theMaximum ECCShiftRegister.

Figure 3-10. Maximum ECC Encoder

Maximum ECC Enable

Feedback
Output from
CROSerial
Input Data Mux

Maximum ECC Reg|91

Maximum ECC Shift Register

g(x) =X^® + X® +X^ +X^ +X^ +X+1

Input to
Output
Mux

ECC Selection

The EccReg register contains the value for the error correction level. This value

normally is latched fi-om theTXECC input; however, the first eightbytesof the datapay-

load (corresponding to the header) havea fixed forward errorcorrection that is set to the

maximum level of EEC.

Output Mux

The OutputMux chooses between the maximally error corrected data stream, the

medium error corrected data stream, and the data stream without error correction based on

the setting in the EccReg register. This selection becomes the serial output transmit data

stream.

53



DC Balance

The output transmitdata streamis exor'ed with the line balancepattern generated

by the countlS counter. This pattem is used to aid in DC balancing the transmit data.

3.1.5. Transmit Interface for the Plessey Radio

Overview

The basestation uses the Plessey radio as the transmitter radio. In order to use the

Plessey radio in transmit mode, it must first be programmed to a particular transmit fre

quency whose value is contained in the RF Xilinx register file. After the transmit fi"equency

is programmed, the Plessey waits until a transmit request arrives from the RF Xilinx. When

the transmit request arrives, the radio switches from a low power mode to a higher powered

transmit mode and begins transmitting data until the transmit request line is driven low

again by the RF Xilinx. The Plessey Transmit Interface block is responsible for this pro

gramming and implements the appropriate delays required.

The interface to the Plessey radio is designed in VHDL (plesseyjc.vhd) with a

schematic top level in Viewdraw (txradio_plesseyJ). The VHDLdesign was implemented

with a state machine that contains seven states, as illustrated below in Figure 3-11. In addi

tion to the state machine, the VHDL design contains a 7-bit counter that is used to imple

ment the delays needed when programming the Plessey radio. The VHDL design for the

Plessey interface also drives the antenna select and the radio standby signals. The sche

matic top level for the Plessey transmit interface for the basestation instantiates the VHDL

design and routes the outputs of the design to the pins on the RF Xilinx that control the

Plessey radio. The transmit serial data line is also brought into the schematic from the

Transmit Control block and is passed out to the serial data transmitpin for the Plessey. The

transmit clock fi-om the mult-timer module is also buffered in the Plessey top level sche

matic with a global clock buffer before it is used to drive the VHDL design.

54



Table 3-4. I/O for the \^ewlogic Schematic of the Plessey Interface on the Basestation

Signal Name vo Description

TX_CLKIN I Transmit Clock from Multi-timer block

RESET I Internal SystemReset Controlled by RF Xilinx register file.

HOP.RESET I Hop Reset Controlled by RF Xilinx register file.

TX.REQUEST I Maps to REQUEST in die VHDL block.

TX_FREQ[15:7] I Not used.

T?CFREQ[6:0] I Mapsto channeljn in the VHDLblock.

TX^DOUT I Serial Transmit Data. Originates in Transmit Control Block and is routed to the
Plessey Transmit Data output pin on the RF Xilinx.

TXCNTL(7:0] I Not used.

PL_ANTSEL 0 Ouqiutto thePlessey Radio.Antenna Select Mapstoantselin Plessey Transmit
Controller VHDL block.

PL_POW_LEVEL 0 GuQiut to thePlessey Radio. PowerLevel Select MapstopowerJevel in
Plessey TransmitController VHDL block.

PL_TX_RX 0 Ouq)ut to the Plessey Radio.Transmit/Receive ModeSelect Mapsto txjx in
Plessey Transmit Controller VHDL block.

PL_PA_OFF 0 OuQ)ut to the PlesseyRadio.Power Amplifier On/OffSelect. Maps to paj>ffm
Plessey Transmit Controller VHDL block.

PL_STDBY 0 Ouq)ut to thePlessey Radio. Standby. Maps to stdby inPlessey Transmit Con
troller VHDL block.

PL.LOADB 0 Outputto the Plessey Radio. Active LowLoadLine.Mapsto loadbin Plessey
Transmit Controller VHDL block.

PL_SD[6:0] 0 OuQ)ut to the Plessey Radio.InputDataBusfor Programming the Plessey
Radio. Maps to channeljyut in Plessey Transmit Controller VHDL block.

PL.TXD 0 SerialTransmitData to the PlesseyRadio.From the Tansmit ControlBlock.

TX_CLKOUT 0 BufferedTX_CLKIN. Used to drive Plessey Transmit VHDL design and the
Transmit Control Block.

TX_GRANT 0 Maps to GRANT in the VHDL block.

55



Table 3-5. I/O for the VHDL Design of the Plessey Interface on the Basestation

VHDL Signal
Name

V
0

Description

elk I Input Clock to the PlesseyRadio Interfaceon the Basestation. Drivenby a buff
ered transmit clock finom the multi-time module.

RESET I Internal System Reset Controlled by RF Xilinx legists file (XILCNTLI7]).

HOPJRESET I Hop Reset Controlled by RF Xilinx register file.

REQUEST I Transmit Request Controlled by RF Xilinx Transmit Control Block.

xmit_pow_level I Transmit Power Level. Ouq)ut directly to the ouq)ut pin on the RF Xilinx.

0-Low Power Mode (Receive/Idle)

1-High Power Mode (Transmit)

channel_in[6:0] I Transmit Frequency for Plessey Radio. From the RF Xilinx register file.

channel_out[6:0] o TransmitFrequencyfor PlesseyRadio. Latchedfrom channelJn. Output
directly to the output pin on the RF Xilinx using the SD[6:0] bits described in
the Viewlogic schematic.

loadb 0 Active low load line used to load the Plessey Radio with the Transmit Fre
quency.Output directly to the output pin on the RF Xilinx.

stdby 0 Standby signal for the Plessey Transmit Radio. The radio should always be on
standby when this interface is used, hence this valueshould always be set to one.
Output directly to the ouq)ut pin on the RF Xilinx.

pa_off 0 Power Amplifier on/offSelect.When this signal is zero, the power amplifieron
the Plessey is turned off. Conversely,when this signal is one, the power ampli
fier is turned on in preparation for transmission.Output directly to the output pin
on the RF Xilinx.

tx_rx 0 Receive/Transmit mode select for the Plessey. Should be set to Transmit for this
interface block. Output directly to the output pin on the RF Xilinx.

0 - Transmit

1 - Receive

powerjevel 0 Power Level to the Plessey Radio. Output directly to the ouq)ut pin on the RF
Xilinx.

0 - Low Power Mode (Idle Mode)

1 - High Power (Transmit Mode)

antsel 0 Antenna Select. Originally intended to help provide antenna diversity,this sig
nal is staticallydrivento a valueof zero, corresponding to a choiceof Antenna
1. Any future workon antenna diversitywoulddynamically control this signal.
Output directly to the output pin on the RF Xilinx.

GRANT 0 Transmit Grant. This signal is an input to the Transmit Control block. It is
asserted by the Plessey Interface while the radios are in transmit state, i.e. are in
the process of actually transmitting the Hata

56



State Machine Description

Figure 3-11. State Diagram for Plessey Transmit Controller

Reset

Ramp
OffState

Transmit

Pwr
Amp Delay

Reset

In the Reset state, the state machine waits for two consecutive resets. These resets

are driven by the ARM kernel in the iprf.c file. The first reset can be either a hop reset or

a system reset, and the second resetin the series mustbe a hopreset. When thiscondition

occurs, the state machineclears the delay counterand advances to theLoad Delay State.

Load Delay

In the Load Delay state, the state machinewaits until the delaycounterreaches the

value specified in order to allow theproper time elapse after reset. In thisdesign, theload

delay value is 2 cycles of a clock with a frequency of approximately 1 MHz (using the

transmit clock from the multi-timer). The load delay is approximately 2 p,s. When the

counter reaches this value, it is resets the delay counter to zero, lowers the active low load

line, and outputs the desired transmit firequency to the data input bus of the radio

{<:hannel_out{6'Xi\ intemal to the interface block, SD[6:0] in the higher level schematic).

The state machine also clears the intemal reset signal that was used to detect the first reset

in the Reset Stare. The state machine then advances to the Synth Settle State.

57



Synth Settle

In the Synth Settle State, the active low load line is raised, and the radio is allowed

to settle for approximately 80 ps. This delay is counted by using the delay counter, in the

same manner as it was used in the Load Delay State. The settling time is 85 cycles in the

present design. In this state, the radio is in low power mode, the power amplifier is turned

off on the radio, and the transmit is disabled. When the settling time has elapsed, the delay

counter is reset to zero, and the state machine advances to the Wait State.

Wait State

In the Wait State, the state machine waits for either a reset (system or hop) or a

request to transmit from the Transmit Control Module of the RF Xilinx. The transmit

power mode for the radio is switched from low power to high power in this state, i.e. The

one bit output signal pwrjevel is driven to the value of the input signal xmitjjwrJevel.

The xmitj)wrjevel signal is driven extemally by the 5 V power supply, VDD. If a reset

condition occurs, the state machine will return to the Reset state. However, if a transmit

condition occurs, i.e. the Transmit Control Module raises the TX_REQUEST line, then the

state machine advances to the Power Amp Delay state.

PowerAmp Delay

In the Power AmpDelay State, the state machine enables the transmitter by select

ing the transmit mode of the radio (as opposed to the receive mode). This is accomplished

by writing a zero to the tx rx output signal. The state machine then delays the transmission

of data by 2 ps. This delay is implemented by using the delay timer to count the value for

the Power Amp Delay. The value used in the design is 2, since each cycle is approximately

1 ps. When the counter reaches the Power Amp Delay value, the delay counter is cleared,

and the state machine advances to the Transmit state.

Transmit

In the transmit state, the power amplifier in the radio is turned on by writing a one

to the pa_offoutput signal. The transmitter stays enabled and the GRANT output is driven

58



high while in this state. The state machine stays in this state until the REQUEST signal is

lowered. When the REQUEST signal is driven low, the state machine advances to the

Ramp Ofstate.

Ramp Off

In this state, the GRANT signal is driven low, and the delay counter counts 5 cycles

in order to turn the power amplifier in the radio off and wait for the decay. If the hop reset

is asserted, the state machine retums to the Reset state, otherwise the state machine returns

to the SynthSettle State. When in the SynthSettle state, the radio is switched back to a low

power mode.

3.1.6. Transinit Interface for the Proxim Radio

The Transmit interface for the Proxim radio on the pad is considerably simpler than

the Plessey*s transmitinterface. The loadingof the Proxim's configuration registersis per

formed serially and is under software control in the ARM kernel, iprf.c. The kernel pro

grams the RF Xilinx registers that control the load signal, the data strobe, the serial

conEguration data, the receive/transmit mode select, the standby signal, and the ready

signal for theProxim. Thekernel also handles thetiming requirement for theprogramming

of the Proxim radio. The Proxim radio generates its own transmit clock, so on the pad the

transmit clock from the multi-timer module is not used.

In order to write to the Proxim's registers, the ARM kernel must serialize the data

to be written. The Proxim must be initialized while not in standby mode. Standby

(TX_FREQ[4]) is a low power, reset mode for the Proxim. While the Proxim is not in

standby, thekernel then takes eachbit of the serial data and writes it to the serial configu

ration data register of the RF Xilinx (TXFREQ[2]). Then two writes are performed to

togglethe data strobe(TXFREQ[1]). Whenthe entirewordis strobed into the Proxim, the

load signal (TXFREQ[01) is asserted. This procedure of strobing in serial data and then

assertingbad is continued untilall registersin the Proximhavebeenprogrammed. In addi

tion to programming the Proxim with serial data, the receive/transmit mode select

(TXFREQ[3]) signal must be set to transmit mode. After the Proxim has been pro

grammed, thereadysignal (TXFREQ[5]) should be asserted. Whenthereadysignalis high

59



and a transmit request (TX_REQUEST) arrives from the Transmit Control Block, the

TX_GRANT line is asserted.

The Proxim Transmit Radio interface for the Pad is specified entirely by a View-

logic schematic (pcradioj>roxim.l), and the VOfor the schematic block can be seen below.

Table 3-6. I/O for the \^ewlogic Schematic of the Proxim Interface on the Pad

Signal Name VO Description

TX.CLKIN I Not used.

RESET I Not used.

