

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INPUT ENCODING FOR MINIMUM BDD

SIZE: THEORY AND EXPERIMENTS

by

Wilsin Gosti, Tiziano Villa, Alex Saldanha, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/22

11 April 1997

INPUT ENCODING FOR MINIMUM BDD

SIZE: THEORY AND EXPERIMENTS

by

Wilsin Gosti, Tiziano Villa, Alex Saldanha, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/22

11 April 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Universityof California, Berkeley

94720

Input Encoding for Minimum BDD Size: Theory and
Experiments

Wilsin Gosti^ Tiziano Villa^ Alex Saldanha^ Alberto Sangiovanni-Vincentelli*

^ Dept. of EECS, University of California, Berkeley, OA 94720
^ PARADES, Via di S. Pantaleo, 66, 00186 Roma, Italy

^ Cadence Berkeley Labs, 1919 Addison St., Berkeley, CA 94704-1144

Abstract

In this paper, we eiddress the problem of encoding the state vjuiables of a finite state machine
such that the BDD representing the next state function and the output function has the minimum
number of nodes. We present a simulated annealing algorithm which finds good solutions. We
can claim that it finds good solutions because we zJso developed an exact algorithm that solves the
input encoding problem. Theresults that oursimulated annealing produces areclose to theoptimum
ones that oin: exact sklgorithm produces. We provide results of these two algorithms on the MCNC
sequential circuits.

1 Introduction

Reduced Ordered Binary Decision Diagrams (ROBDDs or simply BDDs) are a data structure used to
efficiently represent and manipulate logic functions. They were introduced by Bryant [Bry86] in 1986.
Since then, they played a major role inmany areas ofComputer Aided Design, including logic synthesis,
simulation, and formal verification.

The size of a BDD representing a logic function depends on the ordering of its variables. For
some functions, the BDD sizes are linear in the number of variables for one ordering; while they are
exponential for theother [Bry92]. Many heuristics have been proposed to find good orderings, e.g., the
siftingdynamic reordering algorithm [Rud93].

BDDs can also be used to represent the characteristic functions of the transition relations of finite
state machines. In this case, the size of the BDDs depends not only on variable ordering, but also
on state encoding. Meinel and Theobald studied the effect of state encoding on autonomous counters
in [MT96b]. They analyzed 3different encodings: the standard minimum-length encoding, which gives
the lower bound of5n —3 internal nodes for an n-bit autonomous counter, the Gray encoding, which
gives the lower bound of1On —11 internal nodes, and a worst-case encoding, which gives an exponential
number of nodes in n.

The problem ofreducing by state encoding the BDD size ofan FSM representation ismotivated by
applications in logic synthesis and verification. Regarding synthesis, BDDs can be used as a starting
point for logic optimization. An example is their use in Timed Shannon Circuits [LMSSV95], where
the circuits derived are reported to be competitive in area and often significantly better inpower. One
would like to derive the smallest BDD with the hope that it leads to a smaller circuit derived from it.
Regarding verification, re-encoding has been applied successfully to ease the comparison of "similar"
sequential circuits [CQC95].

In this paper, we look into the problem offinding the optimum state encoding that minimizes the
BDD that represents a finite state machine. We call this problem the BDD encoding prvhlem. To the

best of our knowledge, this problem has never been addressed before. The work that is related to this
paper is from Meinel and Theobald. In the effort to find a good re-encoding of the state variables to
reduce the number of BDD nodes, Meinel and Theobald proposed in [MT96a] a dynamic re-encoding
algorithm based on XOR-transformations. Although a little slower than the sifting algorithm, their
technique was able to reduce the number of nodes in BDDs even in cases when the sifting algorithm
could not.

13020645 15827463

Figure 1: Multi-Valued Functions / and g

As an example, we consider functions (nodes) / and g shown in Figure 1. Functions / and g map
{0,1,..., 7} to {0,1,.. .,7}, andcanbe regarded as next state functions where the present state variable
is Vand the next state values are the range. If we encode v as

e,(0) = 010, e,(l) = 100,

ei(2) = 000, ei(3) = 001,
ci(4) = Oil, ei(5) = 110,
ei(6) = 111, ei(7) = 101,

with ordering 62,61,60 we get the BDD (i.e., part of a BDD) shown in Figure 2 with 14 nodes. No
reordering will reduce the numberof BDD nodes for this encoding.

But if we encode v as
62(0) = 010, 62(1) = 100,
62(2) = 000, 62(3) = Oil,
62(4) = 001, C2(5) = 111,
62(6) = 101, 62(7) = 110

the BDD that we get has 10 nodes. Figure 3 shows the binary decision trees representing / and g using
this encoding. The BDD is shown in Figure 4. From this example, we see that state encodings affect
the BDD size representing the transition relation of an FSM.

The remainder of this paper is structured as follows. In Section 2 we state the definitions of FSMs and
their BDD representation. We also review briefly the simulated annealing algorithm. In Section 3, we
present our simulatedannealing algorithmto find an optimal encoding and our experimental results. To
evaluate oursimulated annealing algorithm, we present an exact formulation ofthe BDD inputencoding
problem and our experimental results in Section 4. Finally, we conclude in Section 6.

2 Definitions and Terminology

We review briefly finite state machines andBDDs. We also describe the outline ofthe simulated annealing
algorithm.

02103564 72185346

Figure 2: BDD for / and g Using Encoding ei

0 0 23456 78125

Figure 3: Binary Decision Tree for / and g Using Encoding 62

^ g

2 3 4 7 8

Figure 4: BDD for / and g Using Encoding 62

5 6

2.1 FSMs and Their BDD Representations

Definition 1 A finite state machine (FSM) is a quintuple {QfI,0,S,X) where Q is the finite set of
states, J is the finite set of input values, O is the finite set of output values, 8 is the next state function
defined as S : I x Q t-y Q, and A is the output function defined as X: I x Q O.

An FSM is said to be incompletely specified (ISFSM) if for some input value and present state
combination (i,p}, the next state or the output is not specified; otherwise, it is said to be completely
specified (CSFSM). For an ISFSM, if the next state of (i,p) is not specified, then any state can become
the next state. If the output of (i,p) is not specified, then any output can become the output. In the
sequel, we will deal only with CSFSMs. ISFSMs will be converted to CSFSMs by selecting a next state
and/or an output value for an unspecified (t,p). We assume that the inputs and outputs are given in
binary forms, and the state variables are given in symbolicforms, i.e., multi-valued.

The next state and output functions ofan FSM can be simultaneously represented by a characteristic
function T :/xQxQxO^->S, where each combination of an input value and a present state is related
to a combination of a next state and an output value.

Assume that we have an encoding of the states that uses s bits. Let P5-i,Pa-2, •••iPo and
ns-i,ng-2, ••',no be the present and next state binary variables. Then for next state n,-, there is a
next state function n,- = ^,{pa_i,Pa_2, ••-,Po)- Next state and output functions can be represented
using BDDs. Wecall this representation the functional representation. We can also represent an FSM
using BDDs by representing its characteristic function T. We call it the relational representation.

2.2 Simulated Annealing

Simulated Annealing isa combinatorial optimization technique that mimics thephysical crystal annealing
process that slowly lowers the temperatureuntil it reaches 0®C where the crystal is at its global minimum
state. The algorithm can be outlined as follows:

sa()

T = steirting temperature
move = initialMove(T)

while (T != 0) {
while (stoppingCriteriond, move) is not met) <

newMove = nextHove(T, move)
move - accept(move, newHove)

>

T = reduceTemp(T)
}

An implementationofsimulated annealingwillhaveto define the starting temperature, the next move
function, thestopping criterion, and the temperature lowering function. This isusually called the cooling
schedule. The acceptance criterion depends on the cost function that is defined for an implementation.
If the new move has a lower cost, then it is always accepted. If it has a higher cost, then it is accepted
with probability exp(——). Hence, at high temperatures, the algorithm searches the solution space
quite globally and at low temperatures, it searches around the local minimum.

3 Encoding Using Simulated Annealing

In this section wedescribeour implementationof simulated annealing to find an optimal solution to the
BDD encoding problem.

3.1 Algorithm

We assume that logarithmicencodingis used for all states, whichmeans that weuse the smallest number
of bits required to encode the states. A code where all the bits are either 0 or 1 is called a code pointy
e.g., if the number ofbits used is 3, then 010 is a code point and 01- is not. The initial move randomly
assigns a code point to each state. If the number ofstates is not a power of two, then some code points
are not used. The starting temperature is 100. The temperature is reduced bya constant factor of 0.8,
i.e., T = 0.8T. The stopping criterion for each temperature iswhen thenumber ofconsecutively rejected
moves is 3. The next move function is a swap of code points between two randomly chosen states if
the number of states is a power of two. If it is not, then the next move function is a swap of the code
points between two randomly chosen states or a swap ofthe code point ofa randomly chosen state and
a randomly chosen unused code point.

We perform our experiment for both the functional and the relational representations of FSMs. For
either ofthese representations, we build the BDDs for each encoding in each move. The number ofBDD
nodes is our cost function.

For incompletely specified FSMs, all unspecified transitions are treated as no change in state. In
other words, for a present state and primary inputs combination, the next state is the same as the
present state if the transition is not specified.

It is well known that variable ordering affects the BDD size. In this experiment, we consider several
variable orderings for the relational representation. In our variable orderings, when we say that the
present state and next state variables are interleaved, we mean that the i-th present state variable is
immediately followed by the i-th next state variable in the ordering.

The orderings from the lowest level to the highest level follow (note that the lower is the level of a
variable, the higher is its position in the BDD):

• Ordering I: inputs, present states, next states, outputs.

• Ordering II: inputs, present states, next states, outputs. The presentstate and next state variables
are interleaved.

• Ordering III: inputs, outputs, present states, next states.

Ordering IV: inputs,outputs, present states, nextstates. Thepresent state and next state variables
are interleaved.

Tosee the effect ofoutputsand next states in the monolithic relation representation, we also perform
an experiment where we build two BDDs, one for the characteristic function of the primary inputs,
present states, and next states combination, the other one for the characteristic function of the primary
inputs, present states, and primary outputs combination. Forease ofcomparison, we also call these two
variations as orderings:

• Ordering V: inputs, present states, next states.

• Ordering VI: inputs, present states, next states. The present state and next state variables are
interleaved.

• Ordering VII: inputs, present states, outputs.

3.2 Experimental Results

Our implementation uses the Long's BDD package. The experiments were performed on a DEC Al
phaServer 8400 5/300 with 2Gb of memory.

Our test cases include the MONO benchmark set. Thesimulated annealing algorithm is run once for
each circuit. The results of the simulated annealing runs for CSFSMs are tabulated in Table 1 through
Table 7.

Table 1: Statistics for SimulatedAnnealing Runsfor Completely Specified FSMswith OrderingI: Inputs,
Present States, Next States, Outputs.

Name Min Msix Ave Std Dev Max-Min CPU Time

dklSx 80 86 83 2 6 27.369

dkl7x 75 89 84 3 14 59.758

ellen.min 93 93 93 0 0 135.905

ellen 113 125 124 2 12 66.277

exGinp 167 190 180 5 23 40.990

fsmi 45 53 50 2 8 7.750

fistate 176 200 189 5 24 6.496

fisync 67 73 70 2 6 55.137

maincont 108 121 115 2 13 122.648

mc 53 56 55 1 3 12.593

ofsync 67 73 70 2 6 55.973

pkheader 20305 21585 20670 429 1280 196.632

scud 303 377 342 15 74 103.931

shiftreg 45 45 45 0 0 80.221

tav 116 116 116 0 0 293.309

tbk 493 552 530 13 59 3156.060

tbk-m 230 246 241 2 16 3092.892

virmach 462 473 468 3 11 65.961

vmecont 4238 4565 4392 66 327 6929.002

Table 2: Statistics for Simulated Annealing Runs for Completely Specified FSMs with Ordering II:
Inputs, Present States and Next States Inter eaved.

