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Abstract

In the present paper nonholonomic systems with drift terms are stud
ied. The discussion is focused on a class of Lagrangian systems with a
cychc coordinate. We present an approach to open-loop path planning
in which the system evolution is studied on manifolds of dimension
equal to the number of control inputs. A control algorithm is derived
and it is applied to the examples of a hopping robot and a plzinar
diver. A similar algorithm is derived for the study of what states can
be reached within a given time. An exponentially stabihzing feedback
controller is derived for tracking of the planned trajectories. The results
are illustrated with simulations.
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1 Introduction

Driftless nonholonomic systems have the property that they can be stopped
by setting the inputs to zero, and thus they are open-loop stable. This is
often not the caise when drift terms are present. If the drift vector field is in
the span of the input vector fields, then an input transformation can be used
to transform the system to a driftless form. The interesting cases which will
be investigated here, axe those systems where such a transformation does
not exist. An equilibrium point for the system is given by those states where
the drift term is zero, or where the drift term can be cancelled by the inputs.
In the discussion below the focus will be on nonholonomic systems without
a equilibrium, i.e. with non-vanishing drift.

Driftless nonholonomic control systems have been studied in recent years by
Walsh and Sastry (1991), Teel et al. (1992), Murray and Sastry (1993), Bloch
et al (1993), Kolmanovsky and McClamroch (1995), and others. Several
important results have been derived based on the structure of Lie algebras
generated by the control vector fields. A dual point of view using exterior
differential systems was developed by Murray (1994), Tilbury et al (1995),
and Tilbury and Sastry (1995). The discussion of nonholonomic systems
with drift in the literature has been concentrated on the so-called dynamic
extension of drift free systems by e.g. Hauser (1989), Kapitanovsky et al
(1993), and M'Closkey and Murray (1994). A dynamic extension is an
addition of integrators to the velocity inputs. Walsh et al (1993) have also
considered steering on the group of rotations for left-variant systems with
drift terms.

An approach to motion planning for nonlinear systems which has received
increasing attention in the last fewyears is the concept of differential fiatness
(Rouchon et al, 1993). Flatness is locally equivalent to feedback lineariz-
ability, and may be used to simplify the design of trajectories. A sufficient
condition for flatness is given in (Martin, 1993) for systems where the di
mension of the control vector is one less than the dimension of the state

vector. Lagrangian systems of this class where the fiat outputs depend on
the configuration variables are called configuration fiat (Rathinam and Mur
ray, 1996). Controllability properties of Lagrangian systems have also been
studied by Lewis and Murray (1995), and dissipative systems by Kelly and
Murray (1996).

Classification of nonholonomic systems has also been explored in the liter
ature. A powerful motivation for finding simple standardized forms is to



generate reusable control schemes that can be applied to classes of nonlin
ear control systems. The search for canonical forms by (Murray and Sas-
try, 1993) defined the chained form, which has since gained much popularity.
This form is equivalent to the power form (Pomet and Samson, 1993). Sinu
soids have been used in motion planning for these systems because of their
smoothness and periodic properties. Systems that can be put in chained
form are in a subset of the larger class of nilpotentizable (Di Giamberardino
et alj 1996) systems. A system is nilpotent when the Lie algebra is finite
dimensional and all Lie brackets of order higher than a finite integer are zero
(Kawski, 1988). When the Lie algebra is nilpotent, it is possible to write
the solution for the state as a composition of a finite number of solutions
to possibly less complicated differential equations. If a system is nilpotent,
or nilpotentizable by a diffeomorphic transformation, then Kawski (1993)
gives a simple algorithm for transformation to a canonical nonlinear repre
sentation of the system. Nilpotent approximations are useful for local sta
bilization (Hermes et al, 1984). An extension of the derivation of canonical
forms to systems with drift terms is a case for further study.

A class of Lagrangian systems with a cyclic coordinate is investigated in this
report as a step toward extending the understanding of control of systems
with drift terms. The eventual goal is an increased repertoire of canon
ical forms. Prom Noether's Theorem (Arnold, 1989) it follows that if a
Lagrangian system admits a one parameter group of diflfeomorphisms, i.e.
there is some kind of symmetry in the system such that the Lagrangian is
invariant under some mapping, then a conservation law and a first integral
exist. A cyclic coordinate means that the Lagrangian is invariant under, for
example, a translation of the same coordinate. The first integral will be a
conserved generalized momentum conjugate (Goldstein, 1980). These sys
tems exhibit a subtriangular structure, as the Jacobian of the vector fields
with respect to the state is subtriangular. This structure will be utilized
in the design below. If the constant value of this first integral is nonzero,
then there is drift in the system. The two examples considered here are the
hopping robot with drift and the planar diver. In these examples the cyclic
coordinate is the body angle, and the generalized momentum is the total
angular momentum of the body.

The main focus of the present report is on path planning, the problem of
finding inputs that steer the system firom an initial state to a desired state.
The proposed approach is to consider piecewise constant inputs. In physical
systems there is usually an upper bound on how large inputs can be. Fur
ther, it is well known that minimum-time control of systems with constrained



inputs often results in bang-bang control, in which the control values are at
the boundary of the allowed set of inputs. An algorithm to find a path that
connects a given initial state with a given desired state is presented. The al
gorithm uses bang-bangcontrols to generate trajectories, and includes both
a computation of the maximum and minimum of a scalar function, and a
one dimensional search for a solution. The solution is often not unique. A
necessary condition for convergence of the algorithm is controllability. An
algorithm to find a subset of the resuihable set is given, which is a slight
modification of the path planning algorithm. Obstacle avoidance is a tradi
tional diflficulty that must be considered in motion planning when moving in
a cluttered environment. In that case the initial and desired configurations
must lie in the same connected component of the free configuration space
for the motion planning problem to be solvable (Murray and Sastry, 1993).
Obstacle is however not discussed further in this report.

Open-loop paths are very sensitive to initial condition errors. A feedback
control law, which closes the loop around the planned trajectory is derived
in order to render the control scheme more robust. The feedback control law
provides exponential convergence to the planned trajectories under certain
assumptions on the nominal trajectory. The combination of an open-loop
path planner and an underlying feedback control law for continuous tracking
can be seen as the lower modules in a hybrid hierarchical controller scheme
for control of nonholonomic mechanical systems as in (Varaiya, 1993), for
example.

