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1. Abstract

The companion paper [7] introduced the concept of resynchronization, a post-optimization
for static multiprocessor schedules in which extraneous synchronization operations are introduced
in such a way that the number of original synchronizations that consequently become redundant
significantly exceeds the number of additional synchronizations. Redundant synchronizations are
synchronization operations whose corresponding sequencing requirements are enforced com-
pletely by other synchronizations in the system. The amount of run-time overhead required for
synchronization can be reduced significantly by eliminating redundant synchronizations [5, 32].
Thus, effective resynchronization reduces the net synchronization overhead in the implementation
of a multiprocessor schedule, and improves the overall throughput.

However, since additional serialization is imposed by the new synchronizations, resyn-
chronization can produce significant increase in latency. The companion paper [7] develops fun-
damental properties of resynchronization and studies the problem of optimal resynchronization
under the assumption that arbitrary increases in latency can be tolerated (“unbounded-latency
resynchronization”). Such an assumption is valid, for example, in a wide variety of simulation
applications. This paper addresses the problem of computing an optimal resynchronization among
all resynchronizations that do not increase the latency beyond a prespecified upper bound L, . .
Our study is based in the context of self-timed execution of iterative dataflow programs, which is
an implementation model that has been applied extensively for digital signal processing systems.

2. Int

In a shared-memory multiprocessor system, it is possible that certain synchronization



operations are redundant, which means that their sequencing requirements are enforced entirely
by other synchronizations in the system. It has been demonstrated that the amount of run-time
overhead required for synchronization can be reduced significantly by detecting and eliminating
redundant synchronizations [5, 32].

The objective of resynchronization is to introduce new synchronizations in such a way that
the number of original synchronizations that consequently become redundant is significantly
greater that the number of new synchronizations. Thus, effective resynchronization improves the
overall thmugﬁput of a multiprocessor implementation by decreasing the average rate at which
synchronization operations are performed. However, since additional serialization is imposed by
the new synchronizations, resynchronization can produce significant increase in latency. This
paper addresses the problem of computing an optimal resynchronization among all resynchroni-
zations that do not increase the latency beyond a prespecified upper bound L, ,, . We address this
problem in the context of iterative synchronous dataflow [21] programs. An iterative dataflow pro-
gram consists of a dataflow representation of the body of a loop that is to be iterated infinitely.
Iterative synchronous dataflow programming is used extensively for the implementation of digital
signal processing (DSP) systems. Examples of commercial design environments that use this
model are COSSAP by Synopsys, the Signal Processing Worksystem (SPW) by Cadence, and
Virtuoso Synchro by Eonic Systems. Examples of research tools developed at various universities
that use synchronous dataflow or closely related dataflow models are DES CARTES [31], GRAPE
[19], Ptolemy, [11] and the Warp compiler [29].

Our implementation model involves a self-fimed scheduling strategy [22]. Each processor
executes the tasks assigned to it in a fixed order that is specified at compile time. Before firing an
actor, a processor waits for the data needed by that actor to become available. Thus, processors are
required to perform run-time synchronization only when they communicate data. This provides
robustness when the execution times of tasks are not known precisely or when then they may
exhibit occasional deviations from their estimates.

Interprocessor communication (IPC) and synchronization are assumed to take place



through shared memory, which could be global memory between all processors, or it could be dis-
tributed between pairs of processors. Details on the assumed synchronization protocols are given
in Section 3.1. Thus, in our context, resynchronization achieves its benefit by reducing the rate of

accesses to shared mcmbry for the purpose of synchronization.

3. Background on synchronization optimization for iterative dataflow
graphs

In synchronous dataflow (SDF), a program is represented as a directed graph in
vertices (actors) represent computational tasks, edges specify data dependences, and the number
of data values (tokens) produced and consumed by each actor is fixed. Actors can be of arbitrary
complexity. In DSP design environments, they typically range in complexity from basic opera-
tions such as addition or subtraction to signal processing subsystems such as FFT units and adap-
tive filters.

Delays on SDF edges represent initial tokens, and specify dependencies between iterations
of the actors in iterative execution. For example, if tokens produced by the k th invocation of actor
A are consumed by the (k + 2) th invocation of actor B, then the edge (A, B) contains two
delays. We assume that the input SDF graph is homogeneous, which means that the numbers of
tokens produced and consumed are identically unity. However, since efficient techniques have
been developed to convert general SDF graphs into homogeneous graphs [21], our techniques can
easily be adapted to general SDF graphs. We refer to a homogeneous SDF graph as a DFG. The
techniques developed in this paper can be used as a post-processing step to improve the perfor-
mance of any static multiprocessor scheduling technique for iterative DFGs, such as those
described in [1, 2, 12, 16, 17, 23, 27, 29, 33, 34].

A path in a DFG is a finite, nonempty sequence (e,, e, ..., €,) , where

snk(e,) = src(ey), snk(e,) = src(es), ..., snk(e,_,) = src(e,).
If p = (ey, ey ..., ;) is a path in a DFG, then we define the path delay of p, denoted
Delay(p), by



Delay(p) = Y, delay(e;). )

i=1

Since the delays on all DFG edges are restricted to be non-negative, it is easily seen that between
any two vertices x, y € V, either there is no path directed from x to y, or there exists a (not nec-
essarily unique) minimum-delay path between x and y. Given a DFG G, and vertices x, y in
G, we define pg(x, y) to be equal to e if there is no path from x to y, and equal to the path
delay of a minimum-delay path from x to y if there exist one or more paths from x to y . If G is
understood, then we may drop the subscript and simply write “p ™ in place of “ps”.

A strongly connected component (SCC) of a directed graph is a maximal subgraph in
which there is a path from each vertex to every other vertex. A feedforward edge is an edge that
is not contained in an SCC, and a feedback edge is an edge that is contained in at least one SCC.
The source and sink actors of an SDF edge e are denoted src(e) and snk(e), and the delay on e
is denoted delay(e).An edge e is a self loop edge if src(e) = snk(e). We define d,(x, y) to
represent an SDF edge whose source and sink vertices are x and y, respectively, and whose delay
is n (assumed non-negative).

An SDF representation of an application is called an application DFG. For each task v in
a given application DFG G, we assume that an estimate #(v) (a positive integer) of the execution
time is available. Given a multiprocessor schedule for G, we derive a data structure called the
IPC graph, denoted G;,, by instantiating a vertex for each task, connecting an edge from each
task to the task that succeeds it on the same processor, and adding an edge that has unit delay from
the last task on each processor to the first task on the same processor. Also, for each edge (x, y) in
G that connects tasks that execute on different processors, an IPC edge having identical delay is
instantiated in Gy, from x to y . Figure 1(c) shows the IPC graph that corresponds to the applica-
tion DFG of Figure 1(a) and the processor assignment / actor ordering of Figure 1(b).

