

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ROBUST TIMED AUTOMATA

by

Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan

Memorandum No. UCB/ERL M97/18

6 March 1997

ROBUST TIMED AUTOMATA

by

Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan

Memorandum No. UCB/ERL M97/18

6 March 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Robust Timed Automata*'**

Vineet Gupta^ Thomas A. Henzinger^ Radha Jagadeesan^

^ Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304;
vguptaCpzurc .xerox, com

^ EECS Department, University of California, Berkeley, CA94720;
tahCeecs. berkeley.edu

^ Mathematical Sciences Department, Loyola Univ.-Lake Shore Campus, Chicago, IL
60626; radhaOmath. luc. edu

Abstract. We define robust timed automatOf which are timed automata
that accept all trajectories "robustly": if a robust timed automaton ac
cepts a trajectory, then it must accept neighboring trajectories also; and
if a robust timed automaton rejects a trajectory, then it must reject
neighboring trajectories also. We show that the emptiness problem for
robust timed automata is still decidable, by modifying the region con
struction for timed automata. We then show that, like timed automata,
robust timed automata cannot be determinized. This result is somewhat

unexpected, given that in temporal logic, the removal of real-time equal
ity constraints is known to lead to a decidable theory that is closed under
all boolefm operations.

1 Introduction

The formalism of timed automata [AD94] has become a standard model for real
time systems, and its extension to hybrid automata [ACHH93, ACH"'"95, Hen96]
has become a standard model for mixed discrete-continuous systems. Yet it may
be argued that the precision inherent in the formalism of timed and hybrid
automata gives too much expressive power to the system designer. For example,
while there is a timed automaton A that issues an event a at the exeu:t real-

numbered time t, such a system cannot be realized physically. This is because
for every physical realization Ra of A there is a positive real c, however small, so
that one can guarantee at most that Ra issues the event a in the time interval
(< —£,< -f e). The discretization of time into units of size c, on the other hand,
may not allow a sufficiently abstract representation of A. Among the reasons for

* The first and third author were supported in part by grants from ARPA and ONR.
The second author was supported in part by the ONR YIP award NOOO14-95-1-0520,
by the NSF CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the
AFOSR contract F49620-93-1-0056, by the ARC MURI grant DAAH-04-96-1-0341,
by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036. The third
author was also supported by the NSF.

** To appear in the Proceedings of the First International Workshop on Hybrid and
Real-time Systems (HART 97), Lecture Notes in Computer Science, Springer-Verlag,
1997.

leaving the precision c parametric are the following: the actual value of e may be
unknown; future realizations of A may achieve a precision smaller than e; if A
is an open system, it may be composed with systems whose precision is smaller
than e; a small e may cause a dramatic increase in the state space.

Similarly, consider two hybrid automata B< amd 5< for modeling the con
troller of a chemical plant. The two automata are identical except that B<
activates a furnace iff the plant temperature falls to T degrees, and B< activates
the furnace iff the plant temperature falls below T degrees. These two formal
objects differ, and may have entirely different mathematical properties; for ex
ample, some plant transition may be possible only at temperatures less than T,
thus causing any number of states to be reachable in 5< but not in B<. Yet
the difference between the two automata cannot be realized physically, because
every physical thermometer has a positive error e, however small, and cannot
reliably distinguish between T and T - c degrees. Again, the discretization of
temperature into c-units may not be adequate for reasons given above.

We remove the "excessive" expressive power of timed and hybrid automata
without discretization, by having automata define (i.e., generate or accept) not
individual trajectories, but bundles of closely related trajectories. A bundle of
very similar trajectories is called a tube. For example, while a single trajectory
r may have event a at time t, every tube containing r also contains some tra
jectories with event a very close to, but not exactly at timet. Formally, we
suggest several metrics on the trajectories of timed and hybrid automata, and
define a tube to be an open set of trajectories. This definition is shown to be
independent of the choice of metric, because the "reasonable" metrics all induce
the same topology. Then, a tube is accepted by a timed or hybrid automaton
iff the accepted trajectories form a dense subset of the tube. Accordingly, while
"isolated" accepted trajectories do not belong to any accepted tube, isolated re
jected trajectories are added to accepted tubes, as motivated by the observation
that an automaton ought not be able to accept or reject individual trajectories.

Timed and hybrid automatawith tube acceptance are called robust, because
they are insensitive against small input perturbations (and they may produce
small output perturbations). In this paper, we look at some theoretical impli
cations of robustness. First, we solve the emptiness problem for robust timed
automata: given a timed automaton A, does A accept any tube? Ouremptiness
check for tube acceptance isderived from the region method of[AD94] for trajec
tory acceptance, but is somewhat more efficient, because only open regions need
beconsidered. Theemptiness check leads, intheusual way, to algorithms for ver
ifying requirements of robust timed automata that are specified in a linear-time
logic such as MITL [AFH96], in a branching-time logic such asTCTL [ACD93],
or by event-clock automata [AFH94].