2 Controllability

Consider an affine nonlinear control system

m

®=/(®) + ^9t(®)^ii (1)
t=i

with u eU and x e under the assumption

Assumption 2.1 (Sussmann (1987))
The state space Ad C R" is assumed to be a smooth manifold of dimension
n, the control input space U C R"* is assumed compact and convex, the
vector Gelds in the set sure assumed to be real and

analytic, and the input vector Gelds gi, i € {1,..., w}, are assumed to be
linearly independent of each other.



Definition 2.1 (Ngmeijer and van der Schaffc (1990))
Thenonlinearsystem (1)is called controllable ifforany two points (®°, aj*)
in M there exists a finite final time T and an admissible control function

u : [0,T] i-» U, such that the solution is x(T, 0,a:°, u) = x*.

2.1 Accessibility

The accessibility algebra C (Nijmeijer and van der Schaft, 1990) is the
smallest subalgebra of the Lie algebra of vector fields on M that contains
The accessibility distribution C is the distribution generated by (sparmed
by) C. The strong accessibility algebra Co is the smallest subalgebra of
the Lie algebra of vector fields on M which contains 0 = {ffij•••5fim} and
satisfies [f^X] GCo for all X € Co- The strong accessibility distribution
Co is the distribution generated by Co-

Definition 2.2 (Nijmeijer and van der Schaft (1990))
The Lie algebra rank condition (LARC) at x is given by (Sussmann,
1987)

dimC{aj) = dimA^ = n (2)

and the distribution C spans the whole tangent space TxM- A system is
locally accessible at x ifdimC(aj) = n, and accessible if dimC(x) = n
for all X £ M- It is strongly accessible ifdim Co(x) =n for all x £ M.

For driftless systems, controllability follows firom LARC (Nijmeijer and van der
Schaft, 1990). Controllability is, however, different from accessibility for sys
tems with drift. Consider the example

Xi =ui

X2 =U2

±3 =1x1 (3)
taken from (Nijmeijer and van der Schaft, 1990), where

C(x) = Co(x) = span{pi,p2,[[/,9il,9i]} =

However, X3 is nondecreasing and all states x, where X3 < ^3(0), are not
reachable. It can be concluded that even though this system is strongly
accessible for all x 6 it is not controllable.



2.2 Small time local controllability

Definition 2.3 (Sussmann (1987))
A system (1) is small time locally controllable (STLC) (Sussmann,
1987) from GM, if x® is an interior point of the reachable set
consisting ofallpoints x that can bereached from x® in time T, dehned by

^r(x°) = U 7^(x^T) (4)
0<t<T

7^(x°,r) = {x|3ii : [0,t] so that x(0) = x° and x(r) = x}

Proposition 2.1 (Sussmann (1987))
A system cannot be STLCfrom x unless it satisfies the LARC (2) at x.

Proposition 2.2
Let X be an interior point in A4 and an equilibrium with f{x) = 0,
U = < l,z = 1,and the vectors (ad f)^(9i)(x), for all
i € {1,k e {0,1,...} together with the vectors [</t5 9il(®)> ^or all
pairs i,j € (1,... ,m}, span TxM. Then the system (1) is STLC from x
(Sussmann, 1987).

Remark 2.1

From Proposition 2.2 it follows that the example (3) does not satisfy the
condition for STLC.

3 A class of nonholonomic systems with drift terms

In this section a motivating class of systems for the discussion later in the
report is presented. Particular attention is given to the effect of the drift
term. For certain systems and certain path planning problems the driftterm
can be useful in the design of the control law, whereas for for other systems
the opposite may be the case. Sufficient properties for controllability of this
class is derived.

Consider a conservative mechanical system with Lagrangian

L = L(x, x) = K(x, x) -U(x) (5)

where x € R" are the generalized coordinates, K = Cbij(x)xiXj is
the kinetic energy and U is the potential energy. Assume that there is one



cyclic coordinate (Goldstein, 1980) not contained in the Lagrangian. This
coordinate may without loss of generality be chosen to be Xn, and

dL

dxn
= 0 (6)

If no generalized forces act in the direction of Xn (Qn = 0), then the Euler-
Lagrange differential equations (Goldstein, 1980) yield

sO-" ">
This is a special result of Noether's Theorem (Arnold, 1989). A first integral
fi of the motion of the mechanical system is given by

— ^ f ^•M ^ Otn(x)Xi

where for alH € {1,..., n]

dcLinjx)

dXn
= 0

Collect the first (n - 1) coordinates in a vector defined by

Xi

Xn =

. ®n—1

(8)

(9)

(10)

Assume that o„„(®a) ^ 0 in a set C Consider systems where Xi = Ui,
i e {1,..., n - 1}. Then a control system

Xn U

M O-inj^a)
~ ann(®o) ^ OnnM^

is associated to the first integral (8). Define the vector fields /, gi: M
z € {l,...,n- 1} by

/ =

• 0 • • 1 * • 0

0 0
, 9i = ) •• •} 9n—l —

;

0 0 1

. 91 . . 9n—

(11)

(12)



where 1 is the i'th entry of gi, and with

= TTiT)

A review of definitions for controllability and accessibility is given in Ap
pendix 2. The following lemma contributed by the authors is a generalization
of Proposition 2.2 in Appendix 2 for systems with nonvanishing drift.

Lemma 3.1

Assume that the drift term is bounded, but nonzero by f{x) ^ 0, where
X is an interior point in M, and the vectors (ad f)^(9i)(x), for all i G
{1,..., m}, A; e {0,1,...} together with the vectors [gj, gj]{x), for all pairs
i,j G {1,..., m} span TxM. Then the system (1) still is STLC hrom x if the
controls are su&ciently large, i.e. with controls Aw, and u €U = {\ui\ <
l,i = 1,..., m} for some large scalar A > 0.

Proof:
This is the same as Proposition 2.2 in Appendix 2 but with nonvanishing
drift (/ ^ 0), that is

j m

-^ =/(a;) +Â giix)ui (15)
i=l

Scaling the time with t = Xt gives

da; _ 1
dr A

j 1

=-^fiiB)-^^gi(x)ui (16)
t=i

Increasing the size of the control inputs is seen to be analogous to reducing
the impact of the drift /. From this it can be concluded that if all directions
are spanned by these brackets, then large controls will be able to compen
sate for the bounded drift term, and the system is STLC. The vector fields
to consider with large controls are /, A^,, A(ad f)^(gi), and A^[gt, gj], and it
is seen that the magnitude of all these except / increase with increasing A. •

Proposition 3.1
System (11) is accessible by Definition 2.2 and STLC by DeGnition 2.3 in
Appendix 2 for x € V if the controls are suGSciently large, and either Grom



(13)-(14), ^ ^ 0for some i 6{1,... ,n- 1}, or ^ # 0for apat
i,j e {1,.,., n - 1} for all x eT>.

