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1. Abstract

The companion paper [7] introduced theconceptofresynchronization, a post-optimization

for staticmultiprocessor schedules in which extraneous synchronizationoperations areintroduced

in such a way that the number of original synchronizations that consequently become redundant

significantly exceeds the number of additional synchronizations. Redundant synchronizations are

synchronization operations whose corresponding sequencing requirements are enforced com

pletely by other synchronizations in the system. The amount of run-time overhead required for

synchronization can be reduced significantly by eliminating redundant synchronizations [5,32].

Thus, effective resynchronization reduces the net synchronization overhead in the implementation

of a multiprocessor schedule, and improves the overall throughput.

However, since additional serialization is imposed by the new synchronizations, resyn

chronization can produce significant increase in latency.The companion paper [7] develops fun

damental properties ofresynchronization and studies the problem of optimal resynchronization

under the assumption that arbitraryincreases in latency can be tolerated ("unbounded-latency

resynchronization")' Such an assumption is valid, for example, in a wide variety of simulation

applications.This paper addresses the problem ofcomputing an optimal resynchronization among

allresynchronizations thatdo not increase the latency beyond a prespecified upperbound Lmax.

Our study is based in the context of self-timed execution of iterative dataflow programs,which is

an implementation model that has been applied extensively for digital signal processing systems.

2. Introduction

In a shared-memory multiprocessor system, it is possible that certain synchronization



operations are redundant, which means that their sequencing requirements areenforced entirely

by other synchronizations in the system. It has been demonstratedthat the amount of run-time

overhead required for synchronization canbe reduced significantly by detecting andeliminating

redundant synchronizations [5,32].

The objective of resynchronization is tointroduce newsynchronizations in such awaythat

thenumber of original synchronizations that consequently become redundant is significantly

greater that thenumber of new synchronizations. Thus, effective resynchronization improves the

overall throughput of amultiprocessor implementation bydecreasing the average rate atwhich

synchronization operations are performed. However, since additional serialization is imposed by

the new synchronizations, resynchronization can produce significant increase in latency. This

paper addresses the problem of computing an optimal resynchronization among all resynchroni-

zations that donot increase the latency beyond aprespecified upper bound Lmax. Weaddress this

problem inthe context of iterative synchronous dataflow [21] programs. Aniterative dataflow pro

gram consists of adataflow representation of the body of aloop that is tobe iterated infinitely.

Iterative synchronous dataflow programming isused extensively for the implementation ofdigital

signal processing (DSP) systems. Examples of commercial design environments that use this

model are COSSAP by Synopsys, the Signal Processing Worksystem (SPW) by Cadence, and

Virtuoso Synchro byEonic Systems. Examples ofresearch tools developed at various universities

that use synchronous dataflow or closely related dataflow models are DESCARTES [31], GRAPE

[19], Ptolemy, [11] andtheWarp compiler [29].

Our implementation model involves aself-timed scheduling strategy [22]. Each processor

executes the tasks assigned toit ina fixed order that is specified at compile time. Before firing an

actor, aprocessor waits for the data needed bythat actor tobecome available. Thus, processors are

required toperform run-time synchronization only when they communicate data. This provides

robustness when the execution times of tasks are not known precisely or when then they may

exhibit occasional deviations from their estimates.

Interprocessor communication (IPC) and synchronization are assumed totake place



through shared memory, which could be global memory between all processors, orit could bedis

tributed between pairsof processors. Details on theassumed synchronization protocols are given

in Section 3.1.Thus, in ourcontext, resynchronization achieves its benefit by reducing therateof

accesses to shared memoryfor the purposeof synchronization.

3. Background on synchronization optimization for iterative dataflow
graphs
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In synchronous dataflow (SDF), a program is represented as a directed graph in which

vertices (actors) representcomputational tasks, edgesspecify data dependences, and the number

of data values (tokens) producedand consumed by each actor is fixed. Actorscan be of arbitrary

complexity. In DSP design environments, they typicallyrange in complexity from basic opera

tions such as addition or subtraction to signal processing subsystems such as FFT units and adap

tive filters.

Delays on SDF edges represent initial tokens,and specifydependencies between iterations

of the actors in iterative execution. For example, if tokens produced by the k th invocation of actor

A are consumed by the (k + 2) th invocation of actor B, then the edge (A, B) contains two

delays.We assume that the input SDF graph is homogeneous, which means that the numbers of

tokens produced and consumed are identically unity.However, since efficient techniques have

been developed to convert general SDF graphsinto homogeneous graphs [21], our techniques can

easily be adaptedto generalSDF graphs. Werefer to a homogeneous SDF graph as a DFG. The

techniques developedin this paper can be used as a post-processing step to improve the perfor

mance of any static multiprocessor schedulingtechniquefor iterative DFGs, such as those

described in [1,2,12,16,17,23,27,29,33,34].

A path in a DFG is a finite, nonempty sequence (eve2, ...,en), where

snk(ex) = src(e2), snk(e2) = src(e3)t..., snk(en_1) = src{en).

If p & {ev e2,..., en) is a path in a DFG,thenwe define the path delay of p, denoted

Delay(p),by



n

Delay(p) = J^ delay(e^. (1)
i=l

Since the delays on all DFG edges are restricted to be non-negative,it is easily seen that between

any two vertices x, y e V, either there is no path directedfrom x to y, or there exists a (not nec

essarily unique) minimum-delay path between x andy. Given a DFG G, and vertices x, y in

G, we define pG(x, y) tobeequal to ©o if there is no path from x toy, and equal to the path

delay of a minimum-delay pathfrom x to y if there exist oneor more paths from x to y. If G is

understood, thenwe maydrop the subscript andsimply write "p " in placeof "pG".

A strongly connected component (SCC) of a directed graph is a maximal subgraph in

which there is a path from each vertex toevery other vertex. A feedforward edgeis anedge that

is notcontained in an SCC, anda feedback edgeis anedge that is contained in at leastone SCC.

The sourceand sink actors of an SDFedge e aredenoted src(e) and snk(e), and thedelayon e

is denoted delay(e). Anedge e is a self loopedgeif src(e) = snk(e). We define dn(x, y) to

represent anSDFedge whose source and sink vertices are x andy, respectively, andwhose delay

is n (assumed non-negative).

An SDF representation ofan application iscalled an application DFG. For each task v in

a given application DFG G, we assume that an estimate t(v) (apositive integer) of the execution

time is available. Given a multiprocessor schedule for G, wederive a datastructure called the

IPC graph, denoted Gipc, by instantiating avertex for each task, connecting an edge from each

taskto thetaskthatsucceeds it on thesame processor, andadding anedgethathasunitdelay from

the lasttask oneach processor tothe first task on the same processor. Also, for each edge (x,y) in

G that connects tasks thatexecute on different processors, anIPC edge having identical delayis

instantiated in Gipc from x to y. Figure 1(c) shows the IPC graph that corresponds to the applica

tionDFGof Figure 1(a) and theprocessor assignment / actorordering of Figure 1(b).