HOP_RESET I Hop Reset Controlled by RF Xilinx register file.

TX.REQUEST I Originates finom the Transmit Control Block. ANDed with the Proxim_Ready
signal to generateTX_GRANT output.

TX_FREQ[15:6] I Not used.

TXFREQE5] I ProximReady signal.Shouldbe assertedafter the transmitfrequency has been
loaded into the Proxim.

TXFREQ[4] I Proxim Standby.Active low.When this signal is low,all digital electronics are
reset and the radio is put into its low pow^ state.

TXFREQE3] I ProximTX/RXselect When this signal is high, the radio's transmitteris
enabled.

TXFREQE2] I Proxim Serial Data.

TXFREQEl] I Proxim Serial Data Strobe

TXFREQEO] I Proxim SyncLoad.When this signal is high,a writeof the accumulated serial
data in the radio is performedto the internalregistersof the Proxim.

TX_DOUT I Serial Transmit Data. Originates in Transmit Control Block and is routed to the
Proxim Transmit Data output pin on the RF Xilinx.

TXCNTL[7:0] I Not used.

TX.CLKOUT 0 Transmit Clock fortheTransmit Control Block. Driven by anexternal pinbythe
Proxim's Transmit clock.

TX.GRANT O Asserted whenthe Proxim is Readyand TX_REQUEST is high.

3.1.7. Receive Interface for the Plessey Radio

Overview

Thepaduses thePlessey radioas thereceive radio. In ordertousethePlessey radio

inreceive mode, it mustfirstbeprogrammed toa particular receive frequency whose value

is contained in the RF Xilinx register file. After the receive frequency is programmed, the

Plessey enters a receive mode thatterminates onlywhen a hopresetoccurs anda packetis

60



not being received. The Plessey Transmit Interface block is responsible for the program

ming of the Plessey and implements the appropriate delays required.

The interface to the Plesseyradio is designedin VHDL {plessey_r.vhd) with a sche

matic top level in Viewdraw {rxradioj>lessey.l). The VHDL design was implemented

with a state machine that contains four states, as illustrated below in Figure 3-12. In addi

tion to the state machine, the VHDL design contains a 7-bit counter that is used to imple

ment the delays needed when programming the Plessey radio. The VHDL design for the

Plessey interface also drives the antenna select, receive/transmit mode select, standby, and

low/high power mode select. The schematic top level for the Plessey receive interface for

the pad instantiates the VHDL design and routes the outputs of the design to the pins on

the RF Xilinx that control the Plessey radio. The receive serial data line from the Plessey

is output from the schematic to the Receive Control block. The receive clock from the

mult-timer module is also buffered in the Plessey top level schematic with a global clock

buffer before it is used to drive the VHDL design.

In addition to the Plessey Receive InterfaceVHDLdesign, the top level schematic

of the Plessey Receive Block instantiates two other VHDL designs, the RSSI controller

and the Clock Recovery module. The RSSI controller takes the serial input from the

Plessey receiveradio,andwiththehelpof an A/Dconverter on the board, outputs theRSSI

measurement for the receive data packet. The RSSI system is used for both Plessey and

Proxim designs and is discussed in detail in Section 3.1.9. on page 69.

Sincethe Plessey does not have its ownclockrecovery circuitry, a clock recovery

system hadto be implemented. Serial datais received fromthePlesseyradioandis directly

input to this system. The recovery algorithm uses digital interpolation to determine the

optimalsampling point. It also includesa closed-loop updatethat allowstrackingof small

frequencies. The clock recoveryalgorithm will be discussed later in this section.

61



Table 3-7. I/O for the \^ewlogic Schematic of the Plessey Interface on the Pad

Signal Name vo Description

RXCLK.IN I Receive Clock from Multi-timer block

RESET I Intemal SystemReset Controlledby RF Xilinxregister file.M£^s to reset in the
Plessey R^ive Controller design.

HOP.RESET I Hop Reset Controlledby RF Xilinx register file (XILCNTL[7]).M^s to
HOP.RESET in the Plessey Receive Controller VHDL design.

RX_FREQ[15:7] I Not used.

RXFREQ[6:0] I Maps to channelJn in the PlesseyReceiveControllerVHDL design.

RXCNTL[7:0] I Not used.

RXP I Received packet signal. This signal is generated by the Receive Control Block
and set high whenever a frame sync matches on the incoming received data.
RXP stays high during the duration of the reception of the packet, when it is
then set low.Maps to RXP of the Plessey Receive Controller VHDL design.

RA17 I Serial RSSI Data Input from the Plessey Radio via the A/D Converter

CR_IN I Serial Receive Data Input from the Plessey Radio.

PL_ANTSEL 0 Output to the PlesseyRadio. AntennaSelect Maps to antsel in PlesseyReceive
Controller VHDL block.

PL_POW_LEVEL O OuQ)ut to thePlessey Radio. PowerLevelSelect.MapstopowerJevel in
Plessey Receive Controller VHDL block.

PL_TX_RX 0 Ouq)ut to thePlessey Radio. Transmit/Receive Mode Select Maps to tx_rx in
Plessey Receive Controller VHDL block.

PL_PA_OFF O OuQ)ut to thePlessey Radio. PowerAmplifier On/OffSelect.Mapstopa offin
Plessey Receive Controller VHDL block.

PL_STDBY 0 OuQ)ut to thePlessey Radio. Standby. M^s to stdbyin PlesseyReceive Con
troller VHDL block.

PL.LOADB 0 Outputto thePlessey Radio. Active LowLoadLine.M^s to loadbin Plessey
Receive Controller VHDL block.

PL_SD[6:0] 0 Ouq)ut to thePlessey Radio. InputDataBusfor Programming thePlessey
Radio.Maps to channel_out in PlesseyReceive ControllerVHDLblock.

RSSICLK O Ou^ut Clock for the A/D Converter.Used to Strobe in the convertedRSSI Mea
surementData.Maps to ser_clk of RSSI ControllerBlock.

RSSICNVT 0 Active low Convert Signal that issues a start ofconv^ion command to the A/D
converter. Maps to convtj in the RSSI ControllerBlock.

RX.READY 0 Maps to ready in the Plessey Receive Controller VHDL block.

RSSLVALID 0 Activehigh signal indicating that the valuein the RSSIregisteris the current
RSSI measurement. Used to generatean RSSI interruptin the IRQmodule.Gen-
erated by the RSSI Controller VHDL design.

RSSI[11:0] 0 RSSImeasurement data. Generated by theRSSIController VHDL designand
ou^ut to the ARM interface module of the RF Xilinx.

RX.DIN o Serial Receive Data.Originates from Plessey radioinputto RF Xilinx. witha
destination of the Receive Control Block.

62



RXCLK.BUF 0 Buffered RXCLK.IN

RXCLK.OUT 0 Clock used to drive the Receive Control Block. Derived from feeding
RXCLK.IN through the Clock Recovery Block.

RX.READY 0 Maps to ready in the Plessey Receive Controller VHDL block.

RSSI.VALID 0 Active high signal indicating that the value in the RSSI register is the current
RSSI measurement.Used to g^erate an RSSI intemipt in the IRQ module.Gen-
^ted by the RSSI Controller VHDL design.

RSSI[11:0] O RSSI measurement data. Generated by the RSSI Controller VHDL design and
ou^ut to the ARM interface module of the RF Xilinx.

RX.DIN 0 Serial Receive Data. Originates from Plessey radio input to RF Xilinx. with a
destination of the Receive Control Block.

Table 3-8. VO for the VHDL Design of the Plessey Radio Interface on the Pad

VHDL Signal
Name

VO Description

elk I Input Clock to the Plessey Radio Inter&ce on the Basestation. Driven by a buff
ered receive clock from the multi-time module.

reset I Internal System Reset Controlled by RF Xilinx register file.

HOP.RESET I Hop Reset Controlled by RF Xilinx register file.

RXP I Received packet signal. This signal is generated by the Receive Control Block
and set high whenever a frame sync matcheson the incomingreceiveddata.
RXP stays high during the durationof the receptionof the packet, whenit is
then set low.

stdby 0 Standbysignal for the PlesseyReceiveRadio. The radio should alwaysbe on
standby when this interface is used, hence this value shouldalways be set to one.
Output directly to the output pin on the RF Xilinx.

pa_off 0 PowerAmplifier on/offSelect.When this signal is zero, the poweramplifieron
thePlesseyis turnedoff. Conversely, when this signal is one, the powerampli
fieris turnedon in preparation for transmission. OuQ)ut directlyto theoutputpin
on the RF Xilinx.

tx_rx 0 Receive/Transmit mode select for the Plessey. Should be set to Receive for this
interface block. OuQ)ut directly to the output pin on the RF Xilinx.

0 - Transmit

1 - Receive

power_level 0 Power Level to the Plessey Radio. Output directly to the ouQ)utpin on the RF
Xilinx.

0 - Low Power Mode (Idle/Receive Mode)

1 - High Power (Transmit Mode)

antsel 0 Antenna Select Originally intended to help provide antenna diversity,this sig
nal is statically driven to a value of zero, corresponding to a choice of Antenna
1. Any future work on antenna diversity would dynamically control this signal.
Ou^ut directly to the ou^ut pin on the RF Xilinx.

ready 0 Active high signal that indicates the Plessey radio is ready to receive data.

63



channel_in[6:0] I Receive Frequency forPlessey Radio. From theRFXilinx register file.

channel_out[6:0] 0 ReceiveRequency forPlessey Radio. Latched from channelJn. Output directly
tothe ouq)ut pin onthe RFXilinx using the SD[6:0] bus described inthe\fiew-
logic schematic.

loadb 0 Activelowload line used to load the PlesseyRadio withthe ReceiveFrequency.
Ouqmtdirectly to the outputpin on the RF Xilinx.

stdby o Standby signal for thePlessey Receive Radio. Theradioshould always be on
standby when thisinterface is used, hence thisvalue should always besetto one.
Outputdirectlyto the outputpin on the RF Xilinx.

pa_off 0 Power Amplifier on/ofif Select. When thissignal is zero, thepower amplifier on
thePlessey is turned off.Conversely, when thissignal is one, the power ampli
fieris turnedon in preparationfor transmission. Outputdirectly to theouq)utpin
on the RF Xilinx.

tx_rx 0 Receive/Transmitmode select for the Plessey. Should be set to Receive for this
interface block. Output directly to the output pin on the RF Xilinx.

0 - Transmit

1 - Receive

power_level 0 Power Level to the Plessey Radio. Output directly to the output pin on the RF
Xilinx.

0 - Low Power Mode (Idl^eceive Mode)

1 - High Power (Transmit Mode)

antsel o AntennaSelect Originally intended to help provide antenna diversity,this sig
nal is statically driven to a value of zero, corresponding to a choice of Antenna
1. Any future work on antenna diversity would dynamically control this signal.
Ouq)ut directly to the output pin on the RF Xilinx.

ready 0 Active high signal that indicates the Plessey radio is ready to receive data.

64



State Machine Descrintion for Plessev Receive Controller

Figure 3-12. State Diagram for Plessey Receive Controller

Reset

Receive

fad
lay

Reset

In the Reset state, the state machine waits for two consecutive resets. These resets

are driven by the ARMkernel in the iprf.c file. The first reset can be either a hop reset or

a system reset, and the second resetin the series mustbe a hopreset. When thiscondition

occurs, the state machine clears the delay counter and advances to the Load Delay State.

LoadDelay

In the Load Delay state, the state machinewaits until the delay counter reaches the

value specified in order to allowthe propertimeelapseafterreset. In this design, the load

delay value is 2 cycles of a clock with a frequency of approximately 1 MHz (using the

receive clock from the multi-timer). The load delay is approximately 2 p,s. When the

counter reaches this value, it is resets the delay counter to zero, lowers the active low load

line, and outputs the desired receive fi*equency to the data input bus of the radio

{channel_oul[():Qi\ inside the interface block, SD[6:0] in the higherlevel schematic). The

state machine also clears the internal reset signal that was used to detect the first reset in

the Reset Stare. The state machine then advances to the Synth Settle State.

65



Synlh Settle

In the Synth SettleState, the activelow load line is raised, and the radio is allowed

to settle for approximately 80 |is. This delay is counted by using the delay counter, in the

same manner as it was used in the Load Delay State. The settling time is 85 cycles in the

present design. In this state, the radio is in low power mode, the power amplifier is turned

off on the radio, and the transmit is disabled. When the settling time has elapsed, the delay

counter is reset to zero, and the state machine advances to the Receive State.

