Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PARTIAL-ORDER REDUCTION IN SYMBOLIC
STATE SPACE EXPLORATION

by

R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer,
and S. K. Rajamani

Memorandum No. UCB/ERL M97/30

15 April 1997

PARTIAL-ORDER REDUCTION IN SYMBOLIC
STATE SPACE EXPLORATION

by

R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer,
and S. K. Rajamani

Memorandum No. UCB/ERL M97/30

15 April 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Partial-Order Reduction in Symbolic State Space
Exploration™**

R.Alur RXK.Brayton TA. Henzinger S.Qadeer S.K. Rajamani

EECS Department, University of Califomia, Berkeley, CA 94720, U.S.A.
Email: {alur, brayton, tah, shaz, sriramr} @eecs.berkeley.edu

Abstract. State space explosion is a fundamental obstacle in formal verification of de-
signs and protocols. Several techniques for combating this problem have emerged in the
past few years, among which two are significant: partial-order reductions and symbolic
state space search. In asynchronous systems, interleavings of independent concurrent
events are equivalent, and only a representative interleaving needs to be explored to verify
local properties. Partial-order methods exploit this redundancy and visit only a subset of
the reachable states. Symbolic techniques, on the other hand, capture the transition rela-
tion of a system and the set of reachable states as boolean functions. In many cases, these
functions can be represented compactly using binary decision diagrams (BDDs). Tradi-
tionally, the two techniques have been practiced by two different schools—partial-order
methods with enumerative depth-first search for the analysis of asynchronous network
protocols, and symbolic breadth-first search for the analysis of synchronous hardware
designs. We combine both approaches and develop a method for using partial-order re-
duction techniques in symbolic BDD-based invariant checking. We present theoretical
results to prove the correctness of the method, and experimental results to demonstrate its
efficacy.

1 Introduction

The number of states of a system grows exponentially with the length of its description.
Commonly known as state space explosion, this is a fundamental problem in formal verification
of systems like hardware designs, network protocols, and distributed algorithms. Techniques
like model checking of temporal-logic properties, which depend on state space exploration, have
been limited in their use because of this problem. A variety of heuristics have been proposed
to combat state space explosion. Two significant solutions that are supported by existing tools
are symbolic model checking and partial-order reduction:

— In synchronous hardware designs, state space explosion manifests itself in the number of
states growing exponentially with the number of state variables in the design. Symbolic
model checking [BCMD92, McM93] avoids explicit construction of the state space. The
transition relation of the system and state sets are modeled as boolean functions and
represented using binary decision diagrams (BDDs). Model checking of temporal-logic
properties, then, reduces to symbolic fixpoint computation that uses BDD-based image
computation as a primitive.

*To appear in the Proceedings of the 9th International Conference on Computer-aided Verification
(CAV 97), Lecture Notes in Computer Science, Springer-Verlag, 1997.

** This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER
award CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620-93-1-0056, by
the ARO MURI grant DAAH-04-96-1-0341, by the ARPA grant NAG2-892, and by the Semiconductor
Research Corporation contracts DC-324.036 and DC-324.005.

— In asynchronous systems consisting of a set of communicating concurrent processes (for
example, network protocols and distributed algorithms), the behavior of the system can be
modeled as the set of all interleavings of the events in individual processes. One source
of state space explosion are the n! possible interleavings for n concurrent events. If the
concurrent events are independent, then all interleavings are equivalent in that they lead
to the same state. Partial-order semantics described in [Maz88) for the composition of
concurrent processes group equivalent interleavings of concurrent events together into
traces. It has been shown that sometimes it suffices to explore just one representative
interleaving from each trace for verifying temporal-logic properties [Val91, Pel93, GW94).
Consequently, during state space exploration, in each state it suffices to search an ample
subset of the enabled transitions, rather than all of them, leading to significant reduction in
the explored state space for some asynchronous protocols [HP94, God96].