Each edge (v;, v;) in Gy, represents the synchronization constraint
start(v;, k) 2 end(vj, k- delay((vj, vi))), )
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where start(v, k) and end(v, k) respectively represent the time at which invocation & of actor v
begins execution and completes execution.

Initially, an IPC edge in G, represents two functions — reading and writing of tokens
into the corresponding buffer, and synchronization between the sender and the receiver. To differ-
entiate these functions, we define another graph called the synchronization graph, in which
edges between tasks assigned to different processors, called synchronization edges, represent
synchronization constraints only. An execution source of a synchronization graph is any actor
that has nonzex;o delay on each input edge.

Initially, the synchronization graph is identical to G;,.. However, resynchronization mod-
ifies the synchronization graph by adding and deleting synchronization edges. After resynchroni-
zation, the IPC edges in G;, represent buffer activity, and must be implemented as buffers in
shared memory, whereas the synchronization edges represent synchronization constraints, and are
implemented by updating and testing flags in shared memory as described in Section 3.1 below. If
there is an IPC edge as well as a synchronization edge between the same pair of actors, then the
synchronization protocol is executed before the buffer corresponding to the IPC edge is accessed
so as to ensure sender-receiver synchronization. On the other hand, if there is an IPC edge
between two actors in the IPC graph, but there is no synchronization edge between the two, then
no synchronization needs to be done before accessing the shared buffer. If there is a synchroniza-
tion edge between two actors but no IPC edge, then no shared buffer is allocated between the two

actors; only the corresponding synchronization protocol is invoked.

(a) o (b)
E"—;é ACE
0a0K0

Figure 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a) and the proces-
sor assignment / actor ordering of part (b). A “D” on top of an edge represents a unit delay.




3.1 Synchronization protocols

Given a synchronization graph (V, E), and a synchronization edge e € E, if e is a feed-
forward edge then we apply a synchronization protocol called feedforward synchronization
(FFS), which guarantees that snk(e) never attempts to read data from an empty buffer (to prevent
underflow), and src(e) never attempts to write data into the buffer unless the number of tokens
already in the buffer is less than some pre-specified limit, which is the amount of memory allo-
cated to that buffer (to prevent overflow). This involves maintaining a count of the number of
tokens currently in the buffer in a shared memory location. This count must be examined and
updated by each invocation of src(e) and snk(e).

If e is a feedback edge, then we use a more efficient protocol, called feedback synchroni-
zation (FBS), that only explicitly ensures that underflow does not occur. Such a simplified proto-
col is possible because each feedback edge has a buffer requirement that is bounded by a constant,
called the self-timed buffer bound of the edge. The self-timed buffer bound of a feedback edge
can be computed efficiently from the synchronization graph topology [5]. In the FBS protocol we
allocate a shared memory buffer of size equal to the self-timed buffer bound of e, and rather than
maintaining the token count in shared memory, we maintain a copy of the write pointer into the
buffer (of the source actor). After each invocation of src(e) , the write pointer is updated locally
(on the processor that executes src(e)), and the new value is written to shared memory. It is eas-
ily verified that to prevent underflow, it suffices to block each invocation of the sink actor until the
read pointer (maintained locally on the processor that executes snk(e)) is found to be not equal
to the current value of the write pointer. For a more detailed discussion of the FFS and FBS proto-

cols, the reader is referred to [9].

3.2 Estimated throughput

If the execution time of each actor v is a fixed constant *(v) for all invocations of v, and
the time required for IPC is ignored (assumed to be zero), then as a consequence of Reiter’s anal-

ysis in [30], the throughput (number of DFG iterations per unit time) of a synchronization graph



G is given by

c= mn  |Delay(C) G)
cycle CinG| 3" #(v) )
veC

Since in our problem context, we only have execution time estimates available instead of
exact values, we replace 1*(v) with the corresponding estimate #(v) in (3) to obtain the esti-
mated throughput. The objective of resynchronization is to increase the actual throughput by
reducing the rate at which synchronization operations must be performed, while making sure that

the estimated throughput is not degraded.

3.3 Synchronization redundancy and resynchronization

Any transformation that we perform on the synchronization graph must respect the syn-
chronization constraints implied by G;p, . If we ensure this, then we only need to implement the
synchronization edges of the optimized synchronization graph. If G, = (V, E,) and
G, = (V, E,) are synchronization graphs with the same vertex-set and the same set of intrapro-
cessor edges (edges that are not synchronization edges), we say that G, preserves G, if for all
e€ E, suchthat e¢ E,, we have pGI(src (e), snk(e)) < delay(e) . The following theorem,
developed in [9], underlies the validity of resynchronization.

Theorem 1: The synchronization constraints (as specified by (2)) of G, imply the constraints

of G, if G, preserves G,.

Intuitively, Theorem 1 is true because if G, preserves G, , then for every synchronization
edge e in G,, there is a path in G, that enforces the synchronization constraint specified by e.

A synchronization edge is redundant in a synchronization graph G if its removal yields a
graph that preserves G . For example, in Figure 1(c), the synchronization edge (C, F) is redun-
dant due to the path ((C, E), (E, D), (D, F)). In[5], itis shown that if all redundant edges in a
synchronization graph are removed, then the resulting graph preserves the original synchroniza-

tion graph.



Given a synchronization graph G, a synchronization edge (x,, x,) in G, and an ordered

pair of actors (y;, y,) in G, we say that (y,, y,) subsumes (x,, x,) in G if

PG(x1, 1) +Pc(¥2, x3) S delay ((x,, x3)) -
Thus, intuitively, (y,, y,) subsumes (x,, x,) if and only if a zero-delay synchronization edge
directed from y, to y, makes (x,, x,) redundant. If § is the set of synchronization edges in G,
and p is an ordered pair of actors in G, then Y (p) ={s € S|p subsumes s}.

If G = (V, E) is a synchronization graph and F is the set of feedforward edges in G,
then a resynchronization of G isa set R={e,’, e,’, ..., e,,’} of edges that are not necessarily
contained in E, but whose source and sink vertices are in V, such that e,’, &5, ..., e,,” are feed-
forward edges in the DFG G* = (V, (E - F) + R), and G* preserves G . Each member of R that
isnotin E is a resynchronization edge, G* is called the resynchronized graph associated with
R, and this graph is denoted by ¥(R, G).

For example R = {(E, B)} is a resynchronization of the synchronization graph shown in
Figure 1(c).

Our concept of resynchronization considers the rearrangement of synchronizations only
across feedforward edges. We impose this restriction so that the serialization imposed by resyn-
chronization does not degrade the estimated throughput. Rearrangement of feedforward edges
does not reduce the estimated throughput because such edges do not affect the value derived from
3).

We will use the following lemma, which is established [7].

