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Abstract

The Specification and Execution of

Heterogeneous Synchronous Reactive Systems

by

Stephen Anthony Edwards

Doctor of Philosophy in Engineering

University of California, Berkeley

Professor Edward A. Lee, Chair

The need for new languages and paradigmsfor designing software

for embedded computing systems continues to grow as general-pur-

posemicrocontrollers becomefasterandcheaper. Manyof thesesys

tem need precise control over when things happen, yet few languages

provide this facility. Another major challenge is handling the grow

ing complexity of these systems.

In this dissertation, I present a new model of computation for em

bedded system software that is the first to fuse precise control over

timing with the ability to build systems fromheterogeneouspieces. It

combines the synchronous model of time (used in languages such as

Esterel) with the hierarchical heterogeneity of the Ptolemy system.

Heterogeneity addresses the complexity problem by allowing each

subsystem to be designed using the best language.

My two major contributions are the formalsemanticsof this model

and an efficient, predictable execution scheme for it. Dealing with

zero-delay feedback loops, a side-effect of the zero-delay assumption

needed for synchrony, is the semantic challenge, and I solve it with

a fixed-point scheme that guarantees all systems are deterministic by

construction. The execution scheme I present is provably correct and



eliminates run-time scheduling overhead by making all decisions be

fore the system is run.

I presentresults that showmy model of computation is both effi

cient and can be used to implementpractical systems. It is my hope

that these ideas will be used in the future to make designing complex

time-critical embedded software easier and less error-prone.
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Preface

Embedded computing systems are everywhere. If you own a
VCR, a digital watch, a microwave oven, or an automobile,

you probably use them daily without realizing it. This is a mark of
goodengineering: it solvesa problem without callingattention to it

self.

This thesisgrewfroma desireto simplifythe taskofbuilding these

systems. Their growing use of software makes it natural to attack

the problemof creatingsoftwarefor thesesystems. Mostof it is cur

rently written using the C language, which was originally designed

for operating systems programming. It is a powerful, flexible lan

guage, but was not designed for real-time programming where the

correctness of a program rests as much on when it performs its func

tion as on what function it performs.

The designers of digital logic (hardware) have long built such ti

ming-critical systems, and their techniques have slowly been creep

ing into the softwareworld. One of their most powerfulparadigms

is synchrony, where all parts of a system are synchronized to a pe

riodic clock. Virtually all digital hardware systems use this, and it

has recently entered the software world through a group of so-called

synchronous languages that includes Esterel, Lustre, and Argos.

Another challenge in designing software systems is handling their

complexity. Any reasonable scheme needs to address this, and the

heterogeneous approach taken in the Ptolemy system (a system for

designing embedded software systems) is one of the more interest

ing. The basic idea is to treat a system as a collection ofblack boxes.

Within each black box there might be a program, a system, or any

thing. Carefully choosing the interface to these boxes allows systems

built from them to be analyzed and executed without having to un

derstand their contents.

IX



PREFACE

The researchpresentedhere is the result of combining the idea of

synchrony with the Ptolemyapproachto heterogeneity. It presentsa

new model of computation(essentially, a way to assemble systems)

that combines both of these ideas. The primary challenge, it turns

out, is dealing withinstantaneous feedback (the synchronous model
is inherently instantaneous, and feedback appears in virtually all in

teresting systems). Thesolution I devised follows from results taken
fromboth the programming language semantics community and the

circuit simulation community, making it mathematically sound and

based on physical principles.

The other big challenge with this approach is actually running the

systems. The bulk of this thesis is devotedto makingthese systems

run quickly, predictably, and correctly.

Some of the results in this work can be applied more widely. The

problem of dealing with zero-delay feedback in software appears in
the two majorlanguages (VHDLand Verilog) currentlyused to spec

ify hardware systems. Both have failings that could be corrected if
some of the techniques presented in this dissertation were adopted.
Also, the execution scheme I devised is essentially a very efficient

solver for a system of equations. Although many of my techniques

are closely tied to the particular domain I choseto workin, I believe
the general approachis applicable to similar problems.

—Stephen Edwards

Emeryville, California

March 1997
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Chapter 1

Introduction

Art is solving problems

that cannot beformulated

before they have been solved.

The shaping ofthe question

is part ofthe answer.

—^Piet Hein

Theneed for new languages and paradigms for designing em
bedded systems continues to grow. The falling cost of hard

ware has caused both the ubiquity and complexity of these applica

tion-specific computing systems to grow, and with morecomplexity

comes a greater need to contain it. In this dissertation, I present a

new model of computation—essentially a coordination language—

for describing the softwarein thesesystems. It is thefirst to combine

precise controloverwhen things happenwith the abilityto assemble

systems from piecesdescribedin differentlanguages, a way to fight

complexity by allowingeach piece to use the most suitable language.

My focus is on reactive systems,* systems that must respond to

their environment at the environment's speed. When things happen

in a reactive system is as important as what happens, making tra

ditional computer programming languages insufficientbecause they

only provide precise control of function. In contrast, my model of

computation allows precise synchronizationof events by assuming

computation is infinitely fast. Familiar to designers of synchronous

*A term due to Harel and Pneuli [34].
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digital logic, this divides time into a sequence of discrete "ticks" and

allows the designer to control the tick in which an action takes place.

Software is becoming dominant in embedded system design be

cause fast hardware is becoming cheaper. Earlier, custom hardware

might have been requiredbecauseof performancerequirements, but

now cheap, fast general-purpose microcontrollers are adequate for

many of these jobs.

Fast, cheap hardware leads to greater system complexity since it

allows larger, more powerful systems to be built. With complexity,

however, comes the challenge of designing it correctly. Extensive

simulation, and, currently to a lesser extent, formal verification can

help in thisprocess, but the easiest way to design a correctsystem is

to design a simple system.

My Synchronous Reactive (SR) model of computation facilitates
the design of simple systemsbecause it can combinesubsystems de

scribedin a varietyof languages. For any particularproblem,there is

usually a language in which it can be solvedelegantly. However, the

varietyofproblemsina largesystemmakesnoone language ideal,so

the need arises for a way to combine different languages. My model

supports suchheterogeneity by usingcoarseatomic unitsof compu

tation: functions that can be as big as entire programs.

I made the SR model deterministic to simplify the design process.

It is much more difficult to design and test a system with inherently

unpredictable behavior* because both designers and analysis tools

need to consider many more possible behaviors.

This model is the first to fuse the idea of instantaneous compu

tation with support for heterogeneous system design. The primary

challenge is to maintainthe determinacyof such systemsin the pres

ence of zero-delay feedback loops. I discuss these problems infor

mally in Section 1.3,and rigorously deal with the problemin Chap-

*Thiscan occasionally be a good thing—nondeterminism is useful for model
ing unpredictable environments.
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ter 3, where I prove thatmymodel of computation is deterministic.
A reasonable system description language should be defined for

mally, have a compilation procedure thatproduces efficient synthe

sizedcode (or,equivalently, have a veryefficient simulation proce
dure), and be able to describe practical designs. A formal definition

is necessary so that everything that manipulates the design, includ
ing thedesigner, canagree on what a design means. Anelegant lan
guage thatcannot be executed efficiently is not useful by itself, and
an elegant language that cannot be used to describe anything useful
is similarly useless.

Mythesis is thatmySynchronous Reactive model ofcomputation
is reasonable in this sense. In this dissertation, I present its formal

definition and show it is consistent (Chapter 3), present an efficient

wayto executeit (Chapter 4), andexhibita practical implementation
along with some real examples (Chapter 5). In Chapter2,1 discuss

some related system description languages and the final chapter is

devoted to conclusions and speculation on future work.

1.1 Synchrony

Usingdigitalcircuitryto build logically correctsystemshas beenex

tremely successful because it allows for abstraction. The ideais sim

ple: using discrete values allows noise below a certain threshold to

be filtered out completely. The result is an effectively noise-freecir

cuit with behavior that is predictable and reproducible. This allows

it to be treated as an ideal mathematical entity.

Synchronous circuitsuse thesameideatoensuretemporalcorrect

ness. They discretize time to filter out "time noise" brought on by

unpredictable,unmatched, and uncontrollabledelays.

Synchronizingan outgoingevent with an incoming one is the key

abilityhere. Synchronousdigialcircuitsgenerallyhaveone synchro

nizing input: a periodicglobalclock signal. The synchronousmodel

of time used in SR, which I adopted from the so-called synchronous
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languages,* is a generalization ofthis where every signal from the en

vironment is effectively a clock. All output events are synchronized

to the input events; none are produced without outside stimulus.

The ability to synchronize output events to any input event allows

for great flexibility. In general, it is possible to make something hap

pen on the nth occurrence of an event, such as on the tenth second

(which requires a periodic "second" input), on the count of three, or

on the fifth floor (e.g., for an elevator).

Concurrency is a fundamental requirement for synchrony. Tradi

tional sequential languages such as C are not synchronous because

they have no notion of concurrency. For things to be synchronized,

they must happen simultaneously, yet a language like C is executed

one statement at a time.

The synchronous model of time has a physical interpretation:

The Synchrony Hypothesis The system computes infinitely

quickly. Each reaction is instantaneous and atomic, dividing

time into a sequence of discrete instants. A system's reaction

to an input appears at the same instant as the input. (After

Berry [5])

A system can behave synchronously if it is fast enough. Specifi

cally, it must always finish its computations before more events ar

rive. Testing this amounts to testing the synchrony hypothesis, and

requires knowing both the minimum inter-event time and the maxi

mum computation time.

The synchronous model of time makes correct systems easier to

design and build. It hides temporal details and simplifies the task of

synchronizing parts of the system. Activity is easier to specify and

understand because the behavior of the system is simplified. More

over, the technique actually requires less control over the behavior of

*I discuss these in Section 2.3.
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a system's components. Their exact speed does notmatter provided
it is above a certain threshold.

Unfortunately, it is not always practical to buildsynchronous sys

tems. For example, physically distributed systems with long intra-
system communication times aredifficult to make synchronous. But
for many applications, especially small embedded ones, synchrony
makes sense.

1.2 Heterogeneity

Cheap hardware isenabling designers tocreate larger systems. These
big systems are usually responsible for a wide variety of subtasks,
such as a user interface, high-speed digital signal processing, com

munication, process control, and so forth.

Rarely is a singlelanguage ideal for describing eachof thesesub-

tasks. A C program, for instance, is an excellent way to describe
something like a database, but there are better alternatives for de
scribing, say, signalprocessing. A poorchoiceof language—one far
from the task or the implementation technology—often leads to an

inefficient implementation, longerdesign time, and more design er

rors.

Oneapproach is a"kitchen sink" language (such astheVHDL lan
guage [45], which includes behavioral and structural models), formed
by forcibly combining a variety of computational models. Unfortu
nately, this is limited to using onlythose models included in the lan
guage andgenerally precludes laterexpansion. Moreover, analyzing
systems described in such a language is harder because of the need
to consider many models at once.

A more flexible alternative is to use a language that can coordinate

the execution of and communication among subsystems described in

a variety of languages. The challenge here is for the coordination
language to copewithsubsystems it doesnot understand completely.

This approach can be summarized as follows.
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Figure 1.1 A simpleSR systemcomposedof threeblockscommunicating
over three channels. The dangling channel on the left is an input from the
environment. Some of the internal channels may be outputs to the environ
ment.

The Black Box Approach to Heterogeneity A system is

treated as a set of "black boxes" whose contents may be ar

bitrary,but whose interfacesconform to a standard. A coor

dination languagecontrols their execution and all communi

cation between boxes.

When chosen correctly, a black box approach simplifies system

analysis becauseit allowsdetails such as the contentsof the boxes to

be safely ignored. By contrast analyzing a "kitchen sink" language

is harder because the language is complex.

Unfortunately, the black box approach can prohibit the complete

analysis of a system. When subsystems are treated too abstractly,

certain properties about them cannot be determined. Unfortunately,

the heterogeneousapproachpresented here precludesproving many

correctness propertiesof systems. However, this is not necessarily a

drawback because the systems in question are often so large that even

if they were specified using a unifiedscheme, their analysiswouldbe

computationally intractable.

1.3 SR Systems

An SR system (one described using the SR model of computation)

is composedof communicating blocks, as shownin Figure 1.1. The

synchrony hypothesis assumes the inputsarriveas a sequence ofdis

crete values and each block's computation is instantaneous. As a re

sult, time in an SR systemis a sequenceof discrete "ticks," each initi-
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A B

(a)

Figure 1J2 Problems with zero-delay and feedback, (a) Co-dependent:
Which should be evaluated first? (b) Paradoxical: Appears to have no so
lution. (c) Ambiguous: Appears to have many solutions.

Introduction

Y

atedby theenvironment. In eachtick,eachblockobserves its inputs,

instantly computes its outputs (which other blocks see in that same

instant), and prepares itself (i.e., changes state) for the next tick.

Blocks communicate amongthemselves and with the environment

throughunbuffered unidirectional communication channels. In each

tick, each channel takes on exactly one value; there is no buffering.

Each channel is driven by either an output of some block or the envi

ronment, and may drive any number of block inputs. These connec

tions, along with the number and type ofall block inputs and outputs,

do not change while the system is running.

1.3.1 Challenges of Zero Delay

Aside from the single-driver rule, no restrictions are placed on the

topology of communication in SR systems. In particular, feedback,

including self-loops, is permitted; somesynchronous languages dis
allow them. Maintaining determinism (i.e., for each input there is

exactly one reaction) with zero-delayblocks in the presenceof feed

back is the primary challenge in defining the behavior of these sys

tems. Below, I describe the typical problems that arise in a zero-

delay world and how I deal with them.
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Ordering

To run the software system in Figure 1.2a, one of the blocks needs

to be executed first. However, Block A depends on an output from

Block B, so it needs to be evaluated later, yet Block B similarly de

pends on Block A, so which shouldbe evaluated first?

I solve the ordering problem by separating the semantics of SR

systems from their implementation. I treat an SR system as equa

tions to be solved rather than as a sequence of functions to evaluate.

Thus, it is the responsibilityof the scheduler, not the designer, to en

sure the blocks in such a system are evaluated in a sensible order. A

schedulerbased on the results of Chapter4 might evaluate the blocks

in the order ABA, but the designer has no control over this. Instead,

the scheduler guarantees an order that produces a predictable result

consistent with the formal semantics.

Paradoxes

The systemin Figure 1.2bis paradoxical. The block on the left wants

the two channels to take opposite values, yet the block on the right

wants them to be equal, so what values should the channels take?

I solve such paradoxes by making "undefined" one of the possi

ble values for the channels and restricting the class of functions the

blocksmaycompute. Thebehavior of thesystem inFigure1.2b is for

both channels to be "undefined." This works because, for the block

on the left, the oppositeof undefined is undefined (thisturns out to be

theonlyreasonable choice), andfor theblockon theright,undefined

is the same as undefined.

Nondeterminism

The system in Figure 1.2c appears to be ambiguous. The blockonly
requires that its input and output take the same value, so it appears

that the system may have any of a number of possible behaviors.

8
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I dealwithsuchambiguity bychoosing the least-defined solution.

ForFigure 1.2c, thismeans thechannel will taketheundefined value.
Restricting the blocks to behave monotonically guarantees the least

solution is unique. Moreover, thissolution is the onlyone thatdoes
not require assumptions to be made about system behavior, making
it more intuitive. The alternative would be a difficult-to-understand

"guess-and-test" procedure that would form, test, andrefine hypothe
ses about the values on each channel.

Here, monotonicity means a block will not recant or change its

mind about a result. Given a more defined input, it will always pro

duce a consistent output that may be moredefined. Fortunately, any

function that requires all its inputs to be defined before it produces

anyoutputs is monotonic, making it easy to embedanarbitrary func
tion in an SR system. Manyfamiliar imperative languages (e.g., C,
C++, and most assembly languages) implicitly compute such strict

functions, so importing blocks from such languages is straightfor

ward.

Chapter 3 isdevoted to anextensive, rigorous discussion of these
mantics of SR systems, including precise definitions of monotonic

ity, "undefined," least solutions, and the like.

1.3.2 Execution

My execution procedure for SR systems* is based on the idea of re

laxation. I calculate the behavior of the system by repeatedly choos

ing andevaluating blocksuntil the systemhasconverged to whereno

block would change the value on any channel. Requiring the blocks

to behave monotonically ensures this procedure will always termi

nate with a unique result. The convergence time is bounded since

each channel may become defined at most once in an instant, and

there are a fixed, finite number of channels. It can be shown that the

•Othersare possiblesincethe semantics in Chapter3 say nothingabout theex
ecution procedure.



Chapter 1 Introduction

result is the same regardless of which blocks are chosen.

Carefully choosing the block evaluation order makes this execu

tion scheme efficient and predictable. Results in Section 4.3.6 show

that in practice the worst-caseexecution time grows slower than

where n is the numberof block outputs. Thechallenge isdealing with

feedback loops, which I do through a recursive divide-and-conquer

strategy that systematically breakscertain feedback loops, iterating
them to convergence. Although othershavetaken the same general

approach, mine is the onlyone that is provably optimum. Allof this

is discussed in great detail in Chapter 4.

For a block to work within an SR system, it must have an SR in

terface and be able to compute a monotonic function of its inputs on

demand. Beyond that, the "guts" of an SR block can be described

and implemented in any way, allowing for heterogeneity. The algo
rithms in Chapter4 only needs to know the communication structure

of the blocks; not their contents.

A useful side-effect of the heterogeneity of SR systems is their

support of truly hierarchical designs. Any group ofSRblocks canbe
encapsulated in a single block without affecting thebehavior of the

system (although thissometimes affects performance), allowing sub
systemsto be compiledseparately. Currently, all other synchronous

languages are "flattened" beforethey areexecuted, prohibiting sepa

rablecompilation andlimitingthe size andcomplexity of designs.

10
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Specification

A specification that will notfit

on one page of8.5 x 11 inch paper

cannot be understood.

—^Mark Ardis

Any synchronous system with bounded resources behaves
like a finite-state machine (FSM), a well-understood and con

ceptually simple entity, yet in practice such a system is rarely de

scribed as an FSM. In this chapter, I discuss why this is and argue

the need for a coordination language such as SR to combine subsys

tems described using application-specific languages. I also discuss

some of the languages that inspired SR.

2.1 Synchrony and Finite-State Machines

A synchronous systemwithboundedresources behaves like a finite-

state machine. In each instant, the system receives a block of input

and produces a block of output based on it. The behavior of such

a system is usually time-varying, meaning the output in an instant

is a function of both the input in that particular instant and the his

tory of the system—the inputs in all earlier instants. The history of

the system can be thought of as its state—an internal configuration

that affects the output function and changes from instant to instant.

Bounded memory resources can only distinguish a finite number of

these histories, hence the machine has a finite number of states.

11
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A synchronous finite-state machine consists of is six things:*

(6,2,A,5,X,9o)

where

• is the finite set of states

• Z is the finite input alphabet: a set of symbols

• A is the finite output alphabet: a set of symbols

• 6 is the transition function mapping QxlLioQ

• A. is the output function^ mapping ^ x ZtoA

• qQ is the initial state (in Q)

When a state machine is in state q and input a arrives, it produces

outputX{q,a) € Aand goes to state5(^,a) € Q. It starts in stateq^.
This is the complete story for every synchronous system. In the

ory, only these six things need to be described; in practice, each can

easily become unmanageably complex.

Describingthe input and output alphabetsis often the easiest task.

Sometimes they are small enough to be listed directly, or they may

be a simple subsetof a familiar set such as the integers. Moreoften,

they are sets of vectorsdescribed using a complex data type from a

programming language such as C or Pascal.

In contrast, describing the state set, the transition function, and

the output function is difficult because of the sheer size of the do

mains involved. A vector-valued inputalphabetgrowsexponentially

with the width of its vectors, so even small vectors can render an

enumeration-based description of the output or transition functions

*This notation is taken from Hopcroft and Ullman [35], a standard reference
on the subject of automata theory.

"'"Note that for reactivity, the outputdepends on both the state and the input.

12
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impractical. Clearly, a useful specification scheme must allow a de
signer to succinctly specify exponentially large sections of these. In
general, this is the problem of succinctness.

2.2 Succinctness

Succinct description is a goal of all languages. It is generally easier
to make a short description correct because there arefewer places to
makemistakes. Similarly, analyzing a succinct description is usually

easierbecause solving a smallproblem is usually easierthansolving

a large one.

Anideal design language would allow succinct descriptions of all
designs, but this is theoretically impossible because there are sim

ply too many possible designs. Real languages try instead to make
the description of somereasonable subset of designs succinct; other
systems have either a verbose description or none at all.

This fundamental barrier is partly responsible for the enormous

number of design languages that have been developed. Designers
and design tools alikecrave succinct descriptions, so many applica

tion areas have had special-purpose languages designed for them.

As systems grow larger and more diverse, however, it becomes

less likely that a single language will be able to succinctly describe
all parts of a given system. Although for each subsystem, there will
be a language thatcan describe it succinctly, no one language willbe

the best for all subsystems.

One solution to this problem is the ability to connect and coor

dinate heterogeneously-specified subsystems. In this way, existing

work on specification languages can be leveraged to provide more

powerful ways to specify systems. Thisis theheterogeneous philos
ophy behind SR.

In this thesis, I concentrate on one way of combining subsystems

(i.e., concurrently)that appearsto be a verynatural wayfor designers

to think. It can be found in virtually all higher-level languages for de-

13
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The system has two inputs, reset and next, and three outputs,

a, b, and c. Whenever reset appears, a is emitted. After this,

the first next signal produces a b, and the second next signal

produces a c.

Figure 2.1 Thesequencer example, a simplereactive system, described in
English.

scribing reactive systems (e.g., those presented in the next section),
and is often the hardest aspect of these languages to design correctly

because of the sometimes paradoxical implications of zero delay.

2.3 Synchronous Languages

In this section, I present a collectionof synchronous languages* that

illustrate some of the issues that arise in specifying synchronous sys

tems. All rely on the synchrony hypothesis, and all are capable of

specifying arbitrary finite-state machines, yet for a particular design,

one is usually better than the others. To contrast the languages and

illustrate this point,I have implemented a simple reactive system in

each language, described in Figure 2.1 and hereafter called the se

quencer example.

The description in Figure 2.1 is deliberately vague to illustrate a

point. Especially in synchronous designs, it is easytooverlook a par
ticular case, yet the system must handle all cases. AVhen next and re

set appear together,what should happen? The descriptionsuggestsa

is emitted, but what about the other outputs? I have chosen to make

a take precedence,but other choices are possible. The right one usu

ally depends on the system's environment.