Name Min Max Ave Std Dev Max-Min CPU Time
dklSx 76 88 83 4 12 22.174

dkl7x 79 103 91 4 24 36.537

ellen.min 75 93 87 4 18 14.339

ellen 105 159 140 8 54 44.239
ex6inp 189 231 211 7 42 61.727

fsml 44 56 49 2 12 15.886

fstate 177 214 188 9 37 2.937

fsync 66 75 71 3 9 56.903

maincont 104 132 117 5 28 91.178
mc 51 58 56 3 7 8.777

ofsync 66 75 71 3 9 61.492
pkheader 20051 22857 21218 954 2806 262.823
scud 407 505 455 18 98 125.601
shiftreg 23 45 39 3 22 9.484
tav 106 116 110 4 10 29.729

tbk 552 695 645 24 143 2709.038

tbk_m 244 267 259 4 23 3598.614
virmach 474 488 482 5 14 76.874

vmecont 3997 4197 4092 53 200 1172.417

Table 3: Statistics for Simulated Annealing Runs for Completely Specified FSMs with Ordering III:
Inputs, Outputs, Present States, Next States.

Name Min Max Ave Std Dev Max-Min CPU Time

dklSx 93 99 96 2 6 15.758

dkl7x 81 98 91 3 17 23.834

ellen.min 77 93 89 3 16 7.704

ellen 110 167 144 9 57 11.417

ex6inp 287 304 297 3 17 44.632

fsml 42 50 46 1 8 6.246

fistate 220 228 225 2 8 20.866

fisync 92 98 96 2 6 25.700

muncont 116 126 123 2 10 48.793

mc 73 75 74 1 2 5.861

ofsync 92 98 96 2 6 25.672

pkheader 12475 12490 12484 3 15 8184.627

scud 582 609 598 5 27 175.837

shiftreg 27 45 40 3 18 3.509

tav 72 72 72 0 0 130.780

tbk 584 664 633 15 80 958.291

tbk-m 301 312 308 2 11 1177.322

virmach 654 660 657 2 6 40.692

vmecont 4999 5034 5016 6 35 6376.398

Table 4: Statistics for Simulated Annealing Runs for Completely Specified FSMs with Ordering IV:
Inputs, Outputs, Present States and Next States Interleaved.

Name Min Max Ave Std Dev Max-Min CPU Time
dkl5x 95 103 99 3 8 14.775

dkl7x 87 106 96 3 19 27.489

ellen.min 73 93 88 3 20 8.116
ellen 90 156 138 11 66 1.575

ex6inp 297 321 309 4 24 37.290

fsml 40 54 49 2 14 6.527

fstate 219 232 226 2 13 35.105

fsync 96 101 98 2 5 24.399

maincont 115 138 128 4 23 41.306
mc 73 75 74 1 2 5.802

ofsync 96 101 98 2 5 24.387

pkheader 12473 12497 12485 4 24 7125.212
scud 600 644 629 7 44 120.760

shiftreg 27 45 40 3 18 2.856

tav 70 72 71 1 2 27.405

tbk 668 774 717 18 106 662.522

tbkjn 298 328 320 4 30 851.905
virmach 656 663 659 2 7 41.140

vmecont 5016 5064 5039 10 48 4715.590

Table 5: Statistics for Simulated Annealing Runs for Completely Specified FSMs with Ordering V:

Name Min Max Ave Std Dev Max-Min CPU Time
dkl5x 19 23 21 1 4 11.542
dkl7x 41 51 46 2 10 19.673

ellen.min 21 29 27 2 8 4.475

ellen 49 61 60 2 12 15.522
exSinp 68 92 82 4 24 16.385
fisml 32 39 36 1 7 4.428
fstate 81 101 89 5 20 8.791
feync 24 28 26 2 4 13.122

mc 20 23 21 1 3 2.704
ofsync 24 28 26 2 4 13.119
pkheader 48 53 51 1 5 4508.126
scud 189 240 214 10 51 48.259
shiftreg 21 29 27 2 8 3.437

tav 9 9 9 0 0 76.352
tbk 381 435 416 9 54 805.450
tbkjn 167 178 174 2 11 723.678

virmach 97 103 100 2 6 13.344

vmecont 234 269 256 5 35 3126.848

maincont 76 84 81 2 8 32.197

shift4 47 61 59 2 14 12.574

Table 6: Statistics for Simulated Annealing Runs for Completely Specified FSMs with Ordering VI:
Inputs, Present States and Next States Interleaved.

Name Min Max Ave Std Dev Max-Min CPU Time
shift4 50 72 64 3 22 10.475

dkl5x 22 27 24 2 5 13.949

dkl7x 47 62 54 2 15 19.784

ellen.min 16 34 29 3 18 5.272
ellen 31 71 64 3 40 11.498

ex6inp 85 115 103 5 30 14.310

fsml 33 43 38 2 10 4.567

fstate 87 127 102 7 40 16.528
fsync 25 33 29 3 8 14.744
maincont 75 98 87 4 23 33.172
mc 19 25 23 3 6 2.980

ofsync 25 33 29 3 8 14.753

pkheskder 47 63 55 2 16 2768.773

scud 217 287 258 14 70 55.968

shiftreg 16 34 29 3 18 4.721
tav 6 9 7 1 3 22.303
tbk 513 615 570 20 102 748.454
tbk^ 197 224 214 4 27 808.002

virmach 100 107 103 2 7 12.131

vmecont 289 343 316 9 54 2519.523

Table 7: Statistics for Simulated Annealing Runs for Completely Specified FSMs with Ordering VII:
Inputs, Present States, Outputs.

Name Min Max Ave Std Dev Max-Min CPU Time
shift4 8 16 13 1 8 11.932
dklSx 47 53 50 3 6 10.446
dkl7x 32 42 37 2 10 16.608
ellen.min 45 45 45 0 0 39.095
ellen 49 61 60 2 12 18.589
ex6inp 130 151 141 4 21 18.239
fsml 16 21 19 1 5 4.491
fstate 55 55 55 0 0 122.558

fsync 40 43 41 1 3 22.281
maincont 31 35 34 1 4 29.012
mc 37 40 39 1 3 4.517
ofeync 40 43 41 1 3 22.267
pkheader 9778 10286 10032 192 508 54.751
scud 264 338 303 15 74 28.346
shiftreg 3 6 5 1 3 3.982
tav 57 57 57 0 0 104.691
tbk 99 120 110 4 21 1372.429
tbkjTi 80 83 83 1 3 1239.739
virmach 439 452 446 4 13 20.705
vmecont 2260 2320 2302 10 60 4380.045

For comparing ordering I - IV, we summarize the data into Table 8. Columns 2 through 5 list the
minimum numbers ofBDD nodes in each ordering. Columns 6 through 9 show the average BDD sizes.
The standard deviations are listed from column 10 through 13.

Table 8: Simulated annealing runs for relational representation of CSFSMs.

Name
Min BDD Size Ave BDD Size

I 11 in tv 1 11 111 IV
dklSx 80 76 93 95 83 83 96 99
dkl7x 75 79 81 87 84 91 91 96

ellen.min 93 75 77 73 93 87 89 88
ellen 113 105 110 90 124 140 144 138
ex6inp 167 189 287 297 180 211 297 309
fstate 176 177 220 219 189 188 225 226
fsync 67 66 92 96 70 71 96 98
maincont 108 104 116 115 115 117 123 128
mc 53 51 73 73 55 56 74 74
ofsync 67 66 92 96 70 71 96 98
pkheader 20305 20051 12475 12473 20670 21218 12484 12485
scud 303 407 582 600 342 455 598 629
shiftreg 45 23 27 27 45 39 40 40
tav 116 106 72 70 116 110 72 71
tbk 493 552 584 668 530 645 633 717
tbk-m 230 244 301 298 241 259 308 320
virmach 462 474 654 656 468 482 657 659
vmecont 4238 3997 4999 5016 4392 4092 5016 5039

Our results show that for CSFSMs, interleaving present state and next state variables increases or
decreases the BDD sizes by only a small amount. We see that Ordering I and II are generally better
than Ordering III and IV. We also found that different encodings do not change dramatically the BDD
size representing a CSFSM.

If we normalized the results with respect to Ordering I, we get Table 9.

Table 9:

dering.
Comparison of Simulated Annealing Runs for Completely Specihed FSMs with Different Or-

Name in-ps-ns-out (I) in-ps-ns-int-out (II) in-out-p»-ns (III) in-out-ps-ns-int (IV)
dklSx 1.00 0.95 1.16 1.19

dkl7x 1.00 1.05 1.08 1.16

ellen.min 1.00 0.81 0.83 0.78
ellen 1.00 0.93 0.97 0.80

exGinp 1.00 1.13 1.72 1.78
fsml 1.00 0.98 0.93 0.89
fstate 1.00 1.01 1.25 1.24
fisync 1.00 0.99 1.37 1.43

maincont 1.00 0.96 1.07 1.06
mc 1.00 0.96 1.38 1.38

ofsync 1.00 0.99 1.37 1.43

pkheader 1.00 0.99 0.61 0.61
scud 1.00 1.34 1.92 1.98

shiftreg 1.00 0.51 0.60 0.60

tav 1.00 0.91 0.62 0.60
tbk 1.00 1.12 1.18 1.35

tbk-m 1.00 1.06 1.31 1.30

virmach 1.00 1.03 1.42 1.42
vmecont 1.00 0.94 1.18 1.18

The results for the ISFSMs are tabulated in Table 10 through Table 16.

10

Table 10: Statistics for Simulated Annealing Runs for Incompletely SpeciAed FSMs with Ordering I:

Name Min Maoc Ave Std Dev Max-Min CPU Time
bbara 81 96 91 2 15 31.702

bbgun 6565 7444 6746 172 879 693.835

bbsse 275 328 299 9 53 33.760

bbtas 46 50 49 1 4 10.008

beecount 63 71 67 1 8 8.547

cf 783 930 853 45 147 2.738

chanstb 235 240 238 2 5 51.266

cpab 850 920 884 22 70 2.496

cse 299 335 319 6 36 58.540

dec 8213 8878 8550 228 665 62.087

dkl4x 133 168 155 7 35 16.372
dkl6x 316 343 332 5 27 68.159

dol2 33 40 36 2 7 4.623

donfile 156 176 166 4 20 47.585
es 33 36 35 1 3 2.542

exlinp 1570 1690 1626 33 120 21.914
ex2inp 156 182 171 4 26 31.885

ex2out 99 115 108 2 16 18.354

ex3inp 85 100 94 3 15 7.359

exSout 39 40 40 0 1 5.044

ex4inp 198 234 211 6 36 12.930

exSinp 82 105 96 4 23 12.098

exSout 32 33 33 0 1 4.251

ex7inp 89 107 99 3 18 15.528

ex7out 30 31 30 0 1 4.207

£sl 577 645 598 8 68 820.313

keyb 304 345 324 8 41 127.162

kirkman 1164 1239 1205 17 75 80.454
lion 22 24 23 1 2 2.774
lion9 67 87 77 3 20 6.113
markl 190 211 197 6 21 11.304
master 77247 80495 78515 995 3248 43.800

modulol2 52 59 57 1 7 7.526

opus 128 149 141 4 21 17.458
p21stg 5268 6002 5585 253 734 34.096
planet 2098 2179 2131 32 81 5.914

pma 667 758 713 16 91 136.658

ricks 1344 1937 1453 131 593 10.329
rpss 3531 3801 3591 64 270 48.280
si 829 963 885 36 134 10.476
sla 721 858 780 36 137 9.756
s298jii 1 1 1 0 0 1.216

s8 40 47 43 2 7 6.662
sand 3473 3941 3598 195 468 16.751
saucier 938 1092 993 43 154 6.233
scf 165369 166737 165754 519 1368 1110.547

scfjn 166071 167329 166187 306 1258 867.329
slave 1232 1436 1334 41 204 94.487
str 1747 2084 1859 86 337 37.401
styr 805 929 869 23 124 193.404
tlc34stg 559 634 601 12 75 2605.982
tma 329 376 357 9 47 26.088
tr4 647 692 676 10 45 76.659
train11 74 89 83 2 15 11.410
viterbi 10602 11150 10722 195 548 76.348

11

Table 11: Statistics for Simulated Annealing Runs for Incompletely Specified FSMs with Ordering II:

Name Min Max Ave Std Dev Max-Min CPU Time
bbara 85 116 103 5 31 21.956

bbgun 7040 7979 7355 387 939 160.726

bbsse 304 385 342 16 81 10.505

bbtas 43 53 49 2 10 8.248

beecount 62 77 71 2 15 12.359

cf 803 1033 882 51 230 8.615

chanstb 240 247 244 2 7 45.449

cpab 866 1076 927 37 210 3.269

cse 355 416 389 11 61 33.374
dec 9636 9834 9716 81 198 16.340

dkl4x 128 195 162 12 67 21.917

dkl6x 294 324 311 8 30 2.111
dol2 35 49 42 3 14 2.999

donfile 177 220 198 7 43 29.595

es 33 36 35 1 3 3.875

exlinp 1652 1813 1697 50 161 9.973

ex2inp 177 216 198 6 39 24.569
ex2out 102 128 116 4 26 13.129

exSinp 88 114 102 4 26 16.092

ex3out 38 40 39 1 2 3.662

ex4inp 197 267 221 12 70 14.495

exSinp 85 116 103 5 31 10.536

exSout 30 32 31 1 2 3.013

ex7inp 88 118 105 5 30 9.760

ex7out 30 31 31 0 1 3.300

fsl 526 588 559 18 62 5.736

keyb 374 492 428 24 118 67.678

kirkman 1082 1198 1155 40 116 4.933

lion 23 29 26 2 6 1.858

lionS 66 101 82 6 35 5.736

markl 177 217 196 12 40 0.690

master 78600 83176 80589 1719 4576 42.074

modulol2 42 61 54 3 19 9.034
opus 136 190 165 8 54 12.104

p21stg 7193 8260 7754 339 1067 41.413

planet 2138 2389 2258 70 251 30.336
pma 710 757 733 15 47 4.018
ricks 1352 1805 1680 179 453 4.410

rpss 3626 4245 3715 139 619 27.667

si 1157 1349 1242 65 192 1.504

sla 966 1160 1047 71 194 1.301

s298jn 1 1 1 0 0 1.219

s8 42 56 49 3 14 4.191

sand 3806 4647 4057 290 841 15.897

saucier 1027 1258 1090 58 231 2.473
scf 165825 167183 166314 482 1358 1230.330

scf-m 166339 166815 166491 98 476 1627.056

slave 1316 1632 1453 69 316 27.604
str 2311 2447 2371 59 136 3.137

styr 932 1022 956 27 90 2.962

tlc34stg 622 732 672 21 110 1189.675
tma 308 379 344 11 71 39.150

tr4 579 674 634 24 95 107.805

trainll 70 94 81 5 24 5.701
viterbi 10757 10875 10807 37 118 59.098

12

Table 12: Statistics for Simulated Annealing Runs for Incompletely Specified FSMs with Ordering III:

Name Min Max Ave Std Dev Max-Min CPU Time
bbara 84 97 92 2 13 32.291
bbgun 10250 10333 10290 16 83 > 3600
bbsse 428 463 446 6 35 34.467

bbtas 37 41 39 1 4 10.629

beecount 66 76 71 2 10 17.652
cf 1164 1194 1178 5 30 152.494
chanstb 290 292 291 1 2 59.682
cpab 1220 1291 1247 18 71 4.246
cse 497 552 529 10 55 90.142
dec 32499 32561 32528 12 62 > 3600
dkl4x 155 182 171 5 27 24.772
dkl6x 295 339 310 9 44 6.304

dol2 35 42 38 2 7 5.720
donlile 158 178 168 4 20 56.214
es 32 34 33 1 2 4.373
exlinp 1470 1515 1491 8 45 519.462

ex2inp 172 198 187 4 26 33.198
ex2out 112 130 122 3 18 11.932

exSinp 91 103 97 2 12 8.194
exSout 36 40 38 1 4 4.802

ex4inp 242 262 254 3 20 31.985

exSinp 93 117 104 4 24 14.449
exSout 36 39 38 1 3 3.678
ex7inp 98 113 106 3 15 7.609
ex7out 32 33 32 0 1 5.023
fsl 561 633 588 8 72 994.974
keyb 554 671 610 21 117 97.369
kirkman 668 686 678 4 18 529.587
lion 22 28 25 2 6 2.641
lion9 67 90 80 4 23 9.217
markl 424 472 436 9 48 31.556

master 229775 229903 229815 38 128 388.482
modulol2 52 59 57 1 7 9.238
opus 182 203 195 3 21 22.869
p21stg 5385 5856 5607 169 471 60.905
planet 3626 3737 3675 16 111 674.982
pma 831 858 846 4 27 178.521
ricks 1443 1452 1449 1 9 452.581
rpss 9261 9323 9281 11 62 505.975
si 994 1062 1028 13 68 104.700
sla 1362 1499 1421 36 137 15.392

s298jn 1 1 1 0 0 1.219
s8 42 49 45 2 7 7.056
sand 5554 5634 5590 14 80 937.464
saucier 2051 2108 2073 10 57 82.516
scf spaceout spaceout spaceout spaceout spaceout 82.516
scf-m spaceout spaceout spaceout spaceout spaceout 82.516
slave 5467 5540 5497 14 73 279.029
str 2223 2255 2241 5 32 304.214
styr 1342 1501 1417 33 159 105.743
tlc34stg 643 713 678 13 70 1552.804
tma 382 411 402 5 29 34.343
tr4 1010 1057 1044 10 47 151.329
trainl 1 72 92 83 3 20 11.344
viterbi 122902 123085 122982 43 183 > 3600

13

Table 13: Statistics for Simulated Annealing Runs for Incompletely Specified FSMs with Ordering IV:
Inputs, Outputs, Present States and Next States Interleaved.

Name Min Max Ave Std Dev Max-Min CPU Time
bbara 87 114 102 4 27 31.887

bbgun 10136 10234 10198 13 98 > 3600
bbsse 438 499 465 9 61 42.206

bbtas 35 45 41 2 10 7.099
beecount 69 84 78 2 15 19.353
cf 1173 1230 1201 9 57 173.077

dianstb 290 292 291 1 2 60.329
cpab 1234 1294 1266 20 60 2.739
cse 533 604 575 13 71 79.043
dec 32482 32563 32521 16 81 > 3600
dkl4x 166 197 183 6 31 25.082

dkl6x 307 361 335 9 54 34.719
dol2 37 50 44 3 13 6.179

donfile 182 219 202 6 37 39.491

es 31 34 33 1 3 3.921

exlinp 1478 1553 1522 13 75 407.393
ex2inp 198 241 220 8 43 19.174
ex2out 118 147 133 5 29 13.447
exSinp 97 121 110 4 24 16.421
exSout 38 44 41 2 6 3.274
ex4inp 241 265 253 5 24 30.567

exSinp 98 137 118 6 39 10.804
exSout 37 40 39 1 3 3.677

ex7inp 106 138 120 5 32 10.794

ex7out 32 35 34 1 3 4.038
fsl 523 584 555 18 61 6.538

keyb 595 775 685 31 180 93.184
kirkman 661 691 675 5 30 746.609
lion 22 30 27 3 8 1.137

lionS 57 100 85 6 43 10.515

markl 420 491 445 15 71 27.253
master 229829 230013 229894 44 184 429.335

moduIol2 45 60 54 2 15 9.154

opus 184 212 199 5 28 12.922

p21stg 6984 7751 7407 236 767 46.584

planet 3640 3738 3700 19 98 93.083
pma 821 875 852 8 54 136.640
ricks 1438 1454 1447 3 16 228.394
rpss 9279 9370 9311 15 91 627.444
si 1071 1143 1101 19 72 8.235
sla 1607 1800 1688 71 193 2.019
s298-m 1 1 1 0 0 1.217

s8 44 57 51 3 13 7.519
sand 5561 5680 5620 21 119 840.860

saucier 2048 2130 2090 16 82 44.791
scf spaceout spetceout spaceout spaceout spaceout 44.791
scf-m spaceout spaceout spaceout spaceout spaceout 44.791
slave 5499 5627 5542 24 128 188.113
str 2204 2252 2233 8 48 293.552
styr 1419 1656 1499 55 237 15.369

tlc34stg 729 802 769 14 73 1122.563

tma 377 428 407 8 51 27.037

tr4 984 1069 1040 15 85 158.463
trainll 70 98 86 4 28 11.073
viterbi 122906 123068 122995 37 162 923.282

14

Table 14: Statistics for Simulated Annealing Runs for Incompletely Specified FSMs with Ordering V:

Name Min Max Ave Std Dev Max-Min CPU Time
bbara 66 82 77 3 16 23.678
bbgun 3138 3860 3427 216 722 37.029
bbsse 110 144 129 6 34 23.544
bbtas 23 28 27 1 5 5.850
beecount 38 48 43 2 10 13.799
cf 426 521 463 30 95 2.761
chanstb 85 91 88 2 6 31.421
cpab 346 371 359 6 25 4.791
cse 151 183 169 5 32 59.206

dec 7441 8119 7787 228 678 42.354
dkl4x 47 64 56 3 17 18.621
dkl6x 161 182 174 4 21 39.616
dol2 31 38 34 2 7 4.389

donfile 154 174 164 4 20 43.985
es 18 20 19 1 2 2.619

exlinp 333 411 374 15 78 85.703
ex2inp 125 146 136 4 21 28.554
ex2out 74 86 81 2 12 16.830

exSinp 60 74 69 2 14 10.485
ex3out 16 18 17 1 2 4.256

ex4inp 67 80 73 3 13 11.119

exSinp 55 71 65 3 16 6.056
exSout 17 20 19 1 3 2.602

ex7inp 59 73 67 2 14 9.537

ex7out 15 18 17 1 3 2.527
fsl 536 612 565 9 76 537.412
keyb 260 307 286 9 47 107.335
kirkman 56 56 56 0 0 1780.716
lion 15 19 17 2 4 1.968

lion9 54 72 64 3 18 9.917
markl 90 112 97 5 22 10.838
master 15182 16049 15616 219 867 15.910

modulol2 50 57 55 1 7 7.398
opus 84 105 95 4 21 13.515

p21stg 5268 5848 5599 171 580 29.811

planet 475 518 495 12 43 20.908
pma 418 497 458 15 79 62.287
ricks 110 134 120 4 24 49.944

rpss 1676 1789 1710 34 113 20.064
si 714 851 773 36 137 7.340
sla 714 851 773 36 137 6.534
s298jn 1 1 1 0 0 1.207
s8 38 45 41 2 7 6.510

sand 2753 3275 2895 186 522 17.076
saucier 835 1061 916 49 226 7.336
scf 164011 165079 164311 384 1068 1950.843
scf_m 163971 165641 164379 378 1670 914.728
slave 662 779 723 29 117 5.931
str 1206 1519 1321 102 313 8.963
styr 446 558 508 19 112 20.277
tlc34stg 348 401 380 10 53 1457.302
tma 148 195 175 7 47 31.640
tr4 200 252 237 12 52 59.405
train11 58 76 68 2 18 10.635
viterbi 8849 9281 8928 151 432 40.705

15

Table 15: Statistics for Simulated Annealing Runs for Incompletely Specified FSMs with Ordering VI:
Inputs, Present States and Next States Interleaved.

Name Min Max Ave Std Dev Max-Min CPU Time

bbara 72 101 88 4 29 14.815

bbgun 3221 4575 3463 318 1354 80.585

bbsse 131 198 162 11 67 13.318

bbtas 22 33 28 2 11 7.889
beecount 38 54 48 2 16 12.391

cf 451 639 505 41 188 4.853

chanstb 88 94 91 2 6 30.662

cpab 360 445 380 17 85 6.948
cse 194 245 221 9 51 35.684

dec 8917 9387 9033 161 470 12.229

dkl4x 53 78 69 4 25 16.536

dkl6x 190 230 210 6 40 43.976

dol2 33 46 40 3 13 4.748

donfile 178 215 198 6 37 31.345

es 19 21 20 1 2 3.140

exlinp 365 507 437 24 142 92.557

ex2inp 143 181 163 6 38 26.144

ex2out 79 100 90 3 21 14.717

ex3mp 68 90 80 4 22 11.778
exSout 19 22 21 1 3 4.184
ex4inp 66 99 81 6 33 6.384

exSinp 60 85 75 4 25 7.471

exSout 19 21 20 1 2 2.707
ex7inp 66 88 78 4 22 14.230

ex7out 17 19 18 1 2 3.070

fsl 504 565 536 18 61 5.308
keyb 332 437 377 19 105 72.528

kirkman 31 58 52 2 27 386.493
lion 15 22 19 3 7 2.198

lion9 55 81 68 4 26 5.320
markl 88 133 106 9 45 10.903

master 15688 16682 16106 336 994 9.874

modulol2 43 58 52 2 15 7.218
opus 84 131 109 7 47 11.920

p21stg 7021 8050 7636 302 1029 34.351
planet 563 673 608 22 110 40.495

pma 427 529 488 21 102 26.007

ricks 112 150 127 6 38 49.761
rpss 1754 2034 1839 93 280 9.788
si 959 1152 1040 71 193 0.984
sla 959 1152 1040 71 193 0.869
s298jn 1 1 1 0 0 1.195

s8 40 53 47 3 13 6.968
sand 3088 3837 3273 260 749 13.656
saucier 881 1183 993 65 302 4.571
scf 164205 166234 164664 617 2029 2238.268
scf-m 164831 166908 165229 596 2077 998.619
slave 711 866 801 39 155 6.234

str 1796 1932 1856 60 136 1.669
styr 557 766 670 42 209 40.870
tlc34stg 420 534 490 19 114 1465.110
tma 167 220 193 10 53 21.687
tr4 222 293 266 16 71 25.158
train11 55 83 69 4 28 8.925
viterbi 8964 9780 9137 261 816 44.569

16

Table 16: Statistics for Simulated Annealing Runs for Incompletely Specified FSMs with Ordering VII:
Inputs, Present States, Outputs.