Lemmal: Suppose that G is a synchronization graph; R is a resynchronization of G ; and
(x, y) is a resynchronization edge such that p;(x, y) = 0.Then (x, y) is redundant in W(R, G).
Thus, a minimal resynchronization (fewest number of elements) has the property that

pg(x’,¥’) >0 for each resynchronization edge (x’, ).

4. Elimination of synchronization edges

In this section, we introduce a number of useful properties that pertain to the process by

8



which resynchronization can make certain synchronization edges in the original synchronization

graph become redundant. The following definition is fundamental to these properties.

Deﬁnitién 1: Suppose that G is a synchronization graph and R is a resynchronization of G. If s
is a synchronization edge in G that is not contained in R, we say that R eliminates s. If R elim-
inates s, s’ € R, and there is a path p from src(s) to snk(s) in ¥(R, G) such that p contains s

and Delay(p) < delay(s), then we say that s* contributes to the elimination of s.

A synchronization edge s can be eliminated if a resynchronization creates a path p from
src(s) to snk(s) such that Delay(p) < delay(s) . In general, the path p may contain more than
one resynchronization edge, and thus, it is possible that none of the resynchronization edges
allows us to eliminate s “by itself”. In such cases, it is the contribution of all of the resynchroniza-
tion edges within the path p that enables the elimination of s. This motivates the our choice of

terminology in Definition 1. An example is shown in Figure 2.
The following two facts follow immediately from Definition 1.

Fact 1: Suppose that G is a synchronization graph, R is a resynchronization of G, and r is a
resynchronization edge in R. If r does not contribute to the elimination of any synchronization
edges, then (R - {r}) is also a resynchronization of G. If r contributes to the elimination of one

and only one synchronization edge s, then (R— {r} + {s}) is a resynchronization of G .

(@) (b)

Figure 2. An illustration of Definition 1. Here each processor executes a single actor. A resyn-
chronization of the synchronization graph in (a) is illustrated in (b). In this resynchronization,
the resynchronization edges (V, X) and (X, W) both contribute to the elimination of (V, W).

9



Fact 2: Suppose that G is a synchronization graph, R is a resynchronization of G, s is a syn-
chronization edge in G, and s’ is a resynchronization edge in R such that delay(s’) > delay(s).

Then s’ does not contribute to the elimination of s .

For example, let G denote the synchronization graph in Figure 3(a). Figure 3(b) shows a
resynchronization R of G. In the resynchronized graph of Figure 3(b), the resynchronization
edge (x4, y3) does not contribute to the elimination of any of the synchronization edges of G, and
thus Fact 1 guarantees that R’ = R — {(x,, y3)}, illustrated in Figure 3(c), is also a resynchroniza-
tionof G.In Flgure 3(c), it is easily verified that (x5, y4) contributes to the elimination of exactly
one synchronization edge — the edge (s, ¥5), and from Fact 1, we have that

R”=R’ - {(xs5,¥4)} + {(xs5, ¥5)}, illustrated in Figure 3(d), is a also resynchronization of G .

Figure 3. Properties of resynchronization.
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5. Latency-constrained resynchronization

As discussed in Section 3.3, resynchronization cannot decrease the estimated throughput
since it manipulates only the feedforward edges of a synchronization graph. Frequently in real-
time DSP systems, latency is also an important issue, and although resynchronization does not
degrade the estimated throughput, it generally does increase the latency. In this section we define

the latency-constrained resynchronization problem for self-timed multiprocessor systems.

Definition 2: ‘Suppose G, is an application DFG, G is a synchronization graph that results from
a multiprocessor schedule for G, x is an execution source in G, and y is an actor in G other
than x, then we define the latency from x to y by Ls(x, y) =end(y, 1 + pGo(x, y)) 1 We refer to
x as the latency input associated with this measure of latency, and we refer to y as the latency

output.

Intuitively, the latency is the time required for the first invocation of the latency input to
influence the associated latency output. Thus, our measure of latency is explicitly concerned only
with the time that it takes for the first input to propagate to the output, and does not in general give
an upper bound on the time for subsequent inputs to influence subsequent outputs. Extending our
latency measure to maximize over all pairs of “related” input and output invocations would yield

the alternative measure L defined by

LG (x,y) = max({end(y, k+pg (x,y))-start(x, k)| (k = 1,2, ...)}). C)

Currently, there are no known tight upper bounds on L’ that can be computed efficiently from
the synchronization graph for any useful subclass of graphs, and thus, we use the lower bound

approximation L, which corresponds to the critical path, when attempting to analyze and opti-
mize the input-output propagation delay of a self-timed system. The heuristic that we present in

Section 9 for latency-constrained resynchronization can easily be adapted to handle arbitrary

1. Recall that start(v, k) and end(v, k) denote the time at which invocation & of actor v commences and
completes execution. Also, note that start(x, 1) = 0 since x is an execution source.
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latency measures; however, the efficiency of the heuristic depends on the existence of an algo-
rithm to efficiently compute the change in latency that arises from inserting a single new synchro-
nization edge. The exploration of incorporating alternative measures — or estimates — of latency
in this heuristic framework, would be a useful area for further study.

In our study of latency-constrained resynchronization, we restrict our attention to a class
of synchronization graphs for which the latency can be computed efficiently. This is the class of
synchronization graphs in which the first invocation of the latency output is influenced by the first
invocation of the latency input. Equivalently, it is the class of graphs that contain at least one
delayless path in the corresponding application DFG directed from the latency input to the latency

output.

Definition 3: Suppose that G, is an application DFG, x is a source actor in Gy, and y is an
actor in G, that is not identical to x. I pg (x,y) = 0, then we say that G, is transparent with
respect to latency input x and latency output y. If G is a synchronization graph that corresponds

to a multiprocessor schedule for G, we also say that G is transparent.

If a synchronization graph is transparent with respect to a latency input/output pair, then
the latency can be computed efficiently using longest path calculations on an acyclic graph that is
derived from the input synchronization graph G . This acyclic graph, which we call the first-iter-
ation graph of G, denotg:d fi(G), is constructed by removing all edges from G that have non-
zero-delay; adding a vertex v, which represents the beginning of execution; setting 1(v) = 0;
and adding delayless edges from v to each source actor (other than v ) of the partial construction

until the only source actor that remains is v . Figure 4 illustrates the derivation of fi(G).

Given two vertices x and y in fi(G) such that there is a path in fi(G) from x to y, we

Figure 4. An example used to illustrate the construction of fi(G) . The graph on the right is
fi(G) when G is the left-side graph.
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denote the sum of the execution times along a path from x to y that has maximum cumulative

execution time by Tﬁ«;)(x, y). That s,

Tﬁ(G)(x, y) = max( 2 t(2)|(p is a path from x to y in ﬁ(G))). 5)

p traverses z

If there is no path from x to y, then we define T4 (c)(x, y) to be —ee. Note that for all x, y
Tﬁ(G)(x, y) < +o0, since fi(G) is acyclic. The values Tﬁ(G)(x, y) for all pairs x, y can be com-
puted in O(ns) time, where » is the number of actors in G, by using a simple adaptation of the
Floyd-Warshall algorithm specified in [14].