The languages I present in this section range from the obvious to

the subtle. The most obvious lists the output and next-state functions

*Halbwachs's book [32]and a special issue of Proceedingsof the IEEE [3] pro
vide a more comprehensive summary of these.
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in a table. Traditional statediagrams are essentially these tableswith

a graphical syntax and inputpredicates. Derived from these are the
textual OC format, which introduces more sophisticated predicates

and actions, and the graphical Argos, which just adds hierarchy and
concurrency. The imperative language Esterel departs completely
from an explicit list of states. Lustre is an even greater departure,
concentrating almost exclusively on arithmetic and having very lit
tle notion of state.

Each language needssomeprocedure for checking the validity of

a description. The difficulty of this varies with the language and the

level of validity to be verified, but in general the more succinct the

descriptions, theharderit is. Thisis unfortunate, butis a naturalside-

effect of languages that allow a succinct description of complexbe

havior.

2.3.1 Tabular Form

The mostobvious way to describe a synchronousfinite-statemachine

is to list the output and next state functions for each possible input

and present state, e.g.. Figure 2.2. Even such a small system illus
trates theproblemwiththis approach—^the numberof rowsin the ta

ble grows exponentially with the number of inputs.

Checking that a table is consistentis simple: there mustbe exactly

one row for each state/input combination, and each output and next

state must be an allowed output or state.

2.3.2 State Diagrams

State diagrams (e.g.. Figure 2.3) are a slight improvement over ta

bles. These are graphs where each node represents a state. Each arc

is labeled with an input that causes a transition from one state to an

other and the output produced when this happens. The labels take the

form "input predicate/outputs." The input predicate is a conjunction

of true andcomplementedsignals,and theoutputsare simplya list of
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reset next PS NS a b c

0 0 A A 0 0 0

0 1 A A 0 0 0

1 0 A B 1 0 0

1 1 A B 1 0 0

0 0 B B 0 0 0

0 1 B C 0 1 0

1 0 B B 1 0 0

1 1 B B 1 0 0

0 0 C C 0 0 0

0 1 C A 0 0 1

1 0 C A 1 0 0

1 1 C A 1 0 0

Specification

Figure 2.2 The sequencer example described witha table. Inputs are on
theleft; outputs areontheright. PS is"present state;" NS is "Next State."

R/A

RN/C

Figure 2.3 The sequencer example described usinga statediagram
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signals toemit. Byconvention, if noarc from thecurrent state has a
true predicate, the machine stays inthat state and emits nothing. The
initial state is marked with a short arrow leading to it.

State diagrams are usually preferable to tables, since the multi
dimensional nature of the transitions are more easily visualized, but

they are notmuch more compact. The only advantage comes when

the predicates are simple relative to the number of cases, or when
most actions are "do nothing."

Using predicates instead of anexplicit representation makes con
sistency checking more difficult. Astate diagram isnondeterministic
if there are ever two arcs from a single state with simultaneously true

predicates, something that requires knowing all possible inputs.

2.3.3 The OC Format

TheOC("Object Code") format [68] (seealsoCaspi et al. [19]) was
developed as a common intermediate language for the synchronous
languages Esterel, Lustre, andArgos. Of the synchronous languages

I present in this section, OC code is the easiest to execute on a se

quential processor. It is well-suited to describing sequential control
processes, but does not have any of the concurrency or preemption
of some higher-level languages.

AnOCprogram describes a single finite-state machine. Each state
has an attached decision tree whose nodes are indices into an action

table and whose leaves are pointers to next states. The action table

is a list of atomic behaviors that include testing a signal or variable,

emitting a signal, computing the new value of a variable, or calling
an external function.

Figure2.4 depicts the sequencer example described in a stylized

OC format. For such a simple example, it is comparatively verbose,

but it allows much more complex predicates and actions, including

arithmetic.

Representing concurrent behavior withan OC program is difficult
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Action Table:

0: if R then

1: if N then

2: emit A

3: emit B

4: emit C

State 0:

(0) if R then

(2) emit A

goto 1

goto 0

State 1:

(0) if R then

(2) emit A

goto 1

(1) if N then

(3) emit B

goto 2

goto 1

Specification

State 2:

(0) if R then

(2) emit A

goto 1

(1) if N then

(4) emit C

goto 0

goto 2

Figure 2.4 The sequencer example described in OC

because it only describes a single FSM. For example, in the Esterel

program of Figure2.5a, it is fairly easy to see that signal B onlyde

pends on signal A, yet if the program is compiled into OC, B may

also appear to depend on C in the resulting program (Figure 2.5b),

incorrectly causing the system in Figure 2.6a to deadlock. There are

other ways to compile this program,but all suffer from this problem

of artificial dependencies. The problem, fundamentally, is that OC

forces two events that could happen simultaneously to happen in a

particular order.

2.3.4 Argos

Maraninchi's hierarchical finite-state machine language Argos [48,

49,30] is a purelysynchronous derivative of HareTs informalbut in-

fiuential Statecharts [33]. Later attempts to formalize the Statecharts

semantics [56,36] were somewhat successful, but the confusion has

18
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module TWOWIRES:

input A, C;

output B, D;

every A do emit B end

II
every C do emit D end

end module

(a)

Specification

Actions:

0: if C then

1; if A then

2: emit B

3: emit D

State 0:

(0) if C then

(3) emit D

(1) if A then

(2) emit B

goto 0

(1) if A then

(2) emit B

goto 0

(b)

Figure 2.5 (a) A simple Esterel program, (b) Its OC representation.
Parentheses surround action numbers.

B

c D

(a) (b)

Figure 2.6 Theproblem withflattening concurrency. If theorderinwhich
the module processes its inputs is fixed, one of these systems will incor
rectly deadlock.

19



Chapter 2 Specification

1

r /a

c
r .n/b

D
r .n/c

E

B
D r/a

Figure 2.7 The sequencerexample described in Argos

resulted in some twenty-two variants of the language [72], of which

Argos is perhaps the cleanest.

An Argos specification is a hierarchical state diagram. When a

state encloses one or more states, there are two possibilities. If the

inner states are "OR" states (e.g., those in State B in Figure 2.7), ex

actly one of the inner states is active when the enclosing state is ac

tive; if the inner states are "AND" states (drawn with dashed lines

separating them, as in Figure 2.8), all of the inner states will be ac

tive.

Figure 2.7 showsan Argosimplementationof the sequencerexam

ple. It starts in State A and waits for the r signal. When r is present,

the systememits the a signaland enters StatesB andC, since StateC

is the initial state (denoted by its sourceless arrow) in the collection

of OR-states in State B.

The Argos semanticsrequire the ability to partiallyevaluate input

predicates. Figure 2.8 illustrates this. When the signalx is present,

neither x. y nor x. y holds since the status of y has not been estab

lished, but a is emitted anyway since it is the action in both cases.

This allows the self-loop on State C to fire, emitting y, and causing

the arc to State B to fire completely.

Checking an Argos program for consistency is more difficult than

checking a state diagram. Again, determinism requires that no more

than one arc from a state have a true predicate. This requires at least

some boolean analysis, but a more precise check might take into ac-
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x.y/a

Figure 2.8 Incremental behavior in an Argos program. When in StateA,
Xarriving causes a andy to be emitted andthe system to enterStateB.

module RESTART;

input RESET, NEXT;

output A, B, C;

every RESET do

emit A ;

await NEXT ; emit B ;

await NEXT ; emit C

end

end module

Figure 2.9 The sequencerexample described in Esterel

count which states (actually, combinations of states) of the system

can be reachedthrough some sequence of inputs. Solvingthis prob

lemfor largesystems is currently at thefrontier of formal verification

research.

2.3.5 Esterel

Berry's synchronous language Esterel [7, 4] is textual, imperative,

and well-suitedfor specifyingsequentialcontrol-dominatedtasks. It

is concurrent and deterministic, and supports preemption and excep

tions. An Esterel program is a group of concurrently-executingmod-
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Statement Meaning

nothing Do nothing.

pause Pause until the next instant.

signal S in s\ end Introduce local signal S and execute .

emit S Make S present in this instant.

Si ; S2 Execute . When it terminates, execute ^2-

^1 11 ^2 Execute and S2 until both terminate.

loopji end Execute si and restart it when it terminates.

present S then 5i else 52 If S is present, execute si, otherwise execute 52-

suspend s\ when S Execute si in the current instant and in later in

stants where S is absent.

trap E in si end Introduce the local exception E and execute .

exit E Terminate the enclosing trap E statement.

Table 2.1 Esterel kernel statements, j] and 52 are statements, 5 is a signal
name, and £ is an exception name.

ules that communicate through signals that in each instant are either

absent or present with a value.

Figure 2.9 shows Esterel can be very succinct in specifying se

quentialbehavior. Essentially, a three-statemachinethat emits A, B,

and C is enclosed by a loop that restarts it whenever reset appears.

The language consists of a set of kernel statements from which

other,morecomplexcontrol structuresare built. This kernel,* which

deals only with pure (non-valued) signals, is shown in Table 2.1. For

example, the derived statement await 5, which terminates in the

next instant in which S is present, can be built from kernel statements

as follows:

•The kernel has continued to evolve since its first incarnation. The kernel pre
sented here is from Berry's book [6].
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trap T in

loop

pause ;

present S then exit T end

end

end

The fiill Esterel language alsohas simple arithmetic operations and
variables along with a host of higher-level control constructs built
from kernel statements.

Reincarnation is an odd aspect of the Esterel language. In certain

cases, such as the one below, a signal may appear to take two or more

values in a single instant.

loop

signal S in

present S then emit 0 else nothing end

pause ;

emit S

end signal

end loop

In the second instant, the signal S is emitted, the signal statement

terminates, and the loopresetswitha fresh, absent copyof the S sig

nal. SignalO is not emitted. Detecting thesecasesandcorrectly ex
panding theminto a format like OC has been a challenge for those

writing compilers for the language.

Checking the consistency of an Esterel program is more difficult
than any of the other languages presented here. It is easy to write

paradoxes (seeSection 1.3.1) in the language, and exactly checking
for them involvesexploring every possibleexecutionofthe program.

Thelatestcompiler (V4,as of thiswriting) doesthissymbolically af

ter converting the program to a circuit. See Section 3.1.2 and Shiple

et al. [64] for more details.
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Constants true 0 -5 5.3e-2

Variables a X is_set

Arithmetic operators + - * / div mod

Boolean operators and or not

Relational operators

II

A

A

II

v

v

II

Conditional if then else

Delay pre

Initialization ->

Downsampling when

Upsampling current

Table 2.2 Components of Lustre flow expressions.

2.3.6 Lustre

Caspi et al.'s Lustre language [20, 31] is a declarative, textual syn
chronous language with a dataflow flavor. ALustre program consists
mainly ofexpressions thatdefineflows—a possibly infinite sequence

of values of a particular typealong witha clock, a sequence of times
for thesequence ofvalues. Allof these expressions arerunning con
currently and are order-independent.

Lustre flow expressions are built from the components shown in
Table 2.2. Operators workpointwise onflows withidentical clocks, a
compiler-enforcedrestriction. Forexample, ifx and y are flows with

values (jci ,X2,...) and (yi,y2? •••) and identical clocks, thenx+y =

(*i+yi,*2+y2.---)-
Delay and initialization operators add sequential behavior to the

language. The pre operator addsmemory—it delays a flow by one

clock cycle. Specifically, pre x = {nil,xi,X2,...) {nil denotes un
defined). The -> ("followed by") operatormakes it possible to ini

tialize memory by changing the first value of a flow. Specifically,
X -> y= (xi,y2,y3,---)-
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C 0 10 10 0 10

X Xi X2 X3 X4 X5 X6 X2 Xi

Y = X when C X2 X4 x-j

current Y nil X2 X2 X4 X4 X4 x-j x-j

Figure 2.10 The relationship between thewhen and current operators.

node RESTART(reset, next: bool)
returns (a, b, c: bool);

var clock: bool;

let

clock = reset or next;

(a, b, c) =

current( COUNTABC(reset when clock) )
and clock;

tel.

node COUNTABC(reset: bool)

return a, b, c: bool;

let

a = reset;

b = (false -> pre(a)) and not reset;
c = (false -> pre(b)) and not reset;

tel.

Figure 2.11 The sequencerexample described in Lustre

Two sampling operators impose a tree structure to the clocks in
a Lustre program. The downsampling when operator creates a flow
whose clock is definedby a boolean flow; the upsampling current

operator interpolates a flow sothatitsclock is theoneontheboolean
flow thatgenerated theclock. Figure 2.10illustrates the relationship

between these two operators. The compileruses a simplesyntactic
unification algorithm to tell when clockson signalsare identical.

Figure 2.11 shows the sequencer example written in Lustre. The

specification is clumsy because theexample is sequential—^Lustre is

better-suited to specifying multirate dataflow systems.

Consistency checking is fairly easy for Lustre. Feedback loops
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without a pre operator are prohibited, something easily checked.

The other challenge is checking clock consistency, which amounts

to verifying the clocks on the signals feeding to an operator are the

same.

2.4 Heterogeneous Languages

In this section, I review two languages supporting heterogeneity that

inspired my own. Unlike SR, both are targeted toward data-centric

applications, but they illustrate the heterogeneous approach to sys

tem specification.

In Kahn's programminglanguage, the restrictionson the interface

and contents of the blocks ensure determinacy. Further restrictions

give Lee's Synchronous Data Flow, which trades someof the flexi

bility of Kahn's schemefor nearly complete compile-time analysis,

including memory usage, termination, and run-time behavior.

2.4.1 Kahn Process Networks

Kahn, in an early influential paper [38], presented a simple language

for parallelprogrammingbased on a process model. It definesa sys

tem as a set of parallel-executingprocessesthat communicateexclu

sively through single-input, single-output FIFOs. When a process

reads a data token from one of these FIFOs, it blocks until one is

available. Kahn showed that this restriction was sufficient to make

these systemsdeterminate,rendering the sequenceof data tokens on

each FIFO independent of process execution order or speed.

Figure 2.12 shows a simple process in Kahn's language that acts

as a switch. Integers on input Uare alternately sent through outputs

V and W. As its name suggests, the wai t statement waits for the next

value to arrive on an input.

Executing these networks without doing unnecessary work or us

ing more memory than needed is challenging. Compile-time analy

sis is impossiblein general, since each processcan be described in a
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Process g(integer in U; integer out V, W);

Begin integer I; logical B;

B := true;

Repeat Begin

I := wait(U);

if B then send I on V else send I on W;

B := not B;

End;

End;

Figure 2.12 A process in Kahn's language.

Turing-complete language. Kahn and MacQueen [39] discussed this
problem in a later paper, and Parks [54] solves theproblem with a
scheduling scheme thatrunsoneof these networks inbounded mem

ory and time if possible.

2.4.2 Synchronous Data Flow

Lee and Messerschmitt*s Synchronous Data Flow (SDF) [43,42] is

anotherblock diagram language thattakes a heterogeneous approach.
It is well-suitedfor describingmultiratedigital signalprocessingsys

temsandcanbecompiled to produce very efficient, predictable code.
Figure 2.13 shows a typicalSDF application—a modem.

SDF is a subclass of the class of dataflow process network lan

guages,* which are themselves a subclass of the Kahn process net
worklanguages. SDFgivesupTuring-completeness in returnforex
tensive compile-time predictability. Inparticular, it canbescheduled
statically, removing all run-time scheduling decisions and allowing

memory consumption to be predicted exactly.

An SDFsystemis composedof a collectionof blocksthat commu

nicate throughsingle-driver, single-receiver FIFO buffers. The exe-

*see Lee and Parks [44] for a good summary of these
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cution ofa block is divided into atomic "firings" where the block con

sumes and produces a fixed number of tokens on each FIFO. In exe

cuting the system, all blocks are fired in a sequence that periodically

returns the number of tokens on each buffer to its initial value. In this

way, the system can run forever without over- or under-flowing any

communication buffer.

Knowing such a sequenceof block firingsat compile time leads to

a simple compilation technique known as block code generation. In

it, the code for each block's firing is concatenated together according

to the firingsequence. The advantage of this is that the code for each

block firing can be optimized by hand—a boon for programmable

DSPs, whose code is often difficult to optimize automatically.

An SDF system is deterministic because it is a Kahn process net

work. The sequence of tokens that appear on each FIFO is guaran

teed to be the same for any valid execution of the system.

One problem with SDF is that it is not compositional. Coalesc

ing two blocks into one can cause deadlock where none would exist

in the original system. This does not always happen, and there are

heuristics for avoiding it (see Bhattacharyya et al.'s work on sched

uling SDF graphs [8]), but it cannot be avoided in general. It is dis

turbing, however, that something as simple as two wires cannot be

modeled as an SDF block. This diminishes the heterogeneous nature

of SDF, implyingthere is a class of subsystems whosebehaviorcan

not be encapsulated. Furthermore,designscannotbe truly hierarchi

cal; all hierarchy must be flattened completely to avoid introducing

artifical deadlock.

SR avoids SDF's compositionality problem by effectively allow

ing partialor incremental firing of blocks. It is SDF's inabilityto do

this that prevents it from modeling a wire. SDF's firing rules impose

more synchronization at block boundaries than is present in the rest

of the system. Since SR systems are completely synchronous, this

problem does not arise.
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Input Block

Bandsplitting Filter

Hilbert Filter

Adaptive Equalizer

Phase-Locked Loop

Detector w/ Error Outputs

Decoder

Output Block

Figure 2.13 AnSDF description of a modem, adapted from Lee [41].
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Scheme Blocks Commumcation Concurrency

SR Monotonic functions

selected by a state

machine

Single-driver,

multiple-receiver

channels, one value

per instant

Each block computes a

function in each instant

and advances its state

Argos Hierarchically-nested

finite-state machines

Broadcast signals

present or absent in

each instant

Each FSM produces

output and advances its

state each instant

Esterel Sequential and parallel

imperative statements

Broadcast signals

present or absent in

each instant

In each instant, each

block runs until it is

waiting for the next

instant

Lustre Arithmetic & boolean

operators, delays,

down- and up-samplers

Broadcast flows:

sequences of data with

an associated clock

Each operator

computes once each

instant

Kahn Sequential imperative

statements

Unbounded

unidirectional FIFOs

with blocking reads

Each process runs

unless blocked by a

read from an empty

FIFO

SDF Produce and consume

a fixed number of

tokens each firing

Unidirectional FIFOs;

size computable at

compile time

Processes fire in a

repeating sequence

Table 2.3 A comparison of some system specification schemes
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Semantics

The test ofa first-rate intelligence

is the ability to hold two opposed ideas

in the mind at the same time,

and still retain the ability to function.

—^F. Scott Fitzgerald

IN THIS CHAPTER, Iformally define the semantics ofthe SR model
of computation. The main problem is unambiguously interpret

ing systems with zero-delay feedback loops, which I do by treating
the blocksof a system as a system of equations. I use a well-known
theorem from discrete mathematics to show the system has exactly

one solution. Tomy knowledge, these are the first formal semantics
for heterogeneous synchronous systems.

Themeaning of anSR system in an instant is the least solution of
f(x) = X, where x is the values inthe communication channels and /
is the function computed by the blocks for a particular set of inputs.
By restricting the blocks' behavior to be monotonic andmaking cer

tain values of x more defined than others, there is always a unique

least Xfor any input, making SR systemsdeterministic.

I take a fixed point approach because both the programming lan

guage semantics community and the digital circuit simulation com
munityuse it to givemeaning to recursive or self-referential entities.

As such, it is both mathematically sound and physically realistic.

The semantics I present say nothing about how to execute these

systems. This was deliberate—^by not addressing the problem, it be-
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comes easier to devise new ways to execute these systems. For ex

ample, a scheduler forsimulation mightminimize average execution

time, whereas a scheduler for implementation might minimize worst-

case execution time. Any approach whose result adheres to the se

mantics is acceptable.

Thischapter contains threesections. In the first, I further motivate

thefixed-point approach byreviewing theapproaches twocommuni
ties have taken to similar problems. In the second, I review the dis

crete mathematics of complete partial orders and continuous func

tions, which I use in the third section to define the semantics of SR

Systems, ultimately showing they are unambiguous and thus deter
ministic.

3.1 Motivation

It is surprising that both the programming language semantics and
the digital circuit simulation community arrived at nearly the same

solution to assigning meaning to recursive or self-referential entities.
After all, the simulation community had to choose something that

matched physical reality, whereas thesemantics community wasfree

to choose anymathematically soundapproach. Despite thesediffer
ences, the solution is roughly the same, suggesting it is somehow nat

ural.

In the remainderof this section, I present the solutionto this prob

lem fromeachcommunity'sviewpoint. Thecore ideasformthebasis

for the formal semantics I present in Section 3.3.

3.1.1 Denotational Semantics

In the denotational approach to programming language semantics,

pioneered byDanaScottandChristopher Strachey [62,61,65] in the
early 1970s, the meaning of a program fragment is defined by map

pingit toanelement, often a function, ina semantic domain. Forex
ample, therecursively-defined factorial function inFigure 3.la might

32



Chapter 3 Semantics

/(-2) = 1

int fact(int x) { /(-I) = 1

if ( X == 0 ) return 1; /(O) = 1

else return x * fact(x-l); /(I) = 1

} /(2) = 2

/(3) = 6

m = 24

(a) (b)

Figure3.1 (a) A recursive definition ofthefactorial function, (b) The de-
notational meaning of this function. X denotes non-termination.

be mapped to the function f in Figure 3.1b. The idea is to abstract
away details of a program, such as thenames of variables or the al
gorithm andconcentrate purely on theeffects of the fragment.

Adenotational way oflooking ata function definition isasa fixed-
point equation. Forexample, the recursive definition of the fact
function in Figure3.1acan be thoughtof as an equation,

f(x) ={ ^ if* =0
x-f(x-\) otherwise,

and the meaning of the recursive function definition is a function /
that satisfies (3.1). Moreabstractly, a recursive function definition is

a function F that transforms a function to a function. In this way, (3.1)

can be written more simply as

/ = F(/). (3.2)

An obvious question to ask is whether (3.2) has a solution and,
if so, is it unique? It turns out that when/ is a member of a com-
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pletepartial order, a particular formof ordered set discussed in Sec

tion 3.2.1, and the function F is continuous, a concept discussed in

Section3.2.2, (3.2) always has a unique least solution,making this a

reasonable way to interpret a function definition.

Zero-delay feedback lookslikerecursion, so I use thisapproach to

handling recursive definitions to define SR systems with feedback.

In my case, / is a vector-valued function defining the values on the

communication channels, and F corresponds to evaluating all of the

blocks in parallel. I present the details in Section 3.3.