Receive

In the Receive state, the ready line is pulled high. The Plessey radio stays in this

receive mode until a hop reset occurs and a latched version of RXP {startj'cv) goes low,

i.e. reception of the packet has completed. When this occurs, the state machine advances

to the Reset State.

Table 3-9. I/O for the VHDL Design of the Clock Recovery Module

VHDL Signal
Name

vo Description

elk I Input Clock to the Plessey Radio Interface on the Basestation. Driven by a buff
ered receive clock from the multi-time module.

reset I Internal SystemReset Controlled by RF Xilinx register file.

datajn I Serial input data from the Plessey Receive Radio

rxsync_enb I Receive Sync Enable. Maps to RXP in the schematic. Clock recovery is only
enabled when a packet is being received.

clock_out 0 Recovered Received Clock. Passed to Receive Control Block.

data_out 0 Recovered Serial Receive Data. Passed to Receive Control Block.

Clock Recovery Module

The clock recovery module is necessary only for the Plessey receive radio, because

the Proxim provides its own clock recovery. The design was performed in VHDL and can

be found in clk_recovery.vhd. This algorithm is designed to be tolerant to spurious noise,

as well as frequency offsets that can occur when the transmit and receive frequencies drift.

This drift is due to limited precision in the oscillators during receipt of long packets.

66



A free running phase counter (phasejc) is started in order to provide a reference

point for the phaseO mark used in the clock recovery. The input data stream datajn is first

oversampled 10 times by a sample clock with a 10%duty cycle. The oversampled data is

shiftedinto the 10-bitwidedata reg shift register. Anotherregistercalledclockis also 10-

bits wide, and it stores a 1 in the location of the bit that should be sampled in the data_reg

shift register.

An accumulator {sum) is used to obtain data for the clock recovery decision. Data

in the accumulator is changed if the data_in value and the data point ten samples ago are

different. Whenever a 1is shifted into the data_reg shiftregister, anda 0 is shifted out, the

sum register is incremented. Likewise, if a 0 is shifted in, and a 1is shifted out,sum is dec

remented. If a 1 is shifted in and out (or a 0 is shifted in and out), then the sum is

unchanged. In this fashion, the integral of the samples can be obtained.

Before reception of a packet occurs, a new sampling point is determined (i.e. the

bit in thedatajn shift register thatcorresponds to theoutput data) whenever theaccumu

latorreaches a value greater than the largestvalue provided the largest valueof the accu

mulator is at least6. (Themaximum valuethe accumulator can reachis 10.)Whenever this

condition occurs, the value in the accumulator (sum) is latched to become the new largest

value, and the sample phase is latched from thephase counter (phase_c).

If the data stream becomes a stream of zeroes, the algorithm enters a low power

mode. The sample phase is notchanged butthe largest value is set to 6, which basically

causes the sampling point to berecalculated. In practice, the packets transmitted over the

InfoPad wireless length arenotlong enough toencounter theproblem with frequency drift

that the low power mode addresses. Areduced complexity clock recovery system could be

implemented thatonly requires thecalculation ofthesampling point once during theentire

system operation.

The clockrecovery algorithm outputs the sampled data (data_out) and the sample

clock (clk_out), whichis ultimately passes through to the Receive Chip.

67



3.1.8. Receive Interface for the Proxim Radio

The receive interface for the Proxim radio on the basestation is considerably sim

pler than the Plessey's receive interface. The loading of the Proxim*s configurationregis

ters is performed serially and is under software control in the ARM kernel, iprf.c. The

kernel programs the registers in the RF Xilinx that control the load signal, the data strobe,

the serial configuration data, the receive/transmit mode select, the standby signal, and the

ready signal for the Proxim. The kernel also handles the timing requirement for the pro

gramming of the Proxim radio. The Proxim radio generates its own receive clock, so on

the basestation the receive clock from the multi-timer module is not used.

In order to write to the Proxim*s registers, the ARM kernel must serialize the data

to be written. The Proxim must be initialized while not in standby mode. Standby

(RX_FREQ[4]) is a low power, reset mode for the Proxim. While the Proxim is not in

standby, the kernel then takes each bit of the serial data and writes it to the serial configu

ration data register of the RF Xilinx (RXFREQ[2]). Then two writes are performed to

toggle the data strobe (RXFREQ[1]). When the entire word is strobed into the Proxim, the

load signal (RXFREQ[0]) is asserted. This procedure of strobing in serial data and then

assertingload is continueduntil all registersin the Proximhave beenprogranuned.In addi

tion to programming the Proxim with serial data, the receive/transmit mode select

(RXFREQ[3]) signal must be set to receive mode. After the Proximhas been programmed,

the ready signal (RXFREQ[5]) should be asserted.

The Proxim Receive Radio interface for the Pad is specified entirely by a View-

logic schematic irxradioj)roxim.l\ and the I/O for the schematic block can be seen

below.

68



Table 3-10. I/O for the Viewlogic Schematic of Proxim Interface on the Basestation

Signal Name vo Description

RX.CLKIN I Not used.

RESET I Not used.

HOP.RESET I Hop Reset Controlled by RF Xilinx register file.

RX_FREQ[15:6] I Not used.

RXFREQ[5] I Proxim Ready signal. Should be asserted afto' the receive frequency has been
loaded into the Proxim.

RXFREQ[4] I Proxim Standby. Active low. When this signal is low, all digital electronics are
reset and the r^o isput into its low pow^ state.

RXFREQ[3] I Proxim TX/RX select When this signal is low, the radio is in receive mode.

RXFREQ[2] I Proxim Serial Data.

RXFREQ[1] I Proxim Serial Data Strobe

RXFREQ[0] I Proxim Sync Load. When this signal is high, a write of the accumulated serial
data in the radio is performed to the internal regist^ of the Proxim.

RX_DIN I Serial Receive Data. Originates from the Proxim Radio.

RXCNTL[7:0] I Not used.

RX_CLKOUT 0 Transmit Clock for the Transmit Control Block. Driven by an external pin by the
Proxim's Transmit clock.

3.1.9. RSSI

The Plessey and Proxim radios each have an analog RSSI (Reduced Signal

Strength Indicator) output that is sent through an A/D converter on both the pad and the

basestation. The RF Xilinx provides the RSSI clock and the start of conversion signal to

the A/D and accepts the serial input of the digitized RSSI data for further processing. The

RSSI is mainly used in the mobility feature of the pad in order to determine to which cell

the pad should be assigned when operating over a region containing more than one cell.

3.1.9.1. Initiating an RSSI Measurement

The RF Xilinx generates a "start of conversion" signal (RSSI_START) by latching

the rising edge of the received packet (RXP) signal. The RXP signal is generated by the

Receive Control Module of the RF Xilinx. Hence, an RSSI measurement is performed by

the A/D converter at the start of every received packet. This circuitry is implemented with

discrete components in a Viewdraw schematic that is instantiated in the Receive Radio

Interface Module. This RSSI_START signal is one input to the RSSI Control Module, a

69



module that is described in VHDL and whose purpose is to control the reading of serial

data from the A/D converter.

3.1.9.2. Control of RSSI Serial Data

As was mentioned in the last section, the reading of serial data from the A/D con

verter is controlled by the RSSI Control Module. This module is described in VHDL

{adjcntl.vhd) and is instantiated in the Viewlogic schematic in the Receive Radio Module

(rxradioj>lessey.l, rx_radioj)roxim.l). The VHDL implements a state machine which

generates the appropriate control signals to the A/D.

Table 3-11. I/O for the RSSI Controller

VHDL Signal
Name

vo Description

Ext_Req I Active highexternal requestfor an RSSI interrupt This is one of the vestigial
remains of the original Xilinxdesign that is no longerused.Originally it
allowed for the host to initiate an RSSI measurement at times other than the start
of a received packet. The hostwroteto a register in theXilinxregister fileto
control this.Nowthis inputis grounded in the Viewlogic schematic, although it
is still implemented in the VHDL.

Ser_Data_In I Serial data from the A/D converter that constitutes the measurement of the RSSI
signal from the receive radio.

Start_Read 1 AlsoRSSI_START. This activehighsignalcausestheRSSIcontrollerto initiate
the start of an RSSI measurement.

Reset I System Reset

Clk I Receive Clock

Data_VaIid 0 Active high signal to indicates when thedatain theRSSI measurement register
is valid. Once a measurement is completed, thissignal is set high andremains
high until the start of the next measurement.

Data_Out[l 1:0] 0 RSSI Measurement value.

Ser.Clk O Also RSSI_CLK. This is the ouq)ut from the RSSI Controllw to the A/D Con
verter, and it is used to strobe data from the A/D. The RSSI controller latches the
Ser_Data_In signalon the fallingedge of this clock.

ConvtJ O AlsoRSSLCONVT. Thisisan active low signal to theA/Dconverto* to instruct
it to beginan A/Dconversion on the RSSIsignal.

70



Figure 3-13. State Diagram for RSSI Controller

Anvtiat^
Conversion

Watt
Strobe
Data

Assert
Data Valid

Idle State

When the RSSI controller is in the Idle state, the serial clock and convert signals to

the A/D converter are inactive. The RSSI controller monitors the RSSI_START signal

which will advance the state machine to the Initiate Conversion State.

Initiate Conversion State

When the RSSI_START (Read.Start) signal goes high, the RSSI.CONVERT

signal is pulsed low for one cycle (1 |is) and is output to the Pi/D converter. The

RSSI_VALID signal,whichindicateswhetheror not thedata in the RSSIregisteris a valid

measurement, is lowered to zero during the conversionprocess, therebyindicating that the

measurement in the RSSI measurement register is invalid until the present conversion is

completed.

Wait for Conversion State

The RSSI Controller then raises the RSSI_CONVERT line and idles for 7 cycles (7 p,s)

while waiting for the A/D converter to finish performing the conversion.

Strobe Data State

When these 7 cycles have elapsed, the RSSI_CLK is pulsed high for one cycle and

pulsed low for 1 one cycle. The data is latched when the clock is low and is fed into a 16-

71



bit shift register, MSB first. This process continues fora total of sixteen cycles, one cycle

for each bit of the RSSI measurement from the A/D converter.

Data Valid Stskte

When the entire measurement has been obtained, the RSSI_CLOCK signal is deac

tivated and left at zero, and the RSSI_VALID signal is asserted.The RSSI Controller then

returns to its idle state to await the next activation of the RSSI_START signal.

3.1.9.3. Methods for Reading the Resultant RSSI Measurement

There are two separate methods for obtaining the RSSI Measurement from the RF

Xilinx. The first method saves the RSSI values to a register in the ARM interface module

of the RF Xilinx. An interrupt is generated by the IRQ block whenever the RSSI_VALID

signal is raised. Whenever the interrupt occurs, this value is written to the Status Register

in the RF Xilinx to indicate that an RSSI interrupt has occurred, as opposed to a timer inter

rupt. When the host receives this interrupt, it can read the RSSI register in the RF Xilinx

register file. The RSSI registers are implemented in VHDL {armif.vhd), while the interrupt

circuitry for the RSSI is in the Viewlogic schematic form (irgblock.l).

Alternatively, another method is implemented in VHDL {rxpath ecc.vkd) so the

host can send an RSSI Measurement Packet down to the pad or basestation. This packet is

of a particular data type called RSSI_TYPE (presently type 0x04). This type is hard-coded

into the Receive data path of the RF Xilinx. When the third byte of the packet (the pad alias

and sequence number must be included for this to work properly) corresponding to the data

type arrives, the Receive Data Path performs a check to see if the data packet is of the RSSI

packet type. Ifa match occurs, the data from the RSSI register {arrnif.vhd) will be packaged

into a return packet also of the RSSI packet type and retransmitted across the wireless link.

The Receive data path will inject the RSSI Measurement into the received packet, over

writing the previous data in the third and fourth bytes of the data payload. This alternative

for RSSI measurement was implemented in order to support antenna diversity.