In this work, we address the problem of combining partial-order reduction methods with
symbolic state space traversal for invariant checking. Such a combination is particularly useful
in cases where the number of states that have to be explored remains exponential in the
size of the system description, even after partial-order reduction. Consider, for example, a
leader-election protocol, where the initial states of the processes are unknown. The correctness
criterion asserts that irrespective of the initial states of the processes, the desired outcome must
be ensured. Since the number of initial states is exponential in the number of processes, explicit
state space search is forced to explore an exponential number of states, even with partial-order
reduction. Partial-order reductions, however, give flexibility in the sets of states that need to be
represented in symbolic search. Instead of computing images with the whole transition relation,
it suffices to compute symbolically an ample set of successor states, or any set of successor
states that contains an ample set. This flexibility adds a new dimension to heuristic techniques
like modified search order [BCL91] and use of don’t cares [RAP*95], in symbolic state space
exploration.

The following toy example illustrates the advantage of combining symbolic and partial-
order methods. Consider n processes P, Ps,..., P,. Each process P; increments a local
variable z; independent of all the other processes, until z; = N, after which z; remains
equal to N. Each of the z;'s is initialized to 0. We assume interleaving semantics for process
composition, that is, with each transition, only one process updates its local variable. There are
n transitions out of each global state in which z; # N for all i. For the purpose of comparing
symbolic and enumerative approaches we assume, without loss of generality, that the variable
ordering is z;, 2, . . ., . A naive enumerative algorithm has to explore O(N") states. If we
perform symbolic search using MDDs? (multi-valued decision diagrams) on this example, the
set of reached states after k steps (k < N)is defined by the relation Z‘:L, z; < k, whose MDD
representation has size @(nk). Suppose we are interested in checking a local invariant, such
as z3 < N. For checking such an invariant, it is not necessary to explore all transitions out
of a state. In fact, using partial-order reduction, it suffices to first increment z, until ; = N,
then increment z until z; = N, and so on. Thus, the number of explored states is reduced to
O(Nn). Both methods improve significantly on naive state space exploration.

Moreover, if symbolic search is performed on the partial-order reduced state space, the
MDD representation of the set of reached states after any number of steps has size ©(n),
which is an improvement over either method in isolation. This improvement becomes even
more significant if the variables have nondeterministic initial values. Suppose that each z; is
initialized nondeterministically to either O or 1. An enumerative algorithm has to visit 2" initial

3 MDD:s are a generalization of BDDs in which the variables can take on values from any finite set
instead of just {0,1}.

states, even with partial-order reduction.* In symbolic search, the set of reached states after
k steps (k < N) is defined by the relation Y ;_;(z; — 1) < k, where (z) stands for z if
z > 0, and for 0 otherwise. It can be shown that the size of the MDD representing the above
relation is £2(n? + nk). However, for symbolic state space traversal using the partial-order
reduced transition relation, the MDD representing the set of reached states after any number of
steps is only ©(n). Similar improvements in search efficiency are obtained in two examples in
Section 4—a leader-election protocol in a unidirectional ring and an asynchronous tree arbiter
circuit.

Usually, partial-order reductions are implemented using a modified depth-first search al-
gorithm. In Section 2, we show that correct partial-order reductions can be obtained on any
search technique that has a certain property. Breadth-first search is shown to have this property.
Consequently, partial-order reductions can be applied to symbolic search (which is inherently
breadth-first). Partial-order methods explore only a subset of the enabled transitions at each
state, called an ample set. For the automatic implementation of our method, ample sets have to
be computed automatically in a symbolic setting. In Section 3, we present a symbolic version
of a standard algorithm [God96] for computing ample sets.

2 Partial-Order Reduction for Breadth-First Search

In [Val91, Pel93, GW94), partial-order reductions are obtained by a modified depth-first search
of the state space. We generalize their results to obtain a modified breadth-first search algorithm,
which can then be used to explore the reduced state space symbolically. A similar generalization
is also obtained by [CP96] in the context of mechanically verifying the partial-order reduction
techniques implemented in the model checker SPIN [HP94].

A labeled transition graphisa5-tuple G = (V, S, s, T, —) with the following components:

- A finite set V of binary variables.

— The set S = 2V of all possible valuations for the variables, called the state set.

- Aset of initial states $ C S.

— A finite set I of actions.