Kahn's formal semantics for his concurrent dataflow language [38]

(see Section 2.4.1) also use the fixed-point approach. He interprets

each process as a function definedon potentially infinite streams of

data, which represent the contents of the FIFOs his processes use to

communicate. The semantics of a system with feedback is the solu

tion to a fixed point equation defined on these streams.

Kahn's fixed point considers the whole execution history of the

system. The values on the streams form a complete partial order—a

set whose elements have a notion of "definedness"—^under a prefix

ordering. E.g., the stream 01 is less defined than the stream 01101.

Under this prefix ordering, any process that waits when reading from

an empty FIFO computes a continuous function, meaning that when

more input is presented to a process, it may not change or reduce the

amount of data it has already produced, nor may it wait forever. By

requiring all processes to use such blocking reads, Kahn's systems

. are provably deterministic.

There is much more to denotational semantics. See the books by

Winskel [73], Gunter [29], Stoy [65], Schmidt [60], and Allison [1].

3.1.2 Circuit Simulation

Circuit simulation has traditionally proceeded along two paths. Ana

log simulation attempts to model virtually all circuits, whereas digi-

tal or switch-level simulation treats only a restricted class of circuits
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Figure3.2 (a) An ideal binary inverter and itstruth table, (b) A feedback
circuit with no stable states, (c) A feedback circuit with two stable states.

in exchange for simulation speed. Progress along each path has of
ten come fromborrowing ideas from the other. Simpler models and
the use of digital approximations has expedited analog simulation;
more realistic models and other analog simulation techniques have

improved digital simulation accuracy.

Analog simulation techniques arebased on models from applied
physics and use continuous mathematics. Pederson [55] provides an
excellent historical review. A circuit is typically modeled as a sys

temof ordinary non-linear differential equations andsolved by a nu
merical integration method such the Trapezoidal Rule or a Runge-
Kutta method. Newton's method is used on the resulting nonlinear

systems, and LU decomposition or a sparse linear system solver is
applied to the resulting linear systems.

By contrast, digital circuit simulators work with circuits that look
very much like my SRsystems: ideal (zero-delay) gates with anas
sociated discrete function and well-defined inputs and outputs. Sim

ulation consists of evaluating each gate (computing its outputs as a

function of its inputs) in a topological order starting at the inputs to
the circuit. Circuits with feedback, however, present a problem be

cause their gates have no topological order.

Feedback in ideal zero-delay digital circuits present some of the

same problems as it does in any zero-delay environment, including
SR (seeSection 1.3.1). The twomajorproblems, contradiction and
ambiguity, are shown in Figure 3.2. What value should thewire in
Figure 3.2b take? The inverter makes itsoutput the opposite ofitsin-
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put,butthewireforces all itsconnections to thesamevalue. Aphysi

cal realization of this circuit might find a stable intermediate voltage

that is neither clearly 0 nor 1, or it might oscillate, but neither be

havior fits into the ideal world of Os and Is. By contrast, there are

two obvious possible states for the feedback circuit in Figure 3.2c.

Node A could be either 0 or 1, and the circuit would be stable pro

vided Node B is the opposite. Such behavior can be useful—^this

is how state-holding elements, such as static RAM cells, are built.

However, this also deviates from the zero-delay digital model since

the behavior of such circuits is a function of time as well as their in

puts.

These problems have been addressed by making the digital cir

cuit model more closely approximate the analog circuit model of a

system of ordinary differential equations that must be solved rather

than simply evaluated. Bryant's switch-level model [13] typifies this

approach. He treats MOS transistors as bidirectional switches and

treats a circuit as a network of nodes and switches. Each node has

a weight to model its capacitance; switches have strengths to model

their on-state conductance. To model a situation such as Figure 3.2b,

he introduces a third node value, X, that "represents an uncertain or

invalid node logic level or transistor conductance" and works in al

most the same way as the undefined values in SR. He formulates the

circuit as a sparse system of linear equations on a restricted, discrete

domain and solves the resulting fixed-point equation using a relax

ation method. His later work [11,12] showed how this model can be

cast purely as binary equations that can be solved even more rapidly

on digital computers, producing the efficient switch-level simulator

COSMOS [14].

Such three-valued logic has long been used in the study of asyn

chronous circuits. Here, the primary challenge is analyzing race con

ditions, where the behavior of a circuit is governed by unpredictable

gate delays. Brzozowski and Seger [15] present a comprehensive
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Figure 3.3 (a) Asimple cyclic combinational circuit inwhich ofollows i.
(b) Malik's procedure for simulating the circuit, showing the output is 1
with when the input is 1.

theory. They start with a simple, conservative model of circuits that
consist of ideal zero-delay binary gates and delay elements. These

elements use an up-bounded inertia! model in which the maximum
delay isbounded, theminimum delay is not, and incoming transients
shorterthanthe delay maybe ignored. Next, theyshow thata model
called General Multiple-Winner (GMW), which models the circuit

as a nondeterministic* finite-state machine whose states represent the

output ofall delay elements, accurately captures thebehavior ofacir
cuitrepresented with the more detailed model. Finally, they show [63]
that ternary simulation, based on Eichelberger's algorithm [26], ac
curately captures thebehavior of a GMW circuit. In hisalgorithm, a
third value modelsa signal thatcould be 0 or 1,effectivelyrepresent

ing setsof states in theGMW model. This thirdvalue is essentially
the same as the "undefined" value in SR.

Malik[46,47]gives analgorithmbasedonternary (X-valued) sim
ulation that shows when a combinational circuit (i.e., one without ex

plicit state-holding elements) with feedback is stateless. For exam
ple, thecircuitin Figure3.3ais combinational andcyclic. Heapplies
ternary simulation after breaking all feedback arcs. A stable state of
the circuit is found by first applying X's to the feedback arc inputs,

simulating the (acyclic) circuit, and feeding the feedback outputs to

'The model uses nondeterminism to capture how unpredictable delays may
produce varying behavior.
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the inputs before simulating again. This process continues until the

values on the feedback arcs are stable. Figure 3.3b illustrates this

procedure. Malik shows that the monotonic nature of the gates en

sures that this processwill converge, a result almost identical to the

one I present in Chapter 4.

Shiple, Berry, and Touati [64] extend Malik's work to sequential

circuits—those with latches. They observe that although acyclic cir

cuit may not be well-behaved for certain inputs, if these inputs never

appear the circuit should be consideredwell-behaved. To determine

whichinputscouldappear, theyusea BinaryDecision Diagram-based

state-space exploration scheme. Initially, they assume only the re

set state is reachable and check if any of the possible inputs leads

to a circuit in which an X remains (i.e., is not well-behaved). Then

they repeat the procedure, adding all newly-discovered states to the

reachable state list. The procedure terminates when either a poorly-

behaved configuration is reached, or when the set of reachable states

remains unchanged.

Berry first observed the connectionbetween cyclic combinational

circuits and causality problems in his Esterel programming language.

The latest Esterel compiler (v5) uses this technique to test whether a

program contains a paradox. Esterel is discussed in Section 2.3.5.

3.2 Mathematical Foundation

In this section, I present a series of well-known definitions and theo

rems that set the stage, mathematically, for Section 3.3, where I show

SR systemsare deterministic. Here, I present three mainconcepts. A

complete partial orders, or CPO, is a set with an abstract notion of

the amount of"information" in each element. Applying a monotonic

' function to an elementof such a set always increases the amountof

information unless it is slfixedpoint, in which case the element is un

changed.

Davey and Priestley's textbook on order in mathematics [23] is
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perhaps the best general introduction to this subject. The program

ming language semantics community is the other main source. I rec

ommendthe booksby Winskel [73] (myprimarysourceof notation)

and Gunter [29]. Others include Allison [1], the very readable un

published book by Turbak, Gifford, and Reistad [70], and chapters

in the second volume of the Handbook ofTheoretical Computer Sci

ence [71].

3.2.1 Complete Partial Orders

Definition1 Apartially'Orderedset orposet isa setSwith apartialorder relation
C that satisfies

•xC,x (Reflexive)

•xQy andyQx impliesx = y (Antisymmetric)

•xQy and yQz impliesxQz (Transitive)

The partial order relation C can bepronounced "approximates" or
"is weaker than." It imposes some orderonthe members ofS, but is
less restrictive than a total order such as <. In particular, it is possible

for two members of S to be incomparable, i.e., for neither x C y nor

yQxto hold.

Virtually everything in this remainder of this chapter is a mem
berof some partially-ordered set. The values in SRconununication
channels and even the block functions are members of posets.

Aposet can bedepicted with a Hasse diagram, such asthat inFig
ure3.4. An upward line is drawn between a pairof members x and y
whenXC y, but lines impliedby the transitive or reflexive rules are

not drawn to simplify the diagram.

Definition 2 An upperboundofa set T is an element u such that t Q ufor all
t £T. Aleastupperbound ofa T, denoted UT, is an element I such
that I C ufor all upper bounds u.
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E F

/ B
Figure3.4 AHasse diagram fora partially-ordered set. Here, ACD,Z) C
£,DCF,BC G,CCF,CC G. By the transitive rule,A C F, but
no line is drawn. A and B are incomparable.

Theleast upper bound ofa setcanbethought ofasits limit. It will
help define continuous functions, which are limit-preserving. Also,
a later theorem will show that the solution to a fixed point equation

is the least upper bound of a certain set.

Proposition 1 The least upper bound ofa set, if it exists, is unique.

Proof Let u and v be two least upper bounds of a set S. For this to be true,

MC V, since mis a least upper bound, and similarly vQu. Since C is

antisymmetric, we must have m= v. •

In Figure 3.4, the set {A,D} has upper bounds D, F, and F, and

a least upper bound D. The set {F, C} has upper bounds F and G,

but no least upper bound. The set {F, G} has no upper bounds since

there is no element above both.

Definition 3 A chain is a totally-ordered set C, i.e., for all x, y G C, eitherxQy or

yQx.

Intuitively, a chain is a sequence ofelements that are growing more

defined. It appears as an upward path in a Hasse diagram. In Fig

ure 3.4, {A,F} and {A,D,F} are chains. Although the members of

{A,F,C} are along a path, it is not a chain because neither A C C nor

CCA.

Definition 4 A poset in which every chain in S has a least upper bound in S is a

completepartially-ordered set or CPO.

Semantics
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Complete partialorders are a classof well-behaved posetswhere

ascending sequences always have limits. The posets in this chapter
are all CPOs.

Proposition 2 The leastupperboundofafinitechainalways exists and is itsunique
largest element.

Proof The elements of a finite chain can be written c\ QciQ " - Q Cn-

Clearly, c C c„ for all c in the chain. Moreover, since C is antisym

metric, if there were a smaller c, it would satisfy cCcn and c„ Q c,

so c = c„. Thus, Cn is the unique least upper bound. •

Corollary 1 Aposet with onlyfinite chains is a CPO.

I use thiscorollary frequently to ensure myposets areCPOs. This
finite-chain restriction will also be instrumental in efficiently evalu

ating systems, a point I defer to Chapter 4.

Definition 5 Abottom element ofa poset, denoted ±, is a member ofS suchthat
J_ C sfor all s ^ S. Aposet with bottom ispointed.

The bottom element of a poset is its least-defined member, repre

senting "undefined." Chains often start at JL.

Although the bottom element ofeach poset is different, I will use
the single symbol ± to represent them all. The meaning should be
clear from context.

Proposition 3 A bottom element, if it exists, is unique.

Proof Assume b\ and ^2 bottom elements. By definition b\ ^ S and
bi € S,and since b\ isabottom element, b\ C ^2- Similarly, bzQbi.
Since C is antisymmetric, it follows that b\=b2. •

Thefollowing proposition shows how vector-valued CPOs canbe
constructed from scalar-valued ones. Figure 3.5 shows an example.
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1 0 11 01 10 00

\ / IX X XI
J. 11 11 01 10

W/X
11

(a) (b)

Figure 3.5 Using Proposition 4 tobuilda vector-valued CPO. (a)A scalar
CPO (b) Its vector-valued extension.

Proposition4 IfD\ and £>2 CPOs, then D\ x Di is a CPO under theordering

(•^1 ,^2) Q (yi^yi) iffXI C yi and X2 Qyi (3.3)

and ifx^ = (j:} ,x^), xP" = (^^1,^:2)' •••»

U{x^ ,X^,...} = (U{x| ,...}, ...})•

Proof D\ X£>2 is a poset, since the order relation is

• Reflexive: Since Qx\ andx2 Qx2, (^^1,^2) E •

Antisymmetric: If (xi,X2) Q (yi,y2) and (yi,y2) E it

follows that X] = y\ and X2 = y2> so (xi ,^2) = (yi ,y2).

Transitive: If (x:i,X2) C (yi,y2) E (2^22). then x\ C z\ and

X2 Q Z2 and (xi,X2) C (21,22).

It is a CPO since a least upper bound exists for all chains. Let

(x} ,x\) C (jc^,x^) C ... be achain in D\ x £>2. Itfollows that x\ Q
Xj C •••and x^Qx^Q -" Bit chains in D] and D2 and that X =
(jC] ,^2) = (U{xj U{x2,;*^,...}) exists. By definition, for all
i (x'j ,x'2) C X, soXis anupper bound. Assume Y= (yi ,>2) is some
other upper bound, so x'j C yj and 4 E y2. By the definition ofX,
xi C yi and X2 E y2» so X C T. Thus, X is the least upper bound. •

The following proposition presents a way to build a poset of func

tions. Basically, if f(x) C g(x) for all possible valuesofx, thenfQg.
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It is more difficult to build a CPO offunctions, as Theorem 1 will il

lustrate.

Proposition 5 LetD and E beposets, and let f : D E and g : D E be two
functions. If

/ C g iff Vx € D . f(x) • g(x), (3.4)

then C {definedonthe members ofD -^E) isapartial orderrelation.

Proof The relation C is

• Reflexive: Since f(x) C f(x) forall/(x), it follows that/ C /.

• Antisynunetric: li fQg and gQf,f[x) C g(x) and g(x) C
f(x) for all jc. It follows that f{x) —g{x) for all x, implying

f = g'

• Transitive: If / Q ^ and g^K then f{x) C g(x) C /i(x), so
f{x) C h(x), implyingfQh.

so it is a partial order relation. •

3.2.2 Monotonic and Continuous Functions

In this section, I introduce order- and limit-preserving functions on

posets. Equations with such well-behaved functions usually have so
lutions, a point I discuss in Section3.2.3.

Definition 6 Afunction f: D E between posets Dand E ismonotonic iffor all
x,yeD suchthatxQ y, f(x) C f{y).

A monotonicfunction is order-preserving. If presented with more

information, it responds with additional, non-contradictory informa
tion. Note that if D has no comparable members, any / is trivially
monotonic.

I introduce a shorthand for applying a function to every member

of a set: {/(C)} = {/(c) |c€C}.
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Definition7 Afunctionf:D-^E between CPOs D and E iscontinuous iffor all
allchainsCC D, /(UC) = U{/(c) | c € C},orequivalentlyf{\JC) =

U{/(C)}.

Since Discomplete, weknow UC exists. This definition issaying,
as a sideeffect, that U{/(C)} alsoexists for a continuous function.

A continuous function is limit-preserving. The limit of a continu

ous function evaluated on a chain is equal to the function evaluated

at the limit of the chain. The following proposition shows that con

tinuous functions are a strict subset of the monotonic functions.

Proposition 6 A continuousfunction is monotonic.

Proof Let / : D —> £ be continuous, and let x C y € D. Since U{x,y} =
y, and since/ is continuous, f{x) C U{/(x),/(y)} = /(U{x,y}) =

/(y). So XC y implies f(x) C /(y) and / is monotonic. •

The following proposition provides a way to ensure a monotonic

function is continuous. This is useful because monotonicity is more

intuitive and easier to check.

Proposition 7 A monotonicfunction on a CPO with onlyfinite chains is continuous.

Proof Let/: D £ be a monotonic function, and let C= {ci,..., c„} C D

be a chain where C] C C2 Q ••• C c^. Because / is monotonic, we

have /(ci) C f(c2) ^ Q /(cn). From Proposition2, UC= f(cn)y

and so /(UC) = /(c„) = U{/(C)}. It follows that/ is continuous. •

The following two propositions show continuity and monotonicity

are closed under composition.

Proposition 8 The composition go f of two continuousfunctions f : D

g:E -¥F is continuous.
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Proof Let C be a chain in D. Since / is continuous, /(UC) = U{/(C)}.
Moreover, since C is a chain and / is continuous, {/(C)} is also a

chain. Since g is continuous, ^(U{/(C)}) = U{g(/(C))}, and also
g(f{UC)) = U{g(f(C))}. Hence g o/ is alsocontinuous. •

Proposition 9 The composition gof oftwo monotonicfunctions f :D-¥ E andg:
E-¥ F is monotonic.

Proof Since / is monotonic, xQy implies f(x) Qf{y). Since g is mono
tonic, it follows thatg(f{x)) C g{f(y))' •

The following proposition provides away tobuild a vector-valued
continuous function from two continuous functions. Compare with

Proposition 4, which builds vector-valued CPOs in a similar way.

Proposition 10 LetD, E, andFbe CPOs. Iff:D—^Eandg'.D—^Fare continuous,
then f Xgis continuous

Proof Since £ and F are CPOs, then F x F is a CPO by Proposition 4.

Letx\ C;c2 C •••beachain inD. Because / and g arecontinuous,
fx gis continuous because

= (U{/(*|),/(a:2),..,U{g(*i), g(;c2) ,•••})

= U{(/(jri),g(j:i)),(/(j:2).«(j^2)),---}

= U{(/xg)(;iCi),(/xg)(Ar2),...}.

The following proposition provides a way to take the least upper
bound of a chain of functions, which will be useful for working with

higher-order functions (those functions whose domain and range are
themselves functions).
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Proposition 11 LetD andE be CPOs, letfk'.D-^E becontinuous, and let/i C /2 C
•••. Then g = U{/i,/2, •••} exists and g(x) = U{/iW,/2W, ••

Proof From (3.4), /i (j:) C /2(;c) C •••is a chain. Since£ is a CPO, =

{x),f2(x), •..} exists. This isanupper bound since fk(x) C g(x)
for all k. Moreover, it is a least upper bound since if there was an

other upper bound h, then fk(x) C h(x) for all k, but by definition of

8* 8(x) Q h(x). •

The next fundamental theorem is necessary when working with

higher-order functions. All ofthe useful results require working with

elements of a CPO, and this provides a CPO of functions.

Theorem 1 Let D and E be pointed CPOs. The set ofall continuous totalfunc

tions mapping D toEforms a pointed CPO.

Proof Let F denote the set of continuous total functions from D to E. To

show F is a pointed CPO, I will show it is a pointed poset and show

that each chain of functions in F has a least upper bound that is a

function in F, i.e., is a continuous function from D to E.

F is a pointed poset. Proposition 5 implies (3.4) is a partial order

relation for F, and its bottom element is X(jc) = 1. This is a mem

ber of F since it is continuous: Let C € Z) be a chain. X(LIC) = X,

and U{X(c) | c € C} = X. Moreover, it is the bottom element, since

if there existed another function bQ ±, then b{x) C X(x) for all x.

However, by definition of X, it follows that b(x) = X.

An ascending chain fi E /2 ^ • in F has a least upper bound g

from Proposition 11.

The least upper bound g ofan ascending chain in F is a monotonic

function. If jc C y, it follows that fi{x) C fi{y) C g(y) for all i. So

g(y) is an upper bound of {yi(x)}, but since g(x) is the least upper

bound of {^(at)}, g(x) C g(y).

The least upper bound of an ascending chain in F is a continuous

function. Let x\ C X2 C be an ascending chain in D. Since D is a
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CPO, U{jci, •••} exists. Moreover, since g is monotonic, ) C

^(•'̂ 2) E isanascending chain inE, soLl{g(xi), g(x2),...} also exists.
To see they are equal, I will use the notation

UiWW} = '-'{/l {x),f2{x),

From the definition of U,

"^iJ-Mxj) Q Ut{fk(xj)}
V/. U, {/(jc,)} C U,{Ut{/t(At,)}}

Ut{U,{/t(A:,)}} C U,{Uk{fk(x,)}}

and

SO

^iJ-fi(xj) C U,W(;r,)}

• llkifkixj)} E Ut{U,{/t(jr,)}}
U,{Ut{/t(A:,)}} C Ut{U,{/t(*,)}}

Since the fi are continuous, this implies

Ut{A(U,{jt/})} = U,{Ut{/t(A:,)}}

S(U;{*/}) = U,{g(*/)},

which shows g is continuous. •

3.2.3 Least Fixed Points

Definition8 LetD be a poset, let f :D Dbe afunction, and let xED.

•Iff{x) C X, then x is a prefixed point.

•Iff(x) = X, thenx is also afixed point

•Ifx is a prefixedpointandx C pfor all prefixedpointsp, then
Xis a leastprefixedpoint.
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•IfXisa fixed pointandx C yfor allfixed points y, then x is a
leastfixed point.

The following well-known theorem* is key to everything in this
dissertation. It will be used to show that an SR system always has a

unique behavior, and itsproofcontains the fundamental idea used to
evaluate the systems.

Theorem 2 Letf :D-^D be a continuousfunction ona pointedCPOD. Then

fix(/) = U{X,/(X),/(/(X)),... ,/(X),...} (3.5)

exists and is both the unique least fixed point and the unique least

prefixed point off.

Proof {±,/(X),/^(_L),...} is a chain since by definition 1 Qf(±) and

f(±) C /(/(I))

/(/(I)) E f{^)

because / is monotonic by Proposition 6. Since D is complete, the

least upper bound of this chain, fix(/), exists. Furthermore, because

/ is continuous,

/(fix(/)) = /(U{X,/(X),/2(X),...})

= U{/(X),/(/(X)),/(/(X)),...}

= U{X,/(X),/2(X),...}

= fix(/)

so fix(/) is a fixed point and therefore also a prefixedpoint.

*It is similar to the Knaster-Tarski fixed point theorem, but that result only ap
plies to functionsdefinedon complete lattices—posetswhosesubsets always have
both greatest lower and least upper bounds (See Davey and Priestley [23]). My
CPOs are less structured than this.
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Let Xbe another prefixed point, i.e., f(x) C x. Since/ is mono-

tonic,

±Ox

/(-L)C/W Cx

/2(X) nf2(x)cf(x) Cx

so;[ is an upper bound ofthe chain {X,/(±),/^(X),...}. How-
ever, since fix(/) is the least upper bound of this chain, fix(/) C x.
fix(/) is thus the least prefixed point, andsince it is a fixed point, it
is also the least fixed point.

3.3 The Semantics of SR Systems

Thefundamental piece of computation in anSRsystem is a block—
a vector-valued function with a fixed number of inputs and outputs.

