Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BINARY DECISION DIAGRAMS ON NETWORK
OF WORKSTATIONS

by

Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/9
6 February 1996

BINARY DECISION DIAGRAMS ON NETWORK
OF WORKSTATIONS

by

Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/9
6 February 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Binary Decision Diagrams on Network of Workstations

Jagesh V. Sanghavi* Rajeev K. Ranjan' Robert K. Brayton Alberto Sangiovanni-Vincentelli
Department of Electrical Engg. and Computer Science
University of California at Berkeley
Berkeley, CA 94720

Abstract

The success of all binary decision diagram (BDD) based synthesis and verification algorithms depend on the
ability to efficiently manipulate very large BDDs. We present algorithms for manipulation of very large Binary
Decision Diagrams (BDDs) on a network of workstations (NOw). A Now provides a collection of main memories
and disks which can be used effectively to create and manipulate very large BDDs. To make efficient use of
memory resources of a NOw, while completing execution in a reasonable amount of wall clock time, extension of
breadth-first technique is used to manipulate BDDs. BDDs are partitioned such that nodes for a set of consecutive
variables are assigned to the same workstation. We present cxperimental results to demonstrate the capability of
such an approach and point towards the potential impact for manipulating very large BDDs.

*Supported by Micro Grant
tSupported by Motorola and SRC Grants

1 Introduction

The manipulation of boolean functions is one of the most important operations in several areas of computer-aided
design such as logic synthesis, testing, checking sequential equivalence, design verification, etc. The efficiency of
the logic function manipulations depends on the data structure used for representing boolean functions. The reduced
ordered binary decision diagram (ROBDD) (1, 5] is a canonical, directed acyclic graph representation of boolean
functions. ROBDD (henceforth referred to as BDD) representation is compact for many functions encountered in
practice. The canonicity and compactness properties of the BDD led to its widespread usage in the area of logic
synthesis and testing. The application of BDD is further extended with its use in symbolic computation, which
include symbolic simulation [6], reachability analysis [8, 15], and BDD based formal design verification [4, 7, 11].

However the BDD representation suffers from the drawback that the size of a BDD required to represent a
complex logic circuit is very large. This results in large computation and memory requirements. These problems
have been tackled on both the fronts.

Reducing the computation time: Kimura et al. [10] have presented a parallel algorithm to construct BDDs that
uses a shared memory multiprocessor to divide the tasks that can be performed in parallel on several processors.
Shared memory machine allows the use of a single global hash table to maintain canonicity. Ochi et al. [12] have
proposed a breadth-first manipulation approach that uses a vector processor to exploit the high vectorization ratio
and long vector lengths by performing a BDD operation on a level-by-level basis.

Increasing the available memory: When the size of a BDD exceeds the main memory, BDD nodes are swapped
to the hard disk. The conventional depth-first BDD manipulation algorithm results in random accesses to the memory
leading to a large number of page faults. Since a page access time is of the order of tens of milliseconds, a large
number of page faults lead to impractical amount of wall clock time, even though the time spent by processor doing
useful work is quite small. Ochi et al. [13] have proposed the breadth-first implementation approach to regularize
the memory accesses, which leads to fewer page faults. As a result, BDDs of very large size (up to 12 million nodes)
can be handled. Ashar et al. [3] have presented an improved breadth-first algorithm, which enables manipulation of
BDDs with up to 100 million nodes.

In this work, we propose a technique to manipulate BDDs on a network of workstations (NOW). A Now provides
a large amount of collective memory resources, both main memories and disks. The collective memory resources
of Now provide a potential to manipulate very large BDDs.

The advantage of our approach as compared to existing ones is two fold. Unlike the approaches in [10, 12],
which require special computing hardware (shared multiprocessor or vector processor), a NOW is a part of the
existing infrastructure. Secondly, the approaches in [3, 13] are limited by the memory available on a particular
machine. When using a network of workstations, the available memory increases significantly.

The rest of the paper is organized as follows. We explain the relevant attributes of the network of workstations in
Section 2 and that of the BDD algorithm in Section 3. After explaining the characteristics of the available resources
and the algorithmic requirements, we propose a new BDD algorithm on a network of workstations in Section 4. We
present the implementation details in Section 5. We present experimental results in Section 6. Finally, we draw
some conclusions and outline the direction of the future work in Section 7.