Each edge (v•, vf) in G^c represents the synchronization constraint

start(vit k) £ end(vj, k- delay((Vj, v,))), (2)



where start{v, k) and endiy, k) respectively represent thetime at which invocation k of actorv

beginsexecution and completes execution.

Initially, an IPC edge in G^ represents two functions —reading and writing oftokens

into thecorresponding buffer, andsynchronization between thesender andthereceiver. Todiffer

entiate thesefunctions, we define another graph called the synchronization graph, in which

edges between tasks assigned to different processors, calledsynchronization edges, represent

synchronization constraints only. An execution source of a synchronization graph is any actor

that has nonzero delay on each input edge.

Initially, the synchronization graph is identical to Gipc. However, resynchronization mod

ifies the synchronizationgraph by adding and deleting synchronizationedges. After resynchroni

zation, the IPC edges in Gipc represent buffer activity, and must be implemented as buffers in

shared memory, whereas the synchronization edges represent synchronization constraints, and are

implemented by updating and testing flags in sharedmemory as described in Section 3.1 below. If

there is an IPC edge as well as a synchronization edge between the same pair of actors, then the

synchronization protocol is executedbefore the buffercorresponding to the IPC edge is accessed

so as to ensure sender-receiversynchronization. On the other hand, if there is an IPC edge

between two actors in the IPC graph, but there is no synchronization edge between the two, then

no synchronizationneeds to be done before accessingthe shared buffer. If there is a synchroniza

tion edge between two actors but no IPC edge, then no shared buffer is allocated between the two

actors; only the corresponding synchronization protocol is invoked.

<t»

processor Actor ordering

Prod B.D.F
Proc.2 A.C.E

Figure 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a) and the proces
sor assignment / actor ordering of part (b). A "D" on top of an edge represents a unit delay.



3.1 Synchronization protocols

Given a synchronization graph (V, E), and a synchronization edge ee £, if e is a feed

forward edgethenwe apply a synchronization protocol called feedforward synchronization

(FFS), whichguarantees that snk(e) never attempts toread data from anempty buffer(toprevent

underflow), and src{e) never attempts to write data into the buffer unless the number of tokens

already in the buffer is less than some pre-specified limit, which is the amount of memory allo

cated to that buffer (to prevent overflow). This involves maintaining acount of the number of

tokens currently in the buffer ina shared memory location. This count must beexamined and

updated by eachinvocation of src(e) and snk(e).

If e isa feedback edge, then we use amore efficient protocol, called feedback synchroni

zation (FBS), that only explicitly ensures that underflow does not occur. Such asimplified proto

col ispossible because each feedback edge has abuffer requirement that isbounded byaconstant,

called theself-timedbuffer bound of theedge. The self-timed buffer bound of a feedback edge

can be computed efficiently from the synchronization graph topology [5]. In the FBS protocol we

allocate ashared memory buffer of size equal to the self-timed buffer bound of e, and rather than

maintaining the token count inshared memory, we maintain acopy of the write pointer into the

buffer (ofthe source actor). After each invocation of src (e), the write pointer isupdated locally

(on the processor that executes src(e)), and the new value is written to shared memory. It is eas

ily verified that to prevent underflow, itsuffices to block each invocation ofthe sink actor until the

readpointer (maintained locally on the processor that executes snk(e)) is found to be not equal

to the current value of the write pointer. For amore detailed discussion of the FFS and FBS proto

cols, the reader is referred to [9].

3.2 Estimated throughput

If the execution time ofeachactor v is a fixed constant r*(v) forall invocations of v, and

the time required for IPC is ignored (assumed to be zero), then as aconsequence of Reiter's anal

ysis in [30], the throughput (number of DFG iterations per unit time) of asynchronization graph



G is given by

Delay(C)

X**(v)
mm

x s

cycle C in G
(3)

Since inourproblem context, we only have execution time estimates available instead of

exact values, wereplace r*(v) with thecorresponding estimate f(v) in (3) to obtain theesti

mated throughput. The objective of resynchronization is to increase theactual throughput by

reducing therate at which synchronization operations mustbeperformed, while making surethat

the estimated throughput is not degraded.

3.3 Synchronization redundancy and resynchronization

Any transformation that we perform on the synchronization graph must respect the syn

chronization constraints implied by Gipc. Ifwe ensure this, then we only need to implement the

synchronizationedges of the optimized synchronization graph. If GY = (V, Ex) and

G2 = (V, E2) are synchronization graphs with the same vertex-set and thesame setof intrapro-

cessoredges (edges that are not synchronization edges), we say that G1 preserves G2 if for all

e € E2 such that e <£ Ex, we have pG (src(e), snk(e)) £ delay(e). The following theorem,

developed in [9], underlies the validity of resynchronization.

Theorem 1: The synchronization constraints (as specified by (2))of Gj imply the constraints

of G2 if Gj preserves G2.

Intuitively, Theorem 1is true because if Gx preserves G2, thenforevery synchronization

edge e in G2, there is a path in Gx that enforces the synchronization constraint specified by e.

A synchronization edge is redundant in a synchronization graph G if its removal yieldsa

graph that preserves G. For example, in Figure 1(c), the synchronization edge (C, F) is redun

dant due to the path ((C, £), (£, D), (£>, F)). In [5], it is shown that if all redundantedges in a

synchronization graphare removed, then theresulting graphpreserves the original synchroniza

tion graph.



Givena synchronization graph G, a synchronization edge (xv x2) in G, and an ordered

pair ofactors (yvy2) in G, we say that (yvy2) subsumes (xvx2) in G if

Pg(*i» vi) + Pg(v2» xi) * delay((xv x2)).

Thus, intuitively, (yvy2) subsumes (xvx2) if and only if a zero-delay synchronization edge

directed from yx to y2 makes (xv x2) redundant If S is the set ofsynchronization edges in G,

andp is anordered pair of actors in G, then %(p) = {se S\p subsumes s}.

If G = (V,E) is a synchronization graph and F is thesetof feedforward edges in G,

then aresynchronization of G isa set Rs {*/, e2,..., em'} ofedges that are not necessarily

contained in E, but whose source and sink vertices are in V, such that ex\ e2,..., em' are feed

forward edges inthe DFG G* s (V, (E - F) +R), and G* preserves G. Each member ofR that

isnot in E is a resynchronization edge, G* iscalled the resynchronized graph associated with

R, and this graph is denoted by ¥(/?, G).

For example R = {(E,B)} isaresynchronization ofthe synchronization graph shown in

Figure 1(c).

Our concept ofresynchronization considers the rearrangement of synchronizations only

across feedforward edges. We impose this restriction sothat the serialization imposed byresyn

chronization does notdegrade the estimated throughput Rearrangement of feedforward edges

does notreduce the estimated throughput because such edges donotaffect thevalue derived from

(3).

We will use the following lemma, which is established [7].

