

Copyright © 1997, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A DENOTATIONAL FRAMEWORK FOR

COMPARING MODELS OF COMPUTATION

by

Edward A. Lee and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/11

30 January 1997

A DENOTATIONAL FRAMEWORK FOR

COMPARING MODELS OF COMPUTATION

by

Edward A. Lee and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M97/11

30 January 1997

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

fjl UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720 January 30,1997

A DENOTATIONAL FRAMEWORK FOR
COMPARING MODELS OF COMPUTATION

Edward A. Lee and Alberto Sangiovanni-Vincentelli
EECS, University ofCalifornia, Berkeley, CA, USA 94720.

Abstract

We give a denotational framework (a"meta model") within which certain properties of models of

computation can be understood and compared. It describes concurrent processes in general terms as

sets ofpossible behaviors. Aprocess isdeterminate ifgiven the constraints imposed bythe inputs there

are exactly one or exactly zero behaviors. Compositions of processes are processes with behaviors in

the intersection of the behaviors of the component processes. The interaction between processes is

through signals, which are collections of events. Each event is a value-tag pair, where the tags can

come from a partially ordered or totally ordered set. Timed models are where the setof tags is totally

ordered. Synchronous events share thesame tag, andsynchronous signals contain events with thesame

set of tags. Synchronous processes have only synchronous signals as behaviors. Strict causality (in

timed tag systems) and continuity (in untimed tag systems) ensure determinacy under certain technical

conditions. Theframework isusedto compare certain essential features of various models ofcomputa

tion, including Kahn process networks, dataflow, sequential processes, concurrent sequential processes

with rendezvous, Petri nets, and discrete-event systems.

1. Introduction

Amajor impediment to further progress in modeling and speciflcation ofconcurrent systems is the

confusion that arises from different usage of common terms. Terms like "synchronous", "discrete

event", "dataflow", "signal", and"process" areused indifferent communities to mean significantly dif

ferent things. To address this problem, wepropose a formalism that will enable description and differ

entiation of models of computation. It is not intended as a "grand unifying model of computation" but

ratheras a "metamodel" within which certain properties canbe studied. Tobe sufficiently precise, this

language isa mathematical one. It isdenotational, in the sense ofScott and Strachey [27], rather than

operational, toavoid associating the semantics ofa model ofcomputation with an execution policy. In

many denotational semantics, the denotation of a program fragment is a partial function ora relation

on the state. This approach does not model concurrency well [29], where the notion ofa single global

state may not be well-defined. In ourapproach, the denotation of a process is a partial function or a

relation on signals, and hence wecan model concurrency well.

We define precisely aprocess, signal, and event, and give aframework for identifying the essential

properties of discrete-event systems, dataflow, rendezvous-based systems, Petri nets, and process net

works. Our definitions of these terms sometimes conflict with common usage in some communities,

and even with ourown prior usage in certain cases. We have made every attempt to maintain the spirit

ofthat usage with which we are familiar, but have discovered that terms are used incontradictory ways

(sometimes even within a community). Maintaining consistency with all prior usage is impossible

without going to the unacceptable extreme ofabandoning the use of these terms altogether.

Our objectives overlap somewhat with prior efforts toprovide mathematical models for concurrent

systems, such as CSP [15], COS [23], event structures [30], and interaction categories [1]. We do not

have a good answer for the question "do we really need yet another meta model for concurrent sys

tems?" except perhaps that our objectives are somewhat different, and result in a model that has some

elements in common with other models, but overall appears to be somewhat simpler. It is more

2 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelll

descriptive of concurrency models (more "meta") than some process calculi, which might for example

assume a single interaction mechanism, such as rendezvous, and show how other interaction mecha

nismscan be described in termsof it. We assume no particular interaction mechanism, and show how

to use the framework to describe and compare a numberof interaction mechanisms (including rendez

vous). We devote most of our attention, however, to interaction mechanisms in practical use for design

ing electronic systems, such as discrete-event models and dataflow.

The prior frameworks closest to ours, Abramsky's interaction categories [1] and Winskell's event

structures [30], have been presentedas categorical concepts.We avoid category theory here because it

does not appear to be necessary for our more limited objectives,and because we wish to make the con

cepts more accessible to a wider audience. But it would be wrong to not acknowledge the influence.

We limit the mathematics to sets, posets, relations, and functions.

2. The Tagged Signal Model

2.1 SIGNALS

Given a set of values V and a set of tags T, we define an event e to be a member of TxV . I.e.,

an event has a tag and a value. We will use tags to model time, precedence relationships, synchroniza

tion points, and other key properties of a model of computation. The values represent the operands and

results of computation.

We define a signal s to be a set of events. A signal can be viewed as a subset of T x V, or as a

member of the powerset ^ (TxV) (the set of all subsets of T x V). Afunctional signal or proper sig

nal is a (possibly partial) function from T to V. By "partial function" we mean a function that may be

defined only for a subset of 7. By "function" we mean that if e, = (r, Vj) e j and ^2 = (^ ^3) € s,

then Vj = V2 . Unless otherwisestated, we assume all signals are functional. We call the set of all sig-

Edward A. Lee and Alberto Sangiovanni-Vincentelll 3 of 36

nals S, where of course S = ^ (7 x V). It is often useful to form a collection or tuple s of N signals.

N
The set of all such tuples will be denoted S . Position in the tuple serves the same purposes as naming

of signals in other process calculi. Reordering of the tuple serves the same purposes as renaming. A

similar use of tuples is found in the interaction categories of Abramsky [1].

The empty signal (one withno events)will be denoted by "K, and the tuple of empty signalsby A,

where the number N of empty signals in the tuple will be understoodfrom the context. These are sig

nals like any other, soXe S and Ae 5^. For any signal 5, j u A. = s (ordinary set union). For any

tuple s, s u A = s, where by thenotation s vj A we mean the pointwise union of the sets in the tuple.

In some models of computation, the set V of values includes a special valueX (called"bottom"),

which indicates the absence of a value.Notice that while it might seem intuitive that (f, ±) e A, for any

/ e 7, this would violate suX = s (suppose that s already contains an event at r). Thus, it is impor

tant to view X as an ordinary member of the set V like any other member.

2.2 PROCESSES

N • N ' '
In the mostgeneral form, a process P is a subset of S for someN. A particular s e S is said to

satisfy the process if s € P. An s that satisfies a process is called a behaviorof the process. Thus a

process is aset ofpossible behaviors. Aprocess may also be viewed as a relation between signals.'

2.2.7 Composing processes

Since a process is a set of behaviors, a composition of processes should be simply the intersection

of the behaviors of each of the processes. A behavior of the composition process shouldbe a behavior

of each of the component processes. However, we haveto use somecare in forming this intersection.

1. A relation between sets A and B is simply a subset of Ax B.

4 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

4

Consider for example the two processes Pj £ind P2 in figure 1. These are each subsets of S .

8 1There, we can define a composite process as a subset of S simply by forming the cross product of

the sets ofbehaviors Q = Pj x P2 •Since there isno interaction between the processes, a behavior of

the composite process consists ofany behavior of Pj together with any behavior of P2 •Abehavior of

Q is an 8-tuple, where the first 4 elements are a behavior of Pj and the remaining 4 elements are a

behavior of P-,.