Themeaning of such ablock isobvious, butthemeaning ofa system
(acomposition ofblocks) is less so. The primary result ofthis section
is a procedure thattransforms a system into a block. It forms a vec
torcomposed ofinputs tothe system and the outputs ofevery block,
connects all the blocks to this vector, and finds the least function that

produces consistent values for the outputs. I show this function is
unique and that it behaves like a block.

Definition 9 LetI = Ii x "X/„ and 0 = 0\X'"x0mbe vectors ofpointed
CPOs. An n-input, m-output block b is a continuous vector-valued
function from I to O.

Definition 10 Letb.l-^Obea block, letJ = JiX"'XJabea vectorofpointed

CPOs, and letw\,...^Wnbe a sequence such thatwjt € {1,..., a}- ^
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Qh' theblock bconnectedtoJ with connections wi,..., w„
is thefunction c: J —> O such that

ifl) ~ ^(yvvi) •••ijwn)')

where (71,...Ja) GJ.

The following definitions are illustrated in Figure 3.6.

Definition 11 Let b\ :!} -> Oi, Z72 • ^2 ^2- •••» bs :ls -^Os be a collection of
blocks, letl = I\X"-xInbea vectorofpointed CPOs, letO = Oi x

•••XOj, and let J = lxO. Theopen system d ofthese blocks is the

function J: J -> O such that

d(j) = C] (j) XC2U) X•••XCsU)'

where q is the block b^^ connected to the vector J, and j GJ.

Definition 12 TheSR System ofan open system d is the least function e : I —> O

that satisfies

e{i) = d(i,e{i)). (3.6)

The remainder of this section is devoted to showing that SR sys

tems are deterministic by showing that (3.6) always has a unique so

lution. This is a fixed-point equation with ?i function e as the argu

ment, i.e.,

e=(B{e), (3.7)

where IB: (I O) (I O) is a function that transformsa function

to a function. If / : I —O is a function, then !B(/) : I O is the

function

®(/)(/)= 4'',/('•))• (3.8)

I will use Theorem 2 to show ® has a unique least fixed point. To

do this, I will show its domain is a pointed CPO, i.e., block functions

form a complete partial order, and the function fB is continuous.

50



Chapter 3 Semantics

(a) (b)

>o

(c)

Figure3.6 (a) An SRsystem, (b) The corresponding open system, (c) The
corresponding block.
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Lemma 1 Theset ofall blockfunctionsforms a pointed CPO.

Proof Let 6 be a block. By Proposition 4 and induction, both I = /] x •••x

In and 0 = 0\ x •••x Om are pointedCPOs. Since b is continuous,
Theorem 1 shows these functions form a pointed CPO. •

Lemma 2 1B(/) is a blockfunction iff is.

Proof Fromtheirdefinition, the inputand output domains of ®(/): I —O
are vectors of pointed CPOs. Moreover, since / and cj,..., Cj are

continuous, and(B(f)(i) —(ci (/,/(/)),.. /(/))), it follows from

Propositions8 and 10 that ®(/) is continuous. •

Lemma 3 (B is continuous.

Proof First, note that d is continuous since ci,...,Cs are continuous since

bi,...,bs are.

Next, let F = {/i ,/2,...} be a chain in the CPO of continuous

functions I O. (Bis continuous because

(B(UF)(i) = d(i,(UF)(i))

= {/*(/)})

= Ut{«(/t)(')}

= U{«(F)(<)}

by definition of (B, Proposition 11, because d is continuous, and by

Proposition 4. •

Theorem 3 SR Systems are deterministic, i.e., (3.6) has a unique solution that is

a block.

Proof From Lemmas 1 and 2, it follows that the domain of blocks and the

range of ^(b) is a pointed CPO, and from Lemma 3, ® is a continu

ous function on this CPO. From Theorem 2, it follows that (3.6) has

.a unique least solution that satisfies Definition 9. •
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Execution

Thefundamental qualitiesfor good execution

ofa plan isfirst; intelligence;

then discernment andjudgment,

which enable one to recognize

the best method as to attain it;

the singleness ofpurpose;

and, lastly, what is most essential of all,
will—stubborn will.

—^Ferdinand Foch

Executing an SR system for an instant amounts to solving a
fixed-point equation. This is challenging because it needs to

be solved efficiently and predictably, and because of heterogeneity,
it is only possible toevaluate the function whose least fixed point is
being computed.

I solve thisproblem by computing a schedule for anSR system—
a fixed execution sequence for itsblocks that solves the fixed-point
equation inaccordance with the semantics inChapter 3. Once sched
uled, a system can be simulated byrunning theschedule, or synthe
sized using a block code generation technique where the code for
each block is inlined according to the schedule.

First and foremost, a schedule must make the system behave ac

cording to the semantics in Chapter 3, but minimizing a schedule's
running time is also important. An SR system must respond to in
puts before more arrive, soa system will fail if it is too slow relative
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to its environment. Hence, only worst-case execution time is worth

optimizing, and I donotconsider anytechniques that could expedite
execution for certain combinations of states and inputs. Besides, the

heterogeneity of theblocks generally precludes most of these tech
niques becauselittle is known about their function.

Theseschedules arecomputedbyrecording thesequence ofblocks

evaluated by an algorithm that computes the leastfixed point. Since
this algorithmdoes not make any decisionsbased on inputs or states,

the schedule is correct for any input or state.

The algorithmuses a divide-and-conquer strategyto find the least

fixed point using a minimumnumber of functionevaluations. Split

ting a function into pieces, finding the least fixed point ofeach piece,

and combining them to form the result is usually more efficient than

tackling the whole function.

The algorithm finds efficient schedules by carefully choosing the

place to split the function. Although this choice can greatly affect a

schedule's execution time, the algorithm produces a correct sched

ule for any choice of where to split, so efficiency can be optimized

without affecting correctness.

Figure 4.1 shows the complete process of computing a schedule.

A dependency graph representing the communication in the system

is first derived. It is then decomposed into strongly connected com

ponents (a trivial step in this example, since the graph happens to be

strongly connected), and a carefully chosen set of vertices (here, 1

and 2) is removed from each component and the process is repeated.

The steps in the decomposition are recorded in a schedule, which is

then modified slightly to speak ofblock, as opposed to block output,

evaluations.

This chapter is divided into three parts. I review related work, in

cluding chaotic iteration and graph-based function evaluation, in the

first. In the second, I present the divide-and-conquer least fixed point

computation algorithm along with theorems that show it is correct.
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(a)

© ©

(C)

Execution

(b)

(12.(4.5)'6(0.3)')2 (A.(C.C)'C(A.B)')2
(e) (f)

CCCCBABACCCCBABACCCCBAB

(g)

Figure 4.1 Acomplete example ofscheduling anSRsystem, (a)Thesys
tem. (b) Its (strongly connected) dependency graph, (c) The vertices re
moved by the scheduler to break strong connectivity, (d) The graph that
remains, (e) The schedule. Superscripts denote the numberof iterations,
(f) The schedule after its transformation to block evaluations, (g) The se
quence of blocks to evaluateeach instant.
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In the third, I consider the problem of finding efficient schedules: I

characterize minimal-cost schedules, present an exact branch-and-

bound algorithm forcomputing them, present a heuristic thatprunes

the number of branches considered, and present experimental results

that show both exact and heuristic splitting algorithmsare practical.

4.1 Related Work

My algorithm for computing least fixed points can be viewed as a

chaotic iteration scheme. The proof ofTheorem 2 from the last chap

ter suggeststhat the least fixedpointcan be foundby repeatedlyeval

uating the function. Chaotic iteration is a variation that evaluates

individual elements of a vector-valued function in some order. A

schedule is then a chaotic iteration strategy—an order in which to

evaluate the parts.

Chaotic iteration has long been used for solving systems of lin

ear equations. The Gauss-Seidel method is a familiar example that

solves the matrix equation Ax = bhy repeatedly evaluating

1
Xi := —

an
b>- I OijXj

for / = 1,..., n, 1,..., n, 1,.... Such an evaluation order is a chaotic

iteration strategy, and generally does not affect correctness. As such,

the technique works well on parallel computers with little synchro

nization. Chazan and Miranker [21] were two of its early pioneers.

Unfortunately, most of the techniques developed for these continu

ous problems do not translate well to the discrete-valued domains in

SR systems.

Robert's [58] approach to discrete iteration is very abstract and

general. However, since he places so few restrictions on the func

tions, his results are not strong enough to be useful here. In partic

ular, he can only predict convergence rates for systems that can be

topologically ordered.
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Chaotic iteration as an evaluation scheme resembles the delta de

lay model of the VHDL [45] and Verilog [69] discrete-event simu

lation languages. In these, each instant of simulatedtime is broken

into a sequence of delta timesteps to simulate zero delay elements.

The big differenceis that in these languages, the behavior of the sys

temcandepend ontheorderof events in these deltatimesteps. These

arenotalways specified in thelanguage, which can leadto nondeter-
minism. Even worse, it is impossible in general to predict how many

delta timesteps are required in a particular instant, or even whether

the number is bounded for all instants. The execution scheme pre

sented here for SR systemssuffersfrom none of these problems.

In mymaster'sthesis [25], I hadshown these techniques areappli
cable to the execution of synchronouslanguages. There, I presented

a compiler for the Esterel language (see Section 2.3.5 on Page 21)
loosely basedon thesetechniques. It useda chaotic iteration scheme

to find the fixed pointof a monotonic function deriveddirectly from
the program source. It used a dynamic evaluation scheme, and its
schedulerdid not attempt to improveefficiency or predictability.

Many researchers have observed that self-referential systems can

be evaluated more efficiently after being decomposed into strongly

connected components. For example. Buhl et al. [18] applies this to
nonlineardifferential algebraic systems thatarisein thesimulation of

heating and cooling systems in buildings. Jones [37] applies this to
evaluating circularattribute grammars used for checking programs'

static semantics. However, most of these techniques simply apply a

brute-force evaluation technique to each strongly connected compo

nent.

Bourdoncle [9] proposes the WeakTopologicalOrder (WTO),es

sentially a recursivestrongly connected componentdecomposition.

AWTOisa parenthesized linearordering of thevertices in a directed

graph suchthat backedges (i.e., those from laterto earlier vertices)
only landon the first vertexin eachparenthesized component, called
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the head of the component. For example, a WTO for the graph in

Figure 4.6 is

(7(5213)46).

Here, the head of each component is underlined. His recursive eval

uation strategy evaluates each parenthesized component by evaluat
ing all its contained vertices untilits headhasconverged. Any inner
components are brought to convergence for each evaluation of the
outer component.

Bourdoncle's approach largely inspired mine, but the problem he

solves is slightlydifferent. He is not concernedwith the predictabil

ity of the fixed-point evaluationscheme. Moreover, beyonda bound,

he does not address the quality of a WTO, nor does he give an algo

rithm that finds a provably optimal WTO.

Since minimizing the execution time of an SR system is critical

for ensuring the synchrony hypothesis holds, Bourdoncle's results

are not sufficient. A fundamental limitation of his WTOs is that their

heads are limited to single vertices, which is sub-optimal for certain

graphs (e.g.. Figure 4.15). My algorithms consider both single- and

multiple-vertex heads.

4.2 Finding the Least Fixed Point

From Definition 12, executing an SR system requires evaluating a

least fixed point in each instant. This section concentrates on an al

gorithmfor doing this correctly,and concludeswitha proof of its cor

rectness. Ultimately, the behavior of this algorithm will be recorded

to producea schedule. The next section is devoted to the problem of

making this algorithm find efficient schedules.

o = e(i) in each instant, where i is the vector of inputs, o is the

vector of outputs, and e is the least function that satisfies

e(i) = d(i,e{i)),
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where d is the aggregationof block functions from Definition 10.

SinceI amusingthe pointwise partialorderingon functions, (3.4),

the least function is the one that takes the least value at each value of i.

Thus,evaluating e(i) for a particular i amounts to finding the leasto
such that

o = d{i^o).

For convenience, define F(o) —d{i^o). The objective is now the

least o such that

o = F{o).

By definition of fix, the solution to this is

o = fix(F). (4.1)

In lightofTheorem 3, it is notsurprising that(4.1) is well-defined.

This follows from Theorem 2 since F is continuous (since d is con

tinuous) and its domain,O, is a pointed CPO that is the vector of all

outputs.

4.2.1 Iterative Evaluation

In this section, I present a wayof directly computing the fixed point
of a function. Thisapproach, described in Theorem 5, is an iterative
approach applicable to any function, inspired by theproofof Theo
rem 2.

The height of a CPO, as defined below, provides a bound on the
number of function evaluations necessary to find the least fixed point.

The height is a natural measure since it is additive—^the height of a
vector-valued CPO is the sum of the heights of its components (The

orem 4 and Corollary 2 show this). Although many useful CPOs

have infinite chains (see Davey and Priestly [23]), I do not consider

them here, as the finite-height assumption is required to make eval

uation predictable.
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Definition 13 The height of a pointedCPOD, written h(D), is one less than the
length of its longest chain. IfF: D D is a function, then h(F) =
h(D).

Theorem 4 IfAandBare pointed CPOs, thenAx Bis apointedCPOwith height
h(A XB) = h(A) + h{B) under the component-wise ordering(Equa

tion (3.3)).

Proof From Proposition 4,Ax is aCPO. Itsbottom element is (±, ±), so
it is also pointed.

Let ± C C •••E cih{A) ^ chain inA, and let± C E •••E

bh(B) ^chain inB. It follows that

h{A) elements h{B) elements

is a chain of length h{A) + h(B) + 1.

Now assume there exists a chain of length k > h{A) + h{B) + 1 in

AxB, i.e.,

(auai)Q (a2,^2) ^ • E (ajk,h)-

From (3.3), it follows that ai E ^2 ^ • E fljt and E ^2 ^ **' E

However, since the height of A is h{A) and the height of B is h{B),

these sequences can have at most h(A) + 1 and h(B) + 1 unique el

ements respectively. Moreover, since for i =

1,..1, there can be at most (h(A) —1)+ (h{B) —1)-f-1 unique

pairs in the ascending sequence—at least one of the elements must

be different, and there are only h(A) and h(B) possible choices for

each.

There exists a chain of height h(A) -f h(B) 1, and none may be

longer, so the height of A x B is h(A) -hh(B). •

Corollary 2 LetAi x A2 x ••• x Ajt be a pointed CPO ofpointed CPOs A], A2,...,

Ajt- Then
k

h(A] XA2 X•••XAjt) = X h(Ai). (4.2)
1=1
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The following provides a general technique for iterating toward a

fixed point. The iteration may start at any point c below the actual

fixed point where the function is increasing and proceeds by eval

uating F(c), F(F(c)), F*(c), etc. The number of iterations is
bounded by the height of the CPO on which F is defined.

Theorem 5 LetD be a pointed CPO, and letF:D-¥D be a continuousfunction.

Ifc CF{c) and c Cfix(F), then F^^^\c) = fix(F).

Proof By Theorem 2, fix(F) exists. Since c C F(c) and F is monotonic,
C = {c,F(c),F(F(c)),...} is a chain:

c C F(c)

F(c) C F(F(c))

Moreover, the leastupper bound of this chain is a fixed point since

F is continuous:

F(U{c,F(c),f2(c),...}) = U{F(c),F(F(c)),F(F^(c)),...}
= U{c,F(c),f2(c),...}

By definition, the least upper bound must approximate this, sofix(F) C
UC. Moreover, since c C fix(F), it must be that

c Q fix(F)

F(c) C F(fix(F)) = fix(F)

F^(c) C fix(F)

so UCC fix(F). Thus, UC= fix(F).

Let the height of D be /i = h{F). By definition, C may containat
most h + 1 distinct elements. There are two possibilities:

1. Ifc^ F(c) ^ F''(c), then Cisachain with h 1elements
and UC = F^(c) = fix(F).
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2. F^~ (̂c) = F*(c) for some k<h. This means F^~ (̂c) is afixed
point, and since k<h/ix follows that F^(c) = F^"*(c).

4.2.2 Chaotic Iteration

In chaotic iteration,the least fixedpointof a vector-valuedfunctionis

foundthrough repeated evaluation of partsof the function. This sec

tion contains some notation that will clarify what I mean by a "part''

of a function, and concludes with a proofof properties I call the Cha

otic Iteration Invariants, which shows that iterating to a least fixed

point results in a monotonically-increasing sequencethat never over

shoots the least fixed point.

The basic operation in chaotic iteration is the evaluation of some

dimensions of a vector-valued function. To facilitate the discussion

of this, I introduce the following notation. Consider a domain D of

n-dimensional vectors: D = D\ x D2 x ••• x D„. These will repre

sent the values on the communication channels. Frequently, I will

be speaking of some group of channels, which I denote by a set 5 =

{^i,. a subset of {1,. ..,n} suchthat 1 < .si <S2< •" <Sk<
n. I often refer to all the remaining channels, i.e., the complement

({1,..., w} —5) of this set, which I write as 5. Juxtaposition denotes

set intersection, i.e., AB = AHF.

Letx=(xi,...,x„),y=(yi,...,y„),andz=(zi,...,z„)be vectors

in A and let F : D -> Z) be the function F(jc) = [f\ (x),... ,/«(x)).

The dimensionof D, x,y, z, andF is n, writtend(D) = d(x)=d(y) =

d(z) = d(F) =n. I will use the following notation:

Ds = A, XA2 X••X

X5 = (x^i, X521 •••) )

(ys^Zs) = Xwhere xs = ys andx^ = zs

= (^W)s

Ff^(x) = (F5(x),X5)
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>F(jc) X-«

(b)

x<

(C)

Figure 4.2 Anillustration of function constructions, (a)F(jc) (b) (j:)
(c) fiX{2,4}FW
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fix5(F(x)) = fix(G(A:s)) where G(j:s)=Fs(;cs,X5)

where xs: Dsy Fs:D-^ Ds, F^*^ :Z> ->D, and 6x5: (D —>• D) ->Ds-
JC5, Ds, and F5 are simple projections. F^^ evaluates only the ele
ments of 5, leaving the others unchanged, as shown in Figure 4.2(b).

fix5 is the most subtle: it is the least fixed point of part of a function

where the elements ofS are the variables and the others are constants.

Figure 4.2(c) depicts this construction.

Ultimately, we will be finding a sequence of sets , ^2,..., (an

iteration strategy) such that

fW(f[i»-il(...(Fl^2l(/r(Sil(x)))...)) =flx(F). (4.3)

When F is a monotonic function, it turns out that all the intermedi

ate results in such an expression satisfy a strong set ofproperties! call

the Chaotic Iteration Invariants. The idea is that at any point, eval

uating any subset ofelements, i.e., F^ '̂̂ can only increase the result
and it can never pass the least fixed point of any part of the function.

These properties will be essential in proving that a particular iteration

strategy actually computes the least fixed point.

Definition 14 A vector ceD\ x---xDn satisfies the Chaotic Iteration Invariants

with respect to a function F \D\ x -" xDn-^ D\ x xDn if,for

all subsets A C {1,.

cCF '̂̂ ^(c) and ca, ^ fiXyi(F(c)).

Theorem 6 The Chaotic Iteration Invariants holdfor c = ±.

Proof Trivial, since ± C x for any x. •

The following proof provides the inductive step to show the Cha

otic Iteration Invariants hold for the intermediate results in evaluat

ing the least fixed point (done by (4.3)). It builds the desired rela

tions by breaking expressions into four sets of indices (AB, AB,AB,
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and AB) and considering each separately. This uses the pointwise C

relation from Proposition 4 to ensure that if as,^ Q bs^ oversome set

of subsets 5i U52U... = {1,... ,n} then aQb.

Theorem 7 Ifc satires the Chaotic Iteration Invariants with respect to a mono-

tonicfunction F, thend = (c) also satisfies the invariantsfor all

subsetsB C {1,...,n}.

Proof LetAC{l,...,n}be some subset and lete = (^)• Bydefinition,

(4.4)

Next, by assumption, cCFf^l(c), and F^^^ is monotonic, so

However, eAB = (F^^](Ft^l(c)))AB, so

dAB E ^AB' (4*5)

Similarly, since F^"^^ is monotonic, Ft'̂ ^(c) QFf'̂ J(Ff^J(c)). More
over, c CF^^l(c), so c Ce. However, dj^^ = so

dAB ^ ^AB'

Together, (4.4), (4.5), and (4.6) imply oneof the chaotic iteration
invariants for d, i.e.,

dQe = F '̂̂ \d). (4.7)

To show the other chaotic iteration invariant, first note dB = Fb(c),

so

^AB = ^b(c)- (4.8)

Furthermore, since dg = c^, and since c satisfies the

chaotic iteration invariant, cs Q Fs(c) for all 5,

^AB = ^AB E ^ASi^)'
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Together, (4.8) and (4.9) imply

dAQFA[c). (4.10)

Second, since c satisfies the chaotic iteration invariants,

CA ^ fix>i(F(c)).

Applying the monotonic function i^(-, c^) to both sidesgives

Fa(ca.Ca) = Fa{c) CFA(fiXA( '̂(c)),C4)-

Therightsideof thisis theapplication ofa function to its fixed point,
so

F>,(c)CFA(fix^(F(c)),c^) = fiXM(F(c)). (4.11)

Finally, since c satisfies thechaotic iteration invariant, cs C Fs(c)
for all S, C Moreover, since = Cg^, it follows

that c^Qd^. Because F is monotonic, this implies

fix>i(F(c)) C fiXyi(F(J)) (4.12)

Together, (4.10), (4.11), and (4.12) imply the other chaotic itera

tion invariant, i.e.,

^^Cfix^(F(^/)).

This and (4.7) show d satisfies the chaotic iteration invariants. •

4.2.3 Series/Parallel Decomposition

The following theorem, inspired by Robert [58], shows that you ar

rive at the same least fixed point ifyou evaluate a vector-valued func

tion in pieces. This result allows the blocks of an SR system be eval

uated in-place and a whole block at a time, rather than single outputs.

Theorem 8 IfF :D->D is a continuousfunction on afinite-heightn-dimensional

(Robert) pointed CPO D and

Q = p[^m] Q.. .Qp[2] qjA\]

where Sk C {1,. ..,/i} and S] U•• = {1,.. .,w}, then F and G
have the same unique leastfixed point.
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Proof F hasa unique leastfixed pointsinceit continuous on a pointedCPO

(Theorem 2). Furthermore, since F is continuous, is, and G is

(Proposition 8), so G alsohas a uniqueleastfixed point(Theorem 2).

