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Abstract State space explosion isa fundamental obstacle informal verification ofde
signs and protocols. Several techniques for combating this problem have emerged inthe
past few years, among which two are significant: partial-order reductions and symbohc
state space search. In asynchronous systems, interleavings of independent concurrent
events are equivalent, and only arepresentative interleaving needs tobeexplored toverify
local properties. Partial-order methods exploit this redundancy and visit only a subset of
thereachable states. Symbolic techniques, on theotherhand, capture the transition rela
tion ofa system and thesetofreachable states asboolean functions. Inmany cases, these
functions canbe represented compactly using binary decision diagrams (BDDs). Tradi
tionally, the two techniques have been practiced by two different schools—partial-order
methods with enumerative depth-first search for the analysis of asynchronous network
protocols, and symbolic breadth-first search for the analysis of synchronous hardware
designs. We combine both approaches and develop a method for using partial-order re
duction techniques in symbolic HDD-based invariant checking. We present theoretical
results toprove the correcmess ofthemethod, and experimental results todemonstrate its
efficacy.

1 Introduction

The number of states of a system grows exponentially with the length of its description.
Commonly known asstatespace explosion, this isafundamental problem informal verification
of systems like hardware designs, network protocols, and distributed algorithms. Techniques
likemodel checking oftemporal-logic properties, which depend onstate space exploration, have
been limited in their use because of this problem. A variety of heuristics have been proposed
tocombat state space explosion. Two significant solutions that are supported by existing tools
aresymbolic model checking andpartial-orderreduction:

- Insynchronous hardware designs, state space explosion manifests itself in the number of
states growing exponentially with the number of state variables in the design. Symbolic
model checking [BCMD92, McM93] avoids explicit construction of thestate space. The
transition relation of the system and state sets are modeled as boolean functions and
represented using binary decision diagrams (BDDs). Model checking of temporal-logic
properties, then, reduces to symbolic fixpoint computation that uses BDD-based image
computation as a primitive.

*To appear in the Proceedings of the 9th International Conference on Computer-aided Verification
(CAV 97),LectureNotesin ComputerScience,Springer-Verlag, 1997.
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- In asynchronoussystems consisting of a set of communicatingconcurrent processes (for
example, network protocols and distributed algorithms), the behavior of the system can be
modeled as the set of all interleavings of the events in individual processes. One source
of state space explosion are the n! possible interleavings for n concurrentevents. If the
concurrent events are independent, then all interleavings are equivalent in that they lead
to the same state. Partial-order semantics described in [Maz88] for the composition of
concurrent processes group equivalent interleavings of concurrent events together into
traces. It has been shown that sometimes it suffices to explore just one representative
interleaving from each trace for verifying temporal-logic properties [Val91,Pel93, GW94].
Consequently, during state space exploration, in each state it suffices to search an ample
subset of the enabled transitions, rather than all of them, leading to significant reduction in
the explored state space for some asynchronous protocols [HP94, God96].

In this work, we address the problem of combining partial-order reduction methods with
symbolicstatespace traversal for invariant checking. Such a combination is particularly useful
in cases where the number of states that have to be explored remains exponential in the
size of the system description, even after partial-order reduction. Consider, for example, a
leader-election protocol, where the initial states of the processes are unknown. The correctness
criterion asserts that irrespective ofthe initial states of the processes, the desired outcome must
be ensured. Since the number of initial states is exponential in the number of processes, explicit
state spacesearchis forced to explorean exponential numberof stales,even with partial-order
reduction. Partial-order reductions, however, give flexibility in the sets of states that need to be
represented in symbolic search. Insteadof computing images withthewholetransitionrelation,
it suffices to compute symbolically an ample set of successor states, or any set of successor
states that containsan ample set. This flexibility adds a newdimension to heuristictechniques
like modifiedsearch order [BCL91] and use of don't cares [RAP+95], in symbolic state space
exploration.