The following theorem gives an efficient means for computing the latency L for trans-

parent synchronization graphs.

Theorem 2: Suppose that G is a synchronization graph that is transparent with respect to
latency input x and latency output y. Then Lg(x, y) = Tﬁ(é)(v, y).

Proof: By induction, we show that for every actor w in fi(G),
end(w’ l) = Tﬁ(G)(ua W) ’ (6)

which clearly implies the desired result.

First, let mt(w) denote the maximum number of actors that are traversed by a path in

fi(G) (over all paths in fi(G)) that starts at v and terminates at w. If mt(w) = 1, then clearly
w = V. Since both the LHS and RHS of (6) are identically equal to ¢#(v) = 0 whenw = v, we
have that (6) holds whenever mt(w) = 1.

Now suppose that (6) holds whenever mt(w) < k, for some k2 1, and consider the sce-
nario mt(w) = k + 1. Clearly, in the self-timed (ASAP) execution of G, invocation w, , the first
invocation of w, commences as soon as all invocations in the set

Z= {zl|(z eP,)}
have completed execution, where z, denotes the first invocation of actor z, and P, is the set of

predecessors of w in fi(G). All members z € P, satisfy mt(z) < k, since otherwise mz(w)

13



would exceed (k + 1) . Thus, from the induction hypothesis, we have
start(w, 1) = maxend(z,1)|(z€ P,) = max(Tﬁ(G)(u, z)|(z eP)),
which implies that

end(w, l) = max(Tﬁ(G)(l), Z)I(Z € Pw)) + I(W) . (7)

But, by definition of Tﬁ(G) , the RHS of (7) is clearly equal to Tﬁ(c)(\), w), and thus we have that
end(w,1) = Tﬁ(G)('o, w).

We hav.e shown that (6) holds for mt(w) = 1, and that whenever it holds for
mt(w) = k21, it must hold for mt(w) = (k + 1). Thus, (6) holds for all values of mt(w). QED.

Theorem 2 shows that latency can be computed efficiently for transparent synchronization
graphs. A further benefit of transparent synchronization graphs is that the change in latency
induced by adding a new synchronization edge (a “resynchronization operation”) can be com-
puted in O(1) time, given Tﬁ(a)(a, b) for all actor pairs (a, b) . We will discuss this further, as

well as its application to developing an efficient resynchronization heuristic, in Section 9.

Definition 4: An instance of the latency-constrained synchronization problem consists of a
transparent synchronization graph G with latency input x and latency output y, and a latency
constraint L, ,. 2 Ls(x,y). A solution to such an instance is a resynchronization R such that 1)
Ly, )% ¥) S Ly gy, and 2) no resynchronization of G that results in a latency less than or

equal to L ,,, has smaller cardinality than R.

Given a transparent synchronization graph G with latency input x and latency output y,
and a latency constraint L, , we say that a resynchronization R of G isa latency-constrained
resynchronization (LCR) if Ly g (X, ) S Ly,g, - Thus, the latency-constrained resynchroniza-
tion problem is the problem of determining a minimal LCR.

6. Related work

In [5], a simple, efficient algorithm, called Convert-10-SC-graph, is described for introduc-

14



ing new synchronization edges so that the synchronization graph becomes strongly connected,
which allows all synchronization edges to be implemented with the more efficient FBS protocol.
A supplementary algorithm is also given for determining an optimal placement of delays on the
new edges so that the estimated throughput is not degraded and the increase in shared memory
buffer sizes is minimized. It is shown that the overhead required to implement the new edges that
are added by Convert-to-SC-graph can be significantly less than the net overhead that is elimi-
nated by converting all uses of FFS to FBS. However, this technique may increase the latency.

Gencraily, resynchronization can be viewed as complementary to the Convert-to-SC-
graph optimization: resynchronization is performed first, followed by Convert-to-SC-graph.
Under severe latency constraints, it may not be possible to accept the solution computed by Con-
vert-t0-SC-graph, in which case the feedforward edges that emerge from the resynchronized solu-
tion must be implemented with FFS. In such a situation, Convert-to-SC-graph can be attempted
on the original (before resynchronization) graph to see if it achieves a better result than resynchro-
nization without Convert-to-SC-graph. However, for synchronization graphs that have only one
source SCC and only one sink SCC, the latency is not affected by Convert-to-SC-graph, and thus,
for such systems resynchronization and Convert-to-SC-graph are fully complementary. This is
fortunate since such systems arise frequently in practice.

Shaffer presented an algorithm that removes redundant synchronizations in the self-timed
execution of a non-iterative DFG [32]. This technique was subsequently extended to handle itera-
tive execution and DFG edges that have delay [5). These approaches differ from the techniques of
this paper in that they only consider the redundancy induced by the original synchronizations;
they do not consider the addition of new synchronizations.

Resynchronization has been studied earlier in the context of hardware synthesis [15].
However in this work, the scheduling model and implementation model are significantly different
from the structure of self-timed multiprocessor implementations, and as a consequence, the analy-
sis techniques and algorithmic solutions do not apply to our context, and vice-versa [7].

Partial summaries of the material in this paper and the companion paper have been pre-
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sented in [4] and [8], respectively.

7. Intractabi

In this section we show that latency-constrained resynchronization problem is NP-hard
even for the very restricted subclass of synchronization graphs in which each SCC corresponds to
a single actor, and all synchronization edges have zero delay.

As with the unbounded-latency resynchronization problem [7], the intractability of this
special case of ‘latency-constrained resynchronization can be established by a reduction from set
covering, To illustrate this reduction, we suppose that we are given the set X = {x;, x5, X3, X4} ,
and the family of subsets T = {#,,15, 73}, where t; = {x}, x5}, 1, = {x}, x,},and
t3 = {x,,x,}. Figure 5 illustrates the instance of latency-constrained resynchronization that we
derive from the instance of set covering specified by (X, T') . Here, each actor corresponds to a

single processor and the self loop edge for each actor is not shown. The numbers beside the actors

st
240

@r

Figure 5. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.
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specify the actor execution times, and the latency constraint is L,,,, = 103. In the graph of Fig-
ure 5, which we denote by G, the edges labeled ex,, ex,, exs, ex, correspond respectively to the
members X,, X,, X3, X, of the set X in the set covering instance, and the vertex pairs (resynchroni-
zation candidates) (v, st,), (v, 5t,), (v, st3) correspond to the members of T . For each relation
x;€¢;,an edge exists that is directed from s¢; to sx;. The latency input and latency output are
defined to be in and out respectively, and it is assumed that G is transparent.

