

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SCHEDULING TECHNIQUES FOR SYNCHRONOUS

AND MULTIDIMENSIONAL SYNCHRONOUS

DATAFLOW

by

Praveen Kumar Murthy

Memorandum No. UCB/ERL M96/79

10 December 1996

SCHEDULING TECHNIQUES FOR SYNCHRONOUS

AND MULTIDIMENSIONAL SYNCHRONOUS

DATAFLOW

Copyright © 1996

by

Praveen Kumar Murthy

Memorandum No. UCB/ERL M96/79

10 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Scheduling Techniques for Synchronous and Multidimensional Synchro
nous Dataflow

by

Praveen Kumar Murthy

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California at Berkeley

Professor Edward A. Lee, Chair

In this thesis, we present various scheduling techniques for programsexpressed as

Synchronous Dataflow (SDF) and Multidimensional Synchronous dataflow graphs.

Synchronous dataflow has proven efficient as a specification model for block-diagram

based programming environments for signalprocessing. Two key reasons for its popularity

are that a) static schedules can be constructed at compile time, thus eliminating the

overhead due to dynamic scheduling, and b) it models multirate signal processing

application very naturally and intuitively. The first property is particularly important in

environments where code-synthesis for embedded processors is desirable, since embedded

signal processing applications have rigid throughput requirements in order to meet hard-

real-time constraints. Multidimensional Synchronous Dataflow (MDSDF) is an extension

of SDF to multiple dimensions; in this model, applications such as image and video signal

processing, which operate on multidimensional signal spaces, are more naturally modeled

and specified than in SDF.

The amount ofon-chip memory available on embedded processors is often severely

limited. Adding off-chip memory is usually not an option because it entails a speed penalty,

it increases overall system cost and size, and increases power requirements. Thus, when

generating software implementations from SDF specifications for a uniprocessor, the

scheduling problem of ininimizing code size and buffer memory size becomes crucial. If

the scheduling is not done carefully, the blowup in the size of the implementation can

1

preclude implementation on the processor. Previous techniques have focused on

scheduling to minimize code size. However, this neglected the buffer memory usage of the

schedule; in this thesis, we develop techniques that jointly minimize for code size and

buffer-memory size of the software implementation. We give three polynomial-time

algorithms: a dynamic programming algorithm thatis used as a post-optimizationstep, and

two heuristics that use different approaches to constructing these schedules. The general

problem is shown to be NP-complete, thus justifying the use of heuristics. An extensive

experimental study is given to show the efficacy of all these techniques.

We extend these scheduling results to MDSDF specifications. We then tackle a

problem of a different type. A multidimensional signal can be sampled in many different

ways. A straightforward extension of one-dimensional sampling results in the so-called

rectangular sampling structure, where the samples lie on a rectangular grid. However, a

more general sampling structure is a geometrical lattice; sampling lattices that are not

rectangular can have many advantages in certain applications. For example, a signal

sampled on a non-rectangular latticecan have a lower sampling density than one sampled

on an equivalent rectangular lattice. Forreal-timeprocessing of multidimensional signals,

a lower sampling density means fewer samples to process in a given time interval. The

standard MDSDF model suffers from the inability to model multidimensional systems

sampled on arbitrary sampling lattices; hence, we give an extension of MDSDF that is

capable of modeling such systems. The model we give preserves the property of static,

compile-time schedulability. However, constructing such schedules requires the solution to

some challenging problems. In particular, we show that an augmented set of balance

equations have to be solved simultaneously in the extended model. The additional

equations are quite different from the usual balance equations in SDF and MDSDF; they

involve computing so-called"integer volumes" of parallelepipeds. This computation turns

out to be an interesting number-theoretic problem, and we present several approaches for

solving it. Finally, we present a practicalexample of a video sampling structure conversion

system to show the usefulness of the generalized MDSDF model.

iz/zfa
Edward A. Lee, Thesis Committee Chairman

2

fTomg(parents

,.- jr

111

Contents

1. Introduction 1

1.1 Reactive Systems 4

1.2 Computability 5

1.3 Semantics 7

1.4 Dataflow 10

1.4.1 Computation Graphs 12
1.4.2 Petri Nets 13

1.4.3 Synchronous Dataflow 14
1.4.4 Cyclo-static Dataflow 15
1.4.5 Multidimensional Synchronous Dataflow 16
1.4.6 Systolic Arrays 17
1.4.7 Boolean Dataflow 18

1.4.8 Well Behaved Dataflow 19

1.4.9 Kahn Process Networks 20

1.5 Non Dataflow MoCs 21

1.5.1 Discrete Event Simulators 21

1.5.2 Statecharts 22

1.5.3 Hybrid Dynamical Systems 22

1.6 A Denotational Approach forClassifying MoCs 23

1.7 Other Programming Languages 24

1.7.1 Lucid 26

1.7.2 SISAL 28

1.8 Modularity and Code Generation 29

1.8.1 Compiling SDFandMDSDF Graphs 29
1.8.1.1 Memory Usage 30

1.8.2 Compilers 31
1.8.3 Subroutine Libraries 32

1.8.4 Block Libraries 32

1.9 Block Diagram Languages—History 33

1.10 Overview of the Thesis 35

iv

2. Synchronous Dataflow 37

2.1 Notation 37

2.1.1 Graph Concepts 37

2.1.2 Computational Complexity 40

2.2 Synchronous Dataflow 41

2.3 Computing the Repetitions Vector 48

2.4 Constructing a Valid Schedule 49

2.5 Determining Whether an SDF Graph Deadlocks 49

2.6 Scheduling to Minimize Buffer Usage 51

2.6.1 NP Completeness 52

2.6.2 Heuristic for Minimum Buffer Scheduling 54

2.7 Related Work: Multiprocessor Scheduling 56

3. Looped Schedules 59

3.1 Looped ScheduleTerminology and Notation 59

3.2 Buffering Model 62

3.3 Factoring Schedule Loops 65

3.4 Reduced Single Appearance Schedules 67

3.5 Algorithms for Joint Code and DataMinimization 68

3.6 R-Schedules 69

3.7 The Buffer Memory Lower Bound for Single Appearance Schedules 69

3.8 The Number of R-Schedules 73

3.9 Dynamic Programming Algorithm 75

3.10 Example: Sample Rate Conversion 78

3.11 An Efficient Heuristic 80

3.12 Extensions 81

3.13 Extension to ArbitraryTopologies 83

3.14 Adaptation to Minimize CodeSizefor Arbitrary Schedules 86

3.15 Complexity of theBufferMinimization Problem 87

3.16 Recursive Partitioning by Minimum Cuts (RPMC) 91

3.17 More Analysis of legalCutlntoBddSets 96

3.18 Non-uniform Filterbank Example 97

3.19 Pairwise Grouping ofAdjacent Nodes for Acyclic Graphs 98

3.20 Examples I04
3.20.1 Tree-structured Filter Bank 104

3.20.2 Satellite Receiver 1°5
3.20.3 Chain Structured Graph with Irregular Rate Changes 106

3.21 Experiments 1°6

3.22 Extension to Arbitrary Graphs 112

3.23 Related Work 115

3.23.1 Minimum Activation Schedules 115

3.23.2 Retiming for State Minimization 117
3.23.3 Lee's Trellis-based Formulation 117

3.24 Summary 118

4. Multidimensional Synchronous Dataflow 120

4.1 Multidimensional Dataflow 120

4.1.1 Application to Multidimensional Signal Processing 121
4.1.2 FlexibleDataExchange 122

4.1.2.1 Multilayer Perceptron 123
4.1.3 Computing InnerProducts [Lee93] 124
4.1.4 Multirate Actors 125

4.1.5 State 126

4.2 Scheduling 127

4.2.1 Self-loops 127
4.2.2 GDPPOfor MDSDF Graphs 130
4.2.3 BMLB for MDSDFGraphs 131
4.2.4 RPMCfor MDSDF Graphs 131
4.2.5 APGAN for MDSDF Graphs 131

4.3 Related Work 135

4.3.1 AOL 136

5. Generalized Multidimensional Synchronous Dataflow 139

5.1 Multidimensional Signal Processing Fundamentals 140

5.1.1 Numbering on a Lattice 142
5.1.2 Sampling Density 142

vi

5.1.3 The Fundamental Parallelepiped 143

5.1.4 Multidimensional Decimators 145

5.1.5 Multidimensional Expanders 146

5.2 Semantics of the Generalized Model 147

5.2.2 The RectangularCase 157
5.2.3 Implications of the Above Example for Streams 159

5.3 Eliminating Cyclostatic Behavior 162

5.4 Delaysin the Generalized Model 166

5.5 Summary of Generalized Model 166

5.6 Multistage Sampling Structure Conversion Example 168

5.6.1 Video Signals 168
5.6.2 Sampling Structure Conversion 168

5.7 Computing the Integer Volume of a Rational Matrix 172

5.7.1 Some simple approaches 173
5.7.1.1 Scaling 173
5.7.1.2 Rounding 173
5.7.1.3 SmithForm Decomposition 173

5.12 A Methodfor Computing the IntegerVolumeof a Rational Matrix... 174
5.7.3 Examples 176
5.7.4 SomeFinalThoughts on theProblem 178

5.8 Conclusions and Open Problems 178

6. Conclusion and Future Work 181

6.1 Trading Code Size and Memory Size 182

6.2 Some Open Complexity Issues 183

6.3 MDSDF and GMDSDF Scheduling 184

REFERENCES 185

vn

List of Figures

Chapter 1:

Figure 1-1 A computation graph. The 4-tuple associated with an edge represents
the number of initial tokens, the number of tokens produced onto the
arc, the number of tokens consumed from the arc, and the threshold
parameter of the arc 12

Figure 1-2 a) A Petrinet. Places arethe circles, and transitions arethe heavy
lines. The dots in the placesindicate tokens, b) A Petri net equivalent
to a dataflow graph 13

Figure 1-3 Cyclostatic dataflow comparedto synchronous dataflow. Actor B is a
distributor actor, a) SDF specification, b) CSDF specification 16

Chapter 2:

Figure 2-1 A simple SDF graph 42

Figure 2-2 (a) An SDF graphthat does not have a periodic schedule.
(b) A slightly modified version that has a periodic schedule 45

Figure 2-3 An SDF graph that has a repetitions vector but does not have an
admissible schedule 47

Figure 2-4 The acyclic precedence graph for Figure 2-1 and unity blocking factor.
48

Figure 2-5 A simple SDF cycle 50

Figure 2-6 Example to illustrate proof of Theorem 2-3. A filled dot on an edge
indicates a delay on that edge. The shaded edges in the graph show
the edges that are reversed w.r.t 54

Figure 2-7 A heuristic for generating a minimum buffer schedule 55

Figure 2-8 A simple 2-actor SDF graph 55

Chapter 3:

Figure 3-1 A chain-structured SDF graph 63

Figure 3-2 Example to illustrate the inefficiency of using shared buffers 64

Figure 3-3 Example to illustrate the difficulty of using shared buffers with
delays 64

Figure 3-4 An SDF graph used to illustrate the factoring of loops 65

vm

Figure 3-5 An example used to illustrate that reverse factoring is not always valid
for single appearance schedules 66

Figure 3-6 Examples used to develop the buffer memory lower bound 70

Figure 3-7 An SDF graph that does not have a BMLB schedule 71

Figure 3-8 An SDF graphthat has a BMLB schedule 71

Figure 3-9 Pseudo-code for the dynamic programming algorithm to schedule a
chain-structured graph 77

Figure 3-10 (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate
system 78

Figure 3-11 An SDF graph used to illustrate GDPPO applied to SDF graphs that
have nonzero delay on one or more edges. Here 83

Figure 3-12 An SDF graph used to illustrate the problemof finding anoptimally
compactloop structure for an arbitrary firing sequence 86

Figure 3-13 A bipartite SDF graph to illustrate the different buffer memory
requirements possible with different topological sorts 91

Figure 3-14 The min-cutgiven by the max-flow-min-cut theorem is not equal to
the min-legalcut for this graph 93

Figure 3-15 Procedure for computing legal minimumcuts 95

Figure 3-16 a) An example of the type of graph for which computing the legal
minimum cut into bounded sets is challenging, b) The matrix
interpretation of the problem 97

Figure 3-17 SDF graph for anon-uniform filterbank. The highpass channel retains
1/3of the spectrum and the lowpass channel retains 2/3 of the
spectrum 97

Figure 3-18 An example of how aclusterization operation that introduces acycle
can lead to a BMLB schedule. Here 100

Figure 3-19 An illustration of APGAN 101

Figure 3-20 A compact representation for theclustering sequence shown in Figure
3-19 102

Figure 3-21 SDF graph for auniform-tree filterbank. a)Depth 1 filterbank, b)
Depth2 filterbank. The produced/consumed numbers not specified are
allunity. 105

Figure 3-22 SDF abstraction for satellite receiver application from [Ritz95] 105

Figure 3-23 A chain-structured SDF graph 106

IX

Figure 3-24 Anexample in which APGAN achieves the BMLB, but the modified
version corresponding to(3.17) does not 112

Figure 3-25 Anillustration ofalgorithm SubindependentPartition 113

Figure 3-26 Anexample toillustrate the inability of the scheduling framework in
[Bhat94b] to yield buffer-optimal single appearance schedules when
combined with techniques presented inthis chapter. 114

Chapter 4:

Figure 4-1 A simple MD-SDF graph 121

Figure 4-2 An image processing application in MD-SDF. 121

Figure 4-3 An SDF graph and itscorresponding precedence graph 122

Figure 4-4 Data exchange in an MD-SDF graph 122

Figure 4-5 Averaging successive FFTs using MD-SDF. 123

Figure 4-6 a) Multilayer perceptron expressed as an MDSDF graph, b) The
precedence graph 124

Figure 4-7 An attempt to use ID-SDF to repeatedly compute inner products.... 124

Figure 4-8 A delay in MD-SDF is multidimensional 125

Figure 4-9 Repeated inner products in MD-SDF. 125

Figure 4-10 Some key MD-SDF actors that affect the flow of control 126

Figure 4-11 Three macro actors with state represented as a self-loop 126

Figure 4-12 (a) An actor with a self loop, (b) Data space on the edge 128

Figure 4-13 A simple MD-SDF graph, 130

Figure 4-14 An MDSDF graph thathasa BMLB schedule 134

Figure 4-15 An example of a graph that does not havea BMLB schedule 134

Chapter 5:

Figure 5-1 An illustration of rectangular sampling 140

Figure 5-2 Sampling on anon-rectangular lattice, a)The samples on the lattice.
b) The renumbered samples of the lattice 141

Figure 5-3 The fundamental parallelepiped for a matrixV 143

Figure 5-4 a) Rectangular decimation, b) Hexagonal decimation 145

Figure 5-5 a) Rectangular expansion, b) Non-rectangular expansion 146

Figure 5-6 Renumbered samples from the output of the expander. 147

Figure 5-7 Output samples from thedecimator renumbered to illustrate concept
of support matrix. The circled samples on the left are labeled as
shown 148

Figure 5-8 Generalized expander and decimator witharbitrary input lattices and
support matrices 149

Figure 5-9 An example to illustrate balance equations and the need for some
additional constraints, a)The system, b) Ordering of data into a 5x2
rectangle inside FPD(L) 151

Figure 5-10 Total amount of data produced by the source in one iteration of the
periodic schedule determined by thebalance equations in equation
5.7 154

Figure 5-11 For a rectangular system, the constraint of equation 5.9 is always
met 157

Figure 5-12 Total amount of data produced by the source in one iteration of the
periodic scheduledetermined by the balanceequations in equation
5.11. The samples that are kept by the decimator are the lightly
shadedsamples 160

Figure5-13 An example to illustrate that two factorizations always exist that result
in non-cyclostatic behavior with the decimator. a) The system, b)
Ml=2, M2=2. c) Ml=l, M2=4. d) Ml=4, M2=l 162

Figure 5-14 Figure to illustrate proof of lemma 5-6 165

Figure 5-15 Delays on non-rectangular lattices 167

Figure 5-16 Progressive scanning and 2:1 interlaced scanning in the vertico-
temporal plane 169

Figure 5-17 Picture sizes and lattices for the two aspect ratios 4/3 and 16/9 169

Figure 5-18 System for doing multistage sampling structure conversion from 4/3
aspect ratio to 16/9 aspect ratio for a 2:1 interlaced TV signal 170

Chapter 6:

Figure 6-1 A graph to illustrate the dramatic decrease in buffering memory by
allowing 2-appearance schedules 182

XI

Acknowledgments

Graduate student life in UC Berkeley has been a rich, rewarding experience and I

will sorelymiss it onceI leavethis illustrious university. I havebeen fortunate enough, over

the years, to meet many distinguished faculty members and intelligent colleagues, and I

have learnt much in the process. It is a pleasure to acknowledge those who have had an

impact on me, both during my time here, and in times past.

I am deeply grateful to Professor Edward A. Lee for being my advisor for this

thesis. I appreciate his patience as I kicked around looking for a thesis topic, and I

appreciate the feedback I have received over theyears, particularly about the"bigpicture".

I hope some of Edward's ability to dabble inavariety of research areas has also rubbed off

on me. I have also learned much from his insistence on good technical writing!

I thank professors Robert K. Brayton and Donald A. Glaser for serving onmy thesis

and qualifying examination committee, and professor Martin Vetterli for serving on my

qualifying examination committee. I have also greatly enjoyed attending classes here

taught by professors Richard Karp, Jean Walrand, and Donald Glaser. Professor

Messerschmitt's many humorous tales at the post-DSP-seminar wine-and-cheese parties

will be remembered fondly.

Among colleagues, Shuvra Bhattacharyya has been like a second advisor to me,

bothwhenhewas a senior student in thegroup, and later as aresearcher atHitachi Labs in

San Jose. In additionto a fruitful collaboration with him that led to the book [Bhat96a], he

has been a close friend and guide on all matters. I have enjoyed working with him, and

learnt a lot from his meticulousness and professional approach.

S. Sriram and I have been close friends ever since we started playingtennis while

living at I-house. I have enjoyed the many conversations we have had in the office, home,

on the tennis courts, on all matters from thenature of research to the perfect tennis racket,

and the many joint activities undertaken like sailing, skiing, and attempts at wind-surfing.

Another longtime friend here has been Amit Lai, myroommate for 4 years before he got

married. I have since enjoyed the many dinners at his place after marriage, cooked byhim

and his wife, Garima.

xn

Amit Marathe, Ramesh Gopalan, Sridhar Rajagopalan, and Sachin Adarkar are all

erstwhile housemates (real andvirtual) from 2023a Parker street. Some impressions I will

cherish: Amit "Marroth" Marathe, who argued persuasively for the arranged marriage

system, Amit"TheBunt" Lai, whogenerally argued and had to gooff toMicrolab, Ramesh

Gopalan, whotaught me that when you are feeling pretty low and depressed, and feel that

nobody loves you but your mother, and she could be jivin' too1, breaking out into an
English accent and saying random things is a good way to cheeryourself(and others) up,

and Sridhar ("Sreehaar"), who proved by demonstration that he knew all about zero-

knowledge proofs2, and also bequeathe*! his espresso machine tome. Sachin Adarkar, Amit

Lai, and I had many interesting philosophical discussions that went nowhere, although

Sachin ensured that Magic Johnson should never be subjected to such an indignity. From

Sachin, I also developed an appreciation and love for American roots music, like Robert

Johnson, Ray Charles, James Brown, and Howlin' Wolf.

Gaku Tsuda has been a good friend and has told me many interesting things about

his research in anthropology on the subject of Japanese immigrants in Brazil. I have

enjoyed many discussionswith Kumud Sanwal on photography. I am grateful to the ASUC

Art Studio for maintaining an excellent darkroom; this has enabled me to develop a deep

interest in photography and take refuge in "art" when "science" seems to become

overwhelming.

In Cory hall, I will miss the friendly chats with Shankar Narayanaswamy, Louis

Yun, Richard Han, Rajeev Murgai, Prashant Phatak, Ami Bhat, and Sriram "Praveen

yappaddi irke? "Alaha irke" ha ha ha"3 Krishnan. In my group, I have had many useful

discussions with Phil Lapsley, Alan Kamas, Jose* Pino, John Reekie, Alain Girault, Stephen

Edwards, Wan-teh Chang, Mike Williamson, and Brian Evans. Karim Patrick Khiar, who

visited the group one summer from Thomson CSF in Paris, proved to be an invaluable

guide and host when I was in Paris.

1. Phrase due to B. B. King.

2. CS theory inside joke.

3. Sanketi-Tamil inside joke.

Xlll

Over the pastyear, I havebecome good friends with Gitanjali Swamy and Sanjay

Sarma. I haveenjoyedhavingGitanjali's company (and manyobservations on married life)

as a housemate.

I thank Mary Stewart, and Carol Sitea for taking care of all group-related

administrative matters, and Christopher Hylands for answering manypeskyUNIX-related

questions. I am also thankful to Heather Levien in the Graduate office for keeping Sproul

hall at bay.

At my alma-mater, Georgia Tech, I am thankful toProfessor Richard Shafer for his

support while I was a graduate student there briefly, and for teaching many excellent

classes on DSP. I enjoyed working with Professor Jim Dorsey on my senior project.

Professor Vijay Madisetti gave me useful advice when I setoutto Berkeley.

I thank my numerous relatives for their ego-boosting praise given to me over the

years.

My sister, Ranjana, while taking absolutely no interest in CAD for DSP, has kept

me abreast on all matters political, and made sure that I do not wander into any territory

that could beremotely perceived as being right wing (although I am sure I have frustrated

her many atime. Butreally, I am aliberal). She has also provided apleasant refuge inthe

south bay. My parents have been asteady source of inspiration, advice, and support, and I

am indebted to them for it. Finally, I am grateful to my wife Jyothi for the love and

friendship over the past few months, and providing the impetus to finish this thesis!

xiv

Introduction

This thesis is concerned with certain aspects of static scheduling of programs for

digital signal processing (DSP) applications specified as dataflow graphs. In particular,

synchronous dataflow (SDF), and multidimensional synchronous dataflow (MDSDF) are

two subsets of dataflow that are well suited for programming signal processing systems. A

key property that these two models have is that all scheduling decisions can be made at

compile time; rather than at run time. The thesis has two main parts: the first is a study of

the problem of minimizing the amount of code size and buffer size in the target program

when synthesizing code from a SDF or MDSDF specification. The second is a

generalization of MDSDF to permit modeling of multidimensional multirate signal

processing systems sampled on arbitrary sampling lattices.

Over the past few years, there has been increasing interest in dataflow models of

computation for DSP because of the proliferation of block diagram programming

environments for specifying and rapidly prototyping DSP systems. Dataflow is a very

natural abstraction for a block-diagram language, and many subsets of dataflow have

attractive mathematical properties that make them useful as the basis for these block-

diagram programming environments.

Visual languages have always been attractive in the engineering community,

especially in computer aided design, because engineers most often conceptualize their

systems in terms of hierarchical block diagrams or flowcharts. The 1980s witnessed the

acceptance in industry of logic-synthesis tools, in which circuits are usually described

graphically by block diagrams, andone expects the trendto continue in the evolving field

1

of high-level synthesis and rapid prototyping. The advent of high speed workstations with

advanced graphics capabilities will make possible increasingly sophisticated forms of

visualizing complex systems.

Another trend driving this research is the advent of high-performance DSP

architectures that are capable of executing computationally intensive DSP algorithms in

real-time.These architectures are typically used in embedded systems like digital cellular

telephones, voiceband data modems, speech recognition systems, video compression and

decompression, and music synthesizers, whereconstraints on speed, memory usage, power

consumption, and size are fairly stringent. The time-to-marketof these products is also a

key issue in hotly competitive areas like consumer electronics.

Traditionally, DSPs have been programmed in assembly language by experienced

programmers, a tedious and error-prone process at best. However, because of the

constraints mentioned above, it is becoming more desirable to provide tools that make

programming easier so that designs can be conceptualized, optimized, and made into

products more quickly. The reliance on assembly language has been for performance

reasons, and .one does not expect that automated techniques will be as good as hand-

optimized code in general. But we do expect that as DSPs become more powerful, and

algorithms get more complicated, it will not only become reasonable to sacrifice some

performance in favor of aquicker and cleaner design, but it will become imperative to do

so, since it will become infeasible to hand-code large systems in assembly language dueto

the high complexity, just as large circuits today can nolonger behand-optimized.

The mass popularity and acceptance of the Internet isalso driving the need for new,

throughput-hungry applications such as video-on-demand, video tele-conferencing, and

image and video signal processing applications in general. The real-time performance

requirements of high quality video are orders ofmagnitude higher than those required for

high quality audio. Supporting these applications will certainly require multiprocessor DSP

architectures, and it is well known that programming parallel architectures is a difficult

problem. A combination ofhaving to program aparallel machine and having to program it

in assembly language is aneven moreunattractive one!

Block diagram languages for specifying systems have several advantages, in

addition to those mentioned already. As software systems become increasingly complex, it

2

has been proving more difficult to realize one of the biggest advantages that software

supposedly has over dedicated hardware implementations: re-usability. Quite simply,

writing arbitrary software does not lead to software that can be re-used or maintained

easily. High-level organization is often required to ensure that software reusability is a

reality. A major reason for the warm reception that the Java programming language has

gotten from Web developers and software developers in general is precisely because of its

potential for code reuse: both the concept of applets, which are stand-alone applications

that run inside a Web browser, and the concept of the Java virtual machine that abstracts

away platform-specific dependencies, make it possible for software engineers to develop

code only once, without having to worry about portingissues.

Block diagram environments encourage software reuse because the blocks in the

library are modular, reusable components. Block diagrams, combined with an appropriate

MoC, enforce the idea that specifications should not overspecify the system under

consideration; this allows a specification to be re-targeted to a different architecture much

more easily. A common example of overspecification in high-level, imperative languages

is the total ordering of all statements, making it difficult for a compiler or hardware

synthesistool to extract parallelism from the specification. Since writingparallel programs

is a difficult problem in general, it is essential that specification languages make it easier

for automated tools to do the partitioning, scheduling, and load balancing.

Finally, block diagram languages are easy to use. Experience has shown that there

is often a great resistance to learning a new programming language; people will argue

strenuously that everything can be done well by the language they are currently

comfortable with. However, ease-of-use and a clear, concise syntax and semantics will

allow a language to become used and accepted much more easily, and block diagram

languages certainly seem to have this property, as they are very intuitive. It has been

remarked that the acceptance of a block-diagram language occurs almost by stealth since

users do not even realize that they are learning a new language!

By a model of computation (MoC), we mean the semantics of the interaction

between the blocks (or modules)in the system. A program in a block diagram language is

specified by interconnecting blocks drawn from a library of blocks. A graph is a natural,

mathematical structure for describing programs written this way. The interconnections

3

usually specify communication channels through which data is sent and received. The

interconnection may also specify precedence constraints in some MoCs. Thus, we can

loosely speak of a buffer on an interconnection where data is actually stored while being

exchanged between blocks.

In the rest of this chapter, we survey a number of MoCs and programming

languages that are relevant to this thesis, and discuss their formal properties. In the next

three sections, we discuss a few concepts that are useful when describing mathematical

properties of MoCs.

1.1 Reactive Systems

Signal processing applications fall into the class of so-called reactive systems—

these are systems that must continuously respond to an environment and produce outputs

with certain real-time constraints. A key point is that such systems never terminate. For

example, an algorithm that digitizes speech for transmission overa telephone line has to

run continuously and is never turned off. The amount of data processed by such systems

can be vast; just 10 minutes of audio at the CD rate of 44.1 khz entails processing over 26

million input samples. In contrast, transformational systems, like conventional programs

for computing, operate ondata presented to them inthe beginning, compute, and halt after

producing results.

Hence, we needto allow infinite sequences of blockexecutions in models designed

to represent reactive systems. Several problems mustbedealt withwhen infinite sequences

of actor executions are allowed. Firstly, there is the potential for buffers to become

unbounded. Secondly, the system may deadlock, indicatingthat the system cannotexecute

infinitely. Even if apart of thesystem deadlocks, this is still an error inmost practical cases

since in areactive system, all specified operations are assumed to operate infinitely. Lastly,

some mechanism is needed to actually sequence the actor executions in accordance with

the precedence constraints imposed bythe graph. The simplest method istohave adynamic

scheduler that picks any actor that is firable (meaning it has enough input tokens on all of

its incoming edges) and executes it. However, the overhead associated with this runtime

decision makingcan be significant, especially if the graph is of fine granularity (meaning

4

that there are many actors that have asmall execution time). A better solution istoconstruct

finite schedules and execute them inside an infinite loop. This approach is called static

scheduling, and is only possible if periodic schedules exist for the program.

1.2 Computability

As already mentioned, a model of computation refers to the semantics of the

interaction between modules in the system. A key concept that is useful for classifying

different models of computations is the concept of computability [Epst89]. This concept

refers to the class of functions that may be expressed by interconnecting the modules in the

system. The terms interconnection and module are usedin abroad sense here. For example,

amodule mightbe an actor in adataflow graph, and theinterconnection thecommunication

channel through which data tokens are exchanged, or the module can be a program

statement, and the interconnection between two program statements the set of memory

locations accessed by each.

It can be shown that it is sufficient to consider functions from the integers to

integers—functions that have a different range or domain can always be expressed as

functions from the integers to integers. The number of functions from the integers to

integers that can be expressed in the MoC is usually called the expressive power of the

MoC1. An expression of a program in an MoC is said to be of finite description if the

number of modules and interconnections used for expressing the program is finite.

A function is called computable if there is a finite length procedure for computing

it in a finite amount of time; this is an intuitive definition of what we understand to be an

"algorithm". In the theory of computability, it has been found that all attempts at

formalizing the notion of computability lead to the same class of computable functions.

Thus, if a function can be computed on aTuring machine, it can be "computed" in any other

formal system as well, for example, in the X-calculus, Post production systems and so on

[Epst89],To be precise, it can be proven that a function is computable by a Turing machine

1. Expressive power is also used sometimes to mean the degree of succinctness with which programs can be
expressed in the MoC. However, we do not use the term this way in the discussion above.

if andonly if it is apartiallyrecursive function. The partially recursive functions arise in a

formalism known as recursive function theory; this is a purely arithmetic formalism andis

not based on a machine-like abstraction like the Turing machine. Classes of functions in

this theory are built up by giving a set initial functions (the everywhere zero function

n{x) = 0, the successor function s(x) = x+1, and the projection functions

£/,-(*], ...,*„) = jc,.), and some allowed operations (functional composition, recursive

definitions), and taking the classto be the smallestone closed under such operations. In this

theory, the most general class of functions are the partially recursive functions. Hence, a

function computed by a Turing machine is often calleda partially recursive function, and

the following alternative definition of a partial recursive function canbe stated in terms of

a machine model of computation (rather than the purely arithmetic one used in recursive

function theory): it is a function computed by a Turing machine that may or may not halt

on a given input. In contrast, the total recursive functions (that are also defined

arithmetically in recursive function theory) are functions computed by Turing machines

that always halt.

The Church-Turing hypothesis states that the class of computable functions arc

precisely those computable by Turing machines (or definable inthe X-calculus, ortheclass

of partially recursive functions, and so on.) Of course, we cannot prove this hypothesis

since thenotion of computability is nota precise one, and is based on an intuitive beliefof

what amechanical procedure should be for computing functions. However, the fact that all

attempts at formalizing the notion of computability have ledto the same class of functions

gives a compelling reason to believe the Church-Turing hypothesis. The book [Epst89]

provides a good introduction to the theory of computability, and includes several

philosophical and mathematical viewpoints regarding the Church-Turing hypothesis.

The number of functions from integers to integers is more than the number of

computable functions. This isbecause the set of computable functions is countably infinite

while the set of functions from the integers to integers is uncountably infinite. The

surprising thing is that there are many practical functions of interest that are uncomputable.

An example is the halting problem: this is a function that takes as input a program, and

returns 1 if the program halts in a finite number of steps and 0 otherwise. Since programs

can be encoded as integers, this is also a function from the integers to integers, and one

6

would like to know whether this function is computable. It turns out that it is not

computable (thatis, it is undecidable): there is no one algorithm that can decide in a finite

amount of time whether or not the program given as the input terminates. Other

undecidable problems for Turing machines include questions such as whether a program

will execute in bounded memory.

If the class of functions that can be computed by an MoC coincides with the class

of functions computed by Turing machines, the MoC is called Turing complete. Hence,

problems that areundecidable for Turing machines will also be undecidable for the MoC.

There is, in general, a trade-off between the expressive power and decision power

of the MoC, where the former refers to generality of the class of programs that may be

specified, while the latter refers to properties about programs that may be mathematically

proven. The more the expressive power is, the less the decision power is, and at the extreme

end of the spectrum are Turing complete models since they express the most general class

of programs but have the least decision power since many general questions about these

programs are undecidable. At the other end of the spectrum are models that can only

express a highly restricted class of programs, like marked graphs, but have high decision

power since many questions are decidable and can even be answered efficiently (that is, in

polynomial time).

1.3 Semantics

In order to prove non-trivial properties about programs, the MoC should have well-

defined semantics. In denotational semantics, the meaning of a program is defined as the

function the program computes (or denotes) [Stoy77][Alli86]. In this approach, the range

and domain of the functions are usually partial orders. A partial order (p.o) is simply a set

of values, with an ordering (<) relation on the elements of the set. There need not be an

ordering relationship between every two members of the set; hence, it is &partial order. If

the program is a straight-line program, with no loops or recursion, the problem of

determining the function that the program denotes is fairly simple: it is simply the

composition of the functions represented in the individual steps. The problem of

determining the function is more complicated for recursive, or iterative programs.

7

In a recursive or iterative program, one can conceptually think of data values

generated during the execution of the program as a sequence of progressively better

approximations to the final result. The notionofapproximation is captured in apartial order

in the following way. If a and b are two elementsrepresenting "information" (heldby the

data values) in some manner, then a < b in the p.oif the information in b is a superset of

that in a. The notion of continuity for functions that operate on domains that are partial

orders is the following: given a sequence of better approximations ax < a2^ a3 < ..., the

upper bound a of the sequence is an element that has all of the information in the ai; in

other words, at<a Vi. The least upper bound a is an upper bound that satisfies a<b
for any other upper bound b. A function / is continuous if the least upper bound of the

sequence f{ax)>f{a2)i... is identical to / applied to the least upper bound of

ax <a2 < a3 < Basically, there are no "surprises" at the limit: applying / one element

at atimewillgivethesame answer as applying / all at once. A fixed point is simply avalue

x suchthat F(x) = x where F is some function. A fixed pointrepresents "convergence"

since applying the function again to the information does not generate different

information. Since recursive oriterative programs canbe thought of as"converging" to the

final answer, the notions of fixed points and partial orders are useful for giving

mathematical meanings to these programs. Moreover, a least fixed point is unique, which

is why least fixed points are used to give meanings to programs since they represent

convergence to unique final information. Note that convergence need not mean that the

program halts: the"final" answer could in fact be some sort of infinite structure, like areal

number. Denotational semantics is concerned with what happens in the limit, and if the

limit happens to be awell-defined infinite structure, then hopefully any finite behavior of

the program will simply be anapproximation of the final infinite structure.

For instance, consider the following factorial program [A1H86]:

fact(n) = if (n=0) then 1 else n*fact(n-l) (1.1)

Inthe definition above, we are using fact before we have really defined it.We would like

to be sure that the program above really does compute the factorial function defined as the

setof pairs {(0,1), (1,1), (2,2), (3,6), (4,24),...}. In other words, wewould like tobe

able to prove that the program above denotes the factorial function. Consider the program

fact written in Church's lambda notation:

F = Xf. Xx. if x=0 then 1 else x*f(x-l) (1.2)

The X in the above expression simply means thatthe symbol following it is a variable in

theexpression. Hence, F is a function (called aJunctional sometimes) of two variables: an

argument / that is a function itself, and an argument x that / is applied to. For example,

we can let / = succ, for the successor function, let x = 7, and evaluate F:

F succ 7 = if 7=0 then 1 else 7*succ(7-l)

The above clearly evaluates to 49. However, notice that applying F to succ gives the

function

F succ = Xx. if x=0 then 1 else x*succ(x-l) = Xx. if x=0 then

1 else x^2

Clearly, this function is not equal to succ(jc); hence, it cannot be the function that the

program in equation 1.1 denotes. What we really wantis the function / that is a fixed-point

of equation 1.2; that is, the function / such that F f = /. Certainly, applying F to the

function factorial(x) = x\ results in a fixed point:

F factorial = A,x. if x=0 then 1 else x*factorial (x-1) =

factorial

So factorial is a fixed point of F. However, recursive equations of the type in 1.2 can have

many different fixed points. Indeed, forany fixed point / of F, / is defined unambiguously

for all non-negative integers, but on the negative integers, the definition gives us

/(-l) = -1 x /(-2) etc. We could make an arbitrary choice for /(-l) and fix the values

on all of the negative integers; for each arbitrary choice, we would get a different function

that is a fixed-point of F. However, the least fixed point is unique; this is why the meaning

of the program is taken to be the least fixed point solution to the recursive equation 1.2.

The existence of least fixed points is not usually guaranteed for arbitrary functions

on arbitrary domains. However, least fixed points do exist if suitable restrictions are made

on the domains and functions. Forexample, if the domain is a complete partialorder, where

"complete" means that every increasing chain a} < a2 ^ ... has a least upper bound, and

9

functions operating on this domain are continuous as described before, then the Tarski

fixed point theorem guarantees the existence of a least fixed point for any function.

Moreover, Tarski's theorem is constructive: it gives us a procedure for finding this fixed

point. If the domain is a metric space,and functions are continuous in the usual topological

sense, then the Banach fixed point theorem guarantees the existence of fixed points (and

again, with further suitable restrictions on functions, the theorem becomes constructive,

rather than existential).

Findingthe least fixed pointusingTarski's theoremis straightforward. In the partial

order, we include an element called "bottom"—this element represents complete absence

of information; that is, the "undefined" state. "Bottom" is less than every other element in

the partial order. If the elements of the partial order are functions, then "bottom" is the

everywhere-undefined function. To find the fixed point of F, we simply keep applying F

to "bottom" until we converge to the result; that is, until further application of F does not

changethe answer. So, if we apply F to bottom usingequation 1.2,we get the new function

/0 that is undefined everywhere except at 0 where it has value 1. If we apply F to this

function, that is, F(F bottom), we get the function fx undefined everywhere except at0

and 1,where the values are 1and 1.In this manner,we get asequenceof functions ft where

each function /,- agrees with the factorial function on the integers {0,..., i} and is

undefined for all other integers. The least fixed point of this sequence of functions is the

factorial function, and hence the meaning of the program is that it denotes the factorial

function (note also that the function we get as the least fixed point hasvalue bottom for all

the negative integers). So, for any finite n, the function denoted by the programis a coarser

approximation to the factorial function since the function only agrees with the factorial

function on {0,..., n} and is undefined everywhere else.

1.4 Dataflow

A dataflow graph is a directed graph where the set of vertices, called actors,

represent computations, and a set of directed edges between the actors represent

communication channels implemented as first-in-first-out (FIFO) queues. Actors consume

10

data values, called tokens, from theirinputedgesand produce tokens on theiroutputedges;

hence, the edges also representprecedence constraints.

The application of dataflow principles to design computer architectures and

programming languages was pioneered by Dennis inthe 1970s [Denn75][Denn80]. Unlike

Von Neumann architectures,where instructions areunder the explicit control of a program

counter, computations in a dataflow computer are driven by the availability of data.

Hardware capability is provided for detecting when data is available, and for routing data

tokens to the appropriate actor inputs.

Actorsin adataflow graph are required to be functional: thatis, the outputproduced

by a process is uniquely determined by its inputs (in case the reader objects that this

precludes the actor from having state, anedge from an actor to itself can be used to carry

state information in the form of an input). Dataflow languages and functional languages,

like pure Lisp and Standard ML, belong to the class of definitional languages, in contrast

to imperative languages like C or FORTRAN, which belong to the class of operational

languages [Ambl92]. The difference can be succinctly stated in the following manner: in a

definitional approach, the programmerjust defines the problem she wants to solve, while

in an operational approach, the programmer has to specify the precise sequence of steps

needed to solve the problem.Usually, a definitional approach uses the mathematicalnotion

of function application to inputs: the output answer is the composition of all the functions

specified in the program. In an operational approach, there is a global state, consisting of

variables that the program manipulates: the result of the programis the final state after all

of the steps have been executed. Operational approaches may overspecify the problem

because, in general, there might be more than one sequence of steps that solves the same

problem (that is, results in the same final state). In such a case, there might be an advantage

of choosing one particular sequence over another, for reasons of resource usage for

example. But determining that some different, desired sequence of steps will lead to the

same final state is a very difficult problem, and cannot usually be done. In a definitional

approach, the sequencing (that is, the order in which the functions are evaluated) is left to

the compiler, and often good use can be made of this freedom. In [Lee95], more

connections are made between dataflow, visual languages, and various existing

programming languages.

11

(2,2,3,3)

(2,8,3,5)

Figure 1-1A computation graph. The4-tuple associated withan edgerepresents the
number of initial tokens, the numberof tokensproducedonto the arc, the number of
tokens consumed from the arc, and the threshold parameter of the arc.

General dataflow graphs are Turing complete [Lee96b]. Of-course, thisis trivially

true if wedonotmake any restrictions ontheactors: anactor could encode anentire Turing

machine. However, dataflow graphs areTuring complete even if we make the restriction

that all actors have finite state (or functional with self-loops allowed), and that actors

produce tokens drawn from afinite alphabet. Because ofthese restrictions, an actor by itself

cannot internally store integers of arbitrary size; hence, it cannot by itself have the

expressive power of a Turing machine. However, the presence of potentially unbounded

queues on the edges allows us toencode arbitrary integers using finitely-valued tokens, and

thisallows us to simulate a Turing machine using dataflow actors. Since keyquestions for

Turing machines, such asthe halting problem, are undecidable, such questions for dataflow

programs are also undecidable.

1.4.1 Computation Graphs

Perhaps the earliest form of dataflow studied is the computation graph model

proposed by Karp and Miller in their seminal 1966 paper [Karp66]. In this model, each

actor consumes and produces a fixed number of tokens (known at compile time) on each

invocation. In addition, eachedgehaszeroor moreinitialtokens, anda threshold parameter

that dictates that the sink vertex of that edgecan be invoked only if the number of tokens

ontheedge is at least equal to the threshold (figure 1-1). Note that the threshold is at least

equal to the number consumed on the arc. The primary focus in [Karp66] is inestablishing

thedeterminacy ofcomputation graphs: Karp and Miller prove thatthe sequence of tokens

12

produced on the edges does not depend on the order in which actors are invoked as long as

all of the data precedences are respected. They are also interested in establishing

termination conditions for these graphs. A program graph terminates if at least one actor is

unable to continue firing because of a lack of input tokens. They formulate the problem as

an integer linear program and show that an integer solution to these equations is necessary

and sufficient to establish termination. Finally, they prove conditions under which buffer

sizes on the edges remain bounded as the computation graph is executed.

1.4.2 Petri Nets

A Petri net is a directed bipartite graphconsisting of two typesof nodes: placesand

transitions (see figure 1-2). All edges in this graph are directed between places and

transitions (or vice-versa), but never between two transitions or two places. Roughly

speaking, places correspond toedges inadataflow graph and hold tokens. Atransition fires

by removing a token from each of its input places and adding a token to each of itsoutput

places. Aplace cannot have a negative number of tokens; hence, a transition can fire only

if each of its input places has at least one token. A marking is simply a function mapping

each place to a non-negative integer representing the number of tokens in thatplace.

It turns out thatPetrinetswith theexpressive power of Turing Machines resultif so

called inhibitor edges areallowed between places and transitions— these allow a transition

to check whether a place has zero tokens [Petr81]. Equivalent to Petri nets are the vector

addition systems from [Karp69]. The idea here is to look at sequences of vectors

Figure 1-2a) A Petri net. Places are the circles, and transitions aretheheavy lines.
Thedots in theplaces indicate tokens, b) A Petri netequivalent to a dataflow graph.