The following toy example illustrates the advantage of combining symbolic and partial-
order methods. Consider n processes P\, Pi,..., Pn- Each process Pi increments a local
variable x,- independent of all the other processes, until x,- = N, after which x,- remains
equal to N. Each of the x, 's is initializedto 0. We assume interleaving semantics for process
composition,that is, with each transition, only one process updates its local variable.There are
n transitionsout of each global state in which x,- ^ N for all i. For the purposeof comparing
symbolic andenumerative approaches we assume, without lossof generality, that the variable
ordering is xi, X2,..., x„. A naive enumerative algorithm has to explore 0(iV") states. If we
perform symbolic search using MDDs^ (multi-valued decision diagrams) on this example, the
set of reached statesafterk steps (k < N) is defined by therelation Xj < k, whoseMDD
representation has size 0(n/r). Suppose we are interested in checking a local invariant, such
as X3 < N. For checking such an invariant, it is not necessary to explore all transitions out
of a state. In fact, using partial-orderreduction, it suffices to first increment xi until X] = N,
then increment X2 until X2 = N, and so on. Thus, the number of explored states is reduced to
0{Nn). Bothmethods improve significantly on naive state spaceexploration.

Moreover, if symbolic search is performed on the partial-order reduced state space, the
MDD representation of the set of reached states after any number of steps has size 0(n),
which is an improvement over either method in isolation. This improvement becomes even
more significant if the variables have nondeterministic initial values. Suppose that each x,- is
initialized nondeterministically to either0 or 1.Anenumerative algorithmhasto visit2" initial

^MDDs are a generalization of BDDs in which the variables can take on values from any finite set
insteadof just {0,1}.



states, even with partial-order reduction.'̂ In symbolic search, the set of reached states after
k steps (k < N) is defined by the relation 5Zr=i(®« ~ 0 ^ where {x) stands for x if
z > 0, and for 0 otherwise. It can be shown that the size of the MDD representing the above
relation is -}- nk). However, for symbolic state space traversal using the partial-order
reduced transition relation, theMDDrepresenting the set of reached statesafteranynumber of
steps is only 0(n). Similar improvements insearch efficiency are obtained intwoexamples in
Section A—a leader-election protocol in a unidirectional ringandan asynchronous treearbiter
circuit.

Usually, partial-order reductions are implemented using a modified depth-first search al
gorithm. In Section 2, we show that correct partial-order reductions can be obtained on any
search technique thathas a certain property. Breadth-first search is shown to have thisproperty.
Consequently, partial-order reductions can beapplied to symbolic search (which is inherently
breadth-first). Partial-order methods explore onlya subset of the enabled transitions at each
state, called anample set. Fortheautomatic implementation ofourmethod, ample sets have to
becomputed automatically in a symbolic setting. In Section 3,we present a symbolic version
of a standard algorithm [God961 for computing ample sets.

2 Partial-Order Reduction for Breadth-First Search

In[Val91, Pel93, GW941, partial-order reductions are obtained byamodified depth-first search
ofthestate space. We generalize their results toobtain amodified breadth-first search algorithm,
which can then beused toexplore thereduced state space symbolically. Asimilargeneralization
isalso obtained by[CP96] in thecontext ofmechanically verifying thepartial-order reduction
techniques implemented in the model checkerSPIN [HP94].

Alabeledtransition graphisa5-tupleG = (K, S, F, —>) withthefollowing components:

- A finite set V of binary variables.
- Theset 5 = 2^ of allpossible valuations for the variables, called thestateset.
- A set of initial states § C S.
- A finite set F of actions.

- A transition relation C S x F x S, with the restriction that if (s, a,t) and (s, oc,i')
are in then i = t'.

We write s A <if (s, a, t) e -y, and s -y t if there exists an action q such that s A t.
The set ofactions enabled in state s is defined as enabled{s) = {a | 3<. s A <}. An action
sequence c? = Q]Q2 ••-^m in F' is G-enabled in state s if there exist states si,..., Sm-i >I
such that s A Si A •••"A' Sm-1 A? t. In this case, the state t isdenoted by succ(s, a) and
called the a-successor of s.

The algorithm toobtain a partial-order reduction performs aselective search. While explor
ing the successors ofa state s, instead ofconsidering all actions enabled in s, the algorithm
chooses only a subset of the enabled actions, and thus, constructs a subgraph of theoriginal
graph. Let G= {V, S, S, F, -y) be alabeled transition graph. Agraph G' = {V,S',§,F, -y')
is a subgraph of G if 5' C 5 and C -^. A selective search can be specified by a
function from states to subsets of actions. For a function A from S to 2^, the subgraph

*In this particular example, since the processes are initialized independently and thebehavior of the
system from different initial states is identical, the system description could be modified so that
enumerative search with partial-order reduction is efficient. But such asimplification is notpossible in
the general case.