LetX= fix(F). SinceF(x) = x, it follows fromTheorem 6, The
orem 7, and Theorem 2 that

G(J.) C *

(GoG)(X) C ;c

fix(G) C x = fix(F)

Since D is a finite-height CPO, fix(G) = G*"'®* (Theorem 5), so
fix(G) satisfies the Chaotic Iteration Invariant. Let y = fix(G). It fol
lows that

yC C(Ft^2] oF^ '̂̂ )(y) G(y) = y

so F^ '̂̂ ^y) = y for all k. Thus, y must bea fixed point ofeach com
ponent that appears in any Sk. Since Si U••• U5^ = {1,...»«}»y is
a fixed point of F, yety C fix(F), theleast fixed point, so it must be
that fix(F) = fix(G) •

4.2.4 Partitioned Evaluation

The following theoremdue to Bekic [2]* provides a way to find the

fixed pointof a function by partitioning it intoa head (F//) anda tail

*Bekic originally proved this in a 1969, but was not published until after his
death in 1982.1 take the proof from Winskel [73, Chapter 10].
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(a) (b)

Figure 4.3 A visualization of Theorem 9. (a) The least fixed point of F =
(FhiFt). (b) Thedecomposition into H cascaded with T. H combined
with its feedback loop is topologically identical to (a).

(Fj), finding the fixed point of !H (theheadwith anembedded eval

uation of the fixed point of the tail), and using this to find the fixed

point of the tail, as illustrated in Figure 4.3. Evaluating a fixed point

this way is more efficient when calculating the fixed point of the tail

is easy or when the head does not depend on the tail.

Theorem 9 IfF : D D is a continuousfunction on an n-dimensional pointed

(Bekic) CPODandHC{l,...,n}, then fix(F) =x = (fix(i^), fix(T)), where

andT = H.

^{xh) = Fh{xhMt{F(xh,xt)))

T(xt) = Ft(xh,xt)

(4.13)

(4.14)

Proof By definition, xj = fix(Cr), so ^(Jcj) = Jcj- = Ft{xh^xt). Similarly,

xji = so

^(xh) = xh = F//(%,fixr(F(%,xr))) = Fh{xh,xt),

so Jc is a fixed point of F.
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Now, let y be the least fixed point of F, whichexists because of

Theorem 2. Sinceyj is a fixedpoint of Fiyn-,•). it mustbe approxi

mated by the least fixed point, i.e.,

fixrCFCy/f^xr)) Cy?--

SinceF is continuous, FnixjiiXj) is monotonic in xj and therefore

FH{yH^^^T[F(yH,XT))) E F//(y//,yr).

Theleftsideof thisis!H(y//),andsinceF//(y//,yr) = y//, thisimplies

^{yn) ^ y//. so yn is a prefixed point of9{. From Theorem 2, it
follows that

fix(j?/') Cy//. (4.15)

Since % = fix(i?/'), this implies xh E yH» and since F7(x//,xr) is
continuous and hence monotonic in x//, it follows that

FT{xH,yT) E FriyH^yT)'

Since FriyH^yT) = yT^ this implies yj is a prefixed point of T, and
again by Theorem 2,

fix(T)Cy7. (4.16)

Sincey is the least fixed point, andx is a fixed point, y C x. How

ever, from (4.15) and (4.16), % C y// and xj C yj. It follows that

Jc = y. •

Definition 15 IfF :D D is an n-dimensionalfunction and (//, T) are a pair of
disjoint subsets of{\,...,n}, then thepartition (H,T) is separable
ifFH{xH,XT,xji^), is independent ofXT, i.e., ifFH{xH,XT,xj^) =
Fh(.xh,x!j,xj^) for all x!j.

The idea of a separable partition is simple: its head does not de

pend on itstail. This makes it easier tocompute theleast fixed point
since both halves can be evaluated in isolation. This is illustrated in

Figure 4.4.
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XT

(a) (b)

Figure 4.4 A visualization of Corollary 3. (a) The least fixed point of
F = (Ff/jFj-), a separablepartitionsince Fh is independent of xj, (b) The
decomposition into9{ cascaded with T.

Corollary 3 IfF isseparable, thenthe leastfixedpointoff isx = (fix(i^),fix( T)),
where T = H,

^{xh) = pH{xH,yT)

rr(xT) = Ft(xh,xt),

and yj may be anything.

4.2.5 The Divide-and-Conquer Least Fixed Point Algorithm

The fixed-point algorithm, Figure 4.5, uses divide-and-conquer. It

divides the problem using Bekic's Theorem (Theorem 9), and eval

uates the fixed points using iterative evaluation (Theorem 5, whose

conditions are ensured by the Chaotic Iteration Invariants of Defini

tion 14). Using Bekic's Theorem can require fewer function evalu

ations than using iterative evaluation directly, but choosing a divi

sion point that actually reduces the number is difficult. I devote Sec

tion 4.3 to solving this problem.
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Flx(F,S,x)

if 5 should be partitioned

choose H s.t. 0cH CS

T = S-H

If (//, T) is separable

x=Flx(F,H,x)

x = ¥lx(F,T,x)

else

for / = l,...,/i(F//)

x = Flx(F,r,x)

x = F^"^(x)
x=Flx(F,r,x)

else

for i= l,...,MFs)

x= Ft^(x)
return x

Execution

Choose a head

The tail is the remainder

Separable Partition:

fixed point ofthe head

fixed point ofthe tail

Non-separable Partition:

Evaluate

fixed point ofthe tail

evaluate the head

Evaluate fix(T)

Iterative Evaluation:

Evaluate

Figure 4.5 The divide-and-conquer fixed point algorithm. It computes
(fix5(F(x)),X5). In particular, Flx(F,{l,...,d(F)},X) = fix(F). When
and how S is partitionedis the subjectof Section4.3.
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Theorem 10 If x satisfies the Chaotic Iteration Invariant, the algorithm in Fig
ure 4.5 computes

Fix(F,5,x) = (fixs(F(x)),Xs) (4.17)

Proof This terminatesbecause the cardinalityof S decreases by at least one

for each recursive call.

Only two statements modify x, i.e., x= F^^ (j:) and x= (x). It
follows from Theorem 7 that the Chaotic Iteration Invariant on x is

maintained.

When S is not partitioned, the second loop computes

since x satisfies the Chaotic Iteration Invariant, and hence the condi

tions in Theorem 5.

When S is partitioned, assume the recursive calls of Flx(F,5,x)

satisfy (4.17).

WhenH is separable, the first call computes Xfj = fix//(F(j:)), and
the second call computes xj = fix7(F(.3c)). From Corollary 3, these

satisfy (4.17).

When H is not separable, the first loop computes Xfj = =

by Theorem 5, then uses this to computext = fix(T). From

Theorem 9, these also satisfy (4.17). •

4.3 Devising Efficient Schedules

The divide-and-conquer algorithm in Figure 4.5 will find the least

fixed point regardless of when and where the function is partitioned,

but says nothing about how this should be done. In this section, I use

this freedom to improve the quality of the schedules that come from

recording this algorithm's behavior.

Minimizing the worst-case execution time of a schedule is the pri

mary objective because SR systems assume the synchrony hypothe

sis. The worst-case time limits the minimum time between succes

sive events because to correctly model synchronous behavior, an SR
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Execution

(b)

Figure 4.6 (a)Thesystem from Figure 3.6. (b) Its dependency graph.

system must finish computing before more inputs arrive. A scheme
that improves the average or best-case execution timeat theexpense
of the worst-case is of no use for system running in real-time.

Moreefficient schedules mightbe possible if detailedinformation

aboutthefunctions orpossible datavaluesinthesystem wereknown.
However, the assumption of heterogeneity limitswhat canbe known

aboutthe functions, andconsequently, alsolimitsknowledge of what

data values might appear.

Having discounted the possibility of function- or data-dependent
partitioning schemes, only the communication structure remains to
select the partitioning scheme. Fortunately, this turns out to be an
effective way to find fast schedules.

I introduce thedependency graph, anabstraction of thecommuni
cation structure of a system. It is a directed graphwith a vertex for

each communication channel (or equivalently, blockoutput). There

is anedge from each block'sinputchannels to allitsoutputs, indicat
ing functional dependence or information flow. Theedges areessen
tially the connections of Definition 10(Page 49). Figure 4.6 shows
a dependency graph.

Definition 16 Adirectedgraph (or digraph) G is a pair (V, E) where Vis a set of
verticesand E is a set of edges. An edge is an element ofVxV with
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(7.(5.213)U6)^

Figure 4.7 A schedule for thedependency graph inFigure 4.6.

distinct vertices. A vertex v„ is reachable from vi if there is a path

from vi to Vn.' a set ofedges such that

{(V1,V2),(V2,V3),(V3,V4),...,(V„_1,V„)} CE.

Definition 17 The dependency graph G = (V,E) of an n-dimensionalfunction F

has

V =

^ = {Vjk) Iiffk{x) depends onxj andj^k}.

The fixed communication structure in an SR system leads natu

rally to a recursive partitioning strategy. The unchanging structure

means choosing a single way to partition a given subgraph can be

optimal, suggesting a simple recursive decomposition of the graph.

When the least fixed point algorithm is invoked on a particular sub

graph, the choice of whether to partition, and if so, how, is the same

each time. The schedule contains exactly this information.

The syntax I adopt for my schedules follows naturally from the re

cursive fixed point algorithm. There are three cases. I enclose a non-

separable partition in parentheses, writing it ( head . tail)", where

n is the height of the head. The halves of a separable partition are

just juxtaposed, e.g., head tail. I denote the evaluating of a single

node with a number, and I enclose multiple nodes to be evaluated in

brackets. Figure 4.7 shows a schedule for the graph in Figure 4.6. I

formally define the syntax in Backus-Naur form:
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s -> i Evaluate the ith component alone

I [i\ "ik] Evaluate I'l,..., ik in parallel
I 52 Evaluates\ then S2

I (^1.^2)" Non-separable partitionwith
head S] and tail S2

The meaning of a schedule is a function built from the composi
tion of a series of function evaluations. I define a schedule's mean

ing using a denotational style.* The function *E: Sched -^{D-^D)
transforms a schedule (a syntactical object) into a function. Expres

sions within double brackets are written in the syntax of schedules.

Note that function composition reads right-to-left.

Elil = Fl'l

n[ii---kn = F '̂'
£1^1^21 = £Ii2lo2|ji]

£1(^1 = EI^2lo(Ebllo£b2l)"

Forexample, themeaning ofthe schedule inFigure 4.7 is derived
as follows:

£1(5 . 2 13 )' 4 61
= fI61oFl''lo£|(5.213)'l

= f1«1 0fl"! ofPI 0ft'l ofPI 0fPl 0f13I 0fl'l 0£(21

£1(7. (5 . 2 13)' 46)']

= £1(5. 213)' 46Io(fP1o£[[(5 .213 )' 46])'
= f1®1 ofC! oFI^I oFI'1 ofI2! oF^l ofPIofI'1 oFPI oFPI 0

f1®1 ofPI 0fPI 0fI'I ofPI 0fI'I 0fI^I ofP' 0F^ '̂

This is a simple recursive interpretation thatcorresponds directly
to the behavior of the algorithm in Figure4.5. A singlenumbercor
responds to evaluating that component of the function. Juxtaposed

*Such notation is standard in the denotational semantics community. See a
standard text such as VTinskel [73].
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schedules, which must be separable, are taken one after the other.

Non-separable partitions are evaluated iteratively.

Eachnodeappearsexactlyoncein a schedule. This is a directcon

sequence of the recursive natureofoptimal partitioning, whichsplits
a set into disjoint sets.

4.3.1 The Minimum Evaluation Cost

In this section, I characterize minimum-cost schedules. I show their

cost always falls between linear and quadratic (acyclic systems have

linear cost, fully-connected systems have quadratic cost). Another

result, that greedily taking separable partitions is optimal, seems ob

vious, but is difficult to prove. Finding good schedules becomes much

easier since identifying separable partitions is easy. The final result

also provides a useful insight: an optimal non-separable partition must

have a separable tail. Later, this will allow me to find good partitions

more efficiently since it restricts what sort of partition I should look

for.

To characterize schedules, I make two assumptions about the func

tions and their domains. First, I assume each wire's CPO is flat—

each has a height of one. Interpreted another way, each wire is either

undefined (= ±), or has a value. This assumption greatly simplifies

analysis and is reasonable for most applications. The main conse

quence of this is that the height and dimension ofa function (or CPO)

are equal, i.e.,

h{F) = d(F).

I also assume the cost of evaluating any output is constant. This

greatly simplifies analysis, since the cost of evaluating a function is

just its dimension, but it can be an oversimplification. Especially in

heterogeneous systems, the cost ofevaluating blocks can vary signif

icantly. However, many of the results arising from this ^sumption

can be translated to systems where this assumption is relaxed.

At each level, the divide-and-conquer algorithm takes one of three
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TVpe Cost

Separable Partition Q(i/,r) = c(J¥)+c(r)

Non-Separable Partition Cp(H,r)=d(ff)2+(d(ff)+i)c(r)
Iterative Evaluation Ci(S) = d{Sf

Table 4.1 The costofexecutionstrategiescompared. C(5) is theminimum
costof evaluating the fixed pointofS. AllCPOs areof height one,and the
cost of evaluating a function is its dimension.

approaches, whose costI discuss below and summarize inTable 4.1.
C(S) denotes the minimum cost of evaluating fix5(F(jf)). I extend
thed{') notation to include sets, i.e., d(S) denotes the dimension of
S—^its cardinality.

Separable Partition When (//, T) is a separable partition, the least
fixed points of thehead and tail areeach evaluated once. The
cost is

' C(H) + C(r) if // n r = 0 and
Cs{H, T) = ^ (//, T) is separable

k oo otherwise.

Non-Separable Partition When (//, T) is non-separable, the head
is evaluated h(H) times and the least fixed point of the tail is
evaluated h{H) + 1times (once outside the loop). The cost is

C(//, T) ={ +i)C(r) if nr =0
1. oo Otherwise.

Iterative Evaluation It takesh{S) evaluations of tocomputeits

fixed point iteratively, so the cost of this is

C.(S) = d(Sf.

The minimum cost of evaluating the least fixed point of a func

tion, then, is the least cost among all separable partitions, all non-

separablepartitions,and iterativeevaluation.

C(5)= min {Cs{H,S-H)UCp(H,S-H)[JCi(S)}
0Q.HQ.S
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The next two theorems provide tight bounds on the optimal cost

of finding the least fixed point. It falls between linear, whichcorre

sponds to evaluating the whole function once, and quadratic, corre

sponding to evaluating the whole function as many times as it has
outputs. Besides providing insight into the overall cost of running

SR systems, thesebounds will be used to speed up the branch-and-

bound scheduling algorithm 1present in Section 4.3.3.

Theorem 11 Thecost ofevaluatingthe leastfixedpoint ofS is at least its dimen

sion, i.e.,

C(S) > d{S). (4.18)

Moreover, it is possible that C(S) = d(S), so the bound is tight.

Proof 1 will show (4.18) by induction on d(S).

For d(S) = 1, the function can only be evaluated iteratively, so

C(S) = C,(S) = d{S)^ = 1. This satisfies (4.18).
For d(S) > 1, there are three possibilities. For iterative evaluation,

C(5) > Ci(S) = d(S)^ > d{S).

For separable partitions,

C(S)>Q(H,S-H)=C(H)-^C(S-H)>d(H)-\-d{S-H)=d{S).

And for non-separable partitions,

C{S)>Cp(H,S-H) = diHf + (d{H) + l)C(S-H)
> d{H)'̂ + id(H) + l)d(S-H)

= d(H)(d(H) + d{S-H)) + d(S-H}

= d{H)diS) + d{S-H)

> d{S).

The case C(S) = d(S) occurswhen thereexists separablepartitions

at each level of the recursion. •
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Theorem 12 The minimumcost ofevaluating the leastfixed point ofS satisfies

C(5) < d(Sf - (d{S) - 1). (4.19)

Moreover, when no separable partitions exist,

c(s)=d(S)^-id(s)-\),

corresponding to evaluating a partition where d(S —H) = l, so the

bound is tight.

Proof I willshow thisby induction ond{S). Ford(S) = 1,C(S) = C,(5) =
1, satisfying (4.19).

When d{S) > 1, the least fixed pointof S can always be evaluated
asanon-separable partition where = 1. Since C(5—//) —1
in this case, the overall cost satisfies

C{S)<Cp(H,S-H) = + (<((//)+ 1)C(S-H)

= (d{S)-lf + d(S)

= rf(S)2-(t((5)-l).

Ifno separable partitions are possible, C(S) = d{S)^ —(<f(S) —i).
Since I have shown (4.19), I will prove this by showingthroughin

duction on d{S) that

C(5) > d(Sf - (d(S) - i). (4.20)

For d(S) = 1, C(S) = Ci{S) = 1, which satisfies (4.20).

Fori/(S) > 1, there are two possibilities. For the iterative evalua
tion case, C,(5) = d(S)^, and for the non-separable partition case,

Cp(H,S-H) = d{H)^-\-{d(H)-\-\)C{S-H)
= jc2-F(x-f-l)C(S-//)

> x^4-(x+l)((/i-x)^-(/i-x-1))

= n^ —(n—l)-\-c
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where c= x{x—(n—l))(x—(/i—2)). Since this term isnon-negative
forthevalid values ofx= d(H), i.e., d{H) = l,2,...,/i—l,it follows
that Cp(H,S-H) > diS)^ - (d(S) - 1).

Since by assumption either C(S) = C/(S) orC(S) = Cp(H,S—H),
Both are greater than the right side of(4.20), so it follows that (4.20)
holds. •

Corollary 4 Unless d{S) = 1, iterative evaluation is non-optimal, i.e., C(S) <
Ci(S).

Thenexttheorem, ineffect,saysthatgreedily evaluating separable

partitions is optimal. This is not a very surprising result, butisfairly
tedious to prove.

Theorem 13 When possible, evaluating a separable partition is optimal, i.e., if
(//, S —H) is separable, then

C(S) = Cs(H,S-H). (4.21)

Proof I will show this through induction on d{S).

First,consider thecasewhere d(S) = 2. Let (H^S—H) be separa
ble. Sinced{H) =d(S-H) = \, Cs(H,S-//) = 1+ 1= 2. The cost

ofany non-separable partition isCp{H, S—H)= 1^-|-(1-1-1)-1 = 3.
The cost of iterative evaluation is C,(S) = 2^ = 4. Thus for d(S) =
2, (4.21) holds.

Nowconsider J(S) = kforsome k>2. Assume (4.21) holds forall

d(S) < k. From Theorem 12, it follows that C(S) < 0/(5), soeither
C{S) = or C(S) = Cp{H\S-H') for some H'. For
convenience, write T = S —H and T' = S —H'.

Consider Cp{H',T'). The partition (HT\TT') ofT' is separable
since T) is separable (seeFigure 4.8,andrecall juxtaposition de

note set intersection). Hence by the inductive assumption,

C(r') = Cs(HT\ TT') = C{HT') -f- C{TT'). (4.22)
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H T

HH' TH'

HT' TT'

Execution

>T'

Figure 4.8 Avisualization for part ofTheorem 13. Here {H, T) is separa
ble and thenon-separable (//', V) is assumed to be lesscostly.

Certainly H and T caneach be evaluated as non-separable parti
tions {HH\HT') and [TH\ TT') respectively (see Figure 4.8), soit
follows that

C(H) < d{Hlff + (d{HH') + \)C{HT')

C(T) < d(TH'f-¥{d{TH') + \)C{Tt)
C(H) + C{T) < d(HH'f+d(TH'f+ (4.23)

(d(HH')+l)C(HT')+
(d{TH')+l)C(TT').

However, since d{HH') + d(TH') = d(H') and both quantities are
positive,

d{HH')^ +d(TH')^ < d{H'f. (4.24)

Furthermore, from (4.22) and since d(H') = d(HH')-^d{TH'), itfol
lows that

(d(HH') + l)C{HT') +{d(TH') + l)C(rr') < (d(H') + i)c(r').
(4.25)

Thiscanbe seen visually inFigure 4.9. Together, (4.23), (4.24), and
(4.25) imply

C(H) + C(T) < d(H'f + {d{H')+\)C(T')
Cs{H,T) < Cp(H',r)

So no non-separable partition canbe evaluated more efficiently.
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d(,H') + l

C{HT') C{TT')

V y ^

C{T')

Figure 4.9 A graphical argument for (4.25). Theareaof theenclosing box
corresponds to the left hand side; the area of the two shaded boxes corre
sponds to the right hand side.

Execution

yd{HH')

d(TH')+l

Now assume there exists another separable partition It

follows (see Figure 4.10) that

(HT', TT') = r [TH'JT') = T

are separable. By the inductive assumption, this implies

C[H') = C{HH')-y-C{TH')

c(T') = c(//r')-HC(rrO

C(H) = C(HH')+C(HT')

C(T) = C(TH')+C{TT').

Takentogether, theseimplyCj(H, T) = Cs(H'̂ T'). Thus, all separa

ble partitions have the same cost.

Since a separable partition is always less costly than iterative eval

uation or evaluating any non-separable partition, and all separable

partitions have the same cost, it follows that evaluating any separa

ble partition is optimal. •

Certain non-separable partitions cost more than simple-minded it

erative evaluation. This occurs when

d(Hf + (d(H)+\)C(T) > d(Sf
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H
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T

HH' TH'

HT' TT'

Execution

H'

Figure 4.10 Avisualization for part ofTheorem 13. Here both {H, T) and
are separable.

C{T) >
<l(Sf-d{Hf

d{H) + \
d{S)+d(H)

d{H)+\ •

If C(7) = d(T) this inequality is not satisfied, but for larger values
ofC(r), it can be.

This next theorem is very useful because it restricts the number

of partitions that must be considered when looking for optimal non-
separable partitions. The result is not surprising: an optimal non-
separable partition must have aneasier-to-evaluate tail.

Theorem14 Ifa non-separable partition isoptimal, then its tailmust have a sep
arable partition. I.e., ifS= (H,T) is optimal and ifT has no sepa
rable partition, then C(S) < Cp(H, T). The inequality isstrict unless
d(S-H)=2.

Proof Assume T has no non-separable partition and C(5) = Cp{H,T), it
follows that C(r) = Cp{H', T- H') for some partition H' cT.l^i
X= d[H), and y = d{H'). It follows that

C(S) = Cp(H,r) = x^ + (x-\-\)C{T)
= :? + (x+W + (y+mT-H'))

= :? + xy'̂ + -^+ (x+\)(y+\)C(T-H')

= i? +x/ + y^ + {x+y+l+xy)C(T-H')
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= ;c2 + y2 + (;c +y+l)C(r-ff') +

xy(y + C(T-H')).

However, consider the cost of placing both H and in the parti

tion. Note thatd{H+ H') = x-^y.