72



3.1.10. Receive Data Path

The receive control block is at the heart of the receive data path. It is responsible

for formatting the received data from the radios, decoding the forward eiror correction, and

checking the hardware CRCs. This block is described in VHDL {rxpath_ecc.vhd) and is

instantiated in a Viewlogic schematic {rxctrl_eccJ). An XBLOX component is also

instantiated within the VHDL file {rxpath_ecc_decode.l). The Receive Control Data Path

continually shifts data from the radios into its Input Data Shift Register. When the data in

the shift register matches the frame sync, the Main Control State Machine is activated, and

the RF Xilinx decodes the data via an external EPROM lookup table, performs a serial to

parallel conversion on the data, and generates the Receive packet signal (RXP) and receive

strobes for the RX Chip to use in order to latch the bytes of data from the bus. The RF

Xilinx also calculates the CRC on the incoming data and checks to make sure it matches

the previously calculated CRC.The RF Xilinxcontinuesreceivingdata until the RX Chip

asserts the End of Packet signal (RX_EOP).

The I/O for the Viewlogicschematic is describedbelow. The Viewlogicschematic

also includes the Rx Kick circuitry described in Section 3.1.11, as well as I/O to the

EPROM that serves as a lookup table for the error correction.

Table 3-12. I/O for the \^ewlogic Schematic of the Receive Control Block

Signal Name vo Description

F_SYNC[15:0] I Mapsto RXSYNC in RF Xilinx registerfile. Framesyncfor thereceive data
packets.

RESET I SystemReset controlledby RF Xilinx register file.

RSSI_VAL[11:0] I RSSI Measurement value supplied by Receive Radio Module

RX_CRC I ReceiveCRC.When this signal is assertedby the RX Chip, the RF Xilinxiden
tifies the current byte as a CRC value.

RX.DIN I Receive Serial Data from the Receive radio

RX_ECC[1:0] I Error Ccmection level for Received data payload - from RX Chip

RX.EOP I ReceiveEnd of Packet signal from RX Chip. Indicates to the RF Xilinx that all
bytesof the packethavebeenreceived, and the end of the packet has occurred.

RXCLK.OUT I BufferedClock from the RXCLK provided by the multi-timer module

RX.KICK I Resets the RXP line wheneveran infinite length packet is suiq>ected. Controlled
by the RX Kick register in the RF Register file. Discussedin Section 3.1.11.

ROM_DATA[7:0] I Decoded receive data from the external EPROM lookup table.

ROMADDR[16:0] 0 Address to the external EPROM used to decode the receive data

73



RX_DOUT[7:0] 0 Received data output to the RX Chip

RXS 0 ReceiveHata strobe. Strobehigh for eachbyte of received data to indicatethat
the RX Chip can latch the data value.

RXP 0 Receive packet signal. Indicates totheRXChip thata packer is being received.

RXP2 0 Buffered RXP fen* use by the Receive Radio Module

DISTNOW 0 When thissignal is asserted, thebits from theexternalEPROM thatindicate the
distance (i.e. the number of errors in a block) of the raw data from the decoded
Hatfl can be latched in ordo*to calculate an error count. This signal is not cur
rentlyused, but is available for future implementations.

Table 3-13. I/O for the VHDL design of the Receive Data Path

Signal Name I/O Description

FRAME[15:0] I Maps to RXSYNC in RF Xilinx register file. Frame sync for the receive data
packets. Maps to F_SYNC in Viewlogic schematic.

RESET I System Reset controlled by RF Xilinx register file and RX Kick module.

RSSI_VAL[11:0] I RSSI Measurement value supplied by Receive Radio Module

RXCRC I Receive CRC. When this signal is asserted by the RX Chip, the RF XUinxiden
tifies the current byte as a CRC value.

DIN I Receive Serial Data from the Receive radio. Maps to RX_DIN in ^ewlogic
schematic.

RXECC[1:0] I Error Correction level for Received data payload - from RX Chip

EOF I Receive End of Packet signal from RX Chip. Indicates to the RF Xilinx that all
bytes of the packet have been received, and the end of the packet has occurred.
Maps to RX_EOP in Viewlogicschematic.

CLK I Buffered Clock from the RXCLK provided by the multi-timer module. Maps to
RXCLK_OUT in Viewlogic schematic.

RomData[7:0] I Decoded receive data from the external EPROM lookup table.

RomAddr[16:0] 0 Address to the external EPROM used to decode the receive data

DOUT[7:0] 0 Received data output to the RX Chip. Maps to RX_DOUT in Viewlogic sche
matic.

RXS 0 Receive data strobe. Strobe high for each byte of received data to indicate that
the RX Chip can latch the data value.

RXP 0 Receivepacketsignal. Indicates to the RX Chip that a pack^ is being received.

distNow 0 When this signal is asserted, the bits from the external EPROM that indicate the
distance (i.e. the number of errors in a block) of the raw data firom the decoded
data can be latchedin order to calculatean error count.This signal is not cur
rently used, but is availablefor future implementations.

The interface timing signals for the RX Chip/RF Xilinx interface can be seen in the

following Figure 3-4.

74



RXS

EOP

,RXP

Figure 3-14. RX Bus Control Signals

HntByte (CRQ Last Byte (CRC)

X
u.
QC

n n

h m m m '

n

Body Enc

n

m
[IPBook]

Figure 3-15. Decoder High Level Schematic

n
A

55

Counter

(0-14)

S'
w

U
a.

Q

Main

Control

s
u

§
o
w

i
CA

B.

Q r 1
X

Counter

(0-7)

Block Counter

(0-15)

bIkCouuDtState

DOUT[7:01
/ ^

RXECC[1:0]

y-

Data InDatapath ^

ai

a

Byte Counter

(0-8)

75

RXCRC



3.1.10.1. Control Logic

Main Control State Machine

The receive control block is driven by a state machine with three states called Main

Control, which basically controls the signals to the RX Chip interface, i.e RXS and RXP.

The simplified state diagramis presentedbelow,and each state is discussedin more detail

in the following section.

Figure 3-16. State Machine for the Main Control

«0"

«1'

«2"

Clear Counters

Waitfor Frame Sync

Generate RXP

Checkfor end
ofpacket

State "0"

The state machine clears the counters in the design with the dpClear signal. If the

frame sync has been identified, the state machine sets the setRxActive signal high and

advances to State "1".

State "1"

76



Once in State "7", the state machine asserts the RXP line to indicate to the RX Chip

that a packet is beingreceived.Whenthe receptionof the current 15bit block is completed,

the state machine advances to State "2" to check to see if more data should be received.

State *'2**

The state machine continues to assert RXP and verifies that there is still data to

receive, i.e. rxActive is not zero. If there is additional data to receive, the machine starts in

this state; however, if there is no further data, the state machine returns to state zero where

the RXP line is de-asserted.

Control Counters

The Receive Control has several counters that help to implement the control of the

receive data path. These are the countS, the countlS, byte, and block counters. Each

counter is implemented as a state machine in VHDL and is described separately below.

Counts

The counts counter is a 2 bit up-counter that is initialized to 0 by the control logic

in the Main Control state machine. The counter increments whenever the shiftScount signal

(also from the Main Control state machine) is asserted, and a flip flop latches the counter

value at the rising edge of the transmit clock. When the counter reaches 7, the receive

strobe (RXS) signal is asserted, and the counter wraps around to 0 and sets RXS back to

zero.

CountlS

The countl5 counter is a 4 bit up counter that is initialized to 2 by the control logic

in the Main Control state machine {dpClear^ i.e. Data Path Clear). The countl5 counter is

necessary because the encoded data is received in 15 bit blocks. The counter is incremented

every receive clock, and a flip flop latches this value. Before each increment, however, a

line balance signal is set within this state machine. The line balance pattern is ultimately

exor'ed with the input data to remove the DC balance applied to the transmitted data signal.

Other control signals are also determined by the count15 counter. After the countl5 has

77



counted down fourteen states (to a count value of 13), the EndMhit signal is generated.

This signal helps synchronize when to enable and disable decoding. When the counter

reaches the value of 14, the counter generates the EndlSbit signal and wraps around to

begin at 0. When the count15value equals 0, the Input Data Shift Register is loaded {load-

InDatReg = 1).When the count15 value equals 14, the Error Correction Register is loaded

with the value for the decoding error coirection level {loadEccReg = 1). When countl5

equals 1 or 9, the address for the external EPROM is loaded into the ROMOut Register

{loadROMOutReg =1).

Byte Counter

The byte counter is used to determine when insert the RSSI measurement if the

received packet is of type RSSI_PACKET. This counter is a 4 bit up counter that counts

from 0 to 8. It is cleared to zero whenever the RXP signal is asserted.

Block Counter

The block counter is used to determine when to switch from the header decoding

level to the decoding level prescribed by the RXECC signal. The block counter is an up-

counter that counts from 0 to 15.The counter increments whenever the loadEccReg signal

is asserted. If the block counter is less than or equal to 7, the eiror correction level is set to

maximum error correction. Otherwise it is set to the value in the RXECC register. When

the counter reaches 15, it does not wrap back around to 0. Instead it stays locked at 15,

unless the counter is reinitialized to zero by the Main Control state machine via the dpClear

(Data Path Clear) signal.

78



3.1.10.2. Receive Data Path

Figure 3-17. High Level \^ew Of Receive Data Path

DC Balance

Serial Data In

/j

ECC Mux

Load

RSSI-^

CRCIData Mux CRC
Good/Bad

Data Out

DC Balance

The Serial data input from the receiveradios in exor'ed with the line balancepat

terngenerated by the countS module. Thisremoves the linebalance added by the transmit

data path. The output is passed to the Input Data Shift Register{inputdatoReg).

Ippwi Dato Shift

The Input Data Shift Register is used to accumulate the data from the serial data

input It is 15 bits wide which corresponds to the 15bit blocks used in the error correction

encoding. The Input Data Shift Register has two outputs. The first is a serial data stream

that is used for data without encoding and as an input to the CRC calculation module. The

second is a 15 bit parallel input to a 15 bit register (parallln) that is used to latch the 15 bit

79



value. This latching occurs whenever the loadlnDataReg signal is asserted. This signal is

asserted whenever the count15 counter reaches a value of zero.

Parallel Data Register

This registeris loadedaccording to theprevioussectionwith a 15-bitblockof input

data. This value becomes the lower 15 bits of the address used to index the external

EPROM.The upper two bits of the address are determinedby whicherror correction level

is chosen. This will be discussed in the following section on the Receive Decoding Com

ponent.

Receive Decoding Component

The Receive Decoding Component is instantiated as a black box in the VHDL file,

and is specified by a Viewdraw schematic that uses XBLOX modules, most notably an

internal PROM, not to be confused with the external EPROM that functions as the EEC

look up table. The error correction level and the value of the countl5 counter are input to

an internal PROM whose contents are described by the rx_decode_ecc.mem file. Based

upon the inputs to the PROM, the two upper address lines to the external EPROM are gen

erated (lutAddr), as well as a data signal (infobit) that acts as a flag to signal when bits of

data are present, as opposed to the added redundancy.

External EPROM LUT

The external EPROM is a AM27C010 EPROM that is programmed with the

epromdatasrc file. The EPROM is has a 16-bit address. The EPROM can be thought to

have four "pages" of data that are indexed by the error correctiontype. Only two pages are

actually needed. A third page is mapped to non-error corrected data, while a fourth is unde

fined. The data output is a 5 bit data value (DataOut[7:3]) accompanied by a 3 bit indicator

(DataOut [2:0])of how many errors were corrected in the decoding of that block. If more

than 1 error is present in medium error corrected data, this 3-bit value will be invalid. In

the case of the maximum error correction, if more than 3 errors are present, the 3-bit value

will also be invalid. This is due to the fact that if a greater number of errors than the code

80



can correct occurs in a block, an entirely incorrect code word may be selected. The contents

of the EPROM were generated by Kathy Lu in support of her master's thesis.

EPROM Output Shift Register

When the loadRomOutReg signal is asserted, the EPROM output shift register

loadsthe 8-bitdata outputfromtheextemalEPROM. Whentheload signalis not asserted,

theEPROM output shiftregister begins shifting dataoutof its serialportwitha destination

of the ECC Mux.

ECC Mux

The Error Correction level is set to maximum when decoding one of the first eight

bytes of data. Otherwise, the error correction level is set to the value specified by the

RXECC signal.

If the error correction level is uncoded, the ECC Mux passes the serial input data

from the Input Data Shift Register on to the next stage of the datapath: the CRC £uid

ShiftRegOut shiftregister. If oneof theerrorcorrection levels is selected, the serial output

from the EPROM Output Shift Register is instead passed on to the CRC andShiftRegOut

shift register.