Second, westudy the complementation problem for robust timed automata.
Complementation is instrumental for using automata as a requirements speci
fication language: abstract requirements of trajectories are often specified nat
urally using nondeterministic automata; then, in order to check that all tra
jectories that are generated by an implementation automaton A are accepted

by thespecification automaton 5, the latter needs to be complemented (before
checking the product of A and for emptiness). While timed automatawith
trajectory acceptance are not closed under complement [AD94] (i.e., there is a
timed automaton whose rejected trajectories are not the accepted trajectories
of any other timed automaton), one may harbor some hope that robust timed
automata can be complemented (i.e., for everytimed automaton B there may be
a timed automaton ->B that accepts precisely the tubes which are disjointfrom
the tubes accepted by B). This hopestems from the following observations:

1. In the caseoflinear-timetemporallogic, the removal ofall timingconstraints
that enforce exact real-numbered time differences between events leads to
a decidable theory, called MITL, which is closed under all boolean opera
tions [AFH96]. It is therefore not unreasonable to expect that in the case of
timed automata, the removalof individual trajectories, which express exact
real-numbered time differences between events, leads likewise to a decidable
and boolean-closed theory.

2. The impossibility of complementation for timed automata follows from the
fact that while the emptiness problem is decidable, the universality problem
(i.e.,given a timed automaton, does it accept all trajectories?) is not [AD94].
Undecidability proofs for real-time problems, however, typically depend on
an encoding of Turing-machine computations which uses the exact real-
numbered times available in individual trajectories. These proofs do not
straight-forwardly extend to tubes.

3. Since the complement of an open set is closed, the definition of complemen
tation for timed automata with tube acceptance does not coincide with the
definition of complementation for timed automata with trajectory accep
tance.

We considerably dampen the hope that robust timed automata can be comple
mented by proving that, like ordinary timed automata, robust timed automata
cannot be determinized (which is the usual first step in complementation). In
deed, the theory of ordinary timed automata turns out to be remarkably robust
(pun intended) against perturbations in the definition of the automata: our re
sults show that neither the syntactic removal of equality from timing constraints
(open timing constraints only) nor the semantic removal of equality (tube ac
ceptance) alter the theory of timed automata qualitatively.

2 lYajectories and Tubes

In this paper, we consider finite trajectories only. A trajectory over an alphabet
i7 is an element of the language {S x M"*")*, where E+ stands for the set of
positive reals excluding 0. Thus, a trajectory is a finite sequence of peiirs from
27 XE+. We call the first element of each pair an events and the second element
the time-gap of the event. The time-gap of an event represents the amount of
time that has elapsed since the previous event of the trajectory (the first time-
gap can be thought of representing the amount of time that has elapsed since the

"beginning of time"). For a trajectory r, we denote its length (i.e., the number
of pairs in r) by len(r), and its projection onto U* (i.e., the sequence of events
that results from removingthe time-gaps) by untime(r). For 1 < »< len(r), we
denote the »-thevent of r by aT(»), and the i-th time-gap by <yT(0- Wealso assign
time-stamps to the events of a trajectory: for the t-th event of r, the time-stamp
isdefined to be <r(0 = IIi<j<i«5r(i)-

Metrics on trajectories

Let the set of all trajectories be denoted TVaj. Assuming that trajectories cannot
be generated and recorded with infinite precision, in order to get an estimate of
the amount of error in the data that represents a trajectory, we need a metric
on IVaj. We will not choose a specific metric, but give some examples of "rea
sonable" metrics, and then state a condition on "reasonableness" that will be
sufficient for all later results.

For all metrics d we consider, given two trajectories r and t', we define
d(r,r') = oo if untime(r) ^ untime(r'). Thus, only two trajectories with the
same sequence of eventshave a finite distance, and finite errors may occur only in
measuring time.In the following examples, assume that untime(r) = untime(r').

Example 1. Define

dmax{T, t') = max{|<x(0 - <T'(i)| : 1 < i < len(r)}.

This metric measures the maximaldifference in the time-stampsof any two cor
responding events: two timed words are close to each other if they have the same
events in the sameorder, and the times at which theseevents occur are not very
different. For instance, for n = (a,l)(a, l)(o,1) and T2 = (a,0.9)(a, 1.2)(a, 1.2),
we have dmax(n, T2) = 0.3. •

Example 2. The following metric considers the sum of all differences in the time-
stamps:

dsum{T,T') = J^{|fT(») - fT'(OI =1<»<len(r)}.
For instance, dsum{Ti,T2) = 0.5. •

Example 3. Another metric considers the pairwise time-differences between any
two events of a trajectory:

^allpairi'^'X) 0̂<*<i <len(r)}.
i<k<j

This metric is based on the intuition that a clock may constrain or measure the
distance between any two events in a trajectory. For instance, df,iij^:JTi^T2) =
0.4. ^ •

Example 4' An alternate metric measures only the difTerences in the time-gaps
between consecutive events:

^sticpair('"»~ niax{|<Jr(0 ^ ^ ^ len(T)}.