Proof:
The Lie brackets are given by

• 0 ' 0

...
1

•

5 [fit) fijl —
0

|£i _ |fiL
m dfCj •

(17)

using the fact that the partial of / and Qi (12) with respect to x„ is zero.
If one of these Lie brackets (17) is nonzero, then together with all
i € {1,... ,n - 1}, it spans all and system (1) is accessible by Definition
2.2 in Appendix 2. Lemma 3.1 ensures STLC provided that the controls are
sufficiently large. D

4 Path planning

In this section an algorithm for open-loop path planning is derived for the
class of systems presented in the previous section. The idea is to utilize the
structure and to apply simple bang-bang controls in the planning.

Problem 4.1 (Path Planning Problem)
Given an initial state ®(0) = and a desired final state x*, find trajectories
x(t) 6 M and inputs u(t) 6 If, such that forward integration of

Xn = u

n—l

i=l

over the time interval t € (0,T], gives x(T) = x*.

The final time T may be tee or given. Initial time is set to zero without
loss of generality, since no vector held depends explicitly on time.

Consider piecewise bang-bang control u(t) with unitary bound

ueu ={u€ :Ui e{-l,0,l},i e{l,...,n-l}}

8

(18)

(19)



It is well known that time optimal control laws often are of the type bang-
bang, when the control inputs are bounded and the control system is afline.
The amount of control available is a concern in the planning for this system
due to the drift term. The class of bang-bang controls is often a sufficiently
rich class of controls for analysis of nonlinear systems subject to the following
remark.

Remark 4.1 (Nijmeijer and van der Schaft (1990))
From continuity of solutions it follows that an approximation of a more
genersd control with a piecewise constant control gives a solution that ap
proximates the solution with more general controls. In this sense many prop
erties can be established by only considering the piecewise constant inputs.
And as piecewise constant controls can approximate continuous controls, it
can be stated that bang-bang controls can approximate bounded continuous
controls.

The following theorem by Sussmann (1983) will be helpful in the proof of
convergence of the path planning Algorithm 4.1. The theorem below has
been modified to fit m-input systems from the original version with m = 1.

Theorem 4.1 (Sussmann (1983))
Considera real analytic system (1) with inputs constrained by |ui| < 1. Sup
pose that for all X £ M and for all integers k > 0, there is a neighborhood
M C M ofX, where for all x £ M and for all i £ {^Ij •••)"i}, the term

is a linear combination written fy(gi)(x)
with real analytic coeScients aj and lofc+il < 1- Then the real analytic
system (1) has the property that whenever there exists a trajectory which
connects two arbitrary points x £ M in time T, then there exists a trajec
tory between the two same points in time T, which can be generated by a
bang-bang control with a Snite number ofswitches.

Lemma 4.1

The class of systems (18) considered here meet the sufficient conditions of
Theorem 4.1 if there exist real analytic coefficients ao and ai such that for
all {i,j)

+ (20)
dxiXj dxi

The following remark by Sussmann (1987) is also useful for the verification
of Algorithm 4.1.



Remark 4.2

The STLC property in Proposition 2.2 does not change if the discussion
is restricted to piecewise constant controls, or even to bang-bang controls,
under Assumption 2.1.

Hence it can be concluded that it is possible to steer the state to x with
bang-bang controls if the conditions of Lemma (4.1) are satisfied, since the
system (18) is STLC at x by Proposition 3.1.

Remark 4.3

The more general case where Ui 6 [-Ui,max>«i,maxl for some Wt.max > 0, is
covered by the diffeomorphic input and state transformations

u' = D-^U, x'a = D-^Xa (21)

where D = diag{ui^max, •••,^in-i,max), so that the new inputs u[ € [-1,1].
New scalars to consider are flx|^) = /{Dx^), and

The path planning scheme illustrated below is inspired by the well-known
technique of variable structure control (Utkin, 1977). In such systems the
controller design problem is twofold: the definition of a manifold and the
selection of a switching control. The manifold is designed so that a desired
behaviour of the closed-loop system is achieved when the state is restricted
to move on it. The switching control is designed to steer the initial state to
a point on the manifold and then to maintain the motion on the manifold.

The timefor steering the initialstate x^ to the desired state aj* ispartitioned
into two parts as shown in Figure 1. The control law in the first part will
be termed as reaching control, since here the state is steered fi:om the initial
state to an (n —1) dimensional manifold Sy- The desired behaviour of the
system is to reach the desired state x*. Hence, the manifold is designed
so that X* belongs to it and all the trajectories contained in it converge
to X*. The control of the system on the manifold will be called manifold
control.

10



u(t)

V'
Reaching control Manifold control

I

0--

-1 --
1 !

t, t1 2 3

A, A,

V'
V'

A, A,

rll-l

..._r

t , Tn-l ^

A„.,

Figure 1: Timing diagram of the sequence of control actions: reaching control
for t € and manifold control for t G [ti,T|. The figure shows an
example row of a pair of control matrices {V, V).

4.1 Reaching control

Let the reaching control be defined by a sequence of r > 1 piecewise constant
signals as follows

(22)

for all A; G {1,... ,n - 1}, where G {-1,0,1}, r > 1 is the number of
control switches in the reaching control segment, ti = 0 is the starting time,
?r+i is the time where the reaching control ends and the manifold control
starts. Let

A. = fi+i - i"i > 0, A = [Ai,...,Ar)'

Define the (n —1) x r reaching control matrix V by

vi,i . •.

V =

. "yn-l.l l,r .

(23)

(24)

SO that the control u during the time interval t G [tt,tt+i] is given by the
column oi V.

11



Forward integration ofthe system (18) with initial state x® gives x(ti) =
at time ti = U+i = Ya=i Aj,

= a!?+v4

n = 4 +E r +vz'-^A +vw)dT

+E E r*sA'a +VZ*-'A +v'r)d',
t=l j=l

where Z* is the r x r matrix whose first i columns are the first i columns of

the r xr identity matrix while the others are zero columns.