2 Network of Workstations

A network of workstations is a computing resource that uses as its building block, an entire workstation. These
building blocks are interconnected by a local area network such as ethernet, FDDI, switched ethernet, or ATM.
Using a network of workstations as a large computer system to solve large scale problems is attractive, since it
uses the existing infrastructure as opposed to buying a dedicated scalable parallel computer, a server, or a shared
memory multiprocessor machine. Further, when the system is upgraded to use faster processors, faster network,

larger capacity DRAMs, or larger capacity disks, a network of workstations leverage each of the enhancements.

Let us first understand the nature of NOW computing resource to exploit it fully to match the requirements of
BDD algorithms. An existing computing infrastructure with two year old technology may consist of a network of
workstations, each with S0 MHz processor, 64KB cache, 64MB main memory, and 200MB of disk space. It takes
about 0.1-0.6 microseconds to access data from the main memory and about 6 milliseconds to move a page of
memory from the disk to the main memory. The software overhead and latency for a local area network is of the
order of about 10 milliseconds and bandwidths are 10 Mbits per second for ethernet and 100 Mbits per second for
FDDI network.

It is clear from the above discussion that the time taken to access the data from the disk or from across the
network is about 10000-50000 times more than the time to access the data from the main memory. Over the next
few years, the networks are expected to become faster [2] in terms of the latency, the software overhead, and the

- bandwidth. However, the ratio of time to access the remote memory which involves a network transaction vs. the
time to access the main memory is still expected to be the order of 1000. This qualitative analysis has important
implication when distributing the BDD nodes across the several workstation memories.

For developing distributed BDD algorithms on Now, the message passing model of computation is assumed for
the following reasons: 1) it closely resembles the underlying Now architecture and 2) easy availability of robust
message passing software in the public domain. The message passing programming model makes the cost of
communication explicit, however, the programmer has to worry about resource management, sending and receiving
messages, and overall orchestration of the collection of processes spread across several workstations.

3 BDD Algorithms

To implement BDD algorithms using thc message passing modcl over a Now, we nced to design distributcd BDD
data structures. However, it is important to understand the requirements of BDD algorithms on a uniprocessor to
help guide our design decision about distributing the data and scheduling the interprocessor communication.

The conventional depth-first recursive BDD manipulation algorithm performs a boolcan operation by traversing
the opcrand BDDs on a path-by-path basis (sce Figure 1), which results in extremely disorderly memory access
pattern. The random memory access pattern with no spatial locality of rcference translates into severe page faulting
behavior when the BDD does not fit the available main memory.

df_op(op, F,G)
if (terminal case(op, F, G)) return result;
else if (computed table has entry(op, F, G)) return result;
else
let z be the top variable of F, G; .
T =df_op (op, Fz, G:);
E =dfop (op, Fz1, Go1);
if (T equals E) return T,
result = find or add in the unique table (z, T, E);
insert in the computed table ((op, F, G), result);
endif
return result;

Figure 1: Depth-First BDD Manipulation Algorithm

Since the access to the main memory of an another workstation involves a network transaction, the aforemen-
tioned disk access behavior of the depth-first algorithm translates to a large number of network transactions for any
distribution of the BDD nodes among main memories of a NOW. Since it is very expensive to access the data across
the network compared to the workstation main memory, any attempt to use depth-first manipulation algorithm on a
Now will meet limited success.

The breadth-first iterative algorithm [3, 13) (see Figures 2, 3, and 4) attempts to regularize the memory access
pattern by traversing the operand BDDs on a level-by-level basis and by using a customized memory allocator that
allocates the BDD nodes for a specific variable id from the same page. However, since the result BDD is constructed
level-by-level, it is not possible to perform certain isomorphism checks while constructing the BDD. The redundant
nodes created during the APPLY phase (see figure 3) in the result BDD have to be eliminated by a bottom-up REDUCE
phase (see figure 4). In 3], Ashar et al. obviate the need to access the BDD node to determine its variable id
by using a lookup table that retuns the variable id from the BDD node pointer. The memory access pattern for
servicing the REQUEST in APPLY and REDUCE phases is also regularized by processing them in a sorted order.

bf_op(op, F, G)
if terminal case (op, F', G) return result;
min.id = minimum variable id of (F, G)
max_id = number of variables
create a REQUEST (F, G) and insert in REQUEST QUEUE[min_id];
/* Top down APPLY phasc */
bf_apply(op, min_id, max_id);
/* Bottom up REDUCE phase */
bf_reduce(max_id, min.id);
retumn REQUEST or the node to which it is forwarded;

Figure 2: Breadth-First BDD manipulation algorithm
We make the following observations to guide the implementation of breadth-first search algorithm for a Now.