~ A transition relation = C S x I x S, with the restriction that if (s, a,t) and (s, o, ')
are in -, thent = t'.

We write s % ¢if (s,a,t) € —,and s — 1 if there exists an action o such that s = ¢.
The set of actions enabled in state s is defined as enabled(s) = {a | 3t. s = t}. An action
sequence @ = ajQ3...am in I'" is G-enabled in state s if there exist states si, ..., Sm-1,1
suchthats & s, 3 - .. iy Sm—1 =3 t.In this case, the state t is denoted by suce(s, @) and
called the @-successor of s.

The algorithm to obtain a partial-order reduction performs a selective search. While explor-
ing the successors of a state s, instead of considering all actions enabled in s, the algorithm
chooses only a subset of the enabled actions, and thus, constructs a subgraph of the original
graph. Let G = (V, S, $, I',) be a labeled transition graph. A graph G' = (V, S, §, T, —')
is a subgraph of G if ' C S and =’ C —. A selective search can be specified by a
function from states to subsets of actions. For a function A from S to 27, the subgraph

4 In this particular example, since the processes are initialized independently and the behavior of the
system from different initial states is identical, the system description could be modified so that
enumerative search with partial-order reduction is efficient. But such a simplification is not possible in
the general case.

Ga = (V,8a4, s, —4) of G is a reduction of G with respect to A if G4 is the smallest
graph such that (1) § C S4 and (2) for every state s € Sa, if s 3 t for some o € A(s), then
s 34 tandt € Sa. In the remainder of this section, we develop requirements on A so that
the reduction G 4 can be used for the verification of certain invariants.

Partial-order equivalence We proceed to define an equivalence relation over the action se-
quences of a labeled transition graph so that, when solving certain reachability problems, it
suffices to explore only one representative from each equivalence class. The equivalence is
defined using the notion of independence between actions.

Let a and 3 be two different actions of G. The two actions & and 3 are independent, written
o ~ B, if for all states s € S, (1) if @ is enabled in s, then f is enabled in s iff § is enabled
in succ(s, @), (2) if 3 is enabled in s then, « is enabled in s iff o is enabled in suce(s, 8),
and (3) if both « and 8 are enabled in s, then succ(s,af) = suce(s, Ba). Intuitively, two
actions are independent if they neither enable nor disable each other, and the order in which the
two actions are executed does not affect the state that is reached. For every labeled transition
graph G, the independence relation ~ on the actions of G is irreflexive and symmetric.

For two action sequences 7 and 5’ of a labeled transition graph G, define ¥ = 7' if
¥ = T1afy; and ¥ = F7PeT, with a ~ f. The partial-order equivalence =" on the
action sequences of G is the reflexive-transitive closure of =. Intuitively, two action sequences
are partial-order equivalent if one can be obtained from the other by repeatedly commuting
adjacent independent actions. The set of all action sequences partial-order equivalent to an
action sequence @ is represented by [@]. Such an equivalence class is called a Mazurkiewicz
trace [Maz88].

Persistent functions The actions in the subset of actions selected to be explored from a state
should be independent, not only of all the remaining actions enabled in state s, but also
independent of all actions enabled in a state reachable from s by executing other actions. Such
a subset of actions is called persistent. Formally, a function A from S to 27 is persistent if for
every state s of G the following holds: for all actions o € A(s), (1) « is enabled in s, and
(2) if there is an action sequence 8 = 815, . .. Bn € (I'\A(s))" that is G-enabled in s, then a
is independent of every action §; in 3. We say that A(s) is a persistent set of actions at s.

A selective search based on exploring, from every state, only a persistent set of actions
needs to ensure that an action is not delayed forever. Hence, if the persistent set at a state does
not lead to a new state during the state space exploration, then all enabled actions need to be
explored. Given a persistent function 4, a mapping ¥ from the states of the reduction G4
to N is a witness for A if for all states s, if A(s) # enabled(s), then there exists an action
a € A(s) such that ¥(suce(s, a)) < ¥(s). The well-foundedness of ¥ ensures that an action
is not ignored everywhere in a loop. A partial-order reduction of G is a reduction of G with
respect to a persistent function that has a witness.