CpiH+frj-ff) = (;c+)')2-|-(jd-y-l-l)C(r-H')

= :?+y^ + (x-\-y+\)C{J-a') + 2xy

When d{T) = 2,C{T-H') = y=\,andCp{HJ) = Cp{H-¥H',T-
H') since xy(y-\-C{T —H')) = 2xy = 2. For larger values of j =

d(H') orC(T-H'),C{T-H') > 2Xp(HH',T-H') < Cp{H,T),
so C(S)<Cp(HJ). •

4.3.2 Finding Good Partitions

The last section showed that optimal schedules contain separable par

titions. The results section show that non-separable partitions corre

sponds to strongly connected components (SCCs) in the dependency

graph, and show how to break an SCC into a separable partition. To

gether, these lead to an optimal scheduling algorithm that decom

poses the dependency graph into SCCs and recurses on each compo

nent after removing a set of vertices (the head) that breaks its strong

connectivity. This follows because Theorem 13 implies a separable

partition is always optimal when it exists, and it turns out a decom

position of a graph into strongly connected components is unique.

Definition 18 Adigraph G= (V^E) isstrongly connected iffor all vertices vj ^ vjt,

Vk is reachablefrom vj.

Definition 19 A digraph G = {V,E) is acyclic if for all vertices vj ^ Vj^, if v^ is
reachablefrom vj, then vj is not reachablefrom Vjt.
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Definition 20 Let G = (V,£) be a digraph, and let S CV be a set of vertices. The

border of S is the set ofall verticesoutside S with an edgefrom S,

i.e.,

borderG(5) = {v\vs£S,veV —S, and (vj, v) € ^}.

Definition21 Akernel ofa digraph G = (V, E) is a strict, non-empty subsetofver

tices T cV with no border, i.e., such that border(7(r) = 0.

Theorem 15 Adigraph is notstrongly connected ifand only if it has a kernel*

Proof (If) Assume Tis a kernel of G, and \eXH —V—T. Since it is a kernel,

there is no edge from any vertex in T to any vertex in H (both sets

arenon-empty, so thisis notvacuous), so therecannot be a pathfrom

anyvertex in T to any vertex in H. Hence the graphis not strongly
connected.

(OnlyIf) Assume G = (V,E) is not strongly connected. It follows

that there is a vertex v/, unreachable from another vertex v,. Let T be

those vertices in V reachable from V/, including V/, and let // = V —T.

There cannot be an edge from a vertex in T to a vertex in H since

the vertex in H would then be reachable from V/, a contradiction. It

follows, since T is non-empty(it includes Vt) and a strict subset of V

(it excludes v/,), that 7 is a kernel of G. •

Theorem 16 Afunction has a separablepartition if and only if its dependency
graph has a kernel.

Proof (If) Assume 7 is a kernel of a dependency graph G, and let // = V—

H. By definition, there is no edge from any vertex in 7 to any ver

tex in H. It follows from the definition of a dependency graph that

Fh[xh^xt) is independent oixj.

*I took the term "kernel" and this theorem from Frank [27], who describes them
as "well-known," but I know of nothing else that uses this term or contains this
proof.
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(Only If) Assume (//, T) isaseparable partition. Since Fh(xh^xt)
is independent ofxj, there cannot be anyedgefrom a vertex in T to
a vertex in H. By definition, 7 is a kernel. •

Thusa separable partition is isomorphic to a kernel of the depen

dency graph, and these only occur when the graph is not strongly
connected.

Defimtion22 Thestronglyconnectedcomponentdecomposition ofa digraphG=
(V, E) isapartitionofthevertex set Vsuchthatallpairs ofvertices in
a singlepartitionaremutually reachable. Eachpartitionisa strongly
connected component or SCC.

Fortunately, agraphcanbe decomposed intoits strongly connected

components in linear time using a well-known algorithm due to Tar-

jan [67].

The primary challenge, then, is to partition a strongly connected
dependency graph. Theorem 14 impliesno optimal partition leaves

the tail strongly connected.

Choosinga head that leaves the tail acyclic wouldsatisfy this. An

acyclic graph is clearly not strongly connected, and furthermore, it

is the least expensive to evaluatesince the SCCs of an acyclicgraph

are all single vertices—it can be evaluated in linear time.

However, a partitionthatproducesan acyclicgraphmaynot be op

timal, as illustrated by the system in Figure4.11. Removing {1,4},
a minimal set whose removal leaves the graph acyclic, does not lead

to an optimal schedule.

Not only can the minimumfeedback vertex set lead to sub-optimal

schedules, identifying it is an NP-complete problem.* Clearly, this is

not the best solution.

Finding a partition that leaves the graph acyclic is too strong—

breaking strong connectivity is enough. However, finding a mini

mum set of vertices that breaks strong connectivity can be done in

*SeeGarey and Johnson [28], the standard reference for these problems.
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([1 4]. 2 3 5)^ uses a minimum
feedback vertex set and has cost 13

(1.23(4.5 does not use a

minimum feedback vertex set and

has cost 11

Figure 4.11 A system where partitioning using a minimum feedback ver
tex set is not optimal.

polynomial time,* unlike the Minimum Feedback Vertex Set prob
lem. Unfortunately, using the minimum set of vertices that breaks
strong connectivity is not always optimal.

The following theoremprovides a simple wayto breakstrongcon
nectivity: pick a set of vertices and remove its border. Figure 4.12
illustrates this.

Theorem 17 Let G = (V^E) be a strongly connected digraph. The graph that re
sultsfrom removing H, i.e.,

(f = (V',£') = (V-H,{(va,vi) I(va,vi,) eEandva,Vh^H}),

is not strongly connected ifand onlyifboTdcTc(K) CH CV andK C

V —Hfor some non-empty subset K CV.

Proof (If) Assume borderc(^r) CH c V. By definition, V' fi bordercC/s^) =
0 since V' = V —H, so borderG/(/r) = 0 and /iT is a kernel since

KcV-H. From Theorem 15, G' is not strongly connected.

*Kuller [40] pointed this out to me. The basic idea is that the maximum flow
betweenany two points in a networkwith vertexcapacitiesof one is the minimum
number of vertices that must be removed to break all paths between the two points.
Sinceto breakstrongconnectivity, theremustbe at leasttwopointsbetween which
there are no paths, the minimum overall numbermust be the minimum flow be
tween all pairsof vertices. Findingthe maximum flow can be done usingone of
the polynomial-time network flow algorithms aftersplittingallvertices intoan in
comingand outgoingvertex,placinganedge withunitcapacitybetweenthem,and
setting all other vertex capacities to infinity.
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(b)

Figure 4.12 Removing a border to break strong connectivity, (a) The bor
der of A, B, and C are all vertices with edges coming from A, B, and C.
(b) Removing this border (vertices D, E, F, G) breaks this graph's strong
connectivity.

Figure 4.13 An example where a valid partition {3} is not a predecessor
or successor set of any single vertex.

(OnlyIf) Assume G' is not strongly connected. ByTheorem 15,it
must have a kernel K, i.e., borderG/(^) = 0. For this to be the case,

the border of A" in G must have been removed, i.e., borderc(^) Q H.

Corollary 5 Removing the successor orpredecessor set ofany vertexin a strongly

connected graph breaks its strong connectivity.

Proof The successor set of a vertex v is exactlyborderc({v}), and its pre

decessor set is borderG(V —{v}). Both sets satisfy the conditionsin

Theorem 17. •

Corollary 5 provides one way to find partitions that break strong

connectivity, but not all valid partitions are the predecessor or suc

cessor of any vertex. Figure 4.13 depicts an example where a mini

mal vertex set is not of this form.
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4.3.3 The Branch and Bound Algorithm

The results in the last two sections suggest a recursive branch-and-

bound strategy for finding the optimal schedule. Theorem 13 sug

gests greedily using separable partitions isoptimal, and Theorems 15
and16imply theSCCs ofagraph areexactly theseparable partitions.
Strongly connected components must be evaluated as non-separable
partitions, and Theorems 14and 17 imply the optimal choice ofhead
must break the tail's strong connectivity, requiring the partition to

contain the border of some group of vertices.

Figure 4.14 shows an algorithm based on this strategy. It recur

sively decomposes a graph into strongly connected components and
searches for a good partition of each.

Thealgorithm first usesTheorem 12tocompute agross (quadratic)
bound on the cost using the size of each strongly connected compo

nent. The bound B is forced to be no greater than this to avoid con

sidering any grossly sub-optimal partitions.

The algorithmnextconsiderseach stronglyconnectedcomponent.

First, a bound b on the cost of the SCC is computed by subtracting

the minimumpossiblecost of the remaining SCCs (just their size ac

cording to Theorem 11) from the remaining cost r. Next, unless the

SCC is trivial (one-dimensional), the algorithm considers some set of

heads. For each head, the optimum cost of evaluating the tail is cal

culated by calling COST recursively. The bound for the tail comes

from noting that to achieve the bound on Sjt, the cost of the tail must

satisfy Cp{H,Sk-H) = d(Hf->r (d(H) +1)C(Sk -H)<b, the bound
on the SCC. Solvingthis for C{H, S* —H) yields

C(H,S^-H)<
b-d{H)^

.d{H)+\

89



Chapter 4 Execution

Cost(5,B)

Decompose S into strongly connected components 5i,...,

B= min{B, d(Sk)^ - (d{Sk) - 1)} Bound tobemet
r = B Remaining cost

foreach strongly connected component 5i,...,

b = r—Z?=jk+i ^i^i) Boundfor this SCC
a b< d(Sk)

return «> Bound is impossible to meet

if d(Sk) = 1

r= r —1 One-dimensionalfunction case

else

a = oo Minimum achievedfor this SCC

foreach head//of5;^

t=Cost ) Optimal tail cost
a = min{a, d[H)^ + [d{H) + 1)r} Cost including the

head

if a <b

b = a —\ Beat it by at least one next time

r=r—a

if r>0

return B—r Bound was met

else

return «> Bound was not met

Figure 4.14 A branch-and-bound algorithm for finding the optimal par
tition. S is the subgraph to be partitioned, and B is the cost bound. The
algorithmreturns the best cost or«»if the boundcould not be met. See Sec
tion 4.3.4 for a discussion of which heads of are considered.
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4.3.4 Choosing the Head of an SCC

Which heads to consider and the order in which to consider them for

each strongly connected component is key to thebranch-and-bound
algorithm. Considering allpossible heads would be correct, butThe

orem 14implies thisis overkill—only those partitions that leave the
tail separable can possibly be optimal. Theorem 17provides a way

to constructany partitionthat breaks strongconnectivity.

The minimumcost of a particular partitiongrowsrapidly with the

size of the head, providing a way to quickly discount large heads.

From Theorem 11, it follows that a partition worth considering must

satisfy

Cf(H,Sk-H) = d(Hf + (d(H) + l)C(/it-H) <b,

and C(5jt —H)> d(Sk —H), it follows thatd{H) must satisfy

d(Hf + (d(H)+\)(d(Sk-H)) < b

d(Hf + (d(H)+\)(d(Sk)-d(H)) < b

d(Hf+d{H)d(Sk)-{-d(Su)-d(H)-d{Hf < b

d(H) <

91

b-d(St)

d(Sk) -1

This result also suggests taking the partitions in order ofincreasing

d(H). This will tighten the bound faster since the cost grows at least

as quickly as d(H)^.
The best heuristic I have found for reducing the number of heads

to consider comes from Theorem 17, which implies an optimal head

(i.e., one that breaks strong connectivity) contains a border set. Start

ing with each vertex in the graph, the heuristic "grows" a vertex set

by greedily adding the vertex in its border that increases the size of

the border the least. Since the graph is strongly connected, there is

always at least one vertex in any border. The heads considered are

the borders of these vertex sets.
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For example, running this on the graph in Figure 4.13 produces,

for the set that begins with vertex 10,

Vertex Set Border/Partition Considered

10 1

101 2

10 12 3 9

10 129 3

10 129 3 4

10 1 2 9 3 4 5

10 129 345 6

10 1293456 7

I also tried using Corollary5 to only consider one partition: the

smallest outset (vertices with edges coming from) or inset (vertices

withedges leading to) of any vertex. Frequently, no schedule based
on thesepartitions would meet the worst-case quadratic bound—^the
best schedules would be worse than using a simple brute-force ap

proach.

I also tried simply considering all single vertex partitions. This

is frequently sub-optimal since for many strongly connected graphs,
the removal of a single vertex does not break strong connectivity.

(Seetheexample inFigure 4.15.) Again, itwasoftenthecasethatfor
certain systems, the cost of any schedules based on these partitions
exceeded the quadratic upper bound.

4.3.5 Schedule Transformations

SR systems are composed of blocks that can only be evaluated as a
whole, but the schedules produced by the branch-and-bound algo

rithm evaluate a single output at a time. Simply evaluating a whole

block any time a single output needs to be evaluated is correct (this
corresponds to introducing moreevaluations, which Theorem 8 says

will not affect the result), but wasteful.
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([12]. 34)^ is an optimal schedule
with cost 10.

(1.(4.23 contains only

single-vertex heads and has cost 11.

Figure 4.15 A netwoiit whose optimal schedule has no single-vertex
heads.

In this section, I present an algorithm for restructuring a schedule
to minimize the number of redundant block evaluations. The idea

is simple: combine outputs ona particular block into a parallel sec
tion of the schedule by moving thempast sections on whichthey do

notdepend. To facilitate this, I have identified five rewrite rules that
can restructure a schedule without affecting its correctness. They de

pend ontwo main results. The first is thata partof a schedule can be
moved before a section whose results on which it does not depend.

The second is that introducing additional function evaluations does

not affect correctness (follows from Theorem 8).

I present the rewrite rules in a deductive style. The subexpression
above the line can be replaced with the subexpression below if the

predicate to the right is satisfied.

I introduce the following two functions to describe what inputs a

subexpression depends on and what outputs it affects. Both take a

schedulean return a set of indices. 0[ 5] is simply the list of all in

dices thatappear in thesubexpression, while /f i ] is simply thever
tices with edges going to i in the dependency graph.

II sj = {/1 £[ 5|(x) depends onx,-}

Olsj = {/| 2:[5l(j:)/f^x/forsomex}

^ when /| / ] n 0[ 51 = 0 (4.26)
t s

(.?] . 52 ) i always (4.27)
(5l . 52 O ^
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when /[ 11n 0[ 521 = 0 (4.28)

always (4.29)

when <k . 01 ij J PI /[ ] = 0 (4.30)

The first rule, (4.26), allows an index to be moved before a sub-

schedule when it is independent. The second, (4.27), allows a later

output to be moved into a tail. This works because the two sequences

are

52 5*2 **• ^2 i

52 i 5] 52 f •• • i S\ 52 i.

The bottom just has additional /'s. Similarly, (4.28) allows a later

output to be moved into a tail. The sequence on the bottom is

52 5] / 52 ••• 5i i 52

which has moved i to the left of 52 and added others. The two se

quences in (4.29) are

52 i 5] 52 i • i 5i 52

52 i 5] 52 i •• ♦ i Si 52 i.

which differ only by the addition of a trailing i. When none of the

outputs of a group affect any later evaluations, the group can be eval

uated in parallel, leading to (4.30).

The rules in (4.26)-(4.30) suggest an algorithm for merging block

evaluations. The objective is to merge outputs on the same block into

a single parallel evaluation. (4.26)-(4.28) suggest an index i can be

pushed lexicographically toward the front of the tail until one of its

inputs is encountered. An output in a head can first be moved to the

end of its tail with (4.29), then pushed toward the front of its tail.

Once two or more independent outputs on the block are pushed to

gether, they can be merged into a bracket-enclosed parallel evalua

tion block using (4.30).

(5] . S2ri
(51 i •S2f
(I5i .^2)"
(51 . ^2 i T

"In
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Merge(5)

for each output i in s

Determine Cs "pushable range"

if an output on the same block appears in the range

Find the leftmost acceptable position for i.

Merge i with the nearest outputon the sameblock to the

right, if any.

Figure 4.16 An algorithm formeiging outputs on the sameblock.

The heads of non-separable partitions can be restructured freely.

The divide-and-conquer algorithm produces a parallel execution of
all theoutputs in thehead,but theycanbe serialized arbitrarily (from

Theorem 8). In particular, eachblockwithanoutputappearing in the
head can be executed exactly once, and in any order.

Figure4.17 shows an exampleof this algorithm's behavior.

4.3.6 Experimental Results

To test the efficiency of the branch-and-bound algorithmpresented

in Figure4.14 and the partition selection heuristics in Section4.3.4,

I generated 304 SR systems at random and found the minimumcost

schedule for each using the branch-and-bound algorithm using two

algorithms for choosingSCC partitions. My exactalgorithmconsid

ers all partitions containing onevertex, then all partitions containing

two vertices, etc. My "sweep" heuristic only considers a subset of

all possible partitions (and as such oftenmisses the optimal sched

ule) by growing a vertex set startingfrom each vertex in the graph,

as described in Section 4.3.4.

To create the random examples, I generated sixteen systems with

two blocks, sixteen with three blocks, etc., up to twenty blocks. For

each block in a system, I randomly selected a number of inputs and

outputs, each between zero and ten (uniformlydistributed), and then
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(7.(5.213)'46)'

(a)

Output Pushable Range

1 (7. (5. 2 13)'4 6)'
2 empty

3 (7. (5. [2i]3)'46)'
4 (7. (5. [2 1]3)'4 6)'

5 (7.(5.r2nr3 41)'6)'

6 (7.(5.[2 1] [3 4])'6)'

7 (7.(5.[2 1][34])'6)'
(b)

Leftmost Position

(7.(5.*213)'46)'

no matching block (4)

(7 . (5 . [2 1] • 3)' 4 6)'
no matching block

no matching block (7)

(7.(5.213)'4 6»)'

(7.(5.[2 1] [34])'6)'

(c)

Figure 4.17 (a)Theschedule from Figure 4.7. (b)Theeffects of running
the algorithmin Figure4.16. (c) The final merged schedule.
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exact
sweep

^ ^ *
• . '

• " • * * *4b«> * 'A * A .A. - . . • AA -lifAA ^ A» A ^ *
• • A**lik ^4* ^ ^ ^

0.1s
0 20 40 60 80

Number of Outputs
Figure 4.18 A comparison of scheduling times for the branch-and-bound
algorithm using the exact and heuristic sweep partition generators. All
times are on a SPARCStation 10.

100 120

for each block's input, randomly chose a block and an output port on

the block to connect to. If the block I chose had no outputs, I left the

input unconnected.

For reference, all data were collected on a a SPARCStation 10 with

96MB of main memory,although the program neverconsumed more

than about 4MB. All times include the time to initialize the program

and load the system, typically a few hundred milliseconds.

Figure 4.18 shows the times it took the branch-and-bound algo

rithm to compute the schedule for each system using the exact and

sweep heuristics. The numberof outputs in the systemis plottedhor

izontally (the sum of the number of outputs on each block—exactly

the number of vertices in the dependency graph). The times are plot

ted vertically on a logarithmic scale. The exact algorithm required

over 500 seconds to compute a schedule for 98 systems (out of 304),

but the sweep heuristic always completed in under eight seconds.
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Figure 4.19 The schedulingtime speeduparisingfrom using the heuristic
sweep partition generator.

From Figure 4.18, it appears the time to run the exact heuristic

varies substantially and grows quickly. The time it takes to run the

sweep heuristic does appear to be growing exponentially, but very

slowly. Moreover, the time for the heuristic seems much more pre

dictable in comparison.

Figure 4.19 shows the sweep heuristic is exponentially more ef

ficient than the exact brute-force solution. Although the speedup is

between 1 x and 2 x about 40% of the time, and the heuristic is actu

ally slowerin about20% of thecases, this is only the case whenboth

the exact and heuristic times are fairly small. For longer times (e.g.,

one second or more), the heuristic partitioner is the clear winner by

an exponentially growing margin.

To save time, the heuristic partitioner considers only a subset of all

possible partitions. Unfortunately, it can miss the optimal partition,

leading to the cost increases shown in Figure 4.20, but these are not

98



Chapter 4

^11
(KTOfiS?

I

25% 20% 15% 10% 5% 0

Fraction of Runs

Execution

m aa

•

• •-

Urn

•4

'.-^1 . • • "
— —T— — " • r ••••••* rO%

20 40 60 80

Number of Outputs
Figure 4^0 The increase in schedule cost from usingthe heuristicsweep
partition generator.

150%!
a>

JS

CO

l-ioo%f
C/3

O

U
c

h50% 'I
2
u
a

awful. The increase is less than 12% for more than an quarter of the

cases. Interestingly, the cost increasedoes not appearto be relatedto

the problem size.

Theorem 11 says the minimum schedule cost must be at least the

number of vertices in the dependency graph (i.e., the total number

of outputs in the system), and Theorem 12 says it must be less than

quadratic. The graph in Figure 4.21 bears this out—^the cost of all

schedules falls between the n and lines. However, more interest

ingly, the asymptotic bound appears to be closer to Of course,

this a function of the systems I chose to schedule, and there are sys

tems whose optimal schedulecosts —(n —1), but there do not ap

pear to be many of them. Moreover, since the random graph con

struction algorithm I presented above produces something reason

ably close to real systems, I expect similar results for real systems.

From these results, I conclude that both the exact and heuristic par

titioning schemes have merit. In many cases, finding the exact an

swer is computationallyfeasible,but when it is not, the heuristicscheme

is far fasterand producescomparableresults—halfof the time within

25% of the optimal schedule, and rarely more than twice as bad.
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o. 10

1 10 100

Number of Outputs

Figure 4.21 The minimum schedule cost as a function of graphsize.
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Implementation

The management question, then,

is not whether to build

a pilot systemand throw it away.

You will do that.

The onlyquestion is whether toplan in advance

to build a throwaway, or to promise to deliver

the throwaway to customers.

—^F. P. Brooks, The Mythical Man-Month

I IMPLEMENTED the SR model of computation in Ptolemy [16,
17],anenvironmentfor heterogeneous systemprototyping. Here,

I presentthe detailsof how I did this, along with two sizable exam
ples thatdemonstrate how theSRmodel ofcomputation canbeused
to specify reactive systems.

The ideas in Ptolemy, particularly its view of heterogeneity,were

a driving force behind this research. A variety of synchronous lan
guages have been proposed (see Section 2.3), but none explore the
problem of how to assemble heterogeneous systems. The solution I
devised followed naturally from the Ptolemy philosophy.

The twoexamples I presentillustrate twodifferent applications of

the SR modelof computation. The first system,an electronic address

book, is dominatedby its user interface. The second,a MIDI synthe

sizer, is a real-time heterogeneous system that uses a different model

of computation to implement some of its behavior.
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5.1 Ptolemy

Ptolemy [16, 17] is an object-oriented environment for simulating

and synthesizing embedded systems. Ptolemy is written in C++ [66]

and uses the Tcl/Ik language [53] for some user interface duties.