4.2 Manifold control

Let the manifold controls be given by the (n - 1) piecewise constant signals

^*:(^) ~ ^ ^ [^tj ^1+1)5 (26)

for all A; G {1,... ,n - 1}, where Vk,i G {-1,0,1}, and = T is the time
available. Let

Aj = (i+i - ti > 0, A = [Ai,...,A„_if

Define the (n —1) x (n —1) manifold control matrix V by

vi,i ... vi,„_i

V =

. Vn-1,1 ^n—l,n—1 .

(25)

(27)

(28)

so that the control u during the time interval t G [tt,ti+i] is given by the
column V* of V.

Imposing x(T) = x*, forward integration of the system (18) with intial state
x\ at final time T = ti +13?=/ At, gives

X* = xl+VA

< = T' nxl +Z'-^A+V'r)dr
t=l

+EE r +vv)di
i=i j=i •'0

12

(29)



Note that the component is a vector livingin the cone (Brondsted, 1983)
with vertex a;* and negatively spanned by the columns V* of V,

Define an (n - 1) dimensional manifold Sv by

= {« GM\crv(x) = 0} (30)

where

<rv(®) = ^ f'̂ ' f{Xa +VZ'-'A +VW)dT
t=l

+E E "y-i r
t=l j=l •'0

(31)

Note that av(x) only is defined for those x where all entries A, in

4= V-'(®„*-Xa) (32)

are nonnegative.

V can silways be selected so that Aj > 0 in (32) and det(V) ^ 0. This
is obtained by e.g. V = diag (sgn(a:i - xi),... ,sgn(a:*_i - x„_i)), so that
Aj —\x* - Xi\ > 0 for 2€ {1,... ,n - 1}.

With the definition (30) of Sy, the following is given by design.

Proposition 4.1
Any state x £ Sy can be steered to the desired state x* by a sequence of
switching controls (26), so that x{ti) = x^ £ Sy => x{T) = x*.

Remark 4.4

The motion on Sy can be described as a motion on manifolds ofdecreasing
dimension, where the dimension decreases at each switching time. Even if
this motion is not optimal in general, it is similar to the one found in the
regular synthesis in (Boltyanskii, 1966) for optimal control problems.

13



By inserting (25) into (31) and setting (Tv = 0, the result is

4-4 = j2 r n4+VZ'~^^+y*r)dr

+EE«W r'9A4+VZ*-'A +V*T)dT
i=l j=l •'0

+ V /(®° +VA+ VZ'-^A + VW)dT
i=l

+E EHi r9i(4 +VA+ VZ*-'A +V*T)dT
1=1 j=i

= (33)

where A is given by

A=V-\x:-x°-VA) (34)

The equation (33) can be solved with respect to a with nonnegative
entries for a given pair (a;°,a*) by Newton's method (Luenberger, 1984).
Thereafter, A is found from (34).

Prom this it can be concluded that the control (24) will steer the state x
from the initial a;° to the manifold 5^ if a;* G [xj +
These bounds can be obtained by solving the optimization problems

dimin minimize
^ subject to all Aj >0

(35)

mmax maximize £v,1^(^.4)
I subject to all Aj > 0

Methods for solving (35) can be found in (Luenberger, 1984). Note that the
result of the optimization might be infinite.

The result of this analysis can be summarized as follows:

Proposition 4.2
Any Xn in the interval

2:=[4 +$D>.4 + 4'vtl'l (36)

14



can be reached with the reaching control V (24) and the manifold control
V (28). Farther it can be concluded by Proposition (4.1) that if time is
unconstrained and the system is STLC by DeSnition (2.3) everywhere, then
the union ofX for all pairs (V, V) is the whole M.

4.3 Path planning algorithm

An algorithm is derived from the discussion above which provides solutions
for the path planning problem for the pair of an initial state and a desired
final state x*.

Algorithm 4.1
• Initialization.

Initialize r = 1.

Enumerate all possible nonsingular (n —1) x (n— 1) matrices...
V of type (28) by Vk, l<k<km&x, where the number...
of possibilities is bounded by fcmax < .

In the same way enumerate all possible (n —1) x r matrices...
V of type (24) by Vi, where 1 < 1 < Imax < .

Initialize k = l = 1.

• Step 1.

Dothe min/maz optimization (35) and establish...
the following reachable set with controls given by Vi and Vk
jk,l _ r 0 , 0 , ^max. i

• Step 2.

If Xn € , then...
solve (33) with respect to A with nonnegative entries A,,..
compute A from (34),...
and stop, the algorithm is successful,

else if / <Imaxt then
1 = 1 + 1,
and go to step 1.

else if A; < kmax > then
Z= l, fc = fc + l,
and go to step 1.

else

r = r + 1,

reenumerate all possible (n —1) x r matrices...
V of type (24) by Vi, where 1 < / </max < ,
l = k = l,

and go to step 1.

15



From the discussion above the following can be concluded.

Proposition 4.3
Algorithm 4.1solves Problem 4.1and convergesifthe controls are su&ciently
large, the system is STLC from any x € M by DeGnition 2.3, and satisfies
the condition ofLemma 4.1.

Remark 4.5

A more Bexibleprocedure regarding the order ofinvestigation ofthe different
pairs (Vk, Vi) would improve the effciency of Algorithm 4.1. The next pair
(Vk, Vi) should be selected in view of the results of the algorithm so far.

4.4 Reachability analysis

A slight modification of Algorithm 4.1 allows a computation of a subset of
the reachable set defined by (4). This set is restricted when time T
available is restricted by e.g. some physical constraint.