More interesting systems have processes that interact. Consider figure 2. A connection C (zS is

a particularly simple process where two (or more) of the signals in the -tuple are constrained to be

g

identical. For example, in figure 2, C4 5c 5 where

S —{S^, S2, S^, S^, S-jt S^) G C4 5 if S4 —^5 (1)

C2 7 can be given similarly as ^2 = -^7 •There is nothing special about connections as processes, but

theyareuseful to couple the behaviors of otherprocesses. Forexample, in figure 2, the composite pro-

FIGURE 1. Composition of independent processes.

1. This servesa similarpurposeas the tensorproductin the interaction categories of Abramsky [1].

Edward A. Lee and Alberto Sangiovannl-Vincentelil 5 of 36

cess may begiven as (Pj x Pj) Q, 5 ^2,1 • any s € 5 that satisfies the composite pro

cess must be a memberof each of P j x Pj, C4 5, and Cj 7.

Given M processes in (some of which may be connections), a process Q composed of these

processes is given by

Q= nPi^
/>,€ P

(2)

/V

whereP is the collection of processes P,- c 5 , 1 < / < M.

As suggested by thegray outline in figure 2, it makes little sense to expose all the signals of a com

posite process. In figure 2, forexample, since signals ^2 and <^5 areidentical to Sj and respectively,

it would make more sense to "hide" two of these signals and to model the composition as a subset of

rather than .

Let I = (/.,..., /') be an ordered set of indexes in the range 1 <i<N, and define the projection

TCjis) of s = (5,,..., Sf^) c onto S'" by 7C/(s) = . Thus, the ordered set of indexes

FIGURE 2. An interconnection of processes.

6 of 36 Edward A. Lee and Alberto Sangiovannl-Vincentelii

defines the signals that are part of the projection and the order in which they appear in the resulting

tuple. The projection can begeneralized to processes. Given a process PqS , define the projection

nj{P) to be the set {s' such that there exists se P where Kjis) =s'}. Thus, in figure 2, we can define

the composite process Q = 7t/((^i x P2) ^^4.5^ ^2,7) £ »where I = {1, 3,4, 6, 7, 8}.

If the two signals in a connection are associated with the same process, as shown in figure 3, then

the connection is called a self-loop. For the example in figure 3, Q = nj{P r\Ci 2)* where

/ = {2, 3,4}. Forsimplicity, we will often denote self-loops with only a single signal, obviating the

need for the projection or the connection.

Note that this projection operator is really quite versatile. There are several other ways we could

have used it to define the composition in figure 2, even avoiding connection processes altogether. The

operator can also beused toconstruct arbitrary permutations ofsignals, accomplishing the same end as

renaming inother process calculi. Some basic examples are shown infigure 4.Note that the numbering

of signals (cf. names) affects the expression for thecomposition. Note further thatfigure 4d shows that

theconnection processes areeasily replaced by more carefully constructed intersections.

2.2.2 Inputs and outputs

Many processes (but by no means all) have the notion of inputs, which are events or signals that

nGURE3. A self loop.

Edward A. Lee and Alberto Sangiovanni-VincentelH 7 of 36

,N
are defined outside the process. Formally, an input to a process in 5 is an extemally imposed con-

straint AqS such that AnP is the total set of acceptable behaviors. The set of all possible inputs

Bq p (5^) is afurther characterization ofaprocess. Within this definition, there is avery rich set of

ways to model inputs. Inputs could be individual events, for example, or entire signals. Fortunately, the

latter case is more useful for most models of computation, and can easily be defined more precisely.

Givena process PqS with m input signalshaving indexesin the set /, each element <4 e B is a set

oftuples ofsignals {s:7C;(s) = s'} for some s'e 5"*. In other words, the input completely defines s', a

tuple of m input signals. By saying that AnP is the set of acceptable behaviors, we simply say that

8 of 36

Q

Q —^{\}^' \)^P1)

(b)

-[nrf**^

Q ~ 1,1 X^2) ^2.3)
~ 1,jX5) o (iS XF2))

(d) ^2 - iX^2)'^^2,5)

(e)

FIGURE 4. Examples of composition of processes.

Edward A. Lee and Alberto Sangiovanni-Vincenteili

the m input signals must appear within any behavior tuple.

Aprocess is said to be closed ifB = {iS"}, aset with only one element, A= S .Since

thesetofbehaviors is AnP = P, there areno input constraints ina closed process. A process is open

if it is not closed.

So far, however, wehave notcaptured thenotion ofa process "determining" the values of theout

puts depending on the inputs. To do this, consider an index set I for m input signals and an index set

O for n output signals. Aprocess P isfunctional^ with respect to (/, O) iffor every se P and s'e P

where 7i/(s) = 7ty(s'), it follows that tc^Cs) = For such a process, there is a single-valued

mapping Pis'" S" such that for all s € P, Kq{s) = P(7C;(s)). Aprocess is total if 7C;(P) = 5*".

In this case, F is defined over all S"". It is partial otherwise, i.e. 7i;(P) c ^ .

Note that a given process may be functional with respect to more than one pair of index sets

{1,0). A connection, for example = ^2' functional with respect to either ({1}, {2}) or

({2}, {1}). In both cases, F is the identity function.

In figures 2, 3, and 4, there is no indication of which signals might be inputs and which might be

outputs. Figure 5 modifies figure 2 by adding arrowheads to indicate inputs and outputs. In this case,

Pj might be functional with respect to (/, O) = ({1, 2}, {3,4}).

2.2.3 Determinacy

A process is determinate if for any input Ae B it has exactly one behavior or exactly no behav

iors; i.e. |A n P| = 1 or |A n P| = 0, where |X| is the size of the set X. Otherwise, it is nondetermi-

1. A relation RcAxB is a function if for every (a, b)G R and {a,c)^ R ,b = c.

Edward A. Lee and Alberto Sangiovanni-Vincentellf 9 of 36

note. Thus, whether a process is determinate or not depends on our characterization B of the set of

possible inputs.

N
A process in S that is functional with respect to (/, O) is obviously determinate if I and O

together contain all the indexes in 1 < / < . Given the input signals, the output signals are determined

(or there is unambiguously no behavior, if the function is partial).

In figure 4, if all processes are functional with inputs on the left and outputs on the right, then obvi

ously the composition processes are also functional. Thus, the compositions in figure 4 preserve deter-

minacy. A slightly more subtle situation involves source processes (processes with outputs but no

inputs), like the example in figure 6. This composition will be functional (and hence determinate) if

Pj is functional and Pj has exactly one behavior.

A much more complicated situation involves feedback, as illustrated by the example in figure 7.

Whether determinacy is preserved depends on the tag system and more details about the process.

3. Tag Systems

So far, tags have had no explicit role in the description of processes. But we have also said nothing

FIGURE 5. A partitioning of the signals in figure 1 into inputs and outputs.

10 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelii

about the operational interaction ofprocesses. Do they synchronize? Are they causal? Under what con

ditions exactly are they determinate? To answer these questions, we need structure in the system of

tags. This structure turns out tobethe major distinguishing feature between various concurrent models

of computation.

Frequently, a natural interpretation for the tags is that they mark time in a physical system.