Output Shift Register

Whenever shiftScount is asserted, i.e. the current byte has been processed and

relayed to the RX Chip, the output shift register begins shifting in the next byte of data.

This data originates from the ECC Mux.

CRC Algorithm

When the CRC Clear signal {dpClear) is asserted by the Main Control state

machine, the CRC ShiftRegister is cleared to a value of 0. The CRCis implemented with

an 8-bit shift register. The feedback signalfor the CRCis generated by exor'ing the MSB

of the CRC shift register with the input serial data, provided the CRC is not being trans

mitted. If the CRC value is being transmitted, the CRC feedback signal is disabled. The

81



CRC is calculated by writing the feedback signal to the LSB of the shift register, writing

the exor of the LSB and the feedback signal to the second bit in the shift register, and writ

ing the exor of the feedback and the second bit of the shift register to the third bit of the

shift register. Each time a new bit of data is shifted out of the input shift register, the CRC

shift register updates its values. Whenever the RXCRC line is raised, the contents of the

CRC register are examined. If any of the bits is a 1, the CRC is invalid. An eight bit value

is generated to correspond to valid (0x00) or invalid (Oxff). This byte is then sent to the

output mux.

Figure 3-18. CRC

CRC Read
g CRCReabterm

—0—[1—0
KSS" CRCShBIRegisUr
Shift Register

g(x) = X® + +1

•(wH3

Threshold for CRC and the Output Mux

The Output Mux selects between the CRC valid byte, the received data, and the

RSSIdata. WhenRXSis strobed, the RXCRC line is examined to see if it has been pulsed

highby the RX Chip.If the RXCRC line is high,the CRCbadsignalis checked. If the CRC

is invalid, Oxff is relayed in the data stream to the RX Chip. However, if the CRCis valid,

0x00is relayed in the datastream to theRXChip. This is truefor both the header andpay-

load CRCs.The RX Chip only raises the RXCRCsignalfor the header and body CRCsif

the data type to be received is configured to include CRCs.

If the RXCRC signal is not high, the data type is examined to determine whether

or not the data is an RSSI packet. If the packet is of type RSSI, the third and fourth bits of

the payload are replaced with the value from the RSSI measurement from the receive radio.

82



The remaining bytes of the packet are untouched. If the packet is not an RSSI packet, then

the received data bytes are passed through to the RX Chip.

3.1.11. RX chip Work-around

With the Receive Control Block is the RX Chip work around. It is implemented

with a Viewlogic schematic {rxjunstick.l), It is necessary to recover from a possible

receiver chip lockup. If a packet received over the radio Unk has a length of Oxffffor if the

Receiver EOF signal is not sent to the RF Xilinx, the receive state machine in the Xilinx

can lock up in the receiving state indefinitely. The ARM has to periodically call a routine

with a period longer than the longest possible packet (every second or so should be fine).

This activates a state machine in the Xilinx which detects if the RX_KICK register has

changed twice or more while RXP has stayed TRUE. If so, the receive state machine is

reset, and the unit continues as before. This condition often occurs at start-up, but is usually

not seen during operation. A sample of the ARM code used to perform this function can be

seen below.

void iprf_UnstickRXP(void)

{

*XILCNTL = RF_UNSTICK_RXP_MASK

♦XILCNTL = _xil_RunMask;

}

The I/O for the RX Kick module can be seen below.

_xil_RunMask;

Table 3-14. I/O for the Viewlogic Schematic of the Receive Control Block

Signal Name I/O Description

RXCLK.OUT I Buffered Clock from the RXCLK provided by the multi-timer module

RXP2 I Buffered RXP for use by the Receive Radio Module

RESET I System Reset controlled by RF Xilinx register file.

RX.KICK I Resets the RXP line wheneveran infinite length packet is suspected. Controlled
by the RX Kick register in the RF Register file.

NewReset 0 System Reset or RX Kick if infinite length packet is suspected

83



3.1.12. Interrupt Handling

The RF Xilinxinterrupts the ARMin two cases.The first case is whenevera timer

event occurs, and the second case is when an RSSI measurement is ready. A register (XIL-

STAT) stores which event causes the interrupt to occur, and the ARM is responsible for

reading this register and deciding which event to service. The interrupt remains high until

the ARM clears it by writing to the appropriate bit in the XILCMD register.

3.1.13. Genera! Purpose Timer

The Xilinx contains a general purpose timer that is a 16-bit up counter which gen

erates an interrupt whenever its terminal count is reached. The timer is implemented by a

Viewdraw schematic {irqblock.l) that uses an XBLOX module for an internal counter. The

XBLOX modules are used for the counter in order to help provide a tighter constraint on

the routing of time critical data paths. The timer is driven by a 1 MHz clock that is gener

ated in the multi-timer module. The terminal count for this 16-bit up counter is loaded from

the 16 bit Timer Register in the Xilinx when any of the following three conditions occur:

1. Reset

2. ARM processor updates the Upper Byte of the Timer Register

3. The counter has reached the terminal value

There is also a fourth vestigial condition called an external load that is implemented

in the timer module, but is not used in the Xilinx design. This provides for some external

event controlling when the terminal count is updated from the Timer Register. The load

signal is generated by a logical OR of these events, and a one cycle load pulse is generated

to enable the data input port on the XBLOX counter module.

Whenever the terminal condition is reached, i.e. whenever the counter counts up to

the value in the Timer Register, an active high timer interrupt to the host is generated. Since

there is only one interrupt line to the host to support all events in the Xilinx that might cause

an interrupt, whenever the timer interrupt occurs, the Timer Interrupt Status Register is

updated. The host can then read this status register to determine which event has caused

the external interrupt. The interrupt stays high until it is cleared. The interrupt is cleared

84



when the host writes to the Timer Interrupt Acknowledge register or when a reset condition

occurs.

3.2. The ARM kernel

3.2.1. Register Mapping

The ARM kernel was modified so that the register reads and writes corresponded

to theregisters in the EDACXilinx. A complete listingof basestation, pad, and wiredreg

ister descriptions can be seen in the Appendix, Section 6.1. on page 108.This registerre

mapping resided mostly in modifying themasks andregister addresses in the include files

of the kernel, however several changes were made in the ARM code in order to accommo

date the EDAC Xilinx register mappings. In an attempt to maintain one design that was

currently undergoing development in addition to the EDAC integration, ifdefcommands

were used to delineate the "non-ECC" code from the "ECC" code. In this manner, the flow

control andotherdevelopments to thekernel thatwerecompatible with the original Xilinx

could continue, andtheEDAC Xilinx waskeptcurrent. Relevant files for register mapping

changes are rjxiLh, rficiljnasks.K and rfxil_h.s,

3.2.2. Writing to the RF Xilinx Registers

Most of the registers in the RF Xilinx are write only registers. The ARM kemel

uses mask variables in order to shadow the value of each register write. In addition, bit

masksare maintained in an include file that correspond to writing to only a particular bit

in a register without overwriting all the other bits. When writes to the registers are per

formed, the ARMkemel ORs the bit mask of the value to be writtenwith the shadowvari

able of the register. Hence, only the bit that is intended to be changed is altered in the

register write. This is especially important when clearing interrupts, avoiding resetting the

entire system, etc.

For example, in the include file Tjxiljnasks.K the bit maskfor the system reset is

defined. Reset is controlled by the first bit in the RF XilinxControl Register (XILCNTL):

#define RF_XIL_RESET__MASK 0x01 //bit 0 of XILCNTL

85



A shadow variable is declared in iprf.c in order to shadow the XILCNTL register. Each

register in the RF Xilinx that contains separate functionalities per bit or groups of bits

needs a shadow register. The current design shadows the control register, the transmit con

trol register, and the receive control register. The shadow variable can be seen below:

static int _xil_RunMask;

When a write to the Reset bit in the XILCNTL register is desired, the kernel ors the

RESET_MASK with the _xil_RunMask and then writes this value to the XILCNTL regis

ter. In this manner, other bits like the Loopback bit which is also in the same register, are

not inadvertently cleared. An example is seen below:

*XILCNTL = RF_XIL_RESET_MASK | __xil_RunMask;

3.23. Reading the RF Xilinx Registers

Reading the RF Xilinx registers is accomplished in assembly code in the ihandlers

file. Whenever an interrupt occurs, this code reads the RF Xilinx Status (XILSTAT) reg

ister to determine whichevent has triggered the interrupt. If the interruptis an RSSI inter

rupt, then the XILRSSIMSB and XILRSSILSB registers are read. The C code in the kernel

can only access the RSSI value through a call to the RSSI handler.

3.2.3.1. Resolving Interrupts

As was discussed in the previous section, the assembly code is responsible for

resolving the interrupts. The Xilinx Status register contains two bits, one for the timer and

one for the RSSI. Whenever the Xilinxasserts its interruptline, the appropriate event des

ignator is set in the Status register (XILSTAT).

3.23.2. Acknowledging Interrupts

When an interrupt is received, it is acknowledged by writing to the appropriate

acknowledge bit in the XILCMDREG register. Again, the two events that can generate an

interrupt are the timer and the RSSI.

86



3.2J.3. Obtaining an RSSI Value

An RSSI interrupt is generated on every received packet. In order to obtain the

RSSI value, it is only necessary to call the kemeFs interrupt service routine

(kernel_RegisterISR) and provide it with the interrupt mask for the RF Xilinx interrupt

3.23.4. Reset

The active high reset for the RF Xilinx is maintained by an internal register that has

to be set by the ARM. A register write to the RF Xilinx reset register (XILCNTL[0]),

causes an intemal systemreset in the RF Xilinx. This write operation is performed in iprfx.

3.23.5. Loopback Mode

The RF Xilinx supports a loopback mode which enables testing of the InfoPad

hardware without sending data through the radios. Transmitted data is simply routed back

through the RF Xilinx to the Receive ASIC, bypassing the radios. Loopback mode is acti

vated by setting the RF Xilinx loopback register (XILCNTL[2]). This write operation is

performed in ipif.c.

3.2.3.6. Plessey Interface

The ARM mustwritetheprogramming datafor thePlesseyRadio to theRF Xilinx.

The Plessey must be programmed with the transmit or receive frequency, depending on

whether the configuration is for the pad or the basestation. The transmit and receivefre

quencies are programmed by writing to XILTXF and XILRXF, respectively. This pro

gramming is performed in iprf.c.

3.23J. Proxim Interface

The Proxim interface is not as simplified as the Plessey interface. The Proxim has

several tasks in the ARM associated with it In order to set up the uplink or downlink, the

ARM executes a sequence of writes to the XILTXF or XILRXFregisters. Each bit of these

register (when programming the Proxim) has a different meaning. These signals are dis

cussed in detail in Section 3.1.6 and Section 3.1.8. This programming is performed in

iprf.c.

87



Proxim Register (XILTXF or XILRXF)

Figure 3-19. Proxim Register Bit Definitions

Bit position

7 6 5 4 3 2 1 0

1: Ready Stdby Tx/Rx Syn- Syn- SynLd
Data Clk

Ready: Set high when the ARM has completed the programming of the Proxim Radio.

Standby: Set low when the radio is being programmed.

Tx/Rx: Set to 1 for Transmit, 0 for Receive

Syn_Data: Serial data input for programming the divider word into the Proxim

Syn_Clk: Data strobe for each bit of the divider word

SynLd: Load signal asserted when the divider word has been completely written

Proxim Initialization

• TakeProxim out of standby mode by writing a 1 to the active low Standby bit.

• Write thereference divider word to the register in order to program the frequency for
the radio.This is a serialwrite. Each bit that is written must be accompanied by a write
to the Strobe bit in the register. When the entire word has been strobed in, the ARM
writes a 1 to the Load bit in the register.

• Set the Rx/Tx option on the Proxim radio.

• Enable the radio by writing a 1 to the Ready bit.

3.2.4. Using the Timer

The terminal count for the timer is set by writing to the XILTIMERLSB and XIL-

TIMERMSB registers. These writes occur in timer.c. The timer will generate an interrupt

whenever this terminal value is reached. The timer will then wrap around to zero. It is

important to remember that the timer register is write only.

3.2.5. Controlling the RX Chip Work Around

In order to keep the RX chip firom locking up, the iprf UnstickRXP function (in

iprf.c) is calledevery 10seconds. The timerhandler function is set up in the rxjnit func-

88



tion (in iprx.c) in order to set this 10 second periodicity. The iprfJJnstickRXP function

writes a 1 to the Kick bit of the Xilinx Control Register (XILCNTL). This kicking

action ensures that if an infinite length packer is received, the system will not remain

locked up. See "RX chip Work-around" on page 83.