The boundary of the reachable set are reached by minimum-time
trajectories. This follows from the fact that if a nonminimum-time trajec
tory can reach a point, then there exists another trajectory which can reach
the same point in less time, and hence has time left to reach other states.
For aflfine control systems with bounded inputs, minimum-time trajecto
ries often correspond to bang-bang controls. In the solution of minimum-
time problems, it is well known that infinite switching may appear with
so-called singular trajectories. This problem is avoided by Theorem 4.1,
however. A maximum integer rmax for the length of the sequence of reach
ing control is introduced in order to ensure convergence of the algorithm,
i.e. T G{1,. .. ,Tmax}'

For a given pair of matrices (V, P), the projection of the set of points
reachable from within time T to the (n - 1) dimensional subspace where
Xa lives, is given by the convex polygon

Pr(®'') ={a!i.eR"-'|a!a =x„°+V4+V^} (37)

with Ai > 0, Aj > 0, and S,- + < T. The set Vt(.x°) is a
subset of an (n - 1) dimensional box with side lengths 2T and with center
x°
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The control laws (22) and (26) will in a time interval of length t <T steer
the initial state to a final state x expressed by

Xa € Pr(aJ®), Xn = ^ y yi'^1 Xa) (38)

where ^y^fr is defined as in (33), and A has nonnegative entries Aj,
for i € {1,... ,r}, and

V4)||i + ||4||i<T (39)

where the 1-norm [j • ||i is given by the sum of absolute values of the entries
of the vector.

The reachable set for Xn for a given Xa 6 Vt(x^)i can be obtainedby solving
the following optimization problems:

^^^yT,xa) =
minimize ,fr(A,Xa)
subject to At > 0 for i = 1,..., r

V4)||, + ||4||i<T

maximize ^y y(A,Xa) (40)
subject to Aj > 0 for i = 1,..., r

||r-'(®a-Xa°- V4)||i + ||4||i<r

Remark 4.6

With r = 1 no min/max optimization is necessary in order to Gnd the
reachable set. This follows &om the fact that the boundary of the reachable
set is defined by

II V-»(a!a - x° - K.4)||i + ||4||, = T (41)

This equality condition reduces the number of free variables by one, and for
r = 1 this means that there are no free variables for optimization.

The following algorithm returns a subset 72.^(®°) ofthereachable set7Zt(x^).
The projection V^(x^) of 7Z^(x^) into the (n - 1) dimensional subspace
where Xa lives, is computed.
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Algorithm 4.2
• Initialization.

Initialize r = 1.

Enumerate all possible nonsingular (n —1) x (n —1) ...
matrices V of type (28) by V*, 1 < A: < kta&x = .

In the same vay enumerate all possible (n —1) x r ...
matrices V of type (24) by Vt, where 1 < I < Imax — .

InitieLLize k = l = l and = {®°}. "PfC®") —{®o}*

• Step 1.

Compute V '̂̂ xo) with Vk,Vi as in (37).
pf(a:0) = pf(a;0)upj''(x°).
Discretize 'P '̂'(x°) as a grid with...

space 6 > 0 between each point.
Enumerate all points C , i 6 {1,..., (2r/6 + ...

extracted from the grid.
For all Ci

Solve the min/maz optimization (40) with (Vfc, Vf).
= {X = : 1° + <^n<x°+

end

n^{x°) = TVr{x°) U7^5.•'(x®)

• Step 2.

If / ^ ^maxt then
Z = l + 1

and go to step 1.
else if A: < Armax > then

1 = 1, k = k + 1

and go to step 1.
else if r < Tmax f then

I = k ^=1, r = r + l,
reenumerate all possible (n —1) x r matrices
V of type (24) by Vi, where 1 < / < /max i
and go to step 1.

else stop.

Remark 4.7

The approximation of the reachable set will get better and better with an
improved density of the grid (smaller 6), and it will converge towards the
theoretical reachable set as 6 ^ 0 and rmax oo.
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5 Path planning examples

5.1 Hopping robot in flight with drift

A hopping robot (Murray et a/., 1994) consists of a body with an actuated
leg that can rotate and extend. The configuration q = [V*, ^ 0]^ consists of
the leg angle -0, the leg extension I G [OjZmax]) and the body angle 6. The
nonholonomic constraint is given by

Id + m(l + d)^{6 + ^) = /X (42)

where the constants represent the following: I is the robots moment of
inertia, m is the mass of the robot, d is the length of the leg, and is
the constant angular momentum, which here will be assumed positive. If
fjL = 0, then the system is drift free, and can be converted into chained form
(Murray and Sastry, 1993). The associated control system has two inputs
and three states. Let ip = vi and I = V2, so that

tp =vi

i =V2
7n(l + dy

0 =
I + m(l + dy J + m(/ + d)2

VI

State and input transformations

The following diffeomorphic coordinate transformation is applied:

X = #(g) =
lip

J _ 1

10

and the nonsingular input transformation gives

u =B{q)v

I 0
n -2ml(l+d)
0 (i+rn(l+dW J

and

Xi = Ui

±2 = U2

X3 = fL(x2 + 1) + X2U1

19
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which has x = [0, —1,0] as the only equilibrium point, whenever ^ 0,
which is the physically unreachable state q = [0,oo,0)^. This means that
the hopping robot with drift cannot be stabilized to a point, which was to
be expected.

Path planning for hopping robot

The conditions (4.1) for bang-bang with bounds on the number of switchings
q2 f

property, holds for the hopping robot, since = 0.

The approach here is to find the length of three time intervals so that the
desired state x* is reached firom the initial state a:°. Let /i = 1 for simplicity.

A suitable selection of V for motion on a manifold Sy is:

V =
sgn(xj-a;i) 0

0 sgn(rc5 - 2:2)
(47)

with the nice property V~^ = V. This V gives the following A obtained
from (32)

A =
Ire} - a:i|

^2 - ^2\
(48)

Integration of (46) as in (31) defines a manifold Sy (30) with

cry(x) =xz - X3 + |a:; - a;il + la:^ -X2\ + (sgn(a:J - rci) l)a:2|a;I - xi\

-\-x2\xl - X2\ + - a^2)(a;2 " ^2)^ (49)

Motion from the initial state towards Sy can be obtained with the following
reaching control

With this control the result is

V =
-1

1

Xi =Xi - A

2^2 ^

Xg =2:3 + A
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Let X = from (51) in (49), and let ay vary with the scalar nonnegative
parameter A. The mapping av : K can then be seen as a scalar
mapping ay : R

(tv(A) =0:3 + A —X3 + (1 +12 "h ^)(l^l — + A| + \x2 —X2 —A|)

+(x° +A)(|x; - x? +A| +llxj - - A|) (52)

Each A > 0 defines a manifold Sy with <7y = 0. Some of these are shown
in Figure 2.

The equation ay = 0 is solved numerically with respect to A with nonnega
tive entries. Thereafter Xi is found from (51), and A and V are computed
by inserting x = x^ into (48) and (47).

A plot of the state x is shown in Figure 3.