Lemma 1: Suppose that G isa synchronization graph; J? isa resynchronization of G; and

(jc, y) isaresynchronization edge such that pG(x, y) = 0. Then (x, y) isredundant in ¥(/?, G).

Thus, a minimal resynchronization (fewest number of elements) has theproperty that

pG(jc', /) >0 for each resynchronization edge (*',yf).

4. Elimination of synchronization edges

In this section,we introduce a number of useful properties that pertain to the processby
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which resynchronization canmake certain synchronization edges in theoriginal synchronization

graph become redundant Thefollowing definition is fundamental to these properties.

Definition 1: Suppose that G is a synchronization graph andR is a resynchronization of G. Ifs

is a synchronization edge in G thatis notcontained in R, wesaythat R eliminates s. If R elim

inates s, s' e R, and there is apath p from src(s) to snk(s) in ¥(/?, G) such thatp contains s'

and Delay(p) <, delay(s), then we say that s' contributes to the elimination of s.

A synchronization edge s can be eliminatedif a resynchronization creates a path p from

src(s) to snk(s) such that Delay(p) £ delay(s). In general, the path p may contain more than

one resynchronization edge, and thus, it is possible that none of the resynchronization edges

allows us to eliminate s "by itself. In such cases, it is the contribution of all of the resynchroniza

tion edges within the path p that enables the elimination of s. This motivates the our choice of

terminology in Definition 1. An example is shown in Figure 2.

The following two facts follow immediately from Definition 1.

Fact 1: Suppose that G is a synchronization graph, R is a resynchronization of G, and r is a

resynchronization edge in R. If r does not contribute to the elimination of any synchronization

edges, then (R - {r}) is also a resynchronizationof G. If r contributes to the elimination ofone

and only one synchronization edge s, then (R - {r} + {s}) is a resynchronization of G.

Figure 2. An illustration of Definition 1. Here each processor executes a single actor. A resyn
chronization of the synchronization graph in (a) is illustrated in (b). In this resynchronization,
the resynchronization edges (V, X) and (X, W) both contribute to the elimination of (V, W).



Fact 2: Suppose that G is a synchronization graph, R is a resynchronization of G, s is a syn

chronization edge in G, and s' is a resynchronization edgein R such that delay(s') > delay(s).

Then s' does not contribute to the elimination of s.

For example, let G denote the synchronization graph in Figure 3(a).Figure3(b) shows a

resynchronization R of G. In theresynchronized graph ofFigure 3(b),theresynchronization

edge (x4, y3) does not contribute tothe elimination ofany ofthe synchronization edges of G, and

thus Fact1guarantees that /?' s R- {(x4, y3)}, illustrated inFigure 3(c), is also a resynchroniza

tion of G. Li Figure 3(c), it iseasily verified that (x5, y4) contributes tothe elimination ofexactly

one synchronization edge— theedge (x5, y5), andfrom Fact1,we have that

/T =/?'- {(jc5, y4)} +{(x5, ys)}, illustrated inFigure 3(d), is a also resynchronization of G.

(a)

(c)

Figure 3. Properties of resynchronization.
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5. Latency-constrained resynchronization
ii i mill miin i ii mil

As discussed in Section 3.3, resynchronization cannot decrease theestimated throughput

since it manipulates only the feedforward edges of a synchronization graph. Frequently inreal

time DSP systems, latency is also an important issue, and although resynchronization does not

degrade theestimated throughput, it generally does increase the latency. In this section wedefine

the latency-constrained resynchronization problem for self-timed multiprocessorsystems.

Definition 2: Suppose G0 is an application DFG, G isasynchronization graph that results from

amultiprocessor schedule for G0, x is an execution source in G, and y is an actor in G other

than jc, then we define the latency from x to y by LG{x, y) s end(y, 1+pGo(x, y))l. We refer to
x as the latency input associated with this measure of latency, and we refer to y as the latency

output.

Intuitively, the latency is the time required for the first invocation of the latency input to

influence the associated latency output. Thus, our measureof latency is explicitly concernedonly

with the time that it takes for the first input to propagate to the output, and does not in general give

anupperboundon the time for subsequent inputs to influence subsequent outputs. Extending our

latency measure to maximize over all pairs of "related" input andoutput invocations would yield

the alternative measure LG' defined by

LG'(x>y) = max({end(y,k +pGo(x,y))-start(x,k)\(k =1,2,...)}). (4)

Currently, there are no knowntightupper bounds on LG thatcanbe computed efficiently from

the synchronizationgraph for any useful subclass of graphs, and thus, we use the lower bound

approximation LG,which corresponds to thecritical path, when attempting to analyze and opti

mize the input-output propagation delay of a self-timed system. The heuristic that we present in

Section 9 for latency-constrainedresynchronization can easily be adapted to handle arbitrary

1. Recall that startiy, k) and end(v, k) denote the time at which invocation k of actor v commences and
completes execution. Also, note that start(x, 1) = 0 since x is an execution source.
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latencymeasures; however, the efficiency of the heuristic dependson the existenceof an algo

rithm to efficiently computethe changein latency thatarises from insertinga single newsynchro

nization edge.The exploration of incorporating alternative measures — or estimates— of latency

in this heuristic framework, would be a useful area for further study.

In our study of latency-constrained resynchronization, werestrict our attention to a class

ofsynchronization graphs for which the latency can be computed efficiently. This is the class of

synchronization graphs inwhich the first invocation ofthe latency output is influenced by the first

invocation of thelatency input Equivalently, it is the class of graphs thatcontain at leastone

delayless path inthe corresponding application DFG directed from the latency input tothe latency

output.

Definition 3: Suppose that G0 is an application DFG, x isa source actor in G0, and y is an

actor in G0 that is not identical to jc. If oGq(x, y) = 0, then we say that G0 is transparent with

respect tolatency input x and latency output y. If G is a synchronization graph that corresponds

to a multiprocessor schedule for G0, we alsosaythat G is transparent.

If a synchronization graph is transparent with respect toa latency input/output pair, then

the latency can be computed efficiently using longest path calculations on an acyclic graph that is

derived from the input synchronization graph G.This acyclic graph, which we call the first-iter

ation graph of G, denoted fi(G), isconstructed by removing all edges from G that have non

zero-delay; adding a vertex v>, which represents the beginning ofexecution; setting t(x>) = 0;

and adding delayless edges from x> to each source actor (other than \>) ofthe partial construction

until the only source actor that remains is v. Figure 4 illustrates the derivation offi(G).

Given twovertices x and y in fi(G) such that there is a pathin fi(G) from x to y, we

Figure 4. An example used to illustrate the construction of fi(G). The graph on the right is
fi(G) when G is the left-side graph.
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denote thesum of theexecution times along a path from x to y that has maximum cumulative

execution time by 7^(G)(jc, y). That is,

Tfi(G)(x, y) =max( £ t(z) (p is apath from xto ymfi(G))J.
7> traverses z

(5)

Ifthere is no path from x to y, then we define Tfi{G)(jc, y) to be -°°. Note that for all *, y

Tfi(G)(x, y) <+co, since )?(G) is acyclic. The values Tfi{G)(x, y) for all pairs x, y can be com
puted in 0(n) time, where n is the number ofactors in G, by using a simple adaptation ofthe

Floyd-Warshall algorithm specified in [14].