For instance, d^^cpaiATi. '̂ 2) = 0.2. •

Example 5. The drift metric assumes that the clocks for measuring time-stamps
may drift, and their deviation from a correct clock is a percentage of the total
elapsed time. For example, if a; is a correct clock, and x' is a clock with msocimal
drift 0.1, then alwaysx/\.\ <x'< l.lar. Thus wecan dehne the distance between
two trajectories as

= max{max : 1 < »< len(r)} -

It follows that = c iff <r'(0/(l + «) < <r(i) < (1 + c)<t'(») all
1< a< len(r). For instance, djj^^{Tiyr2) = 0.111... Note that ifall time-gaps
in both r and r' were doubled, the distance r') would remain the same.
This is not true of the other metrics. It is also possible to define sum, all-pairs,
and successive-pairs versions of the drift metric. •

Examples. Finally, we have the discrete metric, with r') = 1 if r r'.
This metric with the tube acceptance conditions (defined below) would give
us ordinary timed automata (with trajectory acceptance). We will not use this
metric any further. •

Given a metric, we use the standard definition of open sets. The listed metrics,
with the exception of the discrete metric, all define the sametopology on trajec
tories. Formally,for a metric d, a trajectory r, and a positive real c 6 K"*", define
the d'tube around t ofdiameter e to be the set Td(r, f) = {t* : d(r, t*') < c} ofall
trajectories at a d-distance less than c from r. A d-open set O, called a d-tube,
is any subset of TVaj such that for all trajectories r E O, there is a positive real
€E E+ with Td{T, c) C O. Thus, if a d-tube contains a trajectory r, then it also
contains all trajectories in some neighborhood of r. Let the set of all d-tubes be
denoted Tube(d).

Proposition1. The five metrics d = dmax^dsumyd^Hj^^^^ds^cpaiv^drift
define the same set Tube(d) of tubes.

Proof. Itsuffices to show that Tube(dmax) CTube(ds«m) CTube(dg;;pg,y) C
Tiibe(dgm.pgjy) CTiibe(dinax) Q

Consider a tube O E Tahe{dmax) and a trajectory t E O. Then there is a
positive real c GM+ such that ri^^(r, e) C O. Since d5um(r, P) < len(r) x
dmax{r,r')y it follows that ^ Q O. Hence O E
Tnhe{dsum)-

The other proofs are similar. In each case we need to relate two metrics. The
following relations suffice, and can be easily proved from the definitions:

^sucpaxAr^ ^ ^allpairi'̂ f '"O
dmaxir^ '^) —len(T) x ^sucpairiVi '^)

^ dmax{ryT')/tr{l)
dtnaxir, r') < r') x <T(len(r)) •

We say that a metric d on trajectories is reasonable if Tube(d) is equal to
Tube(dTOar)- Henceforth we assume to be given a reasonable metric d. A d-
tube will be simply called a tube, and the set of tubes will be denoted Tube.

From trajectory languages to tube languages

A trajectory language is any subset of TVaj; a fu6e language is any subset of
Tube. Every trajectory language L induces a tube language [L],which represents
a "fuzzy" rendering of L. In [L] we wish to include a tube iff sufficiently many
of its trajectories are contained in L. We define "sufficiently many" as any dense
subset, in the topological sense.

For this purpose we review some simple definitions from topology. A set S of
trajectories is closed if its complement 5® = TVaj —5 is open. The closure 5 of
a set 5 oftrajectories is the least closed set containing S, and the interior S*"'
is the greatest open set contained in 5. The set 5' of trajectories is dense in S
iff 5 C 5'.

Formally, given a trajectory language L, the corresponding tube language is
defined as

[L] = {O € Tube : O C I).

Thus, a tube O is in [L] if for each trajectory r € O there is a sequence of trajec
tories with limit r such that all elements of this sequence are in L. Equivalently,
L must be dense in O; that is, for every trajectory r € O and for every positive
real €GM+, there is a trajectory r' £ L suchthat d(r, r') < c. Since the tubes in
[L] are closed under subsets and union, the tube language [L] can be identified

ifltwith the maximal tube in [L], which is the interior L of the closure of L.
We will define the semaintics of a robust timed automaton with trajectory

set L to be the tube set [L]. This has the effect that a robust timed automaton
cannot generate (or accept) a particular trajectory when it refuses to generate
(rejects) sufficiently many surrounding trajectories. Neither can the automaton
refuse to generate a particular trajectory when it may generate sufficientlymany
surrounding trajectories. Our definition of "sufficiently many" as "dense subset"
does not seem all that strong, because every tube O, while uncountable, has
dense subsets that are countable (such as the set of trajectories in O all of whose
time-gaps are rationale). However,when we define timed automata below, we will
see that the syntax of timed automata will not allow us to specify very strange
trajectory languages L. In particular, we will not be able to specify a trajectory

language L such that both L and L® are dense in some tube O. Thus, for timed
automata, a tube will be accepted iffall but finitely manyof its trajectories are
accepted, and it will be rejected iff all but finitely many of its trajectories are
rejected.

3 Robust Timed Automata

Wedefine a variantofAlur-Dill timedautomata [AD94]. Whilethe variantmakes
several aspects of our presentation easier, we will show that it is equivalent in
expressive power to Alur-Dill timed automata.