= (V, r, -^-a) of G is a reduction of G with respect to A if Ga is the smallest
graph such that (l) § CSa and (2) for every state s € 5^, ifs A <for some a GA{s), then
s t and / G 5^. In the remainder of this section, we develop requirements on A so that
the reduction Ga can be used for the verification of certain invariants.

Partial-order equivalence We proceed to define an equivalence relation over the action se
quences of a labeled transition graph so that, when solving certain reachability problems, it
suffices to explore only one representative from each equivalence class. The equivalence is
defined using the notion of independencebetween actions.

Let oc and /?be twodifferent actions of G. The twoactionsa and are independent, written
a ~ if for all states s G 5, (1) if a is enabled in s, then /? is enabled in s iff /? is enabled
in succ(s, a), (2) if /? is enabled ins then, a is enabled in s iff a is enabled in succ{s, /?),
and (3) if both q and 0 are enabled in s, then succ{s,q0) = succ{s,/3q). Intuitively, two
actions areindependent if theyneither enablenordisable eachother, andtheorderin which the
two actions are executed does not affect the state that is reached. For every labeled transition
graph G, theindependence relation on theactions of G is irreflexive andsymmetric.

For two action sequences 7 and 7' of a labeled transition graph G, define 7 = 7' if
7 = and ^ with q 0. The partial-order equivalence =' on the
action sequencesof G is the reflexive-transitive closureof=. Intuitively, two action sequences
are partial-order equivalent if one can be obtained from the other by repeatedly commuting
adjacent independent actions. The set of all action sequences partial-order equivalent to an
action sequence a is represented by [q]. Such an equivalence class is called a Mazurkiewicz
trace [Maz88].

Persistent functions The actions in the subset of actions selected to be explored from a state
should be independent, not only of all the remaining actions enabled in state s, but also
independent of all actionsenabled in a state reachable from s by executing other actions.Such
a subset ofactions iscalled persistent. Formally, a function A from 5 to2^ ispersistent if for
every state s of G the following holds; for all actions a G ^(s), (1) a is enabled in s, and
(2) if thereis an action sequence /? =/?i/?2 •• • E {r\A{s))' that is G-enabled in s, thena
is independent of everyaction /?,• in 0. Wesay that Z^(s) is a persistent set of actions at s.

A selective search based on exploring, from every state, only a persistent set of actions
needs to ensure that an action is not delayed forever. Hence, if the persistent set at a state does
not lead to a new state during the state space exploration, then all enabled actions need to be
explored. Given a persistent function A, a mapping ^ from the states of the reduction Ga
to N is a witness for A if for all states s, if Z3i(s) 5^ enahled{s), then there exists an action
a G 2i(s) such that ^{succ{s, a)) < The well-foundedness of ^ ensures that an action
is not ignored everywhere in a loop. A partial-order reduction of G is a reduction of G with
respect toa persistent function that has a witness. _

Leta and "0 be two acti^ sequences. We say that 0 subsumes a if there exists anaction
sequence7 such that orf =" 0. The relationshipbetween a graphand its partial-orderreduction
is captured by the following theorem, which states that every action sequence enabled in an
initi^ state ofthe original graph issubsumed by some sequence enabled in the reduction.

Theorem 1. Let s be a state in a partial-order reduction Ga of a labeled transition graph
G, and let a be an action sequence G-enabled in s. There existsan action sequence 0 that is
GA-enabled in s such that a is subsumed by 0.



