

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SPEECH RECOGNITION FOR PORTABLE

MULTIMEDIA TERMINALS

by

Andrew Joseph Burstein

Memorandum No. UCB/ERL M97/14

21 February 1997

SPEECH RECOGNITION FOR PORTABLE

MULTIMEDIA TERMINALS

Copyright © 1996

by

Andrew Joseph Burstein

Memorandum No. UCB/ERL M97/14

21 February 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Speech Recognition for Portable Multimedia Terminals

by

Andrew Joseph Burstein

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of Califomia at Berkeley

Professor Robert W. Brodersen, Chair

Portable multimedia terminals will require speech recognition for users to perform com

mand and control operations. The speech recognition may either be implemented in soft

ware in computers on a high speed network, or in low-power hardware in the terminal

itself. To facilitate the writing of applications using speech recognition, a new extension
to the tcl language, along with a toolkit ofclasses, widgets, and applications, provide an
easy to program API and a consistent user interface. This thesis also presents the architec

ture for low-power hardware to perform speech recognition and describes a custom CMOS

10 that implements an important part of the speech recognition algorithm.

Robert W. Brodersen

Chairman of Committee

To my parents,

Myra and Albert Burstein.

Table of Contents

Table of Contents iv

List of Figures vi

List of Tables ix

Acknowledgments x

CHAPTER 1. Introduction 1

1.1 InfoPad and Hand-Held Devices 1
1.2 Speech Recognition in InfoPad 3

CHAPTER 2. Algorithm 7

2.1 Goals 7
2.2 RASTA-PLP 8
2.3 Hidden Markov Model 11
2.4 Multi-Layered Perceptron 17
2.5 Clustered Grammar 24
2.6 Recognition Results 28
2.7 Summary 30

CHAPTER 3. Software:

User Interface and Applications 31

3.1 Goals 31
3.2 Widgets in the SpRcg Toolkit 32
3.3 Speech Controlled Applications 36
3.4 Combining Handwriting and Speech Recognition 43

IV

CHAPTER 4. Software:

Programmer's Interface 46

4.1 Overview & Goals 46
4.2 WritingApplications for InfoPad 48
4.3 Low Level Implementation 50
4.4 High Level Objects and Procedures: spRcg_gramDict 54
4.5 Mega-Widgets 56
4.6 GramCracker: A Tool to Build Vocabularies and Grammars • • • 62
4.7 Design Example 66

CHAPTER5. Low Power Memory Design 77

5.1 Overview 77
5.2 Sram 78
5.3 How to use the Memories 99

CHAPTER6. Low-Power Speech Recognition Architecture 103

6.1 Goals 103
6.2 Previous Work 103
6.3 Next Generation: Low Power 104
6.4 Front End 108
6.5 MLP 109
6.6 Viterbi 110

CHAPTER 7. Low-Power Multi-Layer Perception Design 121

7.1 Architecture 121
7.2 Summary ofLow Power Techniques 128
7.3 Selecting Bit Sizes 130
7.4 Interface 130
7.5 Results 132

CHAPTERS. Conclusion 136

8.1 Contribution 136
8.2 Discussion & Future Work 136

Bibliography 139

Appendix: Directories 142

List of Figures

CHAPTER 1. 1

Figure 1-1. Overviewof InfoPad. 2
Figure 1-2. Difficulty ofvarious speech recognizer types. 4

CHAPTER 2. 7

Figure 2-1. Choice ofcomponents in the SpRcg system. 8
Figure 2-2. The role offront end signal processing. 9
Figure 2-3. Block diagram ofRASTA-PLP. 10
Figure 2-4. Hierarchy in a hidden Markov model. 12
Figure 2-5. 10 state hmm for the word "oh." 15
Figure 2-6. Multi-layered perceptron to compute phoneme probabilities. ••• 19
Figure 2-7. Hierarchy in the HMM. 25
Figure 2-8. Clustered grammar reduces complexity'. 25
Figure 2-9. Example ofa grammar cluster. 27

CHAPTERS. 31

Figure 3-1. spRcg_NBest widget. 32
Figure 3-2. SpRcg_controller widget. 33
Figure 3-3. spRcg_adapter widget. 35
Figure 3-4. Grammar cascade. 36
Figure 3-5. Web browser main display. 37
Figure 3-6. Web browser control panels. 41
Figure 3-7. Speech controlled ic layout editor. 44

CHAPTER 4. 46

Figure 4-1. Design trade-offs 47
Figure 4-2. Architecture ofspeech recognition sofhvare. 48

VI

Figure 4-3. Process for adding speech recognition toa tcl/tk application. 49
Figure 4-4. Output of MLP foran utterance of "reload." 63
Figure 4-5. GramCracker displaying grammar for a WWW browser. 64
Figure 4-6. Grammar cluster dialog. 65
Figure 4-7. Performing phonetic recognition in GramGracker. 66
Figure 4-8. GramGracker using thefull vocabulary. 67
Figure 4-9. Demogrammar. 68
Figure 4-10. Transcribed pronunciation of"square." 68
Figure 4-11. "Square" with optional starting and ending silence. 69
Figure4-12. "Square" with optional "s." 69
Figure 4-13. Listing ofdemo grammar and dictionary file. 70
Figure 4-14. Greating thespeech objects and widgets. 71
Figure4-15. Gontrolling recognition. 72
Figure4-16. Parsing the recognized sentences. 74
Figure 4-17. The rest of the application source code. 75
Figure4-18. The finished demoapplication. 76

CHAPTER 5. 77

Figure 5-1. SRAM memory cell schematic. 80
Figure 5-2. SRAM senseamp and write circuit diagram. 81
Figure 5-3. SRAM dummyword driver. 83
Figure 5-4. SRAM self-timing circuitry. 84
Figure 5-5. SRAM control circuits. 86
Figure 5-6. Address latch and driver. 87
Figure 5-7. Column select latch and driver. 88
Figure 5-8. Tree-structured sram address decoder and row drivers. 89
Figure 5-9. SRAM cell layout. 91
Figure 5-10. SRAM block layout. 92
Figure 5-11. Layout of3kWord x 32 bit sram integrated circuit. 93
Figure 5-12. ROM address latch. 95
Figure 5-13. ROM address decoder and wordline driver. 95
Figure 5-14. ROM senseamp. 96
Figure 5-15. ROM control circuits. 99
Figure 5-16. Layout of 1024 word x 16bit ROM block. 101
Figure 5-17. Sample parameters to synthesize a ROM. 102
Figure 5-18. Example irsim commands to simulate ROM. 102

CHAPTER 6. 103

Figure 6-1. Previous UCB speech recognition hardware system. 104
Figure 6-2. Comparison ofhardware partitions. 105

vii

Figure 6-3. Low-power system architecture. 107
Figure 6-4. SORASTA IC layout. 108
Figure 6-5. Sorasta chip algorithm. 109
Figure 6-6. Viterbi chip architecture and data flow. 110
Figure 6-7. Dictionary subsystem memories. 112
Figure 6-8. Phone subsystem memories. 113
Figure 6-9. Grammar subsystem memories. 115
Figure 6-10. Backtrace subsystem memories. 117

CHAPTER 7. 121

Figure 7-1. Mlp chip architecture. 122
Figure 7-2. Datapath for MLP layers. 124
Figure 7-3. State transition diagram oflayer control. 125
Figure 7-4. Input buffer control state diagram. 127
Figure 7-5. Inputbuffer datapath. 128
Figure 7-6. Mlp chip layout. 134
Figure 7-7. Mlp chip bonding diagram. 135

CHAPTERS. 136

Figure 8-1. Partitioning recognition across the network. 138

Vlll

List of Tables

Table 2-1. N-best digit recognition. 16
Table 2-2. Breakdown of digit recognizer errors. 17
Table 2-3. Mlp output scoring byphoneme. 22
Table 2-4. Mlp Nth best results. 23

Table 2-5. N-best digit recognition using spRcg. 29
Table 2-6. SpRcg user test results. 29
Table 5-1. Voltage scaling a 128 word 12bit 0.6 |Lim SRAM. 94
Table 5-2. SRAM speed and energy vs. size at 1.5V. 94
Table 5-3. ROM speed &energy vs. size and voltage. ICQ
Table 6-1. Comparison of memory sizes. 106
Table 6-2. Memory sizes for various viterbi configurations. 119
Table 7-1. Mlp ROM sizes. 129

Table 7-2. MLP RAM Sizes. 129

Table 7-3. Mlp chip outputs. 130
Table 7-4. Mlp chip inputs. 131
Table 7-5. Mlp chip power supplies. 132
Table 7-6. Parameter inputvalues. 132
Table 7-7. Mlp chip power consumption. 133

IX

A CKNOWLEDGMENTS

First and foremost I wish to thank my family. My parents Myra 6 Albert have given me

unconditional love andsupport throughout my life. They deserve the credit for everything I

have accomplished. My brother and sister-in-law Jeff(^Cheryl always helped me to get away

from itallon vacations, and lately provided a welcome distraction with my new nephew Gre

gory. I also wish to thankmy grandparents, Selma 6 DavidSole and Pauline Aaron Burst-

ein for never questioning how I could be 2years away from graduation for 3straight years.

My only regret is my grandfather Aaron could not be with us at my graduation. My cousin

(and friend) Beth Filers has helped me survive this last, andhardest, year anda half. I am

indebted to you all.

Next I wish to thank my many fnends among my fellow graduate students. By far the best

part ofbeing at Berkeley was working and playing with this (by and large:-) great group of
people. Among the many are Eric Boskin, who showed me it is possible to graduate. Sam

Sheng, who didn't, but did help me out in just about every other way. Tony Stratakos and

Dave Lidsky, who made me feel like a good teacher. Tom Burd, who expanded my vocabu

lary. The gang that's still haunting 550 Cory Hall —Jennie Chen, Shankar Naraya-

naswamy, Ian O'Donnell, Arthur Abnous, Craig Teuscher, JeffGilbert, Renu Mehra, Lisa

Cuerra, and Ole Bentz —and those who got away —Jane Sun, John Barry, Tony Stolzle,
Monte Mar, Lars Thon, Sonia Sachs, andAnantha Chandrakasan to name a few —all

made it worth while.

Several members of the faculty and staff have helped me greatly. Professor Jan Rabaey

helped me to learn a great deal while TAing 141 and241, and letme teach some ofthe lec

tures. Professor Nelson Morgan helped me with my speech recognition research andgener

ously agreed to beon my Qualsand Thesis committees. Likewise, Professor Charles Stone

donated his time for my Quals and Thesis committees. Kevin Zimmerman, our indefatiga

ble system administrator has somehow managed to keep our computers running without

losing hissanityor sense of humor (asfar as I can tell).

Finally, I wish to thank my research advisor, Robert Brodersen. He has provided me with

the best support andresources thata grad student could ever hope for. What's more, he has

taught me the importance ofhaving andcommunicating a vision, a lesson I will use for the

restof my life.

XI

1 Introduction

This thesis describes the application ofspeech recognition to a new environment: hand

held, multi-media, wireless computing. This chapter will first describe the InfoPad

project, alarge research project that is exploring this new environment. Then, this chapter
describes theneed for speech recognition in hand-held terminals.

1.1 InfoPad and Hand-Held Devices

The recent explosive growth of the Internet and the World Wide Web (WWW) have

shown that the ability to find and access information is at least as important as the abilitv'

to store information. The ability to create local copies ofinformation on one's own hard

disk is becoming increasingly irrelevant; the network itself is now the storage device. It

makes more sense to retrieve the most up to date information from the source on demand,

rather than store local copies that rapidly become obsolete and that fill expensive storage
devices.

In addition to using the network to store data, it also makes sense to treat the network as a

computational resource, rather than adding increasingly powerful processors and periph
erals to portable computers. Attaching high speed computers to the network instead of

placing them in portable devices has two advantages. The first is areduction in power con
sumption and size. Portable devices are powered by batteries, so their hardware design
must place as much emphasis on low power and low weight as itdoes on high computa
tional throughput, leading to inevitable trade-offs. Non-portable hardware, in contrast, has

much less severe penalties for power consumption and weight. Inevitably, non-portable
hardware will be cheaper than portable hardware of the same computational power.

Compute
Servers

Base

Station

High-Speed Fiber Backbone

f Video ^
Database

0-0
Compressed

Video

a

Speech
Recognizer

Commercial

Database
(news, financial
information, etc)

Wireless Multimedia

Terminais
• X-termlnal

• Video Display
• Audio input/Output

Figure 1-1. Overview of InfoPad.

The second advantage ofattaching processing power to the network is availabilit)'. Apro
cessor in a laptop is available only to that laptop's user; further, it is the only processor
available to that user. Most of the time, the user is not performing complex operations, so
that processor is sitting idle, although it still adds to the weight, cost, and power consump
tion of the laptop. When the user does want to perform computations, s/he usually wants

as much throughput as possible. On the other hand, ifthe user performs computations on
a workstation on the network, other users can utilize that workstations processor when it

would be otherwise idle. Even better, by using the techniques demonstrated by the Net
work ofWorkstations (NOW) project [i8] auser can utilize the power of many workstations

during those times s/he needs high computational throughput. Overall, leaving computa

tional and storage assets on the network allows for the most economical design ofhard

ware as well as the most cost effective sharing ofresources.

With most orall storage and computational tasks left on the network, theportable device

is reduced toan inputand output device; connectivity and easy-to-use interfaces become

paramount. TheInfoPad system fulfills this role; it provides audio, text/graphics, and full

motion video output; its inputdata types arepenandaudio. InfoPad also hasexcellent net

work connectivity: pico-cell radio links provide 2 Mbit/second downlink bandwidth and

64kbit/second uplink bandwidth. See Figure 1-1 for an overview of InfoPad.

The InfoPad's I/O capabilities combined with its radio connectivity to network storage

and computation make itseem tohave the capabilities ofa portable workstation with one

interesting exception: it has no keyboard. The main reason for excluding a keyboard is

size: the ultimate form factor for infopad will be tablet size, wafer thin, and entirely cov

ered by the display. Another reason for excluding akeyboard is ease ofuse. Although many

people use keyboards every day, most people are not prolific at typing; furthermore, an

increasing number ofthose thatareprolific aresuccumbing to repetitive stress injuries. In

contrast, speaking and writing are nearly universal skills. Aportable terminal with pen and

speech input would be an ideal combination of small size and ease of use.

1.2 Speech Recognition in InfoPad

1.2.1 Software

Replacing a keyboard with a speech recognizer is a difficult task. Despite steady advances

in the state oftheartofspeech recognition, speech recognizers are still nowhere nearas

skillful as humans are at transcribing spoken words into written text. In order to improve

recognition accuracy, it is helpful to relax one or more ofthe constraints on speech recog

nition as shown in Figure 1-2. The first constraint is to use isolated words, forcing speakers

to pause between words, as opposed to continuous speech, inwhich words may be slurred

together. The second constraint is speaker dependent recognition, which requires exten

sive training on every new speaker, as opposed to speaker independent recognition, which

requires no new training for new users. In between these two extremes are speaker adapt-

3

ablesystems, which will work accepatably well without training on new users, but which

will perform even betterwith more training. The third constraint is the size of the vocab

ulary, which measures the number ofwords the recognizer can understand at any given

time. The fourth and final constraint is the perplexity of the grammar, a measure of how

many words can follow another word in a sentence.

This thesis describes the implementation ofaspeech recognition system, called spRcg, for

Easy Difficult

isolated Word Continuous Speech

Speaker Dependent Speaker Adaptable Speaker Independent

Small Vocabulary Medium Vocabulary Large Vocabulary

Low Perplexity Grammar High Perpl^ity Grammar

Figure 1-2. Difficulty ofvarious speech recognizer types.

use with portable terminals such as the InfoPad. In terms of Figure 1-2, the recognizer
accepts continuous speech, is speaker independent (with speaker adaptable capabilities),
uses small to medium vocabulary, and is optimized for constrained (low perplexit)'} gram
mars.

Speech recognizers output whole words or, in the case of continuous speech recognizers,
whole sentences; keyboards output individual ascii characters. Given their differences, it
is to be expected that programs can not simply swap out keyboard input and swap in
speech recognition input. Furthermore, in order to make the recognition task as easy as
possible on the vocabulary size constraint and the grammar perplexity constraint, it is
desirable to pass information from the application back to the speech recognizer. For

these reasons, this researching includes the development ofprogramming interfaces and

toolkits to allow programmers to include speech recognition into their applications with

minimal of effort.

Using speech recognition (along with handwriting recognition) inapplications represents

a paradigm shift from the window, icon, mouse, pointer (WIMP) strategy. As part of the

research effort into developing a new user interface for portable terminals, thespeech rec

ognition software toolkit includes methods that allow users to control the speech recog

nizer and to correct recognition errors. Furthermore, as a demonstration of this new

software, this research includes an application program, a speech recognition controlled

World Wide Web browser.

1.2.2 Hardware

One major contribution ofthe InfoPad project has been the advancement oflow power

integrated circuit design techniques. Although the InfoPad model calls for performing the

majority ofall computations on the network, there must always be some computations

performed locally on the pad itself. InfoPad performs such tasks as multiplexing and

demultiplexing packets, decoding vector quantized video, and updating frame buffers on

full-custom, low-power CMOS integrated circuits. In fact, the low power design tech
niques that were applied to these chips were so successful that they consume a total ofless

than 5mW, atrivial portion of the InfoPad's power consumption. This lower power design
was so successful, that future versions ofInfoPad will be able to have increased computa

tional throughput while still maintaining extremely low power consumption.

In keeping with the low power design research ofthe InfoPad project, this thesis also

describes work done to design a low power, custom CMOS IC implementation ofInfo-
Pad's speech recognition algorithm.

Performing the recognition on the network is apractical solution, butthere are also advan

tages to performing recognition in the portable device itself. The first advantage is band
width. Transmitting good quality speech to the network requires an uplink bandwidth of
about 64 kbit/second. In contrast, transmitting pen data requires only about 2kbit/second,
so by far the majority ofthe uplink bandwidth is consumed by audio. Ifspeech recognition

5

was performed on the InfoPad terminal, then the uplink would only need to transmit an

ascii representation of the recognized words, needing only a few hundred bits/second.

This reduction in uplink bandwidth can reduce the needed complexity and power con

sumption ofthe InfoPad's radio, and could also allow operatation inregions with only low

bandwidth radio links.

The second advantage is autonomy. Ifa future InfoPad has enough local computation to

perform useful applications locally, as seems likely given current research into low power

microprocessors [2] [6], then an InfoPad could be used even when it is outside of an area

that allows radio connections to the network. In these circumstances, the pad will need to

perform speech recognition in order to be useful. However, general purpose microproces

sors are notoptimized for the tasks involved inspeech recognition, so the lowest cost and

lowest power implementation ofspeech recognition would be on custom hardware. One

could also imagine the usefulness ofa low power speech recognition chipset in devices

other than InfoPad.

In addition to making a contribution to InfoPad and to speech recognition, the research

described in this thesis also made contributions to the work in low power CMOS design.
In particular, this thesis describes low power memory design techniques that are needed

for low power speech recognition hardware, but which are also generally useful, having
been incorporated in many ofthe InfoPad's custom chips.

2 Algorithm

2.1 Goals

Many researchers are working to improve the recognition accuracy ofspeech recognition

algorithms. The goals ofthis research is to use these algorithms wherever possible and to

adapt them to the software and or hardware requirements ofportable recognition wher

ever necessary.

Throughout the speech recognition research community, there are algorithms that are

commonly used. For example, the Viterbi algorithm on hidden Markov models is widely

used. This research seeks to use these "state ofthe art" algorithms for two reasons. First,

because using them produces good results. Second, to demonstrate that the hardware,

programming, and user interface techniques developed in the course of this work are

applicable to widely used algorithms.

There is not a consensus in the speech recognition community on the relative merits of

competing algorithms or variations on algorithms. For example, there are several popular
front end signal processing algorithms, including RASTA [8] [9] and LPC based cepstral
coefficients. Variations on hidden Markov models abound, especially in regard to topolo
gies and to classes ofoutput probability distributions. Generally, when these variations

exist, they each provide roughly equivalent recognition accuracy, or their relative merits
have not yet been decided.

Usually, "relative merits" refers to recognition accuracy, or perhaps efficient implementa
tion on general purpose hardware. Implementing speech recognition in low power hard-

ware has a different set ofcriteria, so clear winners may be obvious in this context among

otherwise equivalent algorithms.

Figure 2-1 shows the components in atypical speech recognition system, as well as the spe

cific choices ofalgorithm used in the spRcg speech recognition system. The following sec-

Speech
1

Front
End

I
Output

Distribution

I
Phoneme
& Word

I
Grammar

Text

RASTA-PLP

Multi-Layered Perceptron

Vlterbl Search of hmm

Clustered BIgram

Figure 2-1. Choice of components in the SpRcg system.

tions describe each individual component.

2.2 RASTA-PLP

Speech recognizers use front end signal processing to reduce input data rates and to
extract the parts ofthe audio signal that contain phonologically important information.
The spRcg speech recognizer uses the RASTA-PLP [8] [9] algorithm to perform front end
signal processing

Audio
8000 samples/

second

RASTA-PLP
Coefficients

500 coeff/
second

Recognizer

Figure 2-2. The role of front end signal processing.

The RASTA-PLP algorithm is based on the Perceptual Linear Predictive (PLP) algorithm,

which applies psychoacoustic principles to an all-pole model ofthe auditory spectrum.

The RASTA technique enhances the usefulness ofPLP for speech recognition by removing
the parts ofthe signal that are contributed by the acoustic channel - the microphone and

room acoustics. These components of the signal contribute constant or slowly vaiydng
parts of each band, which are removed by the band pass filtering stage, as shown in

Figure 2-3. Only the time varying part of the signal - which presumably contains the

important parts ofthe speech signal, are left.

RASTA-PLP's advantages for the spRcg speech recognizer are twofold. First, the RASTA

technique provides robust recognition even in varying acoustic environments. Since Info-

Pad is portable, it records speech in a variety ofenvironments, with little control over the

relative placement ofthe microphone. Furthermore, it is helpful to be able to train on

standard databases, which contain speech recording under ideal circumstances and with

expensive (and carefully placed) microphones, and then be able to recognize speech in
real world conditions.

The second advantage is coding efficiency. RASTA-PLP can achieve equivalent recogni
tion accuracy using fewer coefficients than can other common algorithms such as cepstral
analysis. Where cepstral analysis of speech sampled at 8kHz typically uses 8coefficients,
RASTA-PLP can perform well with 5' With fewer coefficients to process, the output prob
ability computation (in the case of spRcg, the output probabilit}' multi-layered percep-

Fast Fourier Transform

Critical-Band Integration and Re-Sampling

Logarithm

Band Pass Filtering

Equal-Loudness Curve

Power Law of Hearing

Inverse Logarithm

Inverse Discrete Fourier Transform

Solving Linear Equations (Durbin)

Cepstral Recursion

Figure 2-3. Block diagram of rasta-plp.

tron) needs to perform fewer computation and fewer memor>' accesses, thereby saving

powerconsumption in special purpose hardware.

ID

2.3 Hidden Markov Model

spRcg's speech recognizer isbased on the hidden Markov model. Several excellentrefer

ences describe hidden Markov models and their uses in speech recognition

[ii] [12] [19] [26]. This section provides a briefoverview, then presents the HMM used by the

previous generation Berkeley speech recognition hardware as an example. The HMM in

spRcg's speech recognizer is described laterin this chapter.

2.3.1 Algorithm

The hidden Markov model (HMM) describes a model for the process of generating

speech; the Viterbi algorithm is used to recognize speech by finding the most likely path

through an HMM for any given utterance.