A timed automaton is a 6-tuple A = Q,Qo.Qj,C,E):

- i7 is a finite alphabet of events;
- Q is a finite set of locations;
- ^0 C Q is a set of start locations;
~ <3/ C Q is a set of accepting locations;
- C is a finite set of real-valued clock variables;
-ECQxQxEx 0{C) X2^ X^(C) is a finite set of transitions. Each

transition (?,?', a, p, <f>') consistsof a sourcelocation q, a target location g\
an event a, a constraint (f> on the clocks in C, a set p of clock variables, and
a constraint <f>' on the clocks in p. The clock constraints ^{C) on a set C
of clock variables are generated by the grammar

<l> ::= ar < c I a: > c I ->(j> | ^ A

where c is a rational number and x G C is a clock variable. We call <i> the
precondition, p the update set, and <f>' the postcondition of the transition.
Intuitively, the transition is enabled when the clock values satisfy the pre
condition. When the transition is taken, the clock variables in the update set
are assigned new values so that the postcondition is satisfied, and all other
clock values remain unchanged.

Instead of precondition, update set, and postcondition, we often write guarded
commands. For example, if x and y are clock variables, then the nondeterministic
guarded command x > 1 ^ y := (0,1) corresponds to the precondition x > 1,
the update set {y}, and the postcondition 0 < y < 1. It is often convenient to an
notate locations with clock constraints, so-called invariant conditions [HNSY94].
Our results extend straight-forwardly to timed automata with invariant condi
tions.

A clock-valuation function 7 : C assigns to each clock variable a
nonnegative real in Kj = ^ {0}- The clock-valuation function 7 satisfies the
clock constraint ^ iff ^ evaluates to true when each clock x is replaced by the
value 7(x). For a positive real 6, the clock-valuation function 7 -f assigns to
each clock x the value 7(x) -f S.

y o a oa a a a

(») (b)

Fig. 1. The timed automata Ai and A2

TVajectory acceptance

A trajectory r is accepted by the timed automaton A iff there is a sequence r =
(9i>7»)o<i<len(T) locations g,- GQ and clock-valuation functions Kj
such that

1. Initialization: go EQq.
2. Consecution: for all 1 < » < len(r), there is a transition in E of the form

such that 7i-i+<Jr(i) satisfies <f>i, 7,(x) = 7i_i(x)-|-
<yT(i) for all a; G C* — and 7^ satisfies

3. Acceptance: gk € Qj for k = len(r).

The sequence r is called a run of r through the timed automaton A, and r is
said to be accepted along the path {9i)o<i<len(T) locations. We write L{A) for
the set of trajectories accepted by A.

In an Alur-Dill timed automaton, if p is the update set of a transition, then
the corresponding postcondition must have the form x = 0; that is, the
clock variables in the update set are always reset to 0.

Proposition 2. For each timed automaton there is an Alur-Dill timed automa
ton that accepts the same set of trajectories.

Proof. Every timea clock variable isupdatedandassigned, nondeterministically,
a new value in the interval h, and later tested against the interval I2, we replace
the update witha reset to 0, and the test witha test against the interval h—h =
{<^2 — E hi S2 € I2}' If a clock variable is updated into different intervals
on different transitions, these updates are handled using new clocks. •

Tube acceptance

The timed automaton A accepts the set [L{A)] of tubes. That is, a tube O is
accepted by A iff there is a set O' C O of trajectories such that O' is dense in O
and sill trajectories in O' are accepted by A.

The following examples illustrate tube acceptance. First, consider the timed
automaton Ai of Figure 1(a). This automaton accepts all trajectories over the

= 0 ar = 1 = 0 X 1

(a) (b)

O

(c)

Fig. 2. The timed automata ^3, A4, and As

unary alphabet {a} which contain two consecutive a events with a time-gap in
the open interval (1,2). This property is invariant under sufficiently small per
turbations of the time-stamps. Hence the automaton Ai accepts precisely those
tubes that consist of trajectories in L{Ai), and the maximal accepted tube is
L{Ai) itself. In the timed automaton A2 of Figure 1(b), the open interval (1,2) is
replaced by the closed interval [1,2]. This changes the set of accepted trajectories
but not the set of sw:cepted tubes: L{Ai) C L{A2) but [L(i4i)] = [L{A2)]. Notice
that the "boundary trajectories" accepted by A21 with two consecutive a's at a
time-gap of 1 or 2 but no consecutive a's at a time-gap strictly between 1 and 2,
are not accepted robustly, because there are arbitrarily small perturbations that
are not acceptable.

Next, consider the timed automaton A3 of Figure 2(a). This automaton ac
cepts all trajectories of a's in which some a is followed by the subsequent a
exactly 1 time unit later. The automaton A3 Eiccepts no tubes, because by per
turbing the pair of a's that causes a trajectory to be accepted, however slightly,
the trajectory becomes unacceptable. By contrast, the timed automaton >14 of
Figure 2(b) accepts all trajectories of a's such that there is a pair of consecu
tive a's that are not 1 time unit apart. Thus, by perturbing an unacceptable
trajectory slightly, it will be accepted. As a result, the automaton A4 accepts
all tubes. The timed automaton A3 of Figure 2(c) accepts the same trajectories
as A4, but along different paths of locations. Since our definition of tube accep
tance depends only on the accepted trajectories, and not on the structure of the
automaton, the automaton A3 still accepts all tubes. Note, however, that some
tubes, such as the tube of all trajectories, are not accepted along any single path
through the automaton.