13

(representing the marking of a Petri net) that result when elements of the vectors are

incremented or decremented (representing the firing of transitions, or executions of actors

in a computation graph). Karp and Miller's paper is mainly concerned with reachability

analysis—that is, to determine whether a particular marking is reachable from some other

marking.

1.4.3 Synchronous Dataflow

This model of computation was proposed by Lee in [Lee86] for use in specifying

multirate DSP algorithms. SDF is a special case of Karp-Millercomputation graphs in that

the threshold parameter is always equal to the number of tokens consumed on the edge. In

[Lee86][Lee87], algorithms are given that determine at compile time whether or not an

SDF graph deadlocks, and whether or not an SDF graph has a periodic schedule that does

not require unbounded memory. Algorithms are also developed for constructing static

multiprocessor schedules, where the partitioning and sequencing is all done at compile

time. SDF has since proved to be very suitable for describing a large class of useful DSP

applications, and its strong formal properties have motivated its use (and some closely

related models) in a large number of programming environments for signal processing

[Lauw90, Lee89, Ohal91, Pino95a, Ritz92, Veig90]. Part of this thesis is devoted to the

problem of constructing static schedules that minimize the amount of program and data

memory required by the resulting software implementation.

If each actor in an SDF graph is required to have finite state and produce tokens

drawn from a finite alphabet, then the SDF model is not Turing complete [Lee96b].

However, without these restrictions, the model is Turing complete. We will not be worried

much about these issues in the rest of the thesis since they are mainly of theoretical

importance. The presence of actors with theoretically infinite state does not affect our

results since the optimizations we perform are at the SDF graph level, and at that level, we

know that the buffers are of well-defined, bounded lengths provided that the SDF graph is

sample-rate consistent.

The term "synchronous" in SDF is not to be confused with its usage in the context

of synchronous reactive languages such as Signal, Lustre, and Esterel [Benv91]. In these

14

languages, "synchronous" refers to the fact that there is a global clock (sometimes this is

explicit as in the case of Lustre, and sometimes implicit as in the case of Esterel) that

coordinates events. A variable (representing an infinite stream of tokens) is aligned with a

boolean-valued clock signal, and takes on some value whenever its clock value is TRUE.

In Esterel, a clock defines the instants in which a reaction takes place to external events. In

Signal, a powerful algebraic methodology has been devised that allows the compiler to

reason about the signals in the system and detect inconsistencies. In SDF, there is no notion

of a clock: synchronoussimplymeans that the schedulesconstructed for SDF graphs ensure

that data is produced and consumed at the samerate over the period of the static schedule.

"Synchronous" hasalsobeenusedin theconcurrency community to meana particular style

of synchronizing communication actions called "rendezvous".

To avoid confusion, we emphasize that SDF is not by itself a programming

language but a model on which a class of programming languages canbe based. A library

of predefined SDF actors together with a means of specifying how to connect a set of

instances of these actors into an SDF graph constitutes a programming language.

Augmenting theactor library with a means fordefining new actors, perhaps in some other

programming language, defines a more general SDF-based programming language. This

thesis presents techniques to compile programs in any such language into efficient

implementations.

1.4.4 Cyclo-static Dataflow

This is a closely related model to SDF; it has been proposed by the researchers in

the GRAPE project at K. U. Leuven [Lauw94]. In this model, an actor has several phases:

in each phase, it consumes a certain number of tokens and produces a certain number of

tokens. The numbers of tokens produced andconsumed canbe different for eachphase of

the actor. Since the total number of phases of each actor is restricted to be finite, static

periodic schedules can beconstructed for cyclo-static graphs inamanner analogous toSDF

graphs. The main advantage of this model appears to be a lower buffering requirement on

the edges in certain types of graphs.

15

01 B i&^ B

M^0
Schedule: AABCD ABCABD

a) b)

Figure 1-3 Cyclostatic dataflow compared to synchronous dataflow. Actor B is
a distributor actor, a) SDFspecification, b) CSDF specification.

For example, consider a distributor operator, which routes data received from a

single inputto eachof twooutputs in alternation (Figure 1-3). In SDF, this actorconsumes

two tokens andproduces onetoken oneach of its two outputs. In cyclo-static dataflow, by

contrast, thisoperation canbe represented as an actor thatconsumes onetoken on its input

edge, and produces tokens according to the periodic pattern 1,0,1,0,... (one token

produced on the first invocation, none on the second invocation, one on the third

invocation, and so on) on the output edgecorresponding to edge (£, C), and according to

the complementary pattern 0,1,0,1,... on the edge corresponding to (B,D). The

periodic SDFschedule in Figure l-3(a) requires 2 units of memory for the bufferon edge

(A,£), while the cyclostatic implementation in Figure l-3(b) requires only 1 unit of

memory. However, the cyclostatic schedule is larger, and it is not clear whether the

reduction in buffer size is more than the increase in code size of the cyclo-static schedule

(for example, the schedule ABCABD is longer than AABCD). Further investigation is

required to resolve these issues rigorously.

1.4.5 Multidimensional Synchronous Dataflow

Lee has proposed a multidimensional extension of SDF [Lee93] in which actors

produce and consume n-dimensional rectangles of data, and each edge corresponds to a

semi-infinite multidimensional sequence

{Xnun2t...,nm\(°^n\>n2>-> nm<0°)}-

16

For example, an actor could produce a 2 x 3 grid consisting of six tokens each time it is

invoked. This extension to multidimensional dataflow has several advantages over SDF,

especially for multidimensional, multirate signal processing applications. One advantage is

that data parallelism is exposed toa much greater degree in anMDSDF specification than

is possible with SDF. This issue iscrucial in image processing algorithms where there is a

lot of dataparallelism present, anda specification model thatexposes all of it to a compiler

could result in better implementations. Secondly, certain forms of control flow that cannot

be expressed succinctly in SDF can be expressed succinctly in MDSDF. Thirdly, the

presenceof more than one dimension allows more efficient and intuitive specification of

one-dimensional algorithms since certain bookkeeping activities can be done in the other

dimension.

However, this model appears to be most useful for specifying multirate,

multidimensional signal processing systems. When there are 2 or more dimensions, there

are many possible choices for the sampling geometry, and the standard rectangular grid is

not necessarily the "best" choice. The MDSDF model as specified in [Lee93] has n-

dimensional rectangles as data structures, and can only model systems using the rectangular

sampling grid. Part of the contribution of this thesis is to present a generalization of

MDSDF to handle arbitrary sampling lattices. The key issue that arises is whether the

generalized model can be scheduled statically—it turns out that our model is amenable to

static scheduling.

1.4.6 Systolic Arrays

A systolic array is a network of processing elements (P.E's) interconnected in a

regular fashion [Kung88]. These elements are often very simple; for example, adders and

multipliers. The processors compute and pass data along in a "rhythmic" fashion; the

behavior of each processor, that of pumping data in and out in a regular fashion, each time

performing some short computation, is akin to the behavior of the heart pumping blood

through the arteries in a regular fashion (hence the moniker "systolic" arrays). A large

amount of work has been done to determine techniques for optimally mapping algorithms

onto systolic arrays (for example, by minimizing the number of processing elements,

17

maximizing the throughput, or minimizing the buffers on the arcs). A general class of

applications that are realizable by systolic arrays are the so-called regular iterative

algorithms [Kung88], which include many problems from linear algebra like LU

decomposition, andmatrix multiplication, problems requiring dynamic programming such

as finding the shortest path in a graph, and many signal processing problems like

convolution and IIR filtering. Roughly speaking, a regular iterative algorithm has a

dependence graph with a highly regular topology and connectivity that is highly localized

(that is, there areno "global" communications). Given such analgorithm, it is possible to

generate an optimized systolic architecture that implements the algorithm. Similarly,

wavefront arrays are like systolic arrays but instead of being globally synchronized, they

use a data-driven computing paradigm like dataflow. However, wavefront arrays also have

the regular structure found in systolic arrays.

There are several differences between MDSDF and the dependence graphs

amenable to implementation assystolic arrays. MDSDF is a dataflow model, and MDSDF

graphs, like SDF graphs, can be of arbitrary topology. Hence, it is not necessary that

MDSDF graphs have the sort of regular structure that dependence graphs of regular

iterative algorithms do. Secondly, one of the possible uses of MDSDF is to provide a

specification language from which implementations can be derived for general purpose

multiprocessor architectures. These include architectures like the Philips Video Signal

Processor (VSP), where the number ofprocessing elements is fixed and isnotscalable with

the size of the algorithm, and where MIMD (multiple instructions multiple data) design is

necessary due to the differing granularity ofthe tasks and non-regular control flow. Hence,

the work on scheduling dependence graphs onto systolic and wavefront arrays has limited

use in the context of MDSDF.

1.4.7 Boolean Dataflow

While the above models allhave restricted expressive power, theboolean dataflow

(BDF) model, which was defined by Lee in [Lee91] and explored further by Buck in

[Buck93], has significantly more expressive power. In this model, the number of data

values produced orconsumed by each actor iseither fixed, as inSDF, orisa function ofa

18

boolean-valued token produced or consumed by the actor. Buck addresses the problem of

constructing a non-empty sequence of conditional actor invocations, where each actor is

either invoked unconditionally or invoked conditionally based on the value of boolean

tokens. Thissequence should produce nonetchange in thenumber of tokens residing in the

FIFO queue corresponding to each edge. Such an invocation sequence is referred to as a

complete cycle, and clearly, if a finite complete cycle is found, it can be repeated

indefinitely, and a finite bound on theamount of memory required (forbuffering) canbe

determined at compile-time. It can be shown that the boolean dataflow model is Turing-

complete. Thus, a number of key decision problems for BDF graphs are undecidable,

including the problem of finding finite complete cycles (and thus, the problem of

determining whether a graph can be implemented in bounded memory). Buck presents

heuristic techniques for finding finite complete cycles for BDF graphs. Whenever his

techniques fail, the graph has tobe executed dynamically, although clustering techniques

can often significantly reduce the number of tasks that have to be executed dynamically

[Buck93].

1.4.8 Well Behaved Dataflow

Gao et al. have studied a programming model, called well-behaved dataflow, in

which non-SDF actors areusedonly as partsof predefined constructs [Gao92]. Of the two

non-SDF constructs provided, one is a conditional construct, and the other is a looping

construct in which the number of iterations can be data-dependent. This restriction on the

use of more general actors guarantees that infinite schedules can be implemented with

bounded memory. Gao's model, although more general than SDF, has significantly less

expressive power than the BDF model of Buck because it is not Turing-complete (this

follows from the fact that every graph in this model can be implemented in bounded

memory).

19

1.4.9 Kahn Process Networks

The Kahn process network model is an elegant model of concurrency that was

proposed by Gilles Kahn in his seminal 1974 paper [Kahn74]. In his model, there are a

number of processes that communicateby sending data to each other over channels which

have potentially infinite queues. The processes execute concurrently; a process may write

to a channel whenever it wants, but if it wants to read from a channel and the channel is

empty, then it must block until it gets data on that channel. In other words, a process cannot

base an action on the presence or absence of data.

Kahn is mainly interested in defining precisely the function computed by the

network. He proceeds by constructing a partial order of streams based on the prefix order.

A stream is a potentially infinite sequence of tokens, and captures the movement of data

along the communication channel (also called the channel's history). In the prefix partial

order, a stream A is less than or equal to a stream B if A is a prefix of B. Clearly, if A is

a prefix of B, then B has more information than A, and thus represents a more evolved

state than A. Kahn constrains the processes that implement blocking reads and non-

blocking writes to correspond to continuous functions on the prefix partial order; this

simply prevents a process from waiting for an infinite amount of time before producing

outputs. Thus, Kahn is able to use the Tarski fixpoint theorem to show that the function

computed by the network is the least fixed point of their composition. Since the least fixed

point of a continuous function on a complete partial order is always unique, it follows that

Kahn process networks are determinate in the sense that there can only be one valid

computation (that is, exactly one history on each channel) for a particular set of inputs. The

fixed point in the network can be reached by executing the processes in the usual way since

Tarski's theorem tells us that the least fixed point can be reached by starting the

computation on the all-undefined state—in the process network, this is simply the state

where all queues on the channels are empty. Also, the least fixed point of a Kahn process

network is usually a set of infinite sequences; hence, any execution of the network for a

finite amount of time represents an approximation of the final answer. Put another way, the

operational behavior of the network converges to the denotational meaning only when time

goes to infinity.

20

Kahn's conceptualization of dataflow networks in terms of these continuous

processes is a powerful one; the determinacy of models like computation graphs, SDF

graphs, BDF graphs all follow from this since each of these models satisfies the

assumptions made of processes in the Kahn model.

1.5 Non Dataflow MoCs

While we are only concerned with dataflow MoCs in this thesis, it is worthwhile to

briefly review some non-dataflow MoCs.These includeStatecharts for specifyingcontrol-

dominated applications, numerous other discrete event simulators used for modeling

hardware, queueing networks, communication protocols, and hybrid dynamical systems

used for modeling systems with continuous time and discrete time behaviors.

1.5.1 Discrete Event Simulators

Unlike the dataflow MoCs we have discussed so far, data values in a discrete event

(DE)systemalso have an associated time stamp. An event is a tuple {ek, tk} where ek is

the fcth datum and tk its timestamp. A discrete event simulator processes events

chronologically, in order of increasing time. There is typically a global event queue in

whichall the eventsin the graphare stored, and the actor that is invokednext is the one that

has input events with the smallest timestamps. Typically, maintaining the global event

queue is a computationally expensive procedure. The presence of simultaneous events

often leads to non-determinacy, where the result of the computation depends on the order

in which blocks are invoked.The simultaneity problemcan be partially solved by insisting

that each block add an infinitesimal delay on its outputevents. Networks of such A-causal

systems havebeenshown to bedeterminate [Yates93]. Thepresence of feedback loops can

also cause problems; we refer the reader to [Chan96] for a discussion of these issues.

Examples of popular discrete event simulators include the VHDL language used for

hardware specification and synthesis, and numerous simulation tools such as SIMAN,

SIMULA, GASP, and SLAM [Cass93].

21

1.5.2 Statecharts

Statecharts is a visual language based ona hierarchical finite state machine model

of computation. Hierarchy is a useful feature, both for designing ease, and for managing

complexity. For example, a compiler can use hierarchy in the specification during

scheduling andcompilation intelligently and avoid theblow-up in the size of theprogram

that can result if the hierarchy is flattened or is not there to begin with. However, the

semantical issues become more challenging when hierarchy is allowed. Statecharts

attempts to precisely define the syntax and semantics of hierarchical FSM systems. The

original specification of Statecharts had a number of ambiguous definitions; as a result

there are at least 22 different variants of the language in use today, each having slightly

different semantics and formal properties [Beec95].

1.5.3 Hybrid Dynamical Systems

A hybrid dynamical system consists of some sort of FSM at the top level, while

within each state, the system evolves according to a set of continuous time differential

equations. Transitions between states at the top level occur when the system within the

present stateevolves to a point that triggers a changeof state.These systemsare useful for

modeling scenarios where, for example, some discrete event protocol interacts with a

system having continuous time dynamics.

For example, consider the problem of designing the controller for the crossing gate

at a railway track intersection. This controller has three states at the top level: gate up, gate

lowering, and gate down. In each state, there is a differential equation according to which

the system variables evolve. The system variables are the position of the train, and the

position of the gate. When the gate is up, the systemevolves according to the continuous

time dynamics of the train. When the train nears the gate, the controller moves into the

"gate lowering"state. When the gate is being lowered,the evolution is a pair of differential

equations, the second one modeling the movement of the gate.

The research in this area is still new, and the objectives are mainly formal

verification: to formally prove that the systemdoes not enter any bad states, where a bad

state is defined to be a region of the continuous state space that forms the domain of the

22

variables in the system. In the train gate controller example, this is the region where the gate

is still up even though the train is passing through. There are essentially two degrees of

modeling freedom in these systems: the generality of the finite state machine model at the

top level, and the generality of differential equations allowed in the states. Typically, the

top-level model is a basic finite state machine, and the continuous variables have piecewise

linear trajectories (resulting in the so-called linear hybrid systems). Typically, one tries to

prove that the verification problem is decidable, rather than undecidable. Making the

differential equations more general usually results in the verification problem becoming

undecidable. Even when decidable, the decision algorithms typically have exponential or

super exponential lower bounds because of the state space explosion problem (formal

verification methods typically explore the entire state-space in order to ensure that bad

states are not reachable; however, the size of the state-space can be exponentially bigger

than the size of the specification), so that heuristic techniques of state-spacereduction have

to be used to get reasonablerunning times. The papers [Alur95][Henz96] provide a starting

point for exploring this research area.

1.6 A Denotational Approach for Classifying MoCs

Terms like "synchronous", "discrete event", "dataflow" have been used somewhat

loosely in the past. For instance, one research group coined the term "asynchronous

dataflow" to mean the opposite of "synchronous dataflow"; i.e, dynamic dataflow where

actors do not consume and produce fixed numbers of tokens known at compile time. This

use of "asynchronous" contradicts its usage in othercontexts where it implies a self-timed

concurrent execution policy, which can certainly be used on a "synchronous" dataflow

graph. There has been some work recently that attempts to define and classify, in a

mathematically rigorous manner, the various models used for specifying reactive systems

[Lee96]. The approach in [Lee96] is denotational in flavor, in that it attempts to give

meanings to systems constructed using different models of computation (in contrast, an

operational approach would attemptto specify the precisemethod of execution in a model

of computation). The basic result from [Lee96] is a classification of various kinds of

systems in terms of signals and functions on signals. Signals are defined to be possibly-

23

infinite sets of tag/value tuples, where tags are usually drawn from some infinite partially

ordered set. The different classifications arise when the set of tags is uncountably infinite,

countably infinite, when the tags can be put into one-on-one correspondence with the

integers inan order preserving way, etc. Fixed-point semantics are used togive meaning to

networks of processes (functions) with feedback loops.

1.7 Other Programming Languages

There are several programming languages that are also relevant to the research in

this thesis, and some of these, like the synchronous reactive languages, have been

mentioned already. Some of these languages have a dataflow flavor to them, like Signal,

and some arebased on finite statemachines,like Esterel.Other particularly interesting and

relevant languages are APL, Lucid, and Sisal. These languages have allbeen developed to

bring multidimensional programming intothe realm of functional, declarative languages.

As already mentioned, imperative languages overspecify the computation; this

makes it difficult to compilethiscodeontoparallel architectures. This hasmotivatedalarge

body of work in developing efficient compilers that can extract parallelism from

FORTRAN or C programs automatically. For example, nested loops often pose great

problems for parallelism extraction because the usual dependency analysis may not be

goodenoughto deduce what is really going on. For instance, if a statement A writes to an

array X, and a statement B after statement A reads from array X, straightforward

dependency analysis suggests that there is a dependency between statements A and B.

However, it could be that the index into which A is writing to is never the same asthe index

from whichB is reading from; hence, in reality, there mightbe no dependency atall. It is

possible to systematically deduce these dependencies for particular classes of array

indexing functions; for example, if the indexing function is an affine function of the loop

indices. These dependency tests frequently involve solving simultaneous Diophantine

equations, as in the Banerjee test [Bane88][Zima90].

The languages community, in contrast, is tackling the problem from the other end,

by trying to provide languages where arrays and indexing can be expressed declaratively,

or functionally, rather than imperatively. This should make the job of the compiler

24

significantly easier, and would theoretically lead to more efficient implementations.

However, current functional languages are inept athandling large multidimensional objects

like arrays [Mull91]. There are several reasons for this. Firstly, allocating and filling in

values intodata-structures is an alien concept in declarative semantics since data-structures

are results of expressions in such languages. Secondly, referential transparency requires

that any array element can only bedefined once; recursive definitions of arrays where this

might be violated are illegal. Thirdly, operations that modify thearray must first copy the

array, again because once an array has been defined, it maynotbe written to.The costof

copying large arrays is expensive.

The first problem has been solved by socalled array comprehensions. These allow

various subregions in anarray to be defined in a single expression. Moreover, the ordering

of thedefinitions of the subregion does notmatter; only the data dependencies are specified

and from thisthecompiler can choose any initialization order it wants (see [Huda89] for an

example).

One of the first functional languages to incorporate arrays as a basic type was

Iverson's APL (A Programming Language) [Iver62]. APL permits direct manipulationof

arrays as complete entities and provides functions that can be appliedsimultaneously over

allentries in an array. However, APL has proved difficult to implement andcompilers for

APL do not produce code competitiveto FORTRAN code (see papers 2 and3 in [Mull91]).

One of the main goals in the design of APL was succinctness; in this it succeeded rather

well. Programs written in APL use a special character set, and are succinct to the point of

being cryptic. APL was also the language that inspired FP [Back78], which in turn

rejuvenated interest in definitional programming paradigms.

The "Concrete domains" work of Kahn and Plotkin [Kahn93], and the following1

sequential algorithms work of Berry andCurien [Berr85] is an attempt by theoreticians to

extend denotational theories to computations that operate on the so-called "deterministic

concrete data-structures" (dcds); these structures encapsulate, in an abstract way, most

common data structures like arrays, records, lists etc. Essentially, a dcds consists of a

number of cells where each cell may be filled with a unique value. A cell has an enabling

1. It should be noted that the material in [Kahn93] actually appeared in trench as an INRIA technicalreport in
1978; it was published in english in 1993.

25

condition that dictates that it be filled with a value if and only if the enabling condition is

satisfied. The enabling condition usually takes the form of specifying that some other cell

or cells be filled with particular values. It canbe seen that intuitively, the cells areelements

of a complete partial order, induced by the enabling conditions; this gives these data-

structures specific mathematical properties [Kahn93]. A sequential algorithm is roughly

defined to be a so-called Kahn-Plotkin sequential function whose inputs and outputs are

states of a dcds. These functions canbe composed to build up an applicative program and

it is shown in [Berr85] that these programs have the full abstraction property: the

operational specification of sequential functions and their compositions is identical to the

denotational semantics that gives meaning to such a program.

Despite the overspecification problem, imperative languages still outperform

functional languages; they can be compiled down to very efficient implementations that

make good use of the capabilities of the machines and run many times faster than

equivalent implementations generated from functional programs. On the other hand,

imperative languages are generally considered tobe difficult to maintain and change since

even a minor change could have all sorts of unexpected side effects. One expects that

ultimately there will be good compilers for functional languages that can compete with

imperative languages. Below we mention a couple of interesting functional languages

suitable for multidimensional programming.

1.7.1 Lucid

Lucid is a declarative language with a dataflow flavor [Ashc95]. Declarative is

similar to functional: it means that the programmer specifies the computation she wants,

and not the precise operational details for executing the computation. Lucid has anotion of

multidimensional indexing which makes it possible to write programs that operate on

multidimensional data objects. For example, in the construct

seq = posint fby.a runningSum.b(drop.b(seq,n));

fby. a denotes "followed by in dimension a", runningSum. b denotes "the procedure

runningSum should operate on dimension b", and drop.b(seq,n) denotes "drop

every nth value from seq in the b dimension", where these dimensions are all assumed

26

to be orthogonal. As another example, the following construct is used as the basic

computation step in a routine for solving Laplace's equation for heat transfer in three

dimensions:

avg(M) = (left M + right M + up M + down M + front M + rear M) /6

where the expression left Mdenotes the value of Mat the current (horizontal) space

coordinate minusone,just asdown M denotes thevalueofMat the current vertical space

coordinate minus one.

The developers of Lucid argue that Lucid can be viewed as an application of

intensional .logic. Intensional logic is a theory invented by logicians to study natural

language statements that have context sensitive meanings. However, these contexts are

usually "hidden", and notexplicit. Even though conventional forms of extensional logic,

like temporal logic, can be used for reasoning about such statements, the resulting

formalisms are usuallyunnatural and do nothavethe intuitive feel thatthe natural language

statement would. In Lucid, the "contexts" are the indices of the multidimensional data-

structures, and these are implicit, as the two example statements given above show.While

these statements can also be thought of extensionally, where data objects are infinite

sequences in the style of Haskell, and Lucid operators like first, next, and fby

correspond to the list operations head, tail, and cons, the developers argue that it is

more natural to interpretLucid statements in an intensional manner.

The intensional approach in Lucid naturally leads to a demand-driven style of

operational semantics (called eduction in [Ashc95]); that is, demands for values at given

contexts generate demands for other, possibly different, values atother, possibly different

contexts. The demand-driven style of evaluation is roughly similar to lazy evaluation

(which is an efficient implementation of the normal-form reduction order in the lambda

calculus), in thatvaluesthat are not needed are nevercomputed. Normal order reduction is

guaranteed to terminate in the normal canonical form if one exists for the expression.

Applicative order reduction in the lambda calculus, on the other hand, makes the fatal

mistake of evaluating everything at least once, and this can result in a non-terminating

seriesof reductions, even though there is a normalcanonical form [Alli86][Stoy77].

The multidimensional contexts in Lucid can be used for programming constructs

that compute things that are notinherently multidimensional. The different dimensions can

27

be used for "temporary" storage. For example, in a matrix multiplication specification, a

problem that is inherently 2-dimensional, athird dimension is used to lay outtherow from

one matrix and the column from the othermatrix so that a dot-product may be formed. As

will be shown in chapter 4, multidimensional synchronous dataflow is very similar in this

regard since temporary dimensions can be used for computations that do not ordinarily

require them. Theuseof extra dimensions can however uncover all of the parallelism that

mightbe present in the algorithm sothat acompiler couldmakegood use of it.

However, it should be noted that Lucid is a general, possibly Turing complete

programming language whereas MDSDF is not Turing complete, if MDSDF actors are

restricted to have finite state. Hence, since static schedules can be constructed at compile

time, we can not only construct schedules, but we can optimize them for various metrics,

something that is usually not possible for more general languages. Also, it is not clear

whether it would be easy to express the sort of programs we want to in Chapter 5; the

extension of MDSDF given there seems to be better suited for the task.

1.7.2 SISAL

SISAL stands for Streams and Iterations in a Single Assignment Language. This

language is a general purpose applicative language intended mainly for large scale

scientific applications. Since arrays are an integral part of such computations, arrays and

array operations are included in thelanguage definition (see the paper by Feo in [Mull91],

and also [McGr83]).

Sisal includes array comprehensions that allow arrays to be defined as expressions.

Recursive definitions of arrays are notallowed; this solves the second problem mentioned

before, namely, the problem of defining some elements of the array more than once. Some

effort is also madeto eliminate copy operations; the compiler does somenodere-ordering

so that read operations are scheduled before write operations, and some runtime checking

to identify the last user of an array.

One attractive feature of arrays in Sisal is that arrays can be "jagged". This is

possible because an n dimensional array in Sisal is defined to be an array of n-1

28

dimensional arrays. The size and bounds ofeach of these arrays can bedifferent; hence, an

n dimensional arrayneed not be a rectangular hypercube.

Sisal is alsoa general purpose language, and hence theemphasis is notso much on

static scheduling as it is in MDSDF.

1.8 Modularity and Code Generation

Graphical programming environments for DSP normally contain palettes of

graphical icons that correspond to predefined computational blocks, and the program is

constructed by selecting blocks from these palettes and specifying interconnections. If

some functionality is desired that is not available in the existing library, then it is usually

easy to define a new function and add it to the library, upon which the new function can

become available to all other users of the system. Thus, the format of graphical

programming environments makes it natural and convenient to recycle software and the

development effort. For example, since each function is defined only once, it becomes

economical to spend a large effort to hand-optimize frequently used functions for

efficiency.

1.8.1 Compiling SDF and MDSDF Graphs

The approach used in many signal processing programming environments for

constructing software implementations from block diagrams is the technique of threading

[Bier95]. In this approach, the underlying graph model, in this case SDF or MDSDF, is

scheduled to generate a sequence of actor invocations. A code generator then steps through

this schedule and generates the machine instructions necessary for the computation

specified by each actor it encounters; these instructions are obtained from a predefined

library of actor codeblocks. Finally, a memory allocator assigns variables to memory

locations, and does some other bookkeepingactivities. The result is the target program.

An alternative approach used by some systems is synthesis; in this approach, the

graph is first translated into some intermediate language. This translation could be by

threading codeblocks specified in the intermediate language. Then the language is

29

compiled into assembly language. Since the threading technique can be used in synthesis

as well, we assume that a threading model is being used. We also assume that the code-

generator generates inline code; the alternative of using subroutine calls can have

unacceptable overhead, especially if there are many small tasks in the graph. Inline code

presentsits own problems however, the chiefone being code size explosion. For example,

if an actor appears 20 times in the schedule, then there will be 20 codeblocks in the target

code for that actor. DSPs have very tight constraints on on-chip memory; hence, the

generated code mightbe unacceptable. However, for SDFgraphs, it is usually possible to

generate the so-called single appearance schedules where each actor appears only once in

the schedule; for these schedules, inlinecode generation results in code that has the least

size to a first approximation. We refer the reader to [Bhat96a] for a more thorough

discussion on various issues involved in compilationfrom block diagrams.

1.8.1.1 Memory Usage

An important problem that arises when compiling SDF programs is the

minimization ofmemory requirements—both for code and data (intermediate results). This

is a critical problem because programmable digital signal processors have very limited

amounts of on-chip memory, and the speed and financial penalties for using off-chip

memory are often prohibitively high for the types of applications, typically embedded

systems, where these processors are used. Moreover, off-chip memory typically needs to

bestatic, increasing the system cost considerably. One concern inthis thesis is todevelop

techniques to minimize the code and buffering size (for the buffers on the edges between

blocks) when compiling an SDF or MDSDF program.

As will bediscussed later, large sample rate changes result in anexplosion ofcode

size requirements ifnaive compilation techniques are used. Hence, we use aparticular class

of schedules thatdo not result in thecode-size explosion problem, andweshow that there

isconsiderable opportunity for optimization for buffer memory usage within this class of

schedules. We develop techniques for producing optimized schedules that minimize both

the code size and the buffering requirements.

30

Below, we review some alternative approaches to code generation for embedded

systems.

1.8.2 Compilers

There have been a number of reports on the inability of high-level language

compilers to deliver satisfactory code for time-critical DSP applications [Geni89, Tow88,

Yu93, Zivo95]. The throughput requirements of such applications are often severe, and

designers typically resort to careful manual fine-tuning to sufficiently exploit the parallel

and deeply pipelined architectures of programmable digital signal processors while

meeting their stringent memory constraints. Forexample, a studywasdoneby Zivojnovic

et al. on the performance of C compilers for several popular DSPs [Zivo95], The best

performance exhibited by these compilers — by the Tartan compiler for the Texas

Instruments TMS320C40, and the ADI 2.0 compiler for the Analog Devices ADSP 21060

— exhibited overheads over handwritten code of 290% and 219% for execution time, 44%

and 57% for program memory, and 0% and 0% for data memory respectively. These

numbers were measured on an FIR filter benchmark. The worst performance exhibited by

thesecompilers —by the ADI 5.1 for the Analog Devices 2101—had overheadsof 775%,

250%, and 0% for execution time, program memory, and data memory respectively.

Althoughthere is new researchthat appearspromising [Liao95],it is too early to determine

whether compilers that come within factors of 1.2-1.5 of hand-written code can be

developed for DSPs. However, it is worth repeating that even if there are good compilers

available, there are still compelling reasons to use block-diagram languages because these

languages can be more easily mapped to multiprocessor architectures than just straight C

code, they are more intuitive to use, they are more modular, and more amenable to formal

verification due to their strong formal properties. Hence, the optimizations that we develop

in this thesis are global in the sense that they apply to the overall graph structure; the code

within the individual actors is assumed to be optimized already, either by hand or by a good

compiler.

31

1.8.3 Subroutine Libraries

The use of optimized subroutine libraries, as described earlier, is one approach to

improving efficiency without forcing the user to write or fine-tune code at the assembly

language level. A second approach is to add extensions to a high level language that

facilitate the expression and optimization of common signal processing operations

[Lear90]. This can be highly successful in some compilers; for example, when DSP

extensions to C areused,theTartancompiler achieves an overhead of only5% in execution

time, and has no overhead in program or data memory on the FIR filter benchmark.

However, in other compilers, this may not be as useful. The afore-mentioned ADI 5.1

compiler for the 2101 actually gives worse results when compiling the FIR benchmark with

DSP extensions: overheads of 885%, 283%, and 0% for execution time, program, and data

memory respectively [Zivo95].

Another approach is the application of artificial intelligence techniques to confer

optimization expertise to high level language compilers [Yu93]. Although it has not been

extensively evaluated yet, preliminaryresults show promise.

1.8.4 Block Libraries

The alternative that is pursued in this work is the use of graphical or textual block

diagram languages based on the SDF and MDSDF model and its extensions inconjunction

with hand-optimized block libraries. As is discussed in Chapter 2, the SDF model allows

us to schedule all of the computations at compile-time and thus eliminate the run-time

overhead of dynamic sequencing. This increased efficiency comes at the expense of

reduced expressive power: computations that include data-dependent control constructs

cannot be represented in SDF. However, SDF issuitable for a large and important class of

useful applications, as the large number of SDF-based signal processing design

environments suggests. Benchmarks on the Gabriel design environment [Lee89] showed

that compilation from SDF block diagrams produced code that was significantly more

efficient than that of existing C compilers [Ho88a], although not as efficient as hand-

optimized code. For a restricted model ofSDF in which each computation produces only

one data value on each output and consumes only one data value each input, the Comdisco

32

Procoder block diagram compiler produced results that were comparable to the best hand-

optimized code [Powe92]. The reason for this impressive performance is that traditional

compilers apply optimizations mostly within basic blocks [Aho88], while SDF compilers

have more knowledge of the control structure of the program (as mentioned above, the

sequencing of SDF computations can be fixed at compile time) and can thus apply

optimizations globally. Hence, a hybrid compiler/SDF-compiler approach to block

diagram based code synthesis should prove to be very competitive with hand-optimized

code (such a test cannotbe madecurrently since existing compilers performrather poorly

as already mentioned). Although theperformance oftheComdisco Procoder is impressive,

the restricted computational model to which its optimizations apply does not support

systems that have multiple sample rates or decisions.

1.9 Block Diagram Languages—History

There are several graphical programming environments for DSPs available

commercially. Some of these include the Signal Processing WorkSystem marketed by the

Alta group at Cadence Design Systems [Barr91], the COSSAP environment [Ritz92] that

grew out of a research project at the Aachen University of Technology, now being

marketed by Synopsys, the DSP Station developed by Mentor Graphics, the GRAPE

environment [Lauw90] developed at the Katholieke University of Leuven and now

marketed by Eonic systems, and the Hyperception environment. It should be noted that not

all graphical programming environments for DSPs have succeeded. The Sproc chip, a 4-

processorsingle chip DSP made by Star Semiconductor, also had a graphical environment

that came packaged with a graphical software development system. The development

system included automated partitioning and scheduling tools. However, despite the

adequate programming tools offered, the company and product failed. Several additional

graphical programming and simulation environments for DSP are described in [Desm93,

Kapl87, Karj88, 01so92, Kons94, Reek92, Shan87].A comprehensive survey of the state-

of-the-art tools for DSP programming can be found in [Bier95].

The earliest block diagramlanguage to be used for signal processing was at the Bell

Laboratories in the 1960s, where a block diagram compiler was developed for acoustic

33

research [Kell61]. A graphical programming environment for designing digital filters in

presented in [Covi87] (this environment uses only two types of actors: adders and

multiplication by constants). At Advanced MicroDevices, a graphical tool was developed

that allows mapping of a DSP algorithm onto a two-dimensional array of processors

[Ziss87]. At Carnegie Mellon University, an environment targeting the iWarp

multicomputer was developed [Ohal91]. The Khoros program that grew out of research

done at the University of New Mexico is used widely for image and video processing

simulations [Kons94]. At the University of California at Berkeley, work in graphical

environments for DSP and communication is rooted in the BLOSIM system developed by

Messerschmitt in 1984[Mess84]. Thisworkinspired the development of the Synchronous

Dataflow (SDF) model [Lee86], and provided the foundation for the Gabriel system

[Lee89]. The Gabriel system had code-generation capability, with the target processor

being the Motorola 56000 DSP. The Ptolemy project was started in 1990 as the successor

to Gabriel [Buck94]. The Ptolemy project is an object-oriented framework for the

specification, simulation, and software-synthesis of large scale heterogeneous systems.

Ptolemy supports multiple models of computation, unlike Gabriel which only had one

model of computation—SDF. Different models ofcomputation can interact seamlessly in

Ptolemy, and new models of computation can easily be added by an experienced user.

Models of computation available in Ptolemy include SDF, discrete event, dynamic

dataflow, boolean dataflow, and Kahn process networks. Ptolemy also hasextensive code-

generation capabilities, and some of the processors targeted have included the Sproc

multiprocessor DSP from Star Semiconductor [Murt93], the Motorola DSP 56000 and DSP

96000 [Pino95a], and the Texas Instruments TMS320C50 DSP chip.

The block diagram environments mentioned above are all based on MoCs with

varying degrees of formal properties. However, some researchers have proposed block

diagram environments where there is essentially no MoC at all; an example of this

approach isthe Pope project from IMEC in Belgium [Verk96]. In the Pope environment, a

module can be specified inC, VHDL, orDFL (data flow language). Multiple protocols for

communication are allowed between modules, unlike most of the MoCs in the literature.

The use of differentprotocols leads to differentsemantics.

34

1.10 Overview of the Thesis

Inthis chapter, we have argued in favor of using large grain dataflow languages for

specifying real-time signal processing systems. We have concentrated on two particular

subsets of dataflow: synchronous dataflow, which has proved to be useful for expressing

signal processing algorithms, and itsextension to multiple dimensions, multidimensional

synchronous dataflow. We have also argued in favor of block diagram programming

environments, and described astrategy for synthesizing software from SDF/MDSDF-based

graphical programs. We have shown how scheduling plays an important role in the

compilation process.

In the next chapter, we review the SDF model in detail, and formalize the

scheduling concepts needed. We review the concept of single appearance scheduling and

describe its property of requiring the least amount of program memory when software

implementations are generated. We show that one particular scheduling problem is NP-

complete and that we have to resort to heuristics in general. We also establish a simple

lower bound on the buffer size required on any edge in a consistent SDF graph.

In Chapter 3, we identify the problemof constructing single appearance schedules

that minimize the amount of buffering memory required. We describe formally the

bufferingmodel we use, andcontrast ourbufferingmodels to some otherpossibilities. The

bufferingmodel we choose is shown to have several useful properties in contrast to other

models. We then build up some machinery to describe single appearance schedules that

minimize the amount of buffering memory required, and we give a polynomial time

algorithm for generating an optimal loop hierarchy, thereby minimizing the buffering

memory. This algorithm is shown to be optimal for a restricted set of graphs called well-

ordered graphs. Several extensions are given. We then tackle general acyclic graphs and

show that the problem becomes NP-complete. Two heuristics are developed, and an

extensive experimental study is given that shows the efficacy of these techniques. Finally,

we extend these techniques further to arbitrary SDF graphs, and conclude with some

discussion ofrelated work. Much of the work in this chapter was done in collaboration with

Dr. Shuvra Bhattacharyya, a researcher at the Hitachi Systems Research Laboratory in San

Jose, California.

35

In Chapter 4, we review the MDSDF model, and establish some results regarding

self-loops. In SDF graphs, the precedence constraints imposed by self-loops are relatively

easy to conceptualize; in MDSDF, it requires a bit more effort. We then extend the

scheduling results from Chapter 3 to MDSDF schedules.

In Chapter 5, we identify a shortcomingof the MDSDF model, namely, its inability

to specify multidimensional, multirate signal processing systems sampled on non-

rectangular lattices. In a multidimensional, discrete-time signal, there can be several

choices for the sampling geometry; that is, the periodic "grid'* from which samples are

taken. The straightforward extension of one-dimensional sampling leads to the so-called

rectangular sampling structure (also called arectangular lattice), andMDSDFis capable of

expressing systems dealing with rectangularly sampled signals. However, a more general

sampling structure in multiple dimension is a geometric lattice, andin general, the lattice

may not be a rectangular lattice. Non-rectangular lattices can be useful in practice because

the sampling densityrequired to represent the signal mightbe lowerthanwith anequivalent

rectangular lattice.

We review multidimensional signal processing concepts, and present a dataflow

model that is capable of expressing systems sampled on non-rectangular lattices. We

concentrate on static scheduling, and show that the problem of computing the balance

equations becomes fundamentally more difficult. In particular, thebalance equations in this

model include equations requiring the computation of so called "integer volumes" of

parallelepipeds. However, we are able to develop a method that allows these equations to

be solved, thereby permitting static schedules. A practical example using this model is

given. The problem of computing integer volumes turns out to be an interesting number-

theoretic problem and we give a partial solution to this problem attheendof Chapter 5. In

the final chapter, we present ourconclusions and directions for future research.

36

Synchronous Dataflow

2.1 Notation

Given a finite set P of positiveintegers,we denoteby gcd(P) the greatestcommon

divisor of P — the largest positive integer that divides all members of P, and we denote

the leastcommon multiple of the members of P by lcm(P). If gcd(P) = 1, we say that

the members of P are coprime. Given a finite set R of real numbers, we denote the largest

and smallest numbers in R by max(R) and min(R), respectively. Also, if r is a real

number, we denote the largest integer that is less than or equal to r (the "floor" of r) by

_rJ, and we denote the smallestintegerthat is greater than or equal to r (the "ceiling" of

f) by [r~\. Wedenote the number ofelements in a finite set S by |5|.

2.1.1 Graph Concepts

By a directed multigraph, we mean an ordered pair (V,E), where V and E are

finite sets, and associated with each ee E there are two properties src(e) and snk(e)

such that src(e), snk(e) e V. Each member of V is called a vertex of the directed

multigraph and each member of E is called an edge. If e is an edge in a directed

multigraph, we say that src(e) is the source vertex of e; snk(e) is the sink vertex of e;

e is directed from src(e) to snk(e); e is an output edge of srv(e); and e is an input

edge of snk(e).

37

Given two not necessarily distinct vertices v, and v2 in a directed multigraph

(V,E),we say that Vj is a predecessor of v2 if there exists ee E suchthat src(e) = vx

and snk(e) = v2; wesay that Vj is a successor of v2 if v2 is a predecessor of Vj; and we

say that Vj and v2 are adjacent if Vj isa successor orpredecessor of v2; and if vlf v2 are

distinct, then {v^ v2} iscalled an adjacent pair. Two subsets V,, V2 c V are adjacent if

there exist vertices Vj € Vx and v2 € V2 such that V! and v2 are adjacent. By asubgraph

of a directed multigraph G = (V,E), we mean the directed multigraph formed by any

V'cV together with the set of edges {e e E\(src(e\ snk(e) e V")} • We denote the

subgraph associated with the vertex-subset V by subgraph(V, G); if G is understood

from context, we may simply write subgraph{V'). A path in (V,E) is a nonempty

sequence el9e2,e3,... e E such that snk(ex) = src(e2), snk(e2) = src(e3) We

say that the path p = ex, e2, e3,... passes through each member of

Zp = (U{we(e/)})u(U{»*(*,)}),
i i

and we refer to the graph formed by Zp together with the set ofedges in p as the associated
graph ofp ..-Observe that the associated graph ofp is not necessarily a subgraph since it

does notnecessarily contain all of the edges whose source and sink vertices are members

of Zp. Given afinite path p = ex, e2,..., en, we say that p is directedfrom src{ex) to
snk(en). Apath that is directed from some vertex to itself is called a cycle or adirected
cycle, and a fundamental cycle is a cycle of which no proper subsequence is a cycle. A

directed multigraph isacyclic if itcontains no cycles. Finally, if e is the only edge directed

from src(e) to snk(e), then weoccasionally denote e by src(e) -> snk(e).

If (pvp2,...,pk) is a finite sequence of finite paths such that

Pi = Ki»*,\2—.^.n,). for I****, ^d ^Kn.) = OT(*i+i.i)' for
1 < i < (& - 1), then we define

((Pl> Pv •••» Pk)) ~ (el, 1' -» *1,«,» e2,1» ••" *2,n2> ••" e*. 1» •••> ^nA) •

Clearly, ((p^ />2,..., p^)> is apath from src{elx) to .*rt/:(eMt). Ifthere is apath from
V,- e Vto v•e V, then we say that vf is an ancestor of vy-, and Vj is adescendant of v,.
If v,- is neither a descendant nor an ancestor of vjy we say that vf. is independent of Vy
Given a directed multigraph and an vertex Vj in this graph, ancs(vj) denotes the set

38

consisting of v, and the set of ancestors of v;-, desciyj) denotes the set consisting of v;-
and the set of descendants of vjt and independent^j) denotes the set of vertices
independent of v . Finally, an edge is transitive if there exists another path between the

source and sink actors of the transitive edge.