An HMM is a graph, containing states connected by edges, that represents spoken lan

guage. The act ofspeaking is modeled by the process oftraversing this graph, from one

state to another, according to a random process determined by probabilities associated

with the edges in the graph. The actual sounds ofspeech, or at least some coefficients

derived from these sounds, are randomly generated according to probability distribution

functions that are attached to the presently occupied states. The Markov model is "hid

den" because the outside world cannot see which state is currently occupied; the outside

world only sees the coefficients emitted by the HMM. The task ofthe Viterbi algorithm is

to infer the most likely sequence of states through the HMM, given a particular HMM and

given a particularsequence ofcoefficients

An HMM is amodel ofaspoken language, or ofpart ofaspoken language. The knowledge

incorporated into an HMM can be described at three levels: phonetic, word, and grammar
(Figure 2-4). At the lowest level, the phonetic level, the HMM describes, in a statistical

fashion, how the individual speech sounds ofa language relate to the coefficients used to

encode their acoustic expression. Phonemes are linguistic categories used to describe all

of the sounds in a language. Different languages have different phonemes; even the pho
nemes in a particular language are subject to interpretation. For example, different sys

tems use slightly different lists to describe the phonemes in English. The same phoneme

11

^phohemesy ^ phonemesy)honemesy

Words'

Grammar

Figure 2-4. Hierarchy In a hidden Markov model.

can sound differently depending on such variable as where it occurs in a word, what are

the surrounding phonemes, the speakers accent, and the speaker's intonation.

Phoneme models are themselves small HMMs. They can be connected together with
edges to assemble larger HMMs that model words. In turn, the words can be connected by-
edges to form large HMMs that model the entire spoken language (or at least that part of

it that the recognizer can recognize).

Speech recognition systems often distinguish phonemes on a different basis than do lin

guists. Meaning is less important; acoustics are more important. For example, coarticula-

tion, the influence ofone phoneme on aneighboring phoneme's pronunciation, can have

a major effect on the acoustics of a phoneme. Speech recognizers often use multiple
models to represent the same phoneme depending on its neighbors. Biphones are models
ofphonemes depending on one of their neighbors; left biphones are identified by the pre
ceding phoneme, right biphones, the following phoneme. Atriphone is amodel ofapho
neme with a particular phoneme preceding it and a particular phoneme following it.
Different speech recognition systems are often distinguished by their choice ofwhich

phonemes, biphones, and triphones they use, in addition to the topolog)' ofthe HMM used
to model individual phonemes[12].

12

In terms of recognition accuracy, there is a trade-off between using a larger number of

more specific phonemes and a smaller number of more general phonemes. If properly

trained, more specific phonemes can provide greater recognition accuracy. On the down

side, the greater the number ofphoneme models, the less training data there is for each

phoneme, until ultimately some ofthe phoneme models would be under-trained.

An alternative approach to using phonemes as the basic building blocks ofthe HMM is to

use words as thebasic building block. The trade-off is one offlexibility versus accuracy. A

phoneme based recognizer is more flexible because once the phonemes are trained,

models ofnew words can be assembled from existing phonemes without requiring any

new training. Word models can have higher recognition accuracy because they implicitly

train all ofthephonemes in their proper context. However, adding new word models to a

recognizer requires new training (and worse, gathering newtraining data). Furthermore,

word models are harder to train than phoneme models because they typically have a

smaller training set. SpRcg's speech recognizer uses phoneme models so that applications

can create new words without requiring training.

2.3.2 HMM for Berkeley Hardware

This section describes a speaker independent, continuous word digit recognizer that was

developed to produce models for the previous generation speech recognition hardware

[i3][^][25]. It serves as acase study and illustrates one implementation ofaspeech recog
nizer, (although itis somewhat different from the one currently used in spRcg). The main

distinguishing features ofthis recognizer were its use ofword models and its use ofdiscrete

output probabilitydistribution functions.

It is important to examine this previous generation speech recognition system because its

implementation uncovered the bottlenecks inherent in speech recognition hardware.

Examining this system lead to the software choices described in this chapter and the hard

ware choices described in Chapter 6.

2.3.2.1 Data and Preprocessing

Training and test data came from the TIDIGITs[28] speaker independent, connected digit

corpus, which contains samples ofspeaker saying sentences containing between one and

seven digits. Both male and female speakers were used for training and testing, but no

juvenilespeakers were used.

Speech data was subsampled from 20kHz to 16kHz, then processed with a mel-frequency
weighted cepstral analysis, which weights frequency bands by their psychoacoustic impor
tance. The resulting cepstral coefficients were vector quantized (VQ)[7] because the

HMM used discrete output probability distribution functions. Therefore, aclustering algo
rithm used the training data to produce four codebooks: power, power derivative, ceps-
trals, and cepstral derivatives. The two cepstral codebooks have 256 entries; the power
codebooks, 16.

The VQ codebooks were generated by a clustering algorithm as follows. Each vector was

normalized so that all of its dimensions had the same standard deviation, so that each

dimension was treated as equally important when performing vector quantization. Next,
an initial codebook was selected by randomly choosing vectors from the test data. The rest

ofthe test data was categorized according to their closest entries in the codebook; all of

the data for aparticular entry formed a "cluster." After all the data was categorized, the
geometric center of each cluster formed the entries in a new codebook. This clustering
process was repeated iteratively until the net distortion, the sum ofthe euclideandistances

from the vectors to their nearest codeword, stopped improving.

2.3.2.2 Models

The vocabulary contains twelve words: the digits "one" through "nine," as well as separate
models for "oh" and "zero" (even though they represent the same digit) and an explicit
model for pauses between words..(The pause model was helpful because the transcription
ofthe data often had explicit pauses. The word models also had built in transitions, as
described below, to help with brief silences between words that were not transcribed as

pauses.)

Figure 2-5.10 state hmm for the word "oh."

Figure 2-5 shows the topology of the HMM ofthe word "oh." The states in the middle of

the model have transitions to themselves and to the state immediately following. The first

and last states are intended to model silence that may or may not occur between spoken

words, so there are additional transitions—to the second state and from the second to last

state—to bypass the first and last states (in case there is no silence). The topologies ofthe

other digits' models are similar, except they have more states in the middle because the

words are longer and contain more sounds. All the other digits' models have 15 states,

except for "zero" and "seven" which have 20 states. The explicit silence model has two

states.

Each state has four output probability distribution functions, one each for the cepstrals,
cepstral derivative, power, and power derivative vectors. The first two contain 256 entries;
the latter two, 16 entries. Since each quantized vector has its own output PDF, each vector
is modeled asbeingindependent ofthe others.

2.3.2.3 Trainingand Recognition

The models were iteratively trained using the forward backward algorithmfiq] until their
recognition results on the test set showed no improvement. When training on aparticular
sentence, the word models are assembled in the same sequence as they were spoken in
the sentence. Thus, the training data must be labelled, but it does not need to be seg
mented because the forward-backward algorithm automatically aligns the models with the
speech. For each training sentence, the same word models are re-assembled into a new

sentence before training.

15

Unlike the training HMMs, the recognition HMM contains the word models in an almost

fully connected configuration. Thus, a sentence may contain any number ofwords and

any word may follow any other word, with one exception: the word "oh" may not follow

the word "zero." This rule eliminates anotherwise frequent error by therecognizer. It has

little drawback because speakers generally use only one ofthe two versions ofthe digit o

in a sentence. Otherwise, the grammar is completely uniform, with allword toword tran

sitions probabilities identical.

Testing was performed on 28583 words contained in sentences ofone to seven digits. In

addition to Viterbi recognition, the models also used an N-Best algorithm to detect the 5

best sentence matches. Table 2-1 shows that using the two best sentences greatly decreases

N-Best Number of

Errors

Recognition
Accuracy

1 478 .983

2 240 .992

3 191 .993

4 169 .994

5 154 .995

Table 2-1. N-best digit recognition.

the number of errors, with rapidly diminishing results with larger values of N. The

number oferrors is the total number ofinsertions, deletions, and substitutions, as deter

mined by adynamic programming algorithm comparing the correct answer to the recog
nized sentence. The model forsilence isnot included in the error calculations because it

does not affect the meaning ofthesentence.

The errors in the most likely sentence are broken down in Table 2-2. Errors are sorted by
word and by type. Since substitutions involve two words, the missing word and the added
word, each substitution is in the table twice: once for the missing word and once for the

added word. The word "oh" caused the most problems, being responsible for almost one

third of all the errors. The word "oh" is probably the most difficult to recognize in a sen
tence because it is so brief in duration that it is easily slurred into the pronunciation of

proceeding and following words.

16

Word Insertions Deletions Substitutions

(missing)
Substitutions

(added)

oh 30 50 75 64

one 4 8 13 18

two 0 13 40 27

three 1 0 21 18

four 4 7 24 38

five 13 3 48 24

six 2 4 5 10

seven 0 5 13 7

eight 3 24 23 19

nine 6 5 20 64

zero 0 7 7 0

Total 63 126 289 289

Table 2-2. Breakdown of digit recognizer errors.

These digit models were converted to a format readable by the UCB speech recognition

hardware and were used to test the functionality ofthe system.

2.4 Multi-Layered Perceptron

2.4.1 Overview

Every state in an HMM has an output probabilit)' distribution function (PDF) that maps
input observations into probabilities. Instead ofusing conventional discrete orcontinuous

probabilit)' functions, it is also possible to use a multi layered perceptron to perform this
mapping. Using an ML? is not a radical departure - it is simply another statistical tech

nique to compute probabilities based on a large set oftraining data. As a statistical tech

nique, an MLP does have some advantages as part ofa speech recognition system in
general and as part ofa low power system in particular.

Astatistical model ofspeech should derive as much of its content as possible from training
data. Applying outside constraints is fine as long as they are based on correct assumptions.
However, constraints that are imposed to make the training and recognition task more
computationally tractable will reduce the overall recognition accuracy because they pre
vent the models from identifying certain types ofpatterns in the data.

17

The first advantage ofan MLP is its lack ofa priori assumptions. Other statistical methods

contain built in assumptions about the form and nature ofthe probability distribution,

even before training begins. For example, consider a discrete probability distribution

based on vector quantization. Vector quantization is based on some distortion metric that

determines the relative importance of the coefficients. The choice ofa distortion metric

might be based on past experience or good heuristics, but inevitably itwill assign impor

tance to irrelevant data in some cases because all ofthe coefficients do not always have the

same relative importance. Models that train on this vector quantized data will belimited

in their accuracy because some of the quantization was based on unimportant data; the

training process has no way to correct poor assumptions that are implicit in the distortion

measure. For another example, consider a continuous probability distribution function

made as a mixture ofgaussians. Simply the choice ofusing gaussians places some con

straints on the possible forms the PDF can take. Furthermore, many systems use diagonal
covariance matrices (that is, assume the coefficients are independent random variables)

in order to limit the parameters to a manageable number. However, speech coefficients

are usually not independent ofeach other, so using a diagonal coefficient matrix causes

the loss of valuable information—information an MLP could use.

Apriori assumptions about the statistics ofspeech have asecond drawback, one that is par
ticularly important to low power hardware design. Namely, these assumptions force the
recognizer to store a large number of redundant or irrelevant coefficients. For example,
consider the PDF's included in a set of biphone models of a single phoneme in different
contexts. These models should be somewhat different - which, after all, is the reason for

having biphones in the first place. However, they should all have agreat number of simi
larities since they model the same phoneme. Unfortunately, each phoneme must repeat
this same information in its own PDF's, which means there must be more coefficients in

total than are really needed.

For amore complete discussion of MLPs and their uses in speech recognition, see[i].

18

2.4-2 Algorithm

A Multi-Layer Perception (MLP) isa stateless model that producesa set of outputs based

on a set of inputs. In the case of the speech recognition system, the inputs are the coeffi

cientsfrom a frame ofspeechdata,as well itscontext, whichcontains the coefficients from

several preceding and following frames. The outputs of the MLP correspond to

P{phoneme\data). Because standard HMMs expect P{data\phoneme), the MLP output

can be converted as follows:

P{data\phoneme) = ' P{phoneme\data)

(except standard HMM's PDFs usually do not use the context as partof their inputs).

4 Past Frames

/ \
Rasta Coeffs

120 INPUT NODES

Current Frame 5 Future Frame

/ \ / \
Rasta Coeffs Rasta Coeffs

ooooo
........ FULL

HIDDEN • • •
NODES

49
OUTPUT •• •
NODES

t M ^ ^ ^b p d a ey I
OUTPUT: Probability that current frame is each of the phonemes

Figure 2-6. Multi-layered perception to compute phoneme probabilities.

19

The MLP contains three layers: the input layer, the hidden layer, and the output layer as

shown in Figure 2-6. (By convention, some call this a three layer MLP while others would

call it a two layer MLP because the input layer is really just a place holder for the input

coefficients.) These inputs are organized by frame, with the earliest frame's coefficients

feeding the left-most inputs; the last frame's feeding the inputs on the right. For speech

sampled at8kHz, there are 5RASTA coefficients plus their first derivative with respect to

time, as well as log power and its derivative, for a total of12 coefficients per frame. After

finishing its computation, the MLP left shifts the inputs by one frame, adding anew frame

to the right and eliminated the left-most (oldest) frame. Although the MLP's input spans

several frames, its output probabilities are considered to correspond only to the "current"

frame, with the context frames only there to help the MLP identify the current frame. Fur

thermore, since the hidden and output layers of the MLP are memoryless, they do not

make use ofthe fact that the inputs are shifted frame by frame. The phoneme probabilities

could be computed in any order as long as the context is presented correctly; shifting the

frames is simply a convenient way to compute theprobabilities.

Each node in the hidden layer performs a multiply-accumulate function, followed by a
nonlinear threshold function. The network is fully connected, meaning that every input
has an edge, with its own coefficient, to every node in the hidden layer. After the input
nodes have been assigned their coefficients, each hidden node multiplies the value of

each input node by the coefficient on the edge connecting them, then accumulates these

sums. Finally, each hidden node applies the nonlinear threshold function:

Fix) = - ^
l+e'-"

After the hidden layer has finished its computation, the output layer computes the pho
neme probabilities. The output layer performs the same algorithm as the hidden layer
does, except its inputs are the outputs ofthe hidden layer. Since the range ofthe threshold

function is (0,1), the nodes' outputs are already in the proper form to represent probabili
ties. Each output node corresponds to aspecific phoneme. The hidden nodes, in contrast,

are not assigned any fixed representation; their "meanings" are determined automatically
during training.

20

As shown in Figure 2-6, the MLP inspRcg uses 120 input coefficients (from a 10 frame con

text) , 120 hidden nodes, and 49 outputs. Larger MLPs give higher recognition accuracies,

butthis size MLP was chosen as a comprimise for ease ofimplementation inhardware and

for computational complexity on a workstation.

2.4.3 Training

The MLPs create their coefficients by training ona large set ofspeech data that has been

phonetically labeled. In brief, training is as follows: For each frame ofspeech, the correct

answers are presented at the outputs. The MLP then alters coefficients in a way that

reduces the error, the difference between the computed output and the correct answer.

This training algorithm is called error back propagation (EBP).[2o]

SpRcg's MLPs were trained on the TIMIT training set, which contains 462 speakers saying

8sentences each. This database is well suited to training MLPs because its data has already

been segmented and phonetically transcribed. Furthermore, it contains a large number

ofAmerican English speakers, grouped by dialect region, speaking a large number of

words.

After each training iteration, the MLPs were cross validated against a test set by measuring
their frame-by-fi"ame phoneme identification. During the course oftraining, the gain term
in the EBP was multiplied by 0.93 after each iteration. Training the MLP with 120 input

and 120 hidden nodes took 40 iterations.

2.4.4Results

Table 2-3 shows the results ofthe MLP identifying phonemes frame by frame on the the

TIMIT test set, which contains 168 speakers saying 8 sentences each. The first column is

the name of the phoneme. The next three columns show the number of frames correctly
identified, the total number offrames, and the percent correct on aframe by frame basis.

The first row of Table 2-4 shows the overall results of the MLP's frame-by-frame classifica
tion of phonemes. (When computing the score in Table 2-4, several sets of phonemes
were considered equivalent, as described in [11]. Namely, ax and ah, ix and ih, aa and ao,

zh and sh, en and n, el and 1; and epi, vcl, cl and sil.) Usually, when the MLP's highest

21

Phoneme Correct Total Score

b 885 1564 0.56586

d 609 2030 0.30000

dx 1279 1826 0.70044

g 438 1323 0.33107

P 2324 4217 0.55110

t 3387 6704 0.50522

k 3742 6250 0.59872

q 2660 5852 0.45455

ci 18934 24970 0.75827

vcl 8155 14252 0.57220

]h 1001 1880 0.53245

ch 1275 2249 0.56692

s 14400 24876 0.57887

sh 3592 5579 0.64384

z 4898 10629 0.46081

zh 58 636 0.09119

f 4737 9399 0.50399

th 106 2255 0.04700

V 1114 4229 0.26342

dh 749 3332 0.22479

m 4141 9106 0.45476

n 5641 12712 0.44375

ng 951 2474 0.38440

en 528 1656 0.31884

1 4117 11511 0.35766

r 4845 10811 0.44815

w 3483 5856 0.59477

y 1034 2132 0.48499

hh 1755 3824 0.45894

Table 2-3. MLP output scoring by phoneme.

22

Phoneme Correct Total Score

el 1584 3171 0.49953

iy 12620 16735 0.75411

ih 3602 11213 0.32123

eh 2642 11272 0.23439

ey 5397 10604 0.50896

ae 4748 10458 0.45401

aa 2421 10691 0.22645

aw 1435 3750 0.38267

ay 7424 10982 0.67602

ah 2210 7756 0.28494

ao 4268 9257 0.46106

oy 667 2242 0.29750

ow 2416 7859 0.30742

uh 198 1655 0.11964

uw 2201 5564 0.39558

er 8848 16349 0.54120

ax 2318 6880 0.33692

ix 4123 13035 0.31630

sil 40657 47168 0.86196

epi 767 1387 0.55299

Table 2-3. MLP outputscoring by phoneme.

Nth Best Fraction

Correct

1 0.56225

2 0.71125

3 0.78605

4 0.83243

5 0.86457

Table 2-4. MLP Nth best results.

probability output was not the correct phoneme, the correct output was still one of the few
highest outputs. The subsequent rows show how often the correct phoneme was among
the N highest outputs, for different values of N.

23

2*5 Clustered Grammar

2.5.1 Grammar Bottleneck

As described in Chapter 5 and[3][4][5], the key to designing low-low power hardware is

the ability to break up an algorithm into small, local, slowly running, parallel elements.

Within an HMM, thegrammar poses thebiggest bottleneck while trying toparallelize the

Viterbi search algorithm. Ideally, the task ofrecognizing speech with a large vocabulary

model should besplit over many individual processors, each searching through a subset

of the overall vocabulary. Each of these processors would have modest speed require

ments, and hence could operate at low voltages. Furthermore, each processor could have

its own low power memories on-chip, greatly reducing interconnect capacitance, and

hence power consumption. When performing a viterbi search within a phoneme or

within a word model, all transitions are to awell defined set ofnearby states, so the algo

rithm can easily be split.

However, the problem occurs at the grammar level, i.e. transitions between words. One

ofthe most common statistical grammars, the bigram grammar, uses transitions between

every pair ofwords. Thus, for a vocabulary ofNwords, there are transitions to be pro

cessed. For large vocabularies, this grammar processing will be the bottleneck. For exam

ple, in the UCB hardware system (see Section 2.3.2 and Section 6.2), grammar processing
was the greatestbottleneck.

Word-pair grammars, which list all possible successors for agiven word, can have a much

lower number of edges. Thus, they are more suitable for a low power system. However,
word-pair grammars are not ideal because they can have irregular structures. Since any
word can still potentially connect to any other word, and to any number ofother words,

hardware devoted to grammar processing must retain a great deal offlexibility. In hard
ware design, flexibility means added size and complexity - hence it means added power
consumption.

2.5.2 Breaking the Bottleneck

The spRcg speech recognition system uses aclustered grammar, which can be considered

a transformed version ofthe word-pair grammar. The clustered grammar gets its name

24

state -> State

Phoneme -> Phoneme

Word -> Word
(grammar)

Phoneme

Phoneme,

End of Word

Figure 2-7. Hierarchy in the HMM.

because itrequires each word in the vocabular)' to be a member ofone or more clusters.

Grammar transitions occur between clusters, notbetween words.

Bigram: O(N^)
Words Words

Clustered: 0(N)
Words Clusters Words

Figure 2-8. Clustered grammar reduces complexity.

25

As shown in Figure 2-8, a bigram grammar can be transformed into a clustered grammar,

greatly reducing the number ofedges and hence reducing both the computational com-

plexiyt and the amount ofmemory needed. Furthermore, since the bigram and clustered

grammars are topologically equivalent, clustering the grammar causes no loss in recogni

tion accuracy.

Clusters group words that are used interchangeably in the grammar. At the most general
level, a cluster might represent apart of speech -noun, verb, adjective, etc. More specifi
cally, words in a cluster will probably share more semantic similarities. For example,
Figure 2-9 shows two clusters used in avocabulary for an integrated circuit layout editing
program. The cluster on the right contains various layers ofan integrated circuit; on the

left, possible actions that can be performed on layers.

Clustering does not impose a severe restriction on grammars. In fact, for the intended use

of the spRcg speech recognizer—command and control ofapplications—clusters are a

natural and easy way to create grammars. Languages for interacting with computer appli
cations, as compared with natural languages - have highly regular grammars. First ofall,

programmers tend to create regular languages because they are easy to parse. Secondly,
many speech commands to programs will duplicate menu functions, which are them

selves regular and hierarchical.

2.5.3 Programming With Clusters

Furthermore, aclustered grammar fits well into an object oriented programming scheme.
(See Chapter 4for more on programming with spRcg.) One of the key attributes of object
oriented programming is inheritance; when anew class is created, it can inherit properties
and functions from one or more parent classes. The advantage of inheritance are extensi
bility -new classes can be added without having to rewrite alot ofexisting code -and sim
plicity - by inheriting properties and data, new classes don't need to duplicate existing
code.

For example, consider aprogrammer who must add capabilities for a third layer of metal
to an integrated circuit layout editor. In an object oriented program, much ofthe work
can be done by inheritance, since most ofthe properties ofmetal 3are similar to the prop-

26

erties ofother layers, in particular to the metal 2layer. Thus, hypothetically, the program

might have a Metal3 class that is adescendant ofthe EditableLayer class and the Wiring-

Layerclass.

What does this have to do with speech recognition? For aspeech controlled program, the

programmer must also add the words "metal three" to the appropriate places inthe vocab

ulary. Since the programmer just added the word to the program, s/he probably doesn't

have a large sample oftraining data to determine the proper bigram probabilities. Thus,

using a bigram grammar is often not practical for applications programmers. Rather, the

ideal situation is for the new word to be placed automatically into the proper grammar
clusters as determined by its inheritance. For example, "metal three" would be inserted

into the cluster shown in Figure 2-9 because ofits inheritance from the EditableLayer

class, and presumably would be inserted into other clusters appropriate to a member of

the WiringLayer class.

Metal 1

Metal 2

. Poly

N Diffusion

Pdiffusion

Figure 2-9. Example of a grammar cluster.

Using this paradigm, grammar clusters correspond to object oriented classes. The words

in acluster can be children ofthat class. Alternatively they can be class member functions

(such as fill, paint, erase, etc.).

Furthermore, by using instances of an object as members of agrammar cluster, the pro
gram can easily change its grammar while it is running to reflect new data. For an example

27

of this technique, see the discussion ofadding bookmarks to a world wide web browser

application.

The grammar clusters themselves are not states in the HMM: they do not have output prob
abilities and there is no delay in traversing them. Rather, they are abstract place-holders
like the start and end nodes in the word models.

Each cluster is instantiated twice in the HMM, once in the first layer, once in the second

layer. Clusters in the first layer collect transitions from their member words, keeping the
transition with the largest probability (in accordance with the Viterbi algorithm). Only
after the frame has been processed, are the transitions computed from clusters in the first
layer to clusters in the second layer, again according to the Viterbi algorithm. During the
next frame, when a word starts, itreceives its starting probabilities as stored in its clusters

in the second layer. Thus, the first layer ofcluster instances collect word ending transitions
from the current frame, while the second layer of clusters store word ending transitions
from the previous frame.

2.6 Recognition Results

Table 2-5 shows recognition results of the spRcg system on the TIDIGITs database using
most likely pronunciation models. The higher error rates compared with Table 2-1 reflect
the general purpose nature of the spRcg system. Namely its use of phonemes instead of
word models and the fact that the phonemes where not trained on digits. Furthermore,
the spRcg system uses 8kHz sampling, compared to 16 kHz for the system of Table 2-1.
Other work [14] has shown that ahybrid speech recognitions system similar to spRcg scan
achieve as low as 0.9% error if it is trained on theTIDIGITs database itself.