Name Min Max Ave Std Dev Max-Min CPU Time

bbara 26 35 31 2 9 22.288

bbgun 2938 2951 2945 2 13 > 3600
bbsse 167 211 183 7 44 24.014

bbtas 20 23 22 1 3 7.572

beecount 31 36 34 1 5 17.204

cf 322 441 346 27 119 9.417

chanstb 47 48 47 0 1 51.949

cpab 40 46 43 1 6 67.931

cse 153 187 173 5 34 64.824

dec 432 441 437 2 9 522.087

dkl4x 65 81 74 3 16 25.017

dkl6x 61 76 69 3 15 31.844

dol2 5 7 6 1 2 7.223

donfile 9 17 14 1 8 35.077

es 17 19 18 1 2 3.274

exlinp 1122 1325 1223 48 203 41.631

ex2inp 44 61 54 3 17 27.693

ex2out 32 44 39 2 12 16.530

ex3tnp 28 37 34 2 9 14.782

ex3out 15 21 17 2 6 3.134

ex4inp 114 141 123 4 27 11.776

exSinp 29 41 36 2 12 12.291

exSout 16 17 17 0 1 4.172

exTinp 30 43 39 2 13 12.063

exTout 15 17 16 1 2 2.843

fsl 36 49 46 2 13 598.106

keyb 186 233 212 7 47 86.063

kirkman 711 811 772 23 100 64.560

lion 11 12 12 0 1 2.973

iion9 24 34 30 2 10 10.553

markl 80 85 84 1 5 22.214

master 50020 51074 50512 297 1054 29.664

modulol2 4 11 9 1 7 6.265
opus 85 107 97 4 22 9.651

p21stg 46 61 55 3 15 1383.091

planet 1459 1646 1525 52 187 54.155

pma 342 401 372 10 59 115.791

ricks 1166 1533 1338 129 367 4.108
rpss 1195 1254 1210 12 59 24.627

si 729 863 785 36 134 9.011
sla 15 23 20 1 8 53.244

s298-m 1 1 1 0 0 1.205
s8 12 14 13 1 2 8.937

sand 1748 1999 1806 79 251 6.783

saucier 425 530 462 22 105 3.016

scf spaceout spaceout spaceout spaceout spaceout 3.016

scf-m spaceout spaceout spaceout spaceout spaceout 3.016

slave 1070 1279 1161 42 209 32.244
str 395 397 397 0 2 210.790
styr 438 528 490 17 90 151.965
tlc34stg 61 71 67 2 10 2220.255
tma 128 159 146 5 31 25.615
tr4 318 322 321 1 4 136.262

trainll 26 36 32 2 10 9.699

viterbi 10037 10392 10144 114 355 69.893

17

For comparing ordering I - IV, we summmarize the data into Table 17. The entry "spaceout" means
out of memory, and "> 3600" means stopped after the cpu time exceeds 3600 seconds.

Our results show that Ordering I and II are better in most cases. In somecases like hbgun, dec, and
viterbi, they are substantially better. The large discrepancy in BDD sizes for these cases is due to the
large BDD needed to represent the primary outputs. Interestingly, BDD sizes are smaller when state
variables are not interleaved. Different encodings do affect the BDD sizes of ISFSMs more than those
of CSFSMs; however, the differences are not substantial.

If we normalized the results with respect to Ordering I, we get Table 18.
For functional representations, the results are shown in Table 19. Our results show that even for

CSFSMs, different encodings affect the BDD size considerably for some circuits. For example, the
average size for maincont is 90 with a standard deviation of 12, while the minimum BDD size that the
simulated annealing algorithm found is 43. This also means that there are not many encodings which
would produce small BDDs for this circuit.

The results for ISFSMs are shown in Table 20. We see from this table that, similarly to CSFSMs,
encoding plays an important role in determining the BDD size. For example, the minimumBDD size
for dec is 9212, while the average size is 13090 with a standard deviation of 2017 nodes.

4 Exact Algorithm

Toevaluate the effectiveness ofoursimulated annealing algorithm, we need to model the BDD encoding
problem and provide an exact algorithm that solves it. Since this is a complex problem, we model a
restricted version of the problem, namelythe BDD input encoding problem. The reason for which we are
looking into thisproblem is that it can beshown that the optimum solution ofthe BDD input encoding
problem yields the optimum relational representation of an FSM as long as the state variables are not
interleaved in the ordering. In the section, we provide a formal definition of this problem followed by an
exact algorithm.

4.1 BDD Input Encoding Problem

We define the BDD input encoding problem as follows:
Input:

1. A set of symbolic values, D = {0,1,2,..., |D| - 1), where |D| = 2^ for some s GA/". A symbolic
variable, v, taking values in D.

2. A set of symbolic values, /? = {0,1,2,..., |i?| —1}.

3. A set of functions, F = {/o, /i, /2, •••, where fi.D^R.

4. A set of s binary variables, B = {6a_i,63-2,...,bo}.

Output:
Bijection e : D B' such that the size of the BDD representing e[F) is minimum, where e[F) =

{e(/o),e(/i),...,e(/|F|_i)}, and c(/,) : B' R. We call e an encoding ofv and ofF interchangeably.
We call eopt an encoding e that minimizes the size ofthe BDDs ofe{F), i.e., Copt = min<.{|e(F)|}, where
|e(F)| is the number ofnodes ofthe multi-rooted BDD representing e(F).

In other words, the problem is about finding an encoding of a multi-valued variable v such that the
multi-rooted multi-terminal BDD representing a set of multi-valued functions of v has minimum number
of nodes. Diagramatically, a multi-valued function / of v is represented as a single level multi-way tree.
The root is labeled with v. A mapping /(d) = r is represented by an edge labeled with d going from the
root to a leafnode labeled with r. We call this diagram a single level multi valued tree (SLMVT). For
clarity purposes, the leaf nodes are replaced by their labels in all figures. An example of an SLMVT is
the functions / and g shown in Figure 1.

18

Table 17: Simulated annealing runs for relational representation of ISFSMs.

Name
Min BDD Size Ave BDD Size

I 1 11 1 111 1 IV I 1 11 1 III 1 IV
bbara 81 85 84 87 91 103 92 102
bbgun 6565 7040 10250 10136 6746 7355 10290 10198
bbsse 275 304 428 438 299 342 446 465
bbtas 46 43 37 35 49 49 39 41
beecount 63 62 66 69 67 71 71 78
cf 783 803 1164 1173 853 882 1178 1201
chanstb 235 240 290 290 238 244 291 291
cpab 850 866 1220 1234 884 927 1247 1266
cse 299 355 497 533 319 389 529 575
dec 8213 9636 32499 32482 8550 9716 32528 32521
dkl4x 133 128 155 166 155 162 171 183
dkl6x 316 294 295 307 332 311 310 335
dol2 33 35 35 37 36 42 38 44
donfile 156 177 158 182 166 198 168 202
es 33 33 32 31 35 35 33 33
exlinp 1570 1652 1470 1478 1626 1697 1491 1522
ex2inp 156 177 172 198 171 198 187 220
ex2out 99 102 112 118 108 116 122 133
ex3inp 85 88 91 97 94 102 97 110
ex3out 39 38 36 38 40 39 38 41
ex4inp 198 197 242 241 211 221 254 253
exSinp 82 85 93 98 96 103 104 118
exSout 32 30 36 37 33 31 38 39
ex7inp 89 88 98 106 99 105 106 120
ex7out 30 30 32 32 30 31 32 34
fsl 577 526 561 523 598 559 588 555
keyb 304 374 554 595 324 428 610 685
kirkman 1164 1082 668 661 1205 1155 678 675
lion 22 23 22 22 23 26 25 27
lionS 67 66 67 57 77 82 80 85
markl 190 177 424 420 197 196 436 445
master 77247 78600 229775 229829 78515 80589 229815 229894
modulol2 52 42 52 45 57 54 57 54
opus 128 136 182 184 141 165 195 199
p21stg 5268 7193 5385 6984 5585 7754 5607 7407
planet 2098 2138 3626 3640 2131 2258 3675 3700
pma 667 710 831 821 713 733 846 852
ricks 1344 1352 1443 1438 1453 1680 1449 1447
rpss 3531 3626 9261 9279 3591 3715 9281 9311
si 829 1157 994 1071 885 1242 1028 1101
sla 721 966 1362 1607 780 1047 1421 1688
s298jn 1 1 1 1 1 1 1 1
s8 40 42 42 44 43 49 45 51
sand 3473 3806 5554 5561 3598 4057 5590 5620
saucier 938 1027 2051 2048 993 1090 2073 2090
scf 165369 165825 spaceout spaceout 165754 166314 spaceout spaceout
scf-m 166071 166339 spaceout spaceout 166187 166491 spaceout spaceout
slave 1232 1316 5467 5499 1334 1453 5497 5542
str 1747 2311 2223 2204 1859 2371 2241 2233
styr 805 932 1342 1419 869 956 1417 1499
tlc34stg 559 622 643 729 601 672 678 769
tma 329 308 382 377 357 344 402 407
tr4 647 579 1010 984 676 634 1044 1040
trainl 1 74 70 72 70 83 81 83 86
viterbi 10602 10757 122902 122906 10722 10807 122982 122995

19

Table 18:

Ordering.
Comparison of Simulated Annealing Runs for Incompletely Specified FSMs with Different

Name in-ps-ns-out in-ps-ns-int-out in-out-ps-ns in-out-ps-ns-int
bbara 1.00 1.05 1.04 1.07

bbgun 1.00 1.07 1.56 1.54

bbsse 1.00 1.11 1.56 1.59

bbtas 1.00 0.93 0.80 0.76

beecount 1.00 0.98 1.05 1.10

cf 1.00 1.03 1.49 1.50

dianstb 1.00 1.02 1.23 1.23

cpab 1.00 1.02 1.44 1.45

cse 1.00 1.19 1.66 1.78

dec 1.00 1.17 3.96 3.95

dkl4x 1.00 0.96 1.17 1.25

dkl6x 1.00 0.93 0.93 0.97

dol2 1.00 1.06 1.06 1.12

donfile 1.00 1.13 1.01 1.17
es 1.00 1.00 0.97 0.94

exlinp 1.00 1.05 0.94 0.94

ex2inp 1.00 1.13 1.10 1.27

ex2out 1.00 1.03 1.13 1.19

ex3inp 1.00 1.04 1.07 1.14

exSout 1.00 0.97 0.92 0.97

ex4inp 1.00 0.99 1.22 1.22

exSinp 1.00 1.04 1.13 1.20

exSout 1.00 0.94 1.12 1.16

ex7inp 1.00 0.99 1.10 1.19

ex7out 1.00 1.00 1.07 1.07

fsl 1.00 0.91 0.97 0.91

keyb 1.00 1.23 1.82 1.96

kirkman 1.00 0.93 0.57 0.57

lion 1.00 1.05 1.00 1.00

lionS 1.00 0.99 1.00 0.85

marki 1.00 0.93 2.23 2.21

master 1.00 1.02 2.97 2.98

moduIol2 1.00 0.81 1.00 0.87

opus 1.00 1.06 1.42 1.44

p21stg 1.00 1.37 1.02 1.33

planet 1.00 1.02 1.73 1.73

pma 1.00 1.06 1.25 1.23
ricks 1.00 1.01 1.07 1.07

rpss 1.00 1.03 2.62 2.63
si 1.00 1.40 1.20 1.29

sla 1.00 1.34 1.89 2.23
s298^ 1.00 1.00 1.00 1.00

s8 1.00 1.05 1.05 1.10

sand 1.00 1.10 1.60 1.60

saucier 1.00 1.09 2.19 2.18

scf 1.00 1.00 0.00 0.00

scf-m 1.00 1.00 0.00 0.00
slave 1.00 1.07 4.44 4.46
str 1.00 1.32 1.27 1.26

styr 1.00 1.16 1.67 1.76

tlc34stg 1.00 1.11 1.15 1.30

tma 1.00 0.94 1.16 1.15

tr4 1.00 0.89 1.56 1.52

trainll 1.00 0.95 0.97 0.95

viterbi 1.00 1.01 11.59 11.59

20

Table 19: Simulated annealing runs for functional representation of CSFSMs.