The synchronization graph that results from an optimal resynchronization of G is shown
in Figure 6, with redundant resynchronization edges removed. Since the resynchronization candi-
dates (v, st,), (v, st3) were chosen to obtain the solution shown in Figure 6, this solution corre-
sponds to the solution of (X, T) that consists of the subfamily {z,, 73}.

A correspondence between the set covering instance (X, T) and the instance of latency-

constrained resynchronization defined by Figure 5 arises from two properties of our construction:

Observation 1: (x;e ¢ | in the set covering instance ) & ((v, 5¢;) subsumes ex; in G).

Figure 6. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 5.
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Observation 2: If R is an optimal LCR of G, then each resynchronization edge in R is of the

form
(v,s¢;), i€ {1,2,3}, or of the form (st s 5X;), X; € 1 Iz 3)

The first observation is immediately apparent from inspection of Figure 5.

Proof of Observation 2 We must show that no other resynchronization edges can be contained in
an optimal LCR of G . Figure 7 specifies arguments with which we can discard all possibilities
other than thosé given in (8). In the matrix shown in Figure 7, the entry corresponding to row r
and column c¢ specifies an index into the list of arguments on the right side of the figure. For each
of the six categories of arguments, except for #6, the reasoning is either obvious or easily under-
stood from inspection of Figure 5. A proof of argument #6 can be found in Appendix A of [6].
For example, edge (v, z) cannot be a resynchronization edge in R because the edge

already exists in the original synchronization graph; an edge of the form (sx;, w) cannot bein R
because there is a path in G from w to each sx;; (z, w) € R since otherwise there would be a

path from in to out that traverses v, z, w, s, 5x, , and thus, the latency would be increased to at

v w St i $X;
5 3 1 2 oK | 1 1. Existsin G.
3 5 6 2 1 4 2. Introduces a cycle.
z 213521 }|3]3 3. Increases the latency beyond L, .
in| 1 1 4 5 4 4 4 4. pg(ay, a;) = 0 (Lemma 1).
out|| 2 2 2 2 5 2 2 5. Introduces a delayless self loop.
s; | 323 |2]4]35|0K 6. See Appendix A in [6).
5X;j 2 2 3 2 1 {23135

a. Assuming that X LRt otherwise 1 applies.

Figure 7. Arguments that support Observation 2.
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least 204; (in, z) ¢ R from Lemma 1 since pg(in, z) = 0; and (v, v) € R since otherwise there
would be a delayless self loop. Three of the entries in Figure 7 point to multiple argument catego-
ries. For example, if x; € ¢#;, then (sx;, st;) introduces a cycle, and if x; € ¢; then (sx;, st;) can-
not be contained in R because it would increase the latency beyond L,,,, .

The entries in Figure 7 marked OK are simply those that correspond to (8), and thus we
have justified Observation 2. QED.

The following observation, which is proven in Appendix B of [6], states that a resynchro-
nization edge of the form (st s sx;) contributes to the elimination of exactly one synchronization

edge, which is the edge ex;.

Observation 3: Suppose that R is an optimal LCR of G and suppose that e = (s¢;, 5x;) isa
resynchronization edge in R, forsome i e {1,2,3,4}, je {1,2,3} suchthat x; & t. Then e

contributes to the elimination of one and only one synchronization edge — ex;.

Now, suppose that we are given an optimal LCR R of G . From Observation 3 and Fact 1,
we have that for each resynchronization edge (st j, sx;) in R, we can replace this resynchroniza-
tion edge with ex; and obtain another optimal LCR. Thus from Observation 2, we can efficiently
obtain an optimal LCR R’ such that all resynchronization edges in R’ are of the form (v, s1;).

For each x; € X such that

Btjl((x‘- € t;) and ((v, stj) e R’)), 9)

we have that ex; ¢ R’. This is because R’ is assumed to be optimal, and thus, W (R, G) contains
no redundant synchronization edges. For each x; € X for which (9) does not hold, we can replace
ex; with any (v, s¢ i) that satisfies x; € ¢ i and since such a replacement does not affect the

latency, we know that the result will be another optimal LCR for G . In this manner, if we repeat-

edly replace each ex; that does not satisfy (9) then we obtain an optimal LCR R’ such that

each resynchronization edge in R” is of the form (v, 51;) , and (10)
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for each x; € X, there exists a resynchronization edge (v, ¢;) in R” suchthat x;€ ;. (11)

It is easily verified that the set of synchronization edges eliminated by R” is {ex,-|x,- € X}.Thus,
theset T' = {r j|(v, tj) is a resynchronization edge in R’’} is a cover for X , and the cost (number
of synchronization edges) of the resynchronization R” is (N - |X| +|T"]), where N is the number
of synchronization edges in the original synchronization graph. Now, it is also easily verified
(from Figure 5) that given an arbitrary cover T, for X, the resynchronization defined by

R,=(R" - {(v,1))|(t;€ TOD + {0 1))| ;€ T,)} (12)

is also a valid LCR of G, and that the associated cost is (N —|X| +|TJ|) . Thus, it follows from

the optimality of R” that T’ must be a minimal cover for X, given the family of subsets T .

To summarize, we have shown how from the particular instance (X, T') of set covering,
we can construct a synchronization graph G such that from a solution to the latency-constrained
resynchronization problem instance defined by G, we can efficiently derive a solution to (X, T).
This example of the reduction from set covering to latency-constrained resynchronization is easily
generalized to an arbitrary set covering instance (X', T’). The generalized construction of the ini-
tial synchronization graph G is specified by the steps listed in Figure 8.

The main task in establishing our general correspondence between latency-constrained
resynchronization and set covering is generalizing Observation 2 to apply to all constructions that
follow the steps in Figure 8. This generalization is not conceptually difficult (although it is rather
tedious) since it is easily verified that all of the arguments in Figure 8 hold for the general con-
struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction
into an optimal LCR of the form implied by (10) and (11) extends in a straightforward fashion to

the general construction.

8. Two-p

In this section, we show that although latency-constrained resynchronization for transpar-
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ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of
only two processors — that is, synchronization graphs in which there are two SCCs and each SCC
is a simple cycle. This reveals a pattern of complexity that is analogous to the classic nonpreemp-
tive processor scheduling problem with deterministic execution times, in which the problem is
also intractable for general systems, but an efficient greedy algorithm suffices to yield optimal
solutions for two-processor systems in which the execution times of all tasks are identical [13,
18]. However, for latency-constrained resynchronization, the tractability for two-processor sys-
tems does not depend on any constraints on the task (actor) execution times. Two processor opti-
mality results in multiprocessor scheduling have also been reported in the context of a stochastic
model for parallel computation in which tasks have random execution times and communication
patterns [24].