It is also interesting to note that almost half of the errors involved the digit "nine." This
'̂̂ §§^sts that abetter pronunciation model for nine would have significantly improved

the error rate. It also suggests that a pronunciation adaptation scheme, such as the one
described in Section 3-2-3» could produce large improvements by allowing the user to cor
rect a few problem words.

28

N-Best Number of

Errors

Recognition
Accuracy

1 2092 0.85

Male
2 1851 0.87

3 1791 0.87

4 1462 0.90

1 4038 0.72

Female
2 3814 0.74

3 3765 0.74

4 3333 0.77

Table 2-5. N-best digit recognition using spRcg.

The difference in recognition accuracy between men and women is hard to understand

because the MLP was trained on both male and female speakers.

Table 2-6 shows percent error rates from auser test ofthree males and one female speaking
typical command to navigate the World Wide Web browser described in Section 3.3.1.
The subjects first performed the test, which consisted of 38 sentences, using the standard
pronunciations, then repeated the test after customizing the pronunciations by speaking
each word in the vocabulary once (using the widget described in Section 3.2.3). The num
bers in the table reflect whether the entire command was correctly recognized.

Speaker

Nth BestTask ErrorRate (Percent)

No customization Customized

1 2 3 4 1 2 3 4

AB 16 5 3 3 21 11 5 5

SS 26 13 8 8 24 18 13 13

JC 34 29 24 18 21 18 18 18

AS 34 21 18 13 18 13 11 11

Average 28 17 13 11 19 15 12 12

Table 2-6. SpRcg user test results.

The initial pronunciations were chosen to work well with the programmer (AB), so cus
tomization did not help for that subject. For the other subjects, customizations showed
varying degrees of improvement in the first recognition result. In an actual application,

29

the users would use the customizer to improve only those words that caused the most rec

ognition errors, so recognition accuracy should go up with continued use.

Alarge proportion ofthe errors involved misrecognition of digits. So this test, along with
the TIDIGIT test, suggests that future improvements should go towards improving digit
recognition.

2.7 Summary

This chapter described the components ofaspeech recognizer in general, and the specific
choices that were made for the spRcg speech recognition system. Most of the algorithms
chosen—RASTA-PLP, Multi-Layer Perceptrons, and Hidden Markov Models—were

chosen because they are both commonly used algorithms and are well suited to low-power
hardware implementations. However, one part ofthe Hidden Markov Models—the gram
mar—had to be modified because it was the limiting factor in parallelizing the Viterbi
algorithm.

30

3 SOFTWARE:
User Interface and Applications

SpRcg provides acomplete toolkit for incorporating speech recognition into applications
programs. This chapter describes the components of spRcg's toolkit that are seen by the
user, as well as applications that were written using this toolkit. The internal programming
details ofthe toolkit are discussed in Chapter 4.

3.1 Coals

3.1.1 Creating a User Interface

The spRcg system s toolkit provides a standard user interface for all applications using
speech recognition. Writing the demonstration applications helped to test the implemen
tation of the toolkit and also gave feedback on what should be changed. Writing the appli
cations also helped to develop the programming interface to the toolkit, described in
Chapter4.

3.1.2 Ease of Use

These applications and mega-widgets represent the first generation user interface for Info-
Pad. As such, they provide valuable feedback from users on what constitutes agood user
interface. As users work for the first time on computers without keyboards, they learn what
sorts of feedback they require from applications that rely on recognition.

3.1.3 Enabling and Demonstrating InfoPad

In addition to demonstrating speech recognition, these applications are intended to dem
onstrate and test all of InfoPads capabilities, as well as making the InfoPad a useful, user

31

friendly device. The World Wide Web browser in particular demonstrates the InfoPad's

neKvork connectivit)' and multimedia capabilities. TheWeb itselfrepresents the (current)

epitome ofnetwork connectivity and network based data access. The browser uses every

form of InfoPad's input and output: handwriting recognition and speech recognition

input, text, graphics, audio, and video output.

3.2 Widgets in the SpRcg Toolkit

3.2.1 Answer Widget

The spRcg_NBestDisplay. provides feedback to the user about the speech recognizers

4 Best Recognized Sentences

1.OOe-tOO Ibrowser bookmark The IntoPad Project's Home Page

1.83e-05 browser bookmark Berkeley EECS Home Page

0.00e400

Figure 3-1. spRcg_NBest widget.

NBest answers. If the recognizer never made mistakes, there would be no reason to display
its output as text: the user already knows what s/he said, so the program should execute the

user's command. However, ifthe recognizer occasionally misrecognizes or is unable to

recognize asentence, itis helpful to give the user feedback about what went wrong, as well
asa way to correct the mistake. Firstofall, it reduces a user's frustration ifs/he can see the

mistake, rather than having to infer that the recognizer made an error based on its actions.

Also, some recognition results might not have a visible effect. Thus the feedback allows

the user to confirm whether the program executed the right command. Even better,

spRcg_NBestDisplay, can help the user correct recognition errors. With an NBest recog
nizer, ifthe first answer is incorrect, the correct answer is often one of the other possible

sentences identified by the recognizer. If this is the case, the user can click on the correct

response, causing the wrong answer tobe undone, and the correctanswer to be executed.

Providing textual output also helps the user adjust volume, silence, and garbage word set
tings. The user can quickly see ifthere are a lot of"not recognized" responses or ifsen

tences are being cut off in the beginning or end and can adjust levels accordingly.

3.2.2 Control Panel

The spRcg_controlIer contains five sliders and two bars for controlling and displaying
user-setable parameters.

Recordins Status; oFT

gaitaige threshold

silence duration <250-2500
SOO

silence threshold

20

record gain

play gain

Figure 3-2. SpRcg_controller widget.

The garbage threshold slider determines how sensitive the recognizer is when deciding
whether an utterance is not in its vocabulary. The probability ofthe garbage phoneme is

the value ofthe garbage threshold times the largest probability from the MLP for the cur

rent frame.

The play gain slider controls the volume when the recorder plays back the last sentence it

recorded. This has no effect on recognition, but is provided as a convenience for the user.

The remaining controls and displays are related to the recorder's silence detection, which

automatically determines when a sentence has started and stopped. The bar above the
record gain slider acts as avolume meter: its length represents the power of the speech
being recorded. Immediately above the volume bar (and below the silence threshold

slider) is the silence threshold bar. When the volume bar is longer than the silence thresh
old bar, the recorder thinks the user is speaker; when the volume bar is shorter, the user is

considered silent. Ifthe user is silent for longer than the silence duration, the recorder
decides that the user has completed asentence. This arrangement allows the user to adjust
for varying microphones, speaker loudness, and background noise.

3.2.3 Customizer

SpRcg implements a speaker adaptable recognizer, which means that it works without

individual user training but it perform better with some user customization. In particular,
the spRcg_adapter widget helps the user customize the pronunciation of individual words
in case the recognizer is having difficult)' recognizing the way that particular user says
those particular words^ The adaptation process is as follows. The user selects the word s/

he want to adapt from the main list box (which displays all of the words in the current dic
tionary). Next, s/he presses the record button and speaks the word. Ifs/he desires, click
ing the "Play Recording" will let the user hear that word as it was just recorded. Clicking
the "Ok" button stores that word, as was pronounced in that recording, in acustom vocab
ulary.

1. This form of adaptation is different than other speaker adaptation systems that alter tiie parameters of
theacoustic probability estimator, which in ourcase is the MLP.

34

w.'' 8h09

rMN
•crrt

irinp
{••t pi«i
Htifww heto p«3e

Figure 3-3. spRcg_adapter widget.

The listbox to the left of the display ofthe words allows the user to see which words s/he

has customized in the past, and allows her/him to selectively turn on or offcustomization
on a word byword basis. Ifthis listbox displays a"i" by aword, ithas been customized and

the customization is in use; ifitdisplays a "o," it has been customized but the customiza

tion is not in use (i.e. the original pronunciation is being used). Clicking on a"i" or a"o"
will change it to the other state. Ifaword has never been customized, the space beside that
word is empt)'.

Ifthe user wants to compare the original pronunciation with the customized one, s/he can
click the Show Pronunciation button, which causes agraphical displav (the same as in
the gramCracker program described in Section 4.6) to appear. This is somewhat of an
advanced feature, since the user needs to know something about phonetics to interpret the
display.

3.2.4 Grammar Cascade

The grammar cascade is designed to provide a"help" function for users.

One of the most difficult user interface problems with speech recognition is prompting
the user on what s/he can say; in other words, telling the user all legal sentences in the
vocabulary. In conventional interfaces, the user is given visual prompts: menus display all
of their items and sub-menus when selected; listboxes display sets of choices such as all

the flies in a directory. The grammar cascade menu is designed to provide similar visual

feedback to speech recognition users.

>row9er
hyperti

lot^recognized >
hotUdt

ibookmark.
i

bajcic

goto

not_recognizedl

reload

sleep

t^obsHomePage

8

MyHotiist

Figure 3-4. Grammar cascade.

END OF SENTENCE

The grammar cascade is a pull down menu with many levels ofsub-menus. The first

menu is a list ofall of the words that are legal first words in the sentence. When one of

these words is selected, it creates a sub-menu which presents the list of words that may
follow that word. This process can be repeated indefinitely, thus providing asimple, visual
way to explore the vocabulary space.

3.3 Speech Controlled Applications

3.3.1 World Wide Web Browser

As ademonstration ofspeech recognition, it demonstrates how to use all of the high level
speech recognition widgets and classes, as well as illustrating several ways to incorporate
speech recognition into the operation ofan application. As a demonstration of InfoPad,

II http://lnfopad.eecs.bef1ceiey.edu/ Ihe InfoPad WWW Server

FUe jjavigate £Brei9i9|d) ^herectns Speech i^deo

LiriiN«ae:

LfidcAdAvss; "

InfoPad home\
page

PMmipnnea»«ami<^lJttt«ni«nm^fofBw«miJiaoM4W3»'«nc®^tnt«a<i«aiilbwi^fiaDa»,
«S8 o(mlQiaei&cihB^« ds&iramM^ 8pei^Qe»^ak9ti«Qg«ak^«afly% portablet*mi&alt3i»isfist»iceQt'

liEltctncalEat

•9 TTIProicct Overview & General Information

• jTziPeopIe Involved

o 13'Research Groans (home pages for each research area)

^ fi^nfoPad FTP Archive (papers, reports, sfides, etc.)

goHaw {B>dcf 1^11Grta... (artcad |

Figure 3-5. Web browser main display.

the www browser demonstrates the pad's multimedia input and output capabilities, as
well as its excellent network connectivity.

The program, which is based on the freeware tkwww [29], has a front end written in tcl/
tk, with aCback end based on the CERN WWW client library [30]. The back end handles
nehvork connections to and data transfers over the World Wide Web. It is implemented
as a tcl extension, so WWW transactions can be performed as tcl commands. The front end

parses and displays html files, handles user commands, and calls helper functions for cer
tain data t)'pes retrieved over the web.

The most important enhancements added to the original tkwww is the use ofspeech rec
ognition. Additional enhancements included allowing inline images while displaying
html pages, altering the look and feel, updating to the latest versions of tcl (7.4) and tk
(4.0), as well as fixing miscellaneous bugs.

3.3.1.1 Navigation & Control

The web browser allows speech control at several degrees ofsophistication. At the simplest
level, the user can duplicate the action of pressing buttons or selecting menu items by
speaking single word commands. For example, "back," "go home," and "reload" are voice

commands that provide simple WWW navigation.

The more sophisticated commands provide solutions to atough speech recognition prob
lem: how to use speech to navigate through an ascii world. Computer files and directories,
as well as WWW locations (URLs), page names, and hyperlink names are all specified by-
text names whose pronunciations are uncertain or difficult. Many ofthese identifiers con

tain punctuation marks, making their phonetic representation uncertain; others are

dependent on capitalization, which does not show up in the pronunciation.

The problem of using speech to identify any text string is most apparent when using
speech to select items in a list ofWWW bookmarks. Bookmarks are convenient links to a

user's favorite sites. When viewing a Web page, the user can add its location to her/his

bookmarks; later, selecting that bookmark will return the user to that page. The problem
is creating aphonetic representation of the bookmarks name so the user can use speech
to return to that page.

The solution is to have the user speak the name (or nickname) ofthat page once, allowing
the recognizer to perform phonetic transcription. The web browser stores that pronunci
ation with the bookmark, along with its ascii name and its URL. In addition to storing the
phonetic transcription, the web browser stores arecording of the user saying the name of
the bookmark. The main purpose is to refresh the user's memory if s/he forgets what s/he
called that bookmark. Also, other users can use speech to navigate other peoples book
marks after hearing their recordings.

38

Why are nicknames useful? Consider the titles ofsome pages in the author's bookmarks:

Berkeley EECS Home PageSound Bytes: WWW
TV Themes Home Page : By Patrick G. Kenny
MovieLink 777FILM OnLine: Main Menu
Tcl/Tk Project At Sun Microsystems Laboratories

These titles are either too long to remember how to say them exactly the same way each
time, or have ambiguous pronunciations.

All ofthese activities can be performed from the bookmark dialog box. The main window
displays the names ofall the bookmarks. Buttons on the top allow recording, playback, and
storing of names, as well as allowing playback of previously stored recordings. The book
mark dialog box is intended to be used when adding a new speech enabled bookmark, or
when reviewing and editing old bookmarks. To navigate to one ofthe bookmarks, the user

only has to say the word "bookmark" or "hotlist" followed by the name ofthe bookmark.
In fact, these bookmarks show that sometimes speech recognition commands are easier to
use than the equivalent menu commands.

Using speech to select hj'perlinks imbedded in web pages also poses aproblem. The prob
lem is similar to the one described above, dealing with bookmarks, in that it is hard to
determine their pronunciation. Many hyperlinks have long names, hard to pronounce
proper names, or are icons and pictures. Another problem are hyperlinks called "here," as

in "click here to see...."

The web browser demonstrates two techniques to deal with verbal h>perlinks. The first
technique is called verbal link numbers." When the user enables this option, the icon of
a number appears next to each hyperlink. Since the pronunciation of numbers is not
ambiguous, the user can simply say the command hyperlink" or the command "jump"
followed by saying the number.

Verbal link numbers highlight a few of the differences between hyperlinks and book
marks. First, hyperlinks are in ausers direct view while bookmarks are usually out ofview.
Thus, it is easy to provide visual cues in the former case; associating numbers with book-

39

marks would be less successful because it would force the user to remember the book

marks in a particular order, when they are inherently random. Furthermore, most items

in the list of bookmarks are favorite sites, which are visited often. Hence, the user will

remember how to say the names ofthe bookmarks, just as s/he remembers the names of

familiar places, people, etc. For example, someone who reads the comic strip Dilbert's
web page every day will probably remember what s/he calls that sight. On the other hand,
a user can encounter hundreds or thousands ofhyperlinks a day, many ofthem seen for

the first time.

The second solution to verbal hyperlinks is similar to the bookmark strategy. The author
of an html page can associate speech with a hyperlink as follows. Using the web browser
to edit the page, s/he can dictate aname, which is then recorded and phonetically tran
scribed. The web browser automatically embeds the phonetic transcription, as well as a
pointer to the audio file of the author saying the name ofthe link, in the html file itself.

This information is stored as attributes in the hyperlink. Since attributes are a standard

part of html, any other web browsing software can navigate that page, although it will be
oblivious to both types of speech information. When another invocation of the speech
enabled web browser reads that page, itautomatically reads the speech information, and
adds the phonetic transcriptions to its dictionary as new words. Unfortunately, this pho
netic transcription depends on the pronunciation of the original page designer, so it may
not work well for other speakers.

From the user's perspective, there are three differences when viewing a web page with
speech enabled hyperlinks. First, the speech enabled hyperlinks appear in a different
color. Second, clicking the right mouse button on these links will download theaudio file

of that link, playing it on the InfoPad (or workstation). Note, however, that this only for
benefit of the user's ears; the web browser does not try to recognize it because the name's
pronunciation is already embedded in the html page. Third, and most importantly, the
user can invoke the hyperlink by saying its name preceded by the command "hyperlink"
or the command "jump."

40

This technique outlines a solution, orat least a compromise, for using speech in an ascii

world. Essentially, names will contain two orthree components. The first is the currently

existing ascii identifier. The second is a phonetic identifier, composed ofa standard set of

phoneticsymbols. The third, optional identifier would bean audio file. This triad of iden

tifiers can ultimately be applied to files and file systems, as well as all components ofthe

World Wide Web.

In the mean time, however, most of the WWW does not contain embedded speech recog
nition information. Thus, the second technique for using verbal commands to select

hyperlinks does not require any modification ofexisting html pages; all the information is

kept locally in the speech enabled web browser.

B TkW3 Speech Recognition

Stint Wtedowa SpntSi fvaa
W Cntntn ♦ OfT

j Trtbm On

Jj Mtbwu pragran s«m 8^
j Only lUien irtb mouse reoio

W lue Mtt«l Oak mmtbws

VflMaau)
1S«97

neGordtegtttatuii

gJsrlMteo ttnohoM
tJS

oOeneo (toaiim (259'
SM

slleace Umelield
20

lecordgaiit

{^8itbi

Bocoqnized Seateaots

1Mo4«8 browoOTteekmaikTiwMoPidPn^ct'oHoHwPoQO

Figure 3-6. Web browser control panels.

3.3.1.2 Focus

The speech enabled web browser also illustrates several, user-selectable models for speech
focus. Determining speech focus means answering the question, "who are you talking to?"

Focus is harder to determine speech than it is for mouse, pen, or keyboard input. First of
all, button clicks and key presses are easily located in time to within a few milliseconds. A

spoken sentence, on the other hand takes one or more seconds, so it is harder to associate

with aparticular moment in time. Second, mouse, pen, and keyboard focus usually fol-

lows the icon. Usually these events are directed to aparticular window, either by moving
the cursor into that window or by clicking on that window. Sometimes this requires two
separate actions to input data: for example, first selecting a window, then typing into it.
Other times, the action and focus occur simultaneously: for example clicking on abutton
combines fixing the focus and issuing acommand in the same action. Another problem
is that people use speech to communicate to other people, not just their computers. When
auser types on the keyboard, s/he must be communicating with the computer; when s/he
talks, she may or may not be talking to an application on the computer.

It is possible to have speech recognition use the same focus model, butthis would elimi

nate some ofspeech's advantages. Basically, the user could click on thewindow towhich

s/he is speaking. This is fine when using asingle application. However, when dealing with
multiple applications or windows, this focus model eliminates some of the "hands off

advantages ofspeech recognition. Another problem with this focus model is it only allows
focus to a single application. It should be allowable to "broadcast" a speech command.
Some commands might be relevant to many applications; in other cases, it might be best
for the applications to decide which one is being spoken to. In this case, multiple applica
tions would be recognizing the speech simultaneously; whether or not they respond
depends on the results ofthe recognition.

The speech enabled web browser has two user-controlled settings that determine its
speech focus model. The first setting is controlled by a set of radio buttons that select
speech focus off, one sentence, or on. Off turns off all speech recognition. "One
sentence" turns on the speech recognizer for one sentence (as determined by silence
detection at the start and end of the sentence), then tums it off. This option is similar to
the click for focus model, but it also specifies that the user's next utterance is meant for

the application. The third option, on, causes the web browser to continually record sen
tences and to execute them as commands.

The other user-controlled setting, address browser by name," is useful in conjunction
with the "on" speech focus model, together with out ofvocabular>' detection. Essentially,
the user just has to begin any command to the web browser by its name. For example,

4^

"browser reload." If the user doesn't like the name "browser," (the default) s/he can

change itby user the adapter mega-widget. This focus model is the same as aperson uses
when addressing one person in a group: "Fred, do this," "Mary, do that," etc.

Out of vocabulary detection is essential to this focus model. If the user begins any sen
tence with anything but the browser's name, that sentence should be identified as being
out of the vocabulary. Hence, the browser assumes the user was talking to another appli
cation (or a human, or was sneezing, etc.) and will ignore the sentence.

3.3.2 Magic layout editor

The magic controller is atcl/tk based application that provides speech recognition control
of the magic [16] integrated circuit layout program. This program shows one way of inte
grating speech recognition into other Xwindow applications that are not tcl/tk based with

outhaving to modify that program.

Normally, magic requires input from the keyboard and the mouse. The keyboard provides
macros and commands while the mouse provides mostly placement information. Speech
recognition is meant to replace the keyboard input, allowing use with just speech and the
mouse.

Since magic is not atk application, the magic controller sends it information by sending
key-press events to the cursor location. The controller uses a small helper application,
stringzevent to perform this task.

3.4 Combining Handwriting and Speech Recognition
Since speech recognition and handwriting recognition each have their strengths and
weaknesses, the two can be used synergistically to provide a better user interface.

Speech sstrengths are its ease of use and its speed. It requires less effort for auser to speak
a word or sentence than to write it. Auser can also speak words faster than s/he can write

them. Thus, as long as the recognition accuracy is high enough, it is more convenient to
speak words than to write them. In situations such as issuing commands, the application

43

Magic Recognizer

Status: sflence

Done

Record & Recognize

S^gle Sentence

Gontlnous

(UNNAMED)

iTobsnyity

1.0(M)000

.000000

.oinooo

.oroooo

N Best Recognized Sentences

paint ndc Undo & Send

paint ndlffusion Undo & Send

paint nwc tMdo & Send

tMdo & Send

Phonetic Recranltton

CUNNAMED) EDITING (UNNAMED)

Figure 3-7. Speech controlled ic layout editor.

should be able to constrain the vocabular)' and grammar sufficiently to get high enough
accuracy.

When the user must enter ascii data, handwriting recognition has several advantages. The
first is speed: verbally spelling aword is no longer faster than writing it, and is probably
more tedious. The second advantage is accuracy: speech recognition on the "e" set - "b,"

" "A " "... " ""!.»»<«" J <» »» • , . 1 1 . ft-. tc, d, e, g, p, t, v, and z - is notoriously diificult.

Thus, pen and speech can be used simultaneously to provide a faster, more natural inter

face and to shore up each other's weaknesses. For example, a user could enter text with

the pen, then use speech combined with gestures ("move this text over here") to edit the

document. Also, the user could correct speech recognition errors by changing the spelling
with a pen, orcould correct pen recognition errors with verbal commands. For more dis

cussion ofusing pen and speech recognition together, see [15].

Because both the spRcg speech recognizer and InfoPad's handwriting recognizer are
implemented in tcl/tk, it is easy for a programmer to include both ofthem in the same

program and to have them working together. Chapter 4shows the programming interface
that creates the objects, widgets, and applications described in this chapter.

45

4 SOFTWARE:
Programmer's Interface

4.1 Overview & Coals

This section describes software that facilitates the inclusion ofspeech recognition in appli
cations for InfoPad. The design of this software reflects a compromise between the con
flicting goals of ease ofprogramming and high recognition accuracy.

From the programmer's perspective, the ideal speech recognizer should be as far removed
from the program as possible. The recognizer should act as abuffer between the speaker
and the application, intercepting all audio signals, converting them to text, and then send
ing them as ascii to the application. The programmer would rather not deal with pho
nemes, vocabularies, and grammars; he/she would prefer that it be no more complicated
to receive spoken data than it is to receive data from akeyboard. In short, applications pro
grammers should not have to become speech recognition experts in order to write appli
cations for InfoPad.

Unfortunately, the best way to achieve high speech recognition accuracy is to link tightly
the speech recognizer to individual applications. Ifspeech recognition were asolved prob
lem, then it would indeed be possible to have acontinuous speech, speaker independent,
large vocabulary, natural English grammar speech recognition "server" that listened to
everything the user said and passed on recognized text to the appropriate application.
With the current state of the art in speech recognition, it is necessary to relax one, or pref
erably several, of the speech recognizer's attributes (continuous vs. discrete speech,
speaker independent vs. speaker dependent, large vocabulaiy vs. small, or unconstrained

46

Easiest For Recognizer

User Dependent
Isolated Word

Small Vocabulary
VConstrained GrammarJ

User Independent
Continuous Speech
Large Vocabulary
Unconstrained Grammar

Easiest for User

\

/
Specific Vocabulary
Constrained Grammar

^

Easiest for Application

Figure4-1. Design trade-offs .

grammar vs. constrained) to make the recognition task easier, and thereby achieve higher
recognition accuracies (see Figure 4-1). In the case ofthe InfoPad speech recognition, the
compromise was made with the size ofthe vocabulary and the complexity' of the grammar,
while maintaining speaker independence and continuous speech recognition.