O^new •— S
repeat

/* <r is the current set of reached states */

<T (Tnexu

FrontierT := {s € (t \ 3t ^ <t. s ^ t}
Let be an ample set at s with respect to the history tb(s), for every s € ^
<rnext :=U,€^{f | 3q € ^(s). 5A t}
(^new •— O' U fTncart

until cr — ^ntw

Fig. 1. Modifiedbreadth-firstsearch algorithm

Amplefunctions Tocompute partial-order reductions, we need persistent functions thatcan
beshown to have witnesses. Forthispurpose, weconsider a special classofpersistent functions,
called ample functions, which facilitate theconstruction of witnesses bytaking intoaccount the
set ofstates visited so far during the selective search. Ahistoryfunction r isamap from 5 to 2^.
We saythat r(s) is thehistory of s. Apersistent function A is ample withrespect to a history
function r if for every state s, eitherZl(s) = enabled{s), or there is an action a G 2i(s) such
that succ{s,q) ^ r(s). Thus, an ample function insists on exploring all enabled transitions
or visiting some new state, which is not in the current history. If A is an ample function with
respect to thehistory function r, then A{s) is called an ample set at states withrespect to r.
Next, we define a history function tb anda numbering for breadth-first search so that^b
is a witness for any ample function with respect to tb-

Partial-order reduction with breadth-first search The algorithm for constructing a partial-
order reduction during BPS is a variation of the standard BPS algorithm. The idea is to use
the current set of reached stales as the history of a state. Further, since our aim is to perform
the BPS symbolically, we simultaneously explore all states thatare reachable in onestepby
the ample set of actions in the current frontier. More formally, let Rk be the set of reached
statesafter the kth reachability step {Rq = 5). Then define tb (s) as follows. If s € then
tbCs) = Rq, else ifs € Rk+\\Rk then tb{s) = Rk+\ (ifs ^ Rk for all k, the value ofr5(s)
is irrelevant). The pseudocode for the modified BPSalgorithmis givenin Figure 1.

Let Gb be the reduction of G with respect to the amplefunction chosen by the modified
BPS.Therearetwotypesof statesin thereduced stategraphGb—interiorstatesthatare never
partof any search frontier, and frontier states that are part of some frontier exactly once. We
define the mapping iJ'b from the states of Gb to N as follows: (1) if s is never part of any
frontier then^b («) = 1,and(2)if s is partof thekxh frontier andthetotalnumber of frontiers
is AT, then ^b[s) = N - k2. Figure 2 illustrates themapping ^b fora reduced state graph
with 4 frontiers. The shaded areas are the frontiers and the unshaded areas are the interior states.
To prove thatthemodified BPS algorithm constructs a partial-order reduction Gb, it suffices
to establishthat the numbering ^b is a witness for the amplefunction chosenby the algorithm.

Lemma2. Let A be an ample function with respect to the history function tb- If 4l(s) ^
enabled{s), thenfor some action o € A{s), we have tf'B(succ(s, a)) < ^b(^)-
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Fig. 2. Witness for states during BFS expansion

Theorem 3. If Gb is thereduced graph obtainedbythemodified BFSalgorithmfrom Figure 1,
then Gb is a partial-order reduction of G.

We note that depth-first search can also be used to construct a partial-order reduction. For this
purpose, thesetof states in thestackcan be used as a history function [God96].

Verificationusing partial-order reductions Partial-order reductions are soundandcomplete
forchecking the invariance of localproperties. Weformalize localproperties as independence-
preserving regions. If there is an action sequence that originates at an initial stateand leads to
an independence-preserving region, thenthereexists someaction sequence inanypartial-order
reduction that leads to the same region. A set <t C 5 of states of a labeled transition graph G
isan independence-preserving region if foi^ll initial states s, whenever succ(s, a) Gc and 0
subsumes a, then thereexistsa prefix ^ of 0 such that succ(s, 7) € cr. It follows that to verify
thatthegiven graph G satisfies an invariant a (thatis, nostateoutside a is reachable in G), we
can check whether some partial-order reduction ofG satisfies theinvariant dr, provided 5\<ris
an independence-preserving region of G.

3 Symbolic Computation of Ample Sets

Symbolic techniques capture transition sets and state sets of a labeled transition graph as
booleanfunctions.Thebooleanfunctionsarerepresentedand manipulatedasBDDs [BCMD92,
McM93]. The functional representation of the transition relation is denoted by T, where
T(s,a,<) is true iffs A <. Note that the BDD for T is built with variables that encode the
present state, thenext state, and theactions ofG (these variables should not beconfused with the
variablesof the labeledtransitiongraph). In BFS, we denote the set of reachedstates by <r. First,
we initialize o to be the set of initial states. Second, the image Onew of under T is computed:



(T„cw := BDD representing S
repeat

/* a is the current set of reached states *!