1. 'We need a mechanism to determine the variable id from the BDD node pointer without accessing the BDD
node.

2. While processing the REQUEST for a specific variable id during the APPLY phase, we need to access only those
BDD nodes that have the same variable id.

3. The forwarding mechanism, which allows temporary creation of redundant nodes can facilitate the creation
of a REQUEST on one workstation and servicing of that REQUEST on an another workstation.

4 Binary Decision Diagrams on Network of Workstations

4.1 Issues:

The following issues need to be resoved before we can implement the breadth-first BDD manipulation algorithm on
aNOw,

Node Distribution How to distribute the BDD nodes among the workstations on a network? The number of nodes
assigned per workstation should be proportional to the memory resources available on the workstation. The high

bf_apply(op, min_id, max_id)
for (id = min_id; id < max_id; id++)
/* process each request queue */
z is variable with id “id";
while (REQUEST QUEUE[id] not empty)
REQUEST (F, G) = unprocessed request from REQUEST QUEUE[id];
[* process REQUEST by determining its THEN and ELSE */
if (NOT terminal case ((op, Fr, G), result))
next_id = minimum variable id of (Fz, G:)
result = find or add (Fz, G;) in REQUEST QUEUE[next.id]
REQUEST — THEN = result;
if(NOT terminal case ((op, F;/, G./), result))
next_id = minimum variable id of (F,/, G/)
result = find or add (F3+, G;) in REQUEST QUEUE[next.id]
REQUEST — ELSE = result;

Figure 3: Breadth-First BDD manipulation algorithm - APPLY

overhead and latency of accessing a remote memory by performing network transaction implies that performing
a large number of communications which involve small messages would result in unacceptably high performance
penalty. Therefore, a distribution that results in exchanging information at the level of a BDD node would not be
satisfactory.
Naming BDD Nodes How to uniquely identify each BDD node regardless of where it resides on the network, i.e.,
regardless of workstation address space it belongs to? For a single address space, each BDD node is uniquely
identificd by its pointer; we need to extend the pointer mechanism to have a generalized address for a BDD node.
Variable Id Determination How to determine the variable id of a BDD node given its generalized address? In the
breadth-first algorithm, we need to determine the variable id from the BDD "pointer” to avoid random access to the
BDD node. However, the BDD node to index lookup table solution proposed by Ashar et al., is unattractive for Now
case for three reasons: 1) each workstation will need to maintain a private copy of the lookup table to determine
the variable id from a generalized address for all the nodes in the BDD, 2) this private copy will have to be updated
every time any workstation allocates a page of memory, and 3) since generalized address would augment 32-bit
address space, it may be necessary to implement the node to index lookup table as hash table instead of an array.
We have designed a generalized addressing scheme that works in conjunction with a partitioning scheme to
solve the aforementioned problems, while resulting in a very compact representation for the BDD nodes.

4.2 Solutions:

Node Distribution The breadth-first algorithm constructs the result BDD one level at a time by accessing the
operand BDD nodes on a level-by-level basis, the natural choice for the decomposition of the BDD is to partition it
by levels. To make number of nodes in a partition (BDD section) proportional to the amount of memory resources
per workstation, we can use the flexibility of determining the location of and the number of levels in the partition.
For example, a BDD section closer to the root nodes can have more levels than a BDD section at the halfway
between root and leaf nodes.