4 Verification of Robust Timed Automata

The basic verification problem for automata is the emptiness problem. In this
section, we give an algorithm for checking if a timed automaton accepts any
tube. For this purpose, we relate tube acceptance and trajectory acceptance by
considering syntactic subclasses of timed automata.

Closed and open timed automata

A timed automaton A is closed iff all preconditions and postconditions of A are
generated by the grammar

<f> ::= x<c\x>c\<f>A<f>\<f>\/<f>,

where c is a rational number and c is a clock variable. Dually, the timed automa
ton A is open iffall preconditions and postconditions of A are generated by the
grammar

<f> ::= x<c|x>c|0A^|^V<^.

For each timed automaton A, we define the closure automaton and the in
terior automaton as follows. First, write every precondition and postcondition
of A in negation-free form, using both logical-and and logical-or and both strict
and nonstrict comparison operators. Then, the closure automaton A is the timed
automaton that results from replacing each strict comparison operator by the
correspon^g nonstrict operator (replace < by <, and replace > by >). For
example, Ai = A2 for the timed automata of Figure 1.

The interior automaton A*"' cannot be formed by the reverse ofthe above
process, as some of the postconditions would be replaced by "false." Instead,
we relax the postconditions and tighten up the preconditions. For example, we
obtain the interior automaton of the timed automaton A2 of Figure 1(b) by
replacing the constraint x ;= 0 by x :€ (0,0.5), and replacing the constraint
X€ [1,2] by (1.5,2). This construction, however, is not sufficient if more than
one test is performed. Consider the automaton shown on the left in Figure 3.Its
interior isshown on the right inFigure 3.The two clocks xi and X2 are necessary
to capture the maximal and minimal possible values of the clock x. Then, any
number of tests can be satisfied.

Formally, we assume that the clock constraints of the timed automaton A
contain only integer constants. This can beensured by multiplying all constants
with their least common denominator, and once the interior automaton has
been constructed, dividing all constants again by the same amount. For each
clock variable x ofA, the interior automaton A*"' uses two clock variables, xi
and X2. In A*"^ each clock constraint in a postcondition of Ais replaced as
follows:

x>c Xi>cAX2>C
x> C Xi>cAX2>C
x<c Xi < c-l-0.5 A X2 < c-f 0.5
X <c xi < c -f 0.5 A X2 < c -f 0.5

10

Fig. 3. A timed automaton and its interior automaton

In addition, each clock constraint in a precondition of A is replaced as follows:

X >c

X > c

X < c

X < c

xi > c + 0.5 V X2 > c 0.5
xi > c + 0.5 V a;2 > c + 0.5

Xi < c V X2 < c

Xi < c W X2 < c

Clearly, A is a closed automaton and A*"' is open. Moreover, ifA is closed,
then A = A, and if A is open, it is easy to check that I.(A*"') = L(A). The
following proposition shows that as far as tube languages are concerned, we can
either restrict our attention to closed automata or to open automata.

Propositions. For all timedautomata A, we have L{A) —L{A) and [L{A)\ =
[i(3)] = [i(X'"«)].

Proof. Consider a trajectory r € L{A). By the construction of A, in every c-
neighborhood of r, there must exist a trajectory that is stccepted by A along the
same path. Hence L{A) C L{A). Conversely, since L{A) is closed, L[A) C L{A).
Since L{A) = jL(A), we have [i/(A)] = [L{A)].

We now show that L(A*"^) CL{A), from which it follows that [i(A*"')] C
[I-(A)]. By the construction ofA*"^ each postcondition x € (a, 6) is changed to
Xi € (a, 6+ 0.5) A X2 € (a, 6+ 0.5), and each precondition x € (c,d) is changed
to a?! € (c + 0.5,d) V ac2 € (c + 0.5,d). Thus the amount of time that may
elapse between the setting and the testing of any of the clocks x, xi, and X2 is
characterized by the interval (c —6,d —a).

Conversely, consider a tube O € [•£'(^)] and a trajectory r G O. Then there
exists a positive real c > 0 such that T{t, c) C O. Since r(r, c) C L(A), there
exists a trajectory r' € T(r, c) such that P is accepted strictly by A; that is, P
is accepted along a path of A such that none of the nonstrict preconditions are
satisfied at the boundary. This is because if Ln{A) is the set of trajectories in
L{A) that are not accepted strictly by A, then the interior of Ln[A) is empty.
Now P isaccepted along the same path in A*"': when the clock x isset to t, let
x\ and let X2 = <+ 1/2. Thus we can construct a sequence of trajectories
accepted by A*"' with limit r, for each r GO. Hence OG[^(A*"')]. •

11

The following proposition shows that for open timed automata, tube emptiness
coincides with trajectory emptiness.

Proposition4. For every open timed automaton A and every trajectory t, ifr
is accepted by A along some path, then there is a positive real c € M"'" such that
all trajectories in the tube T{t, e) are accepted by A along the same path.