89



3.3. Debugging Procedure

3.3.1. Simulation of Tinier with Software

At the onset of this project, the EDAC Xilinx did not support an internal timer. In

the initial phase of testing, timer controlledevents were replaced by software looping that

estimated the duration of the original timer specification. A timer was added to the EDAC

Xilinx after the fost stage of integration had been accomplished. The timer controlled

events in the kernel were then reinstated.

3.3.2. Self-Test Infrastructure

In order to aid the integration process, it was important to add a test function to the

kernel. This self test was activated by a switch in the command line, and once activated, it

caused data packets to be transmitted and received. This simple loopback test could be used

to verify basic functionality of the system, i.e. functioning receive and transmit packet sig

nals. After the self-test was integrated, the next step was to modify the kernel to support

the new Xilinx register.

The self test that was added to the ARM kernel allowed the basestation and pad to

transmit and receive the same data and verify that the data was not corrupted. This was a

good litmus test for functionality, as it enabled print statements to be added to the kernel

as the testing and debugging progresses. When the loopback test worked, the transmission

and reception of a data packet had been verified. At first, CRC and ECC were kept deacti

vated, but eventually they too were included in the loopback test.

90



3.33. LEDs

There are eight LEDs on the InfoPad circuit board that could be used for debugging

purposes.

Figure 3-20. Diagnostic LEDs

RFYilinv Pin »

^igQgll

cs c» On oo r-.
ONoooooooo f-r-

OmPu&PuCU CuPi4 Oh

OOOOOOOO

Q. I-". !M. cn. 7^. •!- •« tS
Si

CU Oh

cd
0)

I
X
X
G

3
X

00 lao OD M) &0
U V O

0^ 0^ 0^ 0^ 0^

^ SS cS ^ ^
*PN •wm

S 2 2 S S ^

The LEDs consist of a heartbeat controlled by the RF Xilinx, a receive packet LED, a trans

mit packet LED, and 5 LEDscontrolled by the register in the RF Xilinx registerfile. The

programmability of the LEDsprovides for a moreflexible testing environment. Userlevel

code in the ARM can be used to control the five LEDs for debugging or status purposes.

3.3.4. Probe of Internal Xilinx Signals

The internal signalsof the EDAC Xilinxdesign werebrought out to test pins on the

board during critical parts of the debugging process. These signals were probed with an

oscilloscopeor the DAS in order to determinewhere a statemachine may have locked up,

the presenceof the clock, and to ensure that the chip was not stuck in a reset state. Signals

could be broughtout in one of two ways. If the signal was not synthesizedinto an interme

diate signal of a CLB, it could be probed using XACT's EditLCA tool. This helped to

verify problems in routing. In particular, the pin for the RSSI input from the A/D would

sometimes not route automatically, so the EditLCA was used to re-route hard to place sig

nals as well as add the external probes that could be used to minimally modify the design

routing. Using EditLCA also saved the enormous compile time required for modifying the

91



design. Unfortunately, some signals were unreachable from the LCA file. Many of the

counters were optimized to the extent that the original signal could not be accessed for

probing. It was then necessary to bring outcertain signals by hand within the Viewlogic

schematics and resynthesize the entire design.

3.3^. Gateway Test

The final test of the system was to boot the pad and basestation, and to then start

the gateway enabling the X-terminal link to the workstation.When this was accomplished,

the new EDACXilinx appearedto exhibit the samefunctionality as the originalRF Xilinx.

The user was able to use the pen input successfully,view QuickTimetext/graphicsmovies,

as well as take advantage of the other features of InfoPad. Although this was a subjective

measure, it did indicate that some degree of integration had occurred.

92



^ Analysis

4.1. Channel Statistics

Analysis on the channel statistics was performed by using user level code in the

ARM kernel in order to transmit and receive packets with known data. If errors were

present in thereceived packets, these errors were printed to the screen via a serial linkand

logged. During normal operation of the InfoPad systemin the laboratory environment, the

presence of errors in thepacketpayload was minimal to the extent that forward error cor

rection was not necessary. These results can be seen in Table 4-1. The test includedmea

surements from 10,000 received packets (with 20-byte payload) on boththe uplink andthe

downlink.

Table4-1. Statistics From System Test During Normal Operation

% of Packets with

Incorrect Body CRCs
[1]

% of Incorrect Payload Bits

[2]

Downlink - ^

NoECC 0 0

15,11,1 ECC 0 0

15,5,3 ECC 0 0

Uplink

NoECC 0.02% 0.00125%

15,11,1 ECC 0 0

15,53 ECC 0 0

[1] Out of 10,000packetsreceived, the percent of the received packetswith invalidbody
CRCs and valid header CRCs.

[2] Out of 10,000 * 20 ♦ 8 bits received in the payload of the packets, the porcent of those
bits with errors

93



In order to obtain a better idea of how forward error correction could potentially

increase the reliability of packet transfer, interference was added by operating two bases-

tations and pads at the same frequency, and observing the error rates as forward error cor

rection levels were varied on the payload.

4.1.1. Interference Test Description

Each pad and basestation transmitted 10,000 packets with 20 byte payloads. The

experimentalbasestation/pad pair transmitted payloadscontainingall zeroes.The interfer

ence basestation^ad pair transmitted a 0x0002 in each 2 bytes of its payload. The experi

mental basestation/pad pair were connected by serial cables to the workstation in order to

record whenever errors were received. The contents of the received packet were printed to

the screen if errors were noted by the test program running on the pad and basestation. The

interference and experimental systems were programmed with different frame syncs to

eliminate synchronization problems. It was difficult to perform a completely controlled

experiment due to the lack of exact knowledge about the injected enors. Other interference

was possible in the laboratory environment due to blocking and various other sources of

random noise. Hence, this aim of this experiment was to see if forward error correction

could in fact improve reliable reception under adverse conditions. It is important to note

that this experiment is introducing interference through jamming with another basestation/

pad pair operating at exactly the same frequencies.

94



4.1.2. Test Results

Table 4-2. Statistics from System Test with Added Interference

% of Packets with

Incorrect Body CRCs

[13

% of Incorrect Payload Bits

[2]

Downlink 4 s % ' •. > V ? ,

NoECC 67% 1.7%

15,11,1 ECC 57% 2.2%

15,5,3 ECC 10% 0.17%

Uplink

NoECC 0.84% 0.013%

15,11,1 ECC 3.1% 0.16%

15,5,3 ECC 7.5% 0.40%

[1]Out of 10,000 packets received, thepercent of the received packets with invalid body
CRCs and valid header CRCs.

[2]Outof 10,000 * 20 * 8 bits received in the payload of thepackets, thepercentof those
bits with errors

Theuplink experienced very few errors on the non error corrected test, so it is dif

ficult to conclude anything from the received data on the basestation. The medium and

maximum levelsof errorcorrection appear to provide worse performance, but with sucha

small sample oferrors, thisisquite possibly theeffects ofrandom burst errors. Ontheother

hand, thedownlink experienced quitea fewerrors (67% of BodyCRCs invalid) in the non

errorcorrected case, giving a much bettersample for comparison. The maximum level of

error correction provided quite a significant improvement over no error correction. The

mediumerrorcorrectionlevel in fact performed worseon the averagethan havingno error

correction. This will be discussed below. One must also remember that the errors were

somewhat random in nature, and more errors could have been introduced in a one time

interval than in another.

One possible explanation for the high percentage of errors on the downlink (and

very few on the uplink even operating under high interference conditions) is the fact the

uplink uses a direct sequence spread spectrum radio, while the downlink uses a hopping

spread spectrum radio with hopping disabled. Since the hopping is disabled on the down-

95



link, most of the benefits of spread spectrum are lost, hence the high error rate under jam

ming conditions.

In order to provide a better understanding of the nature of errors in this test, a his

togram of the data was performed to examine the burstiness of the channel using the non-

error corrected case. Pie charts were also compiled to see the how many 15-bit blocks con

tained certain numbers of errors. In bursty channels, short error correcting codes can rarely

improve reliability in communication. The medium error correcting code fails ifmore than

one error in a 15 bit block occurs, while the maximum error correcting code fails if more

than three errors occur in a 15 bit block. The histogram below charts the probability of an

enor occurring in each of the 14 bits following a bit error. Note: Bit errors only contribute

to the histogram once, hence only the first bit error in a cluster is used to start the histogram

measurement, i.e. each the starting point for the 15 bit block used in a histogram does not

re-initialize with every bit error.

96



1 «Tor

Figure 4-1. Breakdown of Burst Length in 15 Bit Blocks

2 errors

7 eiTors

6 errors

3% 2% 5errors
.3^, 4 errors

3 errors

This chart show the percentage of 15 bit blocks in the experiment that contain various
numbers of errors. It is useful to see how many errors appear in a 15 bit block in order to
determine what level of error correction could be effective. A 15 bit block is defined as a

beginning with an error and continuing until 15 bits are counted. The next 15 bit block
begins with the occurrence of the next error.

From this pie chart, it appears that medium error correction would be beneficial

38% of the time, while maximum error correction would be beneficial 89% of the time.

The data in Table 4-2 does not confirm this, however, but it could be the result of a small

sample of actual errors. The errors are also time varying, as someone walking into a room,

a power supply activating, etc., can introduce noise.



1 error

Figure 4-2. Breakdown of Burst Length in 15 bit Blocks

> 4 errors ^
2% 4% 4errors

3 errors

2 errors

This chart show the percentage of 15 bit blocks in the experiment that contain various
numbers of errors. It is useful to see how many errors appear in a IS bit block in order to
determine what level of error correction could be effective. A 15 bit block is defined as a

beginning with an error and continuing until 15 bits are counted. The next 15 bit block
begins with the occurrence of the next error.

From this chart, one can see that 55% of the 15 bit blocks in the test contained only

1 error, while 94% of the blocks contained 3 errors or less. With this data, one can see that

the maximum level of error correction seems quite appropriate for this test, while medium

error correction would work in approximately half of the cases. When medium error cor

rection is used when burst errors are present, medium error correction can actually intro-



duce errors to the data stream by incorrectly decoding the incoming data when a received

word has more errors than the error correcting code can accommodate. This appears to be

the case apparent in the statistics of Table 4-2.

Figure 4-3. Histogram of UpLink Errors

I 2 3 4 5 6 8 9 ID 11 12 )3 14

Bit positions following the first bit in a 15 bit block

This histogram shows the distribution of bit wrors in 15 bit blocks given that the first bit
in the block is an error (uplink).This is a histogram of the following 14 bits in the 15 bit
block.

Given one bit error, the histogram above (Figure 4-3) shows the number of occur

rences of errors in the subsequent 14 bits of the block on the uplink. This data was accu

mulated with the interference test setup described above over 10,000 packets. One can see

that the errors are quite bursty in nature. Given this data, it appears that even the maximum



level of error correction would not be sufficient, because following the first error of a 15

bit block, it appears very likely that the first three bits following that error will also have

errors. When the burst of errors exceeds lengths of 3 errors, problems occur with the decod

ing when using short BCH codes without interleaving.

Figure 4-4. Histogram of Downlink Errors

1800

601400

g 1200

s 1000
n

2 3 4 5 6 7 6 9 10 11 12 13 14

Bit positions following the first bit in a 15 bit block

This histogram shows the distribution of bit errors in 15 bit blocks given that the first bit
in the block is an error (downlink). This is a histogram of the following 14 bits in the 15
bit block.

The errors on the downlink appear to be extremely bursty in natiu'e. From this data

(Figure 4-4), the most striking data is the fact that given an error at the beginning of a 15

bit block, it is very likely that the second bit following that error will also contain an error.

100



This again indicates that medium error correction would be less suitable than maximum

error correction in this case.

4.2. Area

Table 4-3. Xilinx Resource Usage for Each Design

F/G H CLB Flip-flops

Totals Function Function (out of 800)

Generators Generators

(out of 800) (out of400)

Pad 669 109 400

Pad (no EDAC) 491 76 388

Basestation 635 105 362

Base (no EDAC) 507 85 338

Wired 550 94 327

Eachmodule in theRF Xilinx design occupies a certainnumber of function generators and

CLB flip-flops. A breakdown of the modules is shown in the table below to illustrate the

relative complexity of each module in the RF Xilinx. Some modules are common to all

three designs, butas themapping varies slightly foreventhesame module, only thelargest

value is included in the table below. For instance, the Multi-timer module occupies 22

F&G function generators in the pad design, but 23 in the basestation and wired designs.