Neglecting relativistic effects, time is the same everywhere, so tagging events with the time at which

they occur puts them in a certain order (iftwo events are genuinely simultaneous, then they have the

same tag). Such a simple model of time is certainly intuitively appealing.

For specifying systems, however, the global ordering of events in a timed system may be overly

restrictive. A specification should not beconstrained by one particular physical implementation, and

therefore need not be based on the semantics of the physical world. Thus, for specification, often the

tags should not mark time, but should instead reflect ordering induced by causality (this will be

. Q

Q ~ ^^{1,3, ^2,4)

FIGURE 6. Composition of a functional process with a source process.

FIGURE 7. Feedback (a directed self-loop).

Edward A. Leeand Alberto Sangiovanni-Vincentelii 11 of 36

explained below).

In a model of a physical system, by contrast, tagging the events with the time at which theyoccur

may seem natural. They must occur at a particular time, and if we accept that time is uniform (i.e.

again neglecting relativistic effects), then our model should reflect the ensuing ordering of events.

However, when modeling a large concurrent system, the model should probably reflect the inherent

difficulty in maintaining a consistent view of time in a distributed system [10][17][22][26]. This diffi

culty appears even in relatively small systems, such as VLSI chips, where clock distribution is chal

lenging. If an implementation cannot maintain a consistent view of time across its subsystems, then it

may be inappropriate for its model to do so (it depends on what questions the model is expected to

answer).

The central role of a tag system is to establish ordering among events. An ordering relation on the

set r is a reflexive, transitive, antisymmetric relation on members of the set. We denote this relation

using the template "<". Reflexive means that / < /, transitive means that t<t' and t' < f imply that

/ < /", and antisymmetric means that t<t' and /' < f imply t = t\ for all t, t\ t" in T. Of course, we

can define a related irreflexive relation, denoted "<", where t<t' if / < r' and t^t'. The ordering of

thetags induces anordering ofevents as well. Given two events e = (t, v) and e' = {t\ v'), e < e' if

andonly if r < /'. A set 7 with anordering relationship is called anordered set. If the ordering relation

ship is partial (there exist t,t' € T such that neither t < t' nor < r, then T is called a partially-

ordered set or poset [7][28].

3.1 TIMED MODELS OF COMPUTATION

A timed model of computation has a tag system where 7 is a totally orderedset. That is, for any

distinct t and in 7, either t<t* or r' < r. In timed systems, a tag is also called a time stamp. There

12 of 36 Edward A. Lee and Alberto Sangiovannl-Vlncentelli

are several distinct flavors of timed models.

3.1.1 Metric time

Some timed models of computation include operations on tags. At a minimum, T may be anAbe-

lian group, in addition to being totally ordered. This means that there is an operation +:TxT —>T,

called addition, under which T is closed. Moreover, there is an element, called zero and denoted "0",

such that r + 0 = f for all / e r. Finally, for every element t e T, there is another element -t & T

such that t + (-/) = 0. A consequence is that t2-t^ is itselfa tagfor any rj and t2 in T.

In a slightly more elaborate tag system, T has a metric, which is a function d:T xT —> SR, where

SR is the set of real numbers, that satisfies the following conditions:

d{t, t') = d{t', t) (3)

d{t,t') = 0<^t = t\ (4)

d{t, /') ^ 0 , and (5)

d{t,t') + d{t\t")>d{t,t") (6)

for all t, t\ r" € T. Such systems are saidto have metric time. In a typical example of metric time, T is

the set of real numbers and d{t -t') = |t - , the absolute valueof the difference. Metric time is fre

quently usedwhen directly modeling physical systems (without relativistic effects).

3.1.2 Continuous time

Let T{s)^T denote the set of tags in a signal s. A continuous-time system is a metric timed sys

tem Q where 7 is a continuum (a closedconnected set) and T{s) = T for each signal s in any tuple

s that satisfies the system. A connected set is one where no matter how it is partitioned into two dis-

Edward A. Lee and Alberto Sangiovanni-Vincenteiil 13 of 36

joint sets, at least one of these contains limit points ofsequences in the other. Aclosed setisone that

contains the limit points of any subset. Limit points, ofcourse, are defined in the usual way using the

metric (moregeneral topological definitions are alsopossible).

5.7.5 Discrete-event

Many simulators, including most digital circuit simulators, are based on a discrete-event model

(see for example [12]). Given a process P, and a tuple of signals s g P that satisfies the process, let

r(s) denote the setof tags appearing in any signal in the tuple s. Clearly T{s)^T and the ordering

relationship for members of T induces an ordering relationship for members of 7'(s). Adiscrete-event

model ofcomputation has a timed tag system, and for all processes P and all s e P, ^(s) is order-

isomorphic to asubset ofthe integers^ We explain this now in more detail.

Amap f :A->B from one ordered set A toanother B isorder-preserving ormonotonic if a <a'

implies that /(a) <f(a'), where the ordering relations are the ones for the appropriate set. A map

is a bijection if f{A) = B (the image of the domain is the range) and a^a' implies that

f{a) ^ f{a'). An order isomorphism is an order-preserving bijection. Two sets are order-isomorphic

if there exists an order isomorphism from one to the other.

This definition of discrete-event systems corresponds well with intuition. It says that the time

stamps that appear in any behavior can be enumerated in chronological order. Note that it isnot suffi

cient tojustbeable toenumerate the time stamps (the ordering isimportant). The rational numbers, for

example, are enumerable, but would not be a suitable set of time stamps for a discrete-event system.

This is because between any tworational numbers, there are an infinite number of otherrational num

bers.Thus it is alsonot sufficient for ^(s) to be merely isomorphic to a set of integers, sincethe ratio-

1.Thiselegantdefinition is due to Wan-Teh Chang.

14 of 36 Edward A. Lee and Alberto Sanglovanni-Vincenteili

nals are isomorphic to the set of integers. But they are not order-isomorphic. "Order-isomorphism"

captures the notion of "discrete" (indeed, Mazurkiewicz gives a considerably more complicated but

equivalent notion ofdiscreteness in terms of relations [21]). It captures the intuitively appealing con

ceptthat between any two finite time stamps there will be a finite number of time stamps.

Note further that whilewe insist that T(s) be discrete (which is strongerthan enumerable), we do

noteven constrain Tto be enumerable. Forexample, it is common for discrete-event systems to take T

to be the set of real numbers. We then insist that processes (and inputs) be defined in such a way that

^(s) is always a discrete subset of T.

If T{s) always has a least tag, then we say that the model is a one-sided discrete-event model of

computation. This simply captures the notion of starting the processes at some point in time. In this

case, T{s) will be order-isomorphic to a subset of (O, the setof non-negative integers with theusual

numerical order. Note inparticular that T{s) might be finite, thus capturing the notion ofstopping the

processes, or it might be infinite.

In some communities, notably the control systems community, a discrete-event model also

requires that the set ofvalues Vbecountable, oreven finite [6] [14]. This helps to keep the state space

finite in certain circumstances, which can be a big help in formal analysis. However, in the simulation

community, it is largely irrelevtuit whether Viscountable [12]. In simulation, the distinction istechni

cally moot, since all representations ofvalues ina computer simulation are drawn from a finite set. We

adopt the broader use of the term, and will refer toa system as a discrete-event system whether Vis

countable, finite, or neither.