Proof. It suffices to consider the metric dmaxi because any dmox-tube contains
a d-tube for every reasonable metric d. Consider a run r = (9ii7i)o<i<len(T)
A that accepts the trajectory r. Since all clock constraints are op^,~for each
0 < »< len(r), there is a real c,- > 0 such that substituting 7j + c,- or 7,- —c,- for
7f in r still gives a run through A. Now let c = min{cf : 0 < i < len(r)}. •

From the proof it follows that in the case of d = dmax, if a trajectory r is
accepted by an open timed automaton A whose clock-constraint constants are
all integers, then r belogs to a d-tube of diameter e = 1/2 which is accepted
by >1. It should also be noticed that for every closed timed automaton A, we
have U[i(v4)] C L{A), and for every open timed automaton B, we have L{B) C
(J[i/(S)]. The latter follows from Proposition 4.

Checking emptiness

By Proposition 3 we can reduce the problem of checking if a timed automaton
A accepts any tube to the problem of checking if the interior automaton ^4*"^
accepts any tube. Moreover, by Proposition 4, the open automaton A^^^ accepts
any tube iff it accepts any trajectory. The latter problem can be solved using
the region construction of [AD94]. In fact, for checking the emptiness of open
timed automata such asA*"', only open regions need be considered.

Theorems. The problem of deciding whether a timed automaton accepts any
tube is complete for PSPA CE.

Proof. Given an opentimed automaton A, we construct an open-region automa
ton reg(A), which is a finite-state machine that accepts a string s iffA accepts
a trajectory r with untime(r) = s. First, we multiply all clock-constraint con
stants in A with their least common denominator, so that all resulting constants
are integers. Let cmax be the largest of these integers. An open clock region is a
satisfiable conjunction of formulas that conteuns

- for each clock x of A, either the conjunct x > cmax or a conjunct of the
form c < X< c 1, for an integer 0 < c < cniax» and

- for each pair ofclocks x and y ofA, either the conjunct x —[xj < y —[yj
or the conjunct y —[yJ < x —[xj.

For twoopen clock regions R and R', the region R' is a successor region of R iff
there is a clock-valuation function 7 and a real <5 € such that R satisfies 7
and R' satisfies f + S.

12

The input alphabet E ofthe finite-state machine reg(i4) is the same as for i4.
Each state of reg(i4) is a pair (g, ii) that consists of a location q oi A and an
open clock region R. The state (g, R) is a start state of reg(i4) iffg is a start
location ofi4, and (g, R) is an accepting state of reg(>4) iff g is an accepting
location ofA. For each a E E, there is am a-transition from the state (g, R) to
the state {q',R') in reg(i4) iff A has a transition of the form (g, g',a,p,
such that R implies <f> and R' implies both <f>' and <f>", which results from (ft by
replacing with "true" all comparisons that involve clocks in p. In addition, there
is an e-transition from the state (g,il) to the state {q\R') in reg(i4) iff g = g'
and R' is a successor region of R.

PSPACE-completeness follows from the corresponding proof in [AD94]. •

5 Nondeterminizability of Robust Timed Automata

The previous section shows that timed automata yield a decidable theory of
tubes. In this section, we present evidence that the resulting theory of tubes
is not closed under all boolean operations. Using trajectory-based methods, for
every two timed automata A and S, we can construct a product automaton
C with [L{C)\ = [^(A)] n [L{B)]^ and a union automaton D with [L{D)\ —
([L(A)] U [i(B)])* = \L{A) U I'(B)], where C* denotes the closure of a tube
language C under union (i.e., £* is the least set of tubes containing C which is
closed under union). As in ordinary timed automata, however, complementation
presents a problem.

Complementation

The timed automaton B is a trajectory complement of the timed automaton
A iff B accepts precisely the trajectories that are not accepted by A; that is,
L(B) = jL(A)®. Before defining the tube complements of a timed automaton, we
observe an important property of the trajectory languages that can be defined
by timed automata.

Proposition 6. For every timed automaton A, there is no tube O such that both
L{A) and L{AY are both dense in O.

Proof. Suppose that L{A) is dense in O. Then O C I'(A), and O € [^(A)] =
[L(A*"')]. By Proposition 4, for eaw:h trajectory r GO there is a positive real
€€ M"*" such that T(r,f) C L(A'"') C L{A). Hence L[AY isnot dense in O. •

It follows that a tube cannot be accepted by both a timed automaton A and
a trajectory complement of A. This observation will allow us to relate the tube
complements of a timed automaton to its trajectory complements.

For defining the tube complements of a timed automaton A, it is not useful
to consider the booleancomplement Tube —[Z»(A)] of the tube language [L{A)].

* R*om theresults of this section it will foUow that [I/(A)] n [i(B)] = [L{A) n L{B)].

13

For is closed under subsets and union. Therefore, unless [I'(i4)] = 0 or
[L(i4)] = Tube, the boolean complement Tube —[L{A)] cannot be induced by
any trajectory language and, hence, cannot be accepted by any timed automaton.
Thus, for every tube language C C Tube, we define the tube complement of C
to be the set

r = {O e Tube: On|j£ = 0)
of tubes that aire disjoint from the tubes in £. The following proposition shows
that for every timed automaton j4, the tube complement [Ir(j4)]® is induced by
the trajectory complement L{AY\ that is, [1/(^4)®] = [X(i4)]®.