ff (Tntvu

T := BDD representing the frontier of <t
:= BDD representing the ample transition relation with respect to the history a

o"next := image of T under
Ontw 1= O" V (Ttiext

until <T

Fig. 3. BDD-based modifiedbreadth-firstsearch algorithm

(Tnewis) = 3i3Q.{a{t) A T{i,a, s)). Thesetof states thatcan bereached bythesystem inat
mostonestepfrom <r is represented bya Vcrnew The image computations are iterated until a
fixpoint is reached. This fixpoint thenrepresents the set of all reachable states. Figure 3 shows
the modified BPSalgorithm from Figure 1 (withpartial-order reduction) rewritten withBDD
operations. Toimplement this algorithm we need to produce an ampletransition relation
at each reachability step.

Apersistent transition relation is a BDDencoding of a persistent function A such that
T^{s, Q, f) iffQ6 ^(s) and s A f. An ample transition relation T-^ with respect tothe history
a can be computed from as

(s, Q,t) = T^{s, Q, t) V(-.3a'.3f'.(r''(s, q', f) A-na(<')) AT(s, Q,t)).

It remains to be seen howwe compute the persistenttransitionrelation . Wenowshowthat
a heuristic forcomputing persistent setsin [God96] canbe implemented symbolically to yield
a persistent transition relation. We assume a model of the transition system annotated with
processes and give a symbolic procedure forcomputing persistent sets in thismodel.

Aprocess structure is a structured description ofa labeled transition graph. Formally, it is
a 4-tupleV = (P, G, own,exec) with the following components:

- A finite set P = {pi,P2, •• ,Pn] of processes.
- Alabeled transition graph G = (K, S,§, F, —>).
- A function own from V to P. We say thata variable v is owned by process own[v).
- A function exec from F to W, with the followingrestriction: for all states s and t, all actions

o, andall variables v, if s A <and v changes value from s to t, then own{v) = exec{a).
Wesay that actiona is executed by process exec(a).

Observe that in this model, variables are read-shared, but write-exclusive. We write act{pi) to
denote theset{q | exec(a) = p,-} ofactions thatareexecuted byprocess p,.Since each action is
executed byexactly oneprocess, act induces a partitiononthesetF ofactions. We differentiate
between globalstate (valuations for all variables) and localstate of a process (valuations for
the variables owned by the process). A global state s is an n-tuple (si, S2> •••iSn) of local
statesSi, one for each process pf 6 P. Wesay that s,- is the local state of process p,- in s. An
action q € ac<(p, ) is enabledin the local state s,- of process pi if thereexists a global states
containing 5,- such that q is enabled in s.



/* Let s = (si, 32,..., Sn) be the given global state */
P(s) := {pjt},wherepk is someprocessenabledin s
repeat

for everyprocessp, G P(5) and everyactiona G act(p, ) enabledin s, do
for every process pj ^ P(s) do

if thereexistsan action/3 G act{pi) such that /3 is dependentwithq then
P(3) := P(3)U{p,}

fi

end

end

until no more processescan be added to P(s)

Fig. 4. Algorithmforcomputing a persistentset P(s) at state s

The algorithm for computing persistent sets is sketched in Figure 4. Given a state s, the
algorithm finds a set of processes P(s) C P such that the set of actions executed by the
processes in P(s) is a persistent set at s. First, we initializeP(s) with an arbitrary process pk
thatexecutesan actionenabled in s. Then we iterativelyadd moreprocessesto P(s), as follows,
untilno moreprocesses can be added: for all processes p, € P(s) and actions q G act{pi) that
areenabled inthe local states, of process p,, weaddprocess pj to P(s) if act{pj) executes an
action (3 that is dependent with o. We call the resulting set P(s) a persistent set ofprocesses
at s. The algorithm described above checks only a sufficient condition for persistence; it is
possible to formulatemore complex schemes that yield smaller persistent sets [God96].