A sequence of vertices (vlf v2..., v^) is a chain that joins Vj and vk if vl +j is

adjacent to v- for i = 1,2,..., (k - 1). We say that a directed multigraph is connected if

for anypair of distinct members A, B of Z, there is a chain thatjoins A and B. Given a

directed multigraph G = (V, E), there is a unique partition (unique up to a reordering of

the members of the partition) Vj, V2,..., Vn such that for 1£ i<nt subgraph(Vt) is

connected; and for each ee E, src(e), snk(e)e Vj for some j. Thus, each V,- can be

viewed as a maximal connected subset of V, and we refer to each Vi as a connected

component of G. Depth-first search can be used to find the connected components of a

directed multigraph in time that is linear in the number of vertices and edges.

A directed multigraph (V,£) is strongly connected if for each pair of distinct

vertices Vj, v2, there is a path directed from Vj to v2. We say that a subset V of vertices

in V is strongly connected if subgraph(V',(V,E)) is strongly connected. A strongly

connected component of (V,E) is a strongly connected subset V'cV such that no

strongly connectedsubsetof V properly contains V.

Given a directed multigraph (V,£), a vertex v of (V,E) is a root vertex of

(V, E) if there is no edge e in (V, E) such that snk(e) = v. A root strongly connected

component of (V, E) is a strongly connected component V of (V, E) such that

{e € E\(src(e) g V'and snk(e) e V')} = 0. Finally, if V is a connected component

of {VJE), then subgraph (V) is called a connected component subgraph of (VyE);

similarly, if V is a strongly connected component of (V,£), then subgraph (V) is a

strongly connected component subgraph of (V,E).

A topological sort of an acyclic directed multigraph (V,£) is an ordering

Vj, v2,..., viyi of the members of V such that for each ee£,

((srv(e) = vf) and(snk(e) = v;) => (i< j)); that is, the source vertex ofeach edge occurs

earlier in the ordering than the sink vertex. An acyclic directed multigraph is said to be

well-ordered if it has only one topological sort, and we say that an n -vertex well-ordered

directed multigraph is chain-structured if it has (n -1) edges. Thus, for a chain-

39

structured directed multigraph, there are orderings Vj, v2,..., v„, and elte2, ...,en_1 of

the vertices andedges, respectively, suchthateach et is directed from vf- to vl +j.

In the remainder of this thesis, by a "graph" or a "directed graph", we mean a

directed multigraph, unless otherwise stated.

2.1.2 Computational Complexity

When discussing thecomplexity ofalgorithms, wewill usethestandard O, Q., and,

0 notation. Afunction f(x) is 0(g(x)) if forsufficiently large *,/(*) isbounded above

by a positive real multiple of g{x). Similarly, f(x) is Q(g(x)) if f(x) isbounded below

by a positive real multiple of g(x) for sufficiently large x. Finally, f(x) is Q(g(x)) if it

is both 0(g(x)) and Q(g(x)).

Let x represent the size ofan input instance to some algorithm A. Suppose that the

running time ofthis algorithm, f(x), is represented as 0(g(x)). If the function g(x) is a

polynomial function of jc, then the algorithm issaid torun in polynomial time. If g(x) is

an exponential function ofx, then the algorithm is said torun inexponential time. Given

a problem instance, the solution returned by the algorithm is called the certificate.

Not all combinatorial problems have polynomial time algorithms. The class of

problems that can besolved inpolynomial time is called the class P. Amore general class

of problems, the class NP, are those that have the following property: a certificate

(solution) to the problem can be verified in polynomial time. There are a great many

combinatorial problems that we can easily show to be in NP but cannot show to be in P

because we are unable to come up with algorithms that solve the problem in polynomial

time. All known algorithms for these problems take exponential time. For reasons too

technical togo into here, ifNP * P, then there isa subset ofNP disjoint from P called the

set ofNP-complete problems. This class ofproblems has the property that if any problem

inthis class is shown tohave apolynomial time algorithm, then NP = P. We use standard

techniques of polynomial-time reductions to establish NP-completeness of certain

problems.

40

2.2 Synchronous Dataflow

Recall that in a dataflow graph, the data values on the edges are referred to as

tokens. Formally, an SDF graph is a directed multigraph inwhich each edge a has three

properties in addition to src (a) and snk(a):

• del(a), a nonnegative integer thatgives the number of initial tokens

associated with a. The number of initial tokens del(a) is also called

the delay of an edgebecause it can inducean offset in the execution of

the sink actor in relation to the source actor.

• prd(a), a positive integer that indicates the number of tokens

produced onto the channel corresponding to a by eachexecution of the

computation corresponding to src(a).

• ens(a), a positive integer that represents the number of tokens

consumed from a by each execution of snk(a).

We refer to a vertex of an SDF graph as an actor, and given an SDF graph G, we

represent the set of actors and the set of edges in G by actors(G) and edges(G),

respectively. If for each a e edges (G), prd(a) = ens(a) = 1 , then we say that G is

a homogeneous SDF (HSDF) graph.

Conceptually, each edge in G, corresponds to a FIFO (first-in, first-out) queue that

buffers the tokens that pass through the edge. The FIFO queue associated with an edge is

called a buffer for that edge, and the process of maintaining the queue of tokens on a buffer

is referred to as buffering. Each buffer contains an initial number of tokens equal to the

delay on the associated edge. A firing of an actor in G corresponds to removing cns(a)

tokensfromthe head of the bufferfor eachinputedge a, and appending pni(#) tokens to

the buffer for each output edge (5. Thus, a firing is only possible if for each input edge a,

there are at least ens (a) tokens on the corresponding buffer. After a sequence of 0 or more

firings, we say that an actor is fireable if there are enough tokens on each input buffer to

fire the actor. A schedule for G is a sequence S = /j/2/3..., which can be finite or

infinite, of actors in G. Each term /,- of this sequence is called an invocation of the

41

corresponding actor in the schedule; and for each actor N, we denote the j th invocation of

N in the schedule by N •, and we call j the invocation number of N •. The schedule that

consists of no invocations — the empty sequence — is called the null schedule. For each

i, /, is said to be an admissible firing if it is fireable immediately after fv ...,/,-_ j have

fired in succession. The schedule S = /j/2/3... is anadmissible schedule for G if /,.

is an admissible firing for each i. The process of successively firing the invocations in an

admissible schedule is called executing the schedule, and if a schedule is executed

repeatedly, each repetition of the schedule is calleda schedule period of the execution.

If e is anSDF edge, then the delayless version of e is anedge e' such that e' = e

if del(e) = 0, and if del(e)*0, then e' is the edge defined by src{e') = src{e),

snk(e') = snk(e), cns(e') = cns(e)t prd(e') = prd(e), and del(ef) = 0. If

G = (V, E) is an SDF graph, then G is delayless if del(e) = 0 for all e e £, and the

delayless version of G is the SDF graph defined by (V,E')» where

E' = {thedelayless version of e\ee E}. In words, the delayless version of G is the

graph that results from setting the delays on all edges to zero.

Consider the simple SDF graph in Figure 2-1. Each edge is annotated with the

number of tokens produced by its source actor and the number of tokens consumed by its

sink — for example, actor A produces three tokens per firing on its output edge and B

consumes two tokens from its inputedge.The "2D" next to the edge directed from A to

B indicates that this edge has a delay of 2. Now consider the schedule BACBA for this

example. As we fire the invocations in the schedule, we can represent the state of the

system — the number of tokens queued onthe buffers — with an ordered pairwhose first

and second members are, respectively, the number of tokens on the edge A —> B and the

number oftokens ontheedge B -> C. Then, since there isadelay of 2 ontheleftside edge,

the initial state of the system is (2,0). Thus, at the start, B is fireable, and as it fires, two

tokens are removed from the left edgeandone token is appended to the rightedge, so the

state becomes (0,1). Since A has no input edges, it can be fired at any time. Hence the

second invocation of the schedule is an admissible firing and its firing leads to the state

&h^&—<©
Figure 2-1 A simple SDF graph.

42

(3,1). It is easily verified that the remaining three invocations in the schedule are

admissible firings, and the sequence of buffer states that results from these remaining

firings is (3,0), (1,1), (4,1). Thus, BACBA isan admissible schedule for the SDF graph in

Figure 2-1. Incontrast, the slightly different schedule BA CBB isnot admissible, since only

one token resides on the input edge of B prior to the third invocation of B, so B is not

fireable.

If S = AjA2A3... is not an admissible schedule, then some Ai is not fireable

immediately after itsantecedents have fired. Thus, there isatleast one edge a such that (1)

snk{a) = A{ and (2) the buffer associated with snk(a) contains less than cns(a) tokens

just prior to the /th firing in S. For each such a, we say that S terminates on a at

invocation At. Clearly then, aschedule isadmissible ifand only if itdoes not terminate on

any edge.

Given a schedule S and an actor A, we define inv(A, S) to be the number of times

that S invokes A. For example, inv (A, BACBA) = 2.

We say that a finite schedule S is a periodic schedule if it invokes each actor at

least once and produces nonetchange in thesystem state (i.e, thenumber of tokens oneach

edge is the same after S has executed as before) — for eachedge a, (mv(s/r(a), 5)) x

prd(a) = (inv(snk(a)t S)) x cns(a). Forexample for the SDFgraph in Figure 2-1, we

saw that if the initial state is (2,0), the state after executing the schedule BACBA is (4,1).

Thus this schedule produces a net change of +2 tokens on edge A-» 5 and +1 token on

B —> C, so this schedule is not periodic.

Suppose that b is a vector ofpositive integers indexed by theactors in a connected

SDFgraph G. Non-connected SDF graphs canbe analyzed by examining eachconnected

component separately. By definition, a schedule that invokes eachactor A b(A) times is

a periodic schedule if and only if for eachedge a in G,

b(src(a))xprd(a) = b(snk(a))x cns(a). (2.1)

This system ofequations in the setofvariables {b(A)|(A e actors (G))} —consisting of

one equation for each edge in G — is known as the system of balance equations for G.

Clearly, aperiodicschedule exists for G if andonly if thebalance equations havea solution

43

whose components are all positive integers1. The balance equations can be expressed more

compactly in matrix-vector form as

Tb = 0, (2.2)

where I\ called the topology matrix of G, is a matrix whose rows are indexed by the

edges in G and whose columns are indexed by the actors in G, and whose entries are

defined by

T(a,A) = I
prd{a), if A = src{a)

-cns(a), if A = snk(a) (2.3)

0, otherwise

This formulation assumes that G does not containany self-loops, edges whose source and

sink vertices are identical. In such a case, there is a vertex a such that src(a) = snk(a),

and therefore equation 2.3 is self contradictory. In an SDF graph, a self-loop edge a

precludes theexistence a periodic schedule if prd(a) * cns(a); otherwise it hasno effect

on the existenceof a periodic schedule, and thus it can be ignoredin this analysis.

A periodic schedule exists if andonly if equation 2.2has a solution b where each

element of the vector b is a positive integer. From equation 2.2, it is evident that this

requires that the topology matrix T not have full rank.

We have the following theorem from [Lee86].

Theorem 2-1: A connected SDFgraphwith n actors has a periodic schedule if and only

if its topology matrix T has rank n - 1. Moreover, if its topology matrix T has rank

n - 1, then there exists a uniquesmallest integersolution q to the balanceequations

Tq = 0. Moreover, the entries in the vector q are coprime.

The reason that the rank of the topology matrixof a connected SDF graph with n

actors cannot be less than n - 1 is that such a graphmust have at least n - 1 edges. Each

of these edgescontributes a linearly independent row to the topology matrix. Addingmore

1. Recall that in ourdefinition ofperiodic schedule, wedo notrequire admissibility — a periodic schedule
need not be admissible.

44

edges to the graph adds rows to the topology matrix; however, adding rows to a matrix

cannot decrease its rank. Hence, the rank is at least n - 1.

Noticethat the graphmaynot haveanadmissible schedule. This will dependon the

number of delays on edges in a directed cycle. The topology matrix, and hence the

existence of a periodic schedule, doesnot depend on the delays in an SDF graph. Facts 2-

1-2-3 summarize some key properties that follow immediately from theorem2-1.

Fact 2-1: A positive-integer vector q is the repetitions vectorof a connected SDF graph

if andonlyif its components arecoprime and it satisfies the balance equations, Tq = 0.

Fact 2-2: Any positive-integer vector that satisfies the balanceequations is a positive-

integer multiple of the repetitions vector.

Fact 2-3: A schedule S for a connected SDF graph G is periodic if and only if the

repetitions vector qc exists and there exists a positive integer /0 such that S invokes

each actor A exactly J0qG(A) times.

Thepositive integer J0 in Fact 2-3 is called theblocking factor of the associated

schedule. If S is a periodic schedule, we denote the blocking factor of S by J(S), and if

J(S) = 1 we say that S is a minimal periodic schedule.

An example of a connected SDF graph that does not have a periodic schedule is

shown in Figure 2-2(a). The topology matrix for this SDF graph is

(a) (b)

Figure 2-2 (a) An SDF graph that does not have a periodic schedule,
(b) A slightly modified version that has a periodic schedule.

45

r=

3 -1 0

0 1 -1

2 0 -1

2 0 -1_

(2.4)

where each a; corresponds to the /th row and the /th vertex (in alphabetical order)

corresponds to the /th column. Observe that the bottom two rows of T are identical, and

the top three rows form a square matrix whose determinant is nonzero. Thus, the matrix

contains three linearly independent rows, so it has full rank, and there is no nontrivial

solution to 2.2.

To understand what is "defective" about this graph, observethat for each firing of

A, three firings of B are required to return edge ax to its initial state of having no tokens

queuedin its buffer, andthen three firings of C are required to return oc2 to its initial state.

However, since a3 is an input edge of C and A produces only two tokens per firing on

oe3, only two firings of C are possible for each firing of A. Thus, any infinite admissible

sequence of firings for this graph will produce an unbounded token accumulation on a},

ot2, or both.

If wechange prd(ax) to 2, the resulting SDF graph, shown in Figure 2-2(b), has

a periodic schedule. The topology matrix of this new SDF graphis

n =

2-1 0

0 1 -1

2 0 -1

2 0 -1_

(2.5)

It is easilyverified that the first two rows of V are linearly independent, and each

of the third and fourth rows is the sum of the first two rows. Thus, the rank of V is 2, one

less than the number of actors, so positive-integer solutions to (2.2) exist, and thus the

repetitions vector exists. The repetitions vector for Figure 2-2(b) is given by

q(A,£,C) = (1,2,2)\ (2.6)

46

Figure 2-3 An SDF graph that has a repetitions vector but does not
have an admissible schedule.

From (2.6), we see that ABCBC and ABBCC are minimal periodic schedules, and

ABABBCBCCC is a periodic schedule having blocking factor 2. All three of these

schedules are admissible.

This thesis is primarily concerned with schedules that are both periodic and

admissible, and we refer to such schedules as valid schedules. An SDF graph is consistent

if and only if it has a valid schedule, and we say that an SDF graph is sample rate

consistent if it has a periodic schedule. Thus, for SDF graphs, consistency implies sample

rate consistency, but the converse is not true: a sample rate consistent SDF graph that is

deadlocked is not consistent.

Clearly, an SDF graph is consistent if and only if each connected component

subgraph is consistent, and a necessary condition for a connected SDF graph to be

consistent is that the topology matrix does not have full rank. However, for an admissible

periodic schedule to exist, an SDF graph must also have a sufficient amount of delay in

each fundamental cycle. For example, consider the SDF graph in Figure 2-3. The

repetitions vector for this graph is given by

q(A,B,C) = (3,3,2)7, (2.7)

and thus periodic schedules exists. However, one can easily verify that there are only five

possible non-null admissible schedules for this SDF graph — £, BA, BAC, BACB, and

BACBA. Since none of these five schedules contains enough invocations for a periodic

schedule, we see that a valid schedule does not exist. If we increase delay on the output

edge of A from one to two, valid schedules, such as the periodic schedule BACBACBA,

exist.

47

Associated with any connected, consistent SDF graph G, given a positive integer

blocking factor 7, there is a unique directed graph, called an acyclic precedence graph

(APG), that specifiesthe precedence relationships between actorinvocations throughout J

successive minimalschedule periods for G [Lee87]. Each vertexof the APG corresponds

to an actor invocation. There is an edge directed from the vertex corresponding to

invocation Ai to the vertex corresponding to B if and only if at leastone token produced

by At is consumed by Bj. As a simple example, Figure 2-4 below shows the APG for
Figure2-1 andblockingfactor 1. See [Sih91] for an efficientalgorithm that systematically

constructs the APG.

Finally, given a sample rate consistent, connectedSDF graph G and an edge a in

G, we denote the total number of tokens consumed by snk(a) in a minimal schedule

period by TNSE(a, G); that is

TNSE(a,G) = qG(snk(a))x cns(a).

Since in a periodic schedule, the numberof tokensproducedon an edge equals the number

of tokens consumed, we also have that TNSE(a, G) = qG(sre(a)) xprd(a). If G is

understood from context, then we may suppress the second argument and write TNSE(a)

in place of TNSE(a, G).

2.3 Computing the Repetitions Vector

The repetitions vector can be computed efficiently by applying depth-first search;

see [Bhat96a] for an algorithm. Assuming the production and consumption parameters on

©

©
Figure 2-4 The acyclic precedence graph for Figure 2-1 and unity blocking
factor.

48

the edges are bounded — so that computing the least common multiple of two numbers is

an elementary operation — the algorithm in [Bhat96a] has time complexity that is linear in

the number of actors and edges in the input SDF graph (that is, its running time is given by

e(\edges(G)\ + \actors(G)\).

2.4 Constructing a Valid Schedule

If a connected SDF graph is consistent and the repetitions vector is computed, a

valid schedule can be constructed. In [Lee87], Lee and Messerschmitt define a class of

scheduling algorithms, called class-S algorithms, that construct valid schedules given a

positive integer multiple of the repetitions vector r (r = kq for some positive integer k).

A class-S algorithm maintains the state of the system as a vector b that is indexed by the

edges in the input SDF graph. A class-S algorithm is any algorithm that repeatedly

schedules fireable actors, updating b as each actor is fired, until either no actor is fireable

or until all actors have been scheduled exactly the number of times specified by the

corresponding component of r. Thus, once an actor A has been scheduled r(A) times, a

class-S algorithm does not schedule A again. Lee and Messerschmitt show that a class-S

algorithm constructs a valid schedule if and only if the SDF graph in question is consistent

[Lee87]. A simple implementation of the above idea of constructing a valid schedule has a

running time given by 0(1fJ0 +1£|), where G = (V, E) is the input SDF graph,

/ = X r(A),
A e actors(G)

and fi (f0) *s tne maximum over all actors of the number of input (output) edges that are

incident to any actor.

2.5 Determining Whether an SDF Graph Deadlocks

While deadlock in an SDF graph canbe detected by simulation, the number of steps

required in the simulation can be as high as ^q(v). This number is not apolynomial
function of the size of the input graph; hence, detecting deadlock in this manner is not an

49

efficient method. However, we can derive a sufficient condition from the Karp-Miller

integer programming formulation in [Karp66] for a simple SDF cycle in the following

manner. Firstly, we statethe theorem from [Karp66] as it applies to SDFgraphs (recallthat

SDFgraphs area special caseof computation graphs). Consider theSDFcycle in figure 2-

5.

Theorem 2-2: [Karp66] The cycle in figure 2-5deadlocks if and only if the following

integer program has a non-negative integer solution for the x(i), l<i<n:

Dx (l-Wx) Un

D2 (1-W2) Ux
x{1) > ^ +1—-^ + -ijc(1) (2.8)

W2 W2 W2

Dn (l-W„) Un_x

vr n rr n n

From the above, we can derive the following corollary by observing that SDF graphs of

interest to us are always sample rateconsistent. For anycycle, this means that the product

of the numbers consumed around the cyclehas to be equal to the product of the numbers

produced around the cycle.

Corollary 2-1: If the inequality

Al)Ul »W »(A2P»VA3r --» -->^An)N
wlV D2

\

Figure 2-5 A simple SDF cycle.

Dl

50

UxU2...Un_xrDx 1-W,n U2...Un_x,D2 1-W2n
.W„ \Wl Wx J W3...Wn \W2 W2) '"

(2.9)
w2.

(Dn l-Wn\
_£ + —-5|>0

holds, then the cycle does not deadlock.

Proof: Supposethat the cycledoesdeadlock. Then there is a solution to the systemof

inequalities2.8; the left hand side of 2.9 is derivedfrom some simple algebraic

manipulation of 2.8 and the manipulation shows that it is less than or equal to 0. Hence,

the contrapositive of this implies t£at there is no solution if it is greater than 0, and this

implies that the cycle does not deadlock by Theorem 2-2. QED.

The corollary providesa quick algebraic test to see if the cycle does not deadlock;

if thetestis negative, then wehave toresort to simulation todetect deadlock. In graphs that

have few cycles, checking each cycle by this method might be much quicker than

simulation. The Karp-Miller theorem also establishes that the problem of detecting

deadlock is in NP,since a non-deterministic algorithm wouldsimplyexhibitthe solution to

the integer programif the graph deadlocks. The theoremguarantees that if the solution is

valid, then the graph does deadlock.

2.6 Scheduling to Minimize Buffer Usage

One desirable optimization criterion is the amount of buffer space that is required

bythe schedule. Ifwe assume amodel ofbuffering where there isone buffer onevery edge,

then the amount of buffer space required on each edge is given by the maximum number

of tokens queued on that edge during one period of the schedule. It is easy to see that

different valid schedules can have vastly different buffering requirements; forthegraph in

Figure 2-1, the schedule AABBBCCC requires 11 spaces in all, while the schedule

BCABCABC requires 5 spaces. This section develops a heuristic thatattempts togenerate

a schedule that minimizesbufferingrequirements.

Sincean SDFschedule in general can haveup to

51

A e actors(G)

actor appearances, algorithms that attempt to construct minimum-buffer schedules can take

0(1) steps or more to execute. Hence, these algorithms do not run in time that is

polynomial in the sizeof input SDFgraph (an algorithm would run in time polynomial in

the size of the SDF graphif its running timewerea polynomial function of N, the number

of vertices in the graph, and N •log(/>) where P is the maximum of all of the produced/

consumed parameters in the SDF graph).We will therefore require our algorithms for this

purpose to run in time that is a polynomial function of 0(1), preferably a linear function.

However, as the theorem below shows, the problem of computing a minimum buffer

schedule for even an arbitrary homogenous SDF graph is NP-complete;hence, we have to

rely on heuristics.

2.6.1 NP Completeness

Formally, the problem HSDF-MIN-BUFFER is defined as follows: Given an

arbitrary homogenous SDF graph G = (V,E), with arbitrary numbers of delays on each

edge, and a positive integer K, is there a valid schedule for G that has a total buffering

requirement of K or less, assuming that there is a buffer on every edge?

Definition 2-1: Let DT = £ del(u, v).
(«, v)e E

Observation 2-1: Any valid, minimal schedule for an HSDFgraphhas a buffering

requirement B that satisfies DT <B<DT + \E\.

Proof: In an HSDF graph,each actorneedsto be fired only once in any periodicschedule.

If on any edge (w, v), src((u, v)) fires before snk((u, v)), then the maximum number of

tokens queued is del((u, v)) + 1. If snk((u, v)) fires before src((u, v)) (provided

del((u, v)) > 0) then the maximumnumberof tokens queued remains del((u, v)). In the

worst schedule, the source actor fires before the sink actor on every edge; this increases

the total amount of bufferingby \E\. In the best conceivable schedule, the sink actor fires

before the source on every edge (again, provided there is at least one delay on each edge),

52

resulting in the lower bound of DT.

Definition 2-2: The FEEDBACK ARC SET (FAS) problem is the following: given a

directed graph G = (V, A), and a positive integer K, does there exist a subset BczA

with |B| < K, suchthat B contains at leastoneedgefromevery directed cyclein G? This

problem is known to be NP-complete [Gare79].

Theorem 2-3: The HSDF-MIN-BUFFER problem is NP-complete.

Proof: The fact that HSDF-MIN-BUFFER is in NP is obvious. We reduce FEEDBACK

ARC SETto this problem to show completeness. LetG = (V,A), AT be an arbitrary

instance of the FAS problem. Let ti be the HSDF graph constructed from G by reversing
each edge in G and setting del(e) = 1 for each edge. We show that H contains a

schedule having a buffering requirement B < K + \A\ <=> there is a feedback arc set

A c A, \A\ <K in G. Observe that any permutation of theactors constitutes a valid

schedule for H since there is a delayon every edge.

Assume that H contains such a schedule. This means thatthere areatmost K edges

inH where the source actor ofthe edge fires before the sink actor, onevery other edge, the

sink actor of the edge fires before the source actor. Construct a new delayless graph

H' = (V,E) in which anedge (u,v) from G is in E if andonly if u fires before v in the

schedule. An edge (v,u) is in E if (u, v) is an edge in G and v fires before u in the

schedule. Hence, H is the same graph as G except that it has no delays and has reversed

edges wherever the sink actor fires before the source actor in the schedule for H. These

edges that are reversed in H% with respect to H are the same orientation as the

corresponding edges in G. Hence, the set of edges in H' that have the reverse orientation

with respect toedges in G, has cardinality at most K. Byconstruction, it is clear that the

schedule for H is also a valid schedule for H' since the schedule respects all of the

precedence constraints in //'. Since H% is delayless, and has a valid schedule, it must be

acyclic. Hence, reversing a subset of edges, with respect to G, where this subset has

cardinality at most K results in an acyclic graph; thissubset mustbe a solution to theFAS

instance since the set has to include at least one edge from each directed cycle from G.
Figure 2-6 showsan example.

53

Schedule: ABCDE

Figure 2-6 Example to illustrateproof ofTheorem 2-3. A filled dot
on an edge indicates a delay on that edge. The shaded edges in the IT
graph show the edges that are reversed w.r.t G

Now suppose that G has a feedback arc set A of cardinality less than or equal to

K.lnH, remove all of the edges corresponding to A to form a new graph H'. The graph

H' is now acyclic since at least one edge from every cycle has been removed. Construct a

schedule for H' in reverse topological order; this ensures that sink actors on all of the edges

fire before the source actors. This schedule is also valid for H. Moreover, in H, the

schedule is such that on at most K edges can we have the situation that the source actor

fires before the sink; hence,this schedulehasa bufferingrequirement of at most K + \A\.•

2.6.2 Heuristic for Minimum Buffer Scheduling

Figure 2-7 shows a simple algorithm that constructs schedules that attempt to

minimize buffer usage. A simpler variant of this algorithm has been used in both Gabriel

and Ptolemy programming environments for a number ofyears. A similar algorithm is also

given by Cubric and Panangaden in [Cubr93] where they establish its optimality for a

restricted set ofacyclic, delayless graphs. An actor in the algorithm is deferrable if any one

of its output edges that is not a transitive edge has at least as many tokens as consumed by

the sink actor on that edge in one firing.

Examples can easily be constructed where the algorithm fails to achieve the

minimum buffer usage. However, in practice, the algorithm does quite well and produces

schedules that are close to optimal even if not optimal. The algorithm can be made more

sophisticated by making the actor selection procedure in the else condition less greedy;

54

for example, by firing only actors that are in undirected cycles. However, it is an open

problemas to whether such modifications will give an optimal algorithm for a broad class

of graphs.

We close this section by proving a simple theorem about the lower bound on the

amount of buffering required on any edge in an SDF graph. This result is a generalization

of a result proved by researchers in the GRAPE project in [Ade94].

Theorem 2-4: For the 2-actor SDF graph depicted in Figure 2-8, the minimum amount of

buffering required on the edge over all possible valid schedules is given by

a + b - c + d mod c, where c = gcd(a, b),if 0<d<a + b-c, and by d otherwise.

Proof: Clearly, the minimum buffer schedule for this graph is such that B is invoked

whenever there are enough tokens on the edge to enable it. Also, the maximum number of

tokens will be reached after a firing of A and before a firing of B. The theorem claims that

a + b-c + d mod c is the maximum number of tokens queued. Tosee this, assume that it

is not; that in fact it is greater than this amount. Then it must be the case that the number of

tokens is at least equal to d mod c + ic where ic>a + b-c (thechangein the number of

tokens on the edge is a multiple of c since if A has been fired x times and B has been

fired y times, then thenumber of tokens on theedge is given by xa-yb + d andthis can

bewritten as ic + d mod c.) Since a + b- c is divisible by c, weget that ic-a>b. The

Procedure min-buf-schedule (SDF Graph G=(V,E)):
F = {fireable actors};

D ={deferrable(F)};

while (F*<}>)

if (F\D*$)

II fire an actor from F\D

else

// fire an actor that increases total
// number of tokens the least.

end iff

end while

Figure 2-7 A heuristic for generating a minimum bufferschedule.

©^o-5©
Figure 2-8 A simple2-actorSDF graph.

55

maximum number of tokens always occurs after a firing of A and before a firing of B;

hence, just before the maximum is reached, the number of tokens was

d mod c + ic-a^d mod c + b since ic-a>b. This shows that B was fireable at the

previous step andcontradicts the fact thatwe always fire it as soonas it becomes fireable.

It remains to showthatthisbound is tightand is in fact reached during the schedule.

This can be seen by a state enumeration argument. Since A is fired b/c times and B is

fired a/c times, the total number of states on theedgeis (a + b)/c. Sinceany state thatis

reached is of the form ic + d mod c, and the number of states in [0, a + b - c + d mod c]

of this form is precisely (a + b)/c, we conclude that the state a + b-c + d mod c is

reachable and that the bound is tight (no state can be repeated since by definition a valid

schedule for an SDF graph is one that returns the buffers to the initial state).

Suppose d>a + b-c. Initially, we can fire B enough times to get df = d mod b

tokens on the arc. Now suppose that we were to exceed d tokens on the arc during the

minimum buffer schedule. Then we would have ic + d' tokens for some i, and ic + d'>d

or iod- d' at some stagein the schedule. Since d - d' is a multiple of b, and thus c, we

have ic + d'>d + c. This number of tokens would have resulted after a firing of A; hence,

before A was fired, we would have had ic + d'-a>d + c-a tokens. Since d>a + b-c,

ic + d'-a>b and B was fireable when A was fired, contradicting the scheduling

strategy. Hence, we cannot exceed d tokens under the minimum-buffer scheduling

strategy. •

2.7 Related Work: Multiprocessor Scheduling

SDF graphs can be scheduled onto multiple processors easily. In this section, we

assume that the SDF graphis in fact an HSDF graph; this is not a restriction since any SDF

graph can be converted1 to an equivalent HSDF graph [Lee86]. Most forms of resource-

constrained (meaning we have some fixed number of processors for example)

multiprocessor scheduling (MS) problems areNP-hard; hence, we must resortto heuristics

1. However, the size of the HSDF graph is exponentially bigger than the SDF graph. Some recent work has
been done on scheduling the SDF graph onto a multiprocessor directly [Pino95b].

56

in general. However, there are several issues that must be dealt with when we generate

multiprocessor schedules for DSP applications. The traditional metric that one tries to

minimize is the makespan; this is the, time by which all tasks have finished executing. But

DSP applications are non-terminating; hence, we would like to generate schedules that

maximize the throughput (or minimize the iteration period1). These two metrics give rise

to two different forms of scheduling: Non-overlapped scheduling and overlapped

scheduling.

It is wellknownthat a fundamental upperboundon the throughputachievable in an

HSDF graph is given by the inverse of the maximum cycle mean [Reit68]:

X=MAX/eA|ggJ (2.10)

where A is thesetof allcircuits in thegraph, T(l) is the total computation time ofcircuit

/,and £>(/) is thedelay count of thecircuit /.A loopthatachieves thismaximum iscalled

acritical cycle. Aschedule foranHSDF graph is rate-optimal if theiteration-period forthe

schedule is equal to themaximum cycle mean (also called the iteration-period bound).

In non-overlapped scheduling, one only considers one iteration of the graph and

applies classical MS heuristics toschedule the precedence graph. This schedule is infinitely

repeated. However, since the algorithm overlooks the potential parallelism between the

iterations, schedules obtained by this method will not be throughput optimal in general.

There area couple of ways in which theperformance of a non-overlapped scheduler canbe

improved: byincreasing the blocking factor, and by retiming [Leis91]. Retiming isa way

of moving the delays around in thegraph so that thecritical path canbe lowered; this can

result in better schedules.

Increasing theblocking factor allows onetoconsider more thanjust oneiteration of

the graph while scheduling, and gives improved performance. However, an example graph

isgiven in [Lee86a] forwhich nonon-overlapped schedule ofany finite blocking factor can

achieve rate-optimal throughput. Even then, the question of choosing the "best" blocking

factor was posed and left as an open problem [Lee86]. Using max-algebra techniques

1. By an iteration, wemean theexecution of one schedule period of theSDF graph.

57

[Bacc93], this problem is analyzed thoroughly in [Murt94b], where the asymptotic

behavior of thecritical path in the precedence graph of blocking factor 7, as / is increased,

is shown to be cyclic in the following sense:, there exist constants T and p such that the

critical path in theprecedence graph of blocking factor J +p has weight given by

CP(J + p) = CP(J) + pA, V7 > T

where X is themaximum cycle mean intheoriginal graph, and p is an integer computable

from the graph in the following way: a particular type of transitive graph is derived from

the original HSDF graph. In this graph, the cyclicity of a maximal strongly connected

component is the greatest common divisor of the lengths of all the critical cycles. The

cyclicity of the graph is the least common multiple of the cyclicities of all the maximal

strongly connected components. The result allows us to conclude that the problem of

computing the "best" blocking factor is decidable, even though the algorithm for finding it

does not run in polynomial time.

In overlapped scheduling, the inter-iteration parallelism is fully taken into account,

and in the absence ofresource constraints, always leads to rate-optimal schedules [Reit68].

In [Murt94b] and [Parh91], an example graph is given for which no retiming or increase in

blocking factor can achieve a non-overlapped, rate-optimal schedule. Hence, overlapped

scheduling is fundamentally more powerful than non-overlapped scheduling. However,

much more work has been done in non-overlapped scheduling to devise heuristics based on

critical pathmethods formany resource constrained problems; forexample, minimizing the

interprocessorcommunication [Sih91], scheduling for a fixed number of processors, and

scheduling for fault tolerance. In contrast, there are few heuristics that generateoverlapped

schedules for these various practical scenarios; this is an interesting direction for future

research.

58

Looped Schedules

In this chapter, we develop scheduling techniques for SDF graphs that jointly

optimize for code-size compactness and for buffer memory usage as a secondary goal.

Code-size compactness is achieved by the organization of loops in the target code. Since

single appearance schedules have the maximum degree of code-compactness, the

algorithms and heuristics we present generate single appearance schedules that minimize

the amount.of buffer memory required by the schedule. We present an extensive

experimental study to demonstrate the usefulness of these techniques.

3.1 Looped Schedule Terminology and Notation

We first recall some basic concepts and terminology pertaining to uniprocessor

scheduling from [Bhat94b].

Definition 3-1: Given an SDFgraph G, a schedule loop is a parenthesized term of the

form (nTxT2...Tm), where n is a positive integer, and each Tt is either anactor in G or

another schedule loop. The parenthesized term (nTxT2...Tm) represents thesuccessive

repetition n times of the invocation sequence Tx T2... Tm. If L = (nTx T2... Tm) is a

schedule loop, wesaythat n is the iteration count of L, each Tt is an iterand of L, and

TxT2...Tm constitutes thebody of L. If thebodyof L is empty, that is if m = 0, we say

that L is a null schedule loop; except where otherwise stated, we assume that all schedule

loops are non-null. A looped schedule isa sequence VxV2...Vk, where each V,. iseither

59

an actor or a schedule loop. Since a looped schedule is usually executed repeatedly, we

refer to each Vi as an iterand of the associated loopedschedule.

When referring to a loopedschedule, we often omit the "looped" qualification if it

is understood from context; similarly, we may refer to a schedule loop simply as a loop.

Given a looped schedule S, we refer to any contiguous sequence of actors and schedule

loops in 5 (at any nesting depth) as a subschedule of S. For example, the schedules

(3AB)C and (2B(3AB)C)A are both subschedules of A(2B(3AB)C)A(2B), whereas

(3AB)CA is not. By this definition, S is a subschedule of itself, and every schedule loop

in S is a subschedule of S. If the sameinvocation sequence appears in morethanoneplace

in a loopedschedule,we distinguish each instanceas a separatesubschedule. For example,

in (3A(2BC)D(2BC)), there are twoappearances of (2BC), and thesecorrespondto two

distinctsubschedules. In this case, the content of a subschedule is not sufficient to specify

it — we must also specify the lexicalposition, as in "the second appearanceof (2BC)." If

S0 is a subschedule of S, wesay that S0 is contained in S, andwesay that S0 is nested

in S if S0 is contained in S and S0*S.

We'denote the set of actors that appear in a looped schedule S by actors(S), and

we denote the number of times that an actor A appears in S by appearances(A, S); thus,

actors((2(2B)(5A))) = {A, B},

actors(X(2Y(3Z)X)) = {X,Y,Z},

appearances(C,(3CA)(4BC)) = 2,

appearances (A, (2ABAC)(3A)) = 3.

Formally, 5 is a single appearance schedule if

appearances (A, S) = 1 VA.

As argued in [Bhat94b], if we neglect the code-size overhead associated with the

loops, any single appearancescheduleyields the smallest inline implementationof an SDF

graph with regard to code size. Most programmable DSPs have provisions to efficiently

manage loop indices and perform the loop,test in hardware, without explicit software

60

control; hence, the loop overhead is typically small. It is almost negligible compared to the

alternative of code-size explosion if a non-looped schedule is used.

Given a looped schedule S.and an actor A, .we define inv(A, S) to be the number

of times that S invokes A. Similarly, if S0 is a subschedule, wedefine inv (S0, S) tobe the

number of times that S invokes 50. For example, if S = A(2(3BA)C)BA(2B), then

inv(B,S) = 9, inv((3BA), S) = 2, and wv(first appearance of BA, S) = 6. Also, we

refer to the invocation sequence that a looped schedule S represents as the invocation

sequence generated by S. For example, the invocation sequence generated by

S = A(2(3BA)C)BA(2B) is ABABABACBABABACBABB. When there is no

ambiguity, we occasionally do hot distinguish between a looped schedule and the

invocation sequence that it generates.

A schedule loop is a one-iteration loop if its iteration count is 1. Although such

loops are usually useless in the implementation of a schedule, they are useful for analyzing

schedules, as will be apparent, for example, in Section 3.3. Since a one-iteration schedule

loop generates the same invocation sequence as its body, replacing the loop by its body

does not change the invocation sequence of an enclosing schedule. Thus, given an arbitrary

looped schedule S, if we select a one-iteration loop and replace it with its body, select a

one-iteration loop in the resulting schedule and replace it with its body, and repeat this

process until there are no one-iteration loops remaining, we will arrive at a new schedule

5' that generates the same invocation sequence as S and contains no one-iteration loops.

Thus, the following fact is obvious.

Fact 3-1: Given a looped schedule S, thereexists a looped schedule S' that generates the

same invocation sequence as S such that S' contains no one-iteration schedule loops, and

V(Ae actors (S)), appearances(A, S') = appearances(A, S).

Given a schedule S, an invocation / is said to be part of a subschedule S0 if /

occurs inaninvocation of 50.Forexample, intheschedule AA(2AB)BB, invocations A3,

A4,BX, and B2 are part of thesubschedule (2AB), whereas Ax, A2, B3,and B4 are not.

Given an SDF graph G, an edge a in G, a looped schedule 5 for G, and a nonnegative

integer i, we define P(a, i, S) to denote thenumber of invocations of sre (a) thatprecede

the ith invocation of snk(a) in S; and we define T(a, i, S) to denote the number of

61

tokens on a just prior to the i th invocation of snk(a) in an execution of S. For example,

consider the SDF graph in Figure 3.1 and let a denote the edge directed from B to C. Then

P(a, 2, BC(2ABC)) = 2, thenumber of invocations of B thatprecede invocation C2 in

the invocation sequence BCABCABC, and T(a, 2, BC(2ABC)) = 1.

We will occasionally need to refer to the relative lexical positions of actors in a

single appearance schedule. For this purpose, we define position(X, S) to be the number

of actors that lexically precede X in the single appearance schedule S. Observe that no

ambiguity arises in this definition since we apply it only to single appearance schedules.

For example, if S = (2(3£)(5C))(7A), then position(A, S) = 2, position (B,S) = 0,

and position (C, S) = 1. Formally, we define the lexical ordering of a single appearance

schedule S, denoted lexorder(S), to be the sequence of actors (AX,A2,..., An) where

{Aj, A2,..., An} = actors(S) and position(At,S) = i-l for each i. Thus,

lexorder((2(3B)(5C))(lA)) = (B, C,A). We will apply the following obvious fact

about lexical orderings.

Fact 3-2: If 5 is a valid single appearance schedule for a delayless SDF graph1, then

whenever X is an ancestor of Y, we have

position (X, S) < position (Y,S).

3.2 Buffering Model

Given a looped schedule S for an SDF graph G, we define the buffer memory

required by S, denoted buffer_memory(S), to be the number of storage units required to

implement the buffering for S if each buffer is mapped to a separate contiguous block of

memory. We assume that every token occupies one storage unit. Quantitatively, if

maxjokens (a,S) denotes the maximum number of tokens that are simultaneously queued

on edge a during an execution of the schedule 5, we have that

buffer_memory(S) = V max_tokens(CL, S).
cce edges(G)

1. Note that a consistent, delayless SDF graph is necessarily acyclic.

62

We define the buffer memory requirement of a schedule S, as

buffer_memory(S). In .Figure 3-1, if - S = BC(2ABC), then

max_tokens(A->B,S) = 4, , maxjokens(B->C,S)=\, and

buffer_memory(S) = 4+1 =5.

The amount of memory required for buffering may vary greatly between different

schedules. For example, the schedule (9A)(12£)(12C)(8Z>) has a buffer memory

requirement of 36+ 12 + 24 = 72, and the schedule (3(3A)(4fl))(4(3C)(2D)) has a

buffer memory requirementof 12 + 12+ 6 = 30 for the graph in Figure 3-1.

In the model of buffering implied by the "buffer memory requirement" measure,

each buffer is mapped to a contiguous and independent block of memory. This model is

convenient and natural for code generation, and it is the model used, for example, in the

SDF-based code generation environments described in [Ho88b, Pino95a, Ritz92].

However, perfectly valid target programs can be generated without these restrictions. For

example, another model of buffering(for a chain-structuredgraph) is to use a shared buffer

of size

max({q(Ni)xprd(Ni)\\ <i<K})

which gives the maximum amountof data transferredon any edge in one execution of the

single appearance schedule (q(Nx)Nx)(q(N2)N2)...(q(NK)NK), where K is the

number of vertices in the graph. Assuming that there are no delays on the graphedges, it

can be shown that via proper management of pointers, such a buffer suffices. For the

example graph3-1, this would imply a buffering requirement of 36 sinceon edge AB, 36

samples are exchanged in the schedule (9A)(12B)(12C)(8£>), and this is the maximum

over all edges.Moreover, the implementation of this scheduleusing a sharedbuffer would

be much simpler thanthe implementation of a more complicated nested schedule.

But thereare twoproblems withbuffer-sharing thatpreventits use as the model for

evaluating the buffering cost of single appearance schedules (even for chain-structured

Figure 3-1 A chain-structuredSDF graph.

63

©5L ^sp—^0 ^©
q=(1,50,100,4)T

Figure 3-2 Exampleto illustrate the inefficiency of using sharedbuffers,
graphs; the general case is more complicated). Consider the graph in Figure 3-2. The

shared-buffer cost for the schedule 5* = (A)(50B)(100C)(4Z>) for this graph is givenby

max({ 1 x 50,50 x 100,100 x 50,4 x 25}) = 5000.