Let @ and 3 be two action sequences. We say that § subsumes @ if there exists an action
sequence ¥ such thatay =" B. The relationship between a graph and its partial-order reduction
is captured by the following theorem, which states that every action sequence enabled in an
initial state of the original graph is subsumed by some sequence enabled in the reduction.

Theorem 1. Let s be a state in a partial-order reduction G a of a labeled transition graph
G, and let @ be an action sequence G-enabled in s. There exists an action sequence (3 that is

.

G a-enabled in s such that @ is subsumed by (8

Onew = 5
repeat
/* o is the current set of reached states */
O = Onew
Frontier F:={s €0 |t € 0. s = t}
Let A(s) be an ample set at s with respect to the history T5(s), for every s € F
Onert '=User {t | 3a € A(s). s S t}
Onew ‘= 0 U Oneat
until ¢ = Onew

Fig. 1. Modified breadth-first search algorithm

Ample functions To compute partial-order reductions, we need persistent functions that can
be shown to have witnesses. For this purpose, we consider a special class of persistent functions,
called ample functions, which facilitate the construction of witnesses by taking into account the
set of states visited so far during the selective search. A history function T is amap from S to 2%,
We say that 7(s) is the history of s. A persistent function A is ample with respect to a history
function 7 if for every state s, either A(s) = enabled(s), or there is an action a € A(s) such
that suce(s, o) € 7(s). Thus, an ample function insists on exploring all enabled transitions
or visiting some new state, which is not in the current history. If 4 is an ample function with
respect to the history function 7, then A(s) is called an ample set at state s with respect to 7.
Next, we define a history function 75 and a numbering ¥p for breadth-first search so that ¥
is a witness for any ample function with respect to 7.

Partial-order reduction with breadth-first search The algorithm for constructing a partial-
order reduction during BFS is a variation of the standard BFS algorithm. The idea is to use
the current set of reached states as the history of a state. Further, since our aim is to perform
the BFS symbolically, we simultaneously explore all states that are reachable in one step by
the ample set of actions in the current frontier. More formally, let R; be the set of reached
states after the kth reachability step (R = 5). Then define 78(s) as follows. If s € Rp then
78(s) = Ry, else if s € Rx41\ Ry then 75(s) = Ri41 (if s € Ry for all k, the value of 75(s)
is irrelevant). The pseudo code for the modified BFS algorithm is given in Figure 1.

Let G g be the reduction of G with respect to the ample function chosen by the modified
BFS. There are two types of states in the reduced state graph G p—interior states that are never
part of any search frontier, and frontier states that are part of some frontier exactly once. We
define the mapping ¥p from the states of Gp to N as follows: (1) if s is never part of any
frontier then ¥g(s) = 1, and (2) if s is part of the kth frontier and the total number of frontiers
is N, then ¥g(s) = N — k + 2. Figure 2 illustrates the mapping ¥p for a reduced state graph
with 4 frontiers. The shaded areas are the frontiers and the unshaded areas are the interior states.
To prove that the modified BFS algorithm constructs a partial-order reduction G, it suffices
to establish that the numbering ¥ is a witness for the ample function chosen by the algorithm.

Lemma2. Let A be an ample function with respect to the history function . If A(s) #
enabled(s), then for some action a € A(s), we have ¥p(succ(s, a)) < ¥p(s).

Fig. 2. Witness ¥ for states during BFS expansion

Theorem 3. If G is the reduced graph obtained by the modified BFS algorithm from Figure 1,
then G is a partial-order reduction of G.

We note that depth-first search can also be used to construct a partial-order reduction. For this
purpose, the set of states in the stack can be used as a history function [God96).

Verification using partial-order reductions Partial-order reductions are sound and complete
for checking the invariance of local properties. We formalize local properties as independence-
preserving regions. If there is an action sequence that originates at an initial state and leads to
an independence-preserving region, then there exists some action sequence in any partial-order
reduction that leads to the same region. A set ¢ C S of states of a labeled transition graph G
is an independence-preserving region if for all initial states s, whenever succ(s, @) € o and B
subsumes @, then there exists a prefix ¥ of 3 such that succ(s,¥) € o. It follows that to verify
that the given graph G satisfies an invariant o (that is, no state outside o is reachable in G), we
can check whether some partial-order reduction of G satisfies the invariant o, provided S\¢ is
an independence-preserving region of G.