Name Min BDD Size Ave BDD Size Standard Deviation
dklSx 38 39 1

dkl7x 72 79 2
ellen.min 7 15 2

ellen 21 41 2

ex6inp 86 108 8
fisml 25 30 1

fstate 44 77 12

fsync 61 62 0
maincont 43 90 19
mc 16 17 1
ofsync 61 62 0

scud 200 254 19
shiftreg 5 14 2
tav 23 23 0

tbk 391 438 15
tbk_m 199 211 4

virmach 71 80 6

vmecont 365 398 13

pkheader 64 76 4

In this way we model the process of encoding the present state variables of a completely speci
fied finite state machine (CSFSM) when the characteristic function of the CSFSM is represented by a
BDD. We assume that the state variables are not interleaved in the variable ordering. In this respect,
/i(d|) = Tf represents the state transition from the present state d,- to the next state r,- under the proper
input combination that causes this transition. Fssentially, we cut across the HDDs representing the
characteristic functions ofCSFSMs and only look at the present state variables. Therefore, although
the encoded BDDs are actually multi-terminal BDDs (MTBDDs), we still refer to them as BDDs. It is
worth mentioning here that our formulation can also be applied to other BDD encoding problems, like
MDD encoding and BDD re-encoding.

We assume that theBDDs are represented by their true edges. We donotmodel yetthecomplemented
edges.

4.2 Characterization of BDD Node Reductions

Here we outline our strategy to find an optimum encoding. Assume that we have binary decision trees
representing an instance of the BDD input encoding problem. The BDD representing this instance of
the problem is obtained by applying the two BDD reduction rules, i.e..

Rule 1: eliminating nodes with the same then and else children, and
Rule 2: eliminating duplicate isomorphic subgraphs.

We would like tocharacterize the conditions inthe original problem where these rules can be applied.
To apply these BDD reduction rules there must exist some isomorphic subgraphs. This means that there
isa set ofvalues inR where each value isincident tomore than one edge in the SLMVT representing F.
So from F, Z), and R, we can group those edges into sets. Each group represents a possible reduction.
However, there are many isomorphic subgraphs, therefore, applying a reduction to one may interfere
with applying a reduction to the other. We therefore find the sets whose reductions do not interfere
with each other and yield the largest possible total reduction. Once these arefound, we encode each set
in such a way that it occupies a subtree in the BDD representing s{^F).

With this characterization, we explain why encoding 62 is better than encoding ei for the example
in Figure 1.

1. /(2) = /{4) = 0. One node is reduced when 2 is encoded as 000 and 4 as 001.

21

Table 20: Simulated annealing runs for functional representation of ISFSMs.

Name Min BDD Size Ave BDD Size Standard Deviation
bbara 73 84 3

bbgun 3706 4069 388

bbsse 135 173 14

bbtas 17 21 1

beecount 47 54 3
cf 324 446 50

chanstb 76 83 6

cpab 169 278 58

cse 190 221 14

dec 9212 13090 2017

dkl4x 62 71 2

dkl6x 151 167 5

dol2 18 25 2

donfile 111 127 6

es 16 18 1

exlinp 491 569 56

ex2inp 103 122 5

ex2out 61 69 3
ex3inp 52 61 3

exSout 17 18 1

ex4inp 69 101 15

exSinp 41 55 4

exSout 14 16 1

exTinp 45 59 3

ex7out 12 15 1

fsl 699 741 32

keyb 394 483 48

kirkman 403 415 3

lion 10 12 1

lionS 40 49 3

markl 73 94 7

master 3545 4244 387

modulol2 22 32 2

opus 106 137 11

p21stg 8631 9031 317

planet 1374 1452 65

pma 1182 1273 40

ricks 186 246 24

rpss 879 990 159

si 1155 1297 125

sla 940 1075 93

s298_m 1 1 0

s8 44 52 2

sand 2314 2884 328

saucier 412 485 48
scf 68798 84517 22819

scf-m 24748 43165 14430
slave 823 971 90
str 1042 1333 169

styr 710 751 59

tlc34stg 427 479 21

tma 207 251 15

tr4 200 226 9

trainll 42 53 3

viterbi 2431 3006 309

22

2. /(O) = 5(0) = 1 and /(3) = ^(3) = 2. Encoding 0 as 010 and 3 as Oil allows sharing of one node
between / and i.e., the subtree identified by the cube 01-.

3- /(I) = 5(7) = 3 and /(6) = 5f(5) = 4. Encoding 1 as 100, 6 as 101, 7 as 110, and 5 as 111 allows
sharing of one node between / and <7, i.e., the subtree of encoded / identified by 10- or the subtree
of encoded g identified by 11-.

4. /(7) = p(l) = 5 and /(5) = ir(6) = 6. Using the same encoding as in 3 allows sharing of one
node between / and g, i.e., the subtree of encoded / identified by 11- or the subtree of encoded g
identified by 10-.

Equivalently, encoding 62 allows us to apply the two BDD reduction rules, namely, eliminating a node
with same children and eliminating isomorphic subgraphs; while encoding ei does not.

4.2.1 Sibling and Isomorphic Sets

The objective of this section is to identify all cases where Rule 1 and Rule 2 can be applied. For that,
we define two sets, the sibling set and the isomorphic set. Intuitively, we are trying to capture in the
siblingsets the conditions where Rule 1 can be applied, and in the isomorphic sets the conditions where
Rule 2 can be applied. Informally, each element of a sibling set 5 is a 2-tuple (/°,/^) where and

are ordered sets of symbolic values that can be encoded so that they share an isomorphic subgraph
and the isomorphic subgraph is both the then child and the else child of a node (i.e., the only child).
An isomorphic set / is a collection of ordered sets I of symbolic values that can be encoded so that all
ordered sets share an isomorphicsubgraph.

As examples, consider the four SLMVTs shown in Figure 5. There are 8 edges in each of the four
cases shown. All edges not shown are assumed to point to values other than 0 and 1. The variables
needed to encode these cases are 62, 61, and 60 in that order. The binary decision trees representing an
optimum solution for each case are shown in Figure 6. The corresponding BDDs are shown in Figure 7.
We show for these examples and for these optimum encodings the relation of isomorphic subgraphs
versus sibling and isomorphic sets.

1. Case (a): Since /(O) = /(I), there is an encoding (e.g., e(0) = 000, e(l) = 001) such that in
the encoded BDD there is a node (i.e., 112) whose edges point to the same node (and so can be
reduced). This fact is captured by So = {(0/),(l/)}. Similarly for Si, replacing "/(O) = /(I)"
with '7(2) = /(3)".

Since /(O) = /(2) and /(I) = /(3), there isan encoding (e.g., e(0) = 000, e(l) = 001, e(2) = 010,
e(3) = Oil) such that in the encoded BDD there are nodes (i.e., n2 and 113) with isomorphic
subgraphs (and so can be reduced). This fact is captured by /q = {(0/, 1/), (2/,3/)).
Since /(O) = /(2) and /(I) = /(3), there is an encoding (e.g., e(0) = 000, e(l) = 001, e(2) = 010,
e(3) = Oil) such that in the encoded BDD there are nodes (i.e., n2 and na) with isomorphic
subgraphs (and so can be reduced) and a node (i.e., ni) whose edges point to the same node.
This fact is captured by S2 = {(0/>!/)»(2/>3/)}. We would like to point out that although this
constraint also captures the previous constraint, it is used differently. Iq is to capture Rule 2 and
S2 is to capture Rule 1. Both are needed to calculate correctly the number of nodes that can be
reduced by an encoding later.

2. Case (b): Since /(O) = /(I), there is an encoding (e.g., c(0) = 000, c(l) = 001) such that in
the encoded BDD there is a node (i.e., 712) whose edges point to the same node (and so can be
reduced). This fact is captured by 5o = {(0/),(l/)}. Similarly for Si, replacing "/(O) = /(I)"
with "/(2) = /(3)".

Since /(O) = /(I) and /(2) = /(3), there is an encoding (e.g., e(0) = 000, e(l) = 010, e(2) = 001,
e(3) = Oil) such that in the encoded BDD there are nodes (i.e., 712 and 713 of Figure 8) with
isomorphic subgraphs (and so can be reduced). This fact is captured by /q = {(0/,2/), (l/,3/)}.

23

Since /(O) = /(I) and /(2) = /(3), there is an encoding (e.g., e(0) = 000, e(l) = 010, e(2) = 001,
e(3) = Oil) such that in the encoded BDD there are nodes (i.e., n2 and 113 of Figure 8) with
isomorphic subgraphs (andso can be reduced) and a node (i.e., ni of Figure 8) whose edges point
to the samenode. This fact is captured by S2 = {(0/,2/), (l/,3/)}.
For this case, the encoding induced by So and Si can not satisfy the encoding induced by Iq and
^2, and vice versa. This leads to our notion of compatibility below. An encoding that satisfies 5o
and Si is c(0) = 000, e(l) = 001, e(2) = 010, e(3) = Oil and the BDD is shown in Figure 7. An
encoding that satisfies Iq and S2 is e(0) = 000, e(l) = 010, e(2) = 001, e(3) = Oil and the BDD
is shown in Figure 8.

3. Case (c): Since /(O) = jf(0) and /(I) = jf(l), there is an encoding (e.g., e(0) = 000, e(l) = 001)
such that in the encoded BDD there are nodes (i.e., m2 and 712) with isomorphic subgraphs (and
so can be reduced). This fact is captured by /o = {(0/, 1/), (0^, 1^)}.

4. Case (d): Since /(O) = ^^(2) and /(I) = g{Z), there is an encoding (e.g., e(0) = 000, e(l) = 001,
c(2) = 010, e(3) = Oil) such that in the encoded BDD there are nodes (i.e., m2 and 712) with
isomorphic subgraphs (and so can be reduced). This fact is captured by /o = {(0/,1/), (2^,3^)}.

For each case above, there are other sibling and isomorphic sets. We will show how to construct the
complete collection of all sibling and isomorphic sets later.

(a) (b) (c) (d)

Figure 5: Examples of sibling and isomorphic sets.

Formally, sibling and isomorphic sets are defined as follows.

Definition 2 A labeled symbol dj has a symbol d E D and a label f E F. It is the d-edge of the
SLMVT representing f. The following notations are defined for dt: symidt) = d, fn(df) = /, and
val{dj) = /(d).

Definition 3 A symbolic list I is an ordered set (or list) of labeled symbols with no duplicate and all
labeled symbols have thesame function. The k-th element ofI is denoted as Ik. The set ofall symbols of
I is Sym{l) = {sj/7n(/fc) | 0 < < |/| - 1}. The function ofI is Fn{l) = /7i(/o).

Definition 4 An isomorphic set I is a set ofat least two symbolic lists. The j-th element ofI is denoted
as F. I satisfies the following three conditions:

1. The sizes of all symbolic lists of I are the same and they are a power of two, i.e., 3a 6 A/" V/ G
I (|/| = 2«).

2. The k'th elements of all symbolic lists of I have the same value, i.e., 3r/f E R^l € I (valUk) = rjt)
, 0<it< |/|-1.

24

0000 0011 01 01

(a)

(a)

(b) (c) (d)

Figure 6: Binary Decision Trees for an Optimum Encoding.