The software architecture, shown in Figure 4-2, is structured to allow multiple levels of
access to the recognizer; the programmer can trade offsimplicity ofuse for greater control
as she/he moves from high level interfaces to lower levels At the highest level, the pro
grammer can use incrTcl classes and mega-widgets. At the intermediate level are tcl com

mands. Finally, C++ classes form the actual implementation of the speech recognition
algorithm.

47

Framework

(iTcl classes
& widgets)

Tel commands

Graphical Control
Display Results
Manipulate Grammar & Vocab
Record & Recognize Speech

I
/ N

Control Recorder

Control Recognizer

• 1

C++ Efficient Implementation

Figure 4-2. Architecture of speech recognition software.

4.2 Writing Applications for InfoPad

This programming interface for speech recognition is part ofalarger effort to define auser
interface for InfoPad. Since InfoPad uses astandard Xwindowing system display, it uses
standard applications and tools whenever possible, in order to maximize portabilit}' and
ease of development. However, there must be some changes to these tools and applica
tions in order to include speech and handwriting recognition. The model for developing
new applications for InfoPad is to use the tcl/tk [17] scripting and windowing language
because it combines the strengths ofpopularity and ease of use with the ability to be easily
extended to include new features such as recognition.

48

Define user speakable commands.

i
Create grammar &vocabulary database

using GramCracker.

\
Write tcl/tk code instantiating

recorder, recognizer, and mega-widgets.

i
Write code to turn on/off speech recognition.

i
Write proceedure to parse and execute

recognized commands.

Figure 4-3. Process for adding speech recognition to a tcl/tk application.

4.2.1 Creating and EditingVocabularies and Grammars

Frogrammers will create vocabularies and grammars while they are writing applications.
They may also have the applications modify the vocabularies and grammars while they
are running. Typically, a programmer needs to write a grammar that reflects the overall

control flow of the program. For example, the grammar might allow the user to speak any
sequence ofcommands that could be issued by selecting menu items or pushing buttons.
The general form of the grammar must be determined while the program is being written
because the program must know how to parse any possible recognized sentence. The
application, GramCracker, described in Section 4.6 on page 62, is atool for programmers
to create vocabularies and grammars.

Run time changes fall into two categories. First, new data such as proper names or file
names can be added. For example, the web browser program, described in Section 3.3.1

49

on page 36, adds new verbal bookmarks during run time. Typically, these changes only
involve adding orremoving words from existing grammar clusters; the web browser stores

bookmark names in a"bookmark" cluster that was created when the program was written.
It is possible to make more complex changes to the grammar at run time, but the pro
gram's parsing routines must be able to handle any such changes. These types ofchanges
can be easily controlled using the spRcg_gramDict class' methods combined with pho
netic recognition.

The second common run-time change is to adapt aword's pronunciation to aparticular
user. Initially, both the MLP's representation ofphonemes and the vocabularies list ofpro
nunciations are speaker independent. If a user finds that the recognizer is having trouble
with aparticular word, she/he can speak that word one, customizing the dictionaiy's pro
nunciation (but not the MLP). The spRcg_adapter mega-widget performs this task.

4.3 Low Level Implementation

This section describes the implementation of the speech recognition system at the tcl
level. Usually, this part ofthe implementation is hidden below the higher level itcl classes
and mega-widgets. However, it is useful to understand the tcl level commands in order to

modify orextend the high level implementation.

4.3.1 Application Programmer's Interface

The spRcg speech recognizer is implemented as an extension to the Tcl programming
language, allowing simple incorporation in tcl/tk based applications. This extension fol
lows the "object" model for tcl: the programmer first creates a named instance of an

object, then invokes thename ofthat instance to execute commands. The extension con

tains two objects: a recorder and a recognizer.

4.3.1.1 Recorder

The recorder is used to open and close connections to audio devices; to record speech; to
determine sentence start/stop boundaries by detecting silence; to process recorded speech
(using the RASTA algorithm); and to pass on the rasta output to the speech recognizer.

50

Audio connections are made using the device independent AudioFile (AF) system. Since
the InfoPad's networking software (InfoNet) also uses the AF API, the recorder can trans

parently be used with InfoPad as well as most of common desktop computers.

The programmer can use the recorder to constantly monitor audio input, waiting for a
signal of sufficient power and duration to be considered speech. As long as the signal is
considered silence, the recorder discards the speech data. When the recorder does detect

speech, it saves the speech data until itdetects a long enough silence to determine that
the spoken sentence has ended. Both the power and duration ofthe silence threshold can

be adjusted while recording. The power threshold must be set high enough so the
recorder is not triggered by background noise or breathing sounds, but must be low
enough that quiet speech sounds do trigger it. The silence duration must be set long
enough that brief pauses between words within asentence are not misinterpreted as the
end ofasentence; it must be set short enough not to cause an annoying delay in recogni
tion while the recorder waits to see ifanother word will be spoken. Typically, a0.5 second
duration is a reasonable value.

The recorder automatically computes rasta coefficients as it records speech. It can either
provide them to the recognizer periodically during recording, so that all recording, pro
cessing, and recognition is done in real time. Or itcan provide all rasta coefficients all at
once when the sentence is finished.

4.3.1.2 Recognizer

The recognizer object implements aspeech recognizer using aparticular Multi-Layered
Perceptron, vocabulary, grammar, and N-Best depth; all ofwhich are specified during cre
ation of the object's instance. To recognize using adifferent vocabular)' or grammar, the
program should create and use another recognizer instance. (Of course, the program
could also use another MLP - for example, switching from aspeaker independent MLP to
aspeaker dependent one. However, it is far more common to change the vocabular)' or
grammar than to change the MLP.)

The main run time commands for the recognizer are to give it rasta coefficients and to

output recognized sentences. Rather than providing a since answer, the recognizer pro

vides several answers (hence the name N-Best). The additional answers can be useful for

error correction.

One other run time command allows the program to adjust the garbage model, a repre
sentation of all words that are not in the vocabulary. The garbage model helps avoid rec
ognition errors when the user speaks a word that does not fit in the vocabulary and
grammar. Without the garbage model, the recognizer would return the sentence that fits

the utterance the best, even though the fit would not be very good, and even though the
answer is wrong. Using the garbage model, the recognizer should report that it could not

recognize the sentence. If the garbage threshold is set high, the recognizer is less likely to
mistake an out ofvocabulary word for an in vocabulary word; unfortunately, it is also more
likely to identify an in vocabular)' word as out of vocabulary. The garbage threshold can
be changed at run time to allow the user toadjust it to his or her needs.

4.3.2 Implementation

All ofthe computationally intensive parts ofthe speech recognizer and recorder are imple
mented in C++. The code was designed with two goals: to be computationally efficient
and to serve as a high level simulation for hardware design.

The computation performance goal was to perform small to medium sized vocabulary
(around 100 words) in real time on a spare 20 workstation. For small to medium sized

vocabularies, the most computationally intensive part of the algorithm is the MLP, since
the viterbi search scales with the vocabulary size but the MLP computation is independent
of the vocabulary and grammar. Fortunately, most of the MLP computation is performed
in asingle inner loop, which was carefully coded and partially unrolled for maximum per
formance on the spare architecture.

4.3.3 Dual Use for Simulating Hardware

The C++ code assisted hardware design in three ways.

52

First, the C++ classes modeled and defined the high level architecture of the viterbi

decoder. Four C++ classes - Dictionary, State, Grammar, and TagTable - correspond to
the four architectural blocks ofthe hardware design. All ofthe arrays defined within these

classes correspond to memories in the hardware; variables correspond to registers. Thus,
these classes help determine the size, number, and access rate of memories in the hard

ware. Furthermore, by communicating only via public interface functions, the classes

define what control and data information must pass between the architectural blocks.

Since the memories in each block are implemented as protected class members, it is

impossible for a block to have hidden orimplicit access to memories in another structure,

which would cause problems during hardware design.

Second, the C++ code assisted in designing the bit widths for the data in the hardware.

For example, the MLP can have different bit widths for coefficients and for probabilit)-
data. When acting as part ofthe speech recognition system, the MLP class represents both
probabilities and coefficients as floating point numbers. Fortunately, the operator over
loading capabilities ofC++ make it easy transform the MLP class into a bittrue emulator

of the hardware. All that is required is to define aFixed class with appropriate add, multi
ply, and t)'pe conversion functions, along with a few utilit)' functions such as overflow
detection and I/O functions. Then, by redefined the type ofthe probability and coefficient
classes, the same MLP code can be used to evaluate the performance of the algorithm at
various bit widths.

Third, the C++ code aided in debugging and verifj'ing the design ofthe hardware. During
the MLP calculation in bit true mode, the code can output any of its intermediate compu
tations, which can then becompared to internal data in the VHDL orswitch level simula

tion of the hardware. Being able to generate correct data values for so many internal buses
in the hardware made it easy to verify the design quickly and with ahigh degree of confi
dence. When incorrect values did occur in simulations of early phases of the design, the
high level simulation made iteasy to track them down.

53

4-4 High Level Objects and Procedures: spRcg_gramDict
Although the recorder and recognizer objects make it easy to record and recognize
speech, there is still a considerable amount of work involved in creating and editing
vocabularies and grammars. To reduce this burden on the programmer, an additional
object called spRcg_gramDict, implemented in itcl (and also requiring the tclX exten
sion), provides an easy way to store vocabulary and grammar data structures, and to manip
ulate these data structures at ahigh level ofabstraction. SpRcg_gramDict also provides all
of the appropriate arguments for creating a new spRcg_recognizer, so the programmer
never has to deal with the low-level details ofvocabulary and grammar data structures.

4.4.1 Data

By internally storing all of the data needed to represent the vocabulaiy and grammar,
SpRcg__gramDict provides several advantages. First, its functions provide a higher level
API to the programmer, so he/she does not have to deal with low-level syntax issues of the
data structures. Further, if in the future the data representation should change, or if new
recognizers with new data formats are used, the API can remain the same.

SpRcg_gramDict also stores the file name of the MLP data. There is no need for tcl pro
grams to store the MLP data itself, because it is not useful for applications programs to
modify the MLP data. Vocabularies and grammars, on the other hand, should be changed
whenever the program moves to a different state.

4.4.2 Grammar Methods

Eight class methods allow manipulation and examination of the grammar. The program
mer may add or delete words from agrammar cluster, as well as adding or deleting edges
between clusters. Access methods can list the contents and connectivity ofacluster with
outchanging the grammar.

These methods should be the most frequently used by applications programs.

method addWord2Cluster { cluster word prob }
method destroyCluster { cluster }
method addGramEdge { fromClust toClust prob)
method toggleGramEdge { fromClust toClust prob }

54

method delGramEdge { fromClust toClust }
method giveAllClusterNames {>
method giveWordsInCluster {cluster)
method deleteWordFromCluster (cluster word)
method giveToClusters (fromClust)
method giveFromClusters (toClust)

4.4.3 Input Output Methods

The following functions store and read vocabulary and grammar from an ascii file.

method writeGramDict (fileName)
method readGramDict (fileName)

This function returns the arguments needed to create a new instance of a

spRcg_recognizer.

method giveRecogConstructorArgs ()

This is aconstructor method that initializes itself to be ec]ual to another spRcg_gramDict.

method copyOther (other)

4.4.4 Dictionary Methods

The main reason for an application program to manipulate the dictionaiy is to alter the
pronunciation of words as a part of a training or speaker adaptation system. However, if
the programmer uses gramCracker to create the grammar and uses the adapter mega-
widget for speaker adaptation, the application will only need to use the following two
methods to add, change or delete pronunciations. The programmer does not need to
manipulate the pronunciation data structures, which are provided by the mega-widget.

method addCompleteWord2Dict(word pronunciation (dontOverwrite 0))
method delDictWord (word)
Ifthe programmer does want direct control over the pronunciation (as was the case when
writing gramCracker and the adapter mega-widget), she/he can use the following access
and edit methods.

method giveWordEdges (word)
method giveWordPhones (word)
method toggleEdge (w fromlndex tolndex)
method pastePhones (word phonelndex addPhones addEdges)
method deletePhones (word indexList)

55

method giveWord { word }
method addNewWord2Dict { word }

The following methods are utilities to add or remove mandatory or optional silence atthe

beginning or end ofa word. Adding mandatory silence atthe beginning or end ofa word

is equivalent to changing the recognizer to an isolated word recognizer; words can only

be recognized ifthere is apause between them. Adding optional silence to pronunciations

allows recognition whether ornotthespeaker pauses between words.

method wordStartSilence { word case }
method wordEndSilence { word case }
method setAllWordStartSil { option }
method setAllWordEndSil { option }

Finally, this utility checks for syntax errors inthe pronunciation data structures; it is useful

for programmers who directly manipulate the data.

method checkPronunciation word

4.4.5 Graphics Methods

The following methods create a graphical representation of a pronunciation. They are
used by gramCracker and by the adapter mega-widget.

method drawWord { canv word x y)
method drawPronunciation { canv word phones edges x y }

4.5 Mega-Widgets^

Each mega-widget can be viewed from two perspectives. For the user, it is a collection of

windows such as labels, sliders, and buttons. For the programmer, amega-widget is also
an itcl class, which has member variables and proceedures. This section describes the

mega-widgets' programming interfaces; their graphical user interface are described in the

next chapter.

1. The somewhat peculiar term, "mega-widget," is itcl jargon for an itcl class that contains anumber of
individual tk widgets, but can be created, packed, and configured using syntax as if the whole mega-widget
werea widget itself.

56

4.5-1 spRcg_controller: Simple Recording and Recognition
After the application creates and initializes aspRcg_recorder and aspRcg_recognizer, it
can use a spRcg_controller mega-widget to perform all recording and recognition; this

represents the highest degree ofabstraction and the simplest programming interface. The

spRcg_controller is associated with aparticular spRcg_recorder and spRcg_recognizer, at
creation, but it can be associated with other ones at run time

The following method allows the program to detect, record, and recognize aspoken sen
tence by using a single lineofcode. The method handles silence detection at thestart and

end of the sentence, records the sentence, and performs recognition on the fly. The N-
Best recognized sentences are passed to the answerCallBack function, if one is provided.

method recordRecog { answerCallBack }
The following methods perform the same functions, but separate the recording and rec
ognition, so the recognition would be performed in batch mode after the recording is fin
ished. The record method executes the callBack function with no arguments when it is
finished recording; such acallBack function might inform the user that asentence has fin

ished recording, for example.

method record { callBack }
method recognize { answerCallBack }
Since these functions wait to record an entire sentence, they could be running indefi
nitely if there is no input audio signal. This is not aproblem because they make frequent
calls to the tk update command. Since tk programs are event driven, the update com

mands allow the program to perform normally, even with the recognition process running
continually. SpRcg_controller makes sure that no more than one recording method is
running ata time so that they do not steal data from each other. On the other hand, it is

easy to send a recorded sentence to multiple recognizers by using the record method,
then reconfiguring to use a different spRcg_recognizer before each call of to recog
nize.

Acall to the method listed below will kill a recordRecog orrecord method ifone is

running.

57

method abort { }

Acall to the method listed below will tell ifa recordRecog or record method is run

ning.

method alreadyOn {)

The following methods perform functions similar to commands that are built in to the

spRcg_recorder or spRcg_recognizer. The built in commands are simple to begin with,
so they are duplicated in the mega-widget for completeness, rather than to provide a
higher level ofabstraction.

method setGarbage { value}
method setGain { value }
method loopback { }
method setPlayGain { value }
method setPowerFloor { value)

4.5.2 spRcg_NBestDisplay: Simple UserFeedback

This mega-widget presents the recognition results to the user. If the first recognition result
is incorrect, the user may replace it by clicking on one of the other NBest recognized
results.

This mega-widget contains only one, simple method, which displays the output ofthe rec
ognizer:

method display { answer }

There are four configurable parameters:

-NBestDepth (default is 1)
-len length of sliders (default is 8c)
-showProbs bool (default is 0)
-BlCallBack

The first three control what the user sees. Generally, showProbs should be set to o since

the probabilities of the various answers are of little interest to anyone who is not interested
in the speech recognition algorithm itself. The fourth is the callback function, which is

passeda sentence if the user clickson its window.

58

4-5*3 spRcg_SpeakerAdapter: Simple User Customization
This mega-widget allows the user to change the pronunciation of individual words to

match the way she/he pronounces them. The program uses the following config parame

ters to tell spRcg_SpeakerAdapter the names oftwo spRcg_GramDicts: generalGram-

Dict is the name ofthecurrently active grammar/dictionary; its contents are notaltered

by this mega-widget. customGramDict is the name ofa grammar/dictionary that con

tains the words that the user has customized; its contents are altered by this mega-widget.

-generalGramDict

-customGramDict

The following parameter, which specifies the name of an active spRcg_controller is

needed because the mega-widget uses it to record and recognize speech.

-controller

The final three parameters areoptional. Frozenwords is a list ofwords thatthe user should

not be allowed to customize. OkCommand is a callback command executed when the

user pushes the "OK" button. Finally, if saveStateDirector)' is specified, a file will be

stored in thatdirectory which saves the user-specified use/don't use information for each

custom word. (Note that it is the application's responsibility to save the customGramDict

if it is to be used again the next time the application is run.)

-frozenWords

-okCommand

-saveStateDirectory

When using spRcg_speakerAdapter, the application only needs to call the following
method. It s output is identical to a call to the generalGramDicfs giveRecogGonstruc-
torArgs method, except the pronunciations for the customized words replace their pro
nunciation from generalGramDict.

method giveRecogConstructorArgs {}

4.5.4 Phonetic Transcription

Since the spRcg_speakerAdapter depends on phonetic transcription, the toolkit includes
aspecial purpose vocabulary and grammar to perform phonetic transcription. This vocab-

59

ulary and grammar comprises a complete spRcg_gramDict. What makes it unusual is its

"words" correspond to the individual phonemes; each word's pronunciation contains only

a single phoneme.

The grammar is clustered according to phonetic classes, with the edge probabilities deter

mined by the statistics ofthe timit database. The clusters correspond to the types ofpho

nemes, e.g. voiced stops, unvoiced fricatives, vowels, etc. Within each cluster, the

probability ofeach phoneme corresponds to its frequency ofoccurrence relative to the

other members of that class. Transition probabilities between clusters are determined by
frequency with which the two phonetic classes followed on anotherin the timitdatabase,

for example, it is highly unlikely that avoiced stop is followed by a an unvoiced stop, so
this transition has only 0.002 times the probability of a transition from a voiced stop to a
vowel.

The strengths of this technique of phonetic transcription are its simplicity and its effec
tiveness. It is simple because it uses the same recognizer that is used for sentence recogni
tion. It is effective because it produces pronunciations that are likely to produce matches,
at least for the same user.

However, the chiefweakness ofthis technique is that it fails to accommodate the knowl

edge that is embedded in any previously used pronunciation. Aword in the vocabular\-

might fail to be recognized because of problems with a single phoneme. Ideally, an
adapter should be able to recognize the single problem phoneme and then replace it or
put another phoneme in parallel. Thus, the adapter would not be throwing away a pro
nunciation that is otherwise robust and is based on extensive training or analysis. An algo
rithm that automatically merges existing pronunciations with phonetic recognition results
will be important future work.

4.5.5 spRcg_PhoneProbDispIay

For now, merging existing pronunciations with phonetic recognition must be done by
hand using gramCracker. The results ofphonetic recognition are helpful to the program
mer performing this task, but they do not provide enough information. Consider the task

ofaprogrammer who wants to alter the pronunciation ofaword. If she/he compares the

60

original pronunciation with the phonetic transcription, several ofthe phonemes may be

different. The problem is that since many phonemes are acoustically similar, they may
have similar probabilities ofbeing recognized. In other words, the "correct" phoneme
might not be the phoneme that the recognizer matches with the highest probability. How
ever, ifitis second or third best and is matched with areasonably high probability, its pres
ence in the dictionary's pronunciation should not cause a recognition error (unless there

a two words thathave very similar pronunciations).

At first glance, it would seem that using an NBest recognizer would solve this problem by
providing several choices for phonemes in the parts ofthe sentence where they are ambig
uous. The problem with this is that there so many phonemes in asentence, thus so many
phonetic transcriptions that have similar probabilities, that Nwould have to be extremely
large before the problem phoneme or phonemes are identified. In other words, using an
NBest recognizer asks "what are all the good choices ofpronunciations?" which is the

wrong question. The right question is "what is wrong with the existing pronunciation?"

The spRcg_PhoneProbDisplay mega-widget provides visual feedback that helps the pro
grammer answer that question. Further, it serves as a teaching tool to give programmers
more insight into how the recognizer matches sounds with phonemes. Ofcourse, one of

the goals of the speech toolkit is to make it unnecessary for the programmer to know the
inner workings of the recognizer. However, that does not mean that it is not helpful!

The first type of visual feedback, shown in Figure 4-4, displays atwo dimensional array of
the probabilities generated by the multi layered perceptron. Each rows corresponds to a
particular phoneme; each column, to aten millisecond sample frame. The height ofeach
bar corresponds to the probability ofthat phoneme occurring in that frame, as determined
by the MLP. (Since this is just the output of the MLP, not the viterbi search, the probabil
ities do not use any information from the vocabulary and grammar). For each frame, the
most probable phoneme is highlighted in blue. In the figure showing the author saying
the word "reload," it is interesting to see how several phonemes, namely "r," "1," and "w,"
have high probabilities during the utterance ofthe "r" sound in the word. This is not sur

prising because these three phonemes are acoustically similar. There is no such ambiguit)-

61

during the initial and final silence, since this sound is acoustically distinct from other

speech!

The second form ofvisual feedback, called a phonetic backtrace, shows the frame by

frame probabilities as determined by a viterbi search through a particular sentence. For

each frame, the probability ofthe most likely phoneme -as determined by the viterbi algo
rithm, is displayed. By looking at these probabilities, the user can easily see which pho
nemes in the pronunciation, as specified in the vocabulary - matched well with the

utterance and which ones matched poorly.

It is important to distinguish phonetic backtrace from the output ofthe MLP and from the

phonetic transcription described earlier. The output from phonetic backtrace is the list of

phonemes and probabilities, given that the sentence MUST be the one specified in
advance. In other words, itis like anormal recognition, but with two differences. First, the

grammar is highly constrained because it contains one and only one sentence. Second,

instead of performing aword by word backtrace to determine the sequence of words, the
recognizer performs a phoneme by phoneme backtrace to determine the sequence of
phonemes (while also preserving probability information, which is usually of no interest
in the word by word case.) In contrast, phonetic transcription places very little constraint
on the grammar. Thus, it finds a sequence of phonemes that have a high probabilit)',
which is good. But, this sequence does not necessarily match any sequence through areal
grammar containing words.

spRcg_PhoneProbDisplay uses special commands in spRcg_recognizer and
spRcg_controller to access MLP data and to perform phonetic backtraces.

4.6 GramCracker: A Tool to Build Vocabularies and Grammars

GramCracker is a tool to aid applications programmers in creating, editing, and testing
vocabularies and grammars. Its main display is shown in Figure 4-5.

The gramCracker display is divided into two parts: the upper for editing vocabularies and
the lower for editing grammars.

62

Time

Figure 4-4. Output of MLP for an utterance of "reload."

The vocabulary section shows a graphical representation of each words' pronunciation.
Phonemes are represented by circles; transitions, by edges between the circles. The pro
grammer can edit the pronunciation using a mouse and keyboard. Using the mouse, s/he
can add or delete edges and can select and un-select phones. Keyboard commands allow

cutting, copying, and pasting. The programmer can add phonemes by clicking on the

phoneme buttons in the area above the vocabulary display. These buttons also provide a

B greroOad«erv0.1: nnln.gran ggj

; r

stofui

iiatiaiaii

iMIHcctM

flainai
SlBfiSlSSl,

. -I

|t'OtlM|r
|flfel

1
'>-C • /•* / "SaU -.A '

^ ^ \t < 'J'' <' '''

p)_|HIIM

Grammar

gTSRT

-hoUi»t vero

tirst_word
browser

anchor_verbs
hypoiHiik
Jump

snchors

«ila»

V ' ' 4:

9 '-lg^.Tr'^

l;--^ >

Single
liack

jo.homs
]otb
iot_rBcognlz8tl
relditti

n

Figure 4-5. GramCracker displaying grammar fora www browser.

primer on the meaning of the phonemes symbol: right clicking on a button displays an
example ofthat phoneme used inan English word.