Naming BDD Nodes By assigning nodes for a set of consecutive variables to the same workstation, it is possible to
determine the workstation on which a BDD node resides by knowing its variable id. Hence a (variable id, memory

bf_reduce(max.id, min.id)
for (id = max.id; id > min.id; id- -)
z is variable with id “id";
/* process each request queue */
while (REQUEST QUEUE[id] not empty)
/* process each request */
REQUEST (F, G) = unprocessed REQUEST from REQUEST QUEUE[id];
if (REQUEST—THEN is forwarded to T) REQUEST— THEN = T,
if (REQUEST—ELSE is forwarded to E) REQUEST— ELSE= E;
if (REQUEST—THEN equals REQUEST—ELSE) forward REQUEST to REQUEST — THEN ;
else if (BDD node with (REQUEST— THEN , REQUEST — ELSE) found in UNIQUE TABLE[id])
forward REQUEST to that BDD node;
else
insert REQUEST to the UNIQUE TABLE[id] with key (REQUEST THEN , REQUEST ELSE)

Figure 4: Breadth-First BDD manipulation algorithm - REDUCE

address) tuple can serve as a generalized address that uniquely identifies each node in the BDD.

Variable Id Determination We could have used the pair (workstation number, memory address) to represent a
generalized address that uniquely identifies each node in the BDD. However, the reason for choosing (variable id,
memory address) tuple to represent the generalized address under the constraint of specific levelized partitioning
scheme is to solve the variable id determination problem for free. Further, this choice of generalized address results
in very compact representation for a BDD node.

Given the partitioning scheme and the mechanism to determine the variable id, we nced to address one more issue
before we can perform computations related to the BDD sections assigned to a workstation. Servicing a REQUEST
in the APPLY phase may result in creation of an another REQUEST , top variable id for which belongs to another
workstation. The newly created REQUEST with a specific top variable id should now be serviced on the workstation
that owns the BDD section containing that variable id. REQUEST can be generated on a source workstation and
processed on a destination workstation, as long as the source workstation receives a correct generalized address that
should result from processing the REQUEST . It is an easy matter to use forwarding mechanism in the APPLY phase
for the source workstation by forwarding the generated REQUEST to the generalized address. Since the REQUEST
node that gets generated on the source workstation is a shadow of the REQUEST node that gets processed on the
destination workstation, we call this as shadow node forwarding. By using shadow nodes, a node which creates
the shadow node can now be processed in the APPLY phase without accessing the remote memory. Using the same
shadow node forwarding concept, a set of REQUEST , which belong to the set of consecutive variables assigned to the
processor, can be processed without accessing remote memories. The mechanism of shadow node forwarding also
helps to separate the computation and the communication for the collection of sequential processes. The separation
helps simplify the development of the Now BDD package. The algorithm for manipulation of BDDs on a Now is
presented in Figure 5.

The breadth-first BDD manipulation algorithm on a NOw is obtained by suitable modifications of APPLY and
REDUCE phase of the breadth-first algorithm for a single address space. The assignment of BDD sections imposes
a total order on the workstations. Each workstation receives a set of REQUEST from all its predecessor workstations
before the beginning of the APPLY phase. The APPLY phase is now modified to process only those REQUEST , the
variable ids for which belong to the workstation. The set of generated shadow requests are sent to appropriate
successor workstations for processing. The workstation then waits to receive from the successor workstation, the

now_bdd_op(op,F,G)
if(NOT a terminal case (op, F, G))
if(processor id = 0)
min_id = minimum variable id of (F, G)
create a REQUEST (F, G) and insert in request queue[min_id];
for(proc.id = 0; proc.id < processor id; proc_id++)
bf_apply.recv(proc_id, set of requests);
bf_apply(op, first_var_id, last var.id);
for(proc.id = processorid + 1; proc_id < num processors; proc_id++)
bf_apply.send(proc_id);
for(proc.id = num processors - 1; proc_id > processor id; proc_id-)
bf_reduce._recv(proc_id);
result = bf_reduce(first_var_id, last_var_id);
for(proc_id = processorid - 1; proc_id >= 0 id; proc_id-)
bf_reduce_send(proc.id);
return result;

Figure 5: BF BDD Algorithm on Now

generalized address to which each shadow REQUEST gets forwarded to. It then performs modified REQUEST , the
variable ids for which belong to the workstation. After the REDUCE phase, the workstation sends a set of generalized
addresses to each of its predecessor workstations. The overall procedure can be viewed as top-down APPLY phase
followed with bottom-up REDUCE phase for a distributed BDD which is partitioned into set of sections each of
which is made up of set of consecutive levels. A graphical represcntation of this concept which also illustrates
the algorithm in Figure 5 has been given in Figure 6. The communication serves as a glue to hold together the
computations performed in different memories by using shadow node forwarding concept.