However, with a buffering model where we have a buffer on each edge, the schedule

A(50fl(2C))(4D) requires total buffering of only 250 units. Of-course, we could attempt

sharing buffers in this nested looped schedule as well, but the implementation of such

sharing could be awkward.

Consider also the effect of having delays on the edges. In the model where we have

a buffer on every edge, having delays does not affect the ease of implementation. For

example, if we introduce d delays on edge BC in the graph in Figure 3-2, then we merely

augment the amount of buffering required on that edge by d. This is fairly straightforward

to implement. On the other hand, having delays in the shared buffer model causes

complications because there is often no logical place in the buffer to store the initial

samples since the entire buffer might be written over by the time we reach the actor that

consumes the delays. For instance, consider the graph in Figure 3-3. This graph is an SDF

abstraction of a possible system to do sample rate conversion between CD rates and DAT

rates; see Section 3.10 for more details. The repetitions vector for this graph is given by

(147,49,28, 32,160) . Supposethatwe wereto use the shared-buffer implementation for

schedule S1. We find that we need a buffer of size 224. After all of the invocations of A

have been fired, the first 147locations of thebufferare filled.Since B writesmore samples

than it reads, it starts writing at location 148 and writes 196 samples. When C begins

execution, it starts reading from location 148 and starts writing from location 120 (120 =

(148+196) mod 224). Actor C then writes 224 samples into the buffer. When D is invoked,

Figure 3-3 Example to illustrate the difficulty of using shared bufferswith delays.

64

it starts reading from location 120. Hence, if there were a delay on edge CD for instance,

the logical thing to do would be to have a buffer of size 225 (meaning that D would start

reading from location 119) and place the delay in location 119. However, location 119

would have been written over by A; hence, it is not a safe location. This shows that

handling delays in the shared buffer model can be quite awkward, and would probably

involve copying over data from a "delay" buffer of some sort.

For these reasons, this chapter focuses on the buffering model associated with the

"buffermemory requirement" measure. However, a simple extension of these techniques

to combine the above simple model of buffer sharing with the non-shared model is

presented later on for a more restricted class of graphs.

3.3 Factoring Schedule Loops

This section shows that in a single appearance schedule, common terms from the

iteration counts of inner loops can be "factored"into the iterationcounts of the enclosing

loops.An important practical advantage of factoring is that it may significantly reduce the

buffer memory requirement.

For example, consider the SDF graph in Figure 3-4. Here,

q(A, B, C, D) = (100,100,10, l)T, and one valid single appearance schedule for this

graph is (100A)(100£)(10C)D. With this schedule, prior to each invocation of C, 100

tokens are queued on each of the input edges of C, and a maximum of 10 tokens are

queued on the input edge of D. Thus 210 units of storage are required to implement the

buffering of tokens for this schedule

Now observe that this schedule generates the same invocation sequence as

(1(100A)(100B)(10C))Z). The main result developed in this section allows us to factor

the common divisor of 10 in the iteration counts of the three innerloops into the iteration

'1

Figure 3-4 An SDF graph used to illustrate the factoring

65

count of the outer loop. This yields the new single appearance schedule

(10(10A)(102?)C)D, for which at most 10 tokens simultaneously reside on each edge.

Thus, this factoring application has reduced the buffer memory requirement by a factor of

7.

There is, however, a trade-off involved in factoring. For example, the schedule

(100A)(100B)(10C)D requires 3 loop initiations per schedule period, while the factored

schedule (10(10A)(10B)C)D requires 21. Thus, the run-time cost of starting loops —

usually, initializing the loop indices—has increasedby the same factorby which the buffer

memory requirement has decreased. However, for programmable digital signal processors,

the loop-start-upoverhead is normally much smaller than the penalty that is paid when the

memory requirement exceeds the on-chip limits. Unfortunately, we cannot in general

perform the reverse of the factoring transformation; that is, moving a factor from the

iteration count of an outer loop to the iteration counts of the inner loops. This reverse

factoring transformation might be desirable in situations where minimizing the buffer

memory requirement is not critical.

Figure 3-5 shows a simple SDF graph that can be used to demonstrate that unlike

the factoring transformation, reverse factoring does not necessarily preserve the

admissibility of a valid single appearance schedule. It is easily verified that (WAB) is a

valid single appearance schedule (with blocking factor 10) for this graph, while the

reverse-factored derivative (10A)(102?) terminates on the edge B-»A at the second

invocation of A.

The following theorem establishes a sufficient condition for valid applicationof the

factoring transformation. The condition is that the sets of actors invoked by the factored

loops are all mutually disjoint. Clearly, this condition is always satisfied when working

with single appearance schedules, and thus a major consequence of Theorem 3-1 is that

Figure 3-5 An example used to illustrate that reverse factoring is
not always valid for single appearance schedules.

66

factoring cannot convert a valid single appearance schedule into a schedule that is not valid.

The theorem also establishes that the buffering requirement cannot be increased on any

edge by the factoring transformation. This is intuitively clear since, for any edge (A, B),

factoring reduces the number of times A is invoked before B is invoked, thus reducing the

number of tokens queued on the edge.

Theorem 3-1: Suppose that S is a valid schedule for an SDF graph G, and suppose that

L = (m(nxSx)(n2S2)...(nkSk)) is a schedule loop in 5 of any nestingdepth such that

(1 <i<j <k) => actors(S^ n actors(Sj) = 0. Suppose also that y is any positive

integer that divides nx, n2,..., nk; let V denote the schedule loop

(ym(y~ nxSx)(y~ n2S2)...(y~ nkSk)); and let S' denote the schedule that results from

replacing L with V in S. Then S' is a valid schedule for G, and

max_tokens(e, S') < max_tokens(e, S) \fe.

Proof: See [Bhat96a].B

Recall that the definition of buffermemory requirement assumes that each buffer is

implemented as a separate, contiguous block of storage, and thus Theorem 3-1 does not

necessarily apply under more flexible buffer implementations — such as when storage is

shared between multiple buffers that are active (contain unread data) in mutually disjoint

segments of time. In [Bhat94a], shared buffers and buffers that do not necessarily reside in

contiguous memory locations are discussed.

3.4 Reduced Single Appearance Schedules

Definition 3-2: If A is eithera schedule loop or a looped schedule, we say that A is

coprime if not all iterands of A are scheduleloops, or if all iterandsof A are schedule

loops, and there does not exist an integer j > 1 that divides all ofthe iteration counts of the

iterands of A.

For example, the schedule loops (3(4A)(2B)) and (10(7C)) are both non-

coprime, while the loops (5(3A)(75)) and (70C) are coprime. Similarly, the looped

schedules (4AB) and (6AB)(3C) areboth non-coprime, while the schedules A (IB) (1C)

and (2A)(3B) arecoprime. Fromthe discussion in the previous section, we know that non-

67

coprime schedules or loops may result in much higher buffer memory requirements than

their factored counterparts.

Definition 3-3: Given a single appearance schedule S, we say that S is fully reduced if

S is coprime and every schedule loop containedin S is coprime.

It can be shown that any fully reduced schedule has unit blocking factor [Bhat96a].

This implies that any schedule that has blocking factor greater than one is not fully reduced.

Thus, if we decide to implement a schedule that has nonunity blocking factor, then we risk

introducing a higher buffer memory requirement. The following theorem shows that we can

always convert a valid single appearance schedule that is not fully reduced into a valid fully

reduced schedule, and thus, we can always avoid the potential overhead associated with

using non-coprime schedule loops over their corresponding factored forms.

Theorem 3-2: Suppose that G = (V, E) is a consistent, connected SDF graph, and S is

a single appearance schedule for G. Then there exists a valid, fully reduced schedule S'

such that lexorder(S') = lexorder(S), and maxjohens(e, S') < max_tokens(e, S), for

each e € E..

Proof: See [Bhat96a]. •

3.5 Algorithms for Joint Code and Data Minimization

We want to compute a single appearance schedule that minimizes the buffer

memory requirement over all valid single appearance schedules. Thus, given the model of

buffer implementation defined in Section 3.2, we wish to construct a software

implementationthat minimizes the data memoryrequirement over all minimum code-size

implementations. As we show later, even for chain-structured SDF graphs, the number of

distinct valid single appearance schedules increases combinatorially with the number of

actors, and thus exhaustive evaluation is not, in a general, a feasible means to find the single

appearance schedule that minimizes the buffer memory requirement. Section 3.9 develops

an efficient dynamic programming algorithm that computes an optimal hierarchy of loops

given a lexical ordering of the actors. For well-ordered graphs, where there is only one

68

topological sorting of the vertices, the schedule that results from applying the dynamic

programming algorithm is guaranteed to be the optimal one. For graphs that have more than

one topological sort, we develop heuristics in Section 3.16 and Section 3.19 for generating

suitable topological sorts. These are nested optimally using the dynamic programming

algorithm.

3.6 R-Schedules

If A is either a schedule loop or a looped schedule, we say that A satisfies the R-

condition if one of the following two conditions holds.

(a) A has a single iterand, and this single iterand is an actor, or

(b) A has exactly two iterands, and these two iterands areschedule loops

having coprime iteration counts.

Wecall a validsingle appearance schedule S an R-schedule if S satisfies the R-condition,

and every schedule loop contained in S satisfies the R-condition.

In [Murt94a] it is shown that in a delayless chain-structured SDFgraph, whenever

a valid single appearance schedule exists, an R-schedule can be derived whose buffer

memory requirement is no greater than that of the original schedule. This result is easily

generalized to give thefollowing theorem for arbitrary consistent SDFgraphs.

Theorem 3-3: Suppose that G = (V, E) is a consistent SDF graph and 5 is a valid

single appearance schedule for G. Then there exists an R-schedule SR for G such that

max_tokens(e, SR) < max_tokens(e, S) for all e € E, and lexorder(SR) = lexorder(S).

Proof: See [Bhat96a] or [Murt94c].

3.7 The Buffer Memory Lower Bound for Single Appearance
Schedules

Given a consistent SDF graph G, there is an efficiently computable upper and

lower bound onthebuffer memory requirement over allvalid single appearance schedules.

The lower bound can be derived easily by examining a generic two-actor SDFgraph, as

69

shown in Figure 3-6(a). From thebalance equations it is easily verified that the repetitions

vectorfor thisgraphis givenby q(A,B) = (q/g, p/g), where g = gcd({p,q}), andthat

if d< (pq)/g, then the only R-schedule for this graph is Sx = ((q/g)A)((p/g)B). From

Theorem 3-3 it follows that if d<(pq)/g, then

max_tokens((A,B),Sx) = ((pq)/g + d) is a lower bound for the buffer memory

requirement of the graphin Figure 3-6(a). Similarly, if d £ (pq)/g, then there are exactly

two R-schedules — Sx and 52 = ((p/g)B)((q/g)A). Since

max_tokens((A,B),S2) = d, we obtain d as a lower bound for the buffer memory

requirement. Thus, given a valid single appearanceschedule S for Figure 3-6(a), we have

that

(d <£2j=» (max_tokens((A, B), S)>(^- +</T), and

(d>£%)=* (maxjokens((A,B),S)Zd). (3.1)

Furthermore, if (A, B) is an edge in a general SDF graph, it is easy to show that the

projection of a valid schedule S onto {A, B}, which is a valid schedule for

subgraph({A, B}), always satisfies

maxjokens((A,B), projection(S, {A, B})) = maxjokens((A,B),S). (3.2)

It follows that the lower bound defined by (3.1) holds whenever (A, B) is an edge

in a consistent SDF graph G, S is a valid single appearance schedule for G,

prd((A,B)) = p,cns((A,B)) = q, and g = gcd({p,q}). We have motivated the

following definition.

Definition 3-4: Given an SDF edge e, we define the buffer memory lower bound

n-,D

(a) ^—<b)Wp dD qV.y 2
n2D

(a) (b)

Figure 3-6 Examples used to develop the buffer memory lower bound.

70

02 D \Q>, J©
Figure 3-7 An SDF graph that does not have a BMLB schedule.

(BMLB) of e, denoted BMLB(e), by

™t», * \(r\(e) +del(e))if(del(e)<X](e))
BMLB(e) = < , where

[(del(e)) if (del(e)Zr\(e))

, v = prd(e)cns(e)
Wj gcd({prd(e), cns(e)})

If G = (V, E) is an SDF graph, then

(XBMLB(e)^

is called the BMLB of G, and a valid single appearance schedule 5 for G that satisfies

max_tokens(e, S) = BMLB(e) for all e e £ is called a BMLB schedule for G.

In Figure 3-7, we see that BMLB((A,B)) = 3, and BMLB ((B, C)) = 3. Thus, to

implementany single appearance schedule for this graph, at least three memorywords will

be required to implement the edge (A, B), and at least three words will be required for

(B, C). Furthermore, a valid single appearance schedule for Figure 3-7 is a BMLB

schedule if and only if its buffer memory requirement equals 6. It is easily verified that

only two R-schedules for Figure 3-7 exist — (3A(2B))(2C), and (3A)(2(3£)C); the

associated buffer memory requirements are 3 + 6 = 9 and 7 + 3 = 10, respectively.

Thus, a BMLB schedule does not exist for Figure 3-7.

In contrast, the SDF graphshown in Figure 3-8 has a BMLB schedule. This graph

results from simply interchanging the production and consumption parameters of edge

(B, C) in Figure 3-7. Here,jq (A, B, C) = (1,2,6), the BMLB valuesfor both edges are

®r~D—i&3 J©
Figure 3-8 An SDF graph that has a BMLB schedule.

71

again identically equal to 3, and A(2B(3C)) is a valid single appearance schedule whose

buffer memory requirement achieves the sum of these BMLB values.

The following fact is a straightforwardextension of the development of the BMLB.

Fact 3-3: Suppose that G is an SDF graph that consists of two vertices A, B and n > 1

edges ex, e2, ...,en directed from A to B. Then (a) if del(e() > r)^) for all

j € {1,2,..., it}, then (qG(B)B)(qG(A)A) is a BMLB schedule for G; (b) otherwise,

(Qc^)^)(^g(^)^) 1S an optimal schedule — that is, it minimizesthe buffer memory

requirement over the two valid minimal single appearance schedules — for G, and it is a

BMLB schedule if and only if del(e{) <Ti(ef) for 1< i <nl.

For example, in Figure 3-6(b), let ex denote the upperedge, and let e2 denote the

lower edge. Then r\(ex) = r\(e2) = 6, and (2B)(3A) is a BMLB schedule if

del(ex),del(e2)>6. Similarly, if del(ex),del(e2)<6, then it is easily verified that

(3A)(2fi) is a BMLB schedule. However, if del(ex)<6 and del(e2)>6, then

(3A)(2Z?) is optimal, but is not a BMLB schedule since in this case

max_tokens(e2,(3A)(2B)) = (del(e2)+ 6), while BMLB(e2) = del(e2).

Fact 3-4: If G = (V,E) is a connected, consistent, acyclic SDF graph, del(e)<T[(e)

for all e e E, and S is a BMLB schedule for the delayless version of G, then 5 is a

BMLB schedule for G.

Proof: Let G' denote the delayless versionof G. If S is a BMLB schedule for G', then S

is a valid schedule for G that satisfies

maxjokens(e, S, G) = max_tokens(e, S, G') + del(e) for all e € E. It follows from

Definition 3-4 that S is BMLB schedule for G. •

Fact 3-5: If G is a connected, consistent SDF graph and e is an edge in G, then

TNSE(e, G)
T\(e) =

pG(src(e), snk(e))'

1. Note that inthis case, (qG(A)A)(qQ(B)B) isthe only valid minimal single appearance schedule.

72

Recall that TNSE(e, G) is the total number of samples exchanged in one complete cycle

of a minimal schedule on edge e in graph G, and pG(src(e), snk(e)) is the gcd of the

repetitions of stv(e) and snk(e).

Proof: From the balance equations,

TNSE(e, G) qG(src(e))prd(e)
pG(src(e), snk(e)) gcd({qG(src(e)), qG(snk(e))})

_ qG(src(e))prd(e)
gcd({qG(src(e)), qG(src(e))(prd(e)/cns(e))})'

Multiplying the numerator and denominator of this last quotient by cns(e), andrecalling

that gcd(ka, kb) = kgcd(a, b), we obtain the desired result. •

We conclude this section by defining an obvious, efficiently computable upper

bound for single appearance schedules that have unit blocking factor. Clearly, if

G = (V, E) is a connected, consistent SDF graph, and S is a unit blocking factor single

appearance schedule for G, we have

buffer_rnemory(S)< £ (TNSE(e) +del(e)).
ee E

We refer the RHS of thisinequality as the buffer memory upper bound (BMUB)

forG.

In Figure 3-8, q (A, B, C) = (1,2, 6), andtheBMUB for this graph is 9.

3.8 The Number of R-Schedules

Now let en denotethe number of R-schedules for an n-actorchain-structured SDF

graph. Trivially, for a 1-actor graph there is only one schedule obtainable bytherecursive

scheduling process, so e, = 1. For a 2-actor graph, there is only one edge, and thus only

one choice for i, i = 1. Since for a 2-actor graph, left(1) and right(1) both contain only

one actor, we have e2 = ex x zx = 1. For a 3 -actor graph, left(1) contains 1 actor and

right(l) contains 2 actors, while left(2) contains 2 actors and right(2) contains asingle

73

actor. Thus,

£3 = (the number of R-schedules when (1= 1))
+ (the number of R-schedules when (1 = 2))

= (the number of R-schedules for left(I))
x (the number of R-schedules for right(2))

+(the number of R-schedules for left(2))
x (the number of R-schedules for right(1))

= (£1X£2) +(£2Xe1) = 2£j£2.

Continuing in this manner, we see that for each positive integer n > 1,

/i-l n-l

En = ^T (the number of R-schedules when (i =k)) = ^ (tkxzn_k). (3.3)
*=i Jfc = 1

The sequence of positive integers generated by (3.3) with Ex = 1 is known as the

set of Catalan numbers, and each e, is known as the (/ —1) th Catalan number. Catalan

numbers arise in many problems in combinatorics; for example, the number of different

binarytreeswith n vertices is given by the nth Catalan number, £n. It can be shown that

the sequence generated by (3.3) is given by

en =J(2„"_"12).forn= 1,2,3 (3.4)

where (? J- — ^, »and it can be shown that the expression on the right
hand side of (3.4) is Q(4"/n) [Corm90].

For example, the chain-structured SDF graph in Figure 3-1 consists of four actors,

so (3.4) indicates that this graph has Ji oJ= 5 R-schedules. The R-schedules for Figure
3-1 are (3(3A)(45))(4(3C)(2D)), (3(3A)(4(1£?)(1C)))(8D),

(3(1(3A)(4B))(4C))(8Z>), (9A)(4(3(1B)(1C))(2D)), and

(9A)(4(3B)(1(3C)(2D))); and the corresponding buffer memory requirements are,

respectively, 30, 37, 40, 43, and 45.

74

3.9 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer memory

requirement for a chain-structured SDF graph can be formulated as an optimal

parenthesization problem. A familiar example of an optimal parenthesization problem is

matrix chain multiplication [Corm90]. In matrix chain multiplication, we must compute the

matrix product MxM2...Mn, assuming that the dimensions of the matricesarecompatible

with one another for the specified multiplication. There are several ways in which the

product can be computed. For example, with n = 4, one way of computing the product is

(MX(M2M3))MA, where the parenthesizations indicate the order in which the multiplies

occur. Suppose that Mx,M2,M3,M4 have dimensions 10x1,1x10,10x3,3x2,

respectively. It is easily verified that computing the matrix chain product as

((MXM2)M3)M4 requires 460 scalar multiplications, whereas computing it as

(MX(M2M3))M4 requires only 120 multiplications (assuming that we use the standard

algorithm for multiplying two matrices).

Thus, we would like to determine anoptimalway of placing the parentheses so that

the total number of scalar multiplications is minimized. This can be achieved using a

dynamic programming approach. The key observation is thatanyoptimal parenthesization

splits the product MxM2...Mn between Mk and Mk +X for some it in the range

l<fc<(/t-l), and thusthe costof thisoptimal parenthesization is the costofcomputing

the product MxM2...Mk, plus the cost of computing Mk +xMk +2...Mn, plus the cost of

multiplying these two products together. In an optimal parenthesization, the subchains

MxM2...Mk and Mk+xMk +2...Mn must themselves be parenthesized optimally. Hence

this problem has the optimal substructure property and is thus amenable to a dynamic

programming solution.

Determining the optimal R-schedule for achain-structured SDF graph is similar to

the matrix chain multiplication problem. Recall the example of Figure 3-1. Here

q(A,B, C,D) = (9,12,12,8)r; an optimal R-schedule is (3(3A)(4B))(4(3C)(2D));
and the associated buffer memory requirement is 30. Therefore, as in the matrix chain

multiplication case, the optimal parenthesization (of the schedule body) contains abreakin

the chain at some k e {1,2,..., (ft - 1)}. Because the parenthesization is optimal, the

75

chains tothe left of k and tothe right of k must both beparenthesized optimally. Thus, we

have the optimal substructure property.

Now given achain-structured SDF graph G consisting ofactors A,, A2,..., An and

edges otj, a2,..., a„_x, such that each ak is directed from Ak to Ak+ x, given integers

i, j in therange l£i<j<n, denote by b[i, j] theminimum buffer memory requirement

over all R-schedules for subgraph({AiyAi+x,..., A;},G). Then, the minimum buffer
memory requirement over all R-schedules for G is b[1, ft]. If 1< i < j < n, then,

b[i,j] = mm({(W,/:]+^+l,y] +c|.^])|(i</:<7)}), (3.5)

where b[i, i] = 0 for all i ,and c, Ak] is thememory costatthe split if we split thechain

at Ak. It is given by

c r*i = gG(^)p/rf(og
iJ J gcd({qG(Am)\(i<m<j)})' K' }

The gcd term in the denominator arises because, the repetitions vector q' of

^raPH({Ai,Ai+l AjhG) satisfies ,'(V =̂ jffig^<j)}y «*
all/>e {/, i+l,...,;}.

A dynamic programmingalgorithmderived from the above formulation is specified

in Figure 3-9. Inthisalgorithm, first thequantity gcd({qG(Am)\ (i < m < j)}) is computed

for each subchain A,-, Al+j,..., A •. Then the two-actor subchains are examined, and the

buffer memory requirements for these subchains are recorded. This information is then

used to determine the minimum buffer memory requirement and the location of the split

that achieves this minimum for each three-actor subchain. The minimum buffer memory

requirement for each three-actor subchain At,At+x, At+2 is stored inentry [/, i +2] of the

array Subcosts, and the index of the edge corresponding to the split is stored in entry

[i, i + 2] ofthe SplitPositions array. This datais then examined to determine the minimum

buffer memory requirement for each four-actor subchain, and so on, until the minimum

buffer memory requirement for the n -actor subchain, which is the original graph G, is

determined. At this point, procedure ConvertSplits is called to recursively construct an

76

procedure ScheduleChainGraph

input: a chain-structured SDF graph G consisting ofactors Ax, A2,..., An

and edges ax, a2,..., a„ _x such that each a,- isdirected from At to Ai+X.

output: an R-schedule body for G that minimizes the buffermemory requirement.

for i = 1,2,..., ft I* Compute the gcd's of all subchains 7

GCD[i,i] = qc(A,.)

for; = (i+l),(i + 2), ...,ft

C5CD[/,y] = gcd({GCD[i,j-l),qG(Aj)})

fori = 1,2, ...,ft Subcosts[i, i] = 0;

for chain_size = 2, 3, ...,n '

for right = chain_size, chain_size + 1,..., n

left = right - chain_size + 1;

min_cost = «©;

for i = 0,1, ...,chain_size-2

split.cost = (qG(Aleft +l)/GCD[left,right])xpft/(alefl +I);

total_cost = split_cost + Subcosts[left, left +1] + Subcosts[left +i + 1, right];
"if (total_cost < min_cost)

split = i; min_cost = total_cost

Subcosts[left, right] = min_cost; SplitPositions[left, right] = split;
output ConvertSplits(l,«); I* Convert the SplitPositions array into an R-schedule 7

procedure ConvertSplits(L, R)

implicit inputs: the SDF graph G and the GCD and SplitPositions arrays
of procedure ScheduleChainGraph.

explicit inputs: positive integers L and R such that \<L<R<n = \actors(G)\.
output: An R-schedule body for subgraph({AL, AL+X, ...,AR},G) that minimizes
the buffer memory requirement.

if (L = R) output AL
else

s = SplitPositions[L, R]; iL = GCD[L,L + j]/GCD[L, R];

iR = GCD[L + s+l,R]/GCD[L,R];

output (iLConvertSplits(L, L+5))(/^ConvertSplits(L+s + 1,R));

Figure 3-9 Pseudo-code for the dynamic programming
algorithm to schedule a chain-structured graph.

77

optimal R-schedule from a top-down traversal of the optimal split positions stored in the

SplitPositions array.

Assuming that the components of qG are bounded, which makes the gcd

computations elementary operations, it is easily verified that the time complexity of

ScheduleChainGraph is dominatedby the time required for the innermost for loop — the

(for i = 0,1,..., chain_size - 2) loop — andtherunning timeof oneiteration of thisloop

is bounded by a constant that is independent of n. Thus, the following theorem guarantees
3

that under our assumptions, the running time of ScheduleChainGraph is 0(n) and

Q(ft3).

Theorem 3-4: The total number of iterations of the (for i = 0,1,..., chain_size - 2)
3 3

loop that are carried out in ScheduleChainGraph is 0(n) and Q(w).

Proof: This is straightforward.

3.10 Example: Sample Rate Conversion

Digital audio tape (DAT) technology operates at a sampling rate of 48 kHz, while

compact disk (CD) players operate at a samplingrate of 44.1 kHz. Interfacing the two, for

example, to record a CD onto a digital tape, requires a sample rate conversion.

The naive way to do this is shown in Figure 3-10(a). It is more efficient to perform

the rate change in stages. Rate conversion ratios are chosen by examining the prime factors

160
(a)

147

\ t HAT

I * Uni

If ! c

•V©MSMJ)
(b)

Figure 3-10 (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate system.

DAT

78

2 2 2 2
of the two sampling rates. The prime factors of 44,100 and 48,000 are 2 3 5 7 and

273153, respectively. Thus, the ratio 44,100 :48,000 is 3172:2551, or.147 : 160. One
way to perform this conversion in four stagesis 2:1,4:3,4:7, and 5:7. Figure 3-10(b)

shows the multistage implementation. Explicit upsamplers and downsamplers are omitted,

and it is assumed that the FIR filters are general polyphase filters [Buck91].

Here q(A,B, C,D,E,F) = (147,147,98,28, 32,160)7; the optimal looped
schedule given by our dynamic programming approach is

(7(7(3A2?)(2C))(4D))(32£(5F)); and the associated buffer memory requirement is

264. In contrast, the alternative schedule (147A)(1475)(98C)(28I>)(32£)(160F) has a

buffer memory requirement of 1021 if a separate buffer is used foreachedge and abuffer-

memory requirementof 294 if one shared buffer is used. This is an important savings with

regard to current technology: a buffer memory requirement of 264 will fit in the on-chip

memory of most existing programmable digital signal processors, while a buffer memory

requirement of 1021 is too high for all programmable digital signal processors, except for

a smallnumberof the most expensive ones. The savings of 30 (10 %) over using a single

shared buffer can alsobe significanton chips that only have on the orderof 1000 words of

memory. It can be verified that the latency of the optimally nested schedule is given by

146T + EA + EB + 2EC + 4ED + EE, as opposed to

1467+EA + 141EB +98£c +28ED +32EE for thenaive schedule. If we take T = 500

(for example, a 22.05Mhz chip has 22.05Mhz/44.1khz = 500 instruction cycles in one

sample period of the CD actor), and EA = 10, EB = Ec = ED = EE = 100, then the two

latencies are 73810 and 103510 instruction cycles; the nested schedule has 29% less

latency.

One more advantage that a nested schedule can have over the naive schedule with

shared buffering is in the amount of input buffering required. Some DSP chips have a

feature where a dedicated I/O manager can write incoming samples to abufferin on-chip

memory, the size of which can be programmed by the user. If the single appearance

schedule spans more than one sample period, then input bufferingis a useful feature since

it avoids theneedfor interrupts. Chips that have inputbuffering include theAnalog Devices

ADSP 2100. If we computethe amount of inputbufferingrequired by the naive schedule,

79

we find that it is ((147 +98 + 28 + 32)100+160 x 10)/500 = 65, whereas for the

optimally nested schedule, it is given by (100+200+400 +3200+ 1600)/500 =11.

3.11 An Efficient Heuristic

Our dynamic programming solution for chain-structured graphs runs in 0(m)

time, where m is the numberof actors. As a quickeralternative solution, we developed a

more time-efficient heuristic approach. The heuristic is simply to introduce the

parenthesization on the edge where the minimum amount ofdatais transferred. This is done

recursively for each of the two halves that result. The running time of the heuristic is given

by the recurrence

T(n) = T(n -k) + T(k) + 0(n), (3.7)

where k is the actor at which the split occurs. This is because we must compute the gcd of

the repetitions vector components of the k actors to the left of the split, and the gcd of the

repetitions of the n-k actors to the right. This takes 0(n) time assuming that the

repetitions vector components arebounded. Computing the minimum of the data transfers

takes a further 0(n) time since there are 0(n) edges to consider. The worst case solution

to this recurrence is 0(n), but the average case running time is 0(n»Log (n)) if

k = Q(n).

We have evaluated the heuristic on 10,000 randomly generated 50-actor chain-

structured SDF graphs, and we have found that on average, it yields a buffer memory

requirement that is within 60% of the optimal cost. For each random graph, we also

compared the heuristic*s solution to the worst-case schedule and to a randomly-generated

R-schedule. On average, the worst-case schedule had over 9000 times higher cost than the

heuristic's solution, and the random schedule had 225 times higher cost. Furthermore, the

heuristic outperformed the random schedule on 97.8 percent ofthe trials.We also note that

in over 99% of the randomly generated50-actorchain-structured SDF graphs, the shared-

buffer cost for the naive single appearance schedule was worse than the cost of the nested

schedule given by the heuristic. Unfortunately, the heuristic does not perform well on the

80

example ofFigure 3-10 — it achieves a buffer memory requirement of 565, which is over

double ofwhat is required by an optimum R-schedule. In comparison, the worst R-schedule

for Figure 3-10 has a buffer memory requirement of 755. ,.

3.12 Extensions

In this section we present three useful extensions of the dynamic programming

solution developed in Section 3.9. First, the algorithmcan easily be adapted to optimally

handle chain-structured graphs that have delays on one ormoreof the edges. This requires

that we modify the computation of c(j[k], the amount of memory required to split the

subchain A,-, Ai+X, ...,Aj between the actors Ak and Ak +X. This cost now gets computed
as

where r = gcd({qG(Am)\(i<m<j)}),if

del(ak)<-qG(Ak)prd(ak);

otherwise (if del(ak) >-qG(Ak)prd(ak)), ct j[k] gets computed as ct j[k] = del(ak).
Accordingly, if the optimum split extracted in a given invocation of ConvertSplits (Figure

3-9) corresponds to a split in which the latter condition applied in the computation of

c(j[k], then ConvertSplits returns

(^ConvertSplits(L +s + 1,#))(/LConvertSplits(L, L + s)); otherwise, ConvertSplits

returns (/LConvertSplits(L,L +5))(^ConvertSplits(L +s+ l,R)), as in the original

version. This requires amethod for keeping track of which condition applies to each of the

optimum subchain splits, which can easily be incorporated, for example, by varying the

sign of the associated entryin the SplitPositions array.

The technique applies to the more general class of well-ordered SDF graphs. A

well-ordered graph is onewhere the partial order is a total order; chain-structured graphs

are aspecial case of these. Again, this requires modifying the computation of c(Ak]. Here,

this cost gets computed as

81

%•'.

CijW =gedT{qG(Am)\(i<m<j)}y (38)

where

£5S{p|(5/t:(p)€ {A*Ai+1,...,A*}) ; (3.9)
and(.yft*(P)e {Ak+X, Ak +2,..., A,})}

that is, £5 is the set of edges directed from one side of the split to the other side.

The dynamic programming technique ofSection 3.9 can also be applied to reducing

the buffer memory requirement of a given single appearance schedule for an arbitrary

acyclic SDF graph (not necessarily chain-structured or well-ordered).

Suppose we are given a valid single appearance schedule S for an acyclic SDF

graph and again for simplicity, assume that the edges in the graph contain no delay. Let

*F = BX,B2, ...,Bm denote the sequence of lexical actor appearances in S (for example,

for the schedule (4A(2FD))C, *F = A,F,D,C). Thus, since S is a single appearance

schedule, >FLmust be a topological sort of the associated acyclic SDF graph. The technique

of Section 3.9 can easily be modified to optimally "re-parenthesize" 5 into the optimal

single appearance schedule (with regard to buffer memory requirement) associatedwith the

topological sort *F. The technique is applied tothesequence *P, with cit •[&] computed as

in (3.8). It canbe shownthatthe algorithm runs in time 0(\V\3), where |V| is the number

of vertices in the graph.

Thus, given any topological sort *F* for a consistent acyclic SDF graph, we can

efficiently determine the single appearance schedule that minimizes the buffer memory

requirement over all valid single appearance schedules for which the sequence of lexical

actor appearances is *¥*.

Another extension applies when we relax the assumption that each edge is mapped

to a separate block of memory, and allow buffers to be overlaid in the same block of

memory. There are several ways in which buffers can be overlaid; the simplest is to have

one memory segment of size

82

max({pni(ak)xq(Ak)\(i<k<j)})
*'~ gcd({q(Ai),q(Ai+x),...,q(Aj)}) ^1U;

for the subchain At-, A/+1,..., A;- (as explained in Section 3.2). We follow this

computation with

b'[i,j] = min({b[i,j], CSifj}), (3.11)

to determine amount of memory to use for buffering in the subchain At, Al +x,..., A •. In

general, this gives us a combination of overlaid and non-overlaid buffers for different sub-

chains. Incorporating the techniqu6s of thissection withmoregeneral overlaying schemes

is a topic for future work.

3.13 Extension to Arbitrary Topologies

The material reported in this section and the next is taken from [Bhat95]. DPPO can

be extended to efficiently handle graphs that are not necessarily delayless, although a few

additional considerations arise. We refer to this extension as Generalized DPPO

(GDPPO). First, if delaysare present, then lexorder(S), the lexicalordering of the input

schedule, is not necessarily a topological sort. As a consequence, generally not all

parenthesizations of the input schedule will be valid. For example, suppose that we are

given the valid schedule 5 = (6A)(5(2C)(3fl)) for Figure 3-11. Then

lexorder(S) = (A, C, B) clearly is not a topological sort, and it is easily verified that the

schedule that corresponds to splitting the outermostparenthesization between C and B —

(2(3A)(5C))(152?) — is not a valid schedule since there is not sufficient delay on the

edge (B, C) to fire 10 invocations of C before a single invocationof B.

®^-Z®h^©
Figure 3-11 An SDFgraphusedto illustrate GDPPO applied to SDF graphs that
have nonzero delay on one or more edges. Here q(A, B, C) = (6,15,10).

83

Thus, we see thatwhen delays arepresent, the set Es defined in equation (3.9) no

longer generally gives all of the edges that cross the parenthesization split. We must also

examine the set of backedges

Eb = {e\(snk(e)e {At, Ai+X,..., AJ and srv(e) e {Ak +X, Ak +2,...,Aj})}
Each e e Eb must satisfy

del(e)Z(TNSE(e))/(gcd({qG(Ax)\(i<x<j)})); (3.12)

otherwise,the given parenthesization split will give a schedule that is not valid.To take into

account any nonzero delays on members in Es, and the memory cost of each of the back

edges, the cost expression of equation (3.8) for the given split gets replaced with the

forward split cost defined by

b[i,k] +b[k+l,j]+ £ TNSE(e)/(gcd({qG(Ax)\(i<x<j)}))+ ^delay(e)
ee Es ee EsuEb

This expression gives the cost of splitting the subsequence (A,-, Ai+X,..., A)

between AJ and Ak +X assuming that the subsequence (Af, Al+1,..., Ak) precedes

(Ak+x,Ak +2, ...,Aj) in the lexical order of the schedule that will be implemented.

However, if (3.12) is satisfiedfor all "forward edges" e e Es, it may be advantageous to

interchange the lexical order of (Af, Al +1,...,Ak) and (Ak+X, AJt +2,...,Aj). Such a
reversal will be advantageous whenever the reverse split cost defined by

b[i,k] +b[k+l,j]+ £ TNSE(e)/gcd({qG(Ax)\(i<x<j)})+ ^del(e)
ee Eb ee Es\jEb

is less than the forward split cost — that is, whenever

£ TNSE(e)< £ TNSE(e). (3.13)
ee Eb ee E,

The possibility for reverse splits introduces a fundamental difference between

GDPPO and DPPO: if one or more reverse splits are found to be advantageous, then

GDPPO does not preserve the lexical ordering of the original schedule. If GDPPO changes

the lexical ordering, then the result computed by GDPPO will necessarily have a buffer

84

memory requirement that is less than that ofan order-optimal schedule for lexorder(S). In

such cases, GDPPO may be applied multiple times in succession to possibly yield more

benefit than a single application — that is, GDPPO can in general be applied iteratively,

where the iterative application terminates when the schedule produced by GDPPO

produces no improvement over the schedule computed in the previous iteration.

Although the iterative application of GDPPO is conceptually interesting, we have

found that for all of the practical SDF graphs that we have applied it to, termination

occurred after only 2 iterations, which means that no further improvement was ever

generated by a second application of GDPPO. This suggests that when compile-time

efficiency is a significant issue, k may be preferable to bypass iterative application of

GDPPO, and immediately acceptthe schedule produced by the first application.

GDPPO can be implemented efficiently by updating forward and reverse costs

incrementally. If we are examining the splits of the subsequence (At, Ai+X,..., Aj), and
we have computed the forward and reverse split costs Fk and Rk associated withthesplit

between Ak and Ak +X, i<k<(j-l), then the splits costs Fk +j and Rk +j associated

withthesplit between Ak +j and Ak +2 can easily be derived by examining theoutput and

input edges of Ak +x. To ensure that we ignore reverse splits (forward splits) that fail to

satisfy (3.12) for all e e Es (e e Eb) acostof

Msl+ Y (TNSE(e) + del(e))
^eeE

is added to the reverse (forward) split cost for any input edge (output edge) e of Ak +x

whose source (sink) isamember of (Ak +2,Ak +3,..., Aj),and that does not satisfy (3.12).
Similarly, for each output (input) edge e of Ak +Xwhose sink (source) is contained in

(At, Ai+,,..., Ak), and that does not satisfy (3.12), M is subtracted from Rk+X (Fk +X)

sincesuchanedge no longer prevents the split from being valid. Choosing M so large has

the effect of "invalidating*' any cost CM that has M added to it (without a corresponding

subtraction) since any minimal valid schedule has a buffer memory requirement less than

M, and thus, any valid split will bechosen over asplit that has cost CM.

If forward and reverse costs areupdated in this incremental fashion, then GDPPO

attains atime complexity of 0(nv) where nv is the numberofactors, ifwe canassumethat

85

the number of inputandoutput edges ofeach actor is always bounded bysomeconstant a.

In the absence ofsuch abound, GDPPO has time complexity that is 0(nenv), where ne is

the number of edges in the input graph.

3.14 Adaptation to Minimize Code Size for Arbitrary Schedules

We have applied the basic concept behind DPPO to derive an algorithm that

computes an optimally compact looped schedule (minimum code size) for an arbitrary

sequence ofactor firings. For example,consider the SDF graph in Figure 3-12, and suppose

that we are given the valid firing sequence1 c = ABABCBC (this firing sequence

minimizes the buffer memory requirement over all valid schedules). If the code size cost

(number of program memory words required) for a code block for A is greater than the

code size cost for C, then the optimally compact looped schedule for a is (2AB)CBC,

whereas ABA(2BC) is optimal if C has a greater code size cost than A.

To understand how dynamic programming can be used to compute an optimally

compact loop structure, suppose that a = AxA2.:.An is the givenfiring sequence, and let

a' = AiAi+x...Aj be any subsequence ofa (1 <i<j <n). Ifthe optimal loop structures
for all (j - i) -length subsequences of a are available, then we determine the optimal loop

structure for c' byfirst computing Ck s Zi k+ Zk +x . for ke {i, i + 1,..., j - 1}, where

Zx y denotes the minimum code size cost for the subsequence AX,AX+X,...,A. The value

of k that minimizes Ck gives an optimum point at which to "split" the subsequence if

AjAj +j...A • are not to be executed through a single loop.

To compute the minimum costattainable for a' if AtAt +x...A, are to be executed

through a single loop, wefirst determine whether ornot a' = AtAt... Af.If thisholds, then

a' can beexecuted through a single loop ((j-i+l)At), and the code size cost is taken to

®r £>:
Figure 3-12 An SDF graph used to illustrate the problemof finding an optimally compact
loop structure for an arbitrary firing sequence.

1. By afiring sequence, we simply mean a schedule that contains no loops.

86

be thecodesizecostof At plus thecode sizeoverhead CL of aloop. If a' * AjA^^Aj, we

determine whether or not a' = AiAi+lAiAi+x.:.AiAi+x, and if so, then a' can be

implemented as (((j - i +1)/2)AiAi+x), and the code size cost is taken to be the sum of

CL and the costs of A, and Ai+X. Next, if c/^AiAi...Ai and

a'*AiAi+lAiAi +x...AiAi+x, then we determine whether or not

a' = AiAi+xAi+2...AiAi+xAi +2. If this holds then a' can be implemented as

(((y-'+ l)/3)5L(AlAl +1Al +2))» where Sj/AfA^jA,.^) is an optimal loop structure

for AlAl +1A/+2- It is easily seen that an optimal loop structure L for executing

AiAi+x...Aj through a single loop can be determined (if one exists) by iterating this

procedure LO-* + l)/2 J times/where |_*J denotes the floor operator. If one or more

loop structures exist for executing AtAi+x...Aj through a single loop, then the code size

costof the optimal loopstructure L is compared to the minimum valueof Ck, i < k < j, to

determine an optimal loop structure for A(At+j...Ay; otherwise the optimal loop structure

for AtAt+j... Aj is taken tobethat corresponding tothe minimum value of Ck.

The time complexity of this technique for finding an optimal loop structure for the

subsequence AiAi +x...Aj,- given optimal looping structures for all (j-i)-length

subsequences, is 0((j -1 + 1)), and time complexity of the overall algorithm is 0(n),

where « is the number of firings in the input firing sequence. Thus, the problem of

determining an optimal looping structure is of polynomial complexity when the size of a

problem instance is taken to be the number of firings in the given firing sequence. However,

it should be noted that there is no polynomial function P(m) such that the number of firings

in a valid schedule (defined as the sum of the entries in the repetitions vector) is guaranteed

to be less than P(m) for an arbitrary m -actor SDF graph. Thus, unlike DPPO and GDPPO,

the algorithm developed in this section is not of polynomial complexity in the size of the

given SDF graph.

3.15 Complexity of the Buffer Minimization Problem

Here we show that the problem of constructing buffer-optimal single appearance

schedules for acyclic graphs with delays is NP-complete in general. In fact, we prove the

result for HSDF graphs. Since any schedule for an HSDF graph is a single appearance

87

schedule, it follows that the problem for general acyclic SDF graphs, with delays allowed

on edges, is also NP-complete. It also follows that computing a minimum buffer schedule

for an arbitrary acyclic SDF graph with delays allowed, without the single appearance

restriction is also NP-complete. Finally, cyclic graphs are an even more general case, so

both the single appearance and non-single appearance, buffer minimal scheduling

problems for HSDF and SDF graphs are NP-complete (this was already shown in Chapter

2, but that proof is redundant in light of this stronger proof). The only remaining interesting

class of graphs is the set of delayless acyclic (but not well-ordered) SDF graphs (not

homogenous). For this class, the complexity of the minimum buffer scheduling problems

remains open. /

To gain some intuition about why this problem might be difficult, note that if some

edges have delays, then in an HSDF graph, they do not impose any precedence constraints

since either the source actor of that edge or the sink actor of that edge can be fired before

the other. However, if the sink actor fires before the source actor (for an edge that has 1

delay), then the buffer size on that edge can be 1; otherwise, it has to be 2. This suggests

the following simple technique for getting a minimum buffer schedule: reverse all the edges

that have delays and remove the delays. If we can schedule this graph, then we will have a

minimum buffer schedule since on all reversed edge, the sink actor will fire before the

source actor. We will be able to schedule this new graph if and only if it does not have any

cycles. If it has cycles, then the problem is to determine a minimal set of edges that we

reversed, to remove, so that the resulting graph becomes acyclic and a schedule may be

found. The buffering requirement in that case will be increased by the size of the set of

edges removed. However, as the result below shows, finding a minimal set of edges from

the set of edges that have delays is not possible to do in polynomial time unless P = NP.