02 [rad] di [rad]

Figure 2: The manifold Sy for the hopping robot example with A €
{0,0.1,0.2,0.3}, where the top manifold corresponds to A —0. Any state
between these surfaces can be steered to another state on or between these
surfaces.

5.2 The planar diver

A planar diver (Crawford and Sastry, 1995) has the structure of a three
dimensional Lagrangian system with a cyclic coordinate (11), where the



Figure 3: The path from initial state = [0, —5,—5]^ to desired state
X* = [0,-5, Time T was computed to be T = 3A = 0.717.

functions afs, i = 1,2,3, are highly nonlinear (trigonometric). The drift
is caused by the constant angular momentum fi ^ 0. A typical dive is a
1^ somersault pike. The steering problem is to lead the diver through the
somersaults driven by the actuating arms and legs, and to enter the water
in a fully extended vertical configuration. The time T available to complete
the dive is predetermined by gravity y, the initial vertical velocity vq, and
the distance h the diver's center of mass must fall to reach the water:

vq +

9
T = (53)

The configuration of the planar diver can be described by means oi 9 =
[01,02»03)^5 where 0i is the angle between the legs and the trunk ofthe diver,
$2 is the angle between the arms and the trunk, and 03 is the orientation
of the trunk with respect to the vertical axis. Details can be found in
(Crawford and Sastry, 1995). The motion planning problem for a dive is
then to find a trajectory from a given initial state 9^ to the desired final
state 9* = [0, tt, (2A; + l)7r)^, where k S Z defines the number ofsomersaults
in the dive.

In this system the drift term /z > 0 is good if the diver makes forward
somersaults (A: > 0). If however the diver with the same initial spin p > 0
would want to make backward somersaults {k < 0), then the drift must
be counteracted for using heavy backward arm rotations in the opposite
direction. In a real dive this is not possible due to physical constraints on
the inputs. This is a good example of how the STLC property for driftless
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systems holds also with drift when the controls are sufficiently large by
Lemma 3.1. However, if the constrained inputs are not sufficiently large for
the diver, the system is not STLC at a®. Backward dives characterized by
those X* where < ^3, cannot be carried out. This means that the initial
point is not an interior point of the reachable set. The scheme discussed
in this report will work, however, since only forward dives are considered
below. Time available is of course a concern that must be considered.

A symmetric diver is considered in order to simplify the presentation. In
the general case the same procedure can be carried out with a little more
tedious computation. More advanced dives can be approached in a similar
manner.

The dynamic equations for a symmetric diver modified from (Crawford and
Sastry, 1995) are

where

ei

02

Oz

<113(^15^2)
^23(^1,^2)
0-zz{0ud2)

Vl

V2

— ^ »^2) _ 023(^1 ^2)
033(^1 fil) 033(^1,02) ^ 033(^1,62) ^

(54)

[a + p cos(0i) + Ccos(02 - ^1)]
[a + /? cos(02) + Ccos(02 —^1)]
otz + 2P[cos(6i) + cos(02)l + 2C cos(^2 - ^1) (55)

Let JD be a scaling matrix given by

D =
^l,max

0

0

^2,max
(56)

where vi,max > 0 is the maximum angular velocity of the legs, and V2,max > 0
is the maximum angular velocity of the arms. For simplicity let vi^max =
^2,max —A.

The state and input transformations

give

XI

X2

xz

-1Xa = D

Ui

U2

Oi
62

xz = Oz, u = D

(i Qi3(>lli,i4l2) A^. a23(Axi,Ax2) A
a33(Axi,i4x2) 033(j4xi ,i4X2) ^ a33(i4xi,i4X2) ^

23

(57)

(58)



and the system is of the form (18), with scalars

/=
azz{Axi^Ax2)

a\z(AxiyAx2)
9i=-A

92 = -A

azz(AxuAx2)
a2z{Axi^Ax2)
azz(Axi,Ax2)

Using algorithm 4.1, a V can be found in the same way as for the hopping
robot in (47), which gives the expression (48) for A. With this V, di is
controlled first, and 62 second. Integration of (54) as in (31) gives

av{x) = a(xz-x'^- \(x\ - xi) - i(xj - X2))

+{a{Ax2) +
•{fc{Ax2) - <^(^®2)) - fciAx2)

+ +ASP&)
•{fc{Axl) (Ax*2 - 0(i4xJ)) - fc(^Axl) (Ax2 " (^(AxJ)))

where

fc{x) =arctan ^ctan(^)^ +Trk{x) with c€M (59)
and k Z is a piecewiseconstant mapping, such that /c(*) is continuous
over Mand /c(0) = 0. The functions a(s),6(s),c(s),<^(s) are given by

<f){s) = arctan 2(C sin(s), /3 + Ccos(s))

ip(s) = \/C^ + /?2 + 2Ci0cos(s)

als) = 03+2)9 cos(5)-2q^a3+2jcos(^^^^(^

h(s) = 2/z
y/(Q3 +2/3 COS(s))2-4lp{s)^

/ \ _ -y/(03+2)9 C0S(3))=' -4ip{s)^
~ Q3+2)9cos(s)+2V(s)
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with parameters ^ = 10,/z = 70,0:3 = 11.234,/? —2.299, a = 3.732, and
C = -0.207.

A plot of the manifold Sv is shown in Figure 4.

$2 [rad] 6i [rad]

Figure 4: The manifold Sy for the diver example.

The effect of different reaching controls will now be studied with r = 1.

First the effect of the drift on the system can be seen by letting V be given

From (54) and with zero controls it is obtained

xj = Xi
xl = xl (61)

With this initial zero control interval, all initial states in a set Qj C
given by

Q!j = {X e M\(Tv{xi,X2,X3 +
Aa33{Axi, Ax2)

A) = 0,0< A< Amax}

for some given Amaxi can be steered so that x{T) = x*.



The set Qj with 0 < A < 1 is shown in Figure 5. All states between the
top surface <Sv and the bottom surface (A = 1) can reach the desired state
with the control matrices (47) and (60).

02 [rad] 01 [rad]

Figure 5: The set for the diver example with 0 < A < 1. The top surface
is the original manifold Sy, which corresponds <o A = 0.