5 Implementation

5.1 Data Structures

The BDD generalized address represents a tuple (variable id, memory address).The BDD node represents two
generalized addresses, one each for the THEN and the ELSE BDD nodes. The BDD node has a NEXT pointer to link
the next BDD node in a hash chain. It is of utmost importance to have a compact representation for the BDD node.
The minimum requirement for the size of a BDD node with 32-bit memory pointers is 16 bytes: 4 bytes for the
NEXT pointer and 6 bytes x 2 = 12 bytes for representing the THEN and the ELSE generalized addresses. We use a
custom memory manager so that each page fits 4096/16 = 256 BDD nodes, all of which belong to the same variable
id. The custom memory manager aligns each bdd node on a quad word boundary, which makes it possible to tag last
4 bits each of the THEN, the ELSE, and the next memory pointers (see Figure 7). The THEN and the ELSE memory
pointers require one complement bit each, leaving a total of 10 bits out of which 8 are used for the reference count
and 2 are used internally to mark the status during the course of a BDD operation.

At the end of the REDUCE phase, a BDD node is obtained from a REQUEST node that is not forwarded. To
overload the use of REQUEST data structure with the BDD node data structure, the REQUEST data structure is limited
to 16 bytes. Before APPLY phase each REQUEST represents operand BDD nodes, a generalized address for each
of which requires 6 bytes. Therefore, we allow only two operand operations. Three operand operations such as

APPLY end REDUCE phases for proccssor P

APPLY Phase REDUCE Phaso
Roccive roquest nodes Roccive forwardod
ws#2 from processors sesalts from procsssars
Pk, k=0],..,i-1 Pk, k=n,... i+l
----- Process the request nodes Process the request nodes
ws#3 Send requast nodas to processors mer?ﬂlttw
P, k=itl,..n processars Pk, k=i-1,....0

Figure 6: BDD Manipulation Algorithm on a NOW

ITE(f, g, h) can be simulated by combination of two operand operations if necessary.

5.2 Implementation Issues
The following issues are unique to the breadth-first implementation on Now.

1. Shadow REQUEST duplication: Shadow REQUEST may have multiple shadow REQUEST on different work-
stations. However, the multiple shadow REQUEST are identified before the REQUEST is processed, hence, only
a single REQUEST gets processed and the resulting generalized address is sent to all the workstations with its

shadow REQUEST.
Complement Pointer Bit
THEN POINTER ELSE POINTER NEXT POINTER
LI PT T T Ty LI TTTTT) CIIT1TTTT1]
7 e & 4 8 2 1 0
Internal Use
Referonce Count Bits

Figure 7: BDD Node Data Structure

2. Reference count management for nonlocal BDD nodes:

(a) Even if a REQUEST can be simplified without accessing the remote memory (e.g. F AND F), it is
important to create a new shadow request and process it on appropriate workstation so that the reference
count of the node in the unique table is maintained correctly.

(b) During the REDUCE phase if a redundant node is found for which one of the THEN and or the ELSE
generalized addresses point to a node on a successor workstation, we need to adjust reference count
of that remote BDD node. This can be achieved by delayed evaluation to avoid communication to all
successor workstations after completion of REQUEST phase on a workstation. The delayed evaluation
can be performed during the garbage collection step when reference count for the remote nodes can be
adjusted appropriately.

3. Caching shadow REQUEST vs. on-line issue of remote requests: If the shadow request are not cached,
we need a network transaction for every shadow REQUEST created during the APPLY phase. Given the high
network overhead and latencies this may not be acceptable. However, this may change if communication can
be overlapped with computation and low latency, low overhead networks, which can pipeline several small
messages, become available.

6 Experimental Results

We have used a heterogenous network of workstations as the computing environment to perform our experiments.
This environment contains approximately 60 workstations with 64MB (about 40MB available) main memory and
256MB (about 200MB available) disk space and MIPS-R4000 processor.