The following theorem gives an efficient means for computing the latency LG for trans

parent synchronization graphs.

Theorem 2: Suppose that G is a synchronization graphthat is transparent with respect to

latency input x and latency output y. Then LG(x, y) = T^G^(v, y).

Proof: By induction, we showthat for every actor w in fi(G),

end{w,\) = 7>(G)(\>,uO, (6)

which clearly implies the desired result.

First, let mt(w) denote the maximum number of actors that are traversed by a path in

fi{G) (over allpaths in fi(G)) thatstarts at x> and terminates at w. If mt(w) = 1, then clearly

w = x>. Since both the LHS and RHS of (6) arc identically equal to t(x>) = 0 when w = 0), we

have that (6) holds whenever mt(w) = 1.

Now suppose that (6)holds whenever mt{w) <ik,for some k£ 1, and consider the sce

nario mt(w) = k+l. Clearly, in the self-timed (ASAP) execution of G, invocation wx, the first

invocation of w, commences as soon as all invocations in the set

Z = {z^zePJ}

have completed execution, where zx denotes the first invocation of actor z, and Pw is the setof

predecessors of w in //(G). All members z e Pw satisfy mt(z) < k, since otherwise mt(w)

13



would exceed (Jk + 1). Thus, from the induction hypothesis, we have

startiw, 1) = maxendiz, l)|(ze Pw) = max(Tfi{G)(x>, z)\(ze Pw)),

which implies that

end(w, 1) = max(Tfi{G)(vt z)|(z € />„)) +r(w). (7)

But, by definition ofTfi(G), the RHS of (7) is clearly equal to Tfi{G)(\>, w), and thus we have that

end(w,l) = Tfi(G)(v,w).

Wehave shown that (6) holds for mt(w) = 1, andthatwhenever it holds for

mt(w) = kZ1, itmust hold for mt(w) = (k + 1).Thus, (6) holds for all values ofmt{w). QED.

Theorem 2 shows that latency can be computed efficiently for transparent synchronization

graphs. Afurther benefit oftransparent synchronization graphs is that the change in latency

induced byadding anew synchronization edge (a "resynchronization operation") can be com

puted in 0(1) time, given TfiiG)(a,b) for all actor pairs (a, ft). We will discuss this further, as

well as its application to developing an efficient resynchronization heuristic, in Section 9.

Definition 4: An instance of the latency-constrained synchronization problem consists ofa

transparent synchronization graph G with latency input x and latency output y, and a latency

constraint Lmax £LG(x, y). Asolution to such an instance is aresynchronization R such that 1)

Ly{R G)(jc, y) £Lmax, and 2) no resynchronization of Gthat results in alatency less than or

equal to Lmax has smaller cardinality than R.

Given a transparent synchronization graph G with latency input x and latency output y,

and alatency constraint Lmax, we say that aresynchronization Rof G is alatency-constrained

resynchronization (LCR) ifLV(/?> G)(jc, y) £Lmax. Thus, the latency-constrained resynchroniza

tion problem is the problem ofdetermining a minimal LCR.

6. Related work

In [5], a simple, efficient algorithm, called Convert-to-SC-graph, isdescribed for introduc-

14



ing new synchronization edges so that the synchronization graph becomes strongly connected,

which allows all synchronization edges tobe implemented with the more efficient FBS protocol.

A supplementary algorithm isalso given for determining an optimal placement ofdelays on the

new edges sothat the estimated throughput isnot degraded and the increase in shared memory

buffersizesis minimized. It is shown that the overhead required to implementthe new edges that

are added by Convert-to-SC-graph can besignificantly less than the netoverhead that is elimi

nated by converting allusesof FFS to FBS. However, this technique may increase the latency.

Generally, resynchronization can beviewed as complementary to theConvert-to-SC-

graph optimization: resynchronization is performed first, followed by Convert-to-SC-graph.

Under severe latency constraints, it may not be possible to accept the solution computedby Con

vert-to-SC-graph, in which case the feedforward edges thatemerge from the resynchronized solu

tionmust be implemented with FFS. In such a situation, Convert-to-SC-graph canbe attempted

on the original (before resynchronization) graph to seeif it achieves a betterresultthan resynchro

nization without Convert-to-SC-graph. However, for synchronization graphs that have only one

source SCCandonly one sink SCC, the latency is notaffectedby Convert-to-SC-graph, andthus,

for such systems resynchronization and Convert-to-SC-graph are fully complementary. This is

fortunate since such systems arise frequently in practice.

Shaffer presented analgorithm that removes redundant synchronizations in the self-timed

execution of a non-iterativeDFG [32]. This technique was subsequently extended to handle itera

tive execution andDFGedges thathavedelay [5]. These approaches differ from the techniques of

this paper in thatthey only consider theredundancy induced by the original synchronizations;

they do not consider the addition of new synchronizations.

Resynchronization has been studiedearlier in the context of hardware synthesis [15].

However in this work, the scheduling model and implementation model are significantly different

from the structureof self-timed multiprocessor implementations, and as a consequence, the analy

sis techniques and algorithmic solutionsdo not apply to our context, and vice-versa [7].

Partial summaries of the material in this paperand the companion paper have been pre-
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sented in [4] and [8], respectively.

7. Intractability of LCR

In this section we show that latency-constrained resynchronization problem is NP-hard

even for the very restricted subclass of synchronization graphs in which each SCCcorresponds to

a single actor, and all synchronization edges have zero delay.

As with the unbounded-latency resynchronization problem [7], the intractability of this

special case of latency-constrained resynchronization can be established by areduction from set

covering. Toillustrate this reduction, we suppose that weare given theset X = {xv x2, x3, x4} ,

and the family of subsets T = {tv t2, t3}, where tx = {xv x3},t2 = {xv x2}, and

'3 = (*2»x*} •Figure 5 illustrates the instance of latency-constrained resynchronization that we

derive from the instanceof set covering specified by (X, T). Here, each actorcorresponds to a

single processor andthe self loopedge for each actor is not shown. The numbers besidethe actors

U-.-103

Figure 5. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.
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specify theactor execution times, and thelatency constraint is Lmax = 103. In the graph of Fig

ure5, which wedenote by G, theedges labeled exx, ex2, ex3, exA correspond respectively to the

members xx> x2, jc3, x4 ofthe setX in the set covering instance, and the vertex pairs (resynchroni

zation candidates) (v, stx), (v, st2), (v, st3) correspond tothe members of T. Foreach relation

Xt e tj,an edge exists that isdirected from stj to sxi. The latency input and latency output are

defined to be in and out respectively, and it is assumed that G is transparent.