3.J.4 Discrete-event simulators

The discrete-event model of computation is frequently used in simulators for such applications as

Edward A.Leeand Alberto Sangiovanni-Vincentelli 15 of 36

circuit design, communication network modeling, transportation systems, etc. In a typical discrete-

event simulator, events explicitly include timestamps. These are the only types of systems we discuss

where the tagsare explicit in the implementation. The discrete-event simulator operates by keeping a

list of events sorted by time stamp. The eventwith the smallest time stampis processed and removed

from the list. In the course of processing the event, new events may be generated. These are usually

constrained to havetime stampslargerthan (or sometimes equal to) the eventbeingprocessed. Wewill

return to this causality constraint later, where we will see that under appropriate circumstances, it

ensures determinacy.

In some discrete-event simulators, such as VHDL simulators, tags conceptually contain both a

time value and a "delta time." Delta time has the interpretation of zero time in the simulation, but is an

important part of the tag. It is not usually explicit in the simulation, but it affects the semantics. It is

used to ensure strict causality (to be defined precisely below), and thus to ensure determinism. A suit

able tag systemfor sucha discrete-event simulatorwouldhave T = CD x co,where co is the set of non-

negative integers with the usualnumerical order. The first component will typically be called the "time

stamp", while the second component will be called the "delta time offset." The ordering relation

between two tags t = (/j, /j) and /' = (r',, z'j) is given by / < r' if and only if r, < t\ or r, = t\

and ^2 < t'2 •

Note, however, that 7 = co x co is not order isomorphic with co or any subset. In principle,

between tags t = (tj, /2) and f' = (r'j, t'2) where the time stamps r, and t\ are finite, there could

be an infinite number of tags. This can occur in practice in a discrete-event simulation when a zero-

delay feedback loopis modeled andthereis no fixed point(or the fixed pointis not found). Events cir

culate forever aroundthe loop, incrementing the delta time component of the tag, but failing to incre

mentthe time stamp component. Thesimulation gets stuck, and time fails to advance. Wewill see later

16 of 36 Edward A. Lee and Alberto Sanglovannl-Vlncentelll

in the paper that this flaw is a mathematical property of this system of tags.

3.1.5 Synchronous and discrete-time systems

Two events aresynchronous if they have the same tag. Two signals are synchronous if all events in

one signal are synchronous with an event in the othersignal and viceversa. A process is synchronous

if every signal in any behavior of the process is synchronous with every othersignal in the behavior. A

discrete-time system is a synchronous discrete-event system.

By this definition, the so-called Synchronous Dataflow (SDF) model of computation [18] is not

synchronous (we will saymore about dataflow models below). The"synchronous languages" [2] (such

as Lustre, Esterel, and Argos) are synchronous if we consider JL e V, where -L (bottom) denotes the

absence of an event. Indeed, a keyproperty of synchronous languages is that theabsence of an event at

a particular "tick" (tag) is well-defined. Another key property is that event tags aretotally ordered. Any

twoevents eitherhave the same tag or oneunambiguously precedes the other. The language Signal [3]

is called a synchronous language, but in general, it is noteven timed. It supports nondeterminate oper

ations that require a partially ordered tag model. Cycle-based logic simulators are discrete-time sys

tems.

Note that many authors will dispute this definition of the term "synchronous." For example, the

process algebra community (based on CSP [15] and CCS [23], for instance), refers to processes that

"synchronize" (rendezvous) as"synchronous." However, byourdefinition, they arenoteven timed (we

will have more to say about rendezvous below). We believe that our definition captures the essential

andoriginal meaning of the word, latinized from theGreek "^wn" (together) and "khronos" (time).

3.1.6 Sequential systems

A degenerate form of timed tag systems is a sequential system. The tagged signal model for a

Edward A.Leeand AlbertoSanglovannl-Vincenteiii 17 of 36

sequential process hasa single signal s, and the tags T{s) in the signal are totally ordered. For exam

ple, underthe Von Neumann model of computation, the values v e V denote states of the system and

the signal denotes the sequence of states corresponding to the execution of a program. Below we will

show several ways to construct untimedconcurrentsystemsby composingsequential systems.

3.2 UNTIMED MODELS OF COMPUTATION

When tags are partially ordered rather than totally ordered, we say that the tag system is untimed.

A variety of untimed models of computation have been proposed. In general, the ordering of tags

denotes causality or synchronization. Processes can be defined in terms of constraints on the tags in

signals.

We are not alone in using partial orders to model concurrent systems.Pratt givesan excellent moti

vationfor doing so, and then generalizes the notion of formal string languagesto allow partial ordering

rather than just total ordering [24]. Mazurkiewiczuses partial orders in developing an algebra of con

current "objects" associatedwith "events" [21].Partial orders have also been used to analyzePetri nets

[25]. Lamport observes that a coordinated notion of time cannot be exactly maintained in distributed

systems, and shows that a partial ordering is sufficient [17]. He gives a mechanism in which messages

in an asynchronous system carry time stamps and processes manipulate these time stamps. We can

then talk about processes having information or knowledge at a consistent cut, rather than "simulta

neously". Fidge gives a related mechanism in which processes that can fork and join increment a

counter on each event [11]. A partial ordering relationship between these lists of times is determined

by process creation, destruction, and conununication. If the number of processes is fixed ahead of time,

then Mattem gives a more efficient implementation by using "vector time" [20]. Unlike the work of

Lamport, Fidge, and Mattem, we are not using partial orders in the implementation of systems, but

rather are using them as an analytical tool to study models of computation and their interaction seman-

18 of 36 Edward A. Lee and Alberto Sanglovanni-Vincentelil

tics. Thus, efficiency of implementation is not an issue.

3.2.1 Rendezvous of sequential processes

Thecommunicating sequentialprocesses (CSP) model of Hoare [15] andthecalculus ofcommuni

cating systems (CCS) model ofMilner [23] are key representatives of a family of models of computa

tion that involve sequential processes that communicate with rendezvous. Similar models arerealized,

for example, in the languages Occam and Lotos. Intuitively, rendezvous means that sequential pro

cesses reach a particular point at which they must verify that another process has reached a corre

sponding point before proceeding. This can becaptured in the tagged signal model as depicted in fig

ure 8. In this case T{Sj) is totally ordered for each i = 1,2,3. Thus, each for i = 1,2,

denotes a sequential process. Moreover, representing each rendezvous point there will be events e^,

^2»and ^3 in signals 5j, ^2 >̂ ad s^ respectively, such that

ne^) = Tie,) = Tie^), (7)

where Tie^) is the tag of the event e,.

Note thatalthough theliterature sometimes refers toCSP and CCS as synchronous models ofcom

putation, under our definition they are not synchronous. They are not even timed. Events directly mod

eling a rendezvous are synchronous, but events that are not associated with rendezvous have only a

partial ordering relationship with each other. Indeed, this partial ordering is one of themost interesting

/ J 55

FIGURE 8. Communicating sequential processes.

Edward A.Lee and Alberto Sanglovannl-Vlncentelll 19 of 36

properties of these models of computation, particularly when thereare more than twoprocesses.