In an instance of the two-processor latency-constrained resynchronization (2LCR)
problem, we are given a set of source processor actors Xy, X, ..., Xp» with associated execution
times {#(x;)}, such that each x; is the i th actor scheduled on the processor that corresponds to
the source SCC of the synchronization graph; a set of sink processor actors ¥y, ¥, --+» ¥¢» With

associated execution times {z(y;)}, such that each y; is the i th actor scheduled on the processor

e Instantiate actors v, w, z, in, out, with execution times 1, 1, 100, 1, and 1, respectively,
and instantiate all of the edges in Figure 5 that are contained in the subgraph associated
with these five actors.

e For each te T, instantiate an actor labeled st that has execution time 40.

e Foreach xe X’
Instantiate an actor labeled sx that has execution time 60.
Instantiate the edge ex=dy(v, sx) .

Instantiate the edge dg(sx, out) .

eForeachte T’
Instantiate the edge dy(w, st) .

For each x e ¢, instantiate the edge d(st, sx) .
oSetL,,, = 103.

Figure 8. A procedure for constructing an instance /,, of latency-constrained resynchroniza-
tion from an instance I, of set covering such that a solution to 7, yields a solutionto /..
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that corresponds to the sink SCC of the synchronization graph; a set of non-redundant synchroni-
zation edges S = {s,, S, ..., S,} such that for each s;, src(s;) € {x;, %, ..., xp} and

snk(s;) € {yy, ¥2 --+» ¥4} ; and a latency constraint L,, ., which is a positive integer. A solution
to such an instance is a minimal resynchronization R that satisfies Ly 6)(X15 ¥g) S Lypgy - In the
remainder of this section, we denote the synchronization graph corresponding to our generic
instance of 2LCR by G.

We assume that delay(s;) = O for all s;, and we refer to the subproblem that results from
this restriction .as delayless 2LCR. In this section we present an algorithm that solves the delay-
less 2LCR problem in O(Nz) time, where N is the number of vertices in G . An extension of this
algorithm to the general 2LCR problem (arbitrary delays can be present) can be found in [6].

An efficient polynomial-time solution to delayless 2LCR can be derived by reducing the
problem to a special case of set covering called interval covering, in which we are given an
ordering w,, w,, ..., wy of the members of X (the set that must be covered), such that the collec-
tion of subsets T consists entirely of subsets of the form {w,, w; 1, ..., Wp}, 1 S@SbO<N.
Thus, while general set covering involves covering a set from a collection of subsets, interval cov-
ering amounts to covering an interval from a collection of subintervals.

Interval covering can be solved in O(}X||T]) time by a simple procedure that first selects
the subset {wy, w,, ..., w,,l} , where

b, = max({b|(w;, w, € ¢t) for some 1 € ThH;
then selects any subset of the form {w,, w, .1, ..., Wp,}, @ <b; +1, where
b, = max({bl(wbﬁ,, w, € t) forsome te T});
then selects any subset of the form {w,, w, ., ..., Wy, }, @3 Sby + 1, where
by = max({b|(wb2+1, wy,€ t) forsome te T});
andsoonuntilb, = N.

To reduce delayless 2LCR to interval covering, we start with the following observations.

Observation 4: Suppose that R is a resynchronization of G, re R,and r contributes to the

elimination of synchronization edge s. Then r subsumes s. Thus, the set of synchronization
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edges that r contributes to the elimination of is simply the set of synchronization edges that are

subsumed by r.

Proof: This follows immediately from the restriction that there can be no resynchronization edges
directed from a y ; toan x; (feedforward resynchronization), and thus in ‘¥'(R, G), there can be at
most one synchronization edge in any path directed from src(s) to snk(s). QED.

Observation §: If R is a resynchronization of G, then

L = max({tp,ed(src(s')) + tsucc(snk(s’))|s’ € R}), where

¥(r,&F1 V)
8pred(X;) = ;-t(xj) fori = 1,2,...,p,and 1., .. (¥) = Z:.t(yj) fori =1,2,...,9.

Proof: Given a s;nc:hronization edge (x,,y,) € R, there is ex;ct;y one delayless path in R (G)

from x, to y, that contains (x,, y,) and the set of vertices traversed by this path is

{X15 X35 ++s Xg Yps Yp 4 15 ++-» Y } - The desired result follows immediately. QED.

Now, corresponding to each of the source processor actors x; that satisfies

tp,ed(x,-) + t(yq) <L,,,, we define an ordered pair of actors (a “resynchronization candidate”) by
vi=(x;y;), where j = min({k|(tp,eq(X;) + 5ucc(¥V) S Lpa) D) - 13)

Consider the example shown in Figure 9. Here, we assume that #(z) = 1 foreach actor z,

and L,,,, = 10.From (13), we have

vy = (X1, 1) vy = (X9, Y1)hva= (X3, ¥2), V4 = (x4, ¥3)»
Vg = (x5, Y4) Vg = (x6 ¥5)> V7 = (X7, Y¢)> Vg = (x5, y7). (14)
If v; exists for a given x;, then dy(v;) can be viewed as the best resynchronization edge
that has x; as the source actor, and thus, to construct an optimal LCR, we can select the set of

resynchronization edges entirely from among the v;s. This is established by the following two

observations.

Observation 6: Suppose that R is an LCR of G,and suppose that (x,, y,) is a delayless syn-
chronization edge in R such that (x,, y,) #v,. Then (R - {(x,, y,)} + {dy(v,)}) is an LCR of
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R.

Proof: Letv, = (x,y.) and R = (R-{(x,,¥,)} +{dy(v,)}), and observe that v, exists,
since

(X Yp) € R) = (25,04(Xg) + b5ucc(Yp) S Linax) = (1pred(Xa) +8(¥g) S L) -
From Observation 4 and the assumption that (x,, y,) is delayless, the set of synchronization
edges that (x,,y,) contributes to the elimination of is simply the set of synchronization edges
that are subsumed by (x,, ¥,)- Now, if s is a synchronization edge that is subsumed by (x,, Yb)»

then
pg(src(s), x,) + P (yy snk(s)) < delay(s). (15)

From the definition of v,,, we have that ¢ < b, and thus, that p~(y,, ¥,) = 0. It follows from (15)
that

Lonax = 10 (a) (b)

Figure 9. An instance of delayless, two-processor latency-constrained resynchronization.
In this example, the execution times of all actors are identically equal to unity.
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Pg(sre(s), x,) + pa(y,» snk(s)) < delay(s), (16)

and thus, that v, subsumes s. Hence, v, subsumes all synchronization edges that (x,, y;) con-
tributes to the elimination of, and we can conclude that R’ is a valid resynchronization of G.
From the definition of v,, we know that 2,,,4(X,) + £5,cc(¥c) S Lypgy » and thus since R is

an LCR, we have from Observation 5 that R’ is an LCR. QED.