3 Symbolic Computation of Ample Sets

Symbolic techniques capture transition sets and state sets of a labeled transition graph as
boolean functions. The boolean functions are represented and manipulated as BDDs [BCMD92,
McM93). The functional representation of the transition relation is denoted by T', where
T(s, a,1) is true iff s = t. Note that the BDD for T is built with variables that encode the
present state, the next state, and the actions of G (these variables should not be confused with the
variables of the labeled transition graph). In BFS, we denote the set of reached states by o. First,
we initialize o to be the set of initial states. Second, the image oy, ¢y, of o under T is computed:

Onew := BDD representing §
repeat
/* o is the curmrent set of reached states */
0 = Onew
F := BDD representing the frontier of &
T4 := BDD representing the ample transition relation with respect to the history &
Ornezt = image of F under T4
Onew = O V Oneat
until 0 = onew

Fig. 3. BDD-based modified breadth-first search algorithm

Onew(s) = 3t.3a.(a(t) A T(t,a,s)). The set of states that can be reached by the system in at
most one step from o is represented by o V oqew. The image computations are iterated until a
fixpoint is reached. This fixpoint then represents the set of all reachable states. Figure 3 shows
the modified BFS algorithm from Figure 1 (with partial-order reduction) rewritten with BDD
operations. To implement this algorithm we need to produce an ample transition relation TA
at each reachability step.

A persistent transition relation TP is a BDD encoding of a persistent function A such that
TP(s,a,1)iffa € A(s)and s = t. An ample transition relation T4 with respect to the history
o can be computed from TP as

TA(s,a,1) = TF(s,a,t) V (-3’3 .(TP(s,a',¥') A=o(t')) AT(s,a,1)).

It remains to be seen how we compute the persistent transition relation 7°. We now show that
a heuristic for computing persistent sets in [God96] can be implemented symbolically to yield
a persistent transition relation. We assume a model of the transition system annotated with
processes and give a symbolic procedure for computing persistent sets in this model.

A process structure is a structured description of a labeled transition graph. Formally, it is
a4-tuple P = (P, G, own, ezxec) with the following components:

- Afiniteset P = {p1,p2,...,pn} of processes.

— A labeled transition graph G = (V, S, 8, I, =).

— A function own from V to IP. We say that a variable v is owned by process own(v).

- A function ezec from I” to [P, with the following restriction: for all states s and ¢, all actions
a, and all variables v, if s = t and v changes value from s to ¢, then own(v) = ezec(a).
We say that action a is executed by process erec(a).

Observe that in this model, variables are read-shared, but write-exclusive. We write act(p;) to
denote the set {a | ezec(a) = p;} of actions that are executed by process p;. Since each action is
executed by exactly one process, act induces a partition on the set I of actions. We differentiate
between global state (valuations for all variables) and local state of a process (valuations for
the variables owned by the process). A global state s is an n-tuple (sy, s2,...,5,) of local
states s;, one for each process p; € P. We say that s; is the local state of process p; in 5. An
action a € act(p;) is enabled in the local state s; of process p; if there exists a global state s
containing s; such that a is enabled in s.

/* Lets = (81, 82,.. ., 3n) be the given global state */
P(s) := {px}, where px is some process enabled in s
repeat
for every process p; € P(s) and every action & € act(p;) enabledin s; do
for every process p, € P(s) do
if there exists an action 8 € act(p;) such that 8 is dependent with o then
. P(s) = P(s)U{p,}

end
end
until no more processes can be added to P(s)

Fig. 4. Algorithm for computing a persistent set P(s) at state s

The algorithm for computing persistent sets is sketched in Figure 4. Given a state s, the
algorithm finds a set of processes P(s) € P such that the set of actions executed by the
processes in P(s) is a persistent set at s. First, we initialize P(s) with an arbitrary process px
that executes an action enabled in s. Then we iteratively add more processes to P(s), as follows,
until no more processes can be added: for all processes p; € P(s) and actions a € act(p;) that
are enabled in the local state s; of process p;, we add process p; to P(s) if act(p;) executes an
action 8 that is dependent with a. We call the resulting set P(s) a persistent set of processes
at s. The algorithm described above checks only a sufficient condition for persistence; it is
possible to formulate more complex schemes that yield smaller persistent sets [God96].