In some suchmodels ofcomputation, a process canreach a statewhere it will rendezvous with one

of several other processes (this sort ofbehavior is supported, forexample, by the "select" statement in

Ada). In this case, a composition of such processesis often nondeterminate.

3.2.2 Kahn process networks

In a Kahn process network [16], processes communicate via channels, which are one-way

unbounded FIFO queues with a single reader and a single writer. Let Tis) again denote thetags in sig

nal s. Thefirst-in, first-out property of thechannels implies that T(s) is totally ordered foreach signal

s. Butthesetof all tags T is in general partially ordered. Moreover, signals arediscrete, or more tech

nically, T{s) is order-isomorphic with a set of integers for each signal s.

Forexample, consider a simple process that produces one output event foreach input event. Sup

pose the input signal is j = {e,;/ e co}, where © is the set of non-negative integers with the usual

numerical order, and i<j e^<ej. Let the output be s' = {e' € ©}, similarly ordered. Then the

process imposes the ordering constraint that e^ < e'^ for all / e ©.

The importance of the tags in a particular signal s is limited to the ordering that it imposes on

events. Let denote the sequence of values in s (an ordered set, ordered according to the tags).

That is, the tags are discarded. Then two signals s and s* are sequence equivalent if Z(j) = Z(5') .

Thus Z induces a set of equivalence classes in 5, the set of signals, where each member of is

a set of signals s all with the same sequence Z(5). This notion of sequence equivalence generalizes

trivially to tuples of signals.

A process is sequence determinate if all of its behaviors are sequence equivalent. A process is

20 of 36 Edward A. Lee and Alberto Sangiovannl-Vincenteill

sequence functional if given a set of equivalent tuples of input signals, till possible outputs are

sequence equivalent. Thus, a sequence functional process with m inputs and n outputs has a mapping

F' (Fj)" rather than F:S" -^S". Later in the paper we will study constraints on these

functions that ensure sequence determinacy.

Whether a sequence determinate process is also determinate depends on the tag system. Some

times it is useful to have a tag system that represents more information than just theordering of values

in sequences. Forexample, it might model the timing of theexecution of a process network, in which

casethetiming nondeterminism of a concurrent system is represented in themodel even if theprocess

itself is sequence determinate.

3.2.3 Dataflow

The dataflow model ofcomputation is a special case' ofKahn process networks [19]. Adataflow

process is a Kahn process thatis also sequential, where theevents ontheself-loop signal denote the^r-

ings of thedataflow actor. Theself-loop signal is called thefiring signal. Thefiring rules of a dataflow

actor are partial ordering constraints between these events and events ontheinputs. Adataflow process

network, is a network of such processes.

The firing signal is ordered like all signals in themodel. Consider two successive events in the fir

ing signal «,<^/+i (successive means there are no intervening events). An input event e' where

e,<e' <ei^^ issaid tobe consumed by firing +1. An input event that is less than all firing events is

consumed bythe first firing. An output event e'' where e,< e" < «, +1 is said to beproduced byfiring

e,. An output event that isgreater than all firing events isproduced by the last firing (ifthere isone).

1. The term"dataflow" is sometimes applied to Kahn process networks in general, but thisfails to reflect the heri
tage that dataflow has incomputer architecture. Thedataflow model originally proposed byDennis [8] had the
notion of a "firing"as an integral part.Our use of the termis consistent with that of Dennis.

Edward A. Lee and Alberto Sangiovannl-Vincentelll 21 of 36

For example, considera dataflow process P with one input signal and one output signal, where

each firing consumes oneinputevent andproduces one output event, as shown in figure 9. Denote the

input signal by s' = N}, where /< j e\<e'j. The firings are denoted by the signal

s = {«,;/€ N}y and the output by s" = N}, which will be similarly ordered. Then the

inputs and outputs are related to the firings as e, < e', +1 < «/+1 (the / + 1-th firing consumes the

i + 1-th input) and e,- < e'\ < e, j (the / -th firing produces the i -th output) for all /. Because of the

transitivity of the ordering relation, this implies that e', < for all i, an intuitive sort of causality

constraint. A network of such processes will establish a partial ordering relationship between the fir

ings of the actors.

Consider modifying figure 9 with a connection as shown in figure 10. This establishes the identity

j' = s", butsince e'̂ < e"i, s' and s" must beempty. This is theonly behavior for thisprocess, and it

corresponds to deadlock.

FIGURE 9. A simple dataflowprocess that consumes and produces a single token on each firing.

FIGURE 10. A deadlocked dataflow graph.

22 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelli

More interesting examplesof dataflow actors can also be modeled. The so-calledswitchand select

actors, for example, are shown in figure 11. Eachof them takesa Boolean-valued inputsignal (thebot

tom signal) and uses the value of the Boolean to determine the routing of tokens (events). The switch

takes a single token at its left input s^ and routes it thetopright output 53 if theBoolean in S2 is true.

Otherwise, it routes the token to the bottom right output s^.

The partial ordering relationships imposed by the switch and select are inherently more compli

cated than those imposed by the simple dataflow actor in figure 9. Butthey canbe fully characterized

nonetheless. Suppose the control signal in theswitch is given by J2 = {('2, /♦ ^2, /)} »where the index

/ = 1 denotes the first event on ^2» ' = 2 the second, etc. Suppose moreover that the Booleans are

encoded so that V2 , e {0, 1}. Let

bk = ^ V2,i for k>0. (8)

i= 1

Denote the input signal by s^ = {e, ,;/e /V} and the output signals by J3 = {e3jt;/e N} and

^4 = {^4, bf}. Then the ordering constraints imposed by the actor are

(9)

FIGURE 11. More complicated dataflow actors.

Edward A. Lee and Alberto Sangiovannl-Vincenteill 23 of 36

^4,m^ * (10)

3.2.4 PetriNets

Petri nets can also be modeled in the framework. Petri nets are similar to dataflow, but the events

within signals need not beordered. We associate a signal with each place and each transition ina Petri

net.Consider the trivial net in figure 12(a). Viewing the signals j j and S2 as setsof events, there exists

a one-to-one function f:s2 —> •Jj such that f(e) <e for all ^€ ^3. This simply says that every firing

(anevent in) has a unique corresponding token (anevent in) with a smaller tag. In figure 12(b),

we simply require that there exist two one-to-one functions and that

/,(e) <e and /2(^) <^ for all e e 53. In figure 12(c), which represents a nondeterministic choice,

we again need two one-to-one functions and f2'-S3-^s^ such that fi{e)<e for all

ees2 and /2(^)<^ for all ees^y but we impose the additional constraint that

f\ (-^2) ~ ^ ' where the notation /(5) refers to the image ofthe function / when applied to

members of the set s. In figure 12(d),we note that if the initial marking of the place is denoted by the

set / of events, then it is sufficient to define ^2 = Composing these simple primitives then

becomes a simple matter of composing the relevant functions. For example, in figure 12(e),
•^1

•^1

^2

(a)

24 of 36

•^3

(b)

•^1

^2 ^3

(c) (d)

FIGURE 12. Some simple Petri nets.

Edward A. Lee and Alberto Sanglovannl-Vlncentelll

u/j , fyS2,-^S2^i2-> f2{e)<e for all ees2y and /3(e)for all ees^y so

^ all e e ^3. In figure 12(f), / •^2 ^ such that f{e) <e for all e € ^2»

52 = 5i (the initial marking isempty), therefore 52 = 0. The Petri net isnot live (itisdeadlocked).