The dictionary display checks each word, preventing the programmer from specifying
pronunciations that violate the rules. For example, each word must start with the special
symbol and end with "$". Edges must go from right to left. Furthermore, they may
connect only to the 3phonemes after the start phoneme, or to the "$" symbol; this restric
tion is used to maintain compatibility with the limitations of the low power hardware

64

design. This restriction would not be needed in an all software recognizer, but it leaves

enough flexibility to allow most possible pronunciations, anyway. Self loops (edges start

ing and ending in the same phoneme) are not allowed because they are already present

in they individual phoneme models: they model the expected duration ofeach phoneme.

The grammar display shows the connectivity ofthe grammar and, optionally, shows the

words in each grammar cluster. The grammar connectivity specifies the allowable word

order: a sentence is legal if it can be described by a path through the grammar clusters,

starting at the "START" cluster and ending at the "END" cluster. There is no left to right

restrictions on grammar edges; any cluster may follow any other cluster. Self loops are also

legal: they allow repetition ofwords in a cluster.

As with pronunciations, the grammar connectivity can be edited with the mouse: first

select a cluster with a left click, then right click to toggle the connectivit}' to another clus
ter. The programmer has complete control over a cluster through the cluster editing dia

log, obtained by double clicking a cluster. This dialog, shown in Figure 4-6, controls

which words are in the cluster, as well as what edges go in and out ofthe cluster.

Figure 4-6. Grammar cluster dialog.

tm Edgn

EHO

START

anctior.vartn
waw

drectkn

nnil_«oni

birttet.vart
eut of vsa*

GramCracker itselfuses speech recognition in two ways. First, theprogrammer cancreate

new words in thevocabulary by dictating them togramCracker, which performs phonetic

recognition as shown in Figure 4-7. This technique ofgenerating words is the same as is

BMr*ig Statn:dans,

aJWSpyUirllnOlM flutejuiuiu I

, SMset Saotanca

aHnnttmm.im'',1
SQO , h

ftlfBgtWW
an '

?s< 1

liiiii

mm

'•J'-4""< it It

7?v ' v>
< . t>"
>/" 4-

O^toMcflonaiy

Figure 4-7. Performing phonetic recognition in GramCracker.

used by the spRcg_adapter mega-widget to alter the pronunciation of existing words. As
such, it is not the best way to generate speaker independent pronunciations; the pronun
ciations will be that ofthe programmer. On the other hand, it is a quick and convenient

way to generate the first draft of new words, which can then be edited in the vocabular}'
window. Furthermore, itprovides agood way for the programmer to learn how the pho
nemes correspond to actual speech, so itserves to help educate the programmer.

The second way of using speech is to test the entire grammar. The programmer can run
arecognizer using the dictionary and grammar being edited as shown in Figure 4-8. This
way, he/she can have aquick edit/use cycle, so he/she can try out the grammar to see ifit
feels natural.

4.7 Design Example

Let's create a simple application that draws a number of objects as commanded by the
user. The user draws from one to four circles, squares, or triangles ofany color (as long as
the color is red, blue or green). Spoken commands should be something like "draw two
green circles."

66

j|wtu(|(i thPBShold'''.

•••nca donaoit (ISO-
^ <gOB - '

• •—•* ^ il^ . : ^ ..^

ItlQCTM gWlftOW

'14 'K ,

ptaygiln
: ,"V

SO

WKta nMagottsR

4 Bttrt JlBCOQBliBd Saotancss

v^SiiKt Sentancs

ItanoSc 1

|l4)8a*00 J ^ ~ ; mncaaoniftBht

{SJQQbvQO I " ^

((I4dmw4.^
•Ji. 49KK...SV. y. ^ ^

11° RKPQpin 1 AvBai^c |

" f I.', "•

OOOB ' 1

Figure 4-8. GramCracker using the full vocabulary.

4.7.1 Creating the Grammar and Vocabulary

1. Run gramCracker.

2. Choose use recognizer from the recognize menu

3. Click the phonetic button.

4. click Record ^ Recognize then speak the word "one."

5. Click copy to Dictionary Enter the name oftheword (one) and click ok

6. Repeat from step 4for the words "two," "three," "four," "red," "green," "blue," "circle,"

"square," "triangle," and "draw."

7. Select new cluster from the edit menu.

8. Type"action" as the name of the cluster.

9. Selectthe word draw; click the add button, click ok.

10.Repeat this action to create a cluster called number that contains one, tvo, three, and

four; one called co/or containing red, green, and blue; and one called object containing
circle, square, and rectangle.

11. select edit->new word. Call the word not_recognized Select the first state in

not_recognized's model, then press the gar button.

12. Create a new cluster called garbage that has one word: not_recognized.

67

13. Click and drag the various clusters to arrange them neatly. Add edges between them

by left clicking on the sourcecluster and right clicking on the destination cluster. If

you do this again, the edge will go away; you should do this to remove the edge from

START to END Thegrammar should now look like Figure 4-9.

STSRT| ESilHl number

1'

- -

•

V;-''-v/'-y garbage
k'tot_recognize

Figure4-9. Demo grammar.

14.The grammar and dictionary are now complete, and could be used as is. However, we

will do afew more enhancements. First, we will add optional silences at the begin
ningand end of the pronunciation ofeachword.

15. select edit->initial silence->optional

16.select edit->final silence->optional

square

Figure 4-10. Transcribed pronunciation of "square."

68

ly.Next, todemonstrate a more advanced way tomodify pronunciations, we will alter the

Figure 4-11. "Square" with optional starting and ending silence.

pronunciations ofthe words "circle," "square," and "triangle" so that they will also

match the pronunciations for their plurals: circles," "squares," and "triangles."

18. First, click on the word slast phoneme before the final sil (silence). It should turn yel
low. Now click on the "s" button in the fricatives section ofthe phoneme buttons at
the top of the window. Now right click on the "$" phoneme to add an edge from the
"s" to the end of the word. Now the word has an optional "s" as well as an optional
silence at the end ofits pronunciation. Repeat the process. For all three words.

sc|iiare

Figure 4-12. "Square" with optional "s."

19. Note that you could also create the plurals and save them as separate words. You can

create them one oftwo ways. First, you could dictate them as you did the other words.
Or, you could create them manually by selecting edit->New Word. Then you can
copy and past from the old, singular pronunciations: click to select the first phoneme,
then shift-click to add select the rest of the phonemes (do not select and "$").
Then copy them with Control-C. Select the "^" phoneme in the new word, then

paste the phonemes with Control-V. (For completeness, the cutcommand is Control-

X). Now you can add the "s" phoneme as described earlier.

69

20.As a final step, save the grammar using File.->Save As and enter demo.gram as the file

Name. Figure 4-13 shows a listing ofthefile containing thecomplete grammar and

dictionary. The first line is a keyword. The second line contains the dictionary, for-

spRcg

{silence {{p sil sil {$}}} (e (12 IE E}}}} (red {(p sil w r
eh s vcl d ix sil {$}}} (e (12 1 1 1 1 1 1 1 IE E}}}} {green {{p
{^ sil k r iy n sil {$}}} {e {12 1 1 1 1 IE E)}}} {blue {{p sil
1 uw sil {$}}} {e {12 1 1 IE E}}}} {draw {{p sil k r ao sil {$}})
{e {12 1 1 1 IE E)}}} {circle {{p sil s er cl p sil {$>}} {e {12
1 1 1 1 IE E}}}} {square {{p {^ sil s cl k w er sil {$}}} {e {12 1
1 1 1 1 IE E}}}} {triangle {{p {'^ sil t w ay sil m el sil {$}}} {e
{12 1 1 1 1 1 1 IE E}}}} {one {{p {^ sil w ah n z sil {$}}} {e {12
1 1 1 1 1EE}}}> {two {{p {'^ sil t uw sil {$}}} {e {12 1 1 IE E}}})
{three {{p {^ sil dh ax r iy sil {$}}} {e {12 1 1 1 1 IE E})}} {four
{{p {'̂ sil f sil {$}}} {e {12 1 IE E)}}} {not_recognized {{p {'̂ sil
gar sil {$}}} {e {12 1 IE E}}}} {circles {{p sil s er cl p sil
$}} {e {1 1 1 1 1 IE E}}}} {squares {{p {^ sil s cl k w er s sil
$}) {e {1 1 1 1 1 1 IE El E}}}} {triangles {{p {^ sil t w ay sil m
el s sil $}} {e {1 1 1 1 1 1 1 IE El E}})}
{START { }} {END { }} {action {{draw 1.0}}} {nuinber {{one 1.0} {two
1.0} {three 1.0} {four 1.0}}} {color {{blue 1.0} {green 1.0} {red
1.0}}} {object {{circle 1.0} {square 1.0} {triangle 1.0}}} {garbage
{{not_recognized 1.0}}}
{from {{START {{action 1.0} {garbage 1.0}}} {action {{number 1.0}}}
{number {{color 1.0}}} {color {{object 1.0}}} {object {{END 1.0}}}
{garbage {{END 1.0}}}}} {to {{action {{START 1.0}}} {number {{ac
tion 1.0}}} {color {{number 1.0}}} {object {{color 1.0}}} {END
{{object 1.0} {garbage 1.0}}} {garbage {{START 1.0}}}}}
{START {{X 51} {y 75}}} {END {{x 620} {y 105}}} {action {{x 158}
{y 73}}} {number {{x 299} {y 75}}} {color {{x 413} {y 105}}} {object
{{x 497} {y 84}}} {garbage {{x 339} {y 177}}}

Figure 4-13. Listing ofdemo grammar and dictionary file.

matted as aTclX keyed list, with the words as akey. Within each word are two keys: p
for the pronunciation, e for the edges. The third line contains the grammar, also a
TclX keyed list, with the clusters as the keys. The final line contains optional position
information for gramCracker to draw the clusters.

70

4.7-2 Creating the Application

The code to create the speech recognizer and its associated mega-widgets is shown in

be sure to set environment variable SPRCG_LIBRARY to the libtcl
directory
source "$env(SPRCG_LIBRARY)/spRcg.tcl"
source ''$env(SPRCG_LIBRARY) /spRcg_wigits. tcl"

frame .buttons -relief ridge -borderwidth 2
frame .s -relief ridge -borderwidth 2

create an object to record and play audio
spRcg_recorder my_recorder

connect to the AF server

your machine must already be running AF!
my__recorder open $env (DISPLAY)

create an itcl object to handle the vocabulary and grammar
spRcg_gramDict my_gramdict

specify the file that contains speaker independent information
about phonemes. For now, this is the only such file, so use it.

niy_srramdict config -mlpFileName "$env(SPRCG_LIBRARY) /
phone. 16.r6.L128. P3. Bkhz.MO .Noarm.hard, weightsq.mlp"

read the grammar that you created
i^y_gramdict readGramDict /demo.gram'

create a speech recognizer object;
let my_gramdict give it the proper arguments in the proper format
eval spRcg_recognizer my_recognizer [my_gramdict giveRecogCon-
structorArgs]

create an itcl mega-widget that has sliders to control recording
parameters

it also lets you record, recognize, and play with simple high
level commands

spRcg—controller .s.my_controller -recognizerName my_recognizer -
recorderName my_recorder

create a display to show the recognizer's results
show the 2 best matches
the program doesn't really need this widget, but it's fun to have
spRcg_NBestDisplay .s.my_answers -NBestDepth 2

Figure 4-14. Creating the speech objects and widgets.

71

Figure 4-14. All the programmer needs to do is create aspRcg_recorder and open the con
nection to AF (which is a separate, publicly available program.) Then, read in the

spRcg_gramDict that was previous created while using gramCracker. Next create arecog
nizer and then a controller widget. Finally, create a display widget to see the n-best
answers.

The procedure shown in Figure 4-15 performs the actual speech recognition and turns on

turn on or off recognition depending on the state of $recogni-
tionOn

when recognition is on, continuously record, recognize, and ex
ecute

verbal commands

proc doRecognition {} {

global recognitionOn

if { [.s.my_controiler alreadyOn] } {
if { ! $recognitionOn } {

this will kill the recognizer (invoked in a previous call to
doRecognition) in case it is still waiting for a sentence
.s.my_controller abort

}

} else {

there are "update" commands in the recordRecog method,
so events will be process even while the loop is running
while { $recognitionOn } {

set answer [.s.my_controller recordRecog ""]
.s.my_answers display $answer
obey_command [1index $answer 1]

}

}

Figure 4-15. Controlling recognition.

and off recognition as the user turns on and off the Recognizer On button. In fact, ittakes
only one line ofcode to do the recognition:

set answer [.s.my_controller recordRecog

Most ofthe rest of the code responds to the user's button press.

The code in Figure 4-14 and Figure 4-15 is generic, in the sense that almost any speech
recognition application could use almost identical code.

72

Theobey_command procedure, shown inFigure 4-16, parses therecognized sentence and

draws the objects accordingly. This part ofthe program is application dependent; each

application should have asimilar procedure that parses its own specific grammar orgram

mars according to the application's own program flow. The rest ofthe code for the dem

onstration application is shown in Figure 4-17.

73

proc obey_cominand { sentence } {
if { [1length $sentence] != 4 } return

clear the canvas

•c delete all

set quantity [lindex $sentence 1]
set color [lindex $sentence 2]
set shape [lindex $sentence 3]

switch $quantity { one { set qn 1 } two { set qn 2 }
three { set qn 3 } four { set qn 4 }

}

specify the initial positions
rectangle needs 3 points; square and circle just need two
rename shape to a word recognized by the canvas widget
switch $shape {

square {

set x(l) 10; set y(l) 10; set x(2) 60; set y(2) 60
set numpoints 2
set shape rectangle

}

circle {

set x(l) 10; set y{l) 10; set x(2) 60; set y(2) 60
set numpoints 2
set shape oval

}

triangle {
set x(l) 35; set y(l) 10; set x(2) 60; set y(2) 60
set x(3) 10; set y(3) 60
set numpoints 3

set shape polygon

}

default { return }

}
draw each object
for {set i 0} {$i < $qn} { incr i} {

set command [list .c create $shape]
put all of the objects points in the command
for {set j 1} {$j <= $numpoints} {incr j} {

lappend command $x($j) $y($j)
}

lappend command -fill $color
eval $command

move all the points to the right by 100
for {set j 1} {$j <= $niampoints} {incr j) { incr x{$j) 100 }

}

}

Figure 4-16. Parsing the recognized sentences.

74

proc setup_demo {} {

canvas .c -height 75
set recognitionOn 0
checkbutton .buttons.recogButton -text ^'Recognizer On" -command
doRecognition \

-variable recognitionOn
button .buttons.quitButton -text "Quit" -command exit

pack .c -side top -fill both -expand 1
pack .s -side top -fill x -expand 1
pack .buttons -side top -fill x -expand 1
pack .buttons.recogButton .buttons.quitButton -side left -fill
both -expand 1
pack .s.my_controller .s.my_answers -side left -fill both -expand 1
}

Figure 4-17. The rest of the application source code.

75

Recording Status: silence

gaitage ^ireshold
025

sllence duration (2SQ-2500 msec)
500

silence threshold

27

j Recoplzer On

2 Best Recognized Sentences

1.OOe+OO draw three green triangle

Figure 4-18. The finished demo application.

5 Low Power Memory Design

5.1 Overview

Designing low power speech recognition hardware presented an opportunity to apply
existing low power design techniques and also created the necessity ofdeveloping new low
power techniques. In particular, the design exposed the need for new, low power memory
designs. This chapter describes the design and use of new, low power SRAM and ROM
designs, implemented as part ofthe lager[22] CAD system.

Previous research has developed techniques for low power CMOS IC design[3][4][5][io].
In order to understand low power CMOS design, one must consider the equation for

power consumption: Power = CvVo 1•Where Cis the capacitance ofthe node being

switched, V is the supply voltage, and 1 is the frequency with which the node is

switching. (/o_^ j should not be confused with the overall system clock; depending on

the circuit and the data, a given node can switch ata rate much lower than the clock fre

quency.)

The most important aspect ofthe equation for power is its square law dependence on volt
age. Since power various most strongly with voltage, the first priority of low-power design
is to have the circuits operating at the lowest possible voltages. In systems that have fixed
throughput requirements, the best strategy is to lower the supply voltages to the point
where the circuit is barely fast enough to meet the speed requirement.

In order to lower this supply voltage as much as possible, it is often advantageous to design
fast circuits since they can meet aspeed requirement at a lower voltage than can slower

77

circuits. At the architecture level, too, some of the most common high-speed tech

niques—parallelism and pipelining—can reduce the necessary clock speed, thereby
allowing operation at lower voltages. In these cases, the higher speed design usually
switches more capacitance than does the low speed design. However, the increase in

power from the increased capacitance is more than offset by the power reduction from

lowering the voltage.

Although the voltage is the most important factor in power consumption, it is also helpful
to try to optimize the other two factors. As long as itdoes not significantly reduce the over

all system speed, it is agood idea to reduce capacitances as much as possible. For example,
transistors that are not in the critical path should have minimum size geometries in order

to reduce gate and parasitic capacitances. Likewise, switching frequencies should be set

as low as possible. For example, circuits should not be allowed to switch iftheir outputs
will not be used. Also, circuits should be designed to reduce glitching, since glitches
increase the effective switching frequency.

5.2 Sram

The SRAM macrocell is a scalable design incorporated into the Lager and Viewlogic
design systems. The chiefdesign goals were low power consumption, high area efficiency,
operability over awide range of word sizes and number of words, operability over awide
range ofsupply voltages, process independence, and an easy to use electrical interface.

5.2.1 LowPower Techniques

Low power consumption was the SRAM sforemost design goal. In keeping with general
low power CMOS design techniques, the SRAM is optimized for 1.5 volt operation, and can
operate ateven lower voltages ifused atlow speeds. Optimizing for 1.5 volts had two main

effects. First, since the typical processes used to implement the SRAM have asymmetric
device thresholds—o.yv for NMOS and o.qv for PMOS, the difference in current drive

between the devices is exaggerated. Tocompensate for this difference, the ratio ofdevices

sizes, in devices in the critical path was as large as /i (compared with typical values

of54 in most higher voltage designs) in order to create equal current drives and hence

78

symmetric rise and fall times. The second effect was to enable the low-swing bitline cir

cuits described below.

The low power goal influenced the design at both the architectural and circuit level. At

the highest architectural level, the SRAM uses a strategy that minimizes the amount of

capacitance thatswitches with each read, thereby minimizing power consumption. The

memory is broken up into individual blocks; Each block has an address pre-decoder so

that during amemory access, only one block is enabled, so capacitance is switched in only

one block. The result of this architecture is to trade a slight increase in delay for a large
decrease in power consumption. The sram's architecture causes the time for the address

pre-decoding to be added to the overall delay; ifthe sram performed block level selection

at the same time as it performs a read orwrite, the pre-decode time would not be added

to the overall delay, but all of the blocks would be activated every cycle, increasing the
power consumption bya factor equal to the number of blocks.

The sram block structure uses two rows; the designer can specify the number ofcolumns.

By choosing the number ofcolumns, the designer has control over the aspect ratio, as well
as a limited ability to trade area for lower power. With fewer blocks, thesram uses less sil

icon area because there is less duplication of control, sense, and address decoding logic
(although the number of memory cells does not change); however, each block will have
more words and hence must consume more power to decode its address and to swing its
bitlines.

The architecture within the blocks is also optimized for low power consumption. In par
ticular, the sram uses as little column decoding, 2to 1, as possible, in order to reduce the

amount ofcapacitance that must be switched to read or write one bit ofdata. Ofcourse,
having no column decoding at all would have been even better, but would have made

pitch matching the sense amps nearly impossible. The blocks are most efficient when

used with fairly wide words, generally 16 to 32 bits wide, for two reasons. First, the layout
is more efficient than for narrow words because wide words reduce the percentage of the
area taken up by address decoding and control logic. Second, narrow words would have a

larger percentage of the power consumption in the address decoding and control logic.

79

Fortunately, using wide words fits well with general low power techniques; it is best to
access memory data in parallel, allowing slower operation, hence allowing low voltage
and low power operation. For example, in the InfoPad frame buffer, the memory is access
32 bits at a time and multiplexed 8bits at a time by the logic.

Most ofthe circuit level optimization for low power occurs in the bit lines and sense amps.

BitBar

Vdd

3/2

L|

1

D-
3/3

rC

J

n
1 ,

r C

4/2

]ND n

r

Word

Figure 5-1. Sram memory cell schematic.

The bitline precharge scheme is designed to reduce their voltage swing, particularly at low
supply voltages. The bitlines are precharged through NMOS devices, so their maximum
voltage is an NMOS threshold voltage (with body effect) below the supply voltage. With
Vdd=i.5 volts, the bitlines precharge to approximately 0.7 volts in atypical process. Thus,
when the bitline is discharged, the voltage swing is reduced by over 50 percent compared
to precharging to If slower speed operation is acceptable, can be reduced, and

the percentage savings is even larger.

The sense amps use a cross coupled latch topology because it is fast and consumes no
static power (as would adifferential pair, which has a constant bias current). In addition,
the column select devices also function as cascode amplifiers: the drains of these devices
are precharged to the supply voltage, while their sources are attached to the bitlines,
which are precharged to a threshold drop below the supply. Thus, before there is any
swing on the bitlines, these devices are barely off. When the voltage on abitline changes
a little, the device turns on, discharging the capacitance at its drain. Thus, the column
select devices also create voltage gain into the cross coupled latch inputs.

80

Tristate
dllfnilf Note: only oneblock perSRAMs^ULfJUL
Driver

OEn -

Latch

Prech

PrechBar
o/a

Ev'al "prech
8/2

4/2

WenBar

Write

16/2

HL

Column
Select

SelectO

Selecti

Bltllne
Precharge Vdd—|i2/2r'~| 12/:p~|12/2[~ Il2/2(~^ 12/2p-~] 12/2r~^^^

Precharge

9/2

Dout

120/2

VM
L

f

17/2 ^7/i
Ch rC

34/2 34/:

Sense —

SeihMEmp

9/2

p-
34/2

•_

11/:

3-c
•

Xz

BitO BItOBar

9/2

16/;

J2

PrechBar

<8/2^WenBar
8/2

4/2

Write

9/2

Bit1 Bit1 Bar

Figure 5-2. Sram senseamp and write circuit diagram.

8i

The sense amps also use a self-timed, non-glitching output to save power. Initially, the

sense amp is precharged so that both the NMOS and PMOS devices are turned off, tristat-

ingthe output.When the cross coupled latchresolves the data, it turnson one or the other

device. Thus, there can benospurious transitions on the output data bus, which can have

very high capacitances.

Since the cross coupled latches ofthe senseamp provide positive feedback, they must not

turn on until asufficiently large signal -afew hundred millivolts - is present attheir inputs.

Therefore, the signal that enables the sense amp must be a self-timed signal.

5.2.2 SelfTiming

In fact, all ofthe clock phases used by the SRAM are generated using self-timed circuits,

for two reasons. First, to ensure correct functionality, as in the case ofthe sense enable sig

nal, across process variations and different sized memories. Second, to ensure a simple

designer interface: the designer only needs to supply one clock edge; the SRAM generates

all of its own timing signals.

The self-timing follows the entire critical path through the sram by using "dummy" cir

cuits that have the same delay as the circuits in the actual sram. First, in the address

decoder, acircuit tracks the delay to decode aparticular address. In essence, this dummy
output is just like a word that always is selected, no matter what the input address. The

actual address decoder is a tree structured NAND array, driven by the addresses and their

complements. The tree structure, with minimum sized devices at the branches and larger
devices toward the root, has relatively little total gate capacitance, and hence has reason

ably low power consumption. Unfortunately, the nodes between the devices must be pre
charged to avoid charge sharing; fortunately, they only need to be precharged through
NMOS devices to a threshold voltage below the supply

The output of the dummy row decoder drives adummy word line that emulates the delay
through an actual word line. The dummy word line is driven by an extra word line driver.