From Fact 2 and the assumption that the members of S are all delayless, an optimal LCR
of G consists 6nly of delayless synchronization edges. Thus from Observation 6, we know that
there exists an optimal LCR that consists only of members of the form dy(v;) . Furthermore, from

Observation 5, we know that a collection V of v;s is an LCR if and only if

va(V) = {sls 32’ ey sn} ’
Ve
where %(v) is the set of synchronization edges that are subsumed by v. The following observa-

tion completes the correspondence between 2LCR and interval covering.
Observation 7: Let s,’, 5,’, ..., s, be the ordering of sy, s, ..., 5, specified by

(x, = sre(s;’), x, = src(sj'), a<b)=(i<}j). a7

That is the s,”'s are ordered according to the order in which their respective source actors execute
on the source processor. Suppose that for some je€ {1,2,..., p},some m> 1, and some
ie{1,2,...,n—m}, wehave s/ € x(v;) and s;, ," € x(v;). Then
Si+ l" si+2” seey s£+m-l’ € X(vj) .
In Figure 9(a), the ordering specified by (17) is

sl' = (X, )’2)’ Sz' = (x,, )'4), -93' = (13» Ys) 34' = (x5, ¥7)s 35' = (X9, ¥g)» (18)
and thus from (14), we have

x(vy) = {31’}, x(vy) = {sl'a 32'}, x(v3) = {sl's sz'a s3’}a X(vy) = {32', 53’}

A(vs) = {8557 53, 54"} X (Ve) = {53, 54"}, A(v7) = {55" 54,55’} x(vg) = {s4",s5'},  (19)

25



which is clearly consistent with Observation 7.

Proof of Observation 7: Let v; = (x;,¥,), and suppose k is a positive integer such that
i <k <i+ m. Then from (17), we know that p(-;(src(sk'), src(s; . )) = 0. Thus, since

Si+m € X(v;), we have that
pg(sre(s’), x;) = 0. (20)
Now clearly
p&(snk(s,-'), snk(s.)) = 0, 21

since otherwise pc-;(snk(s,"), snk(s;’)) = O and thus (from 17) 5,” subsumes s;”, which contra-
dicts the assumption that the members of S are not redundant. Finally, since s;" € x(v ) we

know that pz(y, snk(s;")) = 0. Combining this with (21) yields
Pa(yp snk(s,)) = 0, (22)

and (20) and (22) together yield that s," € x(v hE QED.

From Observation 7 and the preceding discussion, we conclude that an optimal LCR of G
can be obtained by the following steps.
(a) Construct the ordering s,’, 55', ..., 5, specified by (17).
(b)Fori = 1,2,..., p, determine whether or not v; exists, and if it exists, compute v;.
(c) Compute (v j) for each value of j such that v f exists.
(d) Find a minimal cover C for S given the family of subsets {x(v j)|v f exists } .
(e) Define the resynchronization R = {v j|x(v J-) e C}.

The time-complexity of this optimal algorithm for delayless 2LCR is O(Nz) , where N is
the number of vertices in G [6].
From (19), we see that there are two possible solutions that can result if we apply Steps

(a)-(e) to Figure 9(a) and use the technique described earlier for interval covering. These solutions
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correspond to the interval covers C, = {)(v3), X(v7)} and C; = {X(v3), X(vg)}. The synchro-
nization graph that results from the interval cover C, is shown in Figure 9(b).

9. A heurlstlc for general transparent synchromzatlon graphs

The companion paper [7] presents a heuristic called Global-resynchromzz for the
unbounded-latency resynchronization problem, which is the problem of determining an optimal
resynchronization under the assumption that arbitrary increases in latency can be tolerated. In this
section, we extend Algorithm Global-resynchronize to derive an efficient heuristic that addresses
the latency-constrained resynchronization problem for general, transparent synchronization
graphs. Given an input synchronization graph G, Algorithm Global-resynchronize operates by

first computing the family of subsets
T ={x(v}, v)|((vy; V2 € V) and (pgG(vy, v;) = =)} (23)

The second constraint in (23), ps(V,, v;) = e, ensures that inserting the candidate resyn-
chronization edge (v;, v,) does not introduce a cycle, and thus that it does not reduce the esti-
mated throughput or produce deadlock.

After computing the family of subsets specified by (23), Algorithm Global-resynchronize
chooses a member of this family that has maximum cardinality, inserts the corresponding delay-
less resynchronization edge, and removes all synchronization edges that become redundant as a
result of inserting this resynchronization edge.

To extend this technique for unbounded-latency resynchronization to the latency-con-

strained resynchronization problem, we replace the subset computation in (23) with
T = {x(vy, vp)|((vy, v, € V) and (pg(vy, vy) = °) and (L'(vy, ;) S L)) } 5 24)

where L’ is the latency of the synchronization graph (V, { E + {(v,, v,)}}) that results from add-
ing the resynchronization edge (v;, v,) to G. Assuming that T4, (x, y) has been determined for
all x,ye V, L’ can be computed from
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L'(v),v;) = max ({(Tf6) (0, vy) + TgG)(va, 01)), Lg}), 25)

where 4 is the source actor in fi(G), o, is the latency output, and L is the latency of G.

A pseudocode specification of our extension of Global-resynchronize to the latency-con-
strained resynchronization problem, called Algorithm Global-LCR is shown in Figure 9.

In the companion paper [7], we showed that Algorithm Global-resynchronize has 0(sn4)
time-complexity, where nis the number of actors in the input synchronization graph, and s is the
number of feedforward synchronization edges. Since the longest path quantities T4y (*, *) can
be computed in 0(n3) time and updated in O(nz) time, it is easily verified that the 0(sn4)
bound also applies to our extension to latency-constrained resynchronization; that is, the time
complexity of Algorithm Global-LCR is O(sn).

Figure 11 shows the synchronization graph that results from a six-processor schedule of a
synthesizer for plucked-string musical instruments in 11 voices based on the Karplus-Strong tech-
nique. Here, exc represents the excitation input, each v; represents the computation for the i th
voice, and the actors marked with “+” signs specify adders. Execution time estimates for the
actors are shown in the table at the bottom of the figure. In this example, exc and out are respec-
tively the latency input and latency output, and the latency is 170 . There are ten synchronization
edges shown, and none of these are redundant.