3.3 HETEROGENEOUS SYSTEMS

It is assumed above that when defining a system, the sets T and V include all possible tags and

values. In some applications, it may be more convenient to partition these sets and to consider thepar

titions separately. For instance, V might be naturally divided into subsets Vj, ^2, —according to a

standard notion of data types. Similarly, T might be divided, forexample to separately model parts of

a heterogeneous system that includes continuous-time, discrete-event, and dataflow subsystems. This

suggests a type system thatfocuses on signals rather than values. Ofcourse, processes themselves can

then also bedivided bytypes, yielding aprocess-level type system that captures thesemantic model of

thesignals that satisfy the process, something like the interaction categories ofAbramsky [1].

4. The Role of Tags in Composition of Processes

In Section 2.2.1, where we composed processes according to equation (2), tags played no evident

role. Composition was treated there ascombining constraints. Without considering tags, we were able

to give some simple conditions in Section 2.2.3 under which compositions of functional processes are

determinate. Wecan often do much moreby ttiking the tags into account. Wefind that in doing so, we

can connect our tagged signal model to well-known results in semantics. We will do this now for two

specialcases,discrete-event systems and Kahn process networks.

4.1 CAUSALITY IN DISCRETE-EVENT SYSTEMS

Causality is a key concept in discrete-event systems. Intuitively, it means thatoutput events do not

Edward A. Leeand Alberto Sanglovannl-Vincentelll 25 of 36

have time stamps less than the inputs that caused them. By studying causality rigorously, we can

address a family ofproblems that arise inthe design ofdiscrete-event simulators. These problems cen

teraround how todeal with synchronous events (those with identical tags) and how todeal with feed

back loops. Butcausality comes in subtly different forms thathave important consequences.

Consider a discrete-event tag system where T = 91, the reals. We can define a metric on the set

S" of n-tuples of signals as follows:

^(s, s') =^, (11)
2^

where x is the smallest tag where s and s' differ. If s and s' are identical, then we define

d{s, s') = 0, a sensible extrapolation from (11). Two n-tuples of signals differ at a tag if any of the

component signals differ (pairwise). Two signals differ ata tag ifone has an event with that tag and the

other does not, or if both have events with that tag but the values of these events differ. It is easy to ver

ify that (11) isa metric by checking that it satisfies (3) through (6). In fact, it isan ultrametric, meaning

that in addition to satisfying (6), it satisfies the stronger condition

max{d{u t'l d{t\ r")) ^ d{t, t"). (12)

This metric is sometimes called the Cantormetric^.

The Cantor metric converts our set of n -tuples of signals into a metric space. In this metric space,

two signals are "close" (the distance is small) if they are identical upto a large tag. The metric there

fore induces an intuitive notion of an openneighborhood. An open-neighborhood of radius r is the set

of all signals that are identical at least up to and including the tag log2(r~'). We can use this metric to

classify three different forms of causality.

1. Theapplicability of thismetric in thiscontext was pointed out to us by Gerard Berry.

26 of 36 Edward A. Lee and Alberto Sanglovannl-Vincentelli

A function FiS"" -^S" is causal if for all s, s' e S"*,

d{Fis),F{s'))<d(s,s'). (13)

In other words, two possible outputs differ noearlier than the inputs thatproduced them.

Afunction F :S^ ->S" isstrictly causal iffor all s, s' e S"*,

d{F{s),F(s'))<d{s,s'). (14)

In other words, two possible outputs differ later than the inputs that produced them (ornot at all).

A function F:S'"-^S" is delta causal if there exists a real number 6<1 such that for all

s,s'e S'",

d(F(s),F(s'))<6^/(s,s'). (15)

Intuitively, this means that there is adelay of at least A= log2(5 '), astrictly positive number, before

any output ofa process can beproduced inreaction toan input event. Equation (15) is recognizable as

the condition satisfied by a contraction mapping.

A metric space is complete if every Cauchy sequence of points in themetric space that converges,

converges to a limit that is also in the metric space. It can beverified that the set ofsignals .5 ina dis

crete-event system is complete. The Banach fixed point theorem (see for example [5]) states that if

F: X X is a contraction mapping and X is a complete metric space, then there is exactly one

xe X such that F{x) = x. This is called a fixedpoint. Moreover, the Banach fixed point theorem

gives a constructive way (sometimes called thefixed point algorithm) to find the fixed point. Given any

atq e X, ;c is the limitof the sequence

X, = F{xq), X2 = F{x^), JC3 = F{x2) ... (16)

Edward A. Leeand Alberto Sangiovanni-Vlncentelli 27 of 36

Consider a feedback loop like that in figure 7 in a discrete-event tag system. The Banach fixed

point theorem tells us that if the process P is functional and delta causal, then the feedback loop has

exactly one behavior (i.e. it is determinate). This determinacy result was also proved by Yates [31],

although he used somewhatdifferent methods. Moreover, Banach fixed point theorem gives us a con

structiveway to find that behavior. Start with any guess about the signals (most simulators start with an

empty signal), and iteratively apply the function corresponding to the process. This is exactly what

VHDL, Verilog, and other discrete event simulators do. It is their operational semantics, and the

Banach fixed point theorem tells us that if every process in any feedback loop is a delta-causal func

tional process, then the operational semantics match the denotational semantics'. I.e., the simulator

delivers the right answer.

The constraint that processes be delta causal is fairly severe. In particular, it is not automatically

satisfied by processes in VHDL, despite the fact that VHDL processes always exhibit "delta" delay.

The common term "delta" is misleading. The contraction mapping condition prevents so-called Zeno

conditions where between two finite tags there can be an infinite number of other tags. Such Zeno con

ditions are not automatically prevented in VHDL.

It is possible to reformulate things so that VHDL processes are correctly modeled as strictly causal

(not delta causal). Fortunately, a closely related theorem (see [5], chapter 4) states that if F: X —> X is

a strictly causal function and X is a complete metric space, then there is at most one fixed point

X€ X, F{x) = X. Thus, the "delta" delays in VHDL are sufficient to ensure determinacy, but not

enough to ensure that a feedback system has a behavior, nor enough to ensure that the constructive pro

cedure in (16) will work.

If the metric space is compact rather than just complete, then strict causality is enough to ensure

1. This is sometimes called the full abstraction property.

28 of 36 Edward A. Lee and Alberto Sangiovanni-Vincentelll

the existence of a fixed point and the validity of the constructive procedure (16) [5]. In general, the

metric space of discrete-event signals is not compact, although it is beyond the scope of this paper to

showthis.Thus, to be sure that a simulation will yield thecorrectbehavior, without furtherconstraints,

we must ensure that the function within any feedback loop is delta causal.

4.2 MONOTONICITY AND CONTINUITY IN KAHN PROCESS NETWORKS

Untimed systems cannot have the same notion ofcausality as timed systems. The equivalent intu

ition is provided by the monotonicity condition. Monotonicity is enough to ensure determinacy of

feedback compositions. A slightly stronger condition, continuity, is sufficient toprovide aconstructive

procedure for finding the one unique behavior. These two conditions depend on a partial ordering of

signals called the prefix order.