The dummy word line is attached to NMOS gates that are the same size as the gates ofthe
memory cells access devices, so both the rise time from the word line driver and the RC

delay through the dummy word line (which, like the actual word lines, is made ofpolysil-

82

Eval AO AOBar

32/2 8/2

8/2

8/2

Vdd

r8/2

An An Bar n

d

8/2

31
3/2

Prech

Vdd

Vdd

^PrechBar J
D-
8/2 rC "^DummyWord

20/2

Figure 5-3. Sram dummy word driver.

icon) should be the same as for the actual word lines, no matter what the supply voltage,

number ofwords, number ofbits, and changes in CMOS process

The output ofthe dummy word line serves two purposes. First, it triggers the senseamp

enable signal. The senseamp must not be triggered before a small signal has been placed

on the bit lines, which will occur ashort time after the selected word line goes high. Since

the dummy word line goes high at the same time, the senseamp will be enabled a short

time after the word line is selected. The short time is the delay through the control logic

and drivers that control the senseamp enable; this short time ensures that a sufficiently

large signal is present on the wordlines before sensing. (The senseamp enable signal also

waits for one of the two column select signals to become valid. There is no need for a

dummy column select signal because itis easy enough to OR the two signals; ORing all of
the word lines would entail a much larger delay.)

The second purpose for the dummy word line is to drive a dummy bitline through a
dummy memory cell. The dummy memory cell is always precharge to contain the same
data, so only one dummy bitline is needed (the other bitline would never change voltage,
so itis not needed). The dummy bitline that is used has the same capacitive load as a reg
ular bitline, and hence has the same delay.

Not surprisingly, the dummy bitline drives adummy senseamp. The output ofthe dummy
bitline is valid at the same time as the data is valid at the output drivers in the actual

senseamps. At this time, the cycle for the sram is finished so the output ofthe dummy

83

PrechBar

WenBar—

SelectO H

Selecti

Vdd-i

DummyBit

DummyWord—

DelayBitBar

PrechBar

jh
SenseH 34/2

-Precharge

Vdd

3/3
DummyBitBar

£3:
4/2

•

Precharge-|̂

Figure 5-4. Sram self-timing circuitry.

senseamp triggers the return to the sram's precharge state. (It is not necessary to duplicate
the rise or fall time of the signal on the output data bus because the data at the input of
the output drivers is latched, so the bus is driven even during the precharge phase.)

84

In addition to simplifying the interface and ensuring proper timing, self timing helps to

maximize the SRAM's speed by ensuring that the various clock phases are properly propor

tioned.

5.2.3 Description of Operation

This section describes the sequence ofevents that comprise a read orwrite operation in

the SRAM.

5.2.3.1 Set Up and Pre-Decoding

The first step in a memory operation is assertion of valid data to the SRAM: namely, the
address, the read/write signal, and (in the case ofawrite operation) the data. The most sig
nificant bits of the address must be valid early enough before the rising clock edge to be
decoded so it can enable one ofthe blocks. The number ofMSBs involved depends on the
number ofblocks; e.g. if there are 8blocks, 3MSBs are used. This pre-decoding operation
is rather fast because it uses at most 2stages of static CMOS logic. The output of the pre-
decoders must be valid before the rising edge ofthe clock because they enable (or disable)
the blocks' triggering off ofthe clock edge.

The setup timing of the other input signals is less stringent because they are latched by
clock phases generated after the rising clock edge triggers the block. Thus, they are not
latched until some time after the rising clock edge.

5.2.3.2 Clock Trigger

Ablock's internal clock is triggered off of the rising edge of the global clock ifthat block
is enabled by its pre-decoder. The trigger circuit is an SR latch with one edge triggered
input and one level trigger input. This latch drives three clock signals: prechargeBar, pre-
charge, and eval. PrechargeBar and eval have the same value but are separated in time by
two inverter delays; precharge is their logical compliment. Both prechargeBar and eval axe
needed in order to eliminate short circuit currents during clock transitions.

85

When triggered, the clock signals initiate a read or write cycle. They are reset to the pre-
charging state by the output ofthe dummy senseamp during read operations or by the state
ofthe dummy memory cell during write operations.

5.2.3.3 Address Decoding and Wordline Driving

The clock signals cause the address drivers to latch the input address and drive each signal
and its complement onto the nodes ofthe decoding tree. Initially all ofthese signals are

precharged low, so there are no conducting paths in the tree. After each address (or its

compliment) is driven high, there will be one and only one path through the tree to a

single word line driver. (There will also bea separate path for the dummy word line.)

DelayBltBar

Clock

BlockEnable_^ |̂̂ ^\o--
10/J^ 1^/2 L
6/2 I 8/2 _
Eva!Bar

WrlteBar 10/2^ *^26/2
6/2 I 8/2

Eva!

Eva! Prech PrechBar

396/;

sJ02/3

Min15/2

5/2

594/:

J26/:

300/:

108/:

OEN

ColSelOA 14/
ColSell^

DummyWord

Eva!

28/2 56/2

10/2 rv2o/2vvenB

234/2

Sense

Figure 5-5. Sram control circuits.

One bit of the address is used to drive the column select devices, which are attached to

the senseamp and bit writing circuits. Their signals are also dynamic.

86

Eval

Prech-

Ain

Vdd

100/2

12/2

jd

"Tj
24/2

16/2

d

Vdd

—C 8/2

—C 8/2

4/2

4/2

b_

D-Eval Eval -C

rs. 8/2
r>o—
1^4/2

Prech

Eval j with all drivers)

Vdd

100/2

ABar

Figure 5-6. Address latch and driver.

Using precharged, as opposed to static, address lines has the benefits ofspeed and simplic
ity; its effects on power consumption are unclear. The speed and simplicity derive from
the self timed nature ofthe address decoding: since the proper word line is enable auto

matically after all of the address lines are valid, there is no need for additional control logic
or an additional clock phase to separate the address decoding from the rest of the cycle.
The power consumed in the address decoding might be lower if there was ahigh degree
of correlation between addresses from cycle to cycle because the address lines would

switch less often. On the other hand, this savings might be offset by an increase in power
for the extra control and clock logic needed. Plus, the capacitance on most of the address
lines is not large because the tree structure has few transistors on the most significant

87

Eval •

Prech-

AIn —

Vdd

200/:

24/2

48/:

32/2

d
Prech

Vdd

8/2

8/2

4/2

D
4/2

Q_

O- Eval

Eval

Vdd

Eva! -C 48/2

n
-U

32/2

•

Prech—

70/2 (shared with all drivers)

200/2

[h
24/2

IL

Figure 5-7. Column select latch and driver.

addresses. Finally, the increased speed of the dynamic logic can help with power con
sumption because it allows the sram to meet the same timing requirements at lower

supply voltages.

During precharging and the start ofthe address decoding, all ofthe word lines are held

low by inverters on the leaves ofthe decoding tree. When the input to one ofthese invert

ers is pulled low by the tree, itdrives its wordline high. The wordlines are routed in poly-
silicon to allow the most compact memory cell in a two metal process, so it is important
to make sure that the RC delay through the wordline does not dominate the delay ofthe
SRAM. Two techniques are used to reduce this delay. First, the memoiy is split into two

banks; cutting the length of the wordlines in half, and hence cutting the RC delay by a

88

An AnBar n

J £]

An-1 An.iEar An AnBar n

n

11-Prech
Vdd

An ApSar [-
8/2

J n

Eval AO AOBar.
32/2 12/2 12/:

Ap-i An-iE ar An AnBar n
8/2

"L_C

Vdd
3/2 1 3/2

Vdd

^PrechBar
D-

Prech

Vdd

lari

^rechSan
^ r^l • Word„,^i

Prech

Vdd

Prech Barsari

Prech—

Vdd

Wordm

•
^l'dm+2

^PrechBar uJ
O r-r
8/2 p--

Prech —

=^'^Wordm+3

20/2

HL

Figure 5-8. Tree-structured sram address decoder and row drivers.

factor of four. Second, each word line is actually composed of two polysilicon wires, one
connected to each of the two access devices in each bit. Compared to asingle word line,
the gate capacitance on each line is cut in half, further reducing the RC delay. (Fortu
itously, using two word wires also produces avery compact memory cell layout, so the area
of the memory is reduced!)

89

5.2.3.4 Bitlines: Writing

During a write cycle, the write data is latched and asserted on the bitlines simultaneous

with the address decoding process, and is valid before the selected word line goes high.

During awrite, one bitline is pulled down to ground; the other is left atits precharged volt

age. The bitlines are written through the column select transistors; in the bitline pairs that

are notselected, neither bitline is pulled low. This is nota problem because theselected

cells on these bitlines see the same voltages on their bitlines asduring a readoperation.

The timing between the wordline going high and the bitline being pulled low is not crit

ical. If, for example, the wordline goes high before the column select signal goes high, the

memory cell would begin to pull down one of the bitlines (as in a read operation), but the

bitline will swing very slowly because the transistors in the memory cell are weak. The

write circuit, in contrast, pulls down the bitline with strong devices. Thus, it will pull

down the correctbitline faster than the memory cell pulls down the incorrect one, over

powering the memory cell, and thus writing the correct data even though itgot alate start.

5.2.3.5 Bitlines and Senseamp: Reading

During a read cycle, after the word line goes high, the memoiy cell will pull down one of

its two bitlines; the other bitline will not change voltage because the cell is pulling it up

through an NMOS device, so it is stable at the precharged voltage.

5.2.4 Layout

TheSRAM layout uses the MOSIS scalable CMOS design rules, so it is suitable for fabrica

tion in a variety ofprocesses. The cell library has also been ported to the HPo.6um pro

cess.

Thesram cells use polysilicon word lines inorder to reduce area. However, each wordline

is actually two separate wires, so the RC delay through the wordline is less than it would

be for a single poly wire.

The layout ofthe wiring between the blocks is also part ofthe SRAM's design. Using the

Timlager tiler to do this wiring saves area intwo ways as compared to using Lager IV's stan

dard router (which is a part of Flint.) First, the hand-tuned tiling routine achieves the

90

GND bit bitbar Vdd

dual wordilnes

Figure 5-9. Sram cell layout

absolute minimum spacing between blocks and between wires in the routing channel;
automatic place and route is less efficient. Since this hand optimization only needs to take
place once—when the SRAM is designed—it is worthwhile. Second, the SRAM blocks can

place some oftheir active layout in the routing channel, resulting in afurther area savings.
Specifically, two types of circuits are placed in the routing area: block decoders and weak
static latches on the data lines. Both of these circuits reside on metal one and lower layers,
so they can inhabit the same area as the metal two wires that are tiled over them.

5.2.5 Performance

Table 5-1 shows SPICE simulation results for asingle block of the SRAM in a0.6 |im pro
cess. In keeping with the low power design strategy, the designer can trade off speed of
operation versus power consumption. Since the global architecture of the sram deter

mines that only one block is activated per operation, the total power consumption is the
sum of one block's power plus the power from switching the data buses. Thus, increasing
the size of the memory by adding additional blocks only has asecondary increase in power
consumption. Namely, the power increase will be due only to the additional capacitance
placed on the data bus from the extra blocks and from the wiring to those blocks.

Table 5-2 shows the effects on speed and power of changing the number of bits and the
number of words in a block.

16 Bit X 64 Word Block

Figure 5-10. Sram block layout.

5.2.6 Implementations

The SRAM has been fabricated as the core of two memory chips: a64 kbit chip in 1.2 \im,
and the 96 kbit chip in 1.0 pm, shown in Figure 5-u. These chips form the first and second
generation InfoPad frame buffers. In addition, two other InfoPad chips use the SRAM as
on-chip memories: the transmit chip has four memories with 160 bytes by 16 bits each; the
receiver chip has one memory with 256 words by 8bits. These InfoPad chips were fabri-

jpiiiihihii^irHT=ii=iiHi=ii=ii=li=n=a-ii4i^ii-iiiiin
a

" ii'Ki: • ••'•u/tI'i

fl
^1

51

jsl

si

IWlM|-||-||=||=||=iigi=||=li:li=H3IEII^

Figure 5-11. Layout of3 kWord x 32 bit sram integrated circuit.

cated in a 1.2 jim process. The SRAM also was fabricated on the RASTA chip described in
Chapter 6and the MLP chip described in Chapter 7.

Future plans for the SRAM include use as on-chip cache memory and external main
memory chips in a low-power, high-throughput microprocessor fabricated in 0.6 pm
CMOS [2].

SupplyVoltage

1.25V 1.5 2.0 3.3

Cycle time 34.3ns 19.6ns 10.6ns 5.7ns

Access

Time

O.OpF
load

25.6ns 14.4ns 7.7ns 4.1ns

O.SpF
load

26.8ns 8.1ns 4.3ns

1.0pF
load

27.7ns 8.4ns 4.5ns

2.0pF
load

29.7ns 8.9ns 4.8ns

Energy/operation 20pJ 32pJ 64pJ 205pJ

Table 5-1. Voltage scaling a 128word 12 bit0.6 |xm sram.

Words Bits Access (ns)
(2pF load)

Cycletime
(ns)

pJ per
Operation

128

6 16.1 18.6 25

8 16.4 18.7 28

16 17.2 19.8 39

32 18.3 21.7 50

256
8 17.9 20.1 32

32 19.7 23.1 78

Table 5-2. Sram speed and energy vs. size at 1.5V.

5.2.7 ROM

5.2.8 Architecture

The low power ROM uses many of the same circuit and architectural techniques as does
the low power SRAM. The ROM uses a tiled block architecture, with individual ROM

blocks connected by atiled interconnect These interconnect cells also contain block pre-
decoders that enable one andonly oneblock in the entire ROM.

5.2.9 Circuits

The ROM uses a NOR array to store the data. When the data is "o," a transistor connects

the bitline to ground; when the data is "1" there is no transistor present.

94

Figure 5-12 shows the ROM's dynamic address latch. It precharges all ofthe address line

EvalAddr-

n

Vdd-T

ABar

Ain

-c|j |̂ EvalAddrBar

A
P—^~~tY^~~^Vdd

•_

Figure 5-12. Rom address latch.

then pulls down either Aor ABar when evaluating. This configuration helps with
high speed operation, because only NMOS devices are used during the critical evaluation
period. The PMOS devices are active only during precharging, when speed is not as impor
tant.

EvalWord AO AOBar An AnBarn Vdd

^valWord J
D- ^

n

Vdd
t EvalWordBar

Figure 5-13. ROM address decoder and wordline driver.

95

Word

The ROM senseamp, shown in Figure 5-14, is similar to the SRAM senseamp in the follow-

Vdd

EvalWord Ready OEN

GND
Vdd Vdd

EvalWord-d 14/2 3/5he! >»

12/2 12./2 12/2SelQ_j Hs |̂̂ Sel2jPseJijH2/2

12/;ar' 12/: 12/:a- 12/:a—

Vd(

BitO Blt1 Bit2 Bit3

13/2

EvalWordBar

GND GND Vdd

0ENBar_lhi,2

3/3

3/8

GND

14/2

11/2

h
Vdd GND

U
>1

3—Data
rC 64/2

Vdd

Figure 5-14. Rom senseamp.

ing ways: it uses self-timed control signals, it uses cascode devices for column decoding
and voltage gain, and it is designed for non-glitching output. However, it has significant
differences because itsenses asingle ended signal in contrast to the SRAM, which has dif

ferential signals on each bitline.

The senseamp initially precharges the bitlines to an NMOS threshold voltage below

After the address is decoded, the EvalWord signal goes high, ending the precharging and
enabling the sense operation.

As the address is decoded, two ofthe address bits are decoded to turn on one of the four

column select devices. This device also functions as acascode voltage amplifier: its drain
is precharged to and its source, to a threshold below Vdj. Ifthere is not a transistor in

96

the bit cell on that bit line (i.e. the datafor that bit is a "i"), then the cascode device's drain

stays at Vjj. Just in case the bitline was not completely precharged, a weak PMOS device

always pulls up the drain node to counterany leakage. In the othercase, when there isa

transistor on the bit line (i.e. the data is"o"), thatdevice pulls down the bitline. This volt

age on the bitline is amplified by the cascode device, causing a larger voltage drop at its

drain. Although the NMOS device on the bitline is fighting against the weak PMOS pull-

upat the cascode's drain, the NMOS is much stronger because it is a larger device, has a

lower threshold voltage, and has greater mobility. The output ofthe cascode amplifier

goes through an inverter and then is sent through two different pass gates.

The rest ofthe circuit is designed, in combination with some additional self timing cir

cuitry, to latch the data and drive the tristate output without glitching. First, consider the

path to the PMOS output device. Initially, all ofthe clocks and control signals precharge

its nodes so the PMOS output device is off. The circuit will stay in this state unless the

senseamp output inverter switches (indicating the data is a "i"). In that case, the static

latch will change state, turning the output PMOS device on, and sending a high signal to
the output. In the other case (data "o") the inverter never switches, so the rest ofthis path
stays in the same state, keeping the PMOS device off.

Now consider the path to the NMOS device. This path is more complicated because it

should change state only when the senseamp output inverter does not switch. Thus, the

key to this path is to allow the signal to enter itonly after sufficient time has passed that it
is certain that the senseamp will not switch. This task is performed by dummy signals that
generate the ready signal that enables a pass gate into this path.

This dummy signal is generated in afashion similar to that ofthe SRAM. Adummy address
decoder drives a dummy word line (with a worst-case load ofa transistor on each bit) that

drives a dummy bit (with data of "i") on a bitline attached to a dummy senseamp. The
output of the dummy senseamp's inverter forms the ready signal because it represents the
worst-case delay until the output of the senseamps are valid; after ready goes high, it is cer
tain thatnosenseamp will change state.

97

After the ready signal goes high, the latch accepts the senseamp output and sends its signal
to the NMOS transistor. When the evalWord signal goes low, both latches hold their signal
until they are reset by the OutputEnable signal going low.

The OutputEnable signal only performs an active function when it is low. At that time, it

resets the output latches to drive the output tristate. During operation, OutputEnable goes
low at the start of every clock cycle to tristate the outputs. OutputEnable goes high when
EvalWord is high, so itdoes not interfere with the senseamp's operation.

The ROM control circuit, shown in Figure 5-15, triggers off the rising edge ofthe clock. Its
first action is to set Output Enable (oen) low, which causes the senseamp outputs to
become tristated. Ifthe enable signal is low, this is the only action that occurs; ifenable is

high, the controller generates the rest ofthe signals in the read sequence. In amulti-block
ROM, the block level address pre-decoder generates this enable signal. Thus, all the blocks
in the ROM tristate their outputs on arising clock edge, then the single, enabled block pro
ceeds with a read.

The control's first step in the read sequence is to raise the EvalAddr signal, which causes
the address latches to pull down the proper address lines. The self-timing circuit that gen
erates addressReady makes sure that either each address or its complement has been
pulled low before EvalWord, which enables address decoding, goes high. In addition,
EvalWord turns off precharging, turns on oen, and enables the senseamp operation.

The self-timing signal, dataReady, which comes from the dummy bit, resets EvalWord
and EvalAddress to their precharging state.

5.2.10 Results

Table 5-3 shows speed energy and speed numbers for various voltages and memoiy sizes
using a 1.2)J.m process.

5.2.11 Layout

Figure 5-16 shows the layout ofa single ROM block.

98

enabe

DataReady
(from
dummy
bit) ^

H
H

OEN OENB

EvalAddrB EvalAddr

AddressReady
EvalWord

EvalWord Bar

Figure 5-15. Rom control circuits.

5.3 How to use the Memories

5.3.1 Viewlogic and TimLager

The SRAM and ROM are part ofthe Lager FV silicon assembler system. To use the SRAM,
the user must specify two parameters: WORDS and BITS. There is one optional parameter,
BLOCKCOLS, which defaults to "1" if it is not specified. Lager IV calls the TimLager tiling
program to create the layout for the memory. At the highest level, the memory is divided

99

Words Bits Vdd
(Volts)

Access

(ns)
Cycle
(ns)

Energy/
cycle
(pJ)

16 4 1.5 52 70 14

16 4 2.1 23 31 29

16 4 3.0 12.3 17 59

16 8 1.5 53 74 20

64 8 1.5 65 85 25

64 8 2.1 29 38 87

64 8 3.0 15.7 21 112

64 16 1.5 68 93 34

256 8 1.5 77 101 31

Table 5-3. Rom speed &energy vs. size and voltage.

into anarray oftwo rows by BLOCKCOLS columns ofmemory blocks. Thus, the user can

use the BLOCKCOLS parameter to control the aspect ratio ofthe memory.

Lprom has 3parameters in the sdl file: WORDS, BITS, and dataBits. WORDS gives the total
number of addressable words. (The actually number of words in the array may be made
slightly larger for tiling purposes, but this will not affect the user.) BITS gives the number
of bits contained in each word. (If BITS is odd, lprom will add an extra data line for tiling
reasons. The user can leave this line disconnected.) dataBits is a two dimensional array
that specifies the actual I's and o's to be stored in the ROM. The number of words is spec
ified by WORDS. Each word must be BITS bits wide. The words should be given in order
from address o to the largest address. The MSB ofeach word is on the left; the LSB, on the

right. (See Figure 5-17 for an example ofthe parameters).

5.3.2 Simulation

In orderto use irsim switch level simulator, one mustfirst set the state oftwo nodes in two

flipflops that control the state of the lprom. These nodes are called "setMe" and

"resetMe". For an example:, see Figure 5-18.

100

fViVfViVfViVfVf

Svl-.qi::•
.. ,.;r

Figure 5-16. Layout of 1024 word x 16 bit rom block.

In the actual silicon, these nodes will always be properly set when the Power On Reset Bar
(PORB) signal goes low; the special procedure in IRSIM is an artifact of that program's
inabilit}' to recover from undefined states in certain cases.

(WORDS 64

(BITS 8)

(dataBits

"00000000"

"00000100"

"00001000"

"00001100"

"00010000"

"00010100"

"00011000"

"00011100"

"00100000"

"00100100"

"00101000"

"00101100"

"00110000"

"00110100"

"00111000"

))

("00000000"

"00000001"

"00000101"

"00001001"

"00001101"

"00010001"

"00010101"

"00011001"

"00011101"

"00100001"

"00100101"

"00101001"

"00101101"

"00110001"

"00110101"

"00111001"

"11111111"

"00000010"

"00000110"

"00001010"

"00001110"

"00010010"

"00010110"

"00011010"

"00011110"

"00100010"

"00100110"

"00101010"

"00101110"

"00110010"

"00110110"

"00111010"

"10101010

"00000011

"00000111

"00001011

"00001111

"00010011

"00010111

"00011011

"00011111

"00100011

"00100111

"00101011

"00101111

"00110011

"00110111

"00111011

"01010101"

Figure 5-17. Sample parameters to synthesize a ROM.

model linear

vector d D[{7:0}]

vector address A[{4:0}]
h enable Vdd porB
1 GND ck

set address 00000

1 ctrl_0/resetMe
h csEnd_0/setMe

s 50

X ctrl_0/resetMe csEnd_0/setMe

Figure 5-18. Example irsim commands to simulate ROM.

102

6 Low-Power Speech Recognition

Architecture

6.1 Goals

This chapter describes the design ofalow power speech recognition system using custom
hardware. Parts of this system have been implemented in hardware; other parts are left as
future work. There were two reasons for designing this system: First, to demonstrate the

feasibility of performing state of the art speech recognition algorithms on low power, por
table hardware. Second, to advance the art of low power CMOS design.

6.2 Previous Work

.The system design started from the UCB custom speech recognition system [24][25]. This
previous system was asuccessful demonstration ofaCAD system designed for rapid proto
typing ofcustom chips and boards for application specific systems. Its design goals were to
achieve as large a throughput as possible while maintaining flexibilit)' in the phoneme
topologies, word pronunciation, and grammar. Although this system was not designed
with any thought to power consumption, its implementation does provide valuable lessons
on the bottlenecks inherent in speech recognition algorithms.