Our aim is to compute a boolean function I such that I(s, p) is true iff p € P(s) for
the global state s. In effect,] encodes persistent sets of processes for all global states. For
computing I, we make use of the following pre-computed relations:

- enabledG (s, a) is true iff action a is enabled in the global state s.
- actionof (o, p) is true iff erec(a) = p.
— enabledL(s, o, p) is true iff exec(a) = p and a is enabled in the local state of p in s:

enabledL((s1, 52,83, ---,5n),@,P) = Vi<icallP=pi) =
3s) .80 180y S
enabledG((s),85,...,8i_1,5i,8i41,--15p),@)).
— dependent(a, B) is true iff actions o and 3 are dependent. The dependence relation can
be overapproximated by sufficient syntactic checks (e.g., disjointness of support variables)

[God96).
Forall 7, 1 < i < n, we compute J;(s, p) as follows:
Ji(s,p) = (p = pi) A 3a.(actionof (a, p;) A enabledG (s, a)).

The relation J; (s, p) is true iff p = p; and act(p;) contains at least action enabled in s. We then
perform a fixpoint computation to compute the relation I (s, p) as follows:

Io(s,p) = Ji(s,p) V

' (=3p.2i(s,p) A Ja(s,p)) V
(=3p.(Ni(s,p) V J2(5,P)) A Ja(s,p)) V...
(=3p-(N(s,p) V J2(s,p) V...V Jn_1(s,P)) A Jn(s,P)),

Ik+l(s»p) = Ik(s,P) v
3p'.3a.36.(Ik(s,p’) A enabledL(s,a,p’) A actionof (o', p) A dependent(a, 5)).

The relation Iy(s, p) is true iff p is the process of least index that executes an action enabled
in state s. The computation of Ix4; from Iy mimics the repeat-until loop of the algorithm in
Figure 4. Then, the desired relation I is I, for the smallest m such that I, 41 = Im. Now the
persistent transition relation T'¥ can be computed from [as follows:

TP (s,a,t) = 3p.(I(s,p) A actionof (a,p)) AT (s, a, 1).

4 Experiments

We consider two examples for experiments—a protocol for electing a leader among a set of
processes and an asynchronous tree arbiter circuit. In both cases, we built Verilog models for the
original system as well as the reduced system obtained by considering only those actions from
a state that form an ample set. To impose interleaving semantics on a Verilog description, we
added a scheduler to the model which nondeterministically schedules one process at a time. The
symbolic reachability computation was performed with VIS [BHSV*96]. The ample sets were
manually computed as functions of global states and implemented using an “ample scheduler”
that nondeterministically chooses one among a subset of enabled processes (corresponding to
the ample set) at each state. While the algorithm given in Section 3 can be used to compute
the ample sets automatically, the computations require the identification of actions in the
representation of transition systems, which VIS does not support at present. The purpose of
the experiments is to investigate if savings in BDD sizes could be obtained, if such ample sets
were available, and the answer is in the affirmative.

4.1 Leader-election protocol

We consider the leader-election protocol described in [DKR82]. Extensive reduction in reach-
able state space sizes for this problem is reported by [HP94], using partial-order reductions
with enumerative depth-first search of the state space.