A partially ordered tag system is a system where the set T of tags is a partially ordered set or

poset, asdefined inSection 3.We can also define an order such that the setofsignals becomes a poset.

Asignal isa set ofevents. Set inclusion, therefore, provides a natural partial order for signals. Instead

ofthe symbol "<" that we used for the ordering oftags, we use the symbol "c " for an ordering based

on set inclusion. This is a reflexive antisymmetric transitive binary relation. Thus, for two signals s

and s\ sQs' if everyevent in s is also in 5'.

Recall that for Kahn process networks, we let Z(5) denote the sequence ofvalues inthe signal s,

which is itself always a totally ordered setof events. In this case, another natural partial ordering for

signals emerges; it iscalled the prefix order. For the prefix order, we write Zfj) £ 2(5') if X(5) isa

prefix of2(5') (i.e., if the first values of X(5') are exactly those in Z(j)). Let Z(5) denote the set of

signals partially ordered by this ordering. Clearly, in X(5), the empty signal L(^) is a prefix ofevery

othersignal, at the bottom of the partial order, so it is sometimes called bottom.

Edward A. Leeand Alberto Sanglovannl-Vincentelli 29 of 36

In partially ordered models for signals, it is often useful for mathematical reasons to ensure that

the poset is a complete partial order {CPO). Toexplain this fully, we need some more definitions. A

chain in S(5) is a set e X(S) and / e f/}, where U is a totally ordered set (ordered by "<")

and for any i and /' in U,

a, c a,'<=>/</'. (17)

An upper boundof a subset Wc Z(5) is an element w € Z(5) whereeveryelementin W is a prefix

of w. A least upper bound {LUB\ written u IV, is an upper bound that is a prefix of every other upper

bound. A lower bound and greatest lower bound are defined similarly. A completepartial order {CPO)

is a partial order with a bottom element where every chain has a LUB. From a practical perspective,

this usually implies that our set X(5) of sequences must include sequences with an infinite number of

values.

N
These definitions are easy to generalize to Z(5) , the set of N-tuples of sequences. For

o € and c' e Z(5)^, o ^ a' ifeach corresponding element is a prefix, i.e. a,- E a',- for

each 1<i<N, where a = (a,,..., .With this definition, if Z(5) is aCPO, so is 2(5)^. We will

N
assume henceforth that 2(5) is a CPO for all N.

4.2.1 Monotonicity and continuity

We can now define the untimed equivalents of causality, connecting to well-known results origi

nally due to Kahn [16]. Our contribution here is only to present these results using our notation. A pro

cess P is monotonic if it is sequence functional with function F, and

a c a' =>F(a) c F(a'). (18)

30 of 36 Edward A. Lee and Alberto Sanglovanni-Vincenteiii

Intuitively, this saysthat if an inputsequence a is extended withadditional events appended to the end

to get a', then the output F{o) can only be changed by extending it with additional events to get

F(a'). I.e., giving additional inputs can only result in additional outputs. This is intuitively the

untimed equivalent of causality.

Aprocess P is continuous if it is sequence functional with function F: Z(5)'" —> Z(5)" and for

every chain Wc Z{S)'", F{W) has a least upper bound u F(W), and

F(uW) = uF{W). (19)

The notation F(W) denotes a set obtained by applying the function F to each element of W. Intu

itively, this says that the response of the function to an infinite input sequence is the limit of its

response to the finite approximations of this input. "Continuous" here isexactly the topological notion

of continuity in a particular topology called theScott topology. In this topology, the set of all signals

with a particular finite prefix isan open set. Theunion ofany number of such open sets is also anopen

set, and the intersection of a finite number of such open sets is also an open set.

Acontinuous process is monotonic [16]. To see this, suppose F: Z(5)'" —> S(5)" is continuous,

and consider two signals o and o' in Z(5)'" where o E g'. Define the increasing chain

W = {o, g', g', g', ...}. Then u W = g' , so from continuity,

F(g') = F(u W) = u F(iy) = u {F(g), F(g')} . (20)

Therefore F(g) E F(g') , so the process is monotonic.

Not all monotonicfunctions are continuous. Considerfor example a system where the set of values

is binary, V = {0,1}, and

EdwardA. Leeand Alberto Sangiovannl-Vincentelli 31 of 36

yr(o) =I [01; if ais finite (21)
[[0, 1]; otherwise

It is easy to show that this is monotonic but not continuous.

Compositions of continuous (or monotonic) functions without feedback, likethose in figures 4 and

6, obviously yield continuous (or monotonic) functions. As before, it is only the feedbackcase that is

subtle.

Consider the feedback system of figure 7. In general, it may not be sequence determinate, even if

the process is sequence functional and continuous. Consider a trivial case, where the process P is

sequence functional with its function F:Z(5)—>Z(5) being the identity function. This function is

certainly continuous. Then any o e Z(5) satisfies the composite process Q because for any

o e S(5), F{c) = c. Since the process has many behaviors, it is not sequence determinate.

We will now show that there is an altemative interpretation of the composition Q that is sequence

determinate. Under this interpretation, any composition of continuous processes is sequence determi

nate. Moreover, this interpretation is consistent with execution policies typically used for such systems

(their operational semantics), and hence is an entirely reasonable denotational semantics for the com

position. This interpretation is called the least-fixed-point semantics.

A well-known fixed point theorem states that a continuous function F :X -^X in a CPO X has a

least fixed point jc. Fix) = x (see [7], page 89). By "least fixed point" we mean that for any y such

that F(y) = y,x ^ y. Moreover, the theorem gives us a constructive way to find the least fixed point.

Putting it into our context, suppose we have acontinuous function F :Z(5)" —> E(5)".Then define the

sequence of sequences

32 of 36 Edward A. Lee and Alberto Sanglovanni-Vincenteiii

ao = 1(A), ai = F(ao),a2 = F{g^),... (22)

Since F is monotonic and the tuple of empty sequences Z(A) is a prefix of all other tuples of

sequences, this sequence isa chain. Since £(5)" isa CPO, this chain has a LUB. The fixed-point the

orem tells us that this LUB is the least fixed point of F.

This theorem is very similar to the so-called Knaster-Tarskifixedpoint theorem^ which applies to

complete lattices rather than CPOs [7]. For this reason, this approach to semantics is sometimes called

Tarskian.

Note that the constructive technique given by (22) is exactly what one would expect in an imple

mentation of Kahn process networks. Begin with all sequences empty, and start iteratively applying

functions. This theorem tells us that this operational semantics is consistent with the denotational

semantics (the least fixed point semantics), so again we havefull abstraction.

Under this least-fixed-point semantics, the value of ^2 figure 7 is A,, the empty signal. Under

this semantics, this is the only signal that satisfies the composite process, so the composite process is

determinate. Intuitively, this solution agrees with a reasonable execution of the process, in which we

would not produce any output from P because there are no inputs. This reasonable operational seman

tics therefore agrees with thedenotational semantics. Fora complete treatment of this agreement, see

Winskel [29].

In terms of the tagged signal model, if S(0) is the set of sequence tuples that satisfy the process

Qy we are declaring the behavior of the process to be min(E(j2))»the smallest member (in a prefix

order sense) of the set 2(j2) •This minimum existsand is in fact equal to the least fixed point, as long

as the composing processes are continuous.