The effect of applying another reaching control can be seen by selecting the
following V

which results in

Xi — 2^1

X2 = X2 —A

= A+^+ - b{Ax°i)

•(/c(/lx;) {-^^2 - AA - (Ax§ - <6(AxJ)))
With this initial reaching control applied in a time interval [0, A], all initial
states in a set Q] C given by

Q} = {x6M|ffv.(x') = 0,0<A<Amax} (65)



with = [xi,xl,xl]'^ as in (64), and for some Amax> canbe steered so that
x{T) = x\

The set Q] with 0 < A < 1 is shown in Figure 6. All states between the
top surface Sy and the bottom surface (A = 1) can reach the desired state
with the control given above.

$2 [rad] di [rad]

Figure 6: The set Q] for the diver example with 0 < A < 1. The top surface
is the original manifold Sy, which corresponds to A = 0.

A realistic initial condition to use for the diver model for a somersault

dive is ^ = [0,7r,0]^ and a desired final state B* = [0,7r, In order to
generate a motion similar to the one of a real diver, this control sequence is
applied:

0 1 0

-10 0

-1 0

0 1

The predetermined time T available to complete the dive puts an additional
constraint on the choice of control intervals:

X;Ai +^Ai =T

This time constraint defines a subset of the manifold Sy. The number of free

variables decreases by one due to this constraint, and hence it is necessary
to have r > 2. Free variables are Ai > 0 with f € {1,..., r}.



2 0-5 •

O^s-

Figure 7: Controls which steer the diver from the initial to the desired con
figuration. Ui is shown with a solid line and U2 with a dash dotted line.

Using the equations presented above, an appropriate choice of control inter
vals was found to steer the diver from the initial to the final configuration
in 1.7 seconds. The controls and the corresponding trajectories are shown
in Figures 7, 8, 9, and 10.

28



Figure 8: Corresponding trajectories for 6i (starts and ends at zero), $2
(starts and ends at tt), and 63 (increases monotonously from 0 to Zn).

02 [rad] 9\ [rad]

Figure 9: Evolution of the diver state. Initially the state follows the line
shown with reaching control until it hits the manifold Sv- After that the
trajectory stays on Sv until the desired state is reached.



/
r 4 >

Figure 10: Frames from an animation of the simulation results with a sym
metric model of a planar diver and bang-bang controls.
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6 Tracking for a class of nonholonomic systems

The control problem for the class of systems (18) is divided into parts. The
first and perhaps most difficult part has been solved above with the path
planning algorithm 4.1. This algorithm provides nominal trajectories and
inputs. The second part is a feedback tracking control law, which closes
the loop and forces the actual state to follow the nominal trajectory under
the influence of small disturbances. It is well-known that open-loop planners
sometimes are very sensitive to initial errors (Murray and Sastry, 1993), and
this motivates the design of feedback control laws.

In this section a new control law for stabilization of a class of nonholonomic

systems to trajectories is derived. Nonholonomic systems in general cannot
be stabilized to a point using static state feedback, since they violate Brock-
ett's necessary condition for stabilizability (Brockett, 1983). The control
law presented here stabilizes systems (18) to a set of time-varying trajecto
ries. It is assumed that a motion planner has generated a nominal trajectory
which satisfies the nonholonomic constraints. A feedback control law is de

rived for tracking of this trajectory. A previous solution to this problem was
given in (Walsh et al, 1994). That solution was based on a linearization
of the system around a nominal trajectory, and hence gave local results. It
provided exponential convergence whenever a time varying matrix was pos
itive and bounded. The area of attraction for the resulting controller was
not discussed. In the present section nonlinear techniques are applied, and
exponential stability is achieved under two assumptions.

6.1 Modeling

Consider nonholonomic systems of the form (18). Assume that the path
planning algorithm 4.1 supplied a time varying nominal trajectory y(t) and
a nominal input i;(t), which satisfy

Va = V (68)
n—1

2/n = f(ya) + Yl9i{ya)Vi (69)
t=l

The state deviation vector e and the feedback control r are defined by

e = X —y (70)

u = T + v (71)

31



The control u hence consists of a nominal part v{t) and a feedback part
T{e,t) which will be derived below. Time differentiation of e gives

Ca = r

n—1 n—1

en = f(Xa) + ^ 9i(Xa)ui - /(Va) - ^ 9i(ya)Vi (72)
i=l t=l

Assume that the vector fields /, 6/51,..., bfgn-i are C^. The mean value
theorem for multivariable scalar functions (Kreyszig, 1988) gives

fM-fiVa) = Va/(so)ea
5t(®a) 5t(yo) ~ VaPt(^i)Ca

for alH G{1,..., n - 1}, where

Va =
dxT

(73)

(74)

(75)

and ®ij ••• j ®n-i are vectors from the origin to some points on the line
between Xa and ya- Then (72) can be written

where

Ba = r

en = P^ea + g'̂ T

n—1

P =Va/(»o) + 52 ^a9iMvi
i=l

9 —[5l» ••*j5n-l]

(76)

(77)

(78)

Proposition 6.1
The system obtained by linearization of (76) is controllable whenever p ^ 0.
A necessary condition for smooth stabilizability ofsystem (76) is that p ^ 0.

Proof:
The controllability matrix (Kailath, 1980) for system (76) is given by

Qc =
I 0

9^
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If p = Oj then the vector field on the right side of (76) is not onto any open
neighborhoods around the origin, since points of the type (0,..., 0,1) (any
small /) axe not in any neighborhoods aroundthe origin (Brockett, 1983). •

Assumption 6.1
It is assumed that p is bounded by 0 < Mi < ||p|| < M2 < 00.

Assumption 6.2
It is assumed that the time derivative of the vector p is upper bounded by
Hp II < L for some L> Q. For bang-bang controls, this might be a problem,
but the problem is solved by making smooth approximations of the derived
trajectories by splines (Bartels et al., 1987).

A way to compute an alternative p for control design is given in Appendix
A.

6.2 Feedback control law

Theorem 6.1

Exponential tracking around the nonholonomic trajectory y is achieved un
der Assumptions 6.1 and 6.2 by the control law

r =- (/+app^) (̂a (ca -f ape„) +app^ea) (80)
where X> 0 is sufSciently large and 0 < a < 1/ maxt>o(||p|| • HplD-

Proo/.-
The state transformation (ea,en) 1-^ (z,en), where

z = ea + apcn (81)

and the control law (80) gives

z = —Xz + apcn (82)

. _ -a||pfen + (p-
— 1 I T1 + Orp-' 9

Consider the Lyapunov function candidate

V{e,p) = + (84)
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where > 0. V" is decrescent when ||p|| is upper bounded, and radially
unbounded when ||p|| is lower bounded.