We have used PVM [9] (Parallel Virtual Machine) software to provide thc communication between the work-
stations in the cluster during a BDD operation. This softwarc permits a network of heterogeneous UNIX computers
to be used as a single large parallel computer by providing user level routines to send and receive messages among
clusters of workstations.

To evaluate the performance we integrated our BDD package with SIS [14). In order to systematically analyse
the performance of our algorithms with increase in the BDD size, we have used a series of sub-networks of the
ISCAS benchmark C6288. We have suitably taken sub-networks of this benchmark such that the shared BDD sizes
of the outputs are roughly multiple of one million. For instance, C6288_3M is one of such examples, for which
creating the BDD’s of all its outputs will involve creating about three million nodes.

In the following subsections we describe the experiments that highlight the salient features of our approach.

6.1 To Exploit Collective Main Memories

The main emphasis of our approach is to exploit the collective main memory available across all the workstations.
This would lead to less page faults and hence reduced wall clock time to complete the computation. To observe this
phenomenon, we have used a virtual machine consisting of 4 workstations. The results have been given in Table 1.

From Table 1, we observe that for small BDDs, performance on uniprocessor outperforms that on multiprocessor
by about a factor of 2-3. The reason being small examples did not result in significant number of page faults for a
single processor and network transaction overhead incurred in the multiprocessor approach resulted in large elapsed
time. However, as the number of BDD nodes increase, causing the uniprocessor implementation to page fault
enormously, the multiprocessor scheme outperforms uniprocessor scheme.

Examples | # Nodes Uniprocessor Scheme Now Scheme
Page Faults | Elapsed Time (in secs) | # Maximum Page Faults | Elapsed Time (in secs)

C6288_IM | 1 x 10° 0 877 ‘T 0o | 2589
C62882M | 2 x 106 0 1918 0 3743
C62883M | 3 x 106 4392 3587 280 4818
C6288.4M | 4 x 106 70184 7234 450 5530
C6288.5M | 5 x 108 187843 10676 3060 6454
C6288.6M | 6 x 106 780361 15844 8090 10397

Table 1: Exploiting Collective Main Memories

6.2 To Exploit Collective Disk Space
Table 6.2 indicates the potential of a NOW in manipulating large BDDs. In this experiment, we increased the number

C6288 subckts Elapsed Time

Nodes One WS | Two WS | Four WS
9 x 10° 26098 24074 n.p.
10 x 10° s.0. 24853 21617
11 x 10° s.0. 36802 n.p.
12 x 10° s5.0. 49801 35652
13 x 10° s.0. 47521 n.p.
14 x 10° s.0. 58383 n.p.
15 x 10° s.0. 60139 a.p.

Table 2: BDDs on Multiple Workstations.

s.0.: could not complete due to disk space limitation
n.p.: data could not be collected due to time constraint

of BDD nodes to be manipulated increased to the extent that it did not fit the disk space of a single workstation. We
observe that we are able to manipulate BDDs of much larger size using the collective disks of many workstations.

6.3 Analysis of Experiments

In previous two subsections we have presented results which demonstrate the two key advantages of manipulating
BDDs on a Now, namely, exploiting collective main memory for improved performance and using collective disk
space to build large BDDs. However, we note that the time taken to manipulate BDDs on a Now is large. We
monitored the elapsed time in our algorithm and found that a large part of the elapsed time is due to the network
transaction. Hence, the performance of our approach is significantly dominated by the penalty incurred during
message transfers. The hope is that with the ongoing research in NOW community [2] which includes using
asynchronous transfer mode, parallel file server, and active message passing will result in low network latency and
overhead. Our approach will take advantage of performance enhancements achieved by NOW research community.

10

7 Conclusions and Future Work

'We have presented algorithm for manipulation of binary decision diagrams (BDD) on a network of workstations
(Now). A Now provides a collection of main memories and disks which can be used effectively to create and
manipulate very large BDDs. We use breadth first manipulation technique to exploit the memory resources of a
Now efficiently. The prototype implementation points to the potential impact this approach can have in manipulating
very large BDDs,

The effectiveness of our approach was demonstrated with experiments. This paper serves as a proof of concept
for our approach. The work is still in the development stage and we need to add many features to support the
assortment of BDD operations. Furthermore, we expect to carry out a multitude of optimizations at various steps to
improve the computational efficiency.