0 1

(b) (c)

Figure 7: BDDsfor an Optimum Encoding.

25

0 1

(d)

Binary Decision Tree HDD

Figure 8: Alternative Optimum Encoding for Case (b).

3. For any two lists l',l" € I, either for every index k the symbols of the k-th elements of V and I"
are the same or the symbol of no element of V is the same as the symbol of an element of I", i.e.,
V/' € I W € I ({Vfc sym{l'̂) = sym{V^)) V(Vt Vj sym{l() ^ sym{VJ))) , 0< i,j, k < |/'| - 1.

Definitions A sibling set S is an isomorphic set with 2 symbolic lists, F and l^, and satisfies the
following conditions:

1. The symbol ofno element ofl^ is the same as the symbol ofan element ofl^, i.e., ^i'^j (sym(/®) ^
sym{l})),0< i,j < |/°|- 1.

2. The functions of andl^ are the same, i.e., Fn(/°) = Fn{l^).

We will see that for every sibling set there is an equivalent isomorphic set. For an instance of the BDD
input encoding problem, the set of all sibling sets is denoted as S, and the set of all isomorphic sets is
denoted as X.

In the following discussion, the term tree is used to mean the encoded binary tree representing a
function.

Definition 6 Given an encoding e and a set of symbols D' C D, the tree spanned by the codes of the
symbols in D' is the tree T whose root is the least common ancestor of the terminal nodes of the codes
of the symbols in D'. Furthermore, every leaf ofT is the code of a symbol in W. We say also that D'
spans T (denoted byTd')•

For example, given the problem in Figure 1 and the encoding 62 as in page 2, the codes for the
symbols 0 and 3 span the tree rooted at T in Figure 4.

Proposition 1 Given a sibling set S = {l^J^}, there is an encoding e such that the codes of the symbols
in span exactly a tree whose root has a left subtree spannedexactly by the symbols in and a right
subtree spanned exactly by the symbols in l^.

26

Proof; Let the size of both and be 2°. Let b{i) denote the a-bit binary number representing
integer i. Then symbols in and 0 are encoded as e(sym(/?)) = yOb{i), and e(sym(/,-)) = yib{i),
0 ^ ^ ~ 1> where y is an arbitrary 0-1 string ofs —(a-I-1) bits. This encoding exists always because
the symbols of and are by definition disjoint. With this encoding, the proposition follows. •

Proposition 2 Given an isomorphic set I = < * < |/| —1, there is an encoding e such that
V/* GI the symbols in I* span exactly a subtree Ti% and all 7/iS are isomorphic.

Proof: Let the size of all /*s be 2". Let b{i) denote the a-bit binary number representing integer i.
Then the symbols in all 1*8 are encoded ase(sym(/})) = 0 < t < |/| - 1, 0 < j < |/'| - 1, where y,-
is a string ofs —a bits and y,- = y,/ if and only ifI* = V'. With this encoding, the proposition follows. •

To illustrate these propositions, we look back to the example in Figure 1. The S and I of this
example are:

1. So = {(2/), (4/)}.

2. /„ = {(0/,3/).(0„3s)}, A = {(3/,0/),(3„0,)}.

3. I, = {(1/.6/), (7„5,)}, h = {(6;, 1/), (5„7,)}.

4. A = {(7/.5/),(l„6,)}, h = {(5/,7/),(6,.l,)}.
For now, we focus only on So, lo, I2, and I4. Each Si or justifies why encoding 62 is better than
encoding cj in this example. In other words, So, /o, I2, and I4 contain requirements to find an optimum
encoding. Following the proof of the above propositions. So states that 2 and 4 should be encoded such
that they differ only in 60 to span a subtree and save a node, /q states that 0 and 3 should be encoded
such that they differ only in 60 for symbols in Iq to span a subtree andshare a node. I2 states not only
that 1 and 6 should be encoded such that they differ only in 60 >andsimilarly for 7 and 5, but also that
the value of 60 of 1should be the same as the value of 60 of 7 and the value of 60 of 6 should be the same
as the value of 60 of 5 for symbols in I2 to span isomorphic subtrees and share a node. I4 essentially
states the same requirements as I2. All of these requirements are satisfied by encoding 62, but not by
ei.

4.2.2 Finding S and 1

Given an instance ofthe BDD input encoding problem, we show an algorithm that finds the sets S and
I.

Algorithm 1 finds for each subset R' of R, the set of all possible symbolic lists whose values are
exactly R'. For example, for the SLMVT ofFigure 1, the algorithm finds the following:

Values Symbolic Lists

0 {2/}.{4;},{2;,4;}
1 {0/},{0,}
2 {3/},{3,}

Algorithm 2 uses shorter symbolic lists toconstruct larger lists. On the same example, the algorithm
generates:

0.1 {0/,2y},{0/,4/},{0/,2/,4y}
0.2 {2/,3/},{3y,4,},{2/,3/.4/}

0,1,2 {0/,2;,3/},{0;,3/,4/},{0/,2y,3;,4/}

Algorithm 3 then reads all the symbolic lists and generate all possible combinations of them to
compute S and 2.

27

5 Algorithm to Generate S and X

Algorithm 1 (Generating Symbolic Lists)

generateLists(F, D, A)
Input: An instance of the BDD input encoding problem, F,D, R.
Output: The set of all symbolic lists C of F, O, R.

£ = 0
for r = 1 to |ii| do

foreach / 6 F do
L = {d\f{d) = r}
C'[r] = {all subsets of L)
£<-£U£'[r]

end for

end for

fe = 0

while (£' ^ 0) do
for t = 1 to |£'| —1 do

for j = t + 1 to |£'| do
£"[^] = generateListsFro'niPair[C'\%\,C'\j])
C<^CuC"[k]

end for

end for

C = C"

end while

Algorithm 2 (Generating Symbolic Lists from Shorter Symbolic Lists)

generateListsIVomPair(£i >£2)
Input: Two sets of symbolic lists: £1, £2.
Output: The set £„ of symbolic lists such that each symbolic list is the concatenation

of a symbolic list in C\ and another symbolic list in £2.
Comment: append{VJ") takes two symbolic lists I' and I" as argumentsand returns a

list lexicographically ordered which is a concatenation of I' and /" with duplicates
removed if Fn{l') = Fn{l"). Otherwise, it returns an empty set.

£n=0
for t = 1 to |£i I do

for j = 1 to |£2| do
/ = appen(f(£i[t],£2[;])
if / is a symbolic list then

£ <-£U/

end if

end for

end for

Algorithm 3 (Generating S and X)

generateSets(F, D, R)

28

Input; An instance of the BDD input encoding problem, F^DyR.
Output: The sets S and X.
Comment: permute(5) takes a set of sibling sets or a set of isomorphic sets and appends

to it all permutations of each sibling or isomorphicset.

C = generateLists{F, D, R)
for »= 1 to |£| do

L = £[<]
for j = \ to \L\ do

/of(W)
if all lists in V form a sibling set 5, then

5<-5u5

else if there is a permutation of lists in L' such
that they form a sibling set 5, then

S i.— U 5

end if

if all lists in V form an isomorphic set /, then
2:<-iu/

else if there is a permutation of lists in V such
that they form an isomorphic set 7, then

end if

end for

end for

end for

permute[S)
permute{l)

Having computed S and X, we can state the following theorem.

Theorem 5.1 Using only S and X, an optimum encoding Copt can be obtained.

Proof:

Let T betheforest ofbinary decision trees representing eopt {F). To get from T the BDD representing
Copt{F), the BDD reduction rules, Rule 1and Rule 2, are applied. It suffices to prove that any reduction
can be found by using only S and X. We divide the proof into two parts, according to whether Rule 1
or Rule 2 are applied:

1. Applying Rule 1: Consider part of T in Figure 9. Let ®,* be a node with label 6,-. Assume that
we can apply Rule 1 at ®,-, then then{xi) is isomorphic with else{xi). Let an arbitrary path from
a function / in eopt{F) to Xi be pi. Also let tk be the path from then{xi)/else{xi) to leaf v*,
0< Ar < m-1, where m is the number ofleaves in the subtree rooted at then{xi)/else{xi). Define
symbolic lists

M% —(do>dj,..., dfn—1),

where sym{dk) = e7p\(p,Mjk), fn{dk) = /, val{dk) = Vk, and

M! = {d'oyd\y...,d'^_,),

where sym(di) = /n(djt) = /, t;a/(dj;) = Vk-
Then, we have:

29

foreach X' of f ' .') combinations of L do

(a) \Mi\ and |M/| are equal and are powers of two,

(b) For any tk, f(pibitk) = fipibitk) = Vk-

S = {Mi, Ml) is a sibling set because:

• Property (a) is exactly condition 1 of Definition 4.

• Property (b) satisfies condition 2 of Definition 4 because all k-th elements of |Af, | and |Af/|
have the same value.

• Property (b) satisfies condition 3 of Definition 4 and condition 1 of Definition 5 because all
elements of \Mi\ and \M-\ are different.

• By definition, both |M,| and |Af/| contain symbolsfrom the samefunction; therefore condition
2 of Definition 5 is satisfied.

Moreover, generateLists{F, D, R) generates both \Mi\ and |Af/|, and since 5 is a sibling set,
generateSets{F,D, R) generates S. We will show later that an encoding that takes advantage of
the reduction implied by S can be found.

2. Applying Rule 2: Consider the part of T in Figure 10. Let a:,- and Xj be two nodes in T with
labels bi. Without loss ofgenerality, assume that we can apply Rule 2 at then{xi) and then{xj),
then then(xi) is isomorphic with ihen(xj) in the HDD representing eopt{F). Let pi and pj be two
arbitrary paths in T from function /,• to x,- and function fj to Xj, respectively. Also let tk be the
path from then{xi)lthen{xj) to leaf Vfe,0<Ar<m—1, where m is the number of leaves in the
subtree rooted at ihen{xi)/then{xj). Define symbolic lists

Mi (do jdi, . . ., drn—l)i

where sym{dk) = e~^t{pibitk), fn{dk) = val{dk) = Vk, and

Mj = {d',,d\,...,d'^_,),

where sym{d'̂) = /n(d;) = /j, val{d'̂) = Vk.
Then, we have:

(a) \Mi\ and \Mj\ are equal and are powers of two,

(b) For any tk, Mpibitk) = fj(Pjbitk) = Vfe.

I = {Mi,Mj} is an isomorphicset because:

• Property (a) is exactly condition 1 of Definition 4.

• Property (b) satisfies condition 2 of Definition 4 because all k-th elements of |M,| and \M-\
have the same value.

• If p,- = Pj, then all k-th symbols of M,- and Sym{Mj) are the same, and if pi ^ pj, then no
element ofSym{Mi) is the sameas any element of Sym{Mj), and this satisfies condition 3 of
Definition 4.

Moreover, generateLists{F, D, R) generates both |Af,| and |M/|, and since I is an isomorphic set,
generateSets{F,D, i2) generates I. We will show later that an encoding that takes advantage of
the reduction implied by I can be found. If there are more than two nodes where we can apply
Rule 2, the set I would simply contain more elements.

30

Note that cases 1 and 2 are sufficient for this proof. All other reductions are just a combinationof cases
1 and 2. For example, consider Figure 11,by case 2, there is an / = /^,... where each
list r, r = 0,1,..., |Qi|—1,iQil contains the symbols encoded by the minterms ofpathspassing through
then{xr) and ending respectively, in the leaves ofsubtrees To, 7i,..., Tq^_i, 7]q |̂ = 7}. By case 1, there
exists an S for esw:h node in the subtree Qi, where Qi is the subtree rooted at then{xi) and all leaves
have labels hj

\ \

Figure 9: Binary Tree for Case 1 of the Proof of Theorem 5.1.

Theorem 5.1 says that S and X contain all the information that is needed to find an optimum
encoding. The question now is to find a subset ofS and Xthat corresponds to an optimum encoding.
This is the topic of the next section.

5.1 Finding an Optimal Encoding

From here on, the number of nodes that can be reduced is with respect to the complete binary trees
that represent the encoded F. When not specified, a set means either a sibling setor an isomorphic set.