Definition 3-5: The AHSDF MIN BUFFER problem is the following

Instance: An acyclic, directed graph G = (V, A) where every edge has 0 or 1 delays, and

an integer K.

Question: Is there a schedule for G that has a total buffering requirement of \A\ + K or

less?

88

Remark: Note that since we havea bufferon every arc, the buffering requirement has to

be at least \A\.

Definition 3-6: The vertex cover (VC) problem is the following:

Instance: An undirected graph G' = (V, A), and integerk.

Question: Is there a subset V" c V, with |V"\ < k, suchthat V" covers every edge; thatis,

for every edge (u, v) <= A, at least one of u, v is in V"?

Remark: For an undirectedgraph, if (u, v) is an edge, so is (v, u).

Theorem 3-5: VC is NP-complete [Karp72].

Theorem 3-6: AHSDF MIN BUFFER is NP-complete.

Proof: Membership in NP is easy to see since wejust have to simulate the scheduleto see

if the buffering requirement is met; this can be done in linear time since the schedule has

length |V|. Completeness follows from a reduction ofvertex cover. From anarbitrary

instance G = (V\ A),k, of the VCproblem, we construct the instance G = (V,A) of

AHSDF MIN BUFFER asfollows. Let V = {v0,vx : ve V'}.Let

^l = {(V!,v0): v€ V},A0 = {(vj,w0): (v,w)e A'},A = A0u Ax, and K = k.

Each edge in Ax has one delay, and each edge in A0 has 0 delays. We refer to a vertex of

the form v0 asa "0"vertex and toa vertex of the form V! as a "1"vertex. Clearly, this is

an instance of AHSDF MINBUFFER; the graph is acyclic because all edges are directed

from a M1M vertex to a "0" vertex. We claim that this instance of AHSDF MIN BUFFER

has a solution iff the VC instance has a solution.

Suppose that there is a solution U to the VC instance. Let Wbe the set of edges

defined as W = {(v,,v0): ve £/}. Note that W<zAx. Delete these edges from G,

reverse therestof theedges in Ax,and remove thedelays from them to get thegraph G".

Clearly G" is delayless. Weclaim that it is also acyclic. Suppose that it were notacyclic.

Then there would be a directed cycle of the form ul -» u2-» ... -» um -> ux in G".

Without loss ingenerality, assume that w1 = v0 for some v0. A"0"vertex ofthis type can

only have an outgoing edge directed tothe vertex vx in G"; hence, u2 = vx. A"1"vertex

can only have an outgoing edge to some "0" vertex; hence, u3 = vv0 for some w0.

Continuing this argument, it canbe seenthatthe length of thecyclehas to be even, andthat

89

there are m/2 "0" vertices and for each such vertex v0, v, is also in the cycle. None of

these vertices v canbe in U sinceall edgesof the form (ux, u0) were deleted for u in U,

andonly the remaining edges (from Ax) werereversed to"yield edgesof the form (v0,Vj).

But since (Vj, w0) is anedgein the above cycle,it follows that (v, w) is anedgein G', but

it is not covered by U. Hence, U cannot be a solution to the VC instance, giving us a

contradiction. Now, since G" is acyclic and delayless, it has a valid schedule. This schedule

is also avalid schedule for G since it respects all the precedence constraints ofthe delayless

arcs in G. On all arcs that were reversed, the sink actor in the original graph G is a source

actor in G"; hence, on all these arcs, the buffer size is 1 in G. For the deleted arcs, we could

have the source actor firing before the sink actor, and on these arcs the buffer size would

be 2. Since there are at most K deleted arcs, the total buffering requirement is at most

\A\+K.

Now suppose that the AHSDF MIN BUFFER instance has a schedule with

buffering requirement of at most \A\ + K. This means that there are at most K arcs that

have delays where the source actor of the arc is fired before the sink actor in the schedule;

denote this set of arcs by W. For all other arcs that have delays, the sink actor fires before

the source actor. Since any arc with a delay in G is of the form (vj, v0), let the set U be

defined as U = {v : (vlt v0) € W}. Clearly, \U\ = \W\ < K. We claim that U isavertex

cover for G. Indeed, suppose it were not. Then there would be an edge (v, w) in G' where

neither v, w is in U. This means that neither of (vlf v0), (wx, w0) is in W. This means that

in the schedule for G, v0 fires before Vj, and w0 fires before wx. But since (v, w) is an

edge in G', (vj, w0) and (wx, v0) are delayless edges in G, meaning that Vj must fire

before w0, and wx must fire before v0 in any valid schedule. Putting this together, we see

that we have a cyclic dependency v0 —»Vj —> w0 —> wx —> v0 that cannot possibly be

respected by the schedule, thereby contradicting our assumption that the set U is not a

vertex cover. •

Note that if buffer sharing is allowed, then the problem of determining a schedule

for an HSDF graph that minimizes the total number of "live" tokens at any point in the

schedule is exactly the REGISTER SUFFICIENCY problem proved to be NP-complete in

by Sethi [Seth75].

90

In the next few sections, we develop heuristics for generating single appearance

schedules that attempt to minimize the amount of buffering memory required for acyclic

SDF graphs.

3.16 Recursive Partitioning by Minimum Cuts (RPMC)

The number of topological sorts in an acyclic graph can be an exponential function

of the sizeof thegraph; forexample, a complete bipartite graphwith 2n vertices has (n!)2

possible topological sorts. Each topological sort gives a valid flat single appearance

schedule. An optimal reparenthesization of this scheduleis then computedby applyingthe

dynamic programming algorithm. The problem is therefore to determine the topological

sort that will give the lowest buffer memory requirement when nested optimally. For

example, the graph in Figure 3-13 shows a bipartite graph with 4 vertices. The repetitions

vector for the graph is given by (12,36,9,16)r, and there are 4possible topological sorts
for the graph. The flat schedule corresponding to the topological sort ABCD is given by

(12A)(36S)(9C)(16D). Thiscanbeparenthesized as (3(4A)(3(4B)C))(16D), andthis

schedule hasa buffer memory requirement of 208. Theflat schedule corresponding to the

topological sort ABDC, when parenthesized optimally, gives the schedule

(4(3A)(95)(4Z>))(9C), with a buffermemory requirement of 120.

A heuristic solution for this problem can be formulated as follows: find the cut(a

partition of the set of actors) of the graph across which the minimum amount of data is

transferred and schedule the resulting halves recursively. The cut that is produced must

have the property that all edges that cross the cut have the same direction.This is to ensure

that all the vertices on the left side ofthe partition can be scheduled before scheduling any

Figure 3-13 A bipartite SDFgraph to illustrate the different buffer
memoryrequirements possible with different topological sorts.

91

on the right side. Inaddition, we would like toimpose the constraint that the partition that

results be fairly evenly sized. This is to increase the possibility of having gcds that are

greater than unity for the repetitions ofthe vertices inthe subsets produced by the partition,

thus reducing the buffer memory requirement. Tosee that having gcds greater than one for

the subsets produced is beneficial to memory reduction, consider Figure 3-13. If the

partition that had actor B on one side of the cut and actors A, C, D on the other side of the

cut were formed, then we would get the loopbodies (36B) and ((12A)(9C)(16D)) and

would not immediately see a reduction in buffering requirements since the repetitions of

A,C,D are co-prime. However, a partition with A, B, C on the same side of the cut

immediately gives us a reduction'since the schedule body ((12A)(36B)(9C)) can be

factored as (3(4A)(12Z?)(3C)), and thisreduces the memory for the subgraph consisting

of actors A, B, C. In general, by constraining the sizes of the partition, the probability of

being able to factor schedulebodiesso thata reduction in memoryis obtainedin each stage

of the recursion is increased. Needless to say, this is a greedy approach which is likely to

fail sometimes but has proved to be a good rule of thumb for most instances.

Suppose that G is an SDF graph, and let V = actors(G) and E = edges(G). A

cut of G is a partition of the vertex set V into two disjoint sets VL and VR. Define

GL = subgraph(VL) and GR = subgraph(VR) to be the subgraphs produced by thecut.

The cut is legal if for all edges e crossing the cut (that is all edges that are not contained in

subgraph(VL) nor subgraph(VR)), we have src(e)e VL and snk(e) e VR. Given a

bounding constant K < \V\, the cut results in bounded sets if it satisfies

\vr\<k,\vl\<k. (3.14)

The weight of an edge e is defined as

w(e) = qG(src(e))xprd(e). (3.15)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then

is to find the minimum weight legal cut into bounded sets for the graph with the weights

defined as in (3.15). Since the related problem of finding a minimum cut (not necessarily

legal) into bounded sets is NP-complete [Gare79], and the problem of finding an acyclic

92

partition of a graph is NP-complete [Gare79], webelieve thisproblem to be NP-complete

as welleventhough we have notdiscovered a proof. Kemighan andLin [Kern70] devised

a heuristic procedure for computing cuts into bounded sets but they considered only

undirected graphs. Methods based on network flows [Corm90] do not work because the

minimum cut given by the max-flow-min-cut theorem may not be legal and may not be

bounded.The graph in Figure 3-14, where a weight on an edge denotes the capacity of that

edge, illustrates this. The maximum flow into vertex t is seen to be 3 (1 unit of flow along

the path sBCt,\ unit along sADt and 1 unit along sBDt) and this corresponds to the cut

where VL = {s, B, C} and V^ = {A, D, t}. The value of the cut is given by

1 + 1 + 1 =3 (note that the definition of the value of a cut in network flow theory is

defined as sum of the capacities of the edges crossing the cut in the s to t direction only)

but the cut is not legal because of the reverse edge from A to C. Indeed, the minimum

weight legal cut for this graph has a value of 11, corresponding to the cut where

VL = {s}.

Therefore, a heuristic solution for finding legal minimum cuts into bounded sets is

given. The heuristic is to examine the set of cuts produced by taking a vertex and all of its

descendants as the vertexset V^ andthe set of cuts produced by takinga vertexand all of

its ancestors as the set VL. For each such cut, an optimizationstep is applied that attempts

to improve the cost of the cut.

Consider a cutproduced bysetting VL = ancs(v), VR = V\ VL for some vertex

v. Consider the set TR(v) of independent, boundary vertices of v in V^. A boundary

vertex in VR is a vertex that is not the predecessor of any other vertex in VR. Following

Kemighan and Lin [Kem70], for each of these vertices, the cost difference that results if

the vertex is movedinto VL can be computed efficiently. This cost difference for a vertex

Figure 3-14 The min-cutgivenby the max-flow-min-cut theoremis not
equal to the min-legal cut for this graph.

93

a in TR(v) isdefined to be the difference between the total weight ofall the edges out of

a andthe total weight of alledgesinto a. We then move those vertices across thatreduce

the cost. We apply this optimization step for all cuts of the form ancs(v) and desc(v) for

each vertex v in the graph and take the best one as the minimum cut. The algorithm is

shown in Figure 3-15. Since a greedy strategy is being used to move vertices across, and

only theboundary vertices are considered, examples canbe constructed where theheuristic

willnotgiveoptimal cuts. Sincethere are |V\ vertices in thegraph, 2\V\ cutsare examined.

Moreover, the cut produced will havebounded setssince cuts thatproduce unbounded sets

are discarded. For example, one of the cuts examined by the heuristic for the graph in

Figure 3-14, with bounding constant K = |V| - 1, is ancs(A) = {s, A}. This cut has a

value of 30. The set of independent, boundary vertices of A in V^ is {B}, and the cost

difference for B is given by 11-10 = 1. Hence, B will not be moved over. The cut

produced by considering ancs(C) = {s, A, B, C} has a value of 12. The cost difference

for the independent vertex D is given by 10-11 = -1; hence, D is moved into VL to

yield a cut of value 11, and thus, in this example, the heuristic finds the minimum weight

legal cut.

Delays on edges are handled as follows. If the number of delays on some edge e

satisfies

del(e)>TNSE(e), (3.16)

then the size of the buffer on this edge need not be any greater than del(e). However, if e

crosses the cut, then the size of the buffer will become del(e) + TNSE(e). Hence, an edge

that satisfies equation (3.16), is tagged; a tagged edge does not affect the legality of the cut

(in other words, the heuristic ignores tagged edges when it constructs the legal cut) but

affects the cost of the cut: if a tagged edge crosses the cut in the reverse direction, the cost

of the edge is given by del(e), and if the tagged edge crosses the cut in the forward

direction, the cost is given by del(e) + TNSE(e). This will discourage the heuristic from

choosing partitions where tagged edges cross the cut in the forward direction.

The running time of the heuristic for computing the legal minimum cut into

bounded sets can be determined as follows. Computing the descendents or ancestors of a

vertex canbe doneby usingbreadth-first-search; this takestime 0(|V| +1£|). The breadth-

94

procedure MinimumLegalCutlntoBoundedSets

input: weighted directed graph G = (V,E), and a bound b. output: VR, VL.

for each u e V

r Start with descendents 7

S = desc(u),S = V\S

cutVal = cut(S,S)

TL(u) <— independent(u)C\boundary(S)

foreach a € Tl(m)

E(a)= %wjia,x),l(a)=]•>(*,*)

D(a) = /(a) - £(a) /*Costdifference if thisvertex is moved over7
end for

[D, Idx] <- sort(D)

*<-l

while (|5| <b &D(*) <0 &k<\TL(u)\)
S<^SUUdx(k)}

S<^S\{Idx(k)}

cutVa I +- cutVa I+ D(k)

k<^k+l

end while

minCutVa I+- min(minCutVa I, cutVa I)

if (mincutVa I= cw/Va /), VL +- S, VR <- S, end if

r Start with ancestors 7

P = ancj(w),P = V\P

I* Carry out the same type of steps as above to determine
the partition for the set starting from the ancestors 7

end for

r minCutVa I, VL, VR correspond tothe minimum legal cut. 7

Figure 3-15 Procedure for computing legalminimum cuts.

95

first-search will also give us the independent vertices in the complement set. Finding and

computing the cost difference for each of the boundary vertices in the setof independent

vertices takes at most 0(|£|) steps. Sorting the cost differences takes 0(|V| • log(|V|))

steps, and moving the vertices that reduce the cost takes 0(|V|) time. Since a cut is

determined for every vertex twice, thetotal running time is G(|V||£| +1V\2 • log(|V\)).

The heuristic for generating a schedule for the acyclic graph now proceeds by

partitioning the graph by computing thelegal minimumcut and forming the schedule body

(rLS0(rRSR) where rL = gcd({q(v)\veVL}), rR = gcd({q(v)\ve VR}) and

SL, SR are schedule bodies for GL and GR respectively. The schedule bodies SL, SR are

obtained recursively by partitioning GL and GR. Once the entire schedule body has been

constructed, the dynamic programming algorithm is run to re-parenthesize the schedule to

possibly give a betternesting. Letting n = |V|, the running time for this heuristic can be

determined by solving the recurrence

T(n) = T(n-k) + T(k) + 0(n\E\+n2»\og(n)),

where k = |VL| and n-k = |V^|. If the bound K in (3.14) is chosen to be aconstant

factor of the graph size, for example, 3/4, then it can be shown easily that

T(n) = 0(|V||£| + |V|2 • log(|V\)). If the sizeof the setsis notbounded to be a constant

factor of the graph size, then the worst case running time is 0(|V|2|£| +1 V|3 • log(|V|)).

The reparenthesizing step that is run at the end uses the dynamic programming algorithm

and requires 0(|V|3) running time. Thus the overall running time is given by 0(|V|3)

assuming that K is a constant factor of the graph size.

3.17 More Analysis of legalCutlntoBddSets

In this section, we describesome ofthe reasons why the problem ofcomputing legal

minimum cuts into bounded sets optimally appears to be difficult. The type of graph that

presents problems is one where there are several independent vertices that can be moved

across. For example, consider the graph shown in Figure 3-16. It is clear that if the vertex

ij is chosen as the startingpoint for the cut, then there k - 1 tows of independent vertices,

any of which can be chosen to be moved across. Another way to think about this is to

96

consider a matrix filled with non-negative integers. The problem is to choose an element

from each row such that the sum of the elements is minimized and that the number of

elements to the right of the partition line that results is equal to the number of elements to

the left of the partition line. This corresponds to the special case of the bound on the sets

being exactly |V\/2. This problem seems to be NP-complete but we have not discovered

a reduction that proves it.

3.18 Non-uniform Filterbank Example

Figure 3-17 shows the SDF graph abstraction of a non-uniform, near-perfect

reconstruction filterbank [Naye93]. The lowpass filters (vertices c, / etc.) retain 2/3 of the

spectrum while the highpass filters (vertices d, g etc.) retain 1/3 (instead of the customary

1/2,1/2 for the octave QMF). Rate changes in the graph are annotated wherever the number

produced or consumed is different from unity. The repetitions vector of this graph is given

by

wl(n-l)

w(k)(n-l

t*
•">s

*
»-"

"W.

^

M"^

Figure 3-16 a) An example of the type of graph for which computing the legal
minimum cut into bounded sets is challenging, b) The matrix interpretation of the
problem.

20D

Figure 3-17 SDF graph for a non-uniform filterbank. The highpasschannel retains
1/3 of the spectrum and the lowpasschannel retains 2/3 of the spectrum.

97

q(a,.... A) = [27,27,9,9,18,6,6,9,12,6,9,4,4,6, 8,4,4,4,12,6,6,9, 18,9,27,27,27]

The single appearance schedule obtained by the APGAN scheduling heuristic (discussed

in Section 3.19) on this system is

(3(3*(3afe)crf(2e)/i)(2n«g7)(2/(2/)))(4/(2o)9)(4mpr)(3(2(2j)0(3(2*v)xv(3y2A))),

and the resulting buffer memory requirement is 153. After post-processing the schedule

with GDPPO, we obtain the schedule

(3(3(3ab)cd(2e)khX2gnufjm4(3i)l(2o)qmpr(3s))(3(2t)(3(2w)xv(3yzA)))t

which has a buffer memory requirement of 137 — a 10.5% improvement. Notice that in

thisexample, GDPPO haschanged thelexical ordering, and thus,oneormorereverse splits

were found to be beneficial.

The schedule returned by the RPMC scheduling heuristic has a buffer memory

requirement of 131, which is lower than that obtained by the combination of APGAN and

GDPPO. However, GDPPO is able to improve the schedule obtained by RPMC even

further. The result computed by GDPPO whenapplied to the schedule derived by RPMCis

(3(3(3ab)dc)(2(3e)fgnJX3kh))(4(3i)mpl(2o)qr(3s))(3(2tu(3w))(3xv(3yzA))),

which has a buffer memory requirement of 128.

For the same graph, if the delays are removed from the edges and instead

implemented asvertices, thenthe RPMC heuristic obtains a schedule with abuffering cost

of 100; the worst case flat schedule (for any topological sort) would have a buffering cost

of 438. The best of the various PGAN heuristics (discussed in Section 3.19) found a

schedule ofcost 117. This showsthat RPMC canbe effective on graphs with irregular rate-

changes in practice. More extensive experimental results on several other practical

examples, and numerousrandom examples, are reported in Section 3.20 and3.21.

3.19 Pairwise Grouping of Adjacent Nodes for Acyclic Graphs

In the original Pairwise Grouping of AdjacentNodes (PGAN) technique for joint

code and data minimization, a cluster hierarchy is constructed by clustering exactly two

adjacent vertices at each step [Bhat93]. At eachclusteringstep, a pairof adjacent actors is

98

chosen that maximizes p({A, B}), the repetition count of the adjacent pair, over all

clusterable adjacent pairs {A,B}. Recall that p(Z) can be viewed as the number of times

a minimal periodic schedule for the subset of actors Z is invoked in the given SDF graph,

and thus, we see that the PGAN technique repeatedly clusters adjacent pairs whose

associated subgraphs are invoked most frequently in a valid schedule.

The PGAN technique verifies whether or not an adjacent pair is clusterable by

checking whether or not its consolidation introduces a cycle in the Acyclic Precedence

Graph (APG). It is shown that this check can be performed quickly by applying a

reachability matrix, which indicates for any two APG vertices x and y whether or not there

is a path from x to y. '

Unfortunately, the cost to compute and store the reachability matrix can be

prohibitively high for multirate applications that involve large changes in sample rate.

Since the number of vertices in the APG of an SDF graph (V, E) is J x I, where J is the

desired blocking factor, / is defined as

/• I q(*>.
XeV

and the number of entries in the reachability matrix is quadratic in the number of APG

vertices, it is easily seen that the time and space required to maintain the APG can grow

exponentially with the number of actors in the given SDF graph. Although this is not a

problem for the large class of practicalSDF graphs for which / is not much larger than the

number ofelements in V, practical examples can easily be constructed where the technique

consumes enormous amounts of resources relative to the size of the input SDF graph. For

example, for the 6-vertex SDF representation of a multi-stage sample-rate conversion

system between a compact disc player and a digital audio tape player discussed in Section

3.10, / > 600, which means that over 360,000 units of storage are required to implement

the reachability matrix for this 6-actor SDF graph.

Since a large proportion of DSP applications that are amenable to the SDF model

can be represented as acyclic SDF graphs, a simple adaptationofPGAN has been proposed

for acyclic graphs that maintains the clusterhierarchy and reachability matrix directly on

the input SDF graph rather than on the APG, and thus allows us to efficientiy exploit the

advantagesof the bottom-up clustering approach of the original PGAN technique. We refer

99

Figure 3-18 An example of how a clusterization operation that introduces a
cycle can lead to a BMLB schedule. Here (A, B, C) = (2,2,1.

to this adaptation of PGAN as Acyclic PGAN (APGAN). APGAN is exactly the original

PGAN technique specified in [Bhat93] with the exception that the input SDF graph is

assumed to be acyclic, and the cluster hierarchy and reachability matrix are maintained for

the input SDF graph rather than for the APG.

In an acyclic SDF graph G, it is easily verified that if a subset Z of actors is not

clusterable then clust(Z, G,Q) contains a cycle. Whether Z introduces a cycle is easily

checked given a reachability matrix for G by examining each successor of a member of Z:

clust(Z, G,Q.) contains a cycle if and only if there is an X g Z such that X is a successor

of some member of Z, and there is a path from X to some member of Z.

Since the existence of a cycle in clust(Z, G,Q) is only a necessary — but not

sufficient — condition for Z not to be clusterable, the clusterability test that is applied in

APGAN is not exact, it must be viewed as a conservative test. It is even inexact if we

restrict ourselves to single appearance schedules. That is, it is possible for clust(Z, G,£l)

to contain a cycle, and still have a valid single appearance schedule. A simple example is

shown in Figure 3-18. Here, the BMLB schedule C(2AB) results if we first cluster

{A, B}. However in APGAN, clustering {A, B} is not permitted since the resulting graph

contains a cycle. Instead, APGAN generates the schedule (2A)C(2B) or the schedule

C(2A)(2B), neither of which is a BMLB schedule. Thus, in this example, we see that the

inexact clusterization test prevents us from obtainingan optimal schedule.

In exchange for some degree of suboptimality in certain examples, the

clusterization test attains a large computational savings over the exact test based on the

reachability matrix of the APG, and this is the main reason for adopting it.

Figure 3-19 illustrates the operation of APGAN. Figure 3-19(a) shows the input

SDFgraph.Here q (A, B,C,D,E) = (6, 2,4,5,1), and for i = 1,2, 3,4, Q, represents

100

the ith hierarchical actor instantiated by APGAN. Each edge corresponds to a different

adjacent pair; the repetition counts of the adjacent pairs are given by

p(Mf*}) = p({A,r» = f>({B,C}) = 2,

and

P({C,D}) = p({E,D}) = p({B,E}) = 1.

Thus, APGAN will select the one of the three adjacent pairs {A, B}, {A, C}, or {B, C}

for its first clusterization step. Examination of the reachability matrix yields that {A, C]

introduces a cycle due to the path ((A, B), (B, C)), while the other two adjacent pairs do

not introduce cycles. Thus, APGAN chooses arbitrarily between {A, B} and {B, C} as

the first adjacentpair to cluster. '

Figure 3-19(b) shows the graph that results from clustering {A, B} into the

hierarchical actor Clx. In this graph, q(Qx,C,D,E) = (2,4,5,1), and it is easily

verified that {Qx, C} uniquely maximizes p overall adjacent pairs. Since {Qx, C} does

not introduce a cycle, APGAN selects this adjacent pair for its second clusterization step.

Figure 3-19(c) shows the resulting graph.

(b)

> ' x^ J' ^* «. --

4-J) ®r-i@
(C) (e)

->T2 10^'

Figure 3-19 An illustration of APGAN.

101

In Figure 3-19(c), we have q(Q2> A E) = (2,5,1), and thus all three adjacent

pairs have p = 1. Among these, clearly, only {Cl2,E} and {E,D} do not introduce

cycles, so APGAN arbitrarily selects amongthese two to determine the third clusterization

pair. Figure 3-19(d) shows the graph that results when {E,D} is chosen. This graph

contains only one adjacent pair {Q2, £l3}, and APGAN will consolidate this pair in its

final clusterization step to obtain the single-vertex graph in Figure 3-19(e).

Figures 3-19(a-e) specify the sequence of clusterizations performed by APGAN

when applied to the graph of Figure 3-19(a). A more compact representation of this

sequence is shown in Figure 3-20. A valid single appearance schedule for Figure 3-19(a)

can easily be constructedby recursively traversing the hierarchyinducedby this sequence.

We startbyconstructing a schedule forthetop-level subgraph, the subgraph corresponding

to Q4. The subgraph Gt corresponding toeach Qt consists ofonly two actors Xi and Yi,

such that all edges in Gt are directed from X(to Yi. Thus, it is clear how an optimal

schedule caneasily beconstructed forthesubgraph corresponding toeach Clt: if each edge

e in G, satisfies del(e)>r\(e), then we construct the schedule (qc(y/)yi)(qc(Xl)Xl),

and otherwise weconstruct (qG(X/)Xl)(qG.(Y^Y^. InFigure 3-19, This yields the"top-

level" schedule (2Cl2)Q3 (wesuppress loops that have an iteration count of one) for the

subgraph corresponding to Cl4.

Next, we recursively descend one level in the cluster hierarchy to the subgraph

corresponding to Q3, and we obtain the schedule E(5D). Since this subgraphcontainsno

hierarchical actors, E(5D) is immediately returned as the "flattened" schedule for the

& a-®
Subgraph corresponding to ft,

*3,

10V ^"20
Subgraph corresponding to Q4

&

1 2

Subgraph corresponding to ft2

10

0
Subgraph corresponding to ft3

Figure 3-20 A compact representationfor the clustering sequence
shown in Figure 3-19

102

subgraph corresponding to Cl3. This flattened schedule then replaces its corresponding

hierarchical actor in the top-level schedule, and the top-level schedule becomes

(2Q2)E(5D). •...;.-,..

Next,descending to Q2, weconstruct the schedule QX(2C) for the corresponding

subgraph. We then examine the subgraph corresponding to Clx to obtain the schedule

(3A)B. Substituting this for £lx, the schedule for the subgraph corresponding to Ci2

becomes (3A)B(2C). Finally, this schedule gets substituted for Cl2 in the top-level

schedule to yield the valid single appearance schedule Sp =(2((3A)B(2C)))E(5D) for
Figure 3-19(a).

From Sp and Figure 3-19(a) it iseasily verified that buffer.memory(S) and

^BMLB(e)\
ee E

where E is the set of edges in Figure 3-19(a), are equal to 43, and thus in the execution of

APGAN illustrated in Figure 3-19, a BMLB schedule is constructed.

As seen in the above example, the APGAN approach, as has been defined here, does

not uniquely specify the sequence of clusterizationsthat will be performed, and it does not

in general, result in a unique schedule for a given SDF graph. The APGAN technique

togetherwithan unambiguous protocol fordeciding betweenadjacentpairs that are tied for

the highest repetition countforman APGAN instance, which generates a unique schedule

for a given graph. For example,one tie-breaking protocol that can be used when actors are

labelledalphabetically, as in Figure3-19,is to choosethat adjacentpair that maximizes the

sum of the "distances" of the actor labels from the letter "A". If this protocol is used to

break the tie between {A, B} ("distance sum" is 0 + 1 = 1) and {B, C} (distancesumis

1+2 = 3) in the first clusterization of step of Figure 3-19, then {B, C} is chosen.

We say that an adjacent pair is an APGAN candidate if it does not introduce a

cycle,and its repetition countis greater thanor equal to all otheradjacent pairsthat do not

introduce cycles. Thus, anAPGAN instance is any algorithm thattakes aconsistent, acyclic

SDFgraph as input, repeatedly clusters APGAN candidates, and thenoutputs the schedule

corresponding to a recursive traversal of the resulting clusterhierarchy.

In [Bhat96a], the following result is proven:

103

Theorem 3-7: Suppose that G = (V, E) is a connected, consistent, acyclic SDF graph

that has a BMLB schedule; del(e) < r\(e) for all e e E; P is an APGAN instance; and

SP(G) is the schedule obtained by applying P to G. Then SP(G) isa BMLB schedule
forG.

As a consequence, all graphs, such as that shown in Figure 3-19(a), for which

BMLB schedules exist, are handled optimally by any APGAN instance. For example, even

if in a certain APGAN instance, {B, C} is clustered instead of {A,B} in the first

clusterization step ofFigure 3-19, we are still guaranteed that the final result achieved by

that APGAN instance will be a BMLB schedule. If the graph does not have a BMLB

schedule, then it isnotnecessary that APGAN will find thebestpossible schedule. Inother

words, APGAN finds the best schedule whenever the achievable lower bound for the SDF

graph (that is,the smallest buffer-memory requirement that can bemet bysome valid single

appearance schedule) is equal to the BMLB. While the above result has considerable

intellectual interest by itself, we also demonstrate the practical relevance ofthis optimality

result in Section 3.20 by giving practical applications to which the result applies. Also,

experimental data will be presented that suggests that a "particular APGAN instance

frequently produces excellent results even for applications that do not have BMLB

schedules, and it will be shown that it has exhibited encouraging performance on a large

collection of complex randomly-generated SDF graphs.

3.20 Examples

3.20.1 Tree-structured Filter Bank

Figure 3-17 shows an SDF graph abstraction of a uniform-tree structured QMF

filterbank [Vaid93]. This type of filterbank iscommonly used in practice foraudio coding

applications. Filterbanks like this, even with arbitrary "depth", where depth isdefined tobe

the logarithm of the number of channels in the middle of the graph, fall into the class of

SDF graphs that have BMLB schedules; hence, APGAN will always return an optimal

buffer schedule for these graphs.

104

©-*<2>

(s>-kD^0

Figure 3-22 SDF abstraction for satellite receiver application from [Ritz95]

3.20.2 Satellite Receiver

In the exampleabove, the graphhada verysymmetric and regulartopology. Figure

3-22 shows an example where the topologyis not as regular, but is still in the class of SDF

graphs that have a BMLB schedule. The graph is an abstraction for a satellite receiver

implementation and is taken from [Ritz95]. The graph is annotated with the produced/

consumed numbers wherever they are different from unity. It is interesting to note that a

shared-buffer implementation of an optimal flat singleappearance schedule for this graph

would require a buffer of size 2040 [Ritz95] while APGAN generates a BMLB schedule

having a total buffering requirement of 1540 (using a seperate buffer on every edge of-

course).

Figure 3-21 SDFgraphfor. a uniform-tree filterbank. a) Depth 1
filterbank,b) Depth 2 filterbank. The produced/consumed numbers not
specified are all unity.

105

3.20.3 Chain Structured Graph with Irregular Rate Changes

When sample rates are irregular, APGAN can do poorly even if the topology is very

simple. For the graph shown in Figure 3-23, it can be verified that APGAN will construct

the schedule (9A)(4(3jBC)2D), which has a buffering cost of 43, while the optimal

schedule, returned by GDPPO is (3(3A)(45))(4(3C)(2D)), which has a cost of 30. The

optimal schedule would also be returned by RPMC (without GDPPO) in this case since

edge BC is where the minimum amount of data is transferred in a complete period of the

schedule.

The tables in Section 3.21 have more examples illustrating the performance of the

APGAN algorithm. The tables have both the performance on practical examples and

performance on random graphs. As noted there, APGAN generally performs well when the

topology or rate changes are fairly regular. Such regularity arises frequently in practical

multirate SDF graphs. In graphs that contain significant irregularity, such as random graphs

and the non-uniform filterbanks, RPMC usually performs much better than APGAN.

Hence, these two heuristics complement each other well.

3.21 Experiments

Table 3-1 shows the results of applying GDPPO to the schedules generated by

APGAN and RPMC on several practical SDF systems. The columns labeled "% Impr."

show the percentage ofbuffer memory reduction obtained by GDPPO. The QMF tree filter

banks fall into a class ofgraphs for which APGAN is guaranteed to produce optimal results,

and thus there is no room for GDPPO to produce improvement when APGAN is applied to

these two examples. Overall, GDPPO produces an improvement in 11 out of the 14

heuristic/application combinations. A "significant" (greater than 5%) improvement is

obtained in 9 of the 14 combinations; the mean improvement over all 14 combinations is

Figure 3-23 A chain-structured SDF graph.

106

Table 3-1: Performance of GDPPO on several practical SDF systems.

Application
Apgan
only,.

Apgan
+

Gdppo i^taipr.
Rpmc
only

Rpmc
+

Gdppo

%

Impr.

Nonuniform filter bank

(1/3,2/3 splits, 4 channels)
153 137 10.5 131 128 2.34

Nonuniform filter bank

(1/3,2/3 splits, 6 channels)
856 756 11.7 690 589 14.6

QMF tree filter bank

(8 channels)

78 78 0 92 87 5.43

QMF tree filter bank

(16 channels)

166 166 0 218 200 8.26

Two-stage fractional

decimation system

140 119 15.0 133 133 0

CD-DAT

sample rate conversion
396 382 3.54 535 400 25.2

DAT-CD

sample rate conversion
205 182 11.2 275 191 30.5

9.9%; and from the CD-DAT and DAT-CD examples, we see that it is possible to obtain

very large reductions in the buffer memory requirement with GDPPO.

Table 3-2 shows experimental results on the performance of APGAN and RPMC

forseveral practical examples of acyclic, multirate SDFgraphs. Thecolumn titled"average

random" represents the average buffermemory requirement obtained by considering 100

random schedules. A random schedule is generated by generating a random topological

sort. Corresponding to this topological sort is a flat single appearance schedule; this is a

BMUB schedule. Then GDPPO is applied to this schedule to get a single appearance

schedule whose buffer memory requirement is less than or equal to that of all single

appearance schedules having this particular topological ordering of the actors. All of the

systems shown in the table are acyclic graphs. The data for APGAN and RPMC also

includes the effect of GDPPO. As can be seen, APGAN achieves the BMLB on 5 of the 9

examples, outperforming RPMC in these cases. Particularly interesting are the last three

examples in the table, which illustrate the performance of the two heuristics as the graph

sizes are increased.The graphsrepresenta symmetrictree-structuredQMF filterbank with

differing depths. APGAN constructs a BMLB schedule for each of these systems while

107

Table 3-2: Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB Apgan Rpmc Avg.
Rand.

vert./

edges

Fractional decima

tion

61 47 47 52 52 26/30

Laplacian pyramid 115 95 99

137

99 102 12/13

Nonuniform filter-

bank (1/3,2/3
splits) (4 channels)

466 85 |128 172 27/29

Nonuniform filter-

bank (1/3,2/3
splits) (6 channels)

4853 224 756 1025 43/47

QMF nonuniform-
tree filterbank

284 154 160 171 177 42/45

QMF filterbank
(one-sided tree)

162 102 | 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filter-
bank (4 channels)

84 46 46 55 53 32/34

QMF Tree filter-
bank (8 channels)

152 78 78 87 93 44/50

QMF Tree filter-
bank (16 channels)

400 166 166 200 227 92/106

RPMC generates schedules that have buffer memory requirements about 1.2 times the

optimal. Conversely, the third and fourth entries show that RPMCcan outperform APGAN

significantly on graphs that have more irregular rate changes. These graphs represent

nonuniform filterbanks with differing depths. In the table, for each example, the cell

corresponding to the heuristic that gave the best buffer memory requirement has been

shaded. If the best performer equals the BMLB, then the shading is the same as the BMLB

column; otherwise a darker shade has been used.

Table 3-3 shows more detailed statistics for the performance of randomly obtained

topological sorts. For example, the column titled "APGAN < random" represents the

number of random schedules (again, these are obtained by starting with a BMUB schedule

for a random topological sort and applying GDPPO to this schedule) that had a buffer

memory requirement greater than that obtained by APGAN.The last two columns give the

mean number of random schedules needed to outperform these heuristics. A dash indicates

108

Table 3-3: Performance of 100 random schedules against the heuristics

Comparison with
random schedules (100

trials)

Apgan<

random

Apgan=

random .,

Rpmc ••

.< -.

random

Rpmc

random

Avg. to
beat

Apgan

Avg. to
beat

Rpmc

Fractional decimation 92% 8% 54% 13% — 3

Laplacian pyramid 74% 26% 74% 26% — —

Nonuniform filterbank (1/
3,2/3 splits) (4 channels)

100% 0% 100% 0% — —

Nonuniform filterbank (1/
3,2/3 splits) (6 channels)

100% 0% 100% 0% — —

QMF nonuniform-tree
filterbank

100% , 0% 81% 7% — 8

QMF filterbank (one
sided tree)

100% 0% 77% 23% — —

QMF analysis only 99% 1% 99% 1% — —

QMF Tree filterbank (4
channels)

100% 0% 16% 13% — 1.4

QMF Tree filterbank (8
channels)

100% 0% 87% 3% — 9.1

QMF Tree filterbank (16
channels)

100% 0% 96% 1% — 22.3

that no random schedules were found that had a buffer memory requirement lower that

obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, these heuristics

have also been tested on a large number of randomly generated 50-actor acyclic SDF

graphs. These graphs were sparse, having about 100 edges onaverage. The SDF parameters

were chosen randomly according to thefollowing rules. Firstly, it is determined whether a

parameter is a "free variable" ornot; it is a free variable if assigning anarbitrary number to

the parameter does not lead to sample rate inconsistency. If the parameter is a "free

variable", then with probability 0.5, it is set to 1, and with probability 0.5, it is set to a

uniformly generated random number between 1 and 10. Table 3-4 summarizes the

performance of these heuristics, both against each other, and against randomly generated

schedules. As can be seen, RPMC outperforms APGAN on these random graphs almost

two-thirds of the time.These heuristics were compared against 2 random schedules because

109

Table 3-4: Performance of the two heuristics on randomgraphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN)<

min(4 random)

87%

RPMC<APGi^Nby morethan 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%

measurements of the actual running time on 50-vertex graphs showed that we can construct

and examine approximately 2 random schedules and post-optimize it by GDPPO in the

time it takes for either APGAN or RPMC to construct its schedule and have it post-

optimized by GDPPO. The comparison against 4 random schedules shows that in general,

the relative performance of these heuristics goes down if a large number of random

schedules are inspected. Of course, this also entails a proportionate increase in running

time. However, as shown on practical examples already, it is unlikely that even picking a

large number of schedules randomly will give better results than these heuristics since

practical graphs usually have a significant amount of structure (as opposed to random

graphs) that the heuristics can exploit well. Thus, the comparisons against random graphs

give a worst case estimate of the performance that can be expected from these heuristics.

The experimental results presented in this section show that APGAN and RPMC

complement each other. For the practical SDF graphs that were examined, APGAN

performs well on graphs that have a simple structure topologically and regular rate changes,

like the uniform QMF filterbanks, and RPMC performs well on graphs that have more

irregular rate changes and irregular topologies. Since large random graphs can be expected

to consistently have irregular rate changes and topologies, the average performance on

random graphs of RPMC is better than APGAN by a wide margin — although, from the

110

last two rows of Table 3-4, it can be seen that there is a significant proportion of random

graphs for which APGAN outperforms RPMC by a margin of over 10%, which suggests

that APGAN is a useful complement to RPMC even when mostly irregular graphs are

encountered. However, the main advantage of adopting both APGAN and RPMC as a

combined solution arises from complementing the strong performance of RPMC on

generalgraphswith the formal propertiesof APGAN, as specified by Theorem 3-7, and the

ability of APGAN to exploit regularity that arises frequently in practical applications.

There is a variation of APGAN that achieves significantly better performance on

random graphs than the original version, although still significantly worse performance as

comparedto RPMC. This variation arises from changingthe "priority function" associated

with an edge e from p({src(e), snk(e)}) to the product

TNSE(e) x p({src(e), snk(e)}). (3.17)

In other words, the variation repeatedly clusters the source and sink vertices of

edges that maximize the measure given by (3.17). Thus, an adjacent pair is given more

weight if a'large amount of data is transferred between it as compared to other adjacent

pairs.

We have foundthaton the random graphs thatwere used to generate Table 3-4, this

modification of APGAN outperforms two random schedules ("min(2 random)") 76.5

percent of the time, which indicates a level of performance intermediate to APGAN and

RPMC. Furthermore, its performance equaled the performance of APGAN on all of the

practical examples except the six channel nonuniform filter bank, where it achieved a

buffer memory requirement of 696 (8% better than APGAN), and the four channel

nonuniform filter bank, whereit achieved 136(0.7% betterthan APGAN).

Interestingly, however, the modification of APGAN corresponding to (3.17) does

not preserve the formal properties specified by Theorem 3-7. This is easily seen from the

example in Figure 3-24. Here, q(W,X, Y) = (2,2, 1), and thus p({W,X}) = 2 and

p({W, Y}) = 1, and if we let p denote the measure defined by (3.17), then

p({W,X}) = 2x2 = 4, while p({W,Y}) = 6x 1 = 6. We see then that APGAN

clusters {W, X} in its first clusterization step,whichleads to the final schedule (2WX)Y,

and a buffer memory requirement of 7, while in the variation of APGAN, {W, Y] is

111

clustered first, and the resulting schedule (2W) Y(2X) gives abuffer memory requirement

8. It is easily verified theBMLB for this graph is 7, and thus, APGANgenerates aBMLB

schedule, while the variation generates asuboptimal result.

Thus, the variation of APGAN introduces a trade-off between provable optimality

for aclass ofgraphs, and average-case performance. Sincewe are proposing to complement

a heuristic — RPMC — whose average case performance significantly outweighs that of

both APGAN and its variation, it is intuitively more appealing to choose the original

version of APGAN since it adds a feature that RPMC lacks — optimality for a restricted,

but useful, class of graphs. Forthe practical examples that were examined, the variation of

APGAN outperformed the originaTAPGANonly in caseswhere RPMC outperformed both

APGAN and the APGAN variation, and thus adopting the new version of APGAN does not

improve the final result of any of these examples when a combined solution with RPMC is

employed.

3.22 Extension to Arbitrary Graphs

As shown in Chapter 2, the problem of constructing single appearance schedules

that minimize buffer memory usage for arbitrary SDF graphs is NP-hard since the problem

is NP-hard for HSDF graphs (where any valid schedule of blocking factor 1 is a single

appearance schedule). However, we can use the heuristics introduced in this chapter to a

limited extent on arbitrary SDF graphs as well.

First we review some pertinent results about single appearance scheduling for

arbitrary graphs from [Bhat94b].

®! 1®

©

Figure 3-24 An example in which APGAN achieves the BMLB, but
the modified version corresponding to (3.17) does not.