Ptolemy describes its systems as block diagrams. A system is a

collection of blocks and connections between input and output ports

on those blocks. The blocks may come from one of the existing li

braries, users may write their own in C++ or some other language, or

a block may contain another block diagram, allowing for hierarchical

designs.

To implement the SR model of computation, I created a new simu

lation domain in Ptolemy. A Ptolemy domain is an embodiment of a

particular model ofcomputation, and each consists of a set ofblocks

that conform to the model and a scheduler responsible for determin

ing an execution order for the blocks in a system. For example, a

block in the Synchronous Dataflow (SDF) domain (see Section 2.4.2)

produces and consumes a flxed number ofdata tokens from commu

nication FIFOs each time it executes. A block in my Synchronous

Reactive (SR) domain examines its inputs and writes a value, "ab

sent," or "unknown" on each output.

In many Ptolemy domains, including my SR domain, all sched

uling decisions can be made before the system is run. Such static

scheduling reduces overhead since the run-time scheduler may sim

ply read off a list of blocks to fire. It also enables a style of soft

ware synthesis known as block code generation, in which code for

each block is simply inlined in the order prescribed by the schedule.

This reduces scheduling overhead to almost nothing—^theprogram

counter of the processor effectively functions as the run-time sched

uler.

In addition to minimal run-time overhead, static scheduling allows

the system to be analyzed in more detail. For example, static SDF
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absent present(O) ••• present(k) ••• } "defined"

} "undefined*

Figure 5.1 TheCPOforthe three states of a communication channel: un
known, absent (no event), and present (valued event). Here, the present
events are integer-valued, but they could be anything.

schedulers are able to determine a bound on the size of each corrunu-

nication buffer,allowing faster fixed-length buffers to be used. The

static SR scheduler is able to determine the per-tick execution time

of the system (if it knows eachblock's execution time),allowing the

synchrony hypothesis tobetested without resorting toextensive sim
ulation.

5.1.1 The SR Domain

The SR domain in Ptolemy simulates systems described with the SR

model of computation. The blocks in the SR domain communicate

among themselves withevents sent through single-driver, multiple-
receiver channels. In each instant, a channel can either have an event

with a value, the absence of an event, or be undefined, generally due

to contradictory feedback. Communicationis instantaneousand un

buffered, so each block connection (port) on a channel sees the same

event (or absence thereof) in an instant. The three states of a com

munication channel are ordered as shown in Figure 5.1.

Blocks in SR systemsmustbehave monotonically* to obey the se

mantics in Chapter 3. This means that when an SR block is given

more-defined inputs (i.e., one or more inputs have changedfrom un

defined to present or absent), switching from undefinedto definedis

the only way an output is allowed to change. Switching from present

to absent or changing a value is prohibited.

•More precisely, theymustcompute continuousfunctions. However, sincethe
values on the conununication channels form a flat CPO, there are no infinite chains
and it follows from Proposition 7 that monotonicity is sufficient.
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I have written two schedulers for the SR domain. The default is a

static scheduler based on the algorithms presented in Chapter 4. The

other is dynamic, executinga system*s blocks in essentially a random

order until no outputs change, indicating the system has converged.

From the results in Chapter 3, it can be shown that this algorithm cor

rectly simulates a system.

5.1.2 SR Blocks in C++

A new C++ block for the SR domain is written by creating a new

class that inherits from an existing block class and overrides certain

methods. The scheduler, which calls these methods, expects them to

perform functions such as updating the block's outputs and chang

ing its state. The C++ programming interface is sununarized in Ta

ble 5.1.

To create a new block, a designer writes a .pi file. Figure 5.2

is a simple example. Figures 5.13-5.15 on Pages 126-128 is a more

complex example, describing its interface and the C++ code for cer

tain methods. The ptlang preprocessor digests this file and gener

ates C++ source and header files describing the block, which are then

compiled and linked into the Ptolemy system.

Communication to and from an SR domain block goes through

instances of the InSRPort and OutSRPort classes. Each repre

sents a connection to a communication channel, and are typically de

claredaspublicdatamembers of a blockclass,each witha nameand

a type. The stateofboth inputandoutputportsmaybe testedwiththe

known {), present {), and absent () methods, and if an event

is present, its value may be read with the get {) method.

Output ports have additional methods for changing their state. A

valued event can be emitted on a formerly-undefined port by calling

the emit {) method and filling in the value of the returned Particle, a

Ptolemyclass describinga piece of data. Dependingon the declared

typeof the port, thisvaluemightbe an integer, a string, or a floating-
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void setup 0

void begin0

void go()

void tickO

void reactive{)

Implementation

Block Methods To Be Overridden

Configure the block prior to simulation. Call methods
such as reactive () and independent () here.

Reset the state of the block—called once at the

beginning of a simulation.

Updatethe outputsbasedon the inputsand state. For
non-strict stars, this may be called more than once an
instant and should not change the state.

For non-strict stars, advance the block's state for the
next tick based on its inputs and outputs. Called
exactly once at the end of each instant.

Block Methods To Be Called

Mark this block as reactive—^requireat least one
present input before calling go (). Call only in the
setup 0 method.

Input/Output Port Methods

void independent {) Mark the input as independent—^not affecting any
outputs in the current instant. Call only in the
setup 0 method.

TRUE if the port's state is not undefinedint known()

int present{)

int absent()

Particle & get()

TRUE if the port has an event this instant

TRUE if the port has no event this instant

When present () returns TRUE, this returns a
particlerepresenting the valueof the event. Calling
this any other time is an error.

Output-Specific Methods

Particle 5e emit () Mark the port as having an event this instant. The
returnedparticle should be set to the emitted value.
Only call this when known () would return FALSE.

Mark this port as having no event this instant. Only
call this when known (} would return FALSE.

void makeAbsent()

Table 5.1 C++ interfaces to SR domain stars and portholes.
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defstar {

name { Pre }

domain { SR }

derivedFrom { SRNonStrietStar )

input {

name { input }

type { int >

}

output {

name { output }

type { int }

}

state {

name { theState }

type { int }
default { "0" }

desc { Initial output value, state afterwards. }

}

setup {

input.independent();

}

go {

if ( !output.known() ) {

output.emit{) « int(theState) ;

}

}

tick {

if ( input.present 0 ) {

theState = int(input.get());

}

}

Figure 5.2 The SR domain delay block, which delays its input by exactly
one instant. The ptlang program translates this into C++ source and
header hies.
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point number. The absence ofan event inthe current instant can be
declared by calling the makeAbsent () method. All output ports
are set to undefined at the beginning of an instant, and because of
monotonicity, there is never any need for a block to reset a port to
the undefined state.

Strict Blocks

An SRblock is strict by default, meaning it will only be executed if
all ofitsinputs are defined. This guarantees monotonicity and makes
these blocks behave like those in most other Ptolemy domains. Writ

ing a new block like this amounts towriting a go {) method that up
dates a block'soutputs andits state for thenextinstant. There areno
restrictions aboutthe outputsa particular set of inputs mayproduce.

Sucha strictSRblockmay alsobe marked as reactive, whichfur

ther requires at least one input to be present. If all the inputs are
absent, all outputs will be marked as absent and go {) will not be
called. This further simplifies coding since many blocks in the SR
domain are often reactive in this sense.

Non-Strict Blocks

The problem with strict blocks is that they donot work well in feed
back loops. Afeedback loop containing nothing butstrict blocks will
deadlock (alltheiroutputs willremain undefined) because eachblock
will be waiting for theothers. Thealternative is to write a non-strict
block that is able to produce some outputs even when some inputs
remain undefined.

The ability to partially evaluate outputs requires splitting output

calculationand state updates into two methods,go () and tick (),

because the SR schedulers may evaluate the outputs of a non-strict

block multiple times within aninstant toresolve thechannels infeed
back loops. In general, it is impossible to predict how many times
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goO {

if output 1 is unknown

if the inputs are enough to decide on output Ts value

emit output 1 or make output 1 absent

if output 2 is unknown

if output n is unknown

Figure 5.3 A standard idiom for writing the go {) method of non-strict
blocks. The schedulers guarantee that once an output is decided upon, the
inputs will only become more defined.

go () may be called, so its function must not change until tick {)

is called.

A non-strict block must behave monotonically, restricting the out

puts that may be producedby a particular set of inputs. Specifically,

the go () method must compute a monotonic function of its inputs,

meaning that if it is called with more-defined inputs (i.e., one or more

have switched from undefined to either present or absent) it may ei

ther leave its outputsuntouched or change some of its undefinedout

puts to defined, either present or absent. In particular, it may not

change an output back to undefined or switch an event's value.

Schedulers for the SR domain guarantee a block's inputs follow a

monotonically increasing sequence during execution in an instant.*

This simplifies the taskof ensuring monotonicity, sinceit meansthat

each outputcan be assigned a known value exactly once during the

series of evaluations in an instant. This suggests the form for the

go () method of a block shown in Figure 5.3.

•This follows from Theorem 7, which shows the Chaotic Iteration Invariants
are preserved when blocks are evaluated.
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Block Methods To Be Overridden

go Update theoutputs based on theinputs and state. This
may becalled more thanoncean instant andshould
not not change the state of the block.

tick Update a block'sstatebased on its inputs andoutputs.
Called exactlyonce at the end of each instant.

Block Method for Input/Output Ports

read port Returns "unknown," "absent," or a string
representing the present valueon the port.

Block Method for Output Ports only

write port value Writes value to thenamed output port. This is
interpreted as a string to emitunless value is
"absent." To ensure monotonicity, this should not
be called unless read would return "unknown."

Table 5.2 ltd interfaces to SR domain stars and portholes.

5.1.3 SR Blocks in ltd

SR blocks can also be described using McClennan's [ incr Tel]

(ltd) language [50], an object-oriented extension ofOusterhout's Tel
language [53] that facilitates rapid development and graphical user
interfaces. One of its main benefits is access to the Tk toolkit, a high-

level interface to windows, buttons, and so forth.

I designed the ltd interface as a simplification of the the C-H- in
terface. All ltd stars are non-strict; the behavior of the ports and the

go () and tick () methods remain the same.

Writing a new ltd block amounts to creating a new ltd class that
inherits from SRItclStar and overrides its go and tick meth

ods. Figure5.4 shows an ltd specification of a latch.
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class SRLatch {

inherit SRItclStar

constructor {} {

set state "0"

}

method go {} {
if { [read output] == "unknown" ) {

write output $state

}

}

method tick {} {

set input [read input]
if { $input != "unknown" &&

$input != "absent" } {

set state $input

}

}

variable state

Figure 5.4 An ltd specification of the delay block in Figure 5.2.
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5.1.4 SR Blocks from Other Languages

An SR blockcan alsobe a system described in a different Ptolemy
domain. It appears asa strict, reactive block that isexecuted atmost
once in an instant and only when all of its inputs are known and at
least one is present.

Such embedding is done with a Ptolemy structure called a Worm-
hole. When a design contains a system described in a different do
main, that design appears as an SRWormhole—an SR block con
nected to theforeign system. The ports onthis Wormhole block are
special—they translate the SR conununication protocol to and from
a universal protocol based onsingle-entry buffers. Since the Worm-
hole is a strictblock, it runs the enclosedsystem only when all of its

input ports are defined. Present events are copied into their univer
sal buffers, and ports without events leave their buffers empty. After
the foreign system has run, output buffers containing a single piece
ofdata appear asvalued events, and empty output buffers appears as
the absence of an event.

5.2 A Digital Address Book

In this section, I present a "virtual prototype" of a digital address
book specified in the SR domain to illustrate a user interface appli
cation. This is intended to model a small hand-held system and pro

vides theability to test theuserinterface before building thesystem.
Shown in Figure 5.5, it consists of a small (ten-character) alphanu
meric display that displays names and phone numbers above asmall
keyboard. Inbrowsing mode, pressing akey with aletter displays the
first name starting with thatletter, and pressing an arrow key scrolls
through the names alphabetically. In editing mode, the arrow keys
move an editing cursor and the remaining keys change the charac
ter beneath it. Pushing the Edit key switches between editing and
browsing.
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EiiluSl:

EDPWDS

keyboanl

Figure 5.5 The Digital Address Book Interface. "EDWARDS" is cur
rently being edited.

Thisexampleis fairly primitive because thelanguageusedto spec

ify the blocks, ltd, is not very elegant for describing finite-state be

havior. It is, however, very quick to write and test.

The block diagramof the addressbook is shown in Figure5.6. All

blocks were custom-designed in ltd and all communication is via

string-valued events. The keyboard sends keys to the ModeSelect

block, which then routes them to either the Database (responsible for

storing the names) or to the Editor (responsible for controlling the
cursorand modifyingthe nameentries). The latch maintainsindexof

the name being displayed or edited, and the counter is used to scroll

through the entries while browsing.

The Keyboard Block

When a key is pressed, this emits output with the label on the key,

and sets it absent otherwise.

To create this, I first wrote a more general ltd keyboard class in

herited from the itk: : Topieve1 class, meaning an instance of

it appears as an isolated window as shown in Figure 5.5. Its con

structor takes a list of keycaps and builds a button for each. The ac-
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ModeSelect

key editKey

jump count

Counter

command in

Latch

Editor

Inmost
key cursor

string
write read

char index indexOut in out

Database

Display
leftmost
cursor
string

Figure5.6 Ablock diagram of theDigital Address Book.

tual keyboard class inherits this and the SRItclStar class and over
rides the press method, called whenever a key is pressed. Its go
method emits the currently-pressed keyon the output and resets the
currently-pressed key variable.

The ModeSelect Block

Thisswitches between editing and browsing modes when it receives
"Edit." In browse mode, alphabetic key events are copied to jump,

and the arrow keys emit Down orUp oncount. Key events are copied
to editKey in edit mode. When switching from editing to browsing,
"Write" is emitted on editKey. When changing from either mode,

count is "Hold."

This isessentially alarge state machine implemented with aswitch
statement in the go method. Each case writes values to each out

put and sets the nextState variable appropriately. The tick method
copies nextState to thecurrent state variable.
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The Counter Block

When commandis "Up," "Down," or "Hold," out is respectivelyone

more, one less, or the same as in. All this is implemented with a

switch statement in the go method.

The Latch Block

Emitted on out is the value of in in the last instant. The code for this

simple block is shown in Figure 5.2. It is a non-strict block since

out is emitted without regard to the current state of in. This breaks

the feedback loop including the latch, counter, and database by in

troducing a delay.

The Database Block

The most complex of the blocks, the database maintains a sorted list

of strings. An event on char causes the database to search for the first

entry beginning with that character and emit its index on indexOut,

its value on out. Ifboth index and in have an event, the string value on

in is written into the list at the index value, the database is sorted, and

the new index is emitted on indexOut. If an event arrives on index

and in is absent, a string is fetched from the database and emitted on

out; its index emitted on indexOut.

The code of the database block is shown in Figures 5.7 and 5.8.

The Editor Block

This block maintains the string being edited, which is read and writ

ten through read and write. It also maintains the current location of

the edit cursor, emitted through cursor, and an index of the leftmost

character to be displayed, emitted through leftmost.

When the key input is "Edit" and read is present, read becomes the

string to edit. When key is an alphanumeric character, the character
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# class SRDatabase

#

# INPUTS char - Selects the first item in the list starting with this
# index - The requested index value
# in - A string to write into index
# OUTPUTS indexOut - The current index out
# out - The string stored at the current index
class SRDatabase {

inherit SRItclStar

constructor {} {

set contents "Ann Beth Carol Debby Elizabeth Francine "
}
method go {) {

set index [read index]
set char [read character]
set in [read in]
if { [read out] == "unknown" &&

$index != "unknown" && $char != "unknown" } {
if { $index == "absent" && $char == "absent" } {

# Both index and char absent—don't respond
write out absent

write indexOut absent

} else {
if { $char != "absent" } {

# char present—search for the first entry
set length [llength $contents]
for (set index 0} {$index < $length} {incr index} {

if { [1index $contents $index] >= $char } {
break;

}

}
write out [lindex $contents $index]
write indexOut $index

} else {

Figure 5.7 ltd code for the Database block ofthe Digital Address Book,
first part
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if { $in != "unknown" } {
if { $in != "absent" } {

# index and in present—insert new value,
# sort the database, and find the entry
if { $index >= [llength $contents] } {

lappend contents $in
set contents [Isort $contents]

) else {

set contents [Isort \

[Ireplace $contents $index \
$index $in] ]

}

set index [Isearch $contents $in]
write out $in

write indexOut $index
} else {

# index present, in absent—fetch
# the value from the database

if { $index < 0 } {

set index [llength $contents]

}

if { $index > [llength $contents] } {
set index 0

}

write out [lindex $contents $index]

write indexOut $index

)

}

}

# A list containing the database entries
variable contents

Figure 5.8 ltd code for the Database block of the Digital Address Book,
last part
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atthe cursor position isoverwritten and the cursor moved right.
This block is non-strict to break the feedback loop involving the

database. Thevalue ofthewrite output isbased only onthekey input,

not on read^ whichis dependent on the valueof in.

The Display Block

This displays the value of the most-recent event on string, starting
from the leftmost index. When cursor ispresent, the character atits
index is underlined.

The code for the Display block is shown in Figure 5.9, and illus
trates how many output-only blocks work. All the action takes place
in the tick method, which examines its inputs and sends theirval
ues to some I/O device, in this case, the screen via Tk "widgets."

5.3 A MIDI Synthesizer

In this section, I present another application implemented inthe SR
domain—a MIDI (Musical Instrument Digital Interface) sound syn
thesizer. This example illustrates many features of the SR domain,
including its ability tohandle both control and data, incorporate other
models ofcomputation, one-to-many communication, and feedback.

The synthesizer decodes a serial MIDI stream and uses it topro
duce sound using adigital-to-analog converter. All the decoding and
control is done bycustom SRblocks written in C++; the waveform
synthesis isdone with existing SDF blocks using an FM (frequency
modulation) algorithm.

In thissection, I describe theMIDI protocol, the technique of FM
synthesis, and how I implemented the synthesizer inPtolemy.
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# class SRDisplay
#

# INPUTS leftmost - The index of the leftmost character to display
# cursor - The index of the cursor position
# string - The string to display
class SRDisplay {

inherit SRItclStar itk::Toplevel
constructor {args} {

set displayWidth 10
itk_component add display {

label $itk_interior.display -width $displayWidth \
-justify left

}
pack $itk_component(display)
set displayText ""
set leftmostChar 0

set cursorPos -1

eval itk_initialize $args

}

method tick {} {

set string [read string]
if { $string != "absent" && $string != "unknown" ) {

set displayText $string
set cursor [read cursor]

set leftmost [read leftmost]
if { $cursor != "unknown" && $cursor != "absent" } {

set cursorPos $cursor

} else {

set cursorPos -1

}
if { $leftmost != "unknown" && $leftmost != "absent" } {

set leftmostChar $leftmost

}
$itk_component(display) configure -text \

[string range "$displayText " \
$leftmostChar \

[expr $leftmostChar + $displayWidth]]
$itk_component(display) configure -underline \

[expr $cursorPos - $leftmostChar]

}

}
variable cursorPos

variable leftmostChar

variable displayText

variable displayWidth

Figure 5.9 ltd code for the Displayblock of the DigitalAddressBook
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5.3.1 The Mn>I Protocol

TheMIDI protocor was designed to allow a single musician to con
trol multiple synthesizers with asingle keyboard. Primarily, it sends
note-on and note-offmessages that include a note's pitch and how

hard it was struck. It is a real-time protocol, so a note-on message

causes a note to begin sounding inunediately andheld until thecor
respondingnote-off message arrives.

MIDI is a unidirectional asynchronous byte-oriented serial proto

col that resembles RS-232. In myimplementation, I used a keyboard

thatsends MIDI messages at 38.4 kBaud atRS-232 levels, so it con
necteddirectly to the serialport of a Sun workstation.

MIDIdefines a seriesof messages, summarized inTable 5.3. Each
begins with a status byte indicating themessage type followed by a
sequence of data bytes. The most significant bitof each transmitted
byte is set for status bytes, clearedfor data.

To save bandwidth, MIDI uses something called "running status"

where a message's status byte is omitted when thelastmessage had
thesame status. Forexample, to send a series of note on commands
to Channel 0, a single 90 status bytecanbe transmitted, followed by
pairs of data bytes indicating the pitch and velocity ofeach note.

My synthesizer responds to Note On, Note Off, Control Change,
and Channel Pitch Wheel messages. Control Change messages af

fect parameters controlling the timbre of the notes. Channel Pitch
Wheel messages shift the frequencies of all sounding voices by up
to two half-steps in either direction.

5.3.2 FM Sound Synthesis

A natural-sounding musical tone, such as a note struck on a piano,
generally consists of a fundamental frequency accompanied by har-

*MIDI isdefined bythestill-evolvingM/D/1.0DetailedSpecification [51], but
books such as Rothstein [59] or Roads [57] have more readable descriptions.
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Meaning Status Data 1 Data 2

Note Off 8c^ Pitch^ Velocity^

Note On 9c^ Pitch^ Velocity^

Note Aftertouch Ac^ Pitch^ Value

Control Change Bc^ Controller Value

Program Change Cc^ Program

Channel Aftertouch Dc* Value

Channel Pitch Wheel Ec^ LSB^ MSB

System Exclusive PC Mfg. ID^
MTC Quarter Frame F1 Time Code

Song Position Pointer^ F2 LSB MSB

Song Select^ F3 Number

Tune Request F6

End of System Exclusive F7

Timing Clock' F8

Start^ FA

Continue^ FB

Stop^ FC

Active Sensing^ FE

System Reset FF

' The lower four bits indicates the channel.
^Thepitch in halfsteps. Middle C is 60.
^A velocity of 64 is neural. A velocity of 0 is equivalent to noteoff.
^ The first databytecontains the seven least significant bits; the second con

tains the next seven bits. Hex 2000 is neutral.

^ The manufacturer ID byteprovides a way to interpret the arbitrary number
of data bytes that follow. An F7 status terminates the sequence.

^ Used forsequencer control.
' May besentoutat a rateof 24 perquarter note forsynchronization.
®Sentoutevery 300msif therehasbeen nootheractivity to indicate thepres

ence of a MIDI connection.

^ System Realtime messages may"interrupt" anydatastream.

Table 5.3 MIDI messages. All numbers are in hexadecimal.
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monies at integer multiples. Although the overall loudness of the
note generally decays after it is first struck, the relative strengths of
the harmonics usually evolve overtime in morecomplex ways.

