Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOW POWER AUDIO CODEC

by

Edwin W. Chan

Memorandum No. UCB/ERL M96/48

22 August 1996

LOW POWER AUDIO CODEC

by

Edwin W. Chan

Memorandum No. UCB/ERL M96/48

22 August 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

An audio codec (coder and decoder) is the interface between the analog domain and the digital
domain in a talking device. The reason why the analog audio signals are converted to digital sig-
nals is that it is easier to manipulate and store digital rather than analog data.

The goal of this project is to cut down the power dissipation of the current audio codec in the
InfoPad Project as much as possible and to increase the signal bandwidth. This report shows that
by building a custom chip for the InfoPad, it is possible to cut down the power dissipatic;n of the
codec by an order of magnitude, from 40 mW to 3 mW.

Both the encoding and the decoding path of the codec are described, particularly the design
details of the low power, linear phase decimation filter in the encoding path. The filter has a signal
bandwidth of 7 kHz and an out-of-band attenuation of 60 dB. The power estimation is less than 0.4
mW. It consists of four stages. The first stage is a cascade of four comb filters. The second and
third stage are halfband filters. The last stage is a droop-correction filter. Several different

approaches to lower the power dissipation of the filter will be discussed in this report.

Acknowledgments

I would like to extend my sincere appreciation to Professor Bernhard Boser for his guidance
and support over the past two years. The knowledge that I treasure from him is beyond what I can
learn from textbooks. Also I would like to thank Professor Robert Brodersen for giving insightful

directions to the project, and reading this thesis.

Besides, I am grateful to the help of the research group of Professor Brodersen. In particular,
many thanks go to Dr. Andy Burstein, Dr. Sam Sheng, Tom Burd and Ian O’Donnell for solving a

lot of CAD tool problems that I encountered.

In addition, I would like to thank my fellow officemates in my own group. Tom Wongkomet,
Darrin Young, Colby Boles, Monico Ortiz, Eugene Cheung, Mark Lemkin and I have shared many

happy and depressing moments together.

Also I would like to thank Martin Tsai and Wai Lau for beating me in Risk, Pramote Pir-
iyapoksombut, Keng Fong and Tony Lin for beating me in Chess, George Chien and Jeff Ou for
beating me in Bridge, Li Lin for beating me in Go, as well as all those who beat me on the basket-

ball court.

Special thanks go to Steve Lo for working out with me in early momings and helping me find

a job without a referral bonus.

Last but not the least, I am indebted to my parents, my brother and my sister for their continu-
ing financial and moral support. Emailing with my brother and my sister at 4 a.m. in the morning

helped me work on my project without falling asleep.

This research was supported by the Advanced Research Projects Agency.

oo

oo

CHAPTER 1 Introduction

L1 Goal and MOtVALIONccerrruernenenerecssescnesessascsssssssnssssessssssssssssssossssssosaees 1
1.2 Thesis organization... erensesesmesnasssssassasrnsassassresannanmnnnd 4
CHAPTER 2 ‘Encoding Path
2.1 OVEIVIEWucucnecesceecasessenssssssnsssssssesssasssssssssssesssassnsnssesssssessssnssnsessesssssssns 5
2.2 ADL-ALAS FIIET ... u.ceeerieeererensrsssnssssssssesssssscssessesssssssssssssssssnsessssnssssassssns 5
2.3 Analog Oversampling Sigma-Delta MoQUIAtOTccveruerrrmemneerenerersrsnneenen, 7
2.4 Decimation FIlter.........coeecrenreeunieiieteseseenssecsessesccsseesssesessesssessessssssssssssesesssses 8
2.4.1 Three-Stage Decimation Filter.........ovoveeuiuireveesineecmeneseeenesesesssssessesens 9
2.4.2 Four-Stage Decimation Filter............ccecevvumevevevemeeneeresseeeenereseeseennes 11
2.5 SUMMATY c..o.otiiviriiierienenessessnssesssessssesssssesssssssasssssssssesssmsessessssssssssssssenessesens 13
CHAPTER 3 Decimation Filter -- Implementation
3.1 OVEIVIEW ...ttt bbb s sasssssssssssssssssssssssssssssss e eens 14
3.2 COMD FIET ...ttt s seseseassesssssessssssasassesessssssssssnsssaas 14
3.3 Direct Implementation Of Halfband Filters..........covveeeemeveereesemseereeeeenn 17
3.4 Approaches To Reduce Power Dissipation...............cceueeeermceuereseeresserssnsnnnn. 19
3.4.1 Polyphase SIIUCIUTEcccceveruereerereerernserensesenssscseaeessssnssssessssesssssssssens 20
3.4.2 Multirate Addressing SChEmE..........ccucveeereveerereeeeeeeeresesereseseee e 21
3.4.3 Multiplier-Free Arithmetic Logic Unitceveeeeeeeeveneerneerenennn, 23
3.4.4 Nested MUltipliCation..........ceeuevurreeveecreeecreenenesssessssnsenessesseessss e 25
3.5 COmPIELe SLIUCIUTEccvvecerrencerrrernstssnrereressesssssssssssseenseessssssssessesesssessasssssens 26
3.6 Power EStIMAtiONcccveurreerriecrirnenetneesesicseseseeeeesesssssssesssesssssseseseee e e 27
3.7 Time Domain ANALYSISccveurrerueerereneerenecnsessseenesessssesessesesssssmsesessmeen o 29
3.8 LAYOUL weervrrrrnresesummssssssssssssssessesssesessesssssssssssssssssseeesesssssessssssseeeeeseseeessseesses 33
3.9 SUMMATY ...ttt sessessesesssssssssssasssssens 34
CHAPTER 4 Decoding Path
4.1 OVEIVIEW ...ttt suststes s sessssesssasssssssssesssnssssssesesssmsesesem e e s 35
4.2 Interpolation Filterocoivecrirreenererniniseiceeeeeeeseesesssnesesesesessssssses e 35
4.3 Digital DemOGUIALONccceovuerurrrrrerrreererererineecseereessessssessesessssesesssene e sns 37
4.4 SMOOhING FAIETc.uerereenrrecetireterec et ceseeseseesesesessess s ssens e 38
4.5 SUMMALYooceoceciriecirctcrssssenensssssssstesssssssssssssssssesssesssssssmssssesssssssssmsssessnnensen. 39