The synchronization graph thatresults from anoptimal resynchronization of G is shown

inFigure 6, with redundant resynchronization edges removed. Since theresynchronization candi

dates (v, stx), (v, st3) were chosen toobtain the solution shown inFigure 6, this solution corre

sponds to the solution of (X, T) thatconsists of the subfamily {tx, t3].

A correspondence between thesetcovering instance (X,T) and the instance of latency-

constrained resynchronization defined byFigure 5 arises from twoproperties of ourconstruction:

Observation 1: (*,. e tj in the set covering instance ) <=> ((v, stj) subsumes ext in G).

L—.-103

Figure 6. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 5.
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Observation 2: If R is an optimal LCR of G, then each resynchronization edge in R is of the

form

(v, sti), i e {1,2,3}, orofthe form (stjt«,-), *,-« tj (8)

The first observationis immediately apparentfrom inspectionofFigure 5.

ProofofObservation 2 We must show thatnoother resynchronization edges canbecontained in

anoptimal LCRof G. Figure 7 specifies arguments with which we can discard allpossibilities

otherthanthose given in (8). In thematrix shown inFigure 7, theentry corresponding to row r

and column c specifies anindex into the list ofarguments onthe right side of the figure. Foreach

of thesixcategories of arguments, except for #6, the reasoning is either obvious or easily under

stood from inspection ofFigure 5.Aproof of argument #6 can befound inAppendix Aof [6].

Forexample, edge (v, z) cannot bea resynchronization edgein R because theedge

already exists in the original synchronization graph; an edge ofthe form (sXj, w) cannot be in R

because there is a path in G from w toeach sx,-; (z, w) e R since otherwise there would bea

path from in to out that traverses v, z, w, stx, sxx,and thus, the latency would be increased toat

V w z in out «i SXi

V 5 3 1 2 4 OK 1

w 3 5 6 2 4 1 4

z 2 3 5 2 1 3 3

in 1 1 4 5 4 4 4

out 2 2 2 2 5 2 2

Stj 3 2 3 2 4 3/5 OK*

SXj 2 2 3 2 1 2/3 3/5

a.Assuming that X: £ ti; otherwise 1applies.

1. Exists in G.

2. Introduces a cycle.

3. Increases the latency beyond Lmax.

4. PcO*!,^) = 0 (Lemma 1).

5. Introduces a delayless self loop.

6. See Appendix A in [6].

Figure 7. Arguments that support Observation 2.
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least 204; (in, z) e R from Lemma 1since pG(in, z) = 0; and (v,v) e R since otherwise there

would be adelayless selfloop. Three of theentries in Figure 7 point to multiple argument catego

ries. For example, if Xj e tt, then (sxj9 stt) introduces acycle, and if Xj e tt then (sXj, stt) can

not be contained in R because it would increase the latency beyond Lmax.

Theentries inFigure 7 marked OK are simply those that correspond to (8), and thus we

have justified Observation2. QED.

The following observation, which is proven inAppendix B of [6], states that aresynchro

nization edge ofthe form (stj, sxt) contributes to the elimination ofexactly one synchronization

edge, which is the edge exi.

Observation 3: Suppose that R is an optimal LCR of G and suppose that e = (stj, sxj isa

resynchronization edge in/?, for some ie {l,2,3,4},ye {1,2,3} such that xt€ tj. Then e

contributes to the elimination of one and only one synchronizationedge — ext.

Now, suppose that we are given an optimal LCR RofG. From Observation 3 and Fact 1,

we have that for each resynchronization edge (stj, sxt) in R, we can replace this resynchroniza

tion edge with ex{ and obtain another optimal LCR. Thus from Observation 2, we can efficiently

obtain an optimal LCR R' such that all resynchronization edges in R' are of the form (v, stt).

For each x>% e X suchthat

3tj\((jc, € tj) and ((v, stj) eR')), (9)

we have that ex{ € R'.This isbecause R' is assumed to be optimal, and thus, ¥(/?, G) contains

noredundant synchronization edges. For each xt€ X for which (9) does nothold, wecan replace

ext with any (v, stj) that satisfies jc,- e tj, and since such areplacement does not affect the

latency, weknow that the result will beanother optimal LCR for G. In this manner, if werepeat

edly replace each ex% that does not satisfy (9) then we obtain an optimal LCR R" such that

each resynchronization edge in /?" is of the form (v, st{), and (10)
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for each jc,- e X, there exists aresynchronization edge (v, tj) in R" such that *,. e f;-. (11)

Itiseasily verified that the set of synchronization edges eliminated by R" is {ext\xt e X}. Thus,

the set V e {t\ (v, tj) is aresynchronization edge in /?"} is acover for X, and the cost (number

of synchronization edges) of the resynchronization R" is (N - \X\ +17"|), where N isthe number

of synchronization edges in the original synchronization graph. Now, it is also easily verified

(from Figure 5) that given an arbitrary cover Ta for X, the resynchronization defined by

Ra =(R"-{(v,tj)\(tje r)}) +{(v,tj)\(tje Ta)} (12)

isalso avalid LCR of G, and that the associated cost is (N- \X\ +\Ta\). Thus, it follows from

theoptimality of /?" that T' mustbeaminimal cover for X, given the family of subsets T.

To summarize, we have shownhow from the particular instance (X, T) of set covering,

wecan construct a synchronization graph G such that from a solution to the latency-constrained

resynchronization problem instance defined by G, wecan efficiently derive a solution to (X, T).

This example of thereduction from set covering tolatency-constrained resynchronization iseasily

generalized to an arbitrary set covering instance (X\ T'). The generalized construction of the ini

tial synchronization graph G is specified by the steps listed in Figure 8.

The main task in establishing our general correspondence between latency-constrained

resynchronization and set covering is generalizing Observation 2 toapply toall constructions that

follow thesteps inFigure 8. This generalization is not conceptually difficult (although it is rather

tedious) since it is easily verified that all of thearguments in Figure 8 hold for the general con

struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction

intoan optimal LCR of the form implied by (10) and (11) extends in a straightforward fashion to

the general construction.

8. Two-processor systems

In this section, we showthatalthough latency-constrained resynchronization for transpar-
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ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of

only two processors—that is, synchronization graphs in which there are two SCCs and each SCC

is a simple cycle. Thisreveals a pattern of complexity that is analogous to the classic nonpreemp-

tive processor scheduling problem with deterministic execution times, inwhich the problem is

also intractable for general systems, but an efficient greedy algorithm suffices to yield optimal

solutions for two-processor systems inwhich the execution times of all tasks are identical [13,

18]. However, for latency-constrained resynchronization, the tractability for two-processor sys

tems does notdepend onany constraints onthe task (actor) execution times. Two processor opti-

mality results inmultiprocessor scheduling have also been reported in the context of a stochastic

model for parallel computation in which tasks have random execution times and communication

patterns [24].