5.1.1 Compatibility of Sibling and Isomorphic Sets

Sibling sets and isomorphic sets specify that iftheir symbols are encoded tosatisfy thereductions implied,
then Rule 1 and Rule 2 can be applied to merge isomorphic subgraphs and reduce nodes. Hence, they
implicitly specify the number ofnodes that can be reduced, which we refer to as gains.

Definition 7 The gain ofa sibling setS, denoted asgain[S), is equal to 1. The gain ofan isomorphic
set I, denoted as gain{I) is equal to (|/| —1) x (|/®| —1), where € I.

S and X contain the information for all possible reductions. However, not all sets may be selected
together. For example, the sibling set 5 = {(l/),(2/)} and isomorphic set I = {(2/,3/), (2g,3g)} of

31

Figure 10: Binary Tree for Case 2 of the Proof of Theorem 5.1.

Figure 11: BinaryTree for Combinationof Cases 1 and 2 of the Proof of Theorem 5.1.

32

Figure 12 can not beselected together because S says that symbols 1 and 2 should span exactly a subtree
while I says that symbols 2 and 3 should span ex2u:tly a subtree. Hence, an encoding can only benefit
from eitherS or I. We therefore need to identify which sets can be selected together and which can not.
For that we define the notion of compatibility.

0 1 1 2 3 4 1 2

Figure 12: Exampleof IncompatibleSets

Definition 8 A collection ofsetsS andXare compatible if there is an encoding e such that all reductions
implied by the sets 5 € and / GI can be applied to the complete binary decision tree yielded by e.

Definition 9 Symbolic lists VandI" are compatible, denoted as I' I", if one or more of the following
conditions are true:

1. Sym{V) nSym{l") = 0 , i.e., the set of symbols ofI' does not intersect the set ofsymbols ofI".

2. Saehf y/k sym{li) = , 0 < ir < |/'| - 1, |r| > (a + 1) x |/'|, i.e., the symbols of I'
match exactly the symbols of I" in the same order starting at position a x |/'|.

5. 3a e at Vfe sym{l';i) = ; 0 < ir < |/"| - 1, |/'| > (a + 1) x |/"|, i.e., the symbols ofI"
match exactly the symbols ofVin thesame order startingat position a x |/"|.

Definition 9 says that two lists are compatible if their symbols do not intersect or the symbols of one
list is a subset of the symbols of the other starting at a power of 2 position.

Definition 10 Sibling list l^ ofsibling setS is the symbolic list constructed by concatenating and l^
ofS.

Theorem 5.2 If I' and I" are compatible, then there exists an encoding e such that the symbols of V
and I" span exactly a subtree respectively.

Proof; V I" implies one of the following:

1. Every symbol ofI' isdifferent from any symbol ofI". In this case, there certainly exists anencoding
such that the theorem is true.

2. The symbols of I' match exactly the symbols of I" starting at position a x |/'| in the same order
and |/"| > (a+ 1) x |/'|. In this case we encode the symbols of/' and I" such that the symbols of
V span exactly a tree and the symbols of/' span exactly a subtree ofthe tree formed by thecodes
of the symbols of I".

3. This case is the dual of case 2.

33

Theorem 5.3 If a set L of symbolic lists are pair-wise compatible, then there exists an encoding e such
that the symbols of every symbolic list in L span exactly a subtree.

Proof: Since two symbolic lists are compatible if and only if their symbols do not overlap or the
symbolsof one are a sublist of those of the other starting at a power of 2 position, there is a notion of
maximality in L. Sorting L in non-increasing order and applying the encoding procedure in the Proof
of Theorem 5.2 produces the results satisfying the claim of this theorem. •

Theorem 5.4 Sibling sets S' andS" are compatible if l^' is compatible with l^".

Proof: By Theorem 5.2, there exists an encoding e such that the symbols ofl^' (consequently thesym
bols of$') and the symbols ofl^ (consequently the symbols ofS) span exactly a subtree respectively.
It follows that encoding e allows the reductions implied by S' and S" to be applied. •

Theorem 5.5 Sibling set S and isomorphic set I are compatible if l^ is compatible with every list of I.

Proof: For any I', I" S /, either the Ir-th symbols of I' and I" are the same or all symbols of and I"
are different. In the former case, we encode the symbolsof either or /" to span exactly a tree. In the
latter case, weencode the symbolsof /' to span a tree, and the symbolsof I" to span another tree. Then
by Theorem 5.2, there exists an encoding e such that symbols of l^ and f*,0 < i < |/| —1, span exactly
a subtree respectively. It follows that encoding e allows the reductions implied by both S and I to be
applied. •

Theorem 5.6 Isomorphic sets V and I" are compatible if every list /' € I' is compatible with every list
I" € I".

Proof: This proof is the same as the proof of Theorem 5.5 except that one argues on both 7' and
I"- m

A set of compatible sets is called a compatible. The compatibility of two sets simply means that the
reduction induced by one set does not prevent that of the other. For example, it can be seen that 5o,
7oj 72, and I4 of Figure 1 are mutually compatible, and therefore form a compatible.

5.1.2 Encoding Sibling and Isomorphic Sets

We begin this section by stating the following corollary which follows immediatelyfrom the theorems in
the previous section.

Corollary 5.1 Given a compatible C, there exists an encoding e such that the reductions implied by all
its elements can be applied.

Definition 11 Let X' be either a sibling or an isomorphic set and X" another sibling or isomorphic
set. Then X' is contained in X" if^V 6 X' 31" E X" (/' C f") and X' is completely contained in X" if
31" E X" V/' € X' (/' C I") .

For example, the set Iq = {(0/, 1/), (0^, l^)} is contained, but not completely contained in 7i =
{(0/, l/,2/,3/),(0g,, lj„2g,35)}; while So = {(0/),(l/)) is completely contained in 7i. This definition
is used for gain calculation and encoding of a compatible. The motivation of this definition is that the
reduction implied by Iq iscovered by 7i, but the reduction implied by So is not. The gainofa compatible
that contains only So,Jo, and I\ is equal to the sum of the gainsof So and 7i only.

Algorithm 4 computes the codes of a compatible. The idea is that starting with a binary tree, we
assign codes to the symbols ofsymbolic lists by non-increasing length of the symbolic lists. The symbols
of a symbolic list are assigned to occupy the largest subtree of codes still available.

34

Algorithm 4 (Encoding a Compatible)

encode(C, D)
Input: A compatible C, a set of symbols D.
Output: Codes for D stored in 2-dimensional array code.
Comment: reverseBitQ takes an integer argument and reverses all its bits.

Cij denotes the j-th element of the «-th list of c.
order is the array of ordered codes, e.g. 0000,1000,0100,1100,0010,1010,..
This array recursively partitions all the codes into two equal partitions and
orders them in non-increasing size.

/* Initialize codes */

for d = 0 to |D| - 1 do
for t = 0 to s — 1 do

code{d\[i] —

/* Initialize orders */
for t = 0 to |D| —1 do

order[i] = reverseBit{i)

/* Get top level sets eind sort them in non-increasing cube size ♦/

Top = {c Ic GC and no d EC contains c)
fore2u:h c E Top do

if c is a sibling set
cubeSize{c) = 2 x |/®| of c

else

cubeSize{c) = |/°| of c
Tiorted = sort T in non-increasing cubeSize

/* Encode sorted top level sets */
foreach c E Taorud do

if (c is a sibling set and code[co,o][0] = -') then
while (code[or(ier[y]][0] = '-') do

i = j + 1
for z = 0 to |co| - 1 do

code[sym{cQyi)] = order\ji\ -j- i
for i = 0 to |ci| —1 do

code[sym{ci, i)] = order[}]+ |co| + i
else

for t = 0 to |c| - 1 do
if (code[ci,o][0] = -') then

while {code[order[j]][0] = do
j = j+l

foi k = 0 to |cf| —1 do
code[sym{ci^k)] = orderU] + k

/* Encode remaining codes */
for d = 0 to \D\ —1 do

if code[d] = then
while {code[order[j]][0] = '-') do

i = i + 1

35

code{d[= order [7]
return code

5.1.3 Gain of a Compatible

Using Algorithm 4, an encoding that allows the reductions implied by all siblingand isomorphic sets of
a compatible C can be found. We denote the encoding found by Algorithm 4 by eaig{C). Since there
may exist many compatiblesfor an instance of the BDD input encoding problem, we would like to find
a compatible implying the largest reduction. Hence, we need to calculate the number of nodes that are
reduced by a compatible. We call this quantity the gain of a compatible.

Definition 12 The gain ofa compatible C is equal to the difference in the number of nodes of the binary
decision trees representing F and the number ofnodes of the BDDs representing F encoded by eaig{C).

With this definition, the following theorem can be stated.

Theorem 5.7 A compatible of maximum gain yields an optimal encoding.

Proof; Suppose that the theorem is not true, then either one of the following must be true:

1. Thereexists a better encoding, but nocompatible captures it. A better encoding in this case means
that more reductions than those implied by any compatible can be applied. But by Theorem 5.1,
we know that every reduction is modeled by either a siblingor an isomorphic set, and by definition
of compatibility, reductions implied by two incompatible sets can not be applied together. Hence,
all optimal encodings must be yielded by compatibles.

2. There exists another compatible with a lower gain that yields BDDs with fewer number of nodes.
This is not possible, because by Definition 12,compatibles with larger gains yield smaller BDDs.

•

The task is then to find a compatible with the largest gain. Unlike the example in Figure 1, where
the gain of the compatible formed by So, Jo, /2> and I4 is simply the sum of the individual gains of its
elements, the gain ofan arbitrary compatible is more complicated to calculate without actually building
the BDDs. If we apply a reduction rule induced by a set, then this reduction causes a merging of two
isomorphic subgraphs. For these two subgraphs, there may exist two identical reductions within them.
The gain of these two reductions should only be counted once. An example of this kind is shown in
Figure 13. The following sibling and isomorphic sets form a compatible:

5o = {(0/),(l/)}
= {(0,).(lp)}

lo = {(0/,l/).(0^,y}
h = {(2/, 3;), (2^, 3^)}
I2 — {(0/> l/>2/, 3/), (Op, Ij, 2j, 3^)}

The gain of this compatible is not the sum of the gains of its elements because the reductions implied
by Iq and Ii and one of the reductions implied by So and Si are subsumed by the reduction implied by
h- Then the gain of this compatible is equal to gain{l2) + gain{So) = 3+1 = 4.

The basic idea is to find the sets with largest lists, calculate their gains, remove all gains of lists
that are counted more than once and remove all sets that are subsumed by other sets. The complete
algorithm is listed in Algorithm 5.

Algorithm 5 (Gain Calculation)

Gain(C)

36

MDDs

Binary Decision Trees

1 2 3 4 5 6

HDDs

Figure 13: Gain Calculation Example

37

7 8 9 10

Input: A compatible C
Output: The gain of C

if C = 0 then
return 0

end if

gain = 0

/* Get top level sets */
Top = {c Ic € C and no d 6 C contains c}
T = {/ I/ € Top and I is an isomorphic set}

^ contains isomorphic sets whose symbolic lists sure not subsets
of any symbolic list of any other isomorphic sets. J' contains
isomorphic sets whose symbolic lists are subsets of some symbolic
lists of some other isomorphic sets. Symbolic lists that are subsets
of other symbolic lists are removed from J' ♦/

J = </i
J' = 0
foreach 7 € T do

found = FALSE

foreach € T do
I' = I

if 3/ € € 7""® Sym{l) C 5ym(/''"') then
V = T\{/}
found = TRUE

if found = TRUE then

j' = j'yj{r}
else

J = JU{7}

/* Add gains contributed by S ♦/

= {S IiS 6 Top and 5 is a sibling set}
for each 5 6 5 do

gain = gain + gain[S)
end for

/* Add gains contributed by J' */
for each I ^ J' do

gain = gain + gain[I)
end for

/» Recursively add gains contributed by J ♦/

for each I ^ J do
Cj = {c Ic GC,V/ € c Sym{l) C Sym{l^),l^ is the 0-th list of 7}
gain = gain Gain(Ta)

end for

return gain

Theorem 5.8 Given a compatible C, GainfC) computes the gain of C.