Proposition?. If L is a trajectory language and there is no tube O such that
both L and X® are dense in O, then [LY = [X®].

Proof. Let O be a tube in [X], and let r be a trajectory in O. Then there is an
c> 0 and a tube around r ofdiameter e whose trajectories are all in O. Suppose
that T € O' for sometube O' € [X®]. Then there is an c' > 0 and a tube around r
ofdiametere' whose trajectories are all in O'. Without loss ofgenerality, assume
that£< c'. Thus the trajectories of the c-tube around r arecontained in both X
and X®, This contradicts the fact that there is no tube in which both X and
are dense. Hence thetubes in [X*^] arepairwise disjoint from the tubes in [X]. •

For two timed automata A and S, we say that 5 is a tube complement of A iff
B accepts precisely the tubes that do not intersect any tube accepted by A\that
is, [L{B)] = [L{A)Y. From Propositions 6 and 7, it follows that every trajectory
complement of a timed automaton is also a tube complement (the converse is
generally not true). Since [L{A)Y = [X(^*"')]® = [X(i4*"')®], in order to con
struct tube complements, it would suffice to construct trajectory complements
ofopen timed automata.^ This, however, does not seem feasible, because we now
show that open timed automata cannot be determinized, which is the usual first
step in automaton complementation.

Nondeterminizability of open timed automata

A timed automaton A is tube-determinizable iff there is a deterministic Alur-
Dill timed automaton that accepts the set [X(A)] of tubes. An Alur-Dill timed
automaton is deterministic iff for all locations, every two outgoing transitions
contain either different events or mutually exclusive preconditions. Note that
trajectory-determinizability implies tube-determinizability, but not vice versa.

Theorem8. The open timed automaton A ofFigure 4 is not tube-determinizable.

®Similarly, since [X(A)]' = [X(A)]'̂ = [X('̂̂], it would suffice toconstruct trajectory
complements of closed timed automata. This, however, is known to be impossi
ble [AD94].

14

Fig. 4. A nondetenninizable open timed automaton

Proof. The automaton A accepts a trajectory over the unary alphabet {a} iff
there is some consecutive pair of a's with time-stamps t and f' such that there
are no a's with time-stamps in the interval [< -H 1]. Every such trajectory
is accepted robustly, as part of an accepted tube; that is, L{A) = U[I-(A)]. To
accept auiy tube in [I'(i4)] with sufficiently small diameter deterministically, an
automaton would have to remember the time-stamps of all a's within the last 1
time unit, which is not possible with a finite number of clock variables.

Formally, suppose there is a deterministic Alur-Dill timed automaton B with
n clock variables and [L{B)\ — [L(A)]. For simplicity, assume that all clock-
constraint constants ofB are integers, and assume the metric dg^f.pair trajec
tories. For So = 0, consider a trajectory r of the form (a,<5i)...(a, rf„+2)(a, {Sq -f
Si)/2).. .(a, (^n+i + <Jn+2)/2) with Uin -f 2) = 1. The trajectory r is rejected
robustly by A, as part of a rejected tube. Hence we can choose a positive real
€ E K"'" such that O = T(r, c) € [L{A)Y and c < Si/S for all 1 < t < n -b 2.
Then O G [L{B)Y = [L{BY]. Since B is deterministic and has at most n clock
variables, for each trajectory r' € O D there is at most one run of B
over P. After reading the first n -f 2 events of this run, there is at least one
1 < i < n -f 1 such that no clock variable of B has a value in the interval
(1—tr (i) —c,1—fr («) + c)- Wepartition the trajectories in O Pi L{BY into n -f 1
sets, corresponding to the possible values for i. At least one of these sets must be
dense in O 0 L{BY. Let this be the k-th set. Now consider the set O' of trajec
tories obtained from O n L{BY by reducing the time-gap of each (n -f Ar -f 3)-rd
event by Sk+i/2 Sk/increasing the time-gap of each (n -f A: -|- 4)-th event
by the same amount, and truncating each sequence after n -}- A: -f 4 events. All
trajectories in O' are rejected by B, because they follow the same paths as the
corresponding trajectories in O, which, if truncated after n -f Ar -|- 4 events, are
also rejected. But all trajectories in O' are accepted by A. Since O' is dense in
some tube, [L{B)] ^ [Lf^l)]. •

We suspect that the open timed automaton A has no tube complement. For,
a tube complement of A would have to accept all trajectories of a's such that
every consecutive pair of a's with time-stamps t and P is followed by another a
with a time-stamp in the interval (/ -H1, <' -fl). For this purpose, the automaton
would have to remember the time-stamps of an unbounded number of a's, which
does not seempossible (however, weknowof no formal proof, as the above proof
depends on the determinism of B).