It is a challenge to synthesize natural-sounding musical tones be
cause of their need for dynamically-changing harmonics. Additive
synthesis,* where the waveform iscreated by sununing sinewaves, is
an obvious approach, butis both computationally intensive and de
mands a lot of difficult-to-obtain data. Subtractive synthesis takes a

complementary approach bysending aneasy-to-generate, harmoni
cally rich waveform (such asa square orsawtooth wave) through fil
ters toproduce the final sound. While closely resembling many real-
world mechanisms forgenerating sounds (e.g., brass instruments fil
ter the sound of vibrating lips), interesting sounds require complex
time-varying filters.

In 1973, JohnChowning introduced theideaof FMsynthesis [22]
for synthesizing tones. His key observation was that FM waveforms
are easy toproduce and have the characteristics ofnatural sound. In
particular, their harmonics can be made tofall atinteger multiples of
the fundamental and the relative amplitudes of these harmonics can

be controlledin complexwaysby varyinga singleparameter.

All of these effects can be seen in the FM equation and its sine

expansion,

y[nT) = sin(0c + /sin(0/«)) (5.1)

= JbWsin(0c) +

J\ (/)(sin(0c + 0m) - sin(0c - 0m)) +

72(/)(sin(0c + 20ot) + sin(0c - 20m)) +

y3(/)(sin(0c + 30m) - sin(0c - 30m)) +

*Formoreinformation aboutadditivesynthesisandcomputermusicin general,
see Roads' extensive tutorial[57]. Moore's book [52] hasa moredetaileddescrip
tion of FM synthesis.
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Figure 5.10 The first seven Bessel functions. For a given index of modu
lation, /, theamplitude of thekthharmonic comes from Jk{I).

where

0c —iKfcflT Qfn —

Thecarrierfrequency, /c, is the fundamental, andwhen themodulat

ingfrequency fm equals /c, theharmonics fallat/c, 2/c, 3/c, etc. The

modulation index 1 affects the relative amplitudes of the harmonics

throughBessel functions of the firstkind. In general, the higherhar

monics die out and larger / means more harmonics, but the behavior

of lower harmonics is more complex—see Figure 5.10.

Twomorethingsare neededto producea toneusingFM synthesis.

The FM equation (5.1) needs to be scaled by a time-varying enve

lopefunction, andtheindex ofmodulation needs tobe controlled for
the duration of the note. A typical envelope function starts suddenly

when the note is first struck (its attack), then decays to zero when
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A four-voice MIDI synthesizer
This demo requires a MIDI keyboard connected
to /dev/ttya at 38400 baud. Use the keyboard's
•to Host" port set to PC-2 mode for this baud rate.

V,'V

Serialln synthesizer

Figure 5.11 Thetop level of theMIDI synthesizer. Theoutput of theSe-
rialln block is either the character on the serial port, or absent. The synthe
sizer block is shown in Figure 5.12.

the note is released (Figure 5.16showsan example). It is reasonable

to make the index of modulation proportional to the envelope, since

many natural sounds increase theirbandwidth when thenote is first
struck, then slowly decay into a pure tone (note that when1 is zero,

the FM equation produces a sinewave).

5.3.3 Implementation of the Synthesizer

I implemented thesynthesizer inPtolemy using both the SRand SDF
domains. The top two levels of hierarchy (Figures 5.11 and 5.12),
are implemented in the SR domain, and are responsible for decod
ing the MIDI stream, keeping track of which voices are sounding,
and generating the envelopes for the notes. The bottom twolevels.
Figures 5.17 and5.18, are implemented in the SDFdomain and are
responsible forsynthesizing theFMwaveforms, summing them, and
sending them to the speaker. The synthesizer runs in real time with

four voices running at 8 kHz on a SPARCStation 10.

At the top level (Figure5.11),the single input to the system—ase

rial MIDI stream—enters via the Serialln block. This block's output

emits either the most-recently-sent MIDI byte, or is absent when no
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Figure 5.12 The synthesizerblock. Starting from the input, the MIDIin
block translates the serial MIDI stream into commands for the polyphony
controller, the SynthControl block. This sends frequencies to the sound
synthesis block and velocities to the four EnvelopeGen blocks.
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new byte has arrived.

The MIDIin Block

The MIDIin block decodes a MIDI stream by keeping track of the

running status andrecent databytes toproduce noteon,noteoff,con
trol change, andreset events. Itsprimary function isserial-to-parallel
conversion; when a complete note-on message arrives, its channel,

pitch, and velocity are emitted in a single instant. Note off, pitch
bend, and control change messages are handled similarly. I coded

this as a strict block in C++, and it is essentially a state machine, al

beit one with a significant need to handle data. See Figures 5.13-
5.15.

The SynthControl Block

The SynthControl block is responsible for handling polyphony and
the effects of the pitch wheel. Its main inputs are onPitch, onVeloc-
ity and ojfPitch, which receive events from the MIDIin block. The
blockmaintains an array of pitches of currently-sounding voices and
distributes this information to the various sound synthesis blocks.

The voices are controlled throughfrequency, velocity, and done

ports. The frequencies of sounding voices come from a look-up ta
bleand are each multiplied byaconstant derived from thepitchBend
port that can shift them up or down at most two halfsteps. The ve
locity of a voice comes directly from the note-on event and is held
until the corresponding note-off event arrives, at which time it be
comes absent. Thereis usually some delay between when a note-off
event arrives and when the voice actually stops sounding. An event

ona donechannel signals this. These do nottakeeffectuntil thenext
instant to avoid an instantanenous feedback problem.
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defstar {

name { MIDIin }

domain { SR }

input { name { in } type { int } }

output name channel } type { int } }

output name onPitch } type { int } }

output name onVelocity ) type { int } }

output name offPitch ) type { int } )

output name offVelocity } type { int } }

output name pitchBend } type { int } )

output name controller ) type { int ) }

output name controlValue ) type { int } }

output name reset } type { int } }

state { name { lastStatus } type { int } }

state { name { byteNum } type { int } }

state { name { lastByte } type { int } )

Implementation

private { int nextStatus; int nextByteNum; }

public {
inline int isRealtime( int i ) const {

return i >= 0xf8 && i <= Oxff; )

inline int isStatus( int i ) const { return i & 0x80; }
inline int isSystem( int i ) const {

return i >= OxfO && i <= Oxff; }

enum statusBytes {

NoteOffPitch = 0x80, NoteOffVelocity = 0x81,
NoteOnPitch = 0x90, NoteOnVelocity = 0x91,
ControlChangeController = OxbO, ControlChangeValue = Oxbl,
ChannelPitchwheelLSB = OxeO, ChannelPitchwheelMSB = Oxel,

SystemReset = Oxff

};

}

begin {

nextStatus = lastStatus;

nextByteNum = byteNum;

}

Figure 5.13 C++ code for the MIDUii block, first part

126



Chapter 5 Implementation

go {

if ( in.presentO ) {
int inVal = int(in.get());
i^ ( isStatus(inVal) ) {

if ( isRealtime(inVal) ) {

if ( inVal == SystemReset ) {
reset.emit() « int(TRUE);

}
} else {

nextStatus = inVal;

nextByteNum = 0;

)

} else {

int status = int(lastStatus);

if ( isSystem(status) ) {
) else {

int byte = int(byteNum);

switch ( status & OxfO | byte ) {

case NoteOffPitch:

case NoteOnPitch:

case ControlChangeController:
case ChannelPitchwheelLSB:

lastByte = inVal;
nextByteNum = 1;

breaJt;

case NoteOffVelocity:
offPitch.emit() << int(lastByte);

offVelocity.emit 0 « inVal;
channel.emit() « int(status & Oxf);
nextByteNum = 0;

brealc ;

case NoteOnVelocity:
channel.emit() « int(status & Oxf);

if ( inVal == 0 ) {

offPitch.emit() « int(lastByte);

offVelocity.emit() << 64;
) else {

onPitch.emit() « int(lastByte);

onVelocity.emit() « inVal;

}

nextByteNum = 0;

brealc;

Figure 5.14 C++ code for the MIDIIn block, second part
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case ControlChangeValue:
controller.emit() « int(lastByte);
controlValue.emit() « inVal;

channel.emit() « int(status & Oxf);
nextByteNum = 0;
break;

case ChannelPitchwheelMSB:

pitchBend.emit0 « {(int(inVal) «
channel.emit 0 « int(status & Oxf).

nextByteNum = 0;
break;

}

Implementation

7) I lastByte)

! channel. Icnown () )

!onPitch.laiown() )

!onVelocity.lcnown() )
! of fPitch.lcnown() )

!offVelocity.]cnown()
!pitchBend.]cnown() )
!controller.)cnown() )

! controlValue, Icnown ()

! reset .]cnown() )

channel.makeAbsent(); }

onPitch.makeAbsent(); }

onVelocity.makeAbsent0; }
offPitch.makeAbsent0; }

offVelocity.makeAbsent();
pitchBend.makeAbsent(); }
controller.makeAbsent0; }

controlValue.makeAbsent();

reset.makeAbsent(); }

tick {

lastStatus = nextStatus;

byteNum = nextByteNum;

}

Figure 5.15 C-h-codefor the MIDIIn block, lastpart
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Decay rate

Attack rate /
\j I * Sustain level

I jWRelease rate
Note On Note Off

Figure 5.16 Anenvelope generated byanEnvelopeGen block.

The EnvelopeGen Block

AnEnvelopeGen blocks controls both theamplitude andmodulation
index of each FM synthesis block. The envelopes it generates are

controlled by four parameters, shown in Figure 5.16. Theattack and
release behaviors are both linear; the decay is an exponential fade to

the sustain level. These can be set by MIDI Control Change mes

sages thatenterthrough thecontroller and controlValue ports, which
areconnected bus-style to theMIDIin decoder. A knob on theMIDI
keyboard can be progranuned to generate control change messages

for different controllers.

The block behaves as a state machine, looking for velocity events

signaling the beginning of a noteand the absence of velocity events,

signaling the end of a note. The machine has four states, quiet, at
tack, decay, and release. It changes from quiet to attack andrelease
becauseof velocity events; it changes from attack to decay and re

lease to quiet based on the envelope state.

Theoverall amplitude of theenvelope is scaled by the velocity of

the note. The modulation index is a scaled version of the overall en

velope, controlled by a parameter. A larger scaling constant makes
the tones sound richer because they have more harmonics.

The FM Synthesis Blocks

Each FM synthesis block (shown in Figure 5.18) has an amplitude,
a fundamental frequency, and a modulation index input. The mod-
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MoneCM

BmEBBsiEi

Figure 5.17 Thesound synthesisblockoftheMIDI synthesizer, described
usingSDR FourFMsynthesis blocks feed theiroutputs intoan adder that
sends its output to a speaker.

1

fijSsA Oiin »*>y ,

t —>

Figure 5.18 An FM synthesis block. The inputs arean amplitude, a cen
terfrequency, and anindex ofmodulation. Themodulating frequency isthe
same as the carrier. The repeat blocks (upward arrows) on each input con
trol the number of samples generated per tickof theenclosing SRdomain.

ulating frequency is the same as the fundamental, so the harmonics
fall at 2/, 3/, 4/, etc.

TheFMsynthesis blocks aredescribed in Synchronous Dataflow,
and take advantage of its ability to describe multi-rate systems. Re

peatblocks oneach input control how many samples are sent to the
digital-to-analog converter per instant. In each instant, exactly one

tokenis placed oneachinput, so therepeat blockcopies thisasmany
times as necessary to increase the number of samples per tick. By

adjusting this number, thefraction oftime thesystem spends dealing
with control versus dataflow can be controlled.
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Conclusions

Films are never completed,

they're only abandoned.

— Anonymous

IN THIS DISSERTATION, Ipresentedanew model of computation
for reactive software systems. Called SR, it is the first to com

bine precise controlover when things happen with the ability to as

semblesystems fromheterogeneous pieces. Todemonstrate itsprac

ticality, I have defined its semantics formally, proven it determinis
tic, devised an algorithm capable of executing it efficiently and pre

dictably, shown it hasa straightforward implementation, and used it
to describe some useful, realistic systems.

The formal semanticspresented in Chapter 3 showed that SR sys

tems are deterministicand compositional. Introducing an undefined

value to the communication channels allows seemingly paradoxical

systems to be handled, and requiring the blocks to behave monoton-

ically with respect to this showed these systems are deterministic:

they react in exactly one way to any particular input. The seman

tics also show that any group of SR blocks can be treated as a single

block,allowing anypartof anSRsystemto be encapsulated intoa li
brary component without loss of expressiveness. This is the primary

mechanism for handling complexity through abstraction.

The execution scheme in Chapter 4 determines an order for exe

cuting the blocks. The resulting scheduleworks for all possible in

puts, and because all scheduling-related decisions are made before
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the system is running, there is virtually no run-time scheduling over

head, making execution efficient and predictable. I proved this ex

ecution scheme complies with the formal semantics and presented

some experimental results that show it is practical for reasonable-

sized examples.

Finally,in Chapter5,1 presenteda practicalimplementationof the

SR model of computation in Ptolemy, an environment for prototyp

ing heterogeneous systems. In additionto showingthe programming

interface is fairly straightforward, I presented two examples of real

systems specified usingSR.Onewasa digital address bookthatillus

trated SR's suitability for specifying user-interface-dominated sys

tems; the other a MIDI music synthesizer that showed SR's ability

to handle control-dominated systems and to assemble heterogeneous

subsystems. Bothrun in real-time thanks to SR's efficient execution
algorithm.

6.1 Implications of This Work

Many of the results in this work are very-SR specific (e.g., the the

orems in Chapter 4), but some apply more generally. Here are the

more far-reaching implications of my work:

Fixed-point semantics are the ''right thing" for zero-delay sys

tems with feedback.

Instantaneous feedback loops often cause strange behavior in lan

guages without fixed-point semantics. The VHDL language [45] is

typical. Tohandle zerodelay situations, it uses"deltatimesteps" that
resemble the iterations in my execution scheme, but the number of

these steps are unpredictable in general, and may be unbounded, so
the simulator can effectively deadlock. Moreover, the simulator has

some freedom over the timestep in which a thing occurs» which can

lead to nondeterminism.
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—KD" txi
(a) (b)

Figure 6.1 Anexample of non-compositionality in SDR(a)A correctsys
tem. (b) One that deadlocks afterblocksA and B have beenencapsulated.

As I argued in Chapter 3, fixed-point semantics are both physi

callyrealistic andmathematically well-founded, making themanex

cellent theoretical model ofzero-delay systems. Furthermore, Chap

ter4 showed that systems having suchsemantics can be executed ef
ficiently, making them reasonable in practice.

It it my hope that future languages with the need for zero-delay

feedback are placedon this firmer theoretical ground.

Partial evaluation solves certain compositionality problems

Many languages impede abstraction by preventing certain kinds of
subsystems frombeingencapsulated, makingit harderto buildcom

plex systems. A common source of problems is the introduction of
unwanted dependencies. Often, encapsulating a subsystem requires

its interface to be more synchronizedthat an unencapsulatedversion,

and this can lead to different behavior, perhaps even deadlock. Lee's

SynchronousDataflow* has thisproblem,as illustratedin Figure6.1.

More traditional languages without feedback also have this prob

lem. In the C language, the effect of the AND operator cannot be

encapsulated becauseit does not requireall its arguments to be eval

uated before it can produce a result. In an expression like

i >= 0 && c[i] > 1,

the rightexpressionis not evaluatedif the left one is false. If this was

encapsulated in a C function,both would have to be evaluated every

time, which might lead to a memory access violation.

*See Section 2.4.2 on Page 27.
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An SR block avoids these problems by being able to execute with

onlypartial informationabout its inputs. Incompleteinputs generally

produce incomplete outputs, but this avoids the needless addition of

synchronization that causes these problems.

Chaotic iteration can be a practical way to execute systems

At first glance, chaotic iteration appears too unpredictable to execute

practical systems. Whether it convergesat all, let alone predictably,

is the obvious concern.

My results in Chapter4 resolve these questions. When chaotic it

erationoperates on simple, discrete domains with monotonic func

tions, it is predictable andpractical. Usingsimpledependency infor

mation improves the scheme's efficiency, which, on average, seems

to be quite a bit better than the theoretical worst case. Of course,

executing a system more directly will usually be more efficient, but

when this is not possible, such as when a systemis assembledhetero-

geneously, the speed penalty caused by chaotic iteration is not pro

hibitive.

Recursive strongly-connected component decomposition can pro

duce superior results

Strongly-connected component (SCC) decomposition is a powerful

technique for decomposinga graph, but many algorithmsstop after

applying it once. By contrast, the recursive decomposition scheme

I presented in Chapter 4 uses SCC decomposition to ultimately re

duce a graph to single nodes. There are many examples where this

produces superior results. Bourdoncle's weak topological order* is
also a recursive decomposition scheme, but it limits the way an SCC

can be further decomposed, diminishing the quality of its results.

*See Page 57
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Ititmy hope that this technique will find application inother prob
lems where a system of equations needs to be solved rapidly. Al
though it may be less predictable inother domains (e.g., when deal
ingwith real numbers), I expect it will still givebetter results.

6.2 Future Work

6.2.1 Execution Issues

Synthesizing software fromSRsystem descriptions is anobvious ap

plication of this work. The blockcode generation technique, where
code for each block is simply inlined in the order prescribed by the

schedule, could be used to synthesize code for a sequential impera

tive language such as C.

Avoiding the needto explicitly represent "undefined" or "absent"

would be an interesting possible optimization. Using more informa

tion about the blocks, it might be possible to prove that "undefined"

would never appear in acyclicsectionsof a system. The effect of ab

sent might be possible to reproduce by simplynot executing certain

reactive blocks.

Since the semantics of SR are not directly tied to a particular ex

ecution style, others are possible. Distributed execution is an obvi

ous alternative. A good starting point would be the work of Caspi

et al., [19] which executes OC programs (see Section 2.3.3) on dis

tributedprocessors communicating throughFIFO buffers. Their al

gorithm copiestheprogram, removes redundant sections, andinserts

communication that sends variable values to where they are needed

and, as a side effect, synchronizes the system. Using the same ap

proach with SR would be easier since there are no decisionpoints in

SR schedules.

More work can be done with execution time estimation. Execu

tion time of an SR system was designed to be fairly easy to estimate

by simply adding the worst-case times for each block according to
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the schedule, but this may be too pessimistic. The times for multiple

invocations of the same block in an instant may differ substantially

yetpredictably. Evenbetterbounds wouldprobably haveto takedata

dependencies into account.

Making moreinformation aboutSRblocks available to the sched

uler mightimprove execution speed. Currently, I only have a rather

heavy-handed "this input does not matter" flag. It might be better

to supply "this inputdoes not affecttheseoutputs" information. In

formation like "these two outputs are always going to be definedsi

multaneously" might further speedconvergence. In all cases, these

merely give the scheduler a better idea about how fast the network
will converge without affecting the semantics.

Although grouping a set of SRblocks intoa single blockdoes not
affect the behavior of a system, it may reduce execution efficiency.

Theproblem is thattheexecution scheme I devised wants toevaluate

blocks anoutputat a time,yetblocks generally evaluate all theirout
putsat once, usually because of sharing of intermediate results. For
example, when a block containing a subsystem is evaluated, only a
few outputs may be needed, yet the schedule for the subsystem will
evaluate all of them.

The alternative would be to ask blocks to only evaluate certain out

puts to avoid needless computation. One danger is enumerating the
exponentially many possible sets ofoutputs (presumably, there is an
optimal schedule foreach), butthere are probably ways to consider
only as many different schedules as thereare outputs or blocks in a
subsystem.

All of the blocks in an SR system compute monotonic functions,

but what is the most efficient way to evaluate these? If they are spec

ified as a C++ or ltd method, then the most efficient way is to simply

execute the method, but if they are specified in some other language,

sayEsterel or Verilog, thentheanswer is less obvious. Themost ef
ficient way mightbe to synthesize efficient codeusing variations of
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a if 5 = 0

b if j = 1

.n{fl,^,c} if5 = ±

Figure 62 The universal monotonic multiplexer for the binary CPO
{±,0,1} . It ismonotonic, soa system constructed solely from these will
be monotonic. Moreover, anymonotonic function can be builtwith it.

traditional logic synthesis algorithms developed fordigital logic.* A
starting point might be the universal monotonic multiplexer shown
in Figure 6.2. With this, it might be possible to apply binary deci
sion diagram (BDD^) ideas tomanipulate these functions, asBDDs
can be thought of as being decompositions of functions into multi

plexers.

6.2.2 Language Issues

Thebiggest open question ishow besttodescribe "native" SRblocks.
Strictblocks maybe imported fromjust about any language, and in
many cases, thisis thebestsolution, butnon-strictblocks aredifficult
to import. My current solution, using C++ or ltd, is functional, but
notvery elegant. I believe some sortofFSM description style would
workwell,but it wouldhave to be quitea bit moresophisticated than

thesimple statediagrams of Section 2.3.2. None of theblocks inmy
MIDI synthesizer could be succinctly described as state diagrams.

An alternative would be to use an FSM language like Esterel [7] or

even a simplified subset of something like the popular Verilog [69]
or VHDL [45] languages. All of these could be given non-strict se

mantics. The biggest challenge in "solving" this problem is that it

is not quantitative—^the best solution is the one that people like the
most.

'De Micheli [24] is a good starting point for this field.
Attributed to Bryant [10], theseefficient representations of binary functions

are currently the rage in the logic synthesis community.
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The semantics of SR are sufficiently abstract to allow for many

language variations. One possible variation would be to use non-fiat

CPOs in the communication channels, although their height would

have to remain finite to ensure convergence. This would require mi

nor modifications to the execution scheme, but might ultimately lead

to more efficient schedules. Such CPOs could model things that take

on a sequenceof valuesin an instant, such as bounded-lengthFIFOs,

programcounters,etc., althoughall of thesecan be simulatedless ef

ficiently with multiple wires. Another application would be to layer

clocks on the channels more elegantly.* The first level of the CPOs

would contain only clock information; the second would have val

ues. Execution would first establish the presence or absence of all

the signals, then establish their values.

SR, as it stands, does not provide facilities for preempting or con

trolling the executionof subsystems, but this could be added without

changing the semantics. The research done on Esterel^ has shown
that the ability to start, stop, and reset a subsystemis both useful and

sufficient. Since subsystems appear as SR blocks, the semantics are

clear: the function computed by the block is either the function com

puted by the subsystem or "all outputs absent" if the system is not

being run. The wormhole already has a facility resembling this: if

all its outputs are absent, the enclosed subsystem is not executed.

*Gerard Berry pointed this out to me,
•'"See Section 2.3.5 on Page 21.
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