112

Definition 3-7: Suppose that G is a connected, sample rate consistent SDF graph. If Zx

and Z2 are disjoint nonempty subsets of actors(G), we say that Zx issubindependent of

Z2 in G if forevery'edge a in G such that src(a) e Z2 and snk(a) eZpwe have

del(a)>TNSE(a,G). (3.18)

We occasionally drop the "in G" qualification if G is understood from context. Also, if

(Zx is subindependent of Z2) and (Zx uZ2 = actors(G)), then we say that Zx is

subindependent in G, and wesay that Zx and Z2 forma subindependent partition of G.

Definition 3-8: A graph is called loosely interdependent if it does not have a

subindependent partition and tightly interdependent otherwise.

The subindependent partition can be computed for a graph in time linear in the total

numberof edges of the graph [Bhat94b]. It basicallyremoves from the graph,all edges that

satisfy (3.18). Figure 3-25 shows the subindependent partition of an SDF graph.

Intuitively, the idea behind subindependent partitioning is that the strongly connected

components that result after edges satisfying (3.18) have been removed can each be

clustered together, to give a graph that is acyclic. Hence, this acyclic graph has a single

appearance schedule if each of the strongly connected components has a single

appearance schedule. In fact, the following stronger result is proven in [Bhat94b]:

Theorem3-8: A nontrivial, strongly connected, consistent SDFgraph G has a single

appearance schedule if and only if every nontrivial stronglyconnectedsubgraph of G is

loosely interdependent.

This idea forms the basis of the loop scheduling framework developed in

[Bhat94b] where the SDF graph is recursively broken up into strongly connected

5D 5D 5D 5D

Figure 3-25 An illustration of algorithm SubindependentPartition.

113

components via subindependent partitioning until either no more strongly connected

components are encountered or a strongly connected component no longer has a

subindependent partition. The loop scheduling framework makes use of 3 algorithms:

the subindependence partitioningalgorithm, the acyclic scheduling algorithm, and the

tight interdependence scheduling algorithm. It is shown in [Bhat94b] that the loop

scheduling framework is modular in the sense that the three algorithms do not interact

with one another either destructively or constructively; in other words, the acyclic

scheduling algorithm cannot affect the performance of the subindependence

partitioning algorithm or vice-versa insofar as the existence of single appearance

schedules are concerned. Thus, a loose interdependence algorithm always obtains an

optimally compact solution when a single appearance schedule exists. When a single

appearance schedule does not exist, strongly connected graphs are repeatedly decomposed

until tightly interdependent subgraphs are found.

The algorithms and heuristics described in this chapter for buffer-memory-optimal

single appearance schedules can be used as the acyclic component in the loop scheduling

framework to yield schedules better optimized for buffer-memory usage. However, this

approach will not even be able to optimize over the space of all possible single appearance

schedules; hence, there is no hope of optimality at all. Figure 3-26 makes this point clearer.

The repetitions vector is given by q(A,B, C,D,E,F) = [12,16,18,6,18,9]. The

Subindependence algorithm will produce the graph on the right after deleting the arcs DB

and FD. The acyclic algorithm will now construct the schedule (4Clx)(6Cl2)(9Q3), and

this schedule can be optimally nested by GDPPO at the top-most level. Hence, the only two

schedules thatGDPPO could construct would be 2(2QX3Q.2)(9Q3) or 4^3(2Q23Q3).

It is easy to verify that the Cl(have the schedules 3A4B, (3C)(D), and (2E)(F)

300 200

Figure 3-26 An example to illustrate the inability of the scheduling framework in
[Bhat94b] to yield buffer-optimal single appearance schedules when combined with
techniques presented in this chapter.

114

respectively for i = 1,2,3, and the overall schedule returned by the loop scheduling

framework has these schedules substituted in the two top-level schedules for the ty,

i = 1,2,3. However, the schedule 2(3(2A3C)85 3D) 9((2E) F) has lower buffering

requirements since only 600 locations are needed on arc AC instead of the 1800 or more

required by the other two schedules. It is easy to see that there is no way to get this schedule

from the loop scheduling framework as described. So, our optimization for buffer memory

usage is being done over a proper subset of the space of all possible single appearance

schedules, and this is clearly sub-optimal. Hence, to fully incorporate buffer-memory

considerations when constructing single appearance schedules for arbitrary SDF graphs,

either the subindependencealgorithmhas to be modified non-trivially,or a new framework

has to be designed. It would be interesting to investigate this issue in the future; however,

the interest might be largely theoretical since there seem to be few practical SDF systems

that have several multirate cycles.

3.23 Related Work

Some work has been done with SDF scheduling by other researchers; in this

section, we describe some of these results and the specific objectivesaddressed

3.23.1 Minimum Activation Schedules

At Aachen, Professor Heinrich Meyr's group has studied the problem of

constructing single appearance schedules that attempt to minimize context-switch

overhead. These schedules are called minimum activation schedules and have been used in

the COSSAP environment, now marketed by Synopsys. In a schedule, each time a new

actor is invoked, there is a context switch; this overhead includes saving the contents of

registers, and loading state variables and buffer pointers. In the code generation

environment described in [Ritz93], this overhead includes all the usual ones associated with

function calls since the code generated by theirsystem is not inline. Hence, the objective

in minimum activation scheduling is to minimize the number of. actor invocations that

occurin theschedule. Forexample, theschedule (2(2fl)(5A))(5C) has5 invocations per

115

schedule period while the "flat" version of the schedule, (4B)(10A)(5C) has 3

invocations per schedule period. The average rate of activations for a periodic schedule is

defined to be the number of activations divided by theblocking factor of the schedule. If

we increase theblocking factor to 2, it is easily verified that the average activation rate for

the two schedules above become 4.5 and 1.5 respectively. In general, for any consistent

acyclic graph, we can make the average activation rate arbitrarily close to zero by using a

flat single appearance schedule of arbitrarily high blocking factor. Thus, the problem

becomes more interestingwhen the SDF graph has cycles. Algorithms (that in general are

not polynomial time) are given in [Ritz93] that attempt to find minimum activation

schedules for arbitrary SDF graphs. However, it turns out that non-single appearance

schedules can have a lower average activation, but because code-size is also a primary

constraint in the COSSAP code-generation system, Ritz et. al. only consider single

appearance schedules.

As pointed out before, we favor nested single appearance schedules over flat

schedules because our secondary concern was for buffer minimization, while Ritz et. al.

have the average activation rate as the secondary objective. In [Ritz95], an attempt is made

to address the buffering requirements by introducing it as a tertiary objective. The strategy

is to focus on delayless acyclic graphs and construct flat single appearance schedules (flat

because this minimizes the average activation rate) that minimize the total amount ofbuffer

memory required when buffer-sharing techniques are used. Of-course, computing a

schedule that minimizes the total number of live tokens at any stage in the schedule is an

NP-hard problem even for acyclic HSDF graphs [Seth75]. The heuristic given in [Ritz95]

is not even guaranteed to run in polynomial time, is not optimal, and it is not clear whether

the complicated buffer-sharing strategy for a multirate SDF graph can be implemented

easily in practice. Also, as pointed out in Section 3.2, buffer-sharing with flat single

appearance schedules can yield total buffering requirements that are much greater than

buffering requirements without buffer sharing but allowing nested schedules. Moreover,

the presence ofdelays causes additionalproblems; for this reason, the technique in [Ritz95]

applies only to delayless SDF graphs. The satellite receiver example of Section 3.20.2

shows that the APGAN+DPPO combination is able to achieve lower requirements than the

heuristic presented in [Ritz95]. Hence, if buffer minimization is a secondary criterion, then

116

the techniques developed in this chapter will in general be superior to those in [Ritz95].

There is clearly a trade-off in buffering requirements, context-switch overhead, generality

of various buffering schemes, code size,-and latency; in practice, it is likely that each of

these considerations will be important sometimes. Hence, a good design tool should have

a suite of all these schedulers so that the appropriate one may be chosen by the designer.

3.23.2 Retiming for State Minimization

Retiming is a technique that movesdelays around in the graph in order to minimize

thecriticalpath in the graph.This technique wasoriginallyproposed [Leis91] in the context

of optimizing the throughput of synchronous circuits, andin thiscontext, thecritical path,

that is, the longest delay-free pathin thecircuit, determines the smallest periodwithwhich

thecircuit canbe clocked. It is shown in [Leis91] thata secondary criterion of minimizing

the total number of state; that is, delays onthe arcs, can be incorporated into theretiming

framework, and retimings that minimize the clock period along with total state can be

computed efficiently. These techniques are not that useful to the problem that we have

considered in this chapter since they do not attempt to construct schedules that minimize

thetotal amount of buffering required. They also do notapply to multirate SDFgraphs.

3.233 Lee's Trellis-based Formulation

In [Lee86],Lee presents a techniqueby which schedules that minimize the amount

ofbuffering can beconstructed, both under the model where a separate buffer is assigned

to each arc, or to the case where buffersharing is employed. Lee associates a vectorwith

the graph withdimension of the vector equalling the number of vertices. Eachelement of

the vector represents the number of times each vertex has been invoked in a partial

schedule. Starting from the 0 vector, we explore all the next vectors that result from firing

one of the firable vertices. If we represent the vector by a vertex, and associate an edge

between the vertex corresponding toavector and the vertex corresponding toitssuccessor,

the edge can beweighted bythe amount ofbuffering required until then using either ofthe

buffer requirement criteria. Once all of the vectors have been computed, the minimum

117

memory schedule is simply the least-weight path through this graph. The chief drawback

of this approach is the exponential number of vectors that could be visited, even for an

HSDF graph; hence, this approach would not be practical for large graphs. Of-course, for

anmultirate SDFgraph, this approach does not even yield single appearance schedules.

3.24 Summary

In this chapter, we have tackled the problem ofcomputing schedules that minimize

code size as a primary goal, with buffer memory minimization as a secondary goal. Code-

size minimization is achieved by restricting our attention to single appearance schedules.

Buffer minimization is achieved by factoring single appearance schedules; that is, by

organizing nested loops in the schedule. We have argued in favor of a buffering model

where there is a buffer on each edge in the graph. We have shown that when the graph is

well-ordered, meaning there is only one topological sort, the problem of finding a single

appearance schedule that minimizes the total buffer memory can be solved in polynomial

time by a dynamic programming algorithm. We show that the dynamic programming

algorithm can be extended in several interesting ways to apply to arbitrary schedules (both

single appearance and non-single appearance). We also show how it can be extended to

apply to a restricted model of buffer sharing. We have shown that the buffer minimization

problem becomes NP-complete for general acyclic graphs, and hence heuristics must be

used. We give two heuristics: RPMC, and APGAN, and present an extensive experimental

study to demonstrate the strengths and weaknesses of these two heuristics. The APGAN

heuristic is optimal for a certain class of acyclic SDF graphs; this class is shown to be of

practical value since several practical SDF systems fall into the class. Finally, we extend

all of the algorithms to apply to cyclic graphs in certain restricted ways.

These algorithms have all been implemented in the Ptolemy programming

environment. The APGAN approach hasbeen implemented by the Alta Group of Cadence

Design Systems Inc. in their Signal Processing Worksystem programmingenvironment.

Most of the work reported in this chapter has been done in collaboration with Dr.

Shuvra Bhattacharyya, a researcher at the Hitachi Systems Research Laboratories in San

Jose, Ca. In addition, various subsets have appeared, or will appear, in published form in

118

journals and conferences: [Bhat95, Bhat96b, Murt94a, Murt94c]. The original loop

scheduling problem (without the goal of joint buffer minimization) was developed in

[How90], [Bhat93] and [Bhat94b]. The.approach in [Ho88a] had serious limitations and

flaws; see [Bhat94b] for a summary. Most of the work in [Bhat94b, Bhat95, Bhat96b,

Murt94a, Murt94c] can be found in the book [Bhat96a].

119

Multidimensional Synchronous Dataflow

The Synchronous dataflow model suffers from the limitation that its streams are

one-dimensional. For multidimensional signal processing algorithms, it is necessary to

have a model that where this restriction is not there, so that effective use can be made of

the inherent data-parallelism that exists in such systems. As for one-dimensional systems,

the specification model for multidimensional systems should expose to the compiler or

hardware synthesis tool as much static information as possible so that run-time decision

making is avoided as much as possible, and so that effective use can be made of both

functional and data parallelism. Most multidimensional signal processing systems also

have a predictable flow of control, like one-dimensional systems, and for this reason, an

extension ofSDF, called multidimensional synchronous dataflow was proposed in [Lee93].

4.1 Multidimensional Dataflow

The standard dataflow model suffers from the limitation that its streams are one

dimensional. Although a multidimensional stream can be embedded within a one

dimensional stream, it may be awkward to do so [Chen94]. In particular, compile-time

information about the flow of control may not be immediately evident. The

multidimensional SDF model is a straightforward extension of one-dimensional SDF.

Figure 4-1 shows a trivially simple two-dimensional SDF graph. The number of tokens

120

(0AA,0Ail) (/ftl,/B,2)

© <D

Figure 4-1A simple MD-SDF graph,

produced and consumed are now given as M -tuples. Instead of one balance equation for

each edge, there are now M. The balance equations for figure 4-1 are

rA,\°A,1 - rB,lJB,\ (4.1)

rA,2°A,2 - rB,2JB,2 (4.2)

These equations should be solved forthesmallest integers rx t, which thengivethe

number of repetitions of actor X in dimension i.

4.1.1 Application to Multidimensional Signal Processing

As a simple application of MD-SDF, consider a portion of an image coding system

that takes a 40 x 48 pixel image and divides it into 8x8 blocks on which it computes a

DCT. At the top level of the hierarchy, the dataflow graph is shown in figure 4-2. The

solution to the balance equations is given by

rA. i ~ rA. i - 1» rnrr i - 5, rDCT, 1 DCT, 2 = 6. (4.3)

A segment of the index space for the stream on the edge connecting actor A to the

DCTis shown in the figure. The segment corresponds to one firing of actor A. The space

is divided into regions of tokens that are consumed on each of the five vertical firings of

0
(40,48) (8,8)

•K DCT >——'-+

dimension 2

1

g

(8,8)

Figure 4-2 An image processing application in MD-SDF.

121

aa^cd1

Figure 4-3 An SDF graph and its corresponding precedencegraph,

each of the 6 horizontal firings. The precedencegraph constructed automatically from this

shows that the 30 firings of the DCT are independent of one another, and hence can proceed

in parallel. Distribution of data to these independent firings can be automated.

4.1.2 Flexible Data Exchange

While the utility of MDSDF to image processing is obvious, a less obvious

application ofMDSDF is a flexible data exchange mechanism. Consider the graph in figure

4-3. This graph shows that an interesting type of control flow can be specified using an SDF

graph. Figure 4-3 shows two actors with a 2/3 producer/consumer relationship. The

precedence graph is shown on the right. Note that the first firing ofA produces two samples

consumed by the first firing ofB. Suppose instead that we wish for firing A-j to produce the

first sample for each of B^ and B2.This can be obtained using MD-SDF as shown in figure

4-4. Here, each firing of A produces data consumed by each firing of B, resulting in a

pattern of data exchange quite different from that in figure 4-3. The precedence graph in

figure 4-4 shows this. Also shown is the index space of the tokens transferred along the

©2,1 1,3^v
hKb)

Dataflow graph

Figure 4-4 Data exchange in an MD-SDF graph.

122

128 / \128,1 1,10
FFT J ^Average j »

Figure 4-5 Averaging successive FFTs using MD-SDF.
edge, with the shaded regions indicating the tokens produced by the first firing of A and

consumed by the first firing of B.

A DSP application of this more flexible data exchange is shown in figure 4-5. Here,

ten successive FFTs are averaged. Averaging in each frequency bin is independent and

hence may proceed in parallel.The ten successiveFFTs are also independent, so if all input

samples are available, they too may proceed in parallel. Notice here that the second

dimension is being used as a temporarydimension to lay out data in a way more suitable to

the particular application. The analogy is that a pancake cannot be flipped over without

throwing it up in the air; that is, by using a third dimension. Hence, extra dimensions are

needed sometimes as "workspace"; this is exactly one of the uses in Lucid as well. The

matrix multiplication specification in [Lee93] is another example where a thirddimension

is usedto layout datain a form more amenable to the innerproduct computation involved

in matrix multiplication.

4.1.2.1 Multilayer Perception

A morecomplicated example of how the flexible data-exchange mechanism in an

MDSDF graph can be useful in practice is shown in figure 4-6, which shows how a

multilayer perceptron (with a nodes in thefirst layer, b nodes in thesecond layer etc.) can

be specified in a succinct way. However, as the precedence graph shows, none of the

parallelism in the network is lost; it canbe easily exploited by a good scheduler. Note that

the net specified below is used only forcomputation once the weights have been trained.

Specifying the training mechanism as well would require feedback edges with the

appropriate delays andsome control constructs; wedo notdevelop such a system here.

123

Q^-kx)^^ 5@U

Figure 4-7 An attempt to use ID-SDF to repeatedly compute inner products.

4.1.3 Computing Inner Products [Lee93]

Consider the problem of repeatedly computing an inner product on a stream of

vectors. This can be easily generalized into an FIR filter, although for conciseness we will

stick to the generic inner product. In particular, suppose we wish to express the inner

product at its finest level of granularity, and further that we require the graphical

representation to have a structure that is independent of the size of the vectors. To express

this using ID-SDF, we might try the configuration shown in figure 4-7. Actors A and B

each supply vectors of length 8 by producing 8 tokens when they fire. The small white

diamond is a "delay", which in a dataflow context is simply an initial, zero-valued token

on the edge. The actor with the downward arrow is a "downsample." It simply consumes 8

tokens and outputs one of them, discarding the rest. This configuration will correctly

compute the first inner product, but when the second set of vectors are generated by

a)

b)

©1,b a,1 /^c,1 1,b/"->v1,d c,1 /~Ne,1 W"N

Figure 4-6 a) Multilayer perceptron expressed as an MDSDF graph,
b) The precedence graph

124

O—c—O
Figure 4-8 A delay in MD-SDF is multidimensional,

repeated firings of A and B, the delay on the feedback path will not be re-initialized. Hence,

subsequent inner products will be incorrect.

A delay in MD-SDF in associated with a tuple as shown in figure 4-8. It can be

interpreted as specifying boundary conditions on the index space. Thus, for 2D-SDF, as

shown in the figure, it specifies the number of initial rows and columns. It can also be

interpreted as specifying the direction in the index space of a dependence between two

single assignment variables, much as done in reduced dependence graphs [Kung88].

Using MD-SDF delays, the repeated inner product can be specified as shown in

figure 4-9. The only significant difference between this and figure 4-8 is the

multidimensional delay. Its effect is illustratedschematicallyin figure 4-9, where the index

space for theoutputof the delay is shown. The shaded area is the initial condition specified

by the delay.

4.1.4 Multirate Actors

Some key multirateactors used in MDSDF specificationsare shown in Figure4-10.

These are:

Q^-Mgh-^)1 (8.1)^1
•0^

(8,1]
' Index space for variable X:

Figure 4-9 Repeated inner products in MD-SDF.

125

Up8ample Downsample
(L,M,1)/XN(L,M,N) (L,M,N)/rs(L,M,1)

Repeat Transpose
(L.M.^/XN^M.N) (L,M,NW(M,N,L)

—\t)—• —\0—•
Parameter: (2,3,1)

Figure 4-10 Some key MD-SDF actors that affect the flow of control.

• Upsample: In specifieddimension(s), consumes 1 and produces N,

inserting zero values.

• Repeat: In specified dimension(s), consumes 1 and produces N,

repeating values.

• Downsample: In specified dimension(s), consumes N and produces 1,

discarding samples.

• Transpose: Consumes and M-dimensional block of samples and

outputs them with the dimensions rearranged.

These are identified in figure 4-10. Note that all of these actors simply control the

way tokens are exchanged and need not involve any run-time operations. Of course, a

compiler then needs to understand the semantics of these operators.

4.1.5 State

State in dataflow models of computation can be maintained by permitting actors to

have self-loops. Consider the three actors with self loops shown in figure 4-11. Assume that

dimension 1 indexes the row in the index space, and dimension 2 the column, as shown in

figure 4-2. Then each firing of actor A requires state information from the previous row of

(1,0) (0,1) (1,1)

999
Figure 4-11 Three macro actors with state represented as a self-loop.

126

the index space for the state variable. Hence, each firing ofAdepends on the previous firing

in thevertical direction, but there is nodependence in thehorizontal direction. Thefirstrow

in the state index space must beprovided by the delay initial value specification. Actor B,

incontrast, requires state information from theprevious column in theindex space. Hence

there ishorizontal, butnotvertical dependence among firings. Actor Chasbothvertical and

horizontal dependence, implying that both an initial row and an initial column must be

specified. Note that this does imply that there is no parallelism, since computations along

a diagonal wavefront can stillproceed in parallel. Moreover, thisproperty is easyto detect

automatically in a compiler.

4.2 Scheduling

All of the scheduling techniques discussed in chapter 3 extend to the MDSDF

model. We assume 2 dimensions for notational simplicity throughout this section unless

otherwise stated. We use the notation A[t •] to mean the (i, j) th invocation ofactor A in

a complete periodic schedule. In a MDSDF schedule, a single appearance schedule like

(4,2)A(6,4)B means

for x = 0 to 3

for y = 0 to 1

fire A[xy]
end fory, forx

for x = 0 to 5

for y = 0 to 3

fire B[x,y]
end fory, forx.

4.2.1 Self-loops

As mentioned before, delays in MDSDF represent boundary conditions. A delay

(a, b) means that there are a initial rows and b initial columns. Suppose that A has a self

loop. For the following discussion, we will assume that A will not write over any of the

initial tokens on the edges. This is not a restriction since self-loops are usually used to

specify states explicitly as inputs and outputs and actual implementations do not show these

127

self-loops. In other words, we do not need to actually do things like buffer allocation for

self-loops at the dataflow graph level; the codeblock inside the actor is responsible for

managing its state. However, it is still conceptually important to consider the effect of this

state since it imposes precedence constraints between different invocations of A . So we can

ask whether a schedule like (4, 2)A a valid schedule loop. Also, does the order of the loop

nesting matter? We can state the following lemmas about self-loops:

Lemma 4-1: Suppose that an actor A has a self-loop as shown in figure 4-12. Actor A

deadlocks iff ax > dx and a2> d2 both hold.

Proof: Ifthe inequalities both hold, then A^ 0] cannot fire since it requires arectangle of

data larger than that providedby the initial rows and columns intersected. The forward

direction follows by looking at figure 4-12(b). If A deadlocks because A[00] cannot fire,

then the inequalities must hold. If A[0t 0] does ^re'tnen lt means tnat either ax <d{ or
a2 <d2. Ifaj<d,, then clearly A[0> » can fire for any j since the initial rows provide the
data for all these invocations. Then, A{, „ can all fire since there are ax+dx rows ofdata

now, and 2ax < ax + dx. Continuing this argument, we cansee thatA can fire as many

times as it wants. The reasoning if a2 <d2 issymmetric; in this case, A^ 0] can all fire,

and then A™ |i can all fire and so on. So actor A deadlocks iff A[0 0] isnot firable, and

Ar0 0j is not firable iff the condition in the lemma holds. QED

Corollary 4-1: In n dimensions, an actor A with a self-loophaving (dx, ...,dn) delays

and producing and consuming hypercubes (ax, ..., an) deadlocks iff ax > d{ V/.

Let us now consider the precedence constraints imposed by the self-loop on the

various invocations of A. Suppose that A fires (rx, r2) times. Then, the total array ofdata

consumed isan array ofsize (rxax, r2a2). The same size array iswritten, but shifted tothe

(dl,d2) d2

dl : V

(al,a2) (al,a2)
p

Figure 4-12 (a) An actor with a self loop, (b) Data space on the edge.

128

right and down ofthe origin by (dx, d2). In general, the rectangle ofdata read by anode is
up and to the left ofthe rectangle ofdata written on this edge since we have assumed that

the initial data is not being overwritten. Hence, an invocation Ay ^ can only depend on

invocations A[f, f] where f <i, / <j. This motivates the following lemma:

Lemma4-2: Suppose that actor A has a self-loop asin the previous lemma, and suppose

that A does not deadlock. Then, the looped schedule (rx, r2)A is valid, and the order of

nesting the loops does not matter.That is,

for x = 0 : rx -1

for y = 0 : r2- 1

fire A[Xty]
end fory, forx.

and

for y = 0 : r2-l

for x = 0 : rx -1

fire AUy]
end forx, fory.

give the same result.

Proof: We have to show that the ordering ofthe A[jc y] in the loop is a valid linearization

of the partialorder givenby the precedence constraints of the self-loop. Supposethat in

the first loop, the ordering is not a valid linearization. This means that there are indices

(/], jx) and (i2, j2) such that Ay j j precedes Ay j j in the partial order but Ayvj}] is

executed before Ay . j in the loop. Then, by the order ofthe loop indices, itmust be that

ix < i2. But then Ay •i cannot precede Ay . j in the partial order since this violates the

right and down precedence ordering. The other loop is also valid by a symmetric

argument. QED.

The above two lemmas allow us to dispense with self-loops since as long as A does

not deadlock due to a self-loop, the precedence constraints imposed by the self-loop can be

met by the schedules we are interested in, namely, uniprocessor, single appearance

schedules. Of-course, care must be exercised for multiprocessor scheduling but we are not

concerned with multiprocessor scheduling in this chapter because standard multiprocessor

129

scheduling techniques can be applied on the precedence graph of the MDSDF graph, and

the precedence graph can be constructed in an analogous manner to the construction for

SDF graphs.

4.2.2 GDPPO for MDSDF Graphs

The loopfactoring process proceeds identically to SDF, with the factoring done in

eachdimension separately. Forexample, a looped schedule of the form (4,2)A(6,4)B can

be factored as (2,2)((2,1)A(3,2)B). GDPPO can be extended to single appearance

schedules in orderto yield buffer-optimal nested hierarchies. However, it is not enough to

apply GDPPO oneach dimension separately since the nesting hierarchies may bedifferent

foreach dimension, meaning that we cannot combine the schedules into one schedule for

the MDSDF graph.

Consider thesimple graph shown infigure 4-13. If A fires (rA x, rA 2) times, then

the total buffer size on the edge is rAXrA20AX0A2. Consider a chain-structured

MDSDF graph with actors Ax,..., An. Then, the relevant formulation for the dynamic

programming algorithm (see Chapter 3) is given by

b[i,j] = min({(b[i,k] +b[k+l,j] +citj[k])\(i<k<j)}) (4.4)

where

c m - rAk,\rAk,2QAk,\°Ak,2 (4 5)
iji J gcd({rAmX\(i<m<j)})gcd({rAmt2\(i<m<j)})

Clearly, all ofthe extensions ofthe above basic dynamic programming algorithm presented

inChapter 3 can also beapplied toMDSDF graphs, but we omit them here since the main

challenge is the notation, more than anything else. In particular, given any single

(oAfVoAt2) (IBtVIB,2)

O <£)
Figure 4-13 A simple MD-SDF graph.

130

appearance schedule for an MDSDF graph, a buffer-optimal loop hierarchy can be

determinedby the dynamic programming algorithmin polynomial time.

4.2.3 BMLB for MDSDF Graphs

The BMLB can be computed similarly, with a product of gcds in the denominator.

First define

f r

x(AB) = ., A'1 -0A x,y(AB) = ,. A'2 -0A 2gcd(rAX,rBX) A>1 /v 8cd(rA2,rB2) A>2

Then, the BMLB is defined as

f(x(AB) + dx)(y(AB) + d2) dx<xvd2<y
BMLB(AB) = \ (4.6)

[dxd2 dx>XAd2>y

4.2 .4 RPMC for MDSDF Graphs

The same cost function given in equation 4.5 can be used as the weighting function

for the edges in a weighted graph; applying RPMC to this will then give us a heuristic

procedure for generating a topological sort of an acyclic MDSDF graph, for which an

optimal loop hierarchy can be computed using GDPPO.

4.2.5 APGAN for MDSDF Graphs

APGAN can be used on an acyclic MDSDF graph in the following way. Define the

following two quantities:

px({A,B}) = gcd(rAX,rBX) andp2({A,B}) = gcd(rA2,rB2) (4.7)

The clustering function is a tuple and is given by

p({A, B}) = (Pl({A, B}), p2({A,B})) (4.8)

131

At each step in the algorithm, we cluster the adjacent pair (AtB) that maximizes

p({A,B}) component-wise. This means that for any other adjacent clusterable pair

{X, Y}, with p'({X, Y}) = (^({X, Y}), p'2({X, Y})) we should have

px > p'j, p2 £ p'2. If such a pair does not exist, we pick the adjacent clusterable pair

{U, V} that maximizes px({U, V})p2({U, V}). Now, for an SDF graph, we define the

proper clustering condition in the following way:

Definition 4-1: If G is a connected, consistent SDF graph,and {X, Y} is an adjacent

pair in G that doesnot introduce a cycle, wesaythat {X, Y} satisfies the proper

clustering condition in G if foreach actor Z g {X, Y] that is adjacent to a member of

{X, Y}, we have that o({Z, P}) divides o({X, Y}), foreach P e {X, Y} that Z is

adjacent to. g({X,Y}) is the clustering functionand is defined as

C({X,Y}) = gcd({qG(X),qG(Y)}).

Similarly, we define this condition for an MDSDF graph:

Definition 4-2: If G is a connected, consistentMDSDF graph, and {X, Y} is an adjacent

pair in G thatdoesnot introduce a cycle, wesaythat {X, Y} satisfies the proper

clustering condition in G if for each actor Z £ {X, Y} that is adjacent toa member of

{X, Y}, we have that P;({Z, P}) divides pI({X, Y}), i = 1,2, and for each

P e {X, Y} that Z is adjacent to.

The proper clustering condition plays a key role in the proof that an APGAN instance

returns a schedule for an acyclic SDF graph with buffer memory requirement equal to the

BMLB if such a schedule exists [Bhat96a]. Essentially, it is shown in [Bhat96a] that

clustering an adjacent pair that satisfies the proper clustering condition results ina graph

where the BMLB oneach edge is the same asthe BMLB on the corresponding edge inthe

graph before clustering. If the adjacent pair that is clustered does not satisfy the proper

clustering condition, then there isatleast one edge inthe clustered graph where the BMLB

isgreater than the BMLB onthe corresponding edge inthe graph before clustering. Hence,

if the graph has a BMLB schedule, then the pair chosen for clustering at each step has to

satisfy the proper clustering condition; otherwise, the BMLB on some edge will be

increased and there isnohope ofgetting the optimal schedule. Fortunately, for a graph that

132

hasaBMLB schedule, the adjacent pair thatmaximizes c({A, B}) alsosatisfiesthe proper

clustering condition.

Unfortunately, it is not enough to ensure that the clustered pair always satisfies the

proper clustering condition. This is because even though the BMLB is preserved on each

edge, the existence of a BMLB schedule may be cancelled in the clustered graph. The

proper clustering condition is a local property, affecting only the edges adjacent to the

actors in theclustered pair, while theexistence of aBMLB schedule is aglobal property of

the graph. Hence, theclustered pair has to notonly satisfy the proper clustering condition,

but it has to also ensure that the clustered graph has a BMLB schedule. Fortunately,

clustering the adjacent pair that maximizes c({A,B}) also ensures that the existence of

the BMLB schedule is not cancelled. Hence, this allows us to show that APGAN will return

a BMLB schedule whenever one exists. All of the above results are non-trivial and are

proven in detail for SDF graphs in [Bhat96a].

We can extend all of these results to MDSDF graphs using the definition of proper

clustering given in definition 4-2. Using similar proof techniques, it can be shown that

clustering an adjacent pair that satisfies the proper clustering condition in anMDSDF graph

preserves all of theBMLBs, and clustering an adjacent pair that does not satisfy the proper

clustering condition increases the BMLB on at least one edge. Hence, a graph that has a

BMLB schedulewill have the property that there is a clusterable adjacent pair at each step

that maximizes the clustering function componentwise. If there is no such pair, then the

graph does nothave aBMLB schedule. It can be shown that therest of the steps described

above alsohold for MDSDF graphs, andhence APGAN on an MDSDF graph will return a

BMLB schedule whenever one exists.

Consider the example graph shown in figure 4-14. The repetitions vector is given

by r(A,B,C,D) = {(2, 8), (6,4), (4,2), (1,3)}. The clusterable pairs are {A,B},

{B, C}, and {C,D}. The clustering function values are p({A,B}) = (2,4),

P({B,C}) = (2,2), and p({C,D}) = (1,1). Hence, {A,B} is the pair chosen for

clustering since its clustering function hasmaximum component-wisevalue over the three

clusterable pairs. Similarly, atthe next step, there are two clusterable pairs, {Wl, C} and

{C,D}, and the clustering function values are p({Wl, C}) = (2,2) and

p({C,D}) = (1,1). So {W1,C} is clustered next, and the final schedule is

133

(2,2)((1,2)((1,2)A(3,1)£) (2,1)C) (1,3)D, and it can be verifiedthat this is

indeed a BMLB schedule.

The graph in figure 4-15 shows an example where there is no adjacent pairwhose

clustering function has the maximum-componentwise value. Hence, the graph does not

have a BMLB schedule either, as is verified by looking at the two possible single

appearance schedules. The repetitions vector is given by {(4,5), (6,15), (9,3)}. The

clustering function values for the two clusterable pairs are p({A,B}) = (2,5) and

p({B,C}) = (3,3). The two possible single appearance schedules are

(2,5)((2,1)A(3,3)B) (9,3)C and (4,5)A (3,3)((2,5)B (3,1)C) and neither of

these is a BMLB schedule. The APGAN algorithm in this case will choose to cluster

{A,B} first because 2x5>3x3;this results in the first of the two schedules given

(Ster^3©
Figure 4-14 An MDSDF graph that has a BMLB schedule.

\tA3j) (2J)\iL/(3,l) (2,5)\^J

Figure 4-15 An example of a graphthat does not havea BMLB schedule.

134

above. The first schedule has higher buffering requirements than the second; hence,

APGAN is notoptimal when the graph does not have aBMLB schedule.

4.3 Related Work

In [Watl95], Watlington and Bove discuss a stream-based computing paradigm for

prograniming video processing applications. Rather than dealing with multidimensional

dataspaces directly, as is done in this chapter, the authors sketch some ideas of how

multidimensional arrays can be collapsed into one-dimensional streams using simple

horizontal/vertical scanning techniques. They propose to exploit data parallelism from the

one-dimensional stream model of the multidimensional system. While these ideas are

interesting, it hasbeen ourexperiencethat goingto aone-dimensional model usually incurs

extensive overhead since, often, extraneous actors that merely rearrange data have to be

inserted into the system description to ensure correct operation. For example, in order to

represent a 2-dimensional FFT operation using only 1dimensional FFTs operating on one-

dimensional streams, actors that transpose arrays have to be inserted into the algorithm

[Chen94]. These actors are not only an unnecessary computational burden, but also

obfuscate the semantics of the algorithm since they are an artifact of the model being used

and not inherently part of the algorithm itself. Watlington and Bove also propose using

dynamic (run-time) scheduling for their systems. However, our experience suggests that a

great many signal processing systems can be modeled using SDF and MDSDF graphs since

they seldom involve any data-dependent actors or control operations; these graphs can be

scheduled statically. Systems that do involve control actors and data-dependent actors can

be modeled by the more general boolean dataflow (BDF) model. Although the BDF model

is Turing-complete, it is often possible to construct static schedules by graph clustering

techniques [Buck93], and only when these techniques fail does one resort to dynamic

scheduling. Even when dynamic scheduling becomes necessary, clustering techniques can

still reduce the number ofmodules that have to be scheduled at run-time since significantly-

sized subgraphs can often be scheduled staticallyeven if the entire graphcannot be. Hence,

a multidimensional extension of boolean dataflow would be desirable as this would allow

135

us to have static schedules in many cases, with dynamic scheduling used only when the

techniques of [Buck93] fail.

The Philips Video Signal Processor (VSP) is a commercially available processor

designed for video processing applications. A singleVSP chip contains 12 arithmetic/logic

units, 4 memory elements, 6 on-chip buffers, and ports for 6 off-chip buffers. These are all

interconnected through a full cross-point switch. Philips provides a programming

environment for developing applications on the VSP. Programs are specifiedas signalflow

graphs. Streamsare one-dimensional, as in [Watl95]. Multirate operations are supported by

associatingva clock period with every operation. Because all of the streams are

unidimensional, data-parallelism has to be exploited by inserting actors like multiplexors

and de-multiplexors into the signal flow graphs.

4.3.1 AOL

There has been interesting work done at Thomson-CSFin developing the Array-

Oriented language (AOL) [Deme94]. AOL is a specification formalism that tries to

formalize the notion of array access patterns. The observation is that in many

multidimensional signal processing algorithms, a chief problem is in specifying how

multidimensional arrays are accessed. For example, in a 3 dimensional array of data, an

FFT may beperformed on blocks ofinput data taken inone dimension. Furthermore, these

input blocks may overlap each other. It is observed that the computations themselves are

often no different from similar computations in 1 dimensional signal processing. For

example, asum-of-products computations behaves the same way regardless ofwhether the

dimension ofsamples it iscomputing on belongs tothe time dimension (where it iscalled

FIR filtering) or in spatial dimensions (in which case, the computation is called "beam-

forming").

It is assumed that computations are specified bya precedence graph inwhich actors

represents computations (called "elementary transformations"), and the edges represent

precedence constraints. The goal ofthe AOL formalism is to separate the computational
aspects from the array-access aspects so that computations need not know about how the

data they are operating on is arranged. This is done by associating a "template" for each

136

input and each output ofacomputational node; the node simply assumes that the data it
needs is in this template. These templates often are simply 1dimensional arrays. Each edge

also has the multidimensional array from which the elements of the template will bedrawn

from. It is the job of the user to specify how this multidimensional data object should

actually feed the template (in the case ofany input), and how data written into templates by

the computation should bearranged inthe multidimensional array (for an output). To this

end, a graphical user interface (GUI) has been developed that allows the user to specify

these access patterns graphically.

A few assumptions are made about the geometry of the templates in order to make

the specification problem easier. It is observed that these assumptions are usually valid in

practice. Access patterns are specified through twodefinitions: a"fitting" relationship, and

a "paving" relationship.

The fitting relationship specifies how elements of the multidimensional array map

into an input template (and conversely, how elements of an output template map into an

output multidimensional array). This relationship is assumed to be affine, meaning that if

two "examples" are given; that is, if two points and their mappings are specified, then the

mapping for filling in the rest of the template can be inferred by extrapolation. Formally,

let x(0) and x(1) be the first two elements of the input template. Then, the user specifies,

using the GUI, the two points y and z in the multidimensional arraythat map to x(0) and

x(1). By extrapolating the line from y to z in the multidimensional array, the remaining

elements of the template can be filled in.

The paving relationship specifies how translations of the template in the input

multidimensional array affect the translations of the output template in the output

multidimensional array.This relationship is also assumed to be affine so that two examples,

specified graphically in the GUI, are sufficient to specify the entire tiling of the input and

output multidimensional arrays. The execution of the graph then proceeds by firing each

computational node as many times as needed to completely fill its output multidimensional

arrays.

The approach of AOL is different from dataflow-oriented models such as

multidimensional synchronous dataflow (MDSDF) where no attempt has been made to

address the access issue. Although it appears that all of the operations specifiable through

137

AOL are also specifiable in MDSDF, specifications in MDSDF might need extraneous

nodes (such as repeaters, transposers, and commutators) to take care of the data

manipulation. Althoughan intelligent compiler could in principle recognize the function of

these extraneous data-manipulation actors and perform optimizations accordingly, so that

little overhead is incurred for including them, their very presence in the graph might

obscure the meaning of the algorithm, making it more difficult to modify it ormaintain it.

It is hoped that the AOL formalism will eliminate or at least ameliorate this problem. This

should result in faster design times, visual programs that are understood more easily, which

can then be maintainedor modified or debugged much more easily.

The development of AOL has been inresponse toactual needs of signal processing

systems designers at Thomson, and thus, should be of help to such designers. The

formalism also opens up several research issues such as designing efficient schedulers,

exploiting data parallelism effectively, implications for code generation for programmable

video signal processing architectures, (none of which have been dealt with yet in

[Deme94]), and better visualization techniques for these access patterns. Currently, inorder

to specify the fitting and paving relationships through the GUI, amultidimensional array

has tobevisualized using 2dimensional projections. Since arrays with dimensions ofupto

7 are not uncommon, the number of 2 dimensional projections can become too large; it

would be cumbersome to have to deal with each of these sequentially for thedesigner (for

example, a7dimensional array has 21 2-dimensional projections). Although itis not clear
whether we can do any better than dealing with 2 dimensional projections, it certainly

seems to be an interesting research issue.

138

Generalized Multidimensional Synchronous Dataflow

The multidimensional dataflow model presented in the previous chapter has been

shown to be useful in a number of contexts including expressing multidimensional signal

processing programs, specifying flexible data-exchange mechanisms, and scalable

descriptions of computational modules. Perhaps the most compelling of these uses is the

first one: for specifying multidimensional, multirate signal processing systems; this is

because such systems, when specified in MDSDF have the same intuitive semantics that 1

dimensional systems have when expressed in SDF. However, the MDSDF model described

so far is limited to modeling multidimensional systems sampled on the standardrectangular

lattice. Since many multidimensional signals of practical interest are sampled on non-

rectangular lattices [Mers83][Vaid90], for example, 2:1 interlaced video signals [Dubo85],

and many multidimensional multirate systems use non-rectangular multirate operators like

hexagonal decimators (see [Bamb90][Bosv92][Mand93] for examples), it is of interest to

have an extension of the MDSDF model that allows signals on arbitrary sampling lattices

to be represented, and that allows the use of non-rectangular downsamplers and

upsamplers.

139

5.1 Multidimensional Signal Processing Fundamentals1

A multidimensional signal ofdimension m, xa(tx,..., tm), is a real-valued function

of m realvariables tx, ...,tm. Thissignal canbesampled to generate a discrete timesignal.

However sampling a multidimensional signal is fundamentally more complicated than

sampling a unidimensional signal because of the many different ways the sampling

geometrycan be chosen.The straightforward extensionof unidimensional samplingwould

result in the sequence x(nx> n2) = xa(nxTv n2T2) where we have considered the m = 2

case for simplicity. Thus all values of tx, t2 that are integer multiples of the sampling

periods Tx, T2 are retained bythe sampler. Figure 5-1 shows the samples that are retained

for the case where Tx = 2, T2 = 1. As can be seen, the samples are arranged in a

rectangular pattern, and thus this sampling scheme is known as rectangular sampling. A

more general sampling scheme is to consider the sequence generated by

x(nx,n2) = xa(axxnx+aX2n2,a2Xnx+a22n2)

Notice that the sample locations retained are given by the equation

t =
'l

=

an a\2

a2X a22 Pi
= Vh

The matrix V is calledthe sampling matrix. Every sample location t is of the form

where

t = nxvx+n2v2

Jftl
• 1, 1 • •

to

2

• < I • •

Figure 5-1 An illustration of rectangularsampling.

1. The notation is taken from [Vaid93]

140

(5.1)

(5.2)

(5.3)

V, =

r* -l -

an
»v#2 =

aX2

a2X_ a22
, and

nx,n2 are integers. That is, the sample locations are vectors t that are linear combinations

of thecolumns of thesampling matrix V. Given thesampling matrix, the sample locations

canbe obtained graphically by first drawing the two vectors vx, v2 from theorigin. Then

draw two sets of equispaced parallel lines such that the two vectors form two sides of a

parallelogram generated by these lines. The sample points are then located at the

intersections of these lines. Figure 5-2(a) shows an example.

Note that the sampling matrix need not be an integer matrix but must be real and

non-singular. Using the above terminology, rectangular sampling can be represented by a

diagonal sampling matrix:

V =
Tx 0

0 7,

In fact, rectangular sampling is defined to be a sampling scheme for which the sampling

matrix is diagonal.

The set of all sample points t = Vh, h e N2, where N is the set of natural

numbers; that is, the set of vectors

m • •

Figure 5-2 Sampling on a non-rectangular lattice, a) The samples on the lattice, b)
The renumbered samples of the lattice.

141

is thesetofall integer linearcombinations ofthecolumns vx,..., vm ofthesampling matrix

V. This set is called the lattice generated by V, and is denoted LAT(V). The columns of

the matrix V form the basis that generates the lattice LAT(V). The basis for a lattice is not

unique; for example,

LAT
1 -1

1 2

^\ (
= LAT

AJ

0-1

3 2 AJ

The set of matrices that generate the same lattice can be characterized as follows.