Hence, the largest value is reported in the table below.

Table 4-4. Xilinx Resource Usage by Module

Module

F&G

Function

Generators

H

Function

Gen^ators

CLBFUp-
flops

Receive Data Control 148 30 108

Trasmit Data Control 165 53 60

Plessey Transmit Radio InterfEice 37 9 25

Plessey Receive Radio Interface 116 18 101

Proxim Transmit Radio Interface 0 0 0

Proxim Receive Radio Interface 44 6 38

)\^red Mode Transmit Module 0 0 0

101



Module

F&G

Function

Generators

H

Function

Generators

CLBFlip-
iBops

Wired Mode Receive Module 44 8 43

ARMInterfrce 110 4 83

llmer/IntOTupts 24 0 20

Multi-timer Module 23 3 25

LED Control 5 0 4

The main difference of the EDAC Xilinx design from its predecessor is the addition of the

FEC and CRC data paths. For a comparison, resource usage for the RF Xilinx transmit/

receive datapath without error correction and CRCs is shown in Table 4-5.

Table 4-5. Xilinx Resource Use for Tx/Rx Data Path without EDAC

F/G H

Totals Function Function CLB Flip-flops

Generators Generators

Transmit Data Control 55 14 43

Receive Data Control 84 5 65

Hence, adding CRCs and the two levels of forward error correction impacted the RF Xilinx

design by using 4 times the function generators and 1.4times the flipflops on the transmit

path, and 2 times the function generators and 1.7 times the flipflops on the receive path.

4.3. Power

An estimateof the powerconsumption of the RF Xilinxdesign wasperformed. The first

step in performing the analysis involved providing power to the basestation with a power

supply equipped with an ammeter in series. The system was booted through the serial link

with the RF Xilinx design in the test mode. The board consumed 5 V at .8 A while this

design was operational regardless of the degree oferror correction selected. Next the board

was booted without the RF Xilinx design being initialized, and the board consumed 5 V at

.7 A. Hence, the RF Xilinx consumes approximately 0.5 W.

102



Table 4-6. Power Measurements

Test Voltage Current Power

Basestation without RF Xilinx design 5V 0.7 A 3.5 W

Basestation with RF Xilinx design 5V 0.8 A 4.0 W

RF Xilinx design alone (calculated from previous measuranents) 5V 0.1 A 0.5 W

103



5 Conclusion

5.1. Summary

The InfoPad system provides an excellent research platform for characterizing

trade-offs in error correction techniques. Not only is the error correction logic implemented

with an FPGA providing flexibility for design change, the InfoPad infrastructure allows

characterization of the wireless link. This master's project included an integration of a new

FPGA design that added error correction and detection into the system. In addition to

system integration issues, a QOS protocol was also added to the InfoPad system to allow

round trip communication from host to pad and back. This protocol enables the system to

feedback information about the amount of errors encountered by the system in order to

determine what error correction level is most appropriate for the channel.

Although an error correction system may be a viable option for the InfoPad system,

signiticant improvement was only observed with the maximum error correction level on

the downlink channel. While this is an improvement, it is difficult to justify using these

short forward error correction codes that can only correct small bursts of errors. Without

interleaving, short codes are largely ineffective for correcting burst errors, and the addi

tional bandwidth required can be prohibitive. It is recommended that more analysis be per

formed to determine the most prevalent burst lengths encountered by the system, and an

error correction code should be designed with that in mind. During normal system opera

tion, very few errors were encountered, indicating that error correction is unnecessary.

However, mobility and operation of the pad far fi'om the basestation could warrant the error

correction, making a scheduler a critical part of the system.

104



5.2. Future Directions

Further research can be performed using the InfoPad as a test platform in order to

characterize the nature of noise bursts in indoor wireless environments. More extensive

measurements could be taken, with future emphasis on the peiformance of the CDMA

radio with different levels of error correction. By measuring the channel and acquiring real

data that reports the actual errors encountered in the system, this data can be used for stim

ulus in simulation of different error correction techniques. This could lead to improved

knowledge of the actual effect of error correction on the system, which is far more valuable

than simulating with a Gaussian noise signal.

In addition to using the InfoPad as a measurement platform, the system feedback

protocol introduced in Chapter 2 can be used as hooks to a variable QOS scheduler. As the

number of users in a cells increases with the addition of the CDMA radio, bandwidth and

power consumption,schedulingwill becomeincreasinglyimportant to the successful oper

ation of the InfoPad system.

105



[ESP]

[Le95]

[LinCostello]

[Ylu93]

[Ylu96]

[InfoPad]

[Ples94]

[Prox92]

[Prox90]

[XUl]

[XU2]

Bibliography

"Implementing CRCs." Embedded Systems Programming, 1992.

Le, M.T.; Burghardt, P.; Seshan, S.; Rabaey, J. InfoNet: The
networking infrastructure of InfoPad. COMPCON'95.
Technologies for the Information Superhighway, San Francisco,
CA, USA, 5-9 March 1995).

Lin and D. Costello, Error Control Coding. Englewood Cliffs, NJ:
Prentice-Hall, 1983.

Yuming Kathy Lu. "Error-control coding with applications for the
infopad: research project'*. Master's Project at UC Berkeley. 1993..

Yuming Lu; Brodersen, R. "Unified power control, error correction
coding and scheduling for a CDMA downlink system." Proceedings
IEEE INFOCOM '96, San Francisco, CA, USA, 24-28 March
1996). Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 1996. p.
1125-32 vol.3.

InfoPad Book. Internal document. Description of InfoPad system.
1995. '-'infopad/IP2/arm/IP2.book.

DE6003 Digtial Radio Transceiver Specification. GEC Plessey
Semiconductors. Scotts Valley, CA. Jan 1994.

RDA Series Reference Manual. Proxim, Inc. Mountain View, CA.
Oct 12,1992.

RXA Series Reference Manual. Proxim, Inc. Mountain View, CA.
Oct 1,1990.

XACT Viewlogic Interface Users Guide. Xilinx. April 1994.

XACT Libraries Guide. Xilinx. April 1994.

106



[Xil3] Xilinx User Guide and Tutorials. Xilinx. 1991.

[Xil4] The Programmable Logic Data Book. Xilinx. 1994.

107



^ Appendix

6.1. Pinout for RF Xilinx at Board Level

Pin# Init Oper Pin# Init Oper Pin# Init Oper

1 NC NC 2 GND GND 3 NC NC

4 A16 EDTl 5 A17 O 6 RXEOF

7 RXCRC 8 TDI RXENCA 9 TCK RXENCB

10 RXCLK 11 RXP 12 (VO)

13 (I/O) 14 GND GND 15 CADDR3

16 RXS 17 TMS RXD7 18 CADDR2

19 vo 20 VO 21 CADDRl

22 RXD6 23 RXD5 24 CADDRO

25 GND GND 26 VCC VCC 27 RXD4

28 RXD3 29 RXD2 30 RXDl

31 VO 32 VO 33 RXDO

34 DICLK 35 DroiN 36 DIDONE

37 GND GND 38 (VO) 39 (VO)

40 EINO 41 EINl 42 EIN2

43 EIN3 44 EIN4 45 EIN5

46 EIN6 47 EIN7 48 Ml —

49 GND GND 50 MO — 51 NC NC

52 NC NC 53 NC NC 54 NC NC

55 vcc VCC 56 M2 — 57 DIDOUT

58 HDC DIRST 59 DIENB 60 ICLK

61 IDIN 62 LDC IRST 63 IDONE

108



Pin# Init Oper Fin# Init Oper Pin# Init Oper

64 IDOUT 65 (VO) 66 (VO)

67 GND GND 68 lENB 69 T?CENCA

70 TXENCB 71 TXP 72 VO

73 vo 74 TXS 75 TXD7

76 TXD6 77 /INIT — 78 VCC VCC

79 GND GND 80 TXD5 81 TXD4

82 TXD3 83 TXD2 84 RSSICLK

85 RSSICNVT 86 TXDl 87 TXDO

88 TXCRC 89 NRST 90 GND GND

91 a/o) 92 (VO) 93 RAO

94 RAl 95 RA2 96 RA3

97 RA4 98 RA5 99 RA6

100 RA7 101 GND GND 102 NC NC

103 DONE — 104 NC NC 105 NC NC

106 VCC VCC 107 NC NC 108 /PROG

109 D7 D7 110 (PGCK3) BIT.CLK 111 RA8

112 RA9 113 D6 D6 114 RAIO

115 RAll 116 RA12 117 (VO)

118 (I/O) 119 GND GND 120 RA13

121 RAM 122 D5 D5 123 /CSO /CCS

124 RA15 125 RA16 126 RA17

127 RBO 128 D4 D4 129 RBI

130 VCC VCC 131 GND GND 132 D3 D3

133 /RS /RS 134 RB2 135 RB3

136 RB4 137 RB5 138 D2 D2

139 RB6 140 RB7 141 RB8

142 GND GND 143 (VO) 144 (VO)

145 RB9 146 RBIO 147 D1 D1

148 RDY INTOUT 149 RBll 150 RB12

151 DO DO 152 DOUT O 153 CCLK —

154 VCC VCC 155 NC NC 156 NC NC

109



Pin# Init Oper 1Pin# Init Oper 1Pin# Init Oper

157 158 NC NC 1 159

160 GND GND 161 AO/WS /ws 162 A1 EDCl

163 EDCO 164 EDC2 165 A2/CS1 —

166 A3 EDC3 167 RB13 168 RB14

169 (I/O) 170 (I/O) 171 GND GND

172 RB15 173 RB16 174 A4 EDC4

175 A5 EDC5 176 RB17 177 TSTO

178 TSTI 179 TST2 180 A6 EDC6

181 A7 EDC7 182 GND GND 183 VCC VCC

184 A8 EDC8 185 A9 EDC9 186 TST3

187 TST4 188 TST5 189 TST6

190 AlO EDCIO 191 All EDCll 192 TST7

193 MCLK 194 GND GND 195 (VO)

196 (I/O) 197 VO 198 VO

199 A12 EDC12 200 A13 EDC13 201 VO

202 vo 203 A14 EDC14 204 A15 EDTO

205 VCC VCC 206 NC NC 207 NC NC

208 NC NC



6.2. Pinout of RF Xilinx Functional Design

Pin# vo Name Description

4 0 R0MADDR[16] Address to the Lookup Table in the EPROM

6 I RXEOP End of Received Packet Signal

7 I RXCRC Receive CRC Enable

8 1 RXENCA Receive Error Correction Level Select (RXECC[1})

9 I RXENCB Receive Error Correction Level Select (RXECC[0})

10 0 RXCLK2 Receive Data Clock

11 0 RXP Receive Packet Signal

15 I CADDR[3] Address line from the ARM

16 0 RXS Receive Data Byte Strobe

17 0 RXD[7] Received Data

18 I CADDR[2] Address line from the ARM

21 1 CADDR[1] Address line from the ARM

22 0 RXD[6] Received Data

23 0 RXD[5] Received Data

24 I CADDR[0] Address line from the ARM.

27 I RXD[4] Received Data

28 0 RXD[3] Received Data

29 0 RXD[2] Received Data

30 0 RXD[1] Received Data

33 o RXD[0] Received Data

40 I ROMDATA[0] Data from the Lookup Table EPROM

41 I R0MDATA[1] Data from the Lookup TableEPROM

42 I R0MDATA[2] Data from the Lookup Table EPROM

43 I R0MDATA[3] Data from the Lookup TableEPROM

44 I R0MDATA[4] Data from the Lookup Table EPROM

45 I R0MDATA[5] Data from the Lookup TableEPROM

46 I R0MDATA[6] Data from the Lookup Table EPROM

47 I R0MDATA[7] Data from the Lookup Table EPROM

69 I TXENCA Transmit Error Correction Level Select (TXECC[1])

70 I TXENCB Transmit Error Correction Level (TXECC[0])

71 I TXP Transmit Packet Signal

75 I TXD[7] Transmit Data

76 I TXD[6] Transmit Data

80 I TXD[5] Transmit Data

81 I TXD[4] Transmit Data

82 I TXD[3] Transmit Data

111



Pin# vo Name Description

83 I TXD[2] Transmit Data

84 0 RSSICLK Data Strobe for the A/D converts used to obtain RSSI data

85 0 RSSICNVT RSSI Conversion Start Signal. Initiates a conversion in the A/D.