In an instance of the two-processor latency-constrained resynchronization (2LCR)

problem, we are given aset ofsource processor actors xx, x2,...,xp, with associated execution

times {*(*,•)}, such that each xt is the /th actor scheduled on the processor that corresponds to

the source SCC of the synchronization graph; aset of sink processor actors yx, y2, ...,yq, with

associated execution times [Ky^}, such that each yi is the i th actor scheduled onthe processor

• Instantiate actors v,w, z, in,out, with execution times 1, 1, 100, 1, and 1, respectively,
and instantiate all of the edges in Figure 5 that are contained in the subgraph associated
with these five actors.

• For each t e T, instantiate an actor labeled st that has execution time 40.

• For each x e X'

Instantiate an actor labeled sx that has execution time 60.

Instantiate the edge ex e d0(v,sx).

Instantiate the edge d0(sx, out).

• For each t e T

Instantiate the edge d0(w,st).

For each x e t, instantiate the edge d0(st, sx).

• Set ^=103.

Figure 8.Aprocedure for constructing an instance llr oflatency-constrained resynchroniza
tion from an instance Isc ofset covering such thata solution to Ilr yields a solution to Isc.
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diat corresponds to the sink SCC of the synchronization graph; a setof non-redundant synchroni

zation edges 5 = {sXts2t...,sn} such that for each sit src(st)e {xx,x2, ...,xp} and

snk(si) € {yx, y2,..., yq}; and alatency constraint Lmax, which is apositive integer. Asolution

tosuch an instance isaminimal resynchronization R that satisfies L^Rt G)(xv 3^ ^ ^max •m^e

remainder of this section, we denote thesynchronization graph corresponding to ourgeneric

instance of 2LCR by G.

We assume that delay(s() = 0 for all st,and we refer tothe subproblem that results from

thisrestriction as delayless 2LCR. In this section wepresent an algorithm thatsolves thedelay

less 2LCR problem in 0(N2) time, where N is the number of vertices in G. An extension of this

algorithm tothe general 2LCR problem (arbitrary delays can bepresent) can be found in [6].

An efficient polynomial-time solution todelayless 2LCR can bederived by reducing the

problem toa special case of setcovering called interval covering, in which we are given an

ordering wx, w2, ...,wN ofthe members ofX (the set that must be covered), such that the collec

tion of subsets T consists entirely of subsets of the form {wa, wa +lf..., wb}, 1£ a <b < N.

Thus, while general set covering involves covering a set from a collection ofsubsets, interval cov

ering amounts to covering aninterval from a collection of subintervals.

Interval covering can besolved in 0(\X\ \T\) time bya simple procedure that first selects

the subset {wx,w2,..., wb }, where

bx = max({b\(wx,wbe t) for some re T});

then selects any subset ofthe form {wa2, wa^ x,..., wbJ ,a2£bx + l, where

b2 = max({b\(wbi +x,wbe t) for some re T});

then selects any subset ofthe form {wfl3, wa^ +x,..., wbJ, a3 £b2 +1, where

b3 = max({b\(wbi+x,wbe t) for some re T});

and so on until bn = N.

To reduce delayless 2LCR tointerval covering, we start with the following observations.

Observation 4: Suppose that R is a resynchronization of G, re R, and r contributes to the

elimination of synchronization edge s. Then r subsumes s. Thus, thesetof synchronization
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edges that r contributes to theelimination of is simply the setof synchronization edges that are

subsumed by r.

Proof: This follows immediately from therestriction thattherecan be no resynchronization edges

directed from a v.- toan jcf (feedforward resynchronization), and thus in *¥(R, G), there can beat

mostone synchronization edgein anypathdirected from src(s) to snk(s). QED.

Observation 5: If R is a resynchronization of G, then

L¥(*,G)(jci»V = ,7^^V^(5rc(^)) +^"(j/^(5/))l5'6/?})»where
tpredW SX *(*]) for ' = !> 2 P' and 'wccW s X *ty> fOT ' = 1» 2, ..., ^.

Proof: Given a synchronization edge (xa,yb)e R, there is exacdy onedelayless path in R(G)

from xx to yq that contains (jtfl, yd) and the set ofvertices traversed by this path is

{xx, x2,..., xa, yb, yb+x,..., yq}. The desired result follows immediately. QED.

Now, corresponding to each of the source processor actors xt that satisfies

tpredHxd +f(?«) ^^m« we define an ordered pair of actors (a "resynchronization candidate") by

v,-s(*,••>/). where 7 = mm({ |̂(rpr^(A:i.) +r5IICC(yik)<Lmax)}). (13)

Consider theexample shown in Figure 9. Here, we assume that t(z) = 1 for each actor z,

and Lmax = 10. From (13), we have

vl = (*1» ?l)» v2 = (*2> ?l)> v3 = (*3> v2)» v4 = (*4> ^ »

V5 = (*5> v4)» v6 = (*6> 7s)» V7 = (*7» ?6>» v8 = (*8> ??) • <14>

If v,« exists fora given xx, then rf0(vi) can beviewed asthe best resynchronization edge

that has xx asthe source actor, and thus, toconstruct an optimal LCR, we can select the set of

resynchronization edges entirelyfrom among the v,- s. This is established by the following two

observations.

Observation 6: Suppose that R is an LCR of G, and suppose that (xa, yb) is a delayless syn

chronization edge in R such that (xa, yb) * va. Then (R - {(xa,yb)} + {d0(va)}) is anLCR of

23



R.

Proof: Let va = (xa, yc) and R' = (R- {(xa, yb)} +{d0(va)}), and observe that va exists,

since

((*«, yb) €/?)=> (tpred(xa) +tsucc(yb) <> L^) => (tpred(xa) +r(y^) <; L^).

From Observation 4 and the assumption that (xa, yb) isdelayless, the set of synchronization

edges that (xa, yb) contributes tothe elimination ofis simply the set of synchronization edges

that are subsumed by (xa, yb). Now, if s isasynchronization edge that is subsumed by (xa, yb),

then

pAsrc(s), xa) + pd(yb, snk(s)) <> delay(s). (15)

From the definition ofva, we have that c£b, and thus, that p^(yc, yb) = 0. It follows from (15)

that

Uax=10 (a) (b)

Figure 9.An instance ofdelayless, two-processor latency-constrained resynchronization.
In this example, the execution times of all actors are identically equal to unity.
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p6(src(s), xa) +pd(yc, snk(s)) <delay(s), (16)

and thus, that va subsumes s. Hence, va subsumes all synchronization edges that (xa, yb) con

tributesto the elimination of, and we can conclude that /?' is a valid resynchronizationof G.

From the definition ofva, we know that tpred(xa) +tsucc(yc) £L^, and thus since R is

an LCR, we have from Observation 5 that R' is an LCR. QED.

From Fact 2 and theassumption that themembers of 5 are all delayless, an optimal LCR

of G consists onlyof delayless synchronization edges. Thus from Observation 6, we knowthat

there exists an optimal LCR that consists onlyof members of the form rf0(vl). Furthermore, from

Observation 5, we knowthat acollection V of vts is an LCR if and only if

UX(v) = {sx,s2,...,sn},
veV

where %(v) is the setof synchronization edges that are subsumed by v. The following observa

tioncompletes the correspondence between 2LCR and interval covering.