Definition 5-1: A unimodularintegermatrix E is a matrix with integerentries such that

det(E) = ±1. Note that the inverse of E is also a unimodular integer matrix.

Lemma 5-1: Let V be a an m x m real non-singular matrix generating the lattice

LAT(V). Then,for any integer unimodular matrix E, LAT(V) = LAT(VE). If V is

any other basis for LAT(V), then there existsan integerunimodular matrix E such that

V = VE.

Proof: This proof can be found in [Vaid93].

5.1.1 Numbering on a Lattice

Suppose that h is a point on LAT(V). Then there exists an integer vector k such

that h - Vk. Thepoints k arecalled therenumbered pointsof LAT(V). Figure 5-2(b)

shows the renumbered samples for the samples on LAT(V) shown in figure 5-2(a).

5.1.2 Sampling Density

The determinant of the sampling matrix plays a role in the sampling of an MD

signal. The sampling density p, defined as the number of sample points per unit volume

(or areain the 2-dimensional case), is given by p = \/\det(V)\. The sampling density is

an important concept that plays a role in the multidimensional sampling theorem.

Intuitively, for an MDsignal that is bandlimited in some fashion, weexpect the sampling

density to be above some minimum if we expect to retain all of the information in the

142

signal. However, the sampling density depends on the sampling matrix, and hence the

sampling geometry, and thus, by a judicious choice of sampling geometry, we can make

sampling density as low as possible. An example of this is the sampling of an Tri

dimensional signal that is bandlimited to a hyperspherical region in the frequency plane.

The savings in sampling density by using a particular non-diagonal sampling matrix

("hexagonal" sampling) over a diagonal sampling matrix (rectangular sampling) for

sampling this hyperspherically bandlimited signal is a factor of 1.15 for m = 2. The

savings factor goes up to a factor of 2 for 4 dimensional signals, and a factor of 16 to 8

dimensional signals [Dudg84]. Hence, there is a practical reason to favor non-rectangular

sampling schemes over rectangular ones because of the potential savings in storage

requirements and processing rates due to the lower sampling density that can result

[Mers83]. Some applications that favor non-rectangular sampling schemes include 2:1

interlaced TV scanning [Dubo85], hierarchical video coding applications [Bosv92], and

filterbanks for doing directional decomposition [Bamb90]. Filter design techniques for

non-rectangular lattices have also been maturing as evidenced by many publications in the

area [Karl90][Visc91][Ansa88][Bamb90][Vaid90][Vaid93].

5.1.3 The Fundamental Parallelepiped

Given a sampling matrix V, suppose that the column vectors are sketchedfrom the

origin, as shown in figure 5-3 for the example from figure 5-2. The completed

parallelogram resulting from these vectors is called the fundamental parallelepiped of V,

denoted FPD(V). The points which fall inside FPD(V) can be represented as the set Vx

where x = \xx x2\ »with 0<xx,x2<\. The entire lattice LAT(V) can be thought ofas

1 to

Figure 5-3 The fundamental parallelepiped for a matrix V

143

V =
1 -1

1 2

a tiling of the plane by copies of FPD(V) shifted so that there is no overlap with other tiles,

with the points of the lattice always falling on the corners of these tiles.

Fromgeometry it is wellknown thatthevolume of FPD(V) is givenby \det(V)\.

Since only one integer sample point falls inside FPD(V), namely the origin, we can see

why the sampling density is given by the inverse of the volume of FPD(V).

Definition 5-2: Denotethe set of integerpointswithin FPD(V) as the set N(V). That is,

N(V) is the set of integer vectors of the form Vx, x e [0,1) .

The following lemmacharacterizes the number of integerpoints that fall inside FPD(V),

or the size of the set N(V). Even though the lemma is well known, we have not found a

satisfactory proof for it anywhere; hence, we give a proof here. But before that, we state

another lemma that isrequired for the proof ofthe lemma characterizing \N(V)\.

Lemma 5-2: Forany integer matrix A, there exists an integer, unimodular matrix C such

that CA is upper triangular.

Proof: See [Nemh88]; it also gives a polynomial time algorithmfor finding C.

Lemma 5-3: Let V be an integermatrix. The numberof elements in N(V) is given by

|JV(V)| = \det(V)\ (5.4)

Proof: Consideran upper triangular matrix M. In two dimensions,

M = ef

and this corresponds to a parallelogram with one of its sides on the x-axis. Since the side

that is on the x axis hasinteger length e, thenumber of integer points on the x axis thatlie

inside FPD(M) is just e. It is easy to see that there are / such rows of integer points in

FPD(M), and each of these corresponds to the vector [e q] being shifted by an integer
vector. Hence the number of integer points in eachrow is also e, making the total number

of points in FPD(M) equal to ef = \det(M)\. This argument can be extended to higher

dimensions in the same way; the number of points willbe the product of all the entries in

M along the diagonal. Hence the lemma is truefor integer, uppertriangular matrices.

144

By lemma 5-2, we can always find an integer unimodular matrix C such that CV

is upper triangular for anyinteger matrix V.Letx be aninteger pointin N(CV). Thepoint

C-1x is an integerpoint andis in N(V). Hence, for every integerpoint x in N(CV), there

is a unique integer point C~lx in N(V). For every integer point x in N(V), there is a

unique integerpoint Cx in N(CV). Hence, the size of N(V) equals the size of N(CV).

Since CV is upper triangular, \N(CV)\ = \det(CV)\ = \det(V)\, where the lastequality

follows from the unimodularity of C. QED

5.1.4 Multidimensional Decimators

The two basic multirate operators for multidimensional systems are the decimator

and expander.For an MD signal x(h) on LAT(Vj), the M-fold decimatedversion is given

by y(h) = x(h),he LAT(VjM) where M is an mxm non-singular integer matrix,

called the decimation matrix. Figure 5-4 shows two examples of decimation. The example

on the left is for a diagonal matrix M; this is called rectangular decimation because

FPD(M) is a rectangle rather than a parallelepiped. In general, a rectangular decimator is

one for which the decimation matrix is diagonal. The example on the right is for a non-

diagonal M and is loosely termed "hexagonal" decimation. Note that

LAT(Vj)^LAT(VjM)

a)
M =

2 0

0 3

<

<

J

> O (

) o <

i

> O (

) o <

> o <

> o <

>

>

<

<

> O (

> O (

) o c

> o c

| O (

> O (

1

1

• Samples kept

O Samples dropped

b) M = 1 1

2-2

Figure 5-4 a) Rectangular decimation, b) Hexagonal decimation

145

The decimation ratio for a decimator with decimation matrix M is defined to be the

number of points thrown away for every point kept from the input and is given by

\N(M)\ = \det(M)\. The decimation ratio for the example on the left in figure 5-4 is 6,

while it is 4 for the example on the right.

5.1.5 Multidimensional Expanders

In the multidimensional case, the "expanded" output y(h) of an input signal x(n)

is given by:

(x(n) neLAnVM .,_,„-,.
y(n) = Vne LAT(VjL l)

VO otherwise s
(5.5)

-l.where V, is the input lattice to the expander. Note that LAT(Vj)^LAT(VjL). The

expansion ratio, defined as the number of points added to the output lattice for each point

in the input lattice, is given by \det(L)\. Figure 5-5 shows two examples of expansion. In

the exampleon the left, the output lattice is alsorectangular and is generated by

L =

L =

2 0

0 2

a)

1 1

2-2

b)

o ♦ o
O O 0 O O

1<

o o o) o o

o o
o o

o o

• Samples kept

O Samples added

Figure 5-5 a) Rectangularexpansion, b) Non-rectangular expansion

146

0.5 0

0 0.5

The example onthe right shows non-rectangular expansion, where the lattice is generated

by

r1 = 0.5 0.25

0.5 -0.25

An equivalent way to viewthe above diagrams is to plot the renumbered samples.

Notice that the samples from the input will now lie on LAT(L) (figure 5-6).Some of the

pointshavebeenlabeledwithlettersto show wheretheywouldmapto on theoutputsignal.

5.2 Semantics of the Generalized Model

Consider the system depicted in figure 5-7, where a source actor produces an array

of 6 x 6 samples each time it fires ((6,6) in MDSDF parlance). This actor is connected to

the decimator with a non-diagonal decimation matrix. The circled samples indicate the

samples that fall on the output lattice of the decimator; these are retained by the decimator.

In order to represent these samples on the output of the decimator, we will think of the

buffers on the arcs as containing the renumbered equivalent of the samples on a lattice. For

a decimator, if we renumber the samples at the output according to LAT(VtM), then the

samples get written to a parallelogram-shaped array rather than a rectangular array. To see

what this parallelogram is, we introduce the concept of a "support matrix" that describes

lco d«

f
1

L =

• Samples kept

O Samples added

Figure 5-6 Renumbered samples from the output of the expander.

147

precisely the region of the rectangular lattice where samples have been produced. Figure 5-

7 illustrates this for a decimation matrix, where the retained samples have been renumbered

according to LAT(M) and plotted on the right. The labels on the samples show the

mapping. The renumbered samplescan be viewedas the set of integer points lying inside

the parallelogramthat is shownin the figure. In otherwords,thesupport of the renumbered

samples can be described as FPD(Q) where

G =
3 1.5

3 1.5

We will call Q the support matrix for the samples on the outputarc. In the sameway,we

candescribe thesupport of thesamples ontheinput arc to thedecimator as FPD(P) where

P =
60

06

r-i
It turns out that Q = M P.

Definition 5-3: The containability condition: let Xbe aset ofinteger points in SRm. We
say that X satisfies the containability condition if there exists an mxm rational-valued

matrix W such that N(W) = X.

Definition 5-4: We will assume thatany source actor in thesystem produces data in the

M =
1 1

2-2

g ii) •"© •

<• M • ® • ~®

ii) mm • g> •

(6,6) •©-*
i k

mm®/
a^fs®&/

Figure 5-7 Output samples from the decimator renumbered toillustrate concept of
support matrix. The circled samples onthe leftare labeled as shown.

148

following manner. Asource S will produce a set of samples £ on each firing such that

each sample in £ will lie on the lattice LAT(VS). Hence, the set £ = {Vfh: h€ £} isa
set of integer points, consisting of thepoints of £ renumbered by LAT(VS). Weassume

that the set £ satisfies the containability condition.

Given a decimator with decimation matrix M as shown in figure 5-8, we make the

following definitions and statements. Denoting the input arc to the decimator as e and the

output arc as /, Ve, and Vj are the bases for the input and output lattice respectively.
We, and Wj are the support matrices for the input and output arcs respectively, in the sense
that samples, numbered according to the respective lattices, are the integer points of

fundamental parallelepipeds of the respective support matrices. Similarly, we can also

define these quantities for the expander depicted in figure 5-8. With this notation, we can

state the following theorem:

Theorem 5-1: The relationships between the input and output lattices, and the input and

output support matrices for the decimator and expander depicted in figure 5-8 are:

Decimator Vf =VeM, Wf =M~lWe.
Expander Vf = VeL~l, Wf = LWe.

Proof: The relationships between the input and output lattices follow from the definition

of the expander and decimator. Consider a point n on the decimator's input lattice. There

exists aninteger vector k such that n = Vek. If M~lk is an integer vector, then this point

will bekept by thedecimator since it will fall on theoutput lattice; i.e, n = VeMk' where

k = AHfc. This point n is renumbered as k' = M~]V~ln = M"1 k bythe output lattice.

Since k was the renumbered point corresponding to n on the input lattice, and hence in

N(We), every point k in N(We) thatis kept by thedecimator is mapped to M-1 k by the

output lattice. Now, k€ N(We) => 3ze [0,1)2 s.t. k = Wez. So M~lk e N(M~X We)

because M~xk - M~l Wz. Conversely, let;' beany point in N(M"1 We). Then,

V«W' ^ Vf> Wf Ve> We ^ Vf> WJ/—^ v f> rrf ve> rre s~^ P f

Figure 5-8 Generalized expanderand decimatorwith arbitrary input lattices and
support matrices.

149

3ze [0, l)2 s.t. j = M~lWez. Since Wez = Mj, we have that Mj e N(We). Also, the

corresponding pointto thison the input lattice is VeMj implying that the pointis retained

bythe decimator. Hence, W, = M~l We. The derivation for the expander is identical,

only with different expressions. QED

Corollary 5-1: In an acyclic network of actors, where the only actors that are allowed to

change the sampling lattice are the decimator and expanderin the mannergivenby

theorem 5-1, and whereall source actors produce data according to definition 5-4, the set

of samples onevery arc,renumbered according to thesampling lattice onthatarc, satisfies

the containability condition.

Proof: Immediate from theorem.

In the following, we develop thesemantics of a model thatcan express these non-

rectangular systems by going through a detailed example. In general, our model for the

production and consumption of tokens will be the following: an expander produces

FPD(L) samples on each firing where L is the upsampling matrix. The decimator

consumes a "rectangle" of samples where the "rectangle" has to be suitably defined by

looking at the actor that produces the tokens that the decimator consumes.

Definition 5-5: An integer (a, b) rectangle is defined tobethe setof integer points in

[0, a) x [0, b), where a, b are arbitrary real numbers.

Definition 1: Let Xbe aset of points in SR2, and x, y be two positive integers such that
xy = \X\.X issaid to be organized as a generalized (jc, y) rectangle ofpoints, orjust a

generalized (x, y) rectangle, by associating a rectangularizing function with X that

maps the pointsof X to an integer (x, y) rectangle.

Example 5-1: Consider the system below, where adecimator follows an expander (figure

5-9(a))

Westart by specifying thelattice and support matrix for the arc SA.Let

^VSA = 1 0

0 1
and WSA =

150

30

0 3

So the source produces (3,3) in MDSDF parlance. For the system above, we can compute

the lattice and support matrices for all other arcs given these. We willneed to specify the

scanning order foreacharcas well thattells thenode theorder in which samples should be

consumed.Assume for the moment that the expanderwill consume the samples on arc SA

in some natural order; for example, scanning by rows. We need to specify what the

expander produces on each firing. The natural way to specify this is that the expander

produces FPD(L) samples on each firing; these samples are organized as a generalized

(Lx, L2) rectangle. This allows us to say thattheexpander produces (Lx, L2) samples per

firing; this is understood to be the set FPD(L) of points organized as a generalized

(LX,L2) rectangle.

Suppose we choose the factorization 5x2 for \det(L)\. Consider figure 5-9(b)

where the samples in FPD(L) are shown. One way to map the samples into an integer

(5, 2) rectangle is as shown by the groupings. Notice that the horizontal direction for

a)

L =

b)

2-2

3 2
M =

1 1

2-2

Figure 5-9 An example to illustrate balance equations and the need for some additional
constraints, a) The system, b) Ordering of data into a 5x2 rectangle inside FPD(L).

151

FPD(L) is the direction of the vector [2 3] and the vertical direction is the direction of
the vector L_2 2] •We can number the samples as follows:

Table 5-1: Ordering the samples produced by the expander

Original (00) (01) (02) (U) 03) (-1,1) (-1,2) (-1,3) (0,3) (0,4)
sample

Renumbered (0,0) (1,0) (2,0) (3,0) (4,0) (0,1) (1,1) (2,1) (3,1) (4,1)
sample

Hence, FPD(L) is a generalized (5,2) rectangle if we associate the function given in the

tableabovewithit as the rectangularizing function. Givena factoring of thedeterminant of

L, the function givenabovecan be computed easily; for example, by ordering the samples

according to theirEuclidean distance from thetwovectors thatcorrespond to the horizontal

and vertical directions. The scanning order for the expander across invocations is

determined by the numbering of the input sample on the output lattice. For example, the

sample at (1,0) that the source produces maps to location (2,3) in the re-numbered lattice at

theexpanders output. Hence, consuming samples in the [1 0] direction onarc SAresults in

5x2 samples (i.e, FPD(L) samples but ordered according to the table) being produced

along the vector [2 3] on the output. Similarly, the sample (0,1) produced by the source

corresponds to (-2,2) on the output. A global ordering on the samples is imposed by

renumbering thesample at (2,3) as(5,0) since the first FPD(L) ofsamples produced ended

with sample (4,1). With this global ordering, it becomes clear what the semantics for the

decimator should be. Again, choose a factorization of \det(M)\, and consume a

"rectangle" of those samples, where the "rectangle" is deduced from the global ordering

imposed above. For example, if we choose 2x2 as the factorization, then the (0,0)

invocation of the decimator consumes the (original) samples at (0,0), (-1,1), (0,1), and (-

1,2). The(0,2)th invocation ofthedecimator would consume the(original) samples at (1,3),

(0,4), (2,3) and (1,4). The decimator would have todetermine which of these samples falls

on its lattice; this can be done easily.

Wehave already mentioned the manner inwhich the source produces data. Weadd

that the subsequent firings ofthe source are always along the directions established bythe

vectors in the support matrix on the output arc of the source.

Now we can write down a set of "balance"equationsusing the "rectangles"that we

have defined. Denote therepetitions ofa node X in the"horizontal" direction by rx x and

152

the"vertical" direction as rx 2.These directions are dependent onthegeometries that have

been defined on the variousarcs. Thus, forexample, the directionsaredifferent on the input

arc to the expander from the directions on the output arc. We have

3rs,i = lrA,\

3r5,2 = lrA,2
5rA i = 2r» i

A'l Btl (5.6)
2ri4,2 = 2rB,2

rB, 1 = rT, 1

rB,2 = rr,2

where we have assumed that the sink actor T consumes (1,1) for simplicity. We have also

made the assumption that the decimator produces exactly (1,1) every time it fires. This

assumption is usually invalid but the calculations done below are still valid as will be

discussed later. These equations can be solved to yield

rs, l = 2» rs, 2 = *

A,\ - » ,4,2 - ^^
rB, 1 = ^'rB,2 = 3

rT, 1 = 15»r7\2 = 3

Figure 5-10 shows the data space on arc AB with this solution to the balance

equations. As we can see, the assumption that the decimator produces (1,1) on each

invocation is not valid; sometimes it is producing no samples at all and sometimes 2

samples or 1 sample. Hence, we have to see if the total number of samples retained by the

decimator is equal to the total numberof samples it consumes divided by the decimation

ratio.

In order to compute the number of samples output by the decimator, we have to

compute the supportmatrices forthe various arcs assumingthat the sourceis invoked (2,1)

times (so that we have the total number of samples being exchanged in one schedule

period). We can dothissymbolically using rs x, rs 2 and substitute thevalues later. We get

153

WSA =

*AB = LWSA =

WBT =M"1^ =\

30

0 3

2-2

3 2

2 1

2-1

rs,\

0 r

0

S,2_

3rs,i

0 3rS,2

0

6r5,l -6rS,2
9rs,i °>s>2

3^,1 0
0 3rS,2

6rS,l ~6rS,2

9^,1 6r5,2
, and

21r5,l ~6rS,2

3rS, 1 ""18r5,2
(5.8)

Recall that the samples that the decimator produces are the integer points in

FPD(WBT). Hence, we wantto know if

\N(WBT)\ = \N(WAB)\/\M\ (5.9)

2x2 rectangle
consumedoy
decimator

^ Original samples
produced by source

• I Samples retained by
9 I decimator

Samples added by
° expander, discarded by

decimator

-2-1 0 12

Figure5-10Total amount of data produced by the source in oneiteration of
the periodic schedule determined by thebalance equations in equation 5.7.

154

is satisfied byoursolution to thebalance equations. Bylemma5-3,thesizeof theset N(A)

foraninteger matrix A is given by \det(A)\. Since WAB is aninteger matrix forany value

of rsx,rs2, we have |#(WAB)| = \det(WAB)\ = 90rsxrS2. The right hand side of
equation 5.9 becomes (90r5 xrs2)/4 = (45rs ^5 2)/2. Hence, ourfirst requirement is

that rs xrS2 = 2k k = 0,1,2,.... The balance equations gave us

rs , = 2,rs 2 = 1; this satisfies the requirement. With these values, we get

WBT = 21/2 -3/2

3/2 -9/2

Since this matrix is not integer-valued, lemma 5-3 cannot be invoked to calculate the

number of integer points in FPD(WBT). For non-integer matrices, the only way to

compute \N(WBT)\ appears to be by brute force: by drawing this out on graph paper, itcan
be determinedthat there are 47 points inside.Hence,equation 5.9 is not satisfied!One way

to satisfy equation 5.9 is to force WBT to be an integer matrix. This implies that

rs x = 4k,k= 1,2,... and rs2 = 2k,k = 1,2,.... The smallest values that make WBT

integer valued are rs x = 4, rs 2 = 2. From this, the repetitions ofthe other nodes are also

multiplied by 2, thus increasing the blocking factor to 2, where the definition of the

blocking factoris as in the MDSDF case. Notethat the solutionto the balanceequations by

themselves are not "wrong"; it is just that for non-rectangular systemsequation5.9 gives a

new constraint that must also be satisfied.

We can formalize the ideas developed in the example above in the following.

Lemma 5-4: The supportmatrices in the network can each be written down as functions

of the repetitionsvariablesof one particularsource actor in the network.

Proof: Immediate from the fact that all of the repetitions variables are related to each other

via the balance equations.

Lemma 5-5: In a multidimensional system, the jth column of the support matrix on any

arc can be expressed as a matrix that has entries ofthe form a^rs j, where rs ;- is the

repetitions variable in the jth dimension of some particular source actor S in thenetwork,

and <2 •• are rationals.

Proof: Without loss of generality, assume that there are 2 dimensions. Let the support

155

matrix on the output arc of source S for one firing be given by

Ws = p q

r s

For rs ,, rs 2 firings in the "horizontal" and "vertical" directions (these are the directions

of the columnsof Ws), the supportmatrix becomes

^5 = PQ

r s

rS,\ 0
0 5,2_

PrS,l 4rS,2

rrS,\ srS,2

(in multiple dimensions, the right multiplicand would be adiagonal matrix with rs ;- in jth
row).

Now consider an arbitrary arc (u, v) in the graph. Since the graph is connected,

there is at least one undirected path P fromsource S to node u. Since the only actorsthat

change the sampling lattice (andthus the support matrix) are the decimator andexpander,

all of the transformations that occur to the support matrix Ws along P are left

multiplications by some rational valued matrix. Hence, the support matrix on arc e, We,

can be expressed as We = AWS, where A is some rational valued matrix. The claim of

the lemma follows from this.

Theorem 5-2: In an acyclic network of actors, where the onlyactors that are allowed to

changethe sampling latticeare the decimator andexpander in the mannergiven by

theorem 5-1, and where all source actorsproducedata according to definition 5-4,

whenever the balance equations for thenetwork have a solution, thereexists a blocking

factorvector J such that increasing the repetitions of eachnode in each dimension by the

corresponding factor in J will result in thesupport matrices being integer valued forall

arcs in the network.

Proof: By lemma 5-5, a term in anentry in the jth column of the support matrix on any

arc isalways aproduct ofarational number and repetitions variable rs j ofsource S. We

force this term tobe integer valued by dictating that each repetitions variable rs j be the

lcmof the values needed to force each entry in the jth column to be an integer. Such a

valuecan be computed for each support matrix in the network. The lcm of all these values

156

and the balance equations solution for the source would then give a repetitions vector for

the source that makes all of the support matrices in the network integer valued and solves

the balance equations. QED

5.2.2 The Rectangular Case

Here we show that the constraint of the type in equation 5.9 is always satisfied by

the solution to the balance equations when all of the lattices and matrices are diagonal.

Since we are only interested in these additional constraints for arcs between an expander

and decimator, consider the system in figure 5.12. The balance equations for arc AB are

L\rA,l = M\rB,l

L2rA,2 = M2rB,2

The support matrix for arc AB is given by

L\rA,\ 0

*AB =
0 L2rA,2

(5.10)

since the input lattice and support matrix on the expanders input are both diagonal. The

support matrix for arc BT is given by

WBT =)TlWAB = M~x 0

0 M
-l

LlrA,\ 0

0 L2rA,2

,-1MxLxrAfX 0
-10 M2L2rAt2

We have \N(WAB)\ = LxL2rA xrA 2. Asolution to the balance equations in equation 5.10
implies that the matrix W BT is an integer matrix; hence,

B

(1 ,ll(fT\(Ll,L2) (Ml,M2;/p\ (1,1) ,

L =
Lx 0

0 U
M =

M, 0

0 M.

Figure 5-11 For a rectangular system, the constraint of equation 5.9 is always met.

157

\N(WBT)\ = \det(WBT)\ = MxLxrAXM~2L2rA2 and we see that equation 5.9 is

satisfied since \det(M)\ = MXM2. So we see that the rectangular MDSDF case isaspecial

case of the more general set of constraints needed fornon-rectangular systems.

The fact that the decimator produces a varying number of samples per invocation

might suggest that it falls nicely into the class of cyclostatic actors. However, there are a

couple of differences. In the CSDF model of [Lauw94], the number of cyclostatic phases

are assumed to be known beforehand, and is only a function of the parameters of the actor,

like the decimation factor. In our model for the decimator, the number of phases is not just

a function of the decimation matrix;it is alsoa functionof the samplinglattice on the input

to the decimator (which in turn depends on the actor that is feeding the arc), and the

factorization choice that is made by the scheduler. Secondly, in CSDF, SDF actors are

represented as cyclostatic by decomposing their input/output behavior over one invocation.

For example, a CSDF decimator behaves exactly like the SDF decimator except that the

CSDFdecimator doesnot needall M data inputs tobe present beforeit fires; instead, it has

a4-phase firing pattern. Ineach phase, it willconsume 1token, butwill produce onetoken

only inthe first phase, and produce 0 tokens inthe other phases. Inour case, thecyclostatic

behavior of the decimator is arising across invocations rather than within an invocation. It

is as if the CSDF decimator with decimation factor 4 were to consume {4,4,4,4,4,4} and

produce {2,0,1,1,0,2} instead of consuming {1,1,1,1} and producing {1,0,0,0}.

One way to avoid dealing withconstraints of the type in equation 5.9would be to

choosea factorization of \det(M)\ thatensured thatthe decimator produced one sampleon

each invocation. For example, if we were to choose the factorization 1x4 for theexample

above, the solution to the balance equations would automatically satisfy equation 5.9. As

we show later, we can find factorizations where the decimator produces one sample on

every invocation in certain situations but generalizing this result appears to be a difficult

problem since there does not seem to be an analytical way of writing down the re

numbering transformation that was shown in table 1.

158

5.2.3 Implications of the Above Example for Streams

In SDF, there is only one dimension, and the stream is in that direction. Hence,

whenever the repetitions of a node is greater than unity, then the data processed by that

node corresponds to data along the stream. In MDSDF, only one of the directions is the

stream. Hence, if the repetitions of a node, especially a source node, is greater than unity

for the non-stream directions, the physical meaning of invocations in those directions

becomes unclear. Forexample, consider a 3-dimensional MDSDF model for representing

a progressively scanned video system. Of these 3 dimensions, 2 of the dimensions

correspond to theheight and width ofthe image, and the third dimension is time. Hence, a

source actor that produces the video signal might produce something like (512,512,1)

meaning 1512x512 image perinvocation. If the balance equations dictated that this source

should fire (2,2,3) times, for example, then it is not clearwhat the 2 repetitions eachin the

height and width directions signify since they certainly do not result in datafrom the next

iteration being processed, where an iteration corresponds to the processing of an image at

the next sampling instant. Only the repetitions of 3 along the time dimension makes

physical sense. Hence, there is potentially room for great inefficiency if the user of the

system has not made sure that the rates in the graph match up appropriately so that wedo

not actually end up generating images of size 1024x1024 when the actual image size is

512x512. In rectangular MDSDF, it might be reasonable to assume that theuser is capable

of setting the MDSDF parameters such that they do not result in absurd repetitions being

generated in the non-stream directions since this can usually be done by inspection.

However for non-rectangular systems, we would like to have more formal techniques for

keeping the repetitions matrix in check since it is much less obvious how to do this by

inspection. The number of variables are also greater for non-rectangular systems since

differentfactorizations for thedecimation orexpansion matricesgivedifferentsolutions for

the balance equations.

To explore the different factoring choices, suppose we use 1 x 4 for the decimator

instead of 2 x 2. The solution to the balance equations become

159

rS,l =

rA,\ =

rD t =
fl.i

>,i

From equation 5.8, WBT is given by

l^s,2 = 2

3>rA,2 = 6
15,rB2 = 3

10, /*y 9 = •

WBT - 21/4 -3

3/4 -9

(5.11)

and itcan be determined that |AT(WBr)| = 45, as required. So in this case, we do not need
to increase the blocking factor to make WBT an integer matrix, and this is because the

decimatoris producing 1 tokenon every firing as shownin figure 5-12.

However, if the stream in the above direction were in the horizontal direction (from

thepoint of view of thesource), then the solution given by thebalance equations (eq. 5.11)

1x4 rectangle
consumed by
decimator

O

\ Samples retained by
(§) J decimator

Samples added by
expander, discarded by
decimator

Original samples
produced by source

160

-2-10 1 2

Figure5-12Total amount of dataproduced by the source in one iteration of the
periodic schedule determined by the balance equations in equation 5.11. The
samples that are keptby the decimator are the lightly shaded samples.

may not be satisfactory for reasons already mentioned. For example, the source may be

forced to produce onlyzeros for invocation (0,1). One wayto incorporate such constraints

into the balance equations computation is to specify the repetitions vector instead of the

number produced orconsumed. That is, for thesource, we specify that rs 2 = 1 but leave

the number it produces in the vertical direction unspecified. The balance equations will

give usasetof acceptable solutions involving the number produced vertically; we can then

pick the smallest such number that is greater than orequal to three. Denoting the number

produced vertically by ys, ourbalance equations become

3rS,l = lrA,l

ysl = XrA,2

5rA,l = lrfl,l

2rAt2 = 4rB,2

rB, 1 = r7\ 1

rB,2 ~ rT,2

The solution to this is given by

rs,\ =

rA,\ =

rB,l =

r7\ 1 =

i,y5 = 2*

3,^2 = 2*

15> rB,2 = *

ID, /"y 7 =

k = 1,2,

and we see that k = 2 satisfies our constraint. Recalculating the other quantities,

WBT =M~lWAB =\ 21 r5,1 "8r5,2

3r5,l "24r5,2

21/4 -2

3/4 -6

(5.12)

(5.13)

and we can determine that |N(WBT)\ = 30 as required (i.e., 3x 4 x 10/4 = 30). Hence,

we get awaywith having to produce only one extrarow rather thanthree,assumingthat the

sourcecan only produce 3 meaningful rows of data (and any number of columns).

161

5.3 Eliminating Cyclostatic Behavior

The fact that the decimator does not behave in a cyclostatic manner in figure 5-12

raises the question of whether factorizations that result in non-cyclostatic behavior in the

decimator can always be found. Thefollowing example and lemma givean answer to this

question for the special case of a decimator whose inputis a rectangular lattice.

Example 5-2: Considerthe system in figure 5-13 wherea 2-D decimator is connected to

a sourceactor that producesan arrayof (6,6)samples on each firing. The black dots

represent thesamples produced by the source and thecircled black dots show thesamples

that the decimator should retain; theseare the samples that lie on LAT(M) intersected

with the samples produced by the source. Since \det(M)\ = 4, there arethree possible

ways tochoose MX,M2. With Mx = Af2 = 2 we see that the 6 x 6 array can betiled

with 2x2 arrays suchthat 1 sample is produced in each 2x2 array (figure 5-13 (b)).

However, since some of the 2 x 2 blocks retain the sample on the left-bottomcorner and

some the sample on the right-bottom corner, a time-varying phase would have to be used

to determine which sample should be output on a given invocation. Thereare twoother

ways to choose Mx, M2 so that their product is4: Mx = 1, M2 = 4 and

Mx = 4, M2 = 1. Figures 5-13 (b),(c) illustrate the tiling with these choices. For both

a)
M =

1 1

2-2

/TW) (M1,M2)/^(1,1)

d)

n • m

§ <§>

IS g) lg B to—»-H* • • 9 • •

Figure 5-13 Anexample to illustrate that two factorizations always exist that result in
non-cyclostatic behavior with the decimator. a) The system, b) Ml=2, M2=2. c)
Ml=l, M2=4. d) Ml=4, M2=l

162

these choices, the repetitions of the source isdifferent than (1,1); hence the tiling isn't

complete but can be completed if the source produces more data as specified bythe

solution tothe balance equations ((2,1) and (1,2) respectively). In figure 5-13 (c) also, we

see that for every (1,4) consumed, (1,1) is produced, although again, atime-varying phase

will berequired. However, in figure 5-13(d), wesee that onsome invocations, no samples

are produced (that is, (0,0) samples are produced) while in some invocations, 2 samples

are produced. This raises thequestion of whether there is always a factorization that

ensures that the decimator produces (1,1) for all invocations. The following lemma

ensuresthat for any matrix, there are always two factorizations of the determinant such

that the decimator produces (1,1) for all invocations. Also, this example illustrates two

other points: it is only sufficient that the decimatorproduce 1 sample on each invocation

for the additional constraints on decimator outputs to be satisfied by the balance equation

solution. It is only sufficient that the support matrix on the decimators output be integer

valued for the additional constraints to be satisfied. Indeed, we have

WSM =
6rS,l

0 6rs>2

0
, W MO

3rsx 1.5rs 2

3rS, l ~15rs,2

where WM0 is the support matrix on the decimators output. For the case where

Ml - 4,M2 = 1, we have rsx = 2, rS2 = 1, making WM0 non-integer valued.

However, we do have that \N(WM0)\ = \N(WSM)\/\det(M)\, despite the fact that WM0
is non-integer valued and the decimator is cyclostatic.

Lemma 5-6: If

M =
ab

cd

is any non-singular, integer 2x2 matrix, then there are at most two factorizations (and at

least one) of \det(M)\, AXBX = \det(M)\ and A2B2 = \det(M)\ such that if

Mx = AX,M2 = Bx orMj = A2,M2 = B2 in figure 5-13, then the decimator produces

(1,1) for all invocations. Moreover,

Ai =gcd(a,b),B} =JMMIL,^^ =]*«")!
gcd(a, b)

,B2 = gcd(c,d)
gcd(c, d)

163

Remark: Note that gcd(a, 0) = a; hence, if M is diagonal, the two factorizations are the

same and there is only one unique factorization. This implies that for rectangular

decimation, there is only one way to set the MDSDF parameters and get non-cyclostatic

behavior.

Proof: Firstly, note that since det(M) = ad-be, gcd(a, b) divides det(M) and

gcd(c, d) divides det(M). The decimatorkeeps samples with coordinates given by

M
k2

x

LVJ

(5.14)

orakx +bk2 = x and ckx +dk2 = y; hence, x and y have to be multiples ofgcd(a, b)
and gcd(c, d) respectively. Suppose y = 0. Then, with a little algebra, it canbeseen that

the smallest positive, non-zero value of x that solves equation 5.14 (meaning that kx,k2

are integers) is given by x = \det(M)\/gcd(c, d). Similarly, if x = 0, the smallest non

zero, positive value of y is given by y = \det(M)\/gcd(a,b). Hence, any rectangle

consumed by the decimator cannot have avertical dimension ofgreater than gcd(c, d) or

a horizontal dimension ofgreater than gcd(a, b) since if it did, then at least two samples

that are kept by the decimator will fall inside the rectangle based atthe origin. So itremains

to show that the two factorizations given inthe statement of the lemma do infact result in

one sample being kept on all invocations. Fix some value for x that is amultiple of; call it
x0. Let y0 be the smallest positive integer solution to equation 5.14. Then, the next positive
integer y that solves equation 5.14 is given by y0 + \det(M)\/gcd(a, b).To see this, note
that and k2 = (ay0 - cx0)/(ad - be) are both integers. We want to determine the smallest
positive constant; such that makes

§ dx0-b(yQ +j) , __ a(y0 +j)-cx0
M = : : and K2 = -j r

1 ad-bc 2 ad-bc

also integers. Rearranging the above expressions, we get

164

Clearly, j = \det(M)\/gcd(a,b) makes both k{ and k2 integers. It isalso the smallest:

letm = ad- be. Then, we have that bj/m = ix for some integer ij and aj/m = i2 for

some integer i2. Hence, ija = i2b giving us the claimed value of; as the smallest such

value.

A symmetric argument shows that if y is fixed, then the values of x that solve

equation 5.14 differ by \det(M)\/gcd(c, d).

Without loss in generality, consider the rectangle of dimensionality given by the

first of the factorings in the statement of the lemma. When this rectangle is placed at the

origin, onlythe sample atthe origin falls inside it and is output by thedecimator (see figure

5-14). Invocation (0,1) of the decimator would consume the rectangle whose lower left

corner is at y = \det(M)\/gcd(a, b), x = 0; this also contains only one sample that is

output by the decimator (namely, the lower left corner sample). Clearly, asthe rectangle is

movedup along the y-axisby steps of \det(M)\/gcd(a, b), the sample kept is always the

one on the lower left corner. Now consider moving the rectangle to the right in steps of

gcd(a, b). None of these rectangles can contain two samples which do not have the same

x coordinate. This is because the x coordinate in the solution equation 5.14 has to be a

multiple of gcd(a, b). These rectangles cannot contain two samples which have the same

x coordinate either because, as was shown, when jc is fixed, the y values differ by

|det(M)\/gcd(a, b). Hence,allof the rectangles that the decimator consumes will contain

exactly one sample that falls on the output lattice, allowing the decimator to be non-

cyclostatic. QED.

Decimator consumes
these set of samples

gcd(a,b)

Figure 5-14 Figure to illustrate proof of lemma 5-6.

165

These are the samples
that fall on the output
lattice of the decimator.

For the example matrix in the figure 5-13, we can see that the two factorizations that

work from the above equation are Aj = 1,BX = 4 and A2 = 2, B2 = 2; this is whatwe

see from figure 5-13 (b),(c).

5.4 Delays in the Generalized Model

Delayscan be interpreted astranslations of the buffer of produced values alongthe

vectors of the support matrix (in the renumbered data space) or along the vectors in the

basis for the sampling lattice (in the lattice data space). Figure 5-15 illustrates a delay of

(1,2) on a non-rectangular lattice.

5.5 Summary of Generalized Model

In summary, our generalized model for expressing non-rectangular systems has the

following semantics:

• Sources produce data in accordance with definition 5-4. The support

matrix and lattice-generating matrix on the sources output arcs are specified by the

source. The source produces a generalized (SX,S2) rectangle of data on each

firing.

•An expander with expansion matrix L consumes (1,1) and produces the

set of samples in FPD(L) that is ordered as ageneralized (Lx, L2) rectangle of

data where LX,L2 are positive integers such that LXL2 = \det(L)\.

•A decimator with decimation matrix M consumes a rectangle (MX,M2)

of data where this rectangle is interpreted according to the way it has been ordered

(by the use of some rectangularizing function) by the actor feeding the decimator.

It produces (1,1) on average. Unfortunately, there does not seem tobeany way of

making the decimators output any more concrete.

166

•On any arc, the global ordering of the samples on that arc is established

by the actor feeding the arc. The actor consuming the samples follows this

ordering.

A set of balance equations are written down using the various factorizations.

Additional constraints for arcs that feed a decimator are also written down. These are

solved to yield the repetitions matrix for the network. A scheduler can then construct a

static schedule by firing firable nodes in the graph until each node has been fired the

requisite number of times as given by the repetitions matrix.

@V®

V =
2 1

0 1

(1,2)

Sampling lattice

W =
1 -2

0 4

(1,2)

Renumbered samples

A o o • •

o o • • •

o o • •

o o • • •

o e> o

e *&• e •

o <p

o

d> o

-es-

o

•e-

o

-e-

Figure 5-15 Delays on non-rectangular lattices

167

5.6 Multistage Sampling Structure Conversion Example

In this section, we illustrate anotherexample;this is a practical example of a system

that does samplingstructureconversion for videosignals.We will show how the semantics

developed above can be used to specify and determine a schedule for the system. This

example is drawn from [Mand93].

5.6.1 Video Signals

A video signal can be thought of as a three-dimensional signal where two of the

dimensions correspond to theheight(vertical) and width(horizontal) of theimage while the

third dimension is time. The current practice is to sample the signal in two of the

dimensions and keep the third dimension continuous. The vertical and temporal directions

aresampled (this processed iscalled scanning) while the horizontal direction is not. Hence,

as a discrete-time signal, a video signal is two-dimensional, with samples occupying the

vertico-temporal plane. Note that an actual video signal is one-dimensional since the

resulting lines (from the scanning) are abutted toform a one-dimensional signal [Dubo85].

There are currently two types ofvertico-temporal lattices inuse: theprogressively scanned

signal, which corresponds to a rectangular lattice, and the 2:1 interlaced signal, which

corresponds to a "quincunx" lattice. There are trade-offs between using these two lattices

in various types of distortions and interline flicker but in general, 2:1 interlaced scanning

is preferable to sequential scanning for a given scanning density [DUD085]1. The two
lattices are shown in figure 5-16.

5.6.2 Sampling Structure Conversion

An application of considerable interest in current television practice is the format

conversion from 4/3 aspect ratio to 16/9 aspect ratio for 2:1 interlaced TV signals. It iswell

known in one-dimensional signal processing theory that sample rate conversion can be

1. TheAdvisory Committee onAdvanced Television Service, acommittee formed bythe FCC in 1987 toassist
the FCC inestablishing an HDTV standard for the United States, tested 4 all-digital HDTV proposals (DigiCipher,
DSC-HDTV, AD-HDTV, CCDC) and found that systems using interlaced scanning (DigiCipher and AD-HDTV) had
the best quality overall.[Hopk93].

168

Ph' Ph O , O #

ct>oo
3—o— *•

time

Pw Tf

Figure 5-17 Picture sizes and lattices for the two aspect ratios 4/3 and 16/9

done efficiently in many stages [Rams84]. Similarly, it is more efficient to do both

sampling rate and sampling structure conversion in stages for multidimensional systems.

The two aspect ratios and the two lattices are shown in figure 5-17.

The relationship between the height and width for the two aspect ratios is given by

Ph = (3/4)Pw and Ph* = (9/\6)Pw. Since the number of lines N is the same in both

cases, the interline distances dy' and dy, corresponding to the 16/9 and 4/3 aspect ratios
respectively, are related as dy' = PhVN = (3/4)(Ph/N) = (3/4)dy. Thus the bases

for the lattices for the two aspect ratios are given by

A =
~2Tf T]

and A' =
~2Tf Tf

0 dy. 0 (3/4)d
yj

(5.15)

for the 4/3 and 16/9 aspect ratios respectively. By the CCIR System M standard 625/2:1/

50, Tr = 1/50 s and AT = 625. One way to do the conversion between the two lattices

time time

T=l/50 s T=l/50 s

Figure 5-16 Progressive scanning and 2:1 interlaced scanning in the vertico-temporal
plane

169

above is as shown below in figure 5-18 [Mand93]. Below each arc, the desired lattice on

that arc is shown. For simplicity, the filters that are needed between the upsampling and

downsampling stages are omitted. From the lattices shown, we can compute the required

values for Lj, L2, M:

Vsa = A =
27777
0 dyJ

,V.B =
77 0
0 rf/2,

. VHC =

VCT = A' =
2Tf Tf
0 3rf/4j

T{ 0
, and

Since using realistic values for Tf, dy will make all the calculations rather ugly, we will
just use Tr = l,dy = 1 without any loss in generality.

By theorem 5-1,

Li = v~abVsa =
1/Tf 0

0 2/d.

2TfTf
0 d

y.

2 1

02

.-1
»Li - VBCVAB - 1 0

02

M = y'acVcT =
Suppose

2 1

0 3
. Note that these matrices do not depend on Tf and dy.

, and

\det(Lx)\ =4 = 2x2, \det(L2)\ = 2 = 1x2, and \det(M)\ = 6 = 3x2

B

0-*(gh-0

Figure 5-18 System for doing multistage sampling structure conversion
from 4/3 aspect ratio to 16/9 aspect ratio for a 2:1 interlaced TV signal.