38

Proof: This is an inductive proof. At step i we have a set Cj € C ofsibling sets 3% and isomorphic
sets I,-. Si and I,- are sets that are contained completely in 5,_i, 5,-2, ...,So and ... ,Io and
not contained in any other sets in C. Atstep t, we compute the total gain gi ofQ (i.e., •,^o
and ... ,Io). Let Ji be the set ofisomorphic sets ofI,- that do not have any symbolic lists that
are subsets ofany symbolic lists ofany isomorphic sets ofI,-. Let Jf be the set difference ofI,- and Ji,
with thesymbolic lists ofisomorphic sets that aresubsets ofthose of isomorphic sets in removed. To
illustrate what Ji and J- represent, we look at the binary decision trees for functions /o,/i, and /2 in
Figure 14. In this figure, Ta and T4 are isomorphic and To,Ti, and T2 are isomorphic. Let T- denote
the symbolic list corresponding to the symbols whose codes are represented by subtree 7<. Algorithm 3
generates isomorphic sets Iq = and h = {r^,r(,TO among other sets. For this example, Ji
will contain Iq = {73,74} and J^ will contain /J = When we apply the BDD reduction rules to
this example, the isomorphic subgraphs associated with eawdi isomorphic set in J! will be removed by
Rule 2. Hence ifVis the t-th symbolic list of an 7e JI, its gain needs to be updated to |/| x (|/°| - 1).

• Case X- 0. 50 issimply equal to the total gain of5o, Jb, and Jb'. which iswhat Gain(C) computes
if we do not allow its recursion.

• Case i = k. Assume that Gain(C) computes if we allow the recursion k times.

• Case i = k Since the gain gk implies the merging ofisomorphic subgraphs into one subgraph
at recursion k, the additional gain going from step k to step A: + 1 is the reduction applied to any
single isomorphic subgraph. It suffices to consider only the first symbolic list ofevery isomorphic
set in Jk. The reason is that the isomorphic subgraphs corresponding to the isomorphic sets of Jj^
form a subgraph

Figure 14: Example for Proving Theorem 5.8

39

5.2 Maximal Compatibles

Havingfound all sibling and isomorphic sets, the next task is to find a maximumgain compatible. As
shown in the previous section, the gain of a compatible is not proportionalto the size of the compatible.
In other words, the gain of a compatible may be smaller than the gain of another compatible which
contains fewer sets. Luckily, we do not have to enumerate all compatibles to find a maximum gain
compatible. A maximal compatible, i.e., a compatible where no set can be added while still maintaining
compatibility, alwayshas a larger or the same gain as any proper subset of the compatible. This means
that we only need to find allmaximal compatibles. A maximumgaincompatible isa maximal compatible
that has the largest gain among all maximal compatibles.

5.2.1 2-CNF SAT Formulation

We find all maximal compatibles by first building a compatibility graph. In the following definition, x
denotes either a sibling set or an isomorphic set.

Definition 13 A compatibility graph G = (V, E) is a labeled undirected graph defined on an instance P
of the BDD input encoding problem. There is a vertex x for each set x of P. No other vertices exist.
There is an edge e = {xi,X2), if and only if xi and X2 are compatible.

As a consequence of this definition, a compatible of P is a clique in G.
As mentioned above, we need to enumerate all maximal compatibles of P and calculate their gains.

Enumerating all maximal compatibles corresponds to finding all maximal cliques of G. The technique
we use to find all maximal cliques in G is by first formulating the problem as a 2-CNF SAT formula
<f> and then finding satisfying truth assignments of The formula <f> is created as follows: for each
unconnected pairofvertices, xi and X2, we create a clause (xT Vx^). A satisfying truth assignment to <i>
is a set of vertices that do not form a clique. Hence a cube of ^ is also a set of vertices that do not form
a clique. Since ^ is a unate function, a prime implicant of <f) contains the minimum number of vertices
that do not form a clique. Then theset ofvertices that are missing from a prime implicant corresponds
to a maximal clique.

In summary, our procedure to find all maximal cliques of G is as follows:

• Formulate the problem into a 2-CNF formula

• Pass ^ to a program, which we call a CNFexpander, that takes a unate2-CNF formula and outputs
the list of all its prime implicants.

• For each prime implicant, the variables that do not appear in it form a maximal clique.

G 1

Figure 15: Maximal Clique Problem Example.

For example, consider the graph G\ in Figure 15. The 2-CNFformula <j>\ is

01 = (a Vd)(a Ve)(6Vc)(c Ve).

40

where clause_corresponds to a pair of unconnected vertices. The prime implicants of <f>i are
ac^abe^bde, and cde. The maximal cliques of Gi are bde (corresponding to oc), cd (corresponding
to a6e, ac (corresponding to 6de), and ab (corresponding to cde).

5.2.2 CNF Expander

The CNF expander used here is the one developed by [Vil95]. We explain briefly here how the algorithm
works.

The algorithm first simplifies clauses with a common literal, say a, into a single clause with two
terms, a and the concatenation of other literals in the original clauses. After all such clauses have
been processed, the reduced formula is expanded by multiplying out two clauses at a time. After each
multiphcation, a single cube containment operation is performed to eliminate non-prime cubes. After
all multiplications are done, the result is a list of all prime implicants of the formula. The following
example shows how the algorithmexpands the formulaof Figure 15:

= (a V^(a V^(6 Vc)(c Vc)
= (a Vck) (c Vbe)

<f>i = 00 + abe + bde + cde

Although this algorithmis linear in the number of primeimplicants, the numberof clauses that need
to be created for a graph with n vertices is proportional to n^. If n is large and the graph issparse, this
number can bevery big. We can reduce the amount ofmemory that the algorithm needs by partitioning
the graph intomultiple subgraphs. The idea is to invoke the CNF expander k times. A subgraph ofsize
n,- is passed to the i-th invocation, where each nf is much smaller than n if the graph is sparse. Then
the sum of the squares of all these n,- will be much smaller than n^.

®—(D

© ©—@

G 11 G 12 G 13

Figure 16: Partitioned Graph for Maximal Clique Problem Example.

Gien a graph G, the CNF expander enhanced by partitioning is as follows:

1. Initialize the set of all prime implicant candidates P to be an empty set. A prime implicant
candidate is an implicant that is either a prime implicant or is covered by a prime implicant ofG.

2. Choose a subgraph Gi of G which consists of a smallest degree vertex v and all vertices that are
connected to v.

Call the CNF expander with G,- as the input.

Perform the logic operation AND of all prime implicants of Gi with the complements of the
vertices ofthe original graph G that are not in Gi and include them in P. This step is to mapthe
boolean space ofGi into that of the original problem. Themapped terms are the candidate prime
implicants.

41

5. Remove v and all edges that are incident at v from G.

6. If there is more than 1 vertex left, go to step 2.

7. Perform a single cube containment operation on P.

8. Return P.

It is easy to see that P contains all the prime implicants of G at the end of the algorithm.
We illustrate this algorithm on the graph Gi in Figure 15. We refer to the subgraphs in Figure 16

as we illustrate this example. By choosing a as the smallest degree vertex, the first subgraph we pass
to the CNF expander is Gn, which consists a, 6 and c. The prime implicants of Gn are 6 and c.
The candidate prime implicants are bde and cde. We then remove vertex o and all its edges from G\.
The smallest degree vertex of the new Gi is c. Since a has been removed, the only neighbor of c is d.
Then the next subgraph G12 consists of only c and d. Since G12 is a complete graph, the only prime
implicant of G12 is 1. The only candidate prime implicant of G12 is therefore abe. The only subgraph
left after removing c and its edge is G13. Since G13 is also a complete graph, the onlyprimeimplicant
is also 1 and^he candidate prime implicant is oc. Altogether, the set of all candidate prime implicants
is {6de, cde, a6e,oc}, which is also the set of prime implicants of Gi.

As a comparison, the CNF expander without partitioning invokes the CNF expander only once, but
with 4 clauses for Gi; whereas the CNF expander with partitioning invokes the CNF expander 3 times,
but with a total of 1 clause. Also, the exact algorithm without permute calls (which will be explained
later) took 165 seconds and 350 seconds of CPU time to find the optimum solutions for the circuits
ellen and shiftreg4 respectively using the CNF expander with partitioning. Without partitioning, the
executions were timed out after some hours of elapsed time.

5.3 Experimental Results

The experiments were performed on a DEC AlphaServer 8400 5/300 with 2Gb of memory on circuits
shown in Table 21. Column 2 of this table lists the number of distinct state transitions regardless of
the primary input combinations. Note that shiftregS is a 3-bit shift register and shiftreg4 is a 4-bit shift
register. Column 3 lists the size of the domain or |D|.

Beside the exact algorithm, an experiment with a version of the "exact" algorithm, where the two
permuteQ calls were removed, was also done. For comparison purposes, the results of both versions
of the exact algorithm and the simulated annealing runs are shown in Table 22. CPU times are also
included in this table. Circuits whose executions were timed out after one hour of CPU time are not
listed. Except for ellen and shiftreg4, the simulated annealing algorithm finds the optimum solutions.

6 Conclusions

We have presented a simulated annealing algorithm which finds good solutions to the problem of en
coding the present state variables of a finite state machine such that its BDD representation has the
minimum number of nodes. We applied the simulated annealing algorithm to both the functional and
the relational BDD representation of an FSM. We carried forth a systematic set of experiments with
simulated annealing, to study how encoding affects the BDD size of finite state machinesand we are the
first to report such complete data.

We have also presented an exact solution to the BDD input encoding problem. Our exact algorithm
characterizes the two BDD reduction rules as combinatorial sets and finds encodable compatible sets
with maximum gain to produce the optimum encoding. The simulated annealing algorithm runs much
faster than the exact algorithm and gives close-to-optimum results, when the latter are known.

42

Table 21: Completely Specified FSMs.

Name Number of FVinctions Domain Size

dklSx 7 4

dkl7x 4 8

ellen 2 16

elien.min 2 8

ex6inp 17 8

{state 19 8

£sync 5 4

maincont 5 16

mc 6 4

ofsync 5 4

pkheader 3 16

scud 48 8

8hiftreg4 2 16

shiftregS 2 8

tav 1 4

tbk 26 32

tbk_m 20 16

virmach 34 4

vmecont 19 32

Table 22: BDD Size for Completely Specified FSMs for Simulated Annealing and the Exact Algorithm

Name

Number of BDD Nodes CPU Time

SA

Exact

w/ permute
Exact

w/o permute SA

Exact

w/ permute
Exact

w/o permute
dklSx 19 19 19 11.542 0.175 0.148

dkl7x 41 41 41 19.673 19.102 4.398
ellen 49 spaceout 46 15.522 spaceout 165.489

elien.min 21 21 21 4.475 5.129 0.077
fsync 24 24 24 13.122 0.017 0.011
mc 20 20 20 2.704 0.237 0.094
ofsync 24 24 24 13.119 0.019 0.012
shiftreg4 47 spaceout 45 12.574 spaceout 350.147

shiftreg 21 21 21 3.437 4.987 0.074
tav 9 9 9 76.352 0.000 0.002

43

References

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE TYansac-
tions on Computers^ C(35):677-691, 1986.

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3), September 1992.

[CQC95] G. Cabodi, S. Quer, and P. Camurati. Transforming boolean relations by symbolic encoding.
In P. Camurati and P. Eveking, editors, Proceedings of CHARME *95, Correct Hardware
Design and Verification Conference, volume 987 ofLNCS, pages 161-170. Springer Verlag,
October 1995.

[LMSSV95] L. Lavagno, P. McGeer, A. Saldanha, and A.L. Sangiovanni-Vincentelli. Timed Shannon
Circuits: A Power-Efficient Design Style and Synthes is Tool. In Proceedings of the 32"'
Design Automation Conference, pages 254-260, June 1995.

[MT96a] Ch. Meinel and T. Theobald. Local encoding transformations for optimizing OBDD-
representations of finite state machines. In Proceedings of the International Conference
on Formal Methods in Computer-Aided Design, pages 404-418,1996.

[MT96b] Ch. Meinel and T. Theobald. State enco'dings and OBDD-sizes. Technical Report 96-04,
Universitat Trier, 1996.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proceedings
of the International Conference on Computer-Aided Design, pages 42-47, 1993.

[Vil95] T. Villa. Encoding problems in logic synthesis. Technical report, UCB/ERL M95/41, 1995.

44

	Copyright notice 1997
	ERL-97-22