Our aim is to compute a boolean function I such that I{s,p) is true iff p € P(s) for
the global state s. In effect, 1 encodes persistent sets of processes for all global states. For
computing 7, we make use of the following pre-computed relations:

- enabledG{s, o) is true iff action q is enabled in the global state s.
- actionof{q, p) is true iff exec(Q) = p.
- €nabledL{s, q, p) is true iff exec(o) = p and o is enabled in the local state of p in s:

€nabledL{{s],S2yS3,...,s„),Q,p) = Vi<,<n((P = P«)
3s'i "si-isj+i
€nabledG{{s\, ..., sj. j, s,-, sj.,.,,..., ), a)).

- dependent{a, (3) is true iff actions a and 0 are dependent. The dependence relation can
be overapproximated by sufficient syntactic checks (e.g., disjointness of support variables)
[God96].

For all 2, 1 < i < n, we compute Ji{s,p) as follows:

Ji{s,p) = (p = Pi) A 3a.{actionof{Q,pi) A enabledG{s,ci)).

Therelation J,- (s, p) is trueiffp = pi andact (p,-) contains at leastaction enabled in s. We then
performa fixpoint computation to compute the relationI{s, p) as follows:

7o(s,p) = Ji(s,p) V
(-.3p.Ji(s,p) Ay2(s,p)) V
(-i3p.(Ji(s,p) V J2(s,p)) A Ji{s,p)) V ...
(-.3p.(Ji(s,p) V Jiis.p) V ... V Jn-i(s,p)) A J„(s,p)),
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/fe+i(s,p) = Ik{s,p) V
3p'.3a.3^.(//c(s,p') AenabledL{s,Q,p') A actionof{Q',p) Adependent{a, (3)).

The relation Io{s,p) is trueiff p is the process of least index that executes an action enabled
in state s. The computation of 4+1 from h mimics the repeat-until loop of the algorithm in
Figure 4. Then, thedesired relation I is Im forthesmallest m such that/m+i = fm •Now the
persistent transition relation can be computed from / as follows:

T^{s,a,t) = 3p.{I{s,p) Aactionof{Q,p)) AT{s,Q,t).

4 Experiments

We consider two examples for experiments—a protocol for electing a leader among a set of
processes and an asynchronous tree arbiter circuit. In both cases, we builtVerilog models for the
original system as well as the reduced system obtained by considering only those actions from
a state that form an ample set. To impose interleaving semantics on a Verilog description, we
addeda scheduler to themodel whichnondeterministically schedules oneprocessat a time.The
symbolic reachability computation was performed with VIS [BHSV'̂ 96]. The ample sets were
manually computed as functions ofglobal states and implemented using an "ample scheduler
that nondeterministically chooses one among a subset ofenabled processes (corresponding to
the ample set) at each state. While the algorithm given in Section 3 can be used to compute
the ample sets automatically, the computations require the identification of actions in the
representation oftransition systems, which VIS does not support at present. The purpose of
the experiments is to investigate ifsavings in BDD sizes could be obtained, ifsuch ample sets
were available, and the answer is in the affirmative.

4.1 Leader-election protocol

We consider the leader-election protocol described in[DKR82]. Extensive reduction in reach
able state space sizes for this problem is reported by [HP94], using partial-order reductions
with enumerative depth-first search of the state space.

There are N processes connected in acircular ring, with a finite FIFO unidirectional queue
between adjacent processes. Each process has aunique id associated with it. Aprocess receives
messages from the queue immediately before it in the ring and can send messages to the
queue immediately after it. Process pi has avariable called active,- associated with it. Initially,
activei = 1for all processes. The objective of the protocol is toelect a unique leader process
Pk such that aciivek = 1•The messages put on the FIFO queues contain id s of processes
currently active. Initially, each process sends its id to the next process and receives the id
ofthe preceding process. Every process remembers the maximum id it has seen so far. As a
result ofcomparing received process id's to the maximum id, a process may deactivate itself.
Finally, only one process should remain active. To check the property that finally a unique
leader exists using an independence-preserving invariant, we introduce a variable called flagi
for each process p,-. As soon as process pk knows that it is the leader, it asserts flagk
flagk does not change thereafter. The independence-preserving invariants to be checked are
-'{flagi Aflagj), for all i ^ jf

A process is enabled if there is at least one message in its input queue and at least one
empty slot in its output queue. In every state, every enabled process has precisely one enabled

' This, ofcourse, isnot acomplete specificationofthe protocol. Aliveness property stating that eventually
a process does become the leaderis alsoneeded.
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Fig. 5. Leader-election protocol: peak BDD sizes needed for reachability analysis

action. For each stale, we consider the singleton set consisting of the action that is owned by
the process with least index among the enabled processes. This set is a non-empty persistent
set, because the protocol has the property that if multiple processes are enabled at the same
time, the order in which the processes execute actions does not change the eventual outcome.
The transition graph of the protocol is acyclic and hence every persistent set is ample.