170

/T

Let us assumethat S produces samples in LAT(VSA) n N

this can be computed as

20

VlP 8jy

SA
2 0

0 8

1 -1

0 2

20

08

1 -4

0 8

. The support matrix for

Suppose further that the samples that the source produces are rectangularized in the

following obvious way: sample at (0,0) is (0,0); sample at (1,1) is (1,0); sample at (0,2) is

(0,1); sampleat (1,3) is (1,1) etc. So S produces (2,8) where the rectangle is understood to

be as above. We can write down the following balance equations:

These solve to

2*5,1 = lr
8rc o = lr

A,\

5,2

A, I

A, 2

2r

2r

A, 2

= lr

= lr

B, 1

C, 1

C,2

lrBX = 3r

2rD, = 2rB,2

'c,\

'C,2

= r 7\1

r,2= r

rs, i - 3»r5,2 ~ J

rA,l = 6»rA,2 = 8

rB,\ = 12»rB,2 = 16

rC,l = 4»rC,2 = 16

(5.16)

(5.17)

Again, we can calculate the various support matrices symbolically in order to verify

whether

\N(WCT)\ = \N(WBC)\/\det(M)\ (5.18)

We have

171

\N(WBC)\ = det
2r5,1 0

= ^rs,\rs,2*Qnd
0 32rS2

WCT =M"VBC =
r51-(16/3)rS2

0 (32/3)rs>2

With the values obtained from the balance equations, equation 5.18 turns out to be not

satisfied because \N(WCT)\ = 33 !In actuality, since there are 625 lines vertically, amore
accurate model for the source is that it produces samples in (2,625), again according to the

rectangle defined above. However, the resulting matrix

WCT -
rSfX-(\250/3)rSi2
0 (2500/3)r5t2

presents a rather nasty challenge for determining the number of integer points inside its

FPD (since it is not aninteger matrix with the solution to thebalance equations). However,

in the model where the source produces (2,8), we can force WCT to be an integer matrix

bymaking rs 2amultiple of3. If the source isin fact trying toproduce 625 lines vertically,

then the smallest multiple of 3 that is greater than or equal to 625 is givenby 209; we can

make this the vertical blocking factor. As in the previous example,we cantry to find better

models for the source, one that will allow it to cover exactly 625 lines vertically for

example. Of-course, this is assuming that the source actor can be coded in a flexible way

that allows it to produce as much data or as little as desired.

5.7 Computing the Integer Volume of a Rational Matrix

Since the augmented balance equations frequently require the quantity |iV(A)|

(which we call the integer volume of A) for a non-integer matrix (but rational) A, we

develop a method in this section that is better than the brute force method of simply

counting the integer points. First we note that obvious methods do not work and that the

problem appears to be more difficult than it would appear.

172

5.7.1 Some simple approaches

5.7.1.1 Scaling

The most obvioustechnique to try is to scale the matrixby an appropriate constant

to make all the entries integer valued and deduce the integer volume from that of the

resulting integer valued matrix. If we scale the matrix A by c to make it integer valued,

then the determinant, and thus the integer volume, of cA is given by c2\det(A)\, and this

is an integer. However, thistellsus nothing about theintegervolume of A sincein general,

|def(A)| may noteven be an integer. Even if \det(A)\ is an integer, it is not thecasethat

its integer volume is equalto |def(A)|; forexample, consider diag(l/2,2) (diag means

a diagonal matrix). The integer volume of diag(1/2,2) is 2, not 1.

5.7.1.2 Rounding

However, for a diagonal matrix diag(p, q) it is easy to see that the integer volume

is actually given by Tpir^l> where f • 1 is the ceiling operator. Hence, we might

wonder whether there is some way of rounding the entries of an arbitrary matrix so that the

resulting integer matrix has the same number of integer points in its FPD as the original

matrix. However, this does not seem to be the case. Consider the matrix

5/3 1/2

. ° 5/3_

It can be verified that this matrix has an integer volume of 3. However, there is no way of

rounding theentries(eitherfloors or ceilings) of thismatrixto get an integermatrixthathas

a determinant of 3.

5.7.1.3 Smith Form Decomposition

Another approach is to try to use the Smith form decomposition. The Smith form

decomposition of an integer matrix A gives two integer, unimodular matrices U, V such

that UAV = A, where A is a diagonal matrix, and this decomposition can be computed

173

in polynomial time by the Lenstra-Lenstra-Lovasz algorithm. If A is a rational-valued

matrix, then we can simply represent it as a constant times an integer matrix, and use the

Smith form decomposition to get a rational-valued diagonal matrix, the integer volume of

which is easy to compute as shown above. However, the integer volume of this diagonal

matrix is not equal to the integervolume of the original matrix in generalas the following

counter-example shows. Consider the matrix (it has an integer volume of 47):

21/2 -3/2

3/2 -9/2

21 -3

3 -9

The Smith form decomposition is given by

1 2 1 21 -3 1 1 1 15 0

2 } 1_ 3 -9 _2 3_ 2 0 -12_

(5.19)

The integer volume of the diagonal matrix isgiven by 8*6=48, and this isnot equal tothe

integer volume ofthe original matrix. The problem with the Smith form approach is that

the unimodular matrix transformationsdo not result in a one-to-one mapping of the integer

points in FPD(A) to FPD(A).

5.7.2 A Method for Computing the Integer Volume of a Rational Matrix

More insightful techniques are clearly needed. The development here is based on

the proof we gave for the integer matrix case; namely, we develop the method for an upper

triangular matrix and use lemma 5-2 to transform any matrix to an upper triangular matrix.

Fact 5-1: For any rational-valued matrix A,there isan integer unimodular matrix C such

that CA is a rational-valued, upper triangular matrix.

Proof: Immediate from the factthatwecanwrite any rational matrix as a constant times

an integer matrix, and apply lemma 5-2 tothe integer matrix. QED

174

Fact 5-2: Given a rational-valued matrix A, and a corresponding integer unimodular

matrix C such that CA is upper-triangular, \N(CA)\ = |N(A)|.

Proof: Similar to the last part of the proofof lemma5-3. Let k e N(A). Then

3jc e [0,1)2 s.t. Ax = k. Since CAx = Ck is an integervector, everypoint in N(A)

maps tosome point in N(CA). Similarly, if ke N(CA), then 3xe [0,1)2 s.t.

CAx = £. So C"1£ = Ajc, and C~lk is an integer vector since C is integer valued and
unimodular. So everypoint in N(CA) mapsto some point in N(A); this showsthat the

mapping is one-to-one. QED

Hence, the problem is to compute the integer volume of a rational-valued, upper

triangular matrix. From now on, we only consider 2x2 matrices. Let the rational-valued,

upper triangular matrix be given by
[0 c

Fact 5-3: Let x e [0,1]. In the interval [x, x + a), the number of integers in the interval

is _a] if 0 < x < [a"] - a and [a~\ otherwise.

Since the first column of A is aligned with the horizontal axis, we imagine moving

the interval [0, a] along the vector \b cY • We are mterested in intervals
[bk/c, bk/c + a] for k = 0,1,..., _cJ since these are the intervals for which the vertical

dimension is an integer (along the vector [p 2). Clearly, the number of integers in
[bk/c, bk/c + a] is the same as the number of integers in

[bk/c - _bk/c], bk/c + a- \bk/cJ]. Hence, by fact 5-3, whenever

bk/c - lbk/cj < Tfll - a, (5.20)

the numberof integers for that k is _a J and [a~\ for the rest.Therefore, we want to know

the number of values of k, k = 1,..., _cJ for whichequation 5.20 is satisfied; define this

number to be K. Define b e bx/b2 and c = cx/c2, where bx,b2,cx,c2 are integers and

the fractions are in reduced form. Define gc = gcd(bxc2,b2cx), ex = bxc2/gc, and

e2 = b2cx/gc. Also define \a~\-a =ax/a2 in reduced form with ax,a2 integers. The

left hand side of equation 5.20 becomes

exk/e2-_exk/e2j.

Moreover, since x mod y = x- _x/y\y for integers x, y, we have

175

exk/e2-\exk/e2\ - (exkmode2)/e2.

As k increases, the above equation is periodic with period e2, hence, it suffices to

determine the number K of k in {1,2,..., e2 - 1} that satisfies

(exkmode2)/e2<ax/a2. (5.21)

and to determine the number K" of k in {0,..., Ic] mod e2} that satisfies equation 5.21.

(If c is an integer, then IC' is the number of k in {0,..., Ic] mod e2 - 1} that satisfies

equation5.21.This is becauseif c is an integer, thenthevery last intervalvertically is right

on the side ofthe FPD and does not therefore count). From this, K = ^[LcJ/^J +K".
Since ex,e2 are coprime, exk mod e2 takes each value in the set {1,..., e2- 1} as k

varies in {1,..., e2 - 1}. Hence, K' = _(axe2)/a2]. However, itis not clear whether K"
can be determined efficiently. However, if [_c] mod e2 is sufficiently small, then

enumeration is not as big of a problem,and in practice, the developmentabove leads to a

more efficient way of computing the integer volume, although the formula is rather messy.

We can collect the results above into the following lemma:

Lemma 5-7: The integervolume \N(A)| of a rational-valued, upper triangular2x2

matrix

A =
ab

0 c

is given by the formula

|AT(A)| =Kla] + ([c-\-K)[a^

where K = K\lc]/e2] +K", K = \(axe2)/a2\, K", ax,a2,e2 are all as defined
before. Note that if a is an integer, then |N(A)| = a\c] as expected since it is a that

determines how many points there are in each horizontal interval.

5.7.3 Examples

Example 5-3: Consider the matrix in equation 5.19:

176

A =
21/2 -3/2

3/2 -9/2

This can be transformed to an upper triangular matrix as:

1 -6

1 -7

21 -3

3 -9

3/2 51/2

0 30

The various quantities are:

\a~\-a =ax/a2 = 1/2, b=bx/b2 = 51/2, ex = \l,e2 = 20, [L*J/«2J = l >and

A" = l(axe2)/a2] = 10.

To compute K", we need the numberof k in {0,..., 30 mod 20-1 =9} that satisfy

17* mod 20 < 10.

By counting, K" = 3. Hence K = K\[.c]/e2] +K" = 13. So

\N(A)\ = Kla] + ([c^-K)[a-\ =47.

Example 5-4: This is a more dramatic examplewhere the counting step in the above

method is extremely small. Consider

A =
125/3 61/7

0 122/3

The various quantities are:

[a~]-a=ax/a2 = l/3,fc =Vfc2 = 61/7> e\ = 3>e2= 14' L^J^J = 2, and

K' = l(axe2)/a2] = 4.

To compute K", we need the number of k in {0,..., 40 mod 14 = 12} that satisfy

3* mod 14<4.

Since e2 - 1 = 13, we just need to check one value of k, namely k = 13 to determine

K". Since 39 mod 14 = 11 >4, K" = K' = 4. Hence # = /T[LcJ/e2J +IT = 12,

and

177

\N(A)\ = Kla] + ([c^-K)[a~\ = 12x41+29x42 = 1710,

and this has been verified by counting.

5.7.4 Some Final Thoughts on the Problem

The method given above, although much more efficient in practice than a brute

force method, is not efficient in the technical sense of giving us a polynomial time

algorithm for the problem. This is because the complexity of the above method is

dominated by the counting step where there are potentially e2/2 steps. Since

e2 = b2cx/gc, where these quantities were defined before, e2 is not bounded by a

logarithmic function of any of the quantities that appear in the problem. However, unlike

the brute force method, where counting has to be done in both directions, the counting step

above is only along the vertical direction and is hence considerably more efficient than the

brute force method in general.

Finally, the method above results in a formula that is messy and very non-intuitive,

and is far from elegant. Perhaps there is no elegant solution to this problem at all, and it

might even be NP-hard if the counting step turns out to be NP-hard (we would still have to

give a reduction). Also, the generalization to higher dimensions will only be messier since

we have relied on operations on the individual entries of the matrix, and not on matrix

operations. Perhaps an algorithm can be developed, but we do not pursue it here.

5.8 Conclusions and Open Problems

We have described an extension of MDSDF to handle arbitrary sampling lattices.

The key extensions have been to associate two parameters for each arc in the graph: the

sampling lattice for the data on that arc, and a "support matrix" that describes the region of

the space where current data has been produced. Equivalently, these two parameters can be

specified for source actors, and can be determined for the other arcs by tracing the

operations that each node in the graph performs. Since decimation and expansion are the

only two actors (of signal processing interest) that change lattices, it should be

straightforward to determine the lattice and support matrix for every arc in the graph given

178

the information at the source (assuming that there are no cycles in the graph). Given these

two parameters, we have shown how we can compute a global ordering for the data on the

arcs, and how generalized "rectangles" can be defined. Using these, we can derive a set of

decoupled balance equations in an analogousmanner to the rectangularcase. However, this

is not enough; for decimators, some other constraints must also be satisfied. The directions

of the repetitions of a node is also generalized to depend on the lattice and support matrix

on outgoing and incoming arcs; that is, the direction can be different for an input arc from

an output arc.

There are many open problems and issues that have not been tackled yet. Some of

these are listed below:

• The issue of buffering efficiency and buffer implementations has not

been addressed. It would be desirable to have systematic ways of

determining schedules that minimize for code size and buffer-usage, as

was done in the SDF case for well-ordered graphs and general acyclic

graphs. The techniques in can be easily applied to the rectangular

MDSDF case since rectangular MDSDF can be thought of as several

independent SDF graphs (one for each dimension); with non-

rectangular systems, it is less obvious how to extend the techniques of.

The buffers would probably have to be implemented directly as linear

arrays but indexed appropriately (at least for simulation) since

techniques like using matrix and submatrix data-structures [Chen94]

may not be feasible for non-rectangularsupport matrices.

• An extension of lemma 5-6 to arbitrary support regions would be

desirable. This would give us a way of choosing factorizations that do

not have the cyclostatic behavior that an arbitrary factorization

generally does. This would alsoensurethat solving balanceequations

is sufficient and constraints of the type in equation 5.18 do not have to

be solved. However, this appears to be difficult since there does not

seem to be a clean, analytical way of expressing the ordering of

179

samples as done in table 1. Since the understanding of how points on

LAT(M), where M is thedecimation matrix, map to therectangle

under this ordering is needed before aclaim of the sort made in lemma

5-6, this extension would be non-trivial.

Methods of choosing factorizations that lead to the smallest solution to

thebalance equations are desirable, provided of-course that the

direction of the resulting streams is acceptable.

More complicated examples. The examples presented in this report

have beenthose of simple, chain-structured graphs. Concrete examples

of acyclic graphs that represent non-rectangular systems withalot of

inherent functional parallelism include directional decomposition

filterbanks as described in [Bamb90], and hierarchical video coding

applications [Bosv92].

Examination ofhigherdimensions.The examples in this reporthave all

been for 2-D MDSDF; generalizations to higher dimensions may be

trickier. A concrete example of a 3 dimensional digital signal is a fully

scanned TV signal (where the horizontal direction is scanned also).

There aremany other ways of doing the sampling-structure conversion

[Mand93]. If more decimation stages are used, more of the constraints

of the type in equation5.18 have to be solved. Some of these ways of

doing the conversion might be better in computational terms than other

ways in that the repetitions of the various actors in between are lower

for some ways thanothers.It would be interestingto explore systematic

ways of evaluating the various ways.

180

Conclusion and Future Work

In this thesis, we have solved several scheduling problems for programs expressed

as SDF and MDSDF graphs. Since the potentially large rate changes in SDF and MDSDF

specifications canresult in a code and buffer-memory size explosion, a primary focus has

been on generating schedules that minimize code and data memory size. Code size

optimality is obtained by generating single appearance schedules. Algorithms and

heuristics are given that generate single appearance schedules optimized for buffering

memory. In particular, three basic algorithms are developed and discussed: a dynamic

programming algorithm that is used for post-optimization, and two heuristics: RPMC and

APGAN. These two algorithms are complementary in the way they approach the problem,

and an extensive experimental study confirms this by showing that for graphs that have

irregular topologies and rate changes, RPMC exhibits better performance, while for graphs

having regular topologies and rate changes, APGAN performs better. In addition APGAN

is optimal for a class of SDF graphs that includes several practical systems. All these

algorithms are shown to extend to MDSDF also. The three algorithms discussed have all

been implemented in the Ptolemy framework, in the SDF domain.

In Chapter 5, the thesis shifts focus to a rather different type of problem: namely,

generalizing the MDSDF model to permit arbitrary sampling lattices. Multidimensional

multirate systems sampled on non-rectangular lattices are interesting and useful, and it is

desirable to have a dataflow model capable of expressing such systems. We generalize the

MDSDF model, and show that the key property of compile-time schedulability can be

retained in the generalized model. In particular, we showthatin the generalized model, the

181

problem of solving balance equations becomes much more challenging, and we give an

algorithm for solving the augmented balance equations that arise in this model. We also

show a practical system using this model.

Below we outline some future directions for research in these areas.

6.1 Trading Code Size and Memory Size.

Our approach to joint code and data minimization in SDF graphs has been to

minimize theamount of buffering memory required by single appearance schedules. While

single appearance schedules are optimal with respect to program memory, it might be

desirable in someinstances to allow non-single appearance schedules in order to gain lower

buffer requirements. As shown in Chapter 2, the lower bound on the amount of memory

required by anyschedule on an edge e that has prd(e) = a, cns(e) = b, and 0 delays is

a + b - gcd(a, b). The BMLB for this edge, the lower bound if we restrict the schedules

to be single appearance schedules, is givenby ab/gcd(a, b). Clearly, there is a large gap

between these two quantities. Correspondingly, the length of a schedule that achieves the

first bound can be as high as a + b while the length for the single appearance schedule is

only 2 (neglecting loopingcode overhead). Hence, there is potential for trading-offthese

two parameters in interesting ways.The graph in figure 6-1 illustrates this trade-offrather

dramatically. The BMLB for the graph is 10100 while the lowerbound on the buffer size

for any schedule is 200. The schedule A 100(Afl) also has a buffering requirement of

200, andis in fact the sameschedule generated by the mimmum buffer scheduling heuristic

given in Chapter 2, except that it has been looped (or "compressed") optimally (the

dynamic programming algorithm giveninChapter 3 canaccomplish this forexample). The

schedule is a 2-appearance schedule, and is likely to be much moreuseful in practice than

the singleappearance schedule because the increase in code size is negligible compared to

0100 101 /^\

—-^J
Figure 6-1 A graph to illustrate the dramatic decrease in
buffering memory by allowing2-appearance schedules.

182

the decrease in buffering memory. Hence, it would be interesting to develop systematic

ways of generating k-appearance schedules optimized for buffering memory usage, where

no actor appears more than k times and k is fairly small. One approach istosimply use the

heuristic from Chapter 2 and use the dynamic programming algorithm to generate an

optimal looping hierarchy. However, inaddition tothis algorithm taking exponential time,

it is notclear whether theoptimal looping structure willensure that each actor appears only

a "few" times. More desirable would be an algorithm that can systematically expand a

single appearance schedule until the buffering requirement has been lowered suitably.

While it is easy to devise heuristics to do this right away, it would be more interesting to

develop algorithms that are optimal, at least for a restricted class of graphs.

6.2 Some Open Complexity Issues

As mentioned in Chapter 3, the complexity of the legalCutlntoBddSets

problem remains open although we strongly suspect it to be NP-complete. If it turns out to

be polynomial time solvable, it would be interesting to see its impact on the RPMC

heuristic; whether RPMC would exhibit better performance. Recall that

legalCutlntoBddSets is used by RPMC, which is itself a heuristic.

The complexity of generating buffer-optimal single appearance schedules for

delayless, multirate SDF graphs also remains open. The NP-completeness result given in

Chapter 3 allows delays on edges; however, the presence of rate changes should more than

make up in difficulty whatever is lost by not allowing delays. Recall that the NP-

completeness result of Chapter 3 applied to homogenous graphs with delays allowed. In a

homogenous graph without delays, all schedules have the same buffer memory

requirement; namely, |£|, the number of edges. However, if the graph is not homogenous,

and rate changes are allowed, then different topological sorts result in different buffering

costs (even if there are no delays of-course), and the problem appears to be quite difficult;

we strongly suspect that the problem is NP-complete.

There is also the interesting question of whether all SDF graphs have a valid

schedule of length polynomial in the size of the graph. For example, it might be the case

that for some strongly connected, tightly interdependent graph, all schedules have the

183

property that they cannot be compressed to a polynomial length by the dynamic

programming algorithm presented in Chapter 3. For instance, consider a string like

ABCBACBC. This string is incompressible in the sense that no loops (of iteration counts

more than 1) can be organized in it in orderto shortenits length. This issue might in fact

be a rather deep problem, that might require Kolmogorov complexity-theoretic or

information theoretic arguments. We recall that there are proofs as to why an arbitrary

integer k requires ©(log(A:)) bits in general to encode it; it is basedon the argument that

most binary strings have maximum entropy, and are incompressible in a Kolmogorov-

complexity theoretic sense [Cove91]. Perhaps, the strings corresponding to SDF schedules

can be mapped to integers in some manner in order to apply these arguments to SDF

schedules. In any case, we suspect that this problem is not simple.

6.3 MDSDF and GMDSDF Scheduling

SDF is a fairly mature model of computation now, atleast compared to MDSDF. It

isnot yet clear whether MDSDF will prove to be as useful and intuitive touse as SDF is.

Certainly, many specifications in MDSDF (for example, the matrix multiplication

specification in [Lee93]) are cryptic and require considerable work to understand. Even so,

anumber of multiprocessor scheduling problems have tobesolved for MDSDF graphs. It

might be possible to extend techniques discussed in Chapter 2 to MDSDF. Some recent

work on multidimensional retiming [Pass94][Denk96] appears to be promising. Also,we

outlined several open issues in the GMDSDF model atthe end of Chapter 5.

184

REFERENCES

[Aho88]

A. V. Aho, R. Sethi, and J. D. UUman, Compilers Principles, Techniques, and

Tools, Addison-Wesley, 1988.

[A1U86]

L. Allison, A Practical Introduction to Denotational Semantics, Cambridge Uni

versity Press, 1986.

[Alur95]

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, and others, "The Algo

rithmic Analysis of Hybrid Systems," Theoretical Computer Science, Vol. 138,

No.l, February 1995.

[Ambl92]

A. L. Ambler, M. M. Burnett, and B. A. Zimmerman, "Operational Versus Defini

tional: A Perspective on Programming Paradigms," IEEE Computer Magazine,

Vol. 25, No. 9, September, 1992.

[Ansa88]

R. Ansari, S. H. Lee, "Two Dimensional Nonrectangular Interpolation, Decimation

Filterbanks", Proceedings oftheICASSP '88, New York, USA, 1988.

[Ashc95]

E. A. Ashcroft, A. A. Faustini, R. Jagannathan, W. W. Wadge, Multidimensional

Programming, Oxford University Press, 1995.

[Bacc93]

F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat, Synchronization and Linearity,

Prentice Hall, 1993.

[Back78]

185

J. Backus, "Can Programming be Liberated from the Von-Neumann style? A func

tional style and its algebra of programs," Communications of the ACM, Vol.21,

No.8, August, 1978.

[Bamb90]

R. H. Bamberger, "The Directional Filterbank: a Multirate Filterbank for the

Directional Decomposition of Images", Ph.D. Thesis, Georgia Institute of Tech

nology, November 1990.

[Bane88]

U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Pub

lishers, 1988.

[Barr91]

B. Barrera and E. A. Lee, "MultirateSignal Processingin Comdisco's SPW," Pro

ceedings of the International Conference on Acoustics, Speech, and Signal Pro

cessing, Toronto, April, 1991.

[Beec95]

M. Von der Beeck, "A Comparison of Statecharts Variants," Formal Techniques in

Real-Time and Fault-Tolerant Systems, Third International Symposium Proceed

ings, Germany, September 1994.

[Benv91]

A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-

Time Systems," Proceedings of the IEEE, Vol.79, No. 9, September 1991.

[Berr85]

G. Berry andP-L Curien, "Theory andPractice of Sequential Algorithms: the Ker

nel of the Programming Language CDS," Algebraic Methods in Semantics, Cam

bridge University Press, pp35-88,1988.

[Bhat93]

S. Bhattacharyya andE. A. Lee, "Scheduling synchronous dataflow graphs for effi-

186

cientlooping", Journal of VLSI Signal Processing, Vol. 6, No.3, December, 1993.

[Bhat94a]

S. S. Bhattacharyya and E. A. Lee, "Memory management for dataflow program

ming of multirate signal processing algorithms", IEEE Transactions on Signal

Processing, Vol. 42, No. 5, May, 1994.

[Bhat94b]

S. S.Bhattacharyya, Compiling Dataflow Graphsfor Signal Processing, Ph.D. the

sis, Memorandum No. UCB/ERLM94/52, Electronics Research Laboratory, Uni

versity of California at Berkeley,July, 1994.

[Bhat95]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "Optimal Parenthesization of

Lexical Orderings for DSPBlockDiagrams," IEEE Workshop on VLSI Signal Pro

cessing, Osaka, Japan, October 1995.

[Bhat96a]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Data

flow Graphs, Kluwer Academic Publishers, Norwood, Massachusetts, 1996.

[Bhat96b]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, "APGAN and RPMC: Compli

mentary Heuristics for Translating DSP Block Diagrams into Efficient Software

Implementations", to appear in the Design Automation for Embedded Systems

Journal, 1997.

[Bier95]

J. C. Bier, P. D. Lapsley, and E. A. Lee, Design Tools andMethodologiesfor DSP

Systems — Volumes 1 & 2: DSP Design Challenges, Methodologies, and Tools,

Berkeley Design Technologies, Inc., Fremont, California, 1995.

[Bosv92]

F. Bosveld, R. L. Lagendijk, J. Biemond, "Compatible Spatio-Temporal Subband

187

Encoding of HDTV", SignalProcessing,Vol. 28, No. 3, September 1992.

[Buck91]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Multirate Signal Process

ing In Ptolemy," Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, Toronto, April, 1991.

[Buck93]

J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory Using

the Token Flow Model, Ph.D. thesis, Memorandum No. UCB/ERL M93/69, Elec

tronics Research Laboratory, University of California at Berkeley, September,

1993.

[Buck94]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems," International Journal of

ComputerSimulation, Vol. 4, April, 1994.

[Cass93]

C. Cassandras, Discrete Event Systems, Irwin, 1993.

[Chan96]

W. -T. Chang, S. Ha, and E. A. Lee, "Heterogenous Simulation - Mixing Discrete

Event Models with Dataflow," to appear, invited paper in the RASSP special issue

of the Journal on VLSI Signal Processing, 1996.

[Chen94]

M. C. Chen, "Developing a Multidimensional Synchronous Dataflow Domain in

Ptolemy", MS Report, UC Berkeley, June 1994.

[Corm90]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,

McGraw-Hill, 1990.

[Cove91]

188

T.Cover, J. Thomas, Elements ofInformation Theory, Wiley, 1991.

[Covi87]

C. D. Covington, G. E. Carter, and D. W Summers, "Graphic Oriented Signal Pro

cessing Language — GOSPL," Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, Dallas, April, 1987.

[Cubr93]

M. Cubric and P. Panangaden, "Minimal Memory Schedules for Dataflow Net

works," CONCUR '93, Hildesheim, Germany, August, 1993.

[Deme94]

A. Demeure, "Formalisme de Traitement du Signal: Array-OL," Technical report,

Thomson SINTRA ASM, Sophia Antipolis, Valbonne, 1994.

[Denk96]

T. C. Denk, M. Majumdar, and K. K. Parhi, "Two-Dimensional Retiming with

Low/Memory Requirements," Proceedings of the ICASSP '96, Atlanta, Ga, May

1996.

[Denn75]

J. B. Dennis, First Version ofa Data Flow Procedure Language, MAC Technical

Memorandum 61, Laboratory for Computer Science, Massachusetts Institute of

Technology, May, 1975.

Penn80]

J. B. Dennis, "Dataflow Supercomputers," IEEE Computer Magazine, Vol. 13, No.

11, November 1980.

[Desm93]

D. Desmet and D. Genin, "ASSYNT: Efficient Assembly Code Generation for

DSPs Starting from a Data Flowgraph," Proceedings of the International Confer

ence on Acoustics, Speech, andSignalProcessing,Minneapolis, April, 1993.

[Dubo85]

189

E. Dubois, "The Sampling and Reconstruction of Time-varying Imagery with

Applications in Video Systems", Proceedings oftheIEEE, Vol. 73, April 1985.

Pudg84]

D. E. Dudgeon, R. M. Mersereau, Multidimensional Digital Signal Processing,

Prentice Hall, 1984.

[Epst89]

R. L. Epstein, W. A. Camielli, Computability Computable Functions, Logic, and

the Foundation ofMathematics, Wadsworth & Brooks/Cole, 1989.

[Gao92]

G. R. Gao, R. Govindarajan, and P. Panangaden, "Well-Behaved Programs for

DSP Computation," Proceedings of the International Conference on Acoustics,

Speech, and SignalProcessing, San Francisco, March, 1992.

[Gare79]

M. R. Garey and D. S. Johnson, Computers and Intractability, W. H.Freeman and

Co., NY, 1979.

[Geni89]

D. Genin, J. De Moortel, D. Desmet, andE. Van de Velde, "System Design, Opti

mization, and Intelligent Code Generation for Standard Digital Signal Processors,"

Proceedings of the International Symposium on Circuits and Systems, Portland,

Oregon, May, 1989.

[Henz96]

T. A. Henzinger, "The theory ofhybrid automata," Proceedings ofthe 11th Annual

IEEE Symposium on Logic in Computer Science, New Brunswick, NJ, USA, July

1996.

[Ho88a]

W. H. Ho, Code Generation for Digital Signal Processors Using Synchronous

Dataflow, Master's project report, Department ofElectrical Engineering and Com-

190

puter Sciences, University of California at Berkeley, May, 1988.

[Ho88b]

W. H. Ho, E. A. Lee, and D. G. Messerschmitt, "High Level Dataflow Program

ming forDigital Signal Processing," VLSI Signal Processing III, IEEE Press, 1988.

[Hopk93]

R. Hopkins, "Progress on HDTV Broadcasting Standards in the United States",

Signal Processing: Image Communication, Vol. 5, December 1993.

[How90]

S. How, Code Generation for Multirate DSP Systems in Gabriel, Master's project

report, Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, May, 1990.

[Huda89]

P. Hudak, "Conception, evolution, and application of functional programming lan

guages" Computing Surveys, Vol. 21, No. 3, September, 1989.

[Iver62]

K. E. Iverson, A Programming Language, Wiley, 1962.

[Kahn74]

G. Kahn, "The Semantics of a Simple Language for Parallel Programming," Pro

ceedings ofthe IFIP Congress 74, North-Holland Publishing Co., 1974.

[Kahn93]

G. Kahn, G. D. Plotkin, "Concrete Domains," Theoretical Computer Science, Vol.

121, No. 1-2, December, 1993.

[Kala93]

A. Kalavade, and E. A. Lee, "A Hardware/Software Codesign Methodology for

DSP Applications," IEEEDesign and Test, Vol. 10, No. 3, September 1993.

[Kapl87]

D. J. Kaplan, et al., Processing Graph Method Specification Version 1.0, Unpub-

191

lished memorandum, Naval Research Laboratory, Washington D.C, December,

1987.

[Karj88]

M. Karjalainen and S Helle, "Block Diagram Compilation and Graphical Editing

of DSP Algorithms in the QuickSig System", Proceedings of the International

Symposium on Circuits andSystems, Espoo, Finland, June, 1988.

[Karl90]

G. Karlsson, M. Vetterli, "Theory of Two Dimensional Multirate Filter Banks",

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-38,

June 1990.

[Karp66]

R. M. Karp and R. E. Miller, "Properties of a Model for Parallel Computations:

Determinacy, Termination, Queueing," SIAM Journal of Applied Mathematics,

Vol. 14, No. 6, November, 1966.

[Karp69]

R. M. Karp, and R. E. Miller, "Parallel Program Schemata," Journal of Computer

and System Sciences, Vol. 3,1969.

[Karp72]

R. M. Karp, "Reducibility Among Combinatorial Problems," Symposium on the

Complexity of Computer Computations, Raymond E. Miller and James W.

Thatcher editors, Plenum Press, 1972.

[Kell61]

J. Kelly, Lochbaum, and V. Vyssotsky, "ABlock Diagram Compiler," BellSystem

Technical Journal, Vol. 40, No. 3, May, 1961.

[Kern70]

B. W. Kemighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning

Graphs,"Bell System Technical Journal, Vol. 49, No.2, February 1970.

192

[Kons94]

K. Konstantinides and J. R. Rasure, "The Khoros Software Development Environ

ment for Image and Signal Processing," IEEE Transactions on Image Processing,

Vol. 3, No. 3, May, 1994.

[Kung88]

S. Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, New Jersey,

1988.

[Lauw90]

R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginder-

deuren, "GRAPE: A CASE Tool for Digital Signal Parallel Processing," IEEE

ASSP Magazine, Vol. 7, No. 2, April, 1990.

[Lauw94]

R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete, "Geometric Parallelism

and Cyclo-Static Data Flow in GRAPE-II," IEEE Workshop on Rapid System Pro

totyping, Grenoble, June, 1994.

[Lear90]

K. W. Leary and W. Waddington, "DSP/C: A Standard High Level Language for

DSP and Numeric Processing," Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, Albuquerque, April, 1990.

[Lee86]

E. A. Lee, A Coupled Hardware and Software Architecture for Programmable

Digital Signal Processors, Ph.D. thesis, Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley, May, 1986.

[Lee87]

E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous Dataflow

Programs for Digital Signal Processing," IEEE Transactions on Computers, Vol.

C-36, No. 2, February, 1987.

193

[Lee89]

E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. Bhattacharyya, "Gabriel: A Design

Environment for DSP,"IEEETransactions on Acoustics, Speech, and Signal Pro

cessing, Vol. 37, No. 11, November, 1989.

[Lee91]

E. A. Lee, "Consistency in Dataflow Graphs," IEEE Transactions on Parallel and

DistributedSystems, Vol. 2, No. 2, April, 1991.

[Lee93]

E. A. Lee, "Multidimensional Streams Rooted in Dataflow," Proceedings of the

IFIP Working Conference onArchitectures and Compilation Techniques for Fine

and Medium Grained Parallelism, Orlando, January, 1993.

[Lee95]

E. A. Lee and T. M. Parks, "Dataflow Process Networks," Proceedings of the

IEEE, Vol. 83, No. 5, May, 1995.

[Lee96]

E. A. Lee, and A. Sangiovanni-Vincentelli, "The Tagged Signal Model —A Pre

liminary Version of a Denotational Framework for Comparing Models of Compu

tation," UCB/ERL Memo. M96/33, Electronics Research Laboratory, UC

Berkeley, Ca, June 1996.

[Lee96b]

E. A. Lee, EE290N—Specification and Modeling of Reactive Real-Time Systems,

class notes, Dept. of EECS, University of California, Berkeley, http://

ptolemy.eecs.berkeley.edu/~eal/ee290n/notes.html, Fall semester, 1996.

[Leis91]

C. E. Leiserson, J. B. Saxe, "Retiming Synchronous Circuitry, " Algorithmica,

Vol.6, No.l, 1991.

[Liao95]

194

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang, "Code Optimization

Techniques for Embedded DSP Microprocessors," Proceedings ofthe 32nd Design

Automation Conference, June, 1995.

[Mand93]

R. Manduchi, G. M. Cortelazzo, and G. A. Mian, "Multistage Sampling Structure

Conversion of Video Signals", IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 3, No. 5, October 1993.

[McGr83]

J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, I. Dobes,

and P. Hohensee, SISAL: Streams and Iteration in a Single Assignment Language-

Language Reference Manual Version 1.1, Lawrence Livermore Laboratory, July,

1983.

[Mers83]

R. M; Mersereau, T. C. Speake, "The Processing of periodically sampled Multidi

mensional Signals", IEEE Transactions on Acoustics, Speech, and Signal Process

ing, Vol. ASSP-31, Feb 1983.

[Mess84]

D. G. Messerschmitt, "Structured Interconnection of Signal Processing Programs,"

Proceedings ofGlobecom, Atlanta, 1984.

[Mull91]

Arrays, Functional Languages, and Parallel Systems, editted by L. M. R. Mullin,

M. Jenkins, G. Hains, R. Bernecky, G. Gao, Kluwer Academic Publishers, 1991.

[Murt93]

P. K. Murthy, Multiprocessor DSP Code Synthesis in Ptolemy, Master's project

report, Memorandum No. UCB/ERL M93/66, Electronics Research Laboratory,

University of California at Berkeley, August, 1993.

[Murt94a]

195

P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, "Minimizing Memory Require

ments for Chain Structured Synchronous Dataflow Graphs", Proceedings of the

ICASSP *94, Adelaide, Australia, April, 1994.

[Murt94b]

P. K. Murthy and E. A. Lee, "Oh the Optimal BlockingFactor for Blocked, Non-

Overlapped Schedules", ERLMemo No. UCB/ERL M94/46, Electronics Research

Lab,UCBerkeley, Ca 94720, June 1994; condensed version in Proceedings of the

28th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

CA, USA, November, 1994.

[Murt94c]

P. K. Murthy, S.S. Bhattacharyya, and E. A. Lee, "Combined Code and Data Min

imization for Synchronous Dataflow Programs", ERL Memo No. UCB/ERL M94/

93, Electronics Research Lab, November 1994, UC Berkeley, CA 94720, and to

appear in the Formal Methods in System Design Journal, 1997.

[Murt95]

P. K. Murthy, E. A. Lee, "A Generalization of Multidimensional Synchronous

Dataflow to Arbitrary Sampling Lattices", Proceedings of the ICASSP '96,

Atlanta, USA, May, 1996.

[Naye93]

K. Nayebi, T. P. Barnwell, and M. J. T. Smith, "Nonuniform Filter Banks: A

Reconstruction and Design Theory," IEEE Transactions on Signal Processing,

Vol. 41, No. 3, March, 1993.

[Nemh88]

G. L. Nemhauser, L. A. Woolsey, Integer and Combinatorial Optimization, Wiley,

1988.

[Ohal91]

D. R. O'Hallaron, The Assign Parallel Program Generator, Memorandum CMU-

196

CS-91-141, School of Computer Science, Carnegie Mellon University, May, 1991.

[01so92]

T. J. Olson, N. G. Klop, M. R. Hyett, and S. M. Carnell, "MAVIS: a Visual Envi

ronment for ActiveComputer Vision," Proceedings of the 1992 IEEE Workshop on

Visual Languages, Seattle, September, 1992.

[Parh91]

K. K. Parhi, D. G. Messerschmitt, "Static Rate-Optimal Scheduling of Iterative

Data-Flow Programs via OptimumUnfolding," IEEE Transactions on Computers,

February, 1991.

[Pass94]

N. Passos, E. H. -M. Sha, and S. Bass, "Schedule-based Multidimensional Retim

ing on Data Flow Graphs," Proceedings of the 8th International Parallel Process

ing Symposium, April 1994.

[Petr81]

J. L. Peterson, Petri Net Theory and the Modeling ofSystems, Prentice Hall, 1981.

[Pino95a]

J. Pino, S. Ha, E. A. Lee, and J. T. Buck, "Software Synthesis for DSP Using

Ptolemy," invited paper in Journal ofVLSI SignalProcessing, January, 1995.

[Pino95b]

J. Pino, S. S. Bhattacharyya, and E. A. Lee, "A HierarchicalMultiprocessor Sched

uling System for DSP Applications," Proc. IEEE Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, November, 1995.

[Powe92]

D. B. Powell, E. A. Lee, and W C. Newman, "Direct Synthesis of Optimized DSP

Assembly Code from Signal Flow Block Diagrams," Proceedings of the Interna

tional Conference on Acoustics, Speech, and Signal Processing, San Francisco,

March, 1992.

197

[Rams84]

T. A. Ramstad, "Digital Methods for Conversion between Arbitrary Sampling Fre

quencies", IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.

ASSP-32, June 1984.

[Reek92]

H. J. Reekie, "Integrating Block-Diagram and Textual Programming for Parallel

DSP," Proceedings of the 3d International Symposium on Signal Processing and

its Applications, Queensland, Australia, August, 1992.

[Reit68]

R. Reiter, "Scheduling Parallel Computations," Journal of the ACM, Vol. 15, No.

4, October, 1968.

[Ritz92]

5. Ritz, M. Pankert, and H. Meyr, "High Level SoftwareSynthesis for Signal Pro

cessing Systems," Proceedings of the International Conference on Application

SpecificArray Processors,Berkeley, August, 1992.

[Ritz93]

S. Ritz, M. Pankert, and H. Meyr, "Optimum Vectorization of Scalable Synchro

nous Dataflow Graphs," Proceedings of the International Conference on Applica

tion-Specific Array Processors, Venice, October, 1993.

[Ritz95]

S. Ritz, M. Willems, H. Meyr, "Scheduling for Optimum Data Memory Compac

tion in Block Diagram Oriented Software Synthesis," Proceedings of the ICASSP

95, Detroit, Michigan, May 1995.

[Seth75]

R. Sethi, "Complete Register Allocation Problems," SIAM Journal on Computing,

Vol. 4, No. 3, September, 1975.

[Shan87]

198

K. S. Shanmugan, G. J. Minden, E. Komp, T. C. Manning, and E. R. Wiswell,

Block-Oriented System Simulator (BOSS), Telecommunications Laboratory, Uni

versity of Kansas, Internal Memorandum, 1987.

[Sih91]

G. C. Sih, Multiprocessor Scheduling to Accountfor Interprocessor Communica

tion, Ph.D. thesis, Memorandum No. UCB/ERL M91/29, Electronics Research

Laboratory,University of California at Berkeley, April, 1991.

[Stoy77]

J. Stoy, Denotational Semantics : the Scott-Strachey Approach to Programming

Language Theory, MIT Press, 1977.

[Tow88]

J. Tow, S. L. Gay, and J. Hartung, "Implementation of DSP Applications Using the

AT&T DSP32C Compiler and Application Library," Proceedings of the Interna

tional Symposium on Circuits and Systems, Espoo, Finland, June, 1988.

[Vaid90]

P. P. Vaidyanathan, "Fundamentals of Multidimensional Multirate Digital Signal

Processing," Sadhana, vol. 15, pp. 157-176, Nov. 1990.

[Vaid93]

P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993.

[Veig90]

M. Veiga, J. Parera, and J. Santos, "Programming DSP Systems on Multiprocessor

Architectures," Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, Albuquerque, April, 1990.

[Verk96]

D. Verkest, K. Van Rompaey, I. Bolsens, H. De Man, "POPE — A Design Envi

ronment for Heterogeneous Hardware/Software Systems," to appear, Design Auto

mation for Embedded Systems, 1996.

199

[Visc91]

E. Viscito, J. P. Allebach, "The Analysis and Design of Multidimensional FIR Per

fect Reconstruction Filterbanks for Arbitrary Sampling Lattices", IEEE Transac

tions on Circuitsand Systems, Vol. CAS-38, January 1991.

[Watl95]

J. A. Watlington, V. M. Bove Jr., "Stream-based Computing and Future Televi

sion", Proceedings of the 137th SMPTE Technical conference, September 1995.

[Yates93]

R. K. Yates, "Networks of Real-Time Processes," in Concur '93, Proc. of the 4th

Int. Conf. on Concurrency Theory, E. Best,ed., Springer-Verlag LNCS 715,1993.

[Yu93]

K. H. Yu and Y. H. Hu, "Optimized Code Generation for Programmable Digital

Signal Processors," Proceedings of the International Conference on Acoustics,

Speech, andSignalProcessing, Minneapolis,April, 1993

[Zima90]

H.Zima and B.Chapman, Supercompilers for Parallel and Vector Computers,

ACM Press, 1990.

[Ziss87]

M. A. Zissman, G. C. O'Leary, and D. H. Johnson, "A Block Diagram Compiler

for a Digital Signal Processing MIMD Computer," Proceedings of the Interna

tional Conference on Acoustics, Speech, and Signal Processing, Dallas, April,

1987.

[Zivo95]

V. Zivojnovic, H. Schraut, M. Willems, andR. Schoenen, "DSPs, GPPs, andMul

timedia Applications — AnEvaluation Using DSPStone," Proceedings oflCSPAT,

November, 1995.

200

	Copyright notice 1996
	ERL-96-79