15

6 Robust Hybrid Automata

The definitions of tube acceptance can be extended to hybrid automata. If
HTVaj is the set of hybrid trajectories, then each hybrid automaton accepts
a subset of HTtaj [ACH"''95]. Given a metric on HTVaj, we again define tubes
as the open sets of the corresponding topology. Now, followingour definition for
timed automata, a tube is accepted by a hybrid automaton iff a dense subset
of trajectories in the tube are accepted by the automaton. Several metrics on
hybrid trajectories can be defined similar to the corresponding metrics for timed
trajectories (Section 2). Here we propose three additional metrics.

A hybrid trajectory <r over a given set of real-valued variables V is a piecewise
smooth function c : / -> (V E) from a bounded interval / C Eq
nonnegative real line to valuation functions for the variables in V. By piecewise
smooth we mean that the domain of a can be partitioned into a finite sequence
/ = /i U ... U /m of intervals such that for each I < j < m and each variable
a: € V, the real-valued function <t{x) restricted to the domain Ij is infinitely
differentiable (i.e., (c l'/j)(x) € C°°),

Suppose that V — {xi,...,x„}. Each valuation function for V is a point
in E". For two points p and p' in E", let deuc(p,pO euclidean distance
between p and p'\

detic{p,p') = \/(Pi - P'l)^ +•••+{Pn - P'n)^-
The timed metric on hybrid trajectories compares the values of all variables at
each point in time: if two hybrid trajectories a and </ have different domains,

dtimei*^^ ^') — otherwise, if dom((r) is the domain of both <t and cr', then

dtimei^y '̂) = sup{<'euc(o-(f),<r(<)) :< 6dom((7)}.

Alternatively, eachhybrid trajectory cr can be regarded as a subset of the (n-|-l)-
dimensional real space with one component representing time, and the
other components representing values for the variables in V: let (po,Pi,... ,Pn) G
0" iff po € dom((r) and <r(po)(«f) = Pi for all 1 < a < n. Then the distance of
a point p € E"+^ from a hybrid trajectory a' C E"+^ can be defined using the
euclidean metric on E"+^:

deuc{p,('̂) = inf{deuc(p,p') :p' Gtr'}.

Now the distance between two hybrid trajectories a and (t* can be defined as

deuc{(^,<r') = max(sup{d(p, tr') :p £ o-},sup{d(p',o-) :p' £ a'}).

While the metric deuc treats time as a data variable, one can also project away
the time component and look at hybrid trajectories as subsets of the phase
space E". This gives us the metric

Consider, for example, the two functions fi and A with /i(<)(x) = t and
fi{t){x) = /+2 for alK € Ej. For thetwo hybrid trajectories <ri = (/i f[0,5]) and

16

<^2 = (/2 KOi 5]), we have »<'"2) = 2. For the two hybrid trajectories <ri =
(/i Kl>6]) and 0-2 = (/2 K0»5]), we have deuc(o"i, ^•2) = \/2. For the two hybrid
trajectories <ri = (fi f[2,7]) and <T2 = (/2 K0»5]), we have dpf^^g^(o-i,cr2) = 0
and, for a hybrid extension ofthe metric dmax from Section 2, dsup(o"i, 0-2) = 1-

Lineau* hybrid automata can be analyzed for tube acceptance as in the case
of trajectory acceptance [AHH96], but only open regions (open polyhedral sets
in M") are needed during the computation. This significantly simplifies the al
gorithmsthat have been implemented in toolssuch as HyTech [HHWT95]. We
conclude by posing an important open question: are there interesting classes of
hybrid automata whose emptiness is undecidable under trajectory acceptance
but decidable under tube acceptance?

References

[ACD93] R. Alur, C. Courcoubetis, «md D.L. Dill. Model checking in dense real time.
Information and Computation, 104(1):2-34, 1993.

[ACH''"95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. NicoUin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic cinalysis of hy
brid systems. Theoretical Computer Science, 138:3-34, 1995.

[ACHH93] R. Aim, C. Courcoubetis, T.A. Henzinger, and P.-H.Ho. Hybridautomata:
an algorithmic approach to the specification and verification of hybrid systems. In
R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems I,
Lecture Notes in Computer Science 736, pages 209-229. Springer-Verlag, 1993.

(AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed au
tomata. In D.L. Dill, editor, CAV 94: Computer-aided Verification, Lecture Notes in
Computer Science 818, pages 1-13. Springer-Verlag, 1994.

[AFH96] R. Aim, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuedity.
Journal of the ACM, 43(1):116-146, 1996.

[AHH96] R. Aim, T.A. Henzinger, euid P.-H. Ho. Automatic symbolic verification
of embedded systems. IEEE Transactions on Software Engineering, 22(3):181-201,
1996.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual Symposium on Logic in Computer Science, pages 278-292. IEEE Computer
Society Press, 1996. Invited tutorial.

[HHWT95] T.A. Henzinger, P.-H. Ho, 2md H. Wong-Toi. HyTech: the next genera
tion. In Proceedings of the 16th Annual Real-time Systems Symposium, pages 56-65.
IEEE Computer Society Press, 1995.

[HNSY94] T.A. Henzinger, X. NicoUin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, lll(2):193-244, 1994.
Special issue for LlCS 92.

17

	Copyright notice 1997
	ERL-97-18