This system, pictured in Figure 6-i, ran the algorithm described in Chapter 2. The front
end signal processing was performed on one of the 3TMS32oC3o's on the grammar board.
State processing and phoneme processing occurred on the viterbi board, which contained
6custom ICS. Aseparate distribution board stored output distribution probabilities in 80
MBytes of dynamic RAM. Two of the TMS32oC3o's on the grammar board performed the
grammar processing. The Heuricon board, which ran the VxWorks real time operating

103

li-mjmmiJuuuuDaaDa ^

VME back plane

1.7

Figure 6-1. Previous UCB speech recognition hardware system.

system on a 68020 microprocessor, performed general command and control functions.

Most ofthe data was transferred over aVME backplane, except for probabilit)' distribution

data which was transferred over a custom cable between the distribution board and the

Viterbi board, andgrammar transition information which was transferred between theVit-

erbi board and the grammar board.

6.3 Next Generation: Low Power

The next generation speech recognition system is a scalable, low-power design. It is scal
able because the size ofthe vocabulary can be increased by using more Viterbi decoder

chips in parallel. It is low power because all functions will be implemented in low-power
CMOS ICS, with all memory implemented on-chip as low-power SRAM and ROM.

104

The low power design departs from the previous design in the following ways: algorithm

changes, reduced programmability, locality of data, memory-centric design, and applica
tion ofgeneral low power techniques.

The chief goal of the low power system is to maintain locality of data. To see why this is

Algorithm UCB System Hardware Low Power System Hardware
(& Status)

/

Front End luiuiuiitDiiiuiilllJI IIIIOIDIDIIIIIIDIII

V

Grammar Board

Viterbi
itiiuiuiugiiiijiiiiiui Niiuiiiuiiiiiigiiisi

Viterbi Board

lyiyiyiuiyiiyuyiyi iiimyimiiiiimy

Probabilities Distribution Board

Cuuuuuuuui) CUD
N

2 Custom Low-Power ics I
(1 Fabricated, 1 Designed) /

Custom Viterbi ic .
(designed &simulated at
architecture level) '

Custom MLP IC
(designed &fabricated)

N

Figure 6-2. Comparison of hardware partitions.

important, first consider the UCB system, which failed to take advantage of much of the
structure and locality of data in HMMs. The UCB system did use two levels of hierarchy:
phoneme level and what it termed the "grammar" level. ("Grammar" is placed in quotes
in this context because the UCB system suse of the term "grammar" also encompasses
what this document terms the dictionary or pronunciation level of the HMM.) Table 6-i
compares the number of bits used to encode state and phoneme data in the UCB system
and the low power system. The low power system manages to reduce the amount of data

105

UCB System Low-Power Sys
tem

Bits/ state 145 25

Bits/

phone
96 11

Table 6-1. Comparison of memory sizes.

stored by keeping data local and by using implicit addressing schemes, so the memories

do notneed tostore a large number ofpointers.

The phoneme layer is where the UCB made good use of locality. The UCB had individual

HMMs that represented phonemes. These small HMMs were combined at the next higher
level ofhierarchy to form words and sentences. The phoneme models themselves could

have variable topology because they could have any number ofstates, each ofwhich could

connect to any of its three following states. Each phoneme also had a special "source
grammar node" and "destination grammar node." States in the phoneme model could

also have edges from the source grammar node and to the destination grammar node.

These grammar nodes are the key to the phonemes locality because transitions into and

out of the phoneme could only take place through these grammar nodes. Thus, grammar
processing is simpler because a connection to a phoneme only requires a single edge to
the phonemes grammar edge, rather than edges to multiple states within the phoneme.
Processing within the phoneme is simpler too. Because each state can only be connected

to a small number of other states, the number of memoiy words devoted to describing
these connections is small; the size of these words is also small because they only need to
describe a small relative offset of one state to the next to describe the connectivity within
a phoneme. This phoneme hierarchy also simplifies memory accesses while processing
transitions from one state to the next: since transitions only occur between asmall number

ofstates, their data can be kept in a cache so the main memory does not need to be

accessed several times for each state. In summary, by reflecting the structure ofHMMs in

the structure of the hardware, and by constraining the topology of phonemes, the UCB
system reduced the number ofwords, the size ofthe words, and the number oftimes that

words had to be accessed from memory. The low power hardware uses the same strategies,

106

but takes them even further in the phoneme section and also applies them to other levels

of the HMM.

Before examining the low power architecture, itwould be useful to look atthe "grammar"
level ofthe UCB system to see where its bottlenecks occur. The grammar level encom

passes all transitions higher than the phoneme level: namely, transitions between pho
nemes within words as well as transitions between words. Thus, whenever any phoneme's
destination grammar node is active, it causes data to be sent to the grammar processing
board, which then must determine the appropriate transitions and send the data back to

the grammar processor on the viterbi board. In practice, this path proved to be a serious
bottleneck: the first design ofthe grammar board could not handle the I/O bandwidth and

had to be replaced with a multiprocessor design.

In contrast, the low power system design uses separate systems to process transitions
between phonemes in aword and to process transitions between words

Speech

Front
End

Output
Distribution

Prob

MLP Chip

Viterbi Processor
N VVords

Viterbi Processor
N Words

Viterbi Processor
N VVords

Figure 6-3. Low-power system architecture.

107

Grammar
Cluster
Output

6.4 Front End

The design of both front end ICs was done by Steve Stoiber [23]. The SORASTA chip, pic-

III!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
mmmmmmmirn

:: BUS :

LUNIt

QUEUE

UNIT :

••iniiiiiMi

•iRIJMIIIllZijltw2'IBiBl9iD(ann4itBitiink

E CRITJpAl, BAND UfJIT

1 mill

viiiitrv

SCR/KH PAD ME/VteRY

mil'
r-miu

ll

BUTTERFLY UNit ^ = ^

iunjIUIUiiiiiiiiH liiillHlllillllllllllllillllllli

Process Technology: 1.2um, SCMOS Design Rules
Dimensions: 9.8mm x 9.3mm
Transistors: 222,320

Figure 6-4. SORASTA IC layout.

tured in Figure 6-4, implements the portion of the RASTA-PLP algorithm shown in
Figure 6-5.

Queue

Durbin

SORASTA

DFT ^ Mag2

Intensit)
Power

Critical T
Bands i

Figure 6-5. Sorasta chip algorithm.

6.5 MLP

The MLP is implemented in a single custom IC, described in Chapter 7. Only one MLP
is needed in the system, no matter what the size ofthe vocabular)- because all ofthe words

use the same phoneme models. The phoneme probabilities are broadcast from the MLP

chip to the Viterbi chips.

Using an MLP, instead ofa continuous or discrete probability distribution function, saves

a great deal ofpower and system complexit)' because the MLP needs much less memor\\

Since the MLP accounts for the context at its input, it only needs 49 phoneme models,
instead of atypical 4,000 triphone models used by the other two methods. Assuming the
discrete PDF would use 256 level quantization, it would need 12 million words of memo:}-;
the continuous PDF would need 384 thousand words of memory if it used 8parameters
per coefficient. The MLP only uses 22 thousand words of coefficient memory, making it
the only one of the three alternatives that allows the memory to be placed on the same
chip as the computation units.

Also, using 49 phonemes instead of4,000 triphones allows the phoneme identification to
be encoded in 6bits, as shown in Figure 6-6 and Figure 6-7, instead of12 bits. This shrinks
the size of the pronunciation memory in Figure 6-7 as well as the phoneme memory in
Figure 6-8.

6.6 Viterbi

6.6.1 Overview

The Viterbi chips will perform the entire Viterbi search through the HMM, including pho
neme, word, and grammar processing. Within the chips, each ofthese levels ofthemodel

have their own hardware subsystems in order to take advantage of each level's unique
structure and to preserve locality ofdata. The global data flow between these three sub-

Tagi6 /
Probabflityg
Phonal Dg /
Prun^Flagi /

/

Phones

/

/

Dictionary

^—r

Prun6Flagi

Edg^4 /
WordEndFlagi /

^ /

jL /

J
Ta^6_ _
Probabilitys"

\

\

\

Grammar

y
I

WordlD,o I

±

BackTrace

Figure6-6. Viterbi chip architecture and data flow.

systems, plus the backtrace subsystem, is pictured in Figure 6-6. All of these subsystems
operate in parallel.

The Viterbi chip performs a beam search, meaning that it only stores data on states in the
HMM that have probabilities above a certain value, called the pruning threshold. States

no

who's probabilities are below the pruning threshold at the end ofa frame are considered

pruned: their current data are not stored and no transitions may originate from that state

during the next frame. Pruned states may be reactivated by transitions from other states.

Pruning reduces the size ofthe memory in the phones section because only a fraction of

all states are active at one time.

Probabilities in the Viterbi chip use a negative log representation, so that multiplication
can be replaced by addition. (Fortunately, the Viterbi algorithm does not require addi
tions.) Each frame, the phone subsystem normalizes probabilities to prevent eventual

underflow.

6.6.2 DictionarySubsystem

The memories within the dictionary are shown in Figure 6-7. The pronunciation memory
stores the information on how many phonemes are in a word, the identity of these pho
nemes, and the topology ofthe edges between the phonemes. Each block ("block" is used

instead of"word" in this case to avoid confusion with "words" in the linguistic sense) of 32
bits in the memory contains information on four phonemes. This phoneme information
contains the identity ofthe phoneme and the topology ofthe edges leaving that phoneme.
The four bit encoding scheme for edges allows connections to any ofthe three subsequent
phonemes, as well as a connection out ofthe word. At the start ofaword, the field that is
usually used for the phoneme ID actually gives the number of phonemes in the current
word; the topology field gives the topology from the start ofthe word to the first three states.

The pronunciation memoiy is read in sequence once ever)' frame. It is only written to
when the vocabulary changes. Since the vocabulary is written so infrequently, ideally this
memory should be implemented in flash RAM in order to save die area. Otherwise, SRAM
would suffice.

Since the pruning state data is read and written every frame, it is stored in aseparate SRAM.
In keeping with low power principles, 32 prune status tags are stored in parallel in each
memory block. The controller processes these tags 4at atime, in keeping with the 4pho
nemes per block in the Dictionary memory.

Ill

40 bits-

Pronunciation
Memoiy

2*#Words

/

/

\

\
\

Phone Phone Phone Phone
1

1
- —

Phone ID Phone Topology

6 bits 4 bits

(or for start of word)

#Phones/Word[start Topology

32 bits—•

WordsA Pruning
Memory

/ \

32 Prune Status Tags

32 bits

6 bits 4 bits

Figure 6-7. Dictionary subsystem memories.

6.6.3 Pbones Subsystem

The phone subsystem contains two large memories and one small memoiy, as shown in
Figure 6-8. The small memory, which stores data on the phone models, is read once per
phoneme processed during recognition. At the beginning ofeach frame, it stores the
output probabilities for each phoneme as determined by the MLP. Italso stores the transi

tion probabilities for the phoneme model: namely the edge probability that loops back to
the phoneme and the edge probability that leaves the phoneme. These values do not

change from frame to frame because the represent the expected duration of each pho
neme as determined during training. They are placed in the same memoiy as the output
probabilities as a matter of convenience. Even though these transition probabilities will

112

Words
* phones/word
/ prune factor
/4

/

36 bits-

Probability
Memory

\

Words
* phones/word
/ prune factor
/4

Prob Prob Prob Prob

1 ^ ^ _
New Tag Flag State Prob

1 bit 8 bits

^16 bits

t

i
Phoneme
Memory

32 bit

Memory

\

Backtrace Tag Backtrace Tag
16 bits 16 bits

MLP Phone Prob Self-loop Prob Out-loop Prob
S bits 4 bits 4 bits

Figure 6-8. Phone subsystem memories.

have to be written back to the memory while writing the phoneme output probabilities,
the impact on power consumption is minimal because this writing operation only needs
to take place once per frame and there are fewer than 64 phones.

The two large memories store probabilities and backtrace tags for active states. Each
memory stores values for both the current frame and newly computed values for the next

"3

frame. Values are stored in order, so the addressing scheme simply consists oftwo pointers:
one for the current frame and one for the next frame. Data is read from the current pointer
location ifthe current phoneme was marked as unpruned (as stored in the dictionary prun
ing status memory); data is written to the next pointer location ifthe probability ofbeing

in that state is greater than the pruning threshold. The pointers are incremented after

accessing their memory locations. This addressing scheme helps minimize total memory
size since after each current state probability is read, its memory location is freed for use

to store next frame data. As long as the next pointer does not catch up to the current

pointer, the single memory is being used correctly. To prevent current memory from
being overwritten, the phone subsystem marks all states as pruned ifthe next pointer is
equal to the current pointer, so no next data is written until more memory is freed.

The backtrace memory's operation is similar to that of the probability memory, except it
uses an additional memory saving technique that takes advantage of the fact that many
states in a row have the same backtrace tag. Whenever astate has the same tag as the pre
vious state, that tag is not stored in the backtrace memory; instead, the state sets its new tag
flag in the probability memory to false.

The probability and backtrace memories at most need to read and write each state's data

once per frame because a small context of states store their data in registers in the state
subsystem. The algorithm restricts transitions from the current state to go only to the fol
lowing three states or to the end of the word. Thus, by using successor processing, the
phone subsystem can cache the intermediate results of the viterbi search in four registers.
After processing each state, it shifts the data in the three successor registers; at the end of
the word it passes on the data in the end ofword register to the grammar subsystem. This
is aprime example of how locality ofdata in the algorithm can simplify computation and
memory access in the hardware.

6.6.4Grammar Subsystem

The grammar subsystem contains 4memories, as shown in Figure 6-9. The top two mem
ories store probabilities and backtrace tags for the first and second layer of clusters. These
memories are similar to the state memories in the phone subsystem. In this case, the clus-

114

Clusters In
level one

-24 bits-

Cluster One
Memory

Backtrace Tag
16 bit

Probability
8 bits

Words
* clusters/word
/4

36 bits-

Word in Cluster
Memory

Clusters in
level two

-24 blts-

Cluster Two
Memory

16 bit 8 bits

Backtrace Tag Probability

Clusters
* edges/cluster
/4

-36 bits-

Cluster 1 to
Cluster 2
Memory

y

/

/
y

\

\
\

✓

y

N

\
N

Edge Edge Edge Edge Edge Edge Edge Edge

-

Last Edge Flag Edge Prob Cluster ID
1 bit 3 hit? rinp^-, itrliictpr*A hH

Last Edge Flag
'•c 1 Kif

Edge Prob Cluster ID

Figure 6-9. Grammar subsystem memories.

ter one memory stores TiQxt stdte information while the cluster two memory stores current

state information. The lower two memories store topology information: the first tells
which words are contained in which clusters and with what probabilities; the second tells
what are the edges that connect clusters in the first level to clusters in the second level.

Since the data in these two memories only change when the grammar changes, they
should ideally be implemented in FLASH, or some other compact memoiy.

"5

The grammar subsystem processes requests from the phone and dictionary subsystems.

Whenever the grammar subsystem receives a probability and a tag from the phone sub
system when a word has ended (and its ending probability is greater than the pruning
threshold). It performs successor viterbi processing from the words to the first level of

grammar clusters. The first step is to register the transition with the backtrace subsystem
(see Section 6.6.5) see ifa new tag needs to be generated. Next, it reads the Word in

Cluster Memory to find out to which clusters the word has edges. For each such cluster,
the clusters data in the Cluster One Memory is overwritten ifand only if the word ending
probability, times the word to cluster edge probability, is greater than that cluster's previ
ously stored probability.

Whenever the grammar subsystem receives arequest for the starting probability and tag
for the next word, it performs apredecessor search on the level 2clusters. In this case, it
reads the Word in Cluster memory to see in to which clusters the word belongs. Then, it
reads all of those clusters' probabilities and passes along the largest one, along with its cor
responding tag, to the dictionary. (The dictionary will pass along the probability and tag
to the phone subsystem).

All of the addressing in the grammar subsystem is simple because all words and clusters
are processed in order. Thus, there is no need for storing pointers to find data; all addresses

are implicitly known and single bit flags separate data between states and clusters.

Transitions from the level 1clusters to the level 2clusters take place in between frames
since the clusters are not real states in the sense ofthe Viterbi algorithm; they are just place
holders, so the transition out of a word in one frame should pass through both cluster
layers and arrive at the start of another word at the start of the next frame. The computa
tion of the level 1to level 2transitions is asimple successor Viterbi process. When it is fin
ished, all of the level one probabilities are overwritten with zero, in preparation for the
nextframe's computation.

These level 1to level 2transitions are crucial to the multi-chip, parallel implementation
of the speech recognizer because these transitions are the only ones that travel from one

116

chip to another. The grammar subsystem passes on out-of-chip cluster transitions to a

neighboring chip in a daisy chain fashion. Chips pass these transitions along the daisy

chain until they reach the appropriate chip, which is identified by the most significant bits

in the level 2 cluster ID.

6.6.5 BacktraceSubsystem

The Backtrace subsystem contains two memories: the first contains word ID's and pointers

32 bits

Tag Cache
Words Memory

Backtrace
Memory

/ \ / \

In Tag Out Tag Previous Tag | Word ID

16 bits 16 bits 16 bits (log2 #Words) bits

Figure 6-10. Backtrace subsystem memories.

to allow the system to perform a backtrace at the end ofa sentence; the second is a cache

to reduce the total number ofbacktrace tags issued inasentence.

The backtrace memory stores alinked list whose entries contain word IDs. By following
the linked list back from the END cluster back to the START cluster, the backtrace sub

system will traverse the most probable sentence.

Backtrace tags are actually pointers into the backtrace memory, with the MSBs identifying
thechip in multi-chip implementations.

117

Since the speech recognizer is only interested in determining the best sequence ofwords
(not states) in the HMM, the backtrace subsystem tries only to create new tags when aword
ends with atag with which it has not ended before. In other words, two paths through the
HMM should be treated as identical ifthey pass through the same sequence ofwords, even

ifthey did not enter and leave each of those words at the same time. To accomplish this,
the tag cache memory stores the most recent tag with which each word has ended. Ifa

word ends with the same tag again, its transition is assigned the same new tag as itwas last
time. On the other hand, ifthe tag leaving a word is not the same as itwas last time, the

transition is assigned a new tag, which is then entered into the cache and into the back

trace memory. Overall, itis important to limit the number ofbacktrace tags issued in order
to reduce the number ofwords needed in the backtrace memory and hence the word size

of the backtrace tags (which are pointers into the backtrace memory.)

6.6.6Sizeand Scaling

The factor limiting the number of words on achip is the amount of memory that can fit
on the chip. Table 6-2 shows abreakdown of the memory sizes under avariety ofassump
tions about the size of the vocabulary and grammar. The first row gives two choices for the
number ofwords in the on-chip vocabulary, either 100 or 500 words. The second row gives
choices of16 or 64 grammar clusters in each level. In the third row is the final parameter,
the average number ofclusters to which aword belongs and the average number ofedges
that leave acluster. (For convenience, these two parameters are assumed to be equal, but
there is no requirement that they be so.) Two other parameters are fixed for the purpose
ofcomputing the values in this table: the average number ofphones per word is 8; pruning
leaves 1/4 of all states active at a given time. Afurther assumption, that the number of
entries in the backtrace memory should be 4times the number ofwords in the vocabulaiy,
was based on heuristics.

Judging from Table 6-2, the dominant factor in the amount ofon-chip memory is the size
of the vocabulary. Using ao.6um process, a100 word vocabulary should produce afairly
small die area; a 500 word vocabulary would probably be too large. A256 word per chip
design might be a reasonable goal.

118

Recognizer
Parameters

Words 100 500

Clusters 16 64 16 64

Edges/Cluster &
Clusters/Word

2 8 2 8 2 8 2 8

Memory
Sizes

(FLASH
is shaded)

Pronunciation 8k 40k

Pruning Status Ik 4k

State Probability 2k 9k

State Backtrace 2k 8k

Phoneme 1 <

Cluster 1 & 2 Ik 3k Ik 3k

Words in Clus
ters

2k 7k 2k 7k 9k 36k 9k 36k

Cluster 1 to2 0.3k 1k Ik 4k 0.3k 1k Ik 4k

Tag Cache 3 < 16k

Backtrace 9k 48k

Total FLASH 10k 16k 11k 19k 49k 78k 50k 80k

Total RAM 19k 19k 21k 21k 87k 87k 89k 89k

Total Memory 29k 35k 32k 40k 136k : 164k 139k 169k

Table 6-2. Memory sizes for various viterbi configurations.

It is interesting to note that clock speed is not the limiting factor in chip design. Allowing
2clock cycles per phone during the frame and 2clock cycles per grammar edge between
frames, the largest recognizer in Table 6-2 (500 words, 64 clusters, 8edges/cluster, and 8
clusters/word) would require 800,000 cycles per second for in-frame processing and
100,000 cycles per second for between -frame cluster processing. In other words, the clock
rate is less than iMHz, allowing for very low-voltage, low-power operation. To the first
order, this clock rate is proportional to the number of words on achip.

Now consider scaling the size of the vocabulary by placing more chips in parallel. In this
case, the number ofcycles to perform the in-frame computation remains constant because
each chip is doing its viterbi search through its own words in parallel with all of the other
chips. The only additional clock cycles required are those needed to pass along cluster-to-
cluster transitions that go from clusters in one chip to clusters in another chip.

119

As the very worst case, assuming luster-to-cluster transitions are randomly scattered across

all the chips, each transition would have to pass through halfofthe chips before reaching
its destination cluster. Allowing two cycles for a transition to pass from chip to chip, a
10,000 word system using 20 chips would require 1,000,000 cycles per second to perform

between frame cluster processing. In practice, this figure should be considerably less ifthe
clusters are intelligently partitioned. Namely, clusters that are connected by many transi
tions should be placed on the same chips ifpossible, otherwise, they should be placed on
nearby chips.

120

7 Low-Power Multi-Layer
Perceptron Design

The low power ML? chip serves three purposes. Its first purpose is practical; to be apart
ofafunctional speech recognition chipset. Second, it serves as atest of low power design
techniques, both at the architectural and circuit level, with aparticular emphasis on low
power memory design and usage. Third, its design can be used as a template for future
variations. While the chip was fabricated for aparticular sized ML? and the data was stored

in ROM to reduce die area and hence fabrication costs, the design is meant to be flexible.

7.1 Architecture

The ML? chip is divided into four blocks: two layer units and two buffers. Since the
"Multi" part ofthe Multi Layered Perceptron algorithm is "two" in this case, there are tv '̂o
layer units.

7.1.1 Layers

Each layer unit performs all the storage and computation associated with one layer of the
MLP. Mostly, this consists ofaseries ofmultiply-accumulate operations: each input value
is multiplied by its coefficient to each node in that layer; the product is added to the value
accumulated at that node. After the multiply accumulate process is finished, the threshold
function is applied to the sum at each node. The result is passed on to the next stage (or
the output, in the case ofthe last stage).

Each layer unit contains 5units: datapath, control, coefficient memor)', node memor}',
and threshold function memory.

121

Input Buffer
COUNTeR_2Nt

RAfeTA. E>LU1 & i Ui

E

Layer One

DATA-OUT(1O

OATA^IN OONC

C<AST_HXD0D4^00C| a i O)

;r^-Mid Buffer
RESBT »«lD_STATB_OOT Ca «O 1

Layer Two

ONC

LAYER.OONI

NODC..ADDRe8S_OUT{ 8 I O]

CUTPUT.READy

NOOBRAM.CLH

RBAD.RAOTA

COEPPRON^CUK

THRBSHROM.BNAOLC

rORtfALw R AfMMBTBR8

Coefficieaits ^
1

LJIhrt:shold

*OOS_OUT

lents

Jflnreshold

rROH_MUM^TWO

Figure 7-1. mlp chip architecture.

122

y.i.i.i Datapath

The datapath executes the multiply accumulate function on ii bit-wide data. The datap
ath contains no multiplier; the multiplication is performed using an adder by employing
a modified booth algorithm. Since the data in the datapath is multiplied by 8 bit coeffi

cients, and since the modified booth algorithm multiplies by 2bits at a time, the entire

multiplication takes 4cycles. The same adder and registers also perform the accumulation

function, so the complete multiply-accumulate takes 5cycles. The 8 bit coefficients do

not directly enter the datapath; they go to the controller, which then sends the appropriate
select signals to the multiplexor into the adder.