Exponential partial-order reductions on this example are reported in [HP94] for a ring of 5
processes. There, however, the id's of the processes are assumed to be initialized to 0, 1, 2, 3,
and 4 in circular order around the ring. Though the protocol is verified for this initial state, it is
not verified for other initial states. For instance, if the id's are 0,4,1, 3, and 2, then the behavior

of the protocol is very different.The former initialization requires a total of 15messages passed
around the ring before a leader is elected, whereas the latter requires 25 messages. In fact,
there are certain lines of code in the protocol that are never exercised in the former case but are
exercised in the latter. Our method verifies the correctness claim as stated in [DKR82], for all
initial states.

Figure 5 shows the growth ofpeak BDD size during reachability analysis versus the number
of processes. Two curves are shown—one for the entire transition relation and another for the
ample transitionrelation. Note that reachabilityanalysis with the entire transition relationruns
out of memory for 5 processes. With partial-order reduction, in the case of 5 processes, VIS
reports 3.76 x 10'̂ states visited. Thus, in this example, partial-order reduction coupled with
symbolic search performs better than either method in isolation.

4.2 Asynchronous tree arbiter

The tree arbiter is an asynchronous circuit which solves the mutual-exclusion problem by
building a tree of arbiter cells. The circuit does the arbitration in the form of an elimination
tournament. An arbiter cell arbitrates between its two children. The leaves in the tree are

processors that asynchronously demand access to a common resource. The n users at the
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Fig.6. Tree arbiter: peak BDD sizes needed forreachability analysis

lowest level in the tree are arbitrated by ^ cells. The winners at this level are arbitrated at
the next level and so on. If both children of an arbiter cell request, one of them is chosen
nondeterministically. The requests propagate upward inthe tree until the root cell isreached. It
grants the resource to at most one ofits children and the grant propagates downward to one of
the processors. Similarly, when the resource is released by a processor, the request for release
goes all the way up and is acknowledged all the way down. We model the arbiter cells as
interacting asynchronously with each other. Four-phase signaling is used for communication
between the arbiter cells. The circuit is verified in [Dil89].

We label all processes (processors and arbiter cells) by levels, starting at the leaves: atthe
lowest level, label the processors from left toright with the leftmost processor having the least
label; then label the first level of arbiters from left to right; etc. Given such a labeling, it can
be shown that at each state, the singleton set containing the enabled process with the least
label isan ample set. Figure 6shows the BDD sizes during reachability analysis, for the entire
transition relation and the ample transition relation (8 processors induce a tree with three levels
of arbitration). Note the log scale on the vertical axis of the plot. The memory requirement
fortheentire transition relation grows exponentially with thenumber of processors, whereas
the memory for the ample transition relation grows polynomially. The difference inmemory
consumption also manifests itself in run time: for 8processors, reachability analysis with the
entire transition relation requires 1755 seconds, whereas the ample transition relation requires
less than 1 second to complete.

4.3 Utilizing flexibilityas "don't cares"

We implemented anew command in VIS called ample-reach that takes two transition relations
(an ample transition relation and the entire transition relation) and does the following. At each
step during reachability analysis, two images are computed, using the two transition relations.
The image obtained by the ample transition relation isalways a subset ofthe image obtained
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by the entire transition relation. Then, two new reached sets are computed, by taking the union
ofeach ofthe two images with the reached setfrom the previous step. Finally, a heuristic BDD
minimization function iscalled from theBDDpackage, to minimize therepresentation of a set
thatliesbetween the tworeached sets.Inbothof theabove examples, theheuristic minimization
always returned the smaller reached set, that is, the one obtained from the ample transition
relation. We believe thatthe reason for this is theexponential reduction in the number of states
obtained using ample sets. However, ifa system has asynchronous components operating with
limited independence and there is limited partial-order reduction, thismethod might prove to
be useful.
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