Time differentiation along the system trajectories gives

ncp) = + /5e„

< 0, ^ 0

since A > 0, and the determinant

AXoL^Wpf
1 + otp^g

ap + /?

2A

\-\rap^g

P-^9
1 + ap^g

\^l + ap'̂ 9 " (\ + apTgf)

2Aa/?

1 + OLp'̂ g

2XaP /||p||2_gllAP-gin
1 + ap'^g a 1 + ap'^g

z

Cn

(85)

>0

for small /3 > 0 and large A> 0, since ||p|| is assumed to have a lower bound.
And since V > 0 and V < 0, it follows by Lyapunov argmnents that both
V —^ 0 and e -* 0 exponentially. Note that (5 is not a design parameter,
but only a parameter used in the proof. •
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6.3 Tracking of a surface vessel with kinematic model and
sea current disturbance

Consider the kinematic model of a surface vessel under the influence of a
sea current disturbance with constant velocity.

X = vi cos 6

y = -ui sin 0 + d

6 = V2

(86)

The state vector is g = [x,y,0]'̂ e M = SB(2) = x 50(2), where (x,y)
is the position of the surface vessel in an inertial coordinate system. This
inertial system is chosen so that the constant current with known velocity d
goes alongthe y-axis. The rotation of the body of the surface vessel relative
to the inertial system is given by 6. The forward velocity (surge) vi of
the surface vessel is considered as an input (speed controlled by the main
propeller), and the angular velocity V2 of the surface vessel is considered as
a second input (controlled by the rudder). The drift of this system is not
caused by a first integral as discussed earlier in this report. The drift here
is caused by an environmental disturbance. The structure is the same as
for the Lagrangian systems discussed. The example of a kinematic surface
vessel influenced by sea current was selected because of its simple structure.
The simplicityof the the structure makes it simple to find smooth nominal
trajectories which satisfy the nonholonomic constraint. This model is a
simplification where sway velocity and dynamics are ignored.

The state transformation x = ^(g) given by

Xi
X

d

X = X2 = ^(g) = taxiB
K

. d .

along with the input transformation u = B(q)v given by

u = B{q)v =

give

cosg
d

0

0
1

C0s2 9

XI Ui

X = ±2 = U2

1 + X2U1
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which is called the chained form with unitary drift, with f = 1, gi = X2, and

92 = 0.

The followingnominal path represented by (y, v) satisfies the nonholonomic
contraints (89):

y =

V =

2asin(4)
-bcosi-^)
-fsin(i) J
fcos(4)

SO that yi = vi,y2 = V2, jf3 = 1 + 2/2^1 as desired.

(90)

(91)

Remark 6.1

The nominal trajectory (90) and the correspondingnominalinput (91) define
a time-periodic figure eight motion. The only equlibrium for this system is
when the surface vessel is heading into the current, but the desired conGgura-
tion is the one where the current is coming from the side. Point stabilization
to this conGguration is not possible. Stabilization around a periodic small
amplitude trajectory around the origin is a solution which approximates
point stabilization, and may be a good solution when the control objective
is to make the surface vessel stay as close to the origin as possible with sea
current acting in the y-direction. The amplitude of the nominal trajectory
is limited by the achievable control inputs. This can be seen by letting the
parameters a and b be small in (90). The result will be large inputs (91).

The deviation vector e (70) and the stabilizing control r (71) are defined
by

e =

ii -2osin(4)
a;2 + i>cos(i)
13 +f sin(|i)

-|cos(4)
«2-Hsin(^)T =

The vector p used in the control law is given by

P =
" 0 " 0

Vi . hos(±)
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with norm ||p|| =|fcos(^)|, which equals |j| >0in average. This pdoes
not satisfy the lower bound Assumption 6.1. However, a p which has a
lower bounded average, has shown to be sufficient for stabilization in the
simulations run.

0.S

O)

c3

CO

e 10 12
Time Is]

20

Figiure 11: The control deviation e for a simulation of tracking for the
chained form with drift with nominal trajectory (90) with parameters a =
6= 1 after an initial error e(0) = [—1, —1/\/3,1]^. The control parameters
were A = 2 and a = 0.2.

Remark 6.2

Trajectories such as p = [0,0, t]^ with nominal input v = [0,0]^ cannot be
tracked with the algorithm above, since then p = 0 and Assumption 6.1
does not hold. The result is r = —Xsa, Oa 0 exponentially, but Cn is not
accounted for.

A How to compute p

In some cases it is difficult to find the correct p. Each Sj in (73)-(74) can be
found by searching along a line Sf(t) = Pa + 7x^0 in the equations (73)-(74),
where 7i G [0,1]. This is however a cumbersome method and not necessary.
Only the projection of p onto Sa is interesting, and this can be computed
from the known quantities /(®o),/(Pa)>p(®a)5p(Pa), and Cq.
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x-pos {mj

Figure 12: The trajectories in the xi-x^ plane for the planned (y=thick line)
and the real (x=thin line) trajectories. This figure eight motion corresponds
to the X —y position of a nonholonomic surface vessel with a simplified
kinematic model under the influence of a constant sea current (d = l) in the
y-direction.

A p that can be used in the control design, is given by

where Cg be a scalar given by

. _ /(ajg) - /(gg) + {9^{Xa) - fl^(ga))l'
Ikall

and k = [ci,C2,0,...,0]^. The scalar Cg is bounded above by

Ic I= l/(^o) ~fivo-) + ^ Ip^cqI < IIpII

(95)

(96)

(97)

so that which is well defined for all eg ^ 0, is the projection of p
onto Cq.

If the first two elements of Cg are zeros, i.e. ei = 62 = 0, then ci and C2 in
k are selected to be

V2
Ci = C2 = (98)
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and otherwise

Mie2 ^ -Mid /nnN
Ci — . , C2 —

\/ei +el V^i+5
The vector fc is perpendicular to Cq by

fe^eo = CiCi + 0262 = 0 (100)

and the norm of p is lower bounded by

\\pf =Ce +cj +4+2Ce (ci
=4 + 4 + 4
=4 + m}
>Ml

It can hence be concluded that p satisfies Assumption 6.1

>M? (101)
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