Why not use a hardware multiplier to speed up operations? Because the critical path of
the chip is the operation ofthe memories, not the datapath. The minimum operating volt
age, and hence the power consumption of the chip, are determined by the speed of the
memories.

7.1.1.2 Controller

The control section is composed ofstandard cells from the Lager low power standard cell
library, which employ minimum sized devices and TSPC registers to minimize power con
sumption. This section was synthesized from a state machine specified in VHDL. The

states are shown in Figure 7-3. In addition to having states for the 5cycles in the multiply
accumulate function (states MULT ONE through MULT FIVE), the state machine has

states to initialize the layer and fill the pipelines at the start ofa frame (START ONE

through START FIVE) and to perform the threshold function and pass data to the next
layer at the end ofa frame, (states DUMP ZERO through DUMP FIVE).

The layer control creates the control signals for the multiplexers, registers, and adder
(whose control signal is the carry in signal) in the datapath; creates address, clock, and
read/write signals for the coefficient, layer, and threshold memories; and performs hand
shaking with the buffers before and after the layer.

The layer control accepts four types of input. First, it accepts handshaking signals from
adjacent buffers. Each time the layer needs anew input, the controller performs a hand-

123

N'

0

§5'

> 15

©

in id QiQ-Qs

§0

' f"'

If
: 0

Figure 7-2. Datapath for mlp layers.

124

Tf
S 0

Si t'g§
0 2^
0 It

rn

^[)§Q^D ^d^n

START
ONE

MULT
ONE

DUMP
ZERO

START

TWO

MULT

TWO

DUMP
ONE

START

THREE

MULT

THREE

DUMP

TWO

DUMP

THREE

START

FOUR

MULT

FOUR

DUMP

FOUR

START

FIVE

MULT

FIVE

DUMP

FIVE

Figure 7-3. State transition diagram of layer control.

shaking operation with the preceding buffer. At the end ofeach frame, the controller per
forms a series of handshaking operations with the following buffer to transfer out its
completed results. The second type of input is master control, which starts and stops the
operation of the layer. Master control comes from off chip. Third, the controller accepts
coefficient data from the coefficient memories. Although it is unusual to route data
through the controller, instead ofthe datapath, it makes sense in this case because the

coefficients are decoded into mux control signals and adder's carry in signal to perform
the modified booth multiplication. In keeping with the slow speed, low power memory
strategy, the eight bit coefficients are read four at atime from the coefficient memory and
are multiplexed within the controller. Fourth, and finally, the controller accepts parame
ters that specify the number of nodes in its layer and the number of inputs to its layer.

125

Parameterizing these values simplifies the design by allowing the same controller to be
used for both layers; itsimplifies simulation and testing by making iteasy to create smaller
layers for testing.

7.1.1.3 Coefficient Memory

The coefficient memories are low power ROMs. Using ROMs was acompromise. On one
hand, the coefficient memories dominate the die area, so economically it is best to use the
most compact memories possible, which happen to be ROMs. Furthermore, the coeffi

cients themselves need to be changed rarely or never since retraining an MLP is avery slow
and computation-intensive process, so the MLP can not be trained on the fly. Further
more, a well trained, speaker independent vocabulary could suffice for any application.
On the other hand, ifan application specific or speaker dependent MLP is available, it
could provide higher recognition accuracy. Even if the coefficients were changed, they
would only need to be changed at most afew times per minute (as applications change)
or perhaps afew times per day or afew times ever (as users change). For such slow writing
rates, the ideal memory would be a dense, nonvolatile memory such as fiash memory.
Unfortunately, flash memory is not available through our foundry.

7.1.1.4 Node Memory

The node memories are low power SRAMs organized in four blocks each. The first layer
node memory is 11 bits by 128 words; the second, 11 bits by 64 words.

7.1.1.5 Threshold

The threshold is alow power ROM that performs atable look up for the nonlinear thresh
old function of the perceptrons. The ROMs are 512 words by 6bits. The output ofalayer s
node memory forms the address to its threshold ROM; the output of the threshold ROM
goes to the next layers buffer. Since the node memory's data is 11 bits wide, one might
expect to have 2048 words in the threshold ROM. However this is not necessary because
the largest and smallest outputs of the node memories saturate the threshold function to

zero or one. Rather than storing a large number of zeros and ones in the ROM, the con
troller intercepts the three MSBs from the node memory and sends control signals to the

126

datapath to send the first or last address to the threshold ROM whenever the node value

would have saturated the threshold function.

7.1.2 Input Buffer

The input buffer is responsible for receiving each frame's coefficients as they are input to
the chip, storing enough of these coefficients to make up the entire context for the inputs
to the first layer, and passing each coefficient in the context to the first layer when it
requests them.The input buffer contains a memory, a controller, and asmall datapath.

As in the layers, the controller in the input buffer is made from low power standard cells

READ

READY

READ

WRITE

WAIT

POP

Figure 7-4. Input buffer control state diagram.

synthesized from aVHDL specified state machines. There are two sets ofstates: WAIT POP,
POP, and WRITE accept coefficients from off chip and write them in the memory at the
beginning ofeach frame; READ READY and READ take coefficients from the memory and
pass them on to the first layer. Both of these operations are performed using two phase
handshaking.

The datapath, shown in Figure 7-5, stores, computes, and compares memory addresses.

127

rn
m

:z~u

i ^
H 0
3

0
u
0
0
'i a

Q li

0 0

3

j

0 0.
u

C
3
0
0

Q Q D D D

A
.2 ,2

Q f<
2 1, D 2
0 u 0 u

Q 5
Q a 7s • 2 K
•' H J<

J U

n—

a D

Figure 7-5. Input buffer datapath.

7.2 Summary ofLow Power Techniques
The limiting factor in power consumption is memory access, so the low power design cen
tered on reducing memory power. The memory sizes are summarized in Table 7-1 and
Table 7-2. These memory sizes reflect the size of the MLP, namely 120 inputs (10 frames

128

ofcontext), 120 hidden nodes, and 49 output nodes. The threshold function ROMs imple
ment the nonlinear threshold function by using a table lookup .

Memory Words Word Size Total Bits

Layer 1 Coefficients 3630 32 113k

Layer 2 Coefficients 2048 32 64k

Threshold Function 1 512 6 3k

Threshold Function 2 512 6 3k

Total 183k

Table 7-1. mlp rom sizes.

Memory Words Word Size Total Bits

Layer 1 128 11 1.5k

Layer 2 64 11 0.75k

Input Buffer 128 12 1.5k

Middle Buffer 128 6 0.75k

Total 4.5k

Table 7-2. mlp ram Sizes.

At the architecture level, it is vital to place the memories as close as possible to the sections
that use them. In particular, it is best to place the memories on the same chip as the data
path and control, or else power consumption will be dominated by the huge inter-chip
capacitance. Placing memories and logic on the same chip also enables the use ofwide

data buses, which allow the memories to operate slower, and hence at lower voltages and
lower power consumption. In the case of this chip, each coefficient memory has its own
32 bit data bus. Ifthe memories were off chip, their data buses would have to be smaller

because they would require too many I/O pads, vastly increasing the die area.

Memory scheduling is another important part of low power design. Since the memories
are being accessed at less than the clock rate, the memories should be given as many
cycles as possible to perform each read or write operation. Reducing the timing constraints
on the memories allows the whole chip to meet its timing constraints while operate at
lower voltages, thus saving power.

129

7.3 Selecting Bit Sizes
Bit-true simulations determined the proper bit widths and scaling to implement MLP coef
ficients as well as probabilities and their intermediate values. The C++ MLP performed
its usual computations, but coefficients and probabilities were implemented using aFixed
integer class. This class accurately performed fixed width additions and multiplications
withappropriate truncations, overflows, and under-flows.

The best fixed point implementations were found experimentally over the following vari
ables: number of coefficient bits, scale factor for coefficient, number of probability bits,
and scale factor for the probability. The scale factors are important because if they are too
low, precision is lost; if they are too high, overflows will occur. Break points in accuracy
gains were found with coefficient bit widths of8and datapath bit widths of11, when scal

ing was set to eliminate overflows.

7.4 Interface

The MLP chip has two reset inputs: reset, and porb. When reset goes high, all of the
controllers go to their start-up state, porb is an active low signal that resets the control on
the ROM. porb need only be asserted at power up.

Output Signal or Bus Pin (On Package) Pad (On Chip)
Output Probs[0:5] 3:8 1:6

Rasta_Pop 74 65

Second_Output_ Ready 9 7

layer_one_done 79 70

iayer_two_done 22 20

First_Layer_Output[5:0] 32:37 23:28

Layer_One_State[0:3] 83:86 74:77

Layer_Two_State[3:0] 100:103 91:94

Mid_Buffer_State[2:0] 38:40 29:31

Rasta_State[2:0] 76:78 67:69

Table 7-3. mlp chip outputs.

The single phase clock is sent through the Clock input.

130

Input Signal or Bus Pin(On Package) Pad (On Chip)

Clock 99 90

Reset 104 95

PorB 105 96

Rasta_ln_Ready 75 66

Next_Ready_Two 11 9

Rastajn[10:0] 46:56 37:47

StartJayer_one 80 71

StartJayer_two 10 8

Num_Outputs[6:0] 90,91,94:98 81,82, 85:89

Num_Output_Two[0:6] 12:16,20,21 10:14,19,20

Counterjn[6:0] 57:63 48:54

Num_rasta_per[6:0] 64:70 55:61

Table 7-4. mlp chip Inputs.

The input and output data interfaces are simple 4phase handshaking, in order to simplify
interfaces to various other systems. When the rasta_pop signal goes high, it indicates
the MLP chip is ready to receive data on the Rasta input bus. The chip latches the data
after the rastajnjready input signal goes high. After latching the data, the chip sets
rasta_pop low, indicating that the data is now free to change. The rastajnjready signal
must go after rasta_pop goes low, to acknowledge the transaction.

The same handshaking scheme is used to output the phoneme probabilities on the Out-
putProbs bus. In this case, the handshaking signals are the output, second_outputjready,
and the input, nextjreadyjwo.

Two other control signals, startJayerjDue and startJayerjwo, should be asserted at the
beginning of each frame, after rasta data has been loaded on to the chip and probabilit)'
data has been output from the chip. When the first and second layers have finished their
computations for a frame, the assert the layer_one_done and layer_two_done signals,
respectively.

Four of the inputs supply parameters that tell the chip the size of each layer in the MLP.
During normal operations, these parameters are constant. However, they are programma-

131

Supply Pin (On Package) Pad (On Chip)

GND 17, 23,41,44,73,82, 88,
92,106

15, 21,32,35,64, 73,79,
83,97

Pad Vdd 18, 24, 43,45, 72, 81,89,
93,107

16, 22,34, 36, 63, 72, 80,
84, 98

Vdd 19, 42, 71,87 17, 33,62,78

Table 7-5. mlp chip power supplies.

ble in order to facilitate simulation and testing, as well as to facilitate reuse of the design
for different sized MLPs. Thus, the exact same controller design can be used with different

sized memories to create adifferent sized MLP. numjoutputs is set equal to one less than
the number of elements in the hidden layer; num_outputsJtwo, to one less than the

number of elements in the output layer. Num_Tasta_per specifies how many rasta coeffi
cients are used per frame. Counterjn specifies one minus the number of inputs to the first
layer ofthe MLP in two's complement form. {Counterjn is not the same as num_rasta_per
because the input buffers stores lo frames ofcontext data.)The correct values for these

parameters are shown in Table 7-6.

Parameter Value

Num_Outputs 1110111

Num_Outputs_two 0110000

Num_rasta_per 0001010

Counterjn 0001001

Table 7-6. Parameter Input values.

7.5 Results

The chip was tested at 10 MHz over avariety of voltages, with the power consumption
shown in Table y-y.The die is 4.6mm x5.6mm in a1.0 pm process, as shown in Figure 7-
6, and is bonded as shown in Figure 7-7.

132

Voltage Power (mW)

3.3 4.6

3.0 2.8

2.5 1.9

2.2 1.5

2.0 1.2

1.8 0.9

1.7 0.5

Table 7-7. mlp chip power consumption.

133

0 •
t
l
t
t
S

M
t
t
l

•
il

lH
if

in

U
y

E
R

2
M

E
M

O
R

Y

L
A

Y
E

R
'2

M
E

M
O

R
Y

I
II

I
.

g

i§
J
i

W
tY

ER
li

!L
AY

ER
-'l—

Jli
ii

ii
aa

W
ii

l"
to

m
.s

ife
oN

T
R

Q
iil

5

,
*

3
.
^

i
w

m
m

m
m

t
m

Ijg
jjj

gj

i
i
a
t
i
i

L
A

Y
E

R
1

C
O

E
F

F
IC

IE
N

T
R

D
M

M
ID

D
L

E
B

U
F

F
E

R

tA
Y

E
R

;^
ll

A
Y

£f
t2

|jX
>N

TR
O

tii
j

5
-

BB
D

A
T

A
k

^

f..
.

t».
..? I

ni

l

y
f^

T
rr

y
rT

-r
*

T
y

rT
n

T
rT

rT
ff

'r
ff

"J
T

'J
iy

rJ
'.

fr
j
f
r
r
m

"

U
Y

E
R

2
C

O
E

F
F

IC
IE

N
T

R
O

M

"
i
r
r
m

r
v

r
r
'

a a

r
-L

-i
;

Ia#/y/////#ff III iiiiuwwwY

N59FH/
i :i7i:i-DHFi-FiE':i/lj'LEi

46956/Brodersei-,/MLF_SFEECH

/I-

•-SEP-:595

Figure 7-7. MLP chip bonding diagram.

»35

H—

"w]
VIEW

8 Conclusion

8.1 Contribution

This work involved abroad, vertical slice of the implementation ofspeech recognition. It
ranged from the high level—writing applications—to the very low level—designing low
power hardware. The spRcg speech recognition toolkit will provide afast and easy-to-learn

way for programmers to create speech recognition applications. The speech controlled

WWW browser demonstrates the capabilities ofspRcg, and also provides agood vehicle to

demonstrate the InfoPad system. The MLP chip demonstrates a way to implement
memory-intensive systems in a low-power fashion. In fact, the low-power memories,

which were designed for use in the MLP chip, have been used in several other low-power
projects and are planned to be used in several more in the near future.

8.2 Discussion & Future Work

The choice ofalgorithms and architectures for this system reflect a trade-off between the

conflicting demands ofease ofprogramming, ease ofuse, low power implementation, and
recognition accuracy. Other work has shown RASTA-PLP to be effective even with few

coefficients, making it well suited to low-power implementation. Likewise, ahybrid MLP-
HMM system is awell-used system that is suited to low-power implementation when used

with aclustered grammar. The clustered grammar itselfshould have little impact on rec
ognition accuracy because it is topologically equivalent to a bigram grammar. Further
more, its organization assists with both a low-power, parallel hardware implementation as

well as with an easy to program API.

136

The choice of training the MLP on the TIMIT database, and then using its phoneme

models for all applications has its advantages and disadvantages. On the positive side, it

makes itmuch easier to create and rapidly test speech recognition applications: the pro

grammer can create the entire vocabulary and grammar by dictating them to gram-

Cracker, and the recognizer will work with enough accuracy to demonstrate the program.
Thus, the programmer is freed from having to collect speech data before having aworking
application, and therefore does not need to collect new data every time the application

changes its vocabulary. On the other hand, the recognition accuracy would benefit from

more training on the actual vocabulary, as well as from more specific models for key

words—particularly digits. Furthermore, the speaker adaptation widget would benefit
from amore sophisticated algorithm than simply replacing the existing pronunciation. As
spRcg currently stands, itis well suited for developing new applications, but would benefit

from a way to train application specific MLPs once the application has reached a mature

stage and the programmer is able to collectdata from test users.

Future work should continue to explore new options on where to perform speech recog
nition. Figure 8-i shows several possible ways to partition speech recognition bet\\'een a

portable pad and the network. Each method has a different trade-off between bandwidth

and hardware complexity. The topmost method, sending speech samples over the radio
link to software in the network, is InfoPad's current speech recognition architecture. The
second technique, performing rasta-plp on the pad and transmitting the coefficients,
would entail integrating Steve Stoiber's work (described in Section 6.4) into the terminal.
The third method would add the MLP IC, described in Chapter 7, to the RASTA-PLP IC on
the terminal. The last method is acomplete, custom IC implementation ofthe speech rec
ognizer, which would also require the implementation of the Viterbi decoder design
described in Chapter 6.

Future research should explore partitions between custom and general purpose hardware
in the terminal itself. With the inclusion of low-power microprocessors [2] into portable
terminals, the partition could be between custom hardware and software running in the
terminal. For example, the spRcg system s C-i-+ code could be ported to java, so that it
could be downloaded into the terminal on demand. The exact nature ofthe custom IC/

137

Terminal

Viterbi

Bandwidth

64 kb/s +
•

3.2kb/s

34 kb/s

-100 b/s

Base Station

Viterbi

MLP 1 Viterbi

Viterbi

o
Figure 8-1. Partitioning recognition across the network.

terminal software/network software partition will depend on the cost and computational
power ofthe low-power microprocessor system.

The future ofspecial purpose speech recognition hardware within portable terminals may
well depend on the future ofgeneral purpose computing in the terminals. The size and

complexity of a speech recognizer in the terminal should be closely mated to the size,
nature, and complexity ofthe stand-alone applications that run ontheterminal. For exam

ple, ifthe terminal's only local operations are to control its connections to the network, at

most it will need asmall vocabulary recognizer that has been well trained on that single
task. On the other hand, ifthe terminal runs a number of complex applications, it will
need larger, more flexible speech recognition hardware, similar to the system described
in this thesis.

138

Bibliography

[1] H. Bourlard, N. Morgan, Connectionist Speech Recognition A Hybrid Approach,
Kluwer Academic Publishers, 1994.

[2] T. Burd and R. W. Brodersen, "Energy Efficient CMOS Microprocessor Design,"
Proceedings of the 28th Annual Hawaii International Conference on System
Sciences, Volume I, January 1995, pp. 288-297

[3] A. P. Chandrakasan, A. Burstein, R. W. Brodersen, "A Low-power Chipset for
Multimedia Applications", IEEE Journal ofSolid State Circuits, Vol. 29, No. 12,
pp. 1415-1428, December, 1994.

[4] A. P. Chandrakasan, "Low-power Digital CMOS Design", UCB/ERL Memorandum
No. M94/65, August 30,1994.

[5] A. P. Chandrakasan, S. Sheng, R. W. Brodersen, "Low-power Digital CMOS Design",
IEEE Journal ofSolid State Circuits, pp. 473-484, April 1992.

[6] R. Gonzalez and M. Horowitz, "Energy Dissipation in General Purpose Processors,"
Proceedings of the IEEE Symposium on Low Power Electronics, October 1995,
pp. 12-13.

[7] R. Cray, "Vector Quantization", IEEE ASSP magazine 1(2), April 1984, pp. 4-29

[8] H. Hermansky, "Perceptual Linear Predictive (PLP) Analysis of Speech, Journal of
theAcoust. Soc. Am., vol 87, no. 4.

[9] Hermansky, A. Bayya, N. Morgan, P. Kohn, "Compensation for the Effect ofthe
Communication Channel in Perceptual Linear Predictive (PLP) analysis of
speech", Proc. ofEurospeech 1991, pp. 1367-1370, Genova, Italy.

[10] M. Horowitz, et al., "Low-Power Digital Design," Proceedings of the IEEE
Symposium on Low Power Electronics, October 1994, PP-

139

[11] K.F. Lee, H,W. Hon, "Speaker-Independent Phone Recognition Using Hidden
Markov Models", IEEE Trans, on Acoustics, Speech, and Signal Processing, vol.
37, no. 11, November 1989.

[12] K.F. Lee, Automatic Speech Recognition -The Development ofthe Sphinx System,
Kluwer Academic, Norwell Mass.

[13] H. Murveit et al, "SRI's DECIPHER System", Proc. of the Speech and Natural
Language Workshop, pp. 238 - 242, Feb. 1989

[14] K. Ma and N. Morgan, "Scaling Down: Applying Large Vocabulary Hybrid HMM-
MLP Methods to Telephone Recognition ofDigits and Natural Numbers," IEEE
Workshop on Neural Networks for Signal Processing 1995, PP 223-232.

[15] N. Narayanaswamy, "Pen and Speech Recognition in the User Interface for Mobile
Multimedia Terminals", Ph.D. Thesis, UC Berkeley, 1996.

[16] J. Ousterhout, ACM IEEE 22nd Design Automation Conference, 1984.

[17] J. Ousterhout, Tel and the Tk Toolkit, Addison Wesley Publishing Company, 1994.

[18] D. Patterson, The Case for NOW," http://now.cs.berkeley.edu/Case/case.html.

[19] L.R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, Proceedings of the IEEE, vol. 77, no. 2, pp. 257-285.

[20] D.E. Rumelhart, G. E. Hinton, Williams, R.J., Parallel Distributed Processing.
Exploration ofthe Microstructure ofCognition, vol. 1: Foundations, MIT Press,
1986.

[21] S. Sheng, A.P. Chandrakasan, R.W. Brodersen, "A Portable Multimedia Terminal",
IEEE Communications Magazine, PP. 64-75, December 1992.

[22] C. Shung, R. Jain, K. Rimey, E. Wang, M. Shrivastava, B. Richards, E. Lettang, S.
Azim, L. Thon, P. Hilfinger, J. Rabaey, R. Brodersen, "An Integrated CAD System
for Algorithm-Specific IC Design", IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 10, No. 4, Apr. 1991, pp.447-475.

[23] S. Stoiber, Low Power Digital Signal Processing for Speech Recognition, Master
Thesis, UC Berkeley, December 14,1994.

[24] A. Stolzle et al., AFlexible VLSI 60,000 Word Real Time Continuous Speech
Recognition System", IEEE Press book: VLSI Signal ProcessinglV, ISBN 0-87942-
271-8, Chapter 27, pp274 - 284, Nov. 1990

[25] A. Stolzle et al, "Integrated Circuits for a Real-Time Large-Vocabulary Continuous
Speech Recognition System", IEEE Journal ofSolid State Circuits, vol. 26, no.i, pp.
2-11, Jan. 1990

140

[26] "Readings in Speech Recognition", edited by A. Waibel and K. Lee. Morgan
Kaufmann Publishers, Inc., ISBN 1-55860-124-4,1990.

[27] TIMIT Acoustic-Phonetic Continous Speech Corpus, NIST Speech Disc 1-1.1,
October 1990, NTIS Order No. PB91-505065.

[28] TIDIGIT Speaker-Independent Connected-Digit Corpus, NIST Speech Discs 4-1,
4-2,4-3, February 1991, NTIS PB91-506592.

[29] Joseph Wang, tkwww, Globewide Network Academy, Macvicar School ofEducation
and Technology, 1993.

[30] Status of the Library of Common Code, http://info.cern.ch/hypertextAVWW/
Library/Status.html

141

Appendix: Directories

This appendix describes the locations of the files and directories that contain the software

and hardware designs described in the previous chapters.

The spRcg speech recognition system is located in the User Interface (UI) group's direc
tories: / tools/ui/speechRecog/spRcg. Under this directory lie various versions:

vcurrent is the working directory and vdev is the one under development. Within
each version are the following directories:

• src contains the C++ source files for the spRcg extension to tcl, as well as the Make
file.

• include contains the file spRcg. h, which must be included by source files that
include spRcg in a new type ofwish.

• libtcl contains the tcl/tk and itcl code that make up the rest ofspRcg. It also con
tains the code for gramCracker.

• example contains the source code from the example in Chapter 4.
• man and doc contain documentation.

• sunos and Solaris contain executables (awish that includes spRcg) and libraries.

The memories are installed in the low-power Timlager library: lager/common/

LagerIV/eellib/low_power/TimLager.The ROM is in the lprom2 directo

ries. There are 3 versions of the SRAM:

• sram is the standard scmos design.

• sramsmall is the scmos design, but with a single block layout.

142

• srain_hp is designed for thescmos-hp design rules.

The flies for the mlp chip are in -burstein/speech/hardware/mlpChip/mlp6.

The top level master design is mlp_chip; the top level instance is my_mlp_chip.

143

	Copyright notice 1997
	ERL-97-14