There are N processes connected in a circular ring, with a finite FIFO unidirectional queue
between adjacent processes. Each process has a unique id associated with it. A process receives
messages from the queue immediately before it in the ring and can send messages to the
queue immediately after it. Process p; has a variable called active; associated withit. Initially,
active; = 1 for all processes. The objective of the protocol is to elect a unique leader process
pk such that active, = 1. The messages put on the FIFO queues contain id’s of processes
currently active. Initially, each process sends its id to the next process and receives the id
of the preceding process. Every process remembers the maximum id it has seen so far. As a
result of comparing received process id’s to the maximum id, a process may deactivate itself.
Finally, only one process should remain active. To check the property that finally a unique
leader exists using an independence-preserving invariant, we introduce a variable called flag;
for each process p;. As soon as process px knows that it is the leader, it asserts flagx and
flag; does not change thereafter. The independence-preserving invariants to be checked are
—(flag; A flag;), forall i # j.3

A process is enabled if there is at least one message in its input queue and at least one
empty slot in its output queue. In every state, every enabled process has precisely one enabled

5 This, of course, is not acomplete specification of the protocol. A liveness property stating that eventually
a process does become the leader is also needed.

10407 T T T T T
All actiops ——
Amploe Acti e

10406 | b

100000 | b
2
F3
aQ
&
9
g

% 10000 ;
s

2 1000 | b
g
=<

3 100 | E

10| b

1 L " L 2
] 1 2 3 4 5 6
Number of processes

Fig. 5. Leader-election protocol: peak BDD sizes needed for reachability analysis

action. For each state, we consider the singleton set consisting of the action that is owned by
the process with least index among the enabled processes. This set is a non-empty persistent
set, because the protocol has the property that if multiple processes are enabled at the same
time, the order in which the processes execute actions does not change the eventual outcome.
The transition graph of the protocol is acyclic and hence every persistent set is ample.

Exponential partial-order reductions on this example are reported in [HHP94] for a ring of 5
processes. There, however, the id’s of the processes are assumed to be initialized to 0, 1, 2, 3,
and 4 in circular order around the ring. Though the protocol is verified for this initial state, it is
not verified for other initial states. For instance, if the id’s are 0, 4, 1, 3, and 2, then the behavior
of the protocol is very different. The former initializationrequires a total of 15 messages passed
around the ring before a leader is elected, whereas the latter requires 25 messages. In fact,
there are certain lines of code in the protocol that are never exercised in the former case but are
exercised in the latter. Our method verifies the correctness claim as stated in [DKR82], for all
initial states.

Figure 5 shows the growth of peak BDD size during reachability analysis versus the number
of processes. Two curves are shown—one for the entire transition relation and another for the
ample transition relation. Note that reachability analysis with the entire transition relation runs
out of memory for S processes. With partial-order reduction, in the case of 5 processes, VIS
reports 3.76 x 10'5 states visited. Thus, in this example, partial-order reduction coupled with
symbolic search performs better than either method in isolation.

4.2 Asynchronous tree arbiter

The tree arbiter is an asynchronous circuit which solves the mutual-exclusion problem by
building a tree of arbiter cells. The circuit does the arbitration in the form of an elimination
tournament. An arbiter cell arbitrates between its two children. The leaves in the tree are
processors that asynchronously demand access to a common resource. The n users at the

10

Peak BDD size in roachability analysis

4 5 6
Number of processors

Fig. 6. Tree arbiter: peak BDD sizes needed for reachability analysis

lowest level in the tree are arbitrated by § cells. The winners at this level are arbitrated at
the next level and so on. If both children of an arbiter cell request, one of them is chosen
nondeterministically. The requests propagate upward in the tree until the root cell is reached. It
grants the resource to at most one of its children and the grant propagates downward to one of
the processors. Similarly, when the resource is released by a processor, the request for release
goes all the way up and is acknowledged all the way down. We model the arbiter cells as
interacting asynchronously with each other. Four-phase signaling is used for communication
between the arbiter cells. The circuit is verified in [Dil89].

We label all processes (processors and arbiter cells) by levels, starting at the leaves: at the
lowest level, label the processors from left to right with the leftmost processor having the least
label; then label the first level of arbiters from left to right; etc. Given such a labeling, it can
be shown that at each state, the singleton set containing the enabled process with the least
label is an ample set. Figure 6 shows the BDD sizes during reachability analysis, for the entire
transition relation and the ample transition relation (8 processors induce a tree with three levels
of arbitration). Note the log scale on the vertical axis of the plot. The memory requirement
for the entire transition relation grows exponentially with the number of processors, whereas
the memory for the ample transition relation grows polynomially. The difference in memory
consumption also manifests itself in run time: for 8 processors, reachability analysis with the
entire transition relation requires 1755 seconds, whereas the ample transition relation requires
less than 1 second to complete.