Observation 7: Let sx\ s2,..., sn' bethe ordering of sx, s2, ...,sn specified by

(xa =src(Si'), xb =src (sf),a<b)=*(i<j). (17)

That is the s{%% are ordered according to the order inwhich their respective source actors execute

on the source processor. Suppose that for some je {1,2, ...,p}, some m > 1, and some

ie {1,2, ...,/i-m},wehave */e %(v;) andsl +m'e x(vy).Then

^i+l >si +2 »•••»^i+m-l e X\vj)'

In Figure 9(a), the ordering specifiedby (17) is

*\ =(*1» ?2>» s2 =(*2> ?4>» s3 =(*3> ye)> s4 =<*S» V7>» SS =(*7> ?8> • <18>

and thus from (14), we have

X(Vi) ={*i'},X(v2) = [sS.sJhxfy) = {sx', s2\s3'},%(v4) = {s2,s3'}

X(v5) ={s2', s3', s/}, x(v6) = {s3f, s4'}, x(v7) ={s3', sA', s5'}, x(v8) = {s4f, s5'}, (19)
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which is clearly consistent with Observation 7.

ProofofObservation 7: Let vy- = (Xj, yt),and suppose k is apositive integer such that

i <k<i+m. Then from (17), we know that p^(src(sk/), src(si+m')) = 0. Thus, since

si+m € X(vy), we have that

pd(src(sk'),Xj) =0. (20)

Now clearly

P6(»i«*Am«0) =0, (21)

since otherwise p^(snk(sk'), snk(si')) =0 and thus (from 17) sk' subsumes */, which contra

dicts the assumption that the members of S are not redundant. Finally, since $/ e x(v;), we

know that p^(yp snk(Si')) = 0. Combining this with (21) yields

pd(yi,snk(sk')) = 0, (22)

and (20) and (22) together yield that sk' e x(v;). QED.

From Observation 7 and thepreceding discussion, weconclude that an optimal LCRof G

can be obtained by the following steps.

(a) Construct theordering sx', s2,..., sn' specified by (17).

(b) For 1 = 1,2,..., p, determine whether ornot v; exists, and if it exists, compute vt.

(c) Compute x(v,-) for each value of7 such that v;. exists.

(d) Find aminimal cover C for S given the family ofsubsets {x(vy)|vy exists}.

(e) Define the resynchronization R = {v;|x(v;) e C}.

2
The time-complexity of this optimal algorithm for delayless 2LCR is 0(N ), where N is

the number of vertices in G [6].

From (19), we seethat there are two possible solutions that can result if we apply Steps

(a)-(e) toFigure 9(a) and use the technique described earlier for interval covering. These solutions
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correspond to the interval covers Cx = {x(v3),X(v7)} *ndC2 = {X(v3)»X(v8)} The synchro

nization graph that results from the interval cover Cx is shown in Figure 9(b).

9. A heuristic for general transparent synchronization graphs

The companion paper [7] presents aheuristic called Global-resynchronize for the

unbounded-latency resynchronization problem, which is the problem ofdetermining anoptimal

resynchronization under the assumption that arbitrary increases inlatency can be tolerated. In this

section, weextend Algorithm Global-resynchronize toderive anefficient heuristic that addresses

the latency-constrained resynchronization problem for general, transparent synchronization

graphs. Given aninput synchronization graph G, Algorithm Global-resynchronize operates by

first computing the family of subsets

7,B{x(v1,v2)|((v1>v2e V)and(pG(v2,v1) =oo))}. (23)

Thesecond constraint in (23), pG(v2, vx) = «>, ensures thatinserting thecandidate resyn

chronization edge (Vj, v2) does not introduce a cycle, and thus that it does not reduce the esti

mated throughput or produce deadlock.

Aftercomputing the family of subsets specified by (23),Algorithm Global-resynchronize

choosesa memberof this family that has maximum cardinality, inserts the corresponding delay

less resynchronization edge, and removes all synchronization edges that becomeredundantas a

result of inserting this resynchronization edge.

To extend this technique for unbounded-latency resynchronization to the latency-con

strainedresynchronization problem,we replace the subsetcomputationin (23) with

Is{X(vx,v2)\((vx,v2e V)and(pG(v2,vx) =~)and(L'(vx,v2)ZLmax))}, (24)

whereV is the latency of the synchronization graph (V, {E + {(vx, v2)}}) that resultsfrom add

ing the resynchronization edge (vlf v2) to G.Assuming that Tfi^G)(x, y) has been determined for

all jc, y e V, V can be computed from
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L'(vx, v2) = max({(TfiiG)(M, vx) +T^G)(v2, oL)), LG}), (25)

where x> is the source actor in fi(G), oL is the latency output, and LG is thelatency of G.

A pseudocode specification of ourextension ofGlobal-resynchronize to the latency-con

strained resynchronization problem, called Algorithm Global-LCR is shown in Figure 9.
4

In thecompanion paper [7], we showed that Algorithm Global-resynchronize has 0(sn )

time-complexity, where nis the number of actors inthe input synchronization graph, and s is the

number of feedforward synchronization edges. Since the longest path quantities Tfi(jG)(*, *) can

becomputed in 0(n ) time and updated in 0(n ) time, it is easily verified that the 0(sn )

bound also applies toour extension to latency-constrained resynchronization; that is, the time
4

complexity ofAlgorithm Global-LCRis 0(sn ).

Figure 11 shows the synchronization graph that results from asix-processor schedule of a

synthesizer for plucked-string musical instruments in 11 voices based on the Karplus-Strong tech

nique. Here, exc represents the excitation input, each vf. represents the computation for the i th

voice, and the actors marked with"+" signs specify adders. Execution timeestimates for the

actors are shownin the tableat the bottomof the figure. In this example, exc and out are respec

tively the latency input and latency output, and the latency is 170. There are ten synchronization

edges shown, andnone of these are redundant.

Figure 12 shows how the number of synchronization edges in the result computed byour

heuristic changes as the latency constraint varies. If just over 50 units of latency can be tolerated

beyond the original latency of 170, then the heuristic is able to eliminate asingle synchronization

edge. No further improvement can be obtained unless roughly another 50 units are allowed, at

which point the number of synchronization edges drops to 8, and then down to 7 for an addi

tional 8 timeunits of allowable latency. If the latency constraint is weakened to 382, justover

twice the original latency, then the heuristic isable to reduce the number of synchronization edges

to 6. No further improvement is achieved over the relatively long range of (383 - 644). When

Lmax £ 645, the minimal cost of5 synchronization edges for this system is attained, which is half
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that of the original synchronization graph.