Figure 12 shows how the number of synchronization edges in the result computed by our
heuristic changes as the latency constraint varies. If just over 50 units of latency can be tolerated
beyond the original latency of 170, then the heuristic is able to eliminate a single synchronization
edge. No further improvement can be obtained unless roughly another 50 units are allowed, at
which point the number of synchronization edges drops to 8, and then down to 7 for an addi-
tional 8 time units of allowable latency. If the latency constraint is weakened to 382, just over
twice the original latency, then the heuristic is able to reduce the number of synchronization edges
to 6. No further improvement is achieved over the relatively long range of (383 — 644) . When

L,,,, 2 645, the minimal cost of 5 synchronization edges for this system is attained, which is half
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that of the original synchronization graph.
Figure 13 illustrates how the placement of synchronization edges changes as the heuristic
is able to attain lower synchronization costs. Each of the four topologies corresponds to a break-

point in the plot of Figure 12. For example Figure 13(a) shows the synchronization graph com-

function Global-LCR
input: a synchronization graph G = (V, E)
output: an alternative synchronization graph that preserves G .

compute ps(x,y) for all actor pairs x,ye V
compute T4, (x, y) for all actor pairs x,y e (VL {v})
complete = FALSE
while not (complete)
best = NULL,M =0
forx,ye V
it ((pg(y, x) = =) and (L(x, y) S L))
x* = x((xy)
it (Ix*>M)
M = |x¥
best = (x,y)
end if
end if
end for
if (best=NULL)
complete = TRUE
else
E = E-y(best) + {dy(best)}
G = (V,E)
for x,ye (Vu{v}) /* update T4, */
T pew(%,¥) = max({Tgc)(x, ¥), T)(x, src(best)) + T4Gy(snk(best), y)})
end for
forx,yeV [* update ps */
Prew(% Y) = min({pg(x,¥), pg(x, src(best)) + pg(snk(best), y)})
end for
PG = Prew: Tﬁ(G) = Tpew

end If
end while

return G
end function

Figure 10. A heuristic for latency-constrained resynchronization.
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puted by the heuristic for the lowest latency constraint value for which it computes a solution that

has 9 synchronization edges.

10. Conclusions

This paper has addressed the problem of latency-constrained resynchronization for self-
timed implementation of iterative dataflow programs.

We have focused on a restricted class of dataflow graphs, called transparent graphs, that
permits efficient computation of latency, and efficient evaluation of the change in latency that
arises from the insertion of a new synchronization operation. A transparent dataflow graph is an
application graph that contains at least one delay-free path from the input to the output.

Given an upper bound L, ,, on the allowable latency, the objective of latency-constrained

—execution ime |
32
vees Vi 51
16
04

Figure 11. The synchronization graph that results from a six processor schedule
of a music synthesizer based on the Karplus-Strong technique.
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resynchronization is to insert extraneous synchronization operations in such a way that a) the
number of original synchronizations that consequently become redundant significant exceeds the
number of new synchronizations, and b) the serialization imposed by the new synchronizations
does not increase the latency beyond L,,,. . To ensure that the serialization imposed by resynchro-
nization does not degrade the throughput, the new synchronizations are restricted to lie outside of
all cycles in the final synchronization graph.

We have established that optimal latency-constrained resynchronization is NP-hard even
for a very restﬁcted class of transparent graphs; we have derived an efficient, polynomial-time
algorithm that computes optimal latency-constrained resynchronizations for two-processor sys-

tems; and we have extended the heuristic presented in the companion paper [7] for unbounded-
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Figure 12. Performance of the heuristic on the example of Figure 11. The vertical axis gives the
number of synchronization edges; the horizontal axis corresponds to the latency constraint.
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latency resynchronization to address the problem of latency-constrained resynchronization for
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Figure 13. Synchronization graphs computed by the heuristic for different values of L, .
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general n-processor systems. Through an example, of a music synthesis system, we have illus-
trated the ability of this extended heuristic to systematically trade-off between synchronization
overhead and latency.

The techniques developed in this paper can be used as a post-processing step to improve
the performance of any of the large number of static multiprocessors scheduling techniques for

iterative dataflow programs, such as those described in [1, 2, 12, 16, 17, 23, 27, 29, 33, 34].

A portion of this research was undertaken as part of the Ptolemy project, which is sup-

ported by the Advanced Research Projects Agency and the U.S. Air Force (under the RASSP pro-

gram, contract F33615-93-C-1317), the State of California MICRO program, and the following
companies: Bell Northern Research, Cadence, Dolby, Hitachi, Lucky-Goldstar, Mentor Graphics,
Mitsubishi, Motorola, NEC, Philips, and Rockwell.
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formatting this document.

IS] : The number of members in the finite set S .

p(x,y): Same as p; with the DFG G understood from context.

Pc(x,y): If there is no path in G from x to y, then p;(x, y) = oo; otherwise,
Pg(x,y) = Delay(p), where p is any minimum-delay path from x to y.

delay(e): The delay on a DFG edge e.

Delay(p): The sum of the edge delays over all edges in the path p.

d,(u,v): An edge whose source and sink vertices are 4 and v, respectively, and
whose delay is equal to .

x(p): The set of synchronization edges that are subsumed by the ordered pair of
actors p.

2LCR: Two-processor latency-constrained resynchronization.
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contributes to the elimination:

If G is a synchronization graph, s is a synchronization edge in G, R isa
resynchronization of G, s’ € R, s’ # 5, and there is a path p from src(s)
to snk(s) in W(R, G) such that p contains s* and Delay(p) < delay(s),
then we say that s’ contributes to the elimination of s.

eliminates: If G is a synchronization graph, R is a resynchronization of G, and s is a
synchronization edge in G, we say that R eliminates s if s¢ R.
execution source: In a synchronization graph, any actor that has no input edges or has non-
zero delay on all input edges is called an execution source.
estimated throughput:
The maximum over all cycles C in a DFG of Delay(C)/T , where T is the
sum of the execution times of all vertices traversed by C.
FBS: Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph.
feedback edge: An edge that is contained in at least one cycle.
feedforward edge:  An edge that is not contained in a cycle.
FFS: Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.
LCR: Latency-constrained resynchronization. Given a synchronization graph G,
a resynchronization R of G is an LCR if the latency of Y(R, G) is less
than or equal to the latency constraint L,,,,. .
resynchronization edge:
Given a synchronization graph G and a resynchronization R , a resynchro-
nization edge of R is any member of R that is not contained in G.
Y(R,G): If G is a synchronization graph and R is a resynchronization of G, then
Y(R, G) denotes the graph that results from the resynchronization R.
SCC: Strongly connected component.
selfloop: An edge whose source and sink vertices are identical.
subsumes: Given a synchronization edge (x;, X,) and an ordered pair of actors
(%1 ¥2)» (31, Y) subsumes (xy, x) if
p(xy, ¥1) + P(¥o, X,) < delay((xy, X3)) -
t(v): The execution time or estimated execution time of actor v.
Tﬁ(G)(x, y): The sum of the actor execution times along a path from x to y in the first

iteration graph of G that has maximum cumulative execution time.
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