4.3 Utilizing flexibility as “don’t cares”

We implemented a new command in VIS called ample_reach that takes two transition relations
(an ample transition relation and the entire transition relation) and does the following. At each
step during reachability analysis, two images are computed, using the two transition relations.
The image obtained by the ample transition relation is always a subset of the image obtained

11

by the entire transition relation. Then, two new reached sets are computed, by taking the union
of each of the two images with the reached set from the previous step. Finally, a heuristic BDD
minimization function is called from the BDD package, to minimize the representation of a set
that lies between the tworeached sets. In both of the above examples, the heuristic minimization
always returned the smaller reached set, that is, the one obtained from the ample transition
relation. We believe that the reason for this is the exponential reduction in the number of states
obtained using ample sets. However, if a system has asynchronous components operating with
limited independence and there is limited partial-order reduction, this method might prove to
be useful.

Acknowledgments Gerard Holzmann provided us with information on SPIN. Ken McMillan
and Doron Peled contributed through discussions. The VIS group at UC Berkeley and Rajeev
Ranjan in particular helped with the experiments.

References

[BCL91] J.R.Burch,EM. Clarke, and D.E. Long. Symbolic Model Checking with Partitioned Transition
Relations. In Proc. of the 28th Design Automation Conference, pages 403-407,1991.

[BCMD92] JR. Burch, EM. Clarke, K.L. McMillan, and D.L. Dill. Symbolic Model Checking: 10%
States and Beyond. Information and Computation, 98:142-170, 1992.

[BHSV196] R.K.Brayton, G.D.Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.Cheng,
S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary, TR. Shiple,
G. Swamy, and T. Villa. VIS: A System for Verification and Synthesis. In Proc. of the 8th Inter-
national Conference on Computer-Aided Verification, vol. 1102 of Lecture Notes in Computer Science,
pages 428-432. Springer, 1996.

[CP96] C.-T. Chou and D.A. Peled. Formal Verification of a Partial-Order Reduction Technique for
Model Checking. In Proc. of the Second International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, vol. 1055 of Lecture Notes in Computer Science, pages 241-257.
Springer, 1996.

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
MIT Press, 1989.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) Unidirectional Distributed Algorithm for
Extrema Finding in a Circle. Journal of Algorithms, 3:245-260, 1982.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An Approach
1o the State-Explosion Problem, vol. 1032 of Lecture Notes in Computer Science. Springer, 1996.

[GW94] P. Godefroid and P. Wolper. A Partial Approach to Model Checking. Information and Compu-
tation, 110:305-326, 1994.

[HP94] G.J. Holzmann and D.A. Peled. An Improvement in Formal Verification. In Proc. of the 7th
International Conference on Formal Description Techniques, pages 197-211. Chapman & Hall, 1994.

[Maz88] A. Mazurkiewicz. Basic Notions of Trace Theory. In Workshop on Linear Time, Branching
Time, and Partial Order in Logics and Models for Concurrency, vol. 354 of Lecture Notes in Computer
Science, pages 285-363. Springer, 1988.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[Pel93] D.A. Peled. All from One, One for All: On Model Checking Using Representatives. In Proc.
of the 5th International Conference on Computer-Aided Verification, vol. 697 of Lecture Notes in
Computer Science, pages 409—423. Springer, 1993.

[RAP*95] RK. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R.K. Brayton. Efficient Formal Design
Verification: Data Structures + Algorithms. In Workshop Notes of the International Workshop on Logic
Synthesis, 1995.

[Val91] A. Valmari. Stubbom Sets for Reduced State Space Generation. In Advances in Petri Nets, vol.
483 of Lecture Notes in Computer Science, pages 491-515. Springer, 1991.

12

	Copyright notice 1997
	ERL-97-30