Figure 13 illustrates how theplacement of synchronization edges changes as the heuristic

is able to attain lower synchronization costs. Each of the four topologies corresponds to a break

point in the plotof Figure 12. For example Figure 13(a) shows the synchronization graph com-

f unction Global-LCR

Input: a synchronization graph G = (V, E)
output: an alternative synchronization graph that preserves G.

compute pG(x,y) for all actor pairs x,yeV

compute Tfi{G)(x, y) for all actor pairs x, y e (Vu {v})
complete = FALSE
while not (complete)

best = NULL,M = 0

for x,yeV

If ((Pg(v, x) = -> and (L\x, y) <J L^))

X* = X((*.y))
If (|X*|>M)

M = lx*|
best = (x,y)

end if

end if

end for

If (best = NULL)

complete = TRUE
else

E = E-x(best) + {d0(best)}

G = (V,E)

for x, y e (V u {v}) /* update Tfi{G) V
Tnew(*>y) = maxaTji{G)(x,y),TMG)(x,src(best)) +TMG)(snk(best),y)})

end for

forx,yeV I* update pGV

Pnew(x>y) = min({pG(x,y),pG(x,src(best)) + pG(snk(best),y)})
end for

PG = Pnew Tfi(G) = ^"^
end If

end while

return G

end function

Figure 10. A heuristic for latency-constrained resynchronization.
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puted by theheuristic for thelowest latency constraint value for which it computes a solution that

has 9 synchronization edges.

10. Conclusions

This paper has addressed theproblem of latency-constrained resynchronization for self-

timed implementation of iterative dataflow programs.

We have focusedon arestricted class of dataflow graphs, called transparent graphs, that

permits efficient computation of latency, and efficient evaluation of thechange in latency that

arises from the insertion of a new synchronization operation. A transparent dataflow graph is an

application graph thatcontains at least one delay-free path from the input to the output.

Given an upper bound Lmax onthe allowable latency, the objective of latency-constrained

actor execution time

exc 32

Vi,V2 v„ 51

out 16

+ 04

Figure 11.The synchronization graph that results from a six processor schedule
of a music synthesizer based on the Karplus-Strong technique.

30



resynchronization is to insertextraneous synchronization operations in such a way that a) the

number oforiginal synchronizations thatconsequently become redundant significantexceeds the

numberof new synchronizations, andb) the serialization imposed by the new synchronizations

does notincrease thelatency beyond Lmax. Toensure that theserialization imposed by resynchro

nization does not degrade the throughput, the new synchronizations arerestricted to lie outsideof

all cycles in the final synchronization graph.

We have established that optimal latency-constrained resynchronization is NP-hardeven

for a very restricted classof transparent graphs; we havederivedan efficient, polynomial-time

algorithm that computes optimal latency-constrainedresynchronizations for two-processor sys

tems; and we have extended the heuristic presented in the companion paper [7] for unbounded-

IOjOO-

950-

9X0-

850-

8X0-

750-

7X0-

650-

6X0-

550-

5J00-

200X0 300.00 400X0

• snr

SOOjOO 600.00 700X0

Figure 12. Performance of the heuristic on the example of Figure 11.The vertical axis gives the
number of synchronization edges; the horizontal axis corresponds to the latency constraint.
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latency resynchronization to address the problem of latency-constrained resynchronization for

$ ^•.SBSScjrjrjj. <::::;---

Uu = 221 Lmax = 268

(a) (b)

C^::::;

Una, = 276

(C)

Figure 13.Synchronization graphs computed by the heuristic for different values of Lmax
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general /t-processor systems. Through an example, ofamusic synthesis system, we have illus

trated the ability ofthis extended heuristic to systematically trade-off between synchronization

overhead and latency.

The techniques developed in this paper can be used as apost-processing step toimprove

the performance ofany of the large number of static multiprocessors scheduling techniques for

iterative dataflow programs, such as those described in[1,2,12,16,17,23,27,29,33,34].

11. Acknowledgments
MlllilllllHIIIIIIIimilM^^ ' iMauilll*UJII*III^MIIWIPWWWHIIIHIM 1 1 11'111IIIIff(I II IH'ff BMMMffinMI

A portion of this research was undertaken as part of the Ptolemy project, which is sup

ported by the Advanced Research Projects Agency andtheU.S. Air Force (under the RASSP pro

gram,contractF33615-93-C-1317), the Stateof California MICRO program, and the following

companies: Bell Northern Research, Cadence, Dolby, Hitachi, Lucky-Goldstar, Mentor Graphics,

Mitsubishi, Motorola, NEC, Philips, and Rockwell.

The authors are grateful to Jeanne-Anne Whitacre of Hitachi America for her great help in

formatting this document.

12. Glossary
MB!

\S\:

P(x,y):

Pc(x>y):

delay(e):

Delay(p):

dn(u,v):

X(P):

2LCR:

The number of members in the finite set S.

Same as pG with the DFG G understood from context.

If there is no path in G from x toy, then pG(x, y) = «>; otherwise,
Pg(*> y) = Delay(p), where p is any minimum-delay path from x to y.

The delay on a DFG edge e.

The sum of the edge delays over all edges in the path p.

An edge whose source and sink vertices are u and v, respectively, and
whose delay is equal to n.

The set of synchronization edges that are subsumed by the ordered pairof
actors p.

Two-processor latency-constrained resynchronization.
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contributes to the elimination:

If G is a synchronizationgraph, s is a synchronization edge in G, R is a
resynchronization of G, s' e R, s' # s, and there is a path p from src(s)
to snk(s) in ¥(/?, G) such that/7 contains s' and Delay(p) £ delay(s),
then we say that;' contributes to the elimination of s.

If G is a synchronization graph, R is a resynchronization of G, and s is a
synchronization edge in G, we say that R eliminates s if s G R.

In a synchronization graph, any actor thathas no input edges or has non
zero delay on all input edges is called an execution source.

The maximum overall cycles C in aDFG of Delay(C)/T, where T is the
sum of the execution times of all vertices traversed by C.

Feedback synchronization. A synchronization protocol that may beused
for feedback edgesin a synchronization graph.

An edge that is contained in atleast onecycle.

An edge that is not contained in acycle.

Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.

Latency-constrained resynchronization. Given asynchronization graph G,
aresynchronization RofG is an LCR if the latency of*¥(R, G) is less
than orequal to the latency constraint Lmax.

resynchronization edge:
Given asynchronization graph G and aresynchronization R, aresynchro
nization edge of R is any member ofR that is not contained in G.

eliminates:

execution source:

estimated throughput:

FBS:

feedback edge:

feedforward edge:

FFS:

LCR:

¥(*,G):

SCC:

selfloop:

subsumes:

t(v):

*>(G)(*»y):

If G is asynchronization graph and R is aresynchronization of G, then
*¥(R, G) denotes the graph that results from the resynchronization R.

Strongly connected component.

An edge whose source and sink vertices are identical.

Given asynchronization edge (xx, x2) and an ordered pair of actors
(34, y2), (yx,y2) subsumes (xx,x2) if

p(*i.?i)+p(v2> *2> * del°y «*i» *2» •

The execution time or estimated execution time of actor v.

The sum of the actor execution times along a path from x to y in the first
iteration graph of G that has maximum cumulative execution time.
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