Apart from adding necessary features of a BDD package (garbage collection, quantification routines etc), we
plan to extend the current package with following features:

1. Utilizing the computation power of NOW: In the current approach, the computations are carried out one
processor at a time. Hence, we have only exploited the memory resources of workstations in the network. We
plan to extend our approach to utilize the parallel computation power offered by Now. This will be achieved
by pipelined processing of REQUEST’s during the APPLY and REDUCE phase. In pipelined scheme, REQUEST’s
are processed on more than one processor concurrently. Hence, a processor need not wait to collect REQUEST's
from predecessor processors during APPLY phase and from successor processors during REDUCE phase. This
will result in improved computation time of the processing of the REQUESTs. However two drawbacks of this
scheme are : i) On-line issue of remote requests, will result in significant increase in the network transaction.
We observed in Section 6 that the performance of our approach was signigicantly hamperted by the network
latency and overhead. ii) Further, it will result in duplication of effort due to inability to recognize a REQUEST
after it is processed in the APPLY phase. Consequently, it will also increase the working memory requirements
and amount of work during the REDUCE operation.

We need to investigate these the benefits of this approach in view of these two drawbacks. A plausible solution
could be to adopt a scheme in between two extremes and issue remote requests in a group only.

2. Dynamic load balancing: In the current scheme the variable indices are statically distributed over several
processors. This has the disadvantage that if the number of nodes in certain levels grow very large then it leads
to uneven distribution of BDD nodes. A better approach would be to dynamically change the distribution of
set of variables among the processors to balance the number of nodes on each processor.

References

(1] S. B. Akers. Binary Decision Diagrams. IEEE Trans. Comput., C-37:509-516, June 1978.

[2] T. E. Anderson, D. E. Culler, and D. A. Patterson. A Case for NOW: Network of Workstations. Technical
Report UCB/ERL M94/58, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, Nov. 1994.

[3] P. Ashar and M. Cheong. Efficient Breadth-First Manipulation of Binary Decision Diagrams. In Proc. Intl.
Conf. on Computer-Aided Design, pages 622-627, Nov. 1994,

[4] A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S. C. Krishnan, R. K. Ranjan, T. R. Shiple, V. Singhal,
S. Tasiran, H.-Y. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. HSIS: A BDD-Based Environment
for Formal Verification. In Proc. of the Design Automation Conf., pages 454-459, June 1994,

11

(5] R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. JEEE Trans. Comput.,C-35:677-691,
Aug. 1986.

[6] R. Bryant. A methodology for hardware verification based on logic simulation. Journal of the Association for
Computing Machinery, 38(2):299-328, Apr. 1991.

[71 J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification Using Symbolic
Model Checking. In Proc. of the Design Automation Conf., June 1990.

[8] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on Symbolic Execution.
InJ. Sifakis, editor, Proc. of the Workshop on Automatic Verification Methods for Finite State Systems, volume
407 of Lecture Notes in Computer Science, pages 365-373, June 1989.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User's Guide and
Reference Manual. Oak Ridge National Laboratory, Sept. 1994,

{10] S.Kimura and E. M. Clarke. A Parallel Algorithm for Constructing Binary Decision Diagrams. In Proc. Intl.
Conf. on Computer Design, pages 220-223, Nov. 1990.

(11]) K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[12] H. Ochi, N. Ishiura, and S. Yajima. Breadth-First Manipulation of SBDD of Boolean Functions for Vector
Processing. In Proc. of the Design Automation Conf., pages 413-416, June 1991.

[13] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-First Manipulation of Very Large Binary-Decision Diagrams.
In Proc. Intl. Conf. on Computer-Aided Design, pages 48-55, Nov. 1993,

[14] E. M. Scntovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report
UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1992.

[15] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Implicit State Enumeration
of Finite State Machines using BDD’s. In Proc. Intl. Conf. on Computer-Aided Design, pages 130-133, Nov.
1990.

12

	Copyright notice 1996
	ERL-96-9