Yet another fixed-point theorem deals with monotonic processes thatarenotcontinuous. This the-

Edward A. Leeand Alberto Sangiovannl-Vlncentelli 33 of 36

orem states that a monotonic function on a CPO has a unique least fixed point, but gives no construc

tiveway to find the least fixed point(see [7],page 96).Fortunately, this lackof constructive solution is

not a problem in practice since practical monotonic processes are invariably continuous. Of course,

non-monotonic processes create many problems.

5. Conclusions

Wehavegiventhe beginningsof a framewoik withinwhichcertain propertiesof modelsof compu

tation can be understood and compared. Of course, any model of computation will have important

properties that are not captured by this framework. The intent is not to be able to completely define a

given model of computation, but rather to be able to compare and contrast its notions of concurrency,

communication, and time with those of other models of computation. The framework is also not

intended to be itself a model of computation, but rather as a "meta model," so it should not be inter

preted as some "grand unified model" that when implemented will obviate the need for other models.

It is too general for any useful implementation and too incomplete to provide for computation. It is

meant simply as an analytical tool. Of course, a great deal of work remains to be done to determine

whether it is useful as an analytical tool.

6. Acknowledgments

We wish to acknowledge useful feedback from Gerard Berry, Frederic Boussinot, Wan-Teh Chang,

Stephen Edwards, Simon Gay, Alain Girault, Luciano Lavagno, Praveen Murthy, Rajagopal Nagarajan,

and Dick Stevens. All remaining errors and omissions are the fault of the authors.

This work was partially supported under the Ptolemy project, which is sponsored by the Advanced

Research Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-93-C-

1317), the National Science Foundation (MIP-9201605), the State of Califomia MICRO program, and

the following companies: Bell Northem Research, Cadence, Dolby, Hitachi, LG Electronics, Lockheed

34 of 36 Edward A. Lee and Alberto Sanglovannl-Vlncentelll

Martin, Mentor Graphics, Mitsubishi, Motorola, NEC, Philips, and Rockwell.

7. References

1] S. Abramsky, S. J. Gay, andR. Nagarajan, "Interaction Categories and the Foundations of Typed
Concurrent Programming," In: Deductive Program Design: Proceedings of the 1994Marktober-
dorfInternational Summer School, (M. Broy, ed.), NATO ASISeries F,Springer-Verlag, 1995.

2] A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-Time Systems,"
Proceedings of the IEEE, Vol. 79, No. 9, pp. 1270-1282,1991.

3] A. Benveniste and P. Le Guemic, "Hybrid Dynamical Systems Theory and the SIGNAL Lan
guage," IEEETr. onAutomatic Control, Vol. 35,No. 5, pp. 525-546, May 1990.

4] F. Boussinot, R. De Simone, "TheESTEREL Language," Proceedings of the IEEE, Vol. 79, No.
9, September 1991.

5] V. Bryant,MetricSpaces, CambridgeUniversity Press, 1985.

6] C. Cassandras, Discrete Event Systems, Modeling and Performance Analysis, Irwin, Homewood
IL, 1993.

7] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University Press,
1990.

8] J.B.Dennis, "First Version Data Flow Procedure Language", Technical Memo MAC TM61, May,
1975, MIT Laboratory for Computer Science.

9] E. Dijkstra, "Cooperating Sequential Processes", in Programming Languages, E R Genuys, edi
tor, Academic Press, New York, 1968.

10] C.Ellingson and R.J. Kulpinski, "Dissemination ofSystem-Time," IEEE Trans, on Communica
tions, Vol. Com-23, No. 5, pp. 605-624, May, 1973.

11] C. J. Fidge, "Logical Time in Distributed Systems," Computer, Vol. 24, No. 8, pp. 28-33, Aug.
1991.

12] G. S. Fishman, PrinciplesofDiscrete Event Simulation, Wiley, NewYork, 1978.

13] N. Halbwachs, P. Caspi, P. Raymond, and D.Pilaud, "The Synchronous Data Flow Programming
Language LUSTRE," Proceedings ofthe IEEE, Vol. 79,No. 9,1991,pp. 1305-1319.

14] Y.-C. Ho(Ed.), Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the
Modem World, IEEE Press, New York, 1992.

15] C. A. R. Hoare, "Communicating Sequential Processes," Communications of the ACM, Vol. 21,
No. 8, August 1978.

16] G. Kahn, "The Semantics of a Simple Language for Parallel Programming," Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

17] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System," Communica
tions ofthe ACM,Vol. 21, No. 7, July, 1978.

Edward A. Leeand Alberto Sangiovanni-Vincenteili 35 of 36

18] E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow," IEEE Proceedings, September,
1987.

19] E. A. Lee and T. M. Parks, "Dataflow Process Networks," Proceedings ofthe IEEE, May 1995.
(http://ptolemy.eecs.berkeley.edu/papers/processNets)

20] F. Mattem, "Virtual Time and Global States of Distributed Systems," in Parallel and Distributed
Algorithms, M. Cosnard and P. C^uinton, eds., North-Holland, Amsterdam, 1989, pp. 215-226.

21] A. Mazurkiewicz, 'Traces, Histories, Graphs: Instances of a Process Monoid," in Proc. Conf on
Mathematical Foundations of Computer Science, M. P. Chytil and V. Koubek, eds.. Springer-Ver-
lag LNCS 176,1984.

22] D. G. Messerschmitt, "Synchronization in Digital System Design," IEEE Journal on Selected
Areas in Communications, Vol. 8, No. 8, pp. 1404-1419, October 1990.

23] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

24] V. R.Pratt, "Modeling Concurrency with Partial Orders," Int.J. of Parallel Programming, Vol. 15,
No. 1, pp. 33-71, Feb. 1986.

25] W. Reisig, Petri Nets:AnIntroduction, Springer-Verlag (1985).

26] M. Raynal and M. Singhal, "Logical time: Capturing Causality in Distributed Systems," Com
puter, Vol. 29, No. 2, February 1996.

27] J. E.Stoy, Denotational Semantics: The Scott-Strachey Approach toProgramming Language The
ory, The MIT Press, Cambridge, MA, 1977.

28] W. T. Trotter, Combinatorics and PartiallyOrdered Sets, Johns Hopkins University Press, Balti
more, Maryland, 1992.

29] G. Winskel, TheFormalSemantics of Programming Languages, the MIT Press, Cambridge, MA,
USA, 1993.

30] G. Winskel, "An Introduction to Event Structures," in Linear Time, Branching Time and Partial
Order in Logics and Modelsfor Concurrency, J. W. de Bakker,W.-P. de Roever, andG. Rozenberg
(Eds.), REX School/Workshop, Noordwijkerhout, The Netherlands, May 30-June 3, 1988. LNCS
354, pp. 364-397,Springer-Verlag, 1989.

[31] R. K. Yates, "Networks of Real-Time Processes," in Concur '93, Proc. of the 4th Int. Conf. on
Concurrency Theory, E. Best, ed.. Springer-Verlag LNCS 715,1993.

36 of 36 Edward A. Lee and Alberto Sanglovanni-Vlncenteiil

	Copyright notice 1997
	ERL-97-11