86 I TXD[1] Transmit Data

87 I TXD[0] Transmit Data

88 I TXCRC Transmit CRC Enable

100 I PR.TXCLK Proxim Radio Transmit Clock

109 VO D[7] ARM Data inpui/ouq)utbus

113 vo D[6] ARM Data input/ouq)ut bus

114 0 PR.DATA Serial Transmit Data for the Proxim Radio

115 0 PR_SYNLD Active Low Load Line for the Proxim Radio

116 0 PR.SYNDATA Serial Data for Programming the Proxim Radio

120 I D0IN[3] Input to the D0IN3 register which is not implemented in this
design.

121 0 PR_TX_RX Proxim Radio Transmit/Receive Mode Select

122 vo D[5] ARM Data input/output bus

123 I /CSO Chip Select for the RF Xilinx from the ARM

124 0 PR.SYNCLK Data Strobe for Programming the Proxim Radio

125 0 PR_STDBY Proxim Standby Signal

126 I RA17 Serial Input RSSI Measurement Data from A/D Converter

127 0 PL_POW_LEVEL Plessey Radio Power Level Select

128 vo D[4] ARM Data input/output bus

129 0 PL.ANTSEL Plessey Antenna Select

132 vo D[3] ARM Data input/ou^ut bus

133 I /RS Read Strobe from the ARM. Not used in this design.

134 0 PL_TX_RX Plessey Transmit/Receive Mode Select

135 I CR_DIN Serial Receive Data from the Plessey Radio

136 0 PL_PA_OFF Plessey Power AmplifierOn/Off Select

138 vo D[2] ARM Data input/ouQ)utbus

140 0 PL_TXD Plessey Transmit Data

141 0 PL_STDBY Plessey Standby signal

145 0 PL_SD[0] Plessey Programming Data

146 0 PL_SD[1] Plessey Programming Data

147 vo D[l] ARM Data input/output bus

148 0 INTOUT Inteinipt to the ARM for Tm^ and RSSI events

149 0 PL_SD[2] Plessey Programming Data

150 0 PL_SD[3] Plessey Programming Data

151 vo D[0] ARM Data input/ou^ut bus

112



Pin# vo Name Description

161 I WS Write Strobe from the ARM

162 0 R0MADDR[1] Address to the Lookup Table in the EPROM

163 0 ROMADDR[0] Address to the Lookup Table in the EPROM

164 0 R0MADDR[2] Address to the Lookup Table in the EPROM

166 0 ROMADDR[3] Address to the Lookup Table in the EPROM

167 0 PL_SD[4] Plessey Programming Data

168 0 PL_SD[5] Plessey I^giamming Data

172 0 PL_SD[6] Plessey Programming Data

173 0 PL.LOADB Plessey Load Line

174 0 R0MADDR[4] Address to the Lookup Table in the EPROM

175 0 R0MADDR[5] Address to the Lookup Table in the EPROM

176 0 TG.RESET TextGraphics ActiveLow Reset Used for Debugging Purposes.

177 0 LED[0] Heartbeat signal for LED (D301) on the board

178 0 LED[1] Transmit Packet signal driving LED (D302) on die board

179 0 LED[2] ReceivePacket signal driving LED (D303) on the board

180 0 R0MADDR[6] Address to the Lookup Table in the EPROM

181 o R0MADDR[7] Address to the Lookup Table in the EPROM

184 0 R0MADDR[8] Address to the Lookup Table in the EPROM

185 0 R0MADDR[9] Address to the Lookup Table in the EPROM

186 0 LED[3] ProgrammableLED (D304)on the board. Drivenby XIL-
MISC[4] in the RF Xilinx register file.

187 0 LED[4] Programmable LED (D305)on the board. Drivenby XIL-
MISC[3] in the RF Xilinx register file.

188 o LED[5] ProgrammableLED (D306) on the board. Driven by XIL-
MISC[2] in the RF Xilinx register file.

189 0 LED[6] ProgrammableLED (D307) on the board. Driven by XDL-
MISC[1] in the RF Xilinx register file.

190 0 ROMADDR[10] Address to the Lookup Table in the EPROM

191 0 R0MADDR[11] Address to the Lookup Table in the EPROM

192 0 LED[7] Programmable LED (D308) on the board. Driven by XIL-
MISC[0] in the RF Xilinx register file.

193 I CLK20 20 MHz System Clock

199 0 ROMADDR[12] Address to the Lookup Table in the EPROM

200 o ROMADDR[13] Address to the Lookup Table in the EPROM

203 o ROMADDR[14] Address to the Lookup Table in the EPROM

204 0 ROMADDR[15] Address to the Lookup Table in the EPROM

113



6.3. Register Descriptions

The basestation, pad, and wired designs of the RF Xilinx have slightly different register

configurations. Hence, the register files for each design are described in separate sections.

6.3.1. Basestation Registers

Table 6-1. Register 0x00 - XILRXSA, XILSTAT

Bit position

6 5 4 3 2 1

Least Significant Byte of Receive Sync Word

rupt

Mask

Table 6-2. Register 0x01 - XILRXSB

nipt

Mask

Bit position

7 6 5 4 3 2 1 0

Most Significant Byte of Receive Sync Word

Least Significant Byte of RSSI Value

Table 6-3. Register 0x02 - XILTXSA, XILRSSIMSB

RAV
Bit position

mm 6 5 4 3 2 1 0

W Least Significant Byte of Transmit Sync Word

R Most Significant Byte of RSSI Value



Table 6-4. Register 0x03 - XILTXSB

RAV
Bit position

7 6 5 4 3 2 1 0

W Most SignificantByte of Tx Sync Word (XILTXSB)

Table 6-5. Register 0x05l-XILRXFB

R/W
Bit position

7 6 5 4 3 2 1 0

W

I
Rx Frequency Register (Proxim Control)

Ready Stdby Tx/Rx Syn-
Data

Syn- '
Clk

SynLd

Table 6-6. Register 0x07 - XILTXFB

Bit position

7 6 5 4 3 2 1 0

Tx Frequency Register (Plessey Control)

Table 6-7. Register 0x10 - XILCNTL

Bit position

7 6 5 4 3 2 1 0

TG RX Loop-
Reset Kick back

Multi

Time:

Resei

Sys
Reset



Table 6-8. Register 0x11 - XILRXC

Bit position

mm 6 5 4 3 2 1 0

Rx Clock Divider Word

Table 6-9. Register 0x12 - XILTXC

RAV
Bit position |

7 6 5 4 3 2 1 0

W Hop
Reset ;

Tx Clock Divider Word

Table 6-10. Register 0x13 - XILTIMERLSB

R/W
Bit position

7 6 5 4 3 2 1 0

W Least Significant Byte of Timer

Table 6-11. Register Ox 14 -!XHTIMERMSB

R/W
Bit position

7 6 5 4 3 2 1 0

W Most Significant Byte of Timer



Table 6-12. Register 0x15 - XILCMDREG

R/W
Bit position !

7 6 5 4 3 2 1 0

W

iHliiii

RSSI

Ack

Hmer 1
Ack 1

Table 6-13. Register 0x17 - XE.MISCREG

R/W

Bit position

7 6 'BU 3 2 1 0

LED Register

6.3.2. Pad Registers

Table 6-14. Register 0x00 - XILRXSA, XE.STAT

Bit position

7 6 5 4 3 2 1 0

Least Significant Byte of Receive Sync Word

RSSI Tii

Inter- In

nipt rupt
Mask Mask

Table 6-15. Register 0x01 - XILRXSB, XILRSSILSB

Bit position

7 6 5 4 3 2 1 0

Most Significant Byte of Receive Sync Word

Least Significant Byte of RSSI Value



Table 6-16. Register 0x02 - XILTXSA, XILRSSIMSB

RAV

1

Bit position

7 6 5 4 3 2 1 0

W Least Significant Byte of Transmit Sync Word

R Most Significant Byte of RSSI Value

Table 6-17. Register 0x03 - XILTXSB

Bit position

7 6 5 4 3 2 1 0

Most Significant Byte of Tx Sync Word

Table 6-18. Register 0x05 - XILRXFB

RAV
Bit position

7 6
1

5 4 3 2 1 0

W Rx Frequency Register (Plessey Control)

Table 6-19. Register 0x07 - XILTXFB

RAV
Bit position

7 6 5 4 3 2 1 0

W Tx Frequency Register (Proxim Control)

Ready Stdby Tx/Rx Syn-
Data

Syn-
Clk

SynLd



Table 6-20. Register 0x10 - XILCNTL

Bit position

7 6 5 4 3 2 1 0

w
1

TG

Reset

RX

Kick

Loop-
back

Timer

Reset

Sys
Reset

Table 6-21. Register 0x11 - XILRXC

RAV
Bit position

7 6 5 4 3 2
1

1 0

W Hop
Reset

Rx Clock Divider Word

Table 6-22. Register 0x12 - XILTXC

RAV
Bit position

7 6 5 4 3 2 1 0

W Tx Clock Divider Word

Table 6-23. Register 0x13 - XILTIMERLSB

RAV
Bit position

7 6 5 4 3 2 1 0

W Least Significant Byte of Timer

Table 6-24. Register 0x14 -!XILTTMERMSB

RAV
Bit position

7 6 5 4 3 2 1 0

W ! Most Significant Byte of Timer



Table 6-25. Register 0x15 - XELCMDREG

Bit position

7 6 5 4 3 2 1 0

RSSI

Ack

Timer

Ack 1
Table 6-26. Register 0x17 - XILMISCREG

RAV
Bit position

7 6 5 4 3 2 1 0

W LED Control Register

6.3.3. Wired Registers

Table 6-27. Register 0x00 - XILRXSA, XILSTAT

RAV
Bit position

7 6 5 4 3 2 1 0

W Least Significant Byte of Receive Sync Word

RSSI

Inter

rupt nipt
Mask Mask



Table 6-28. Register 0x01 - XILRXSB, XILRSSILSB

Bit position

mm 6 5 4 3 2 1 0

Most Significant Byte of Receive Sync Word

Least Significant Byte of RSSI Value

Table 6-29. Register 0x02 - XILTXSA, XILRSSIMSB

Bit position

7 6 5 4 3 2 1 0

Least Significant Byte of Transmit Sync Word

Most Significant Byte of RSSI Value

Table 6-30. Register 0x03 - XILTXSB

Bit position

7 6 5 4 3 2 1 0

Most Significant Byte of Tx Sync Word

Table 6-31. Register 0x10 - XILCNTL

Bit position

4 3 2 1 0

TG RX Loop- Timer Sys
Reset Kick back Reset Reset



Table 6-32. Register Ox11 - XO^RXC

R/W
Bit position

7 6 5 4 3 2 1 0

W Rx Clock Divider Word

Table 6-33. Register 0x12 - XILTXC

R/W
Bit position

7 6 5 4 3 2 1 0

W g«.'. Tx Clock Divider Word

Table 6-34. Register 0x13 - XILTIMERLSB

R/W
Bit position

7 6 5 4 3 2 1 0

W Least Significant Byte of Timer

Table 6-35. Register 0x14 - XILTIMERMSB

Bit position

5 4 3 2

Most Significant Byte of Timer



Table 6-36. Register 0x15 - XILSTAT

R/W
Bit position

7 6 5 4 3 2 1 0

W RSSI

Ack

Timer

Ack

Table 6-37. Register 0x17 - XILMISC

Bit position

7 6 5 4 3 2 1 0

LED Control Register

6.4. Location of Design Files

Theentire design isplaced on theinfopad account at -^infopadllPl/rfxiljscc, Under

this directory is a makefile that will make the wired, basestation, and pad designs simply

by typing "make all" AREADME file is also present that includes a description of files

and directories. This report and themaster's report ofKathy Luarealso included in thedoc

subdirectory. A simulation (in ViewSim) of the transmit and receive data path with

injected errors is also included in thisdirectory under the subdirectory rxtx_sim.

6.5. Design Libraries

It is important torecall that these designs were compiled with the XC4000 libraries. If the

Xilinx libraries are upgraded, these libraries should be archived to maintain compatibility

with the old design in the eventthat the design is not upgraded to the newlibraries.


	Copyright notice 1997
	ERL-97-32