CHAPTER 5 Conclusion

5.1 CONCIUSION ...ccuuvviineereriniensissinssessessnesessessesssssssssssssesssssssssssnsesssssessessmsessssenns 40
Appendix A

A.1 First Halfband Filter CoeffiCients, F1cccoevevueueiecceeemeneneresssssesssssssesasns 41

A.2 Second Halfband Filter CoeffiCients, F2........ccceovveveeeevereresesssseresesessssesssssmsesans 42

A.3 Droop-Compensation Filter Coefficients, FD........ccccceueureevereerenemenssesessesssess 43

A4 Allocation Of RAM Spaces For The Three Filters............ceueruveurmecruersssereernns 44

A5 ROM COCFICIENLScoovvreerreeurerrrnressessessssesesessesssnssessssesssssssesssnessssssssssssssssens 47
REEIENCES ..ceeettetiececrertntnins st sssassssesasssssesessasessssssssesasss e e enns 51

CHAPTER 1

Introduction

1.1 Goal and Motivation

In a portable communication device, a low power design is very important to increase the bat-
tery life. In the InfoPad Project [25], [26], the existing audio interface employs a general purpose
codec from Motorola (MC145554), which has a power dissipation of 40mW. This is not desirable,
especially when compared to the power dissipation of the other InfoPad custom chips, like the Pro-
tocol Chip (1 mW) [28], and the video module (< 2mW) [29]. The existing codec has a signal
bandwidth of 3 kHz and has a SNDR of 35 dB with a dynamic range of 75 dB (using mu-255 law).

This work discusses the design of a codec with more than an order of magnitude reduced
power dissipation. The new codec cuts down the power dissipation from 40 mW to less than 3
mW, and it increases the signal bandwidth from 3kHz to 7kHz for better audio recognition. Table

1.1 summaries the key specifications of the new codec and the existing codec.

1.1 Goal and Motivation

Table 1.1 : Key Specifications Of The Proposed And The Existing Codec

E(’::gl;i Scs:gi;c Proposed Codec
[NyquistRate | 8kHz | 16kHz
Sampling Rate 8 kHz 64 x 16 kHz
(1.024 MHz)
Bandwidth 3 kHz 7kHz
Dynamic Range ~75dB >72dB
(mu-255 law)
SNDR ~35dB >72 dB
Power Dissipation 40 mW <3 mW
(active)

Figure 1.1 shows the block diagram of the audio codec. In the encoding path, there are an anti-

alias filter, an analog ZA modulator and a decimation filter. It takes the analog signal from the

microphone of a headset and gives a corresponding digital code. The digital code will then be sent

to the audio chip of the InfoPad for storage or further computation. In the decoding path, there are

an interpolation filter, a digital ZA demodulator and a smoothing filter. The codec picks up the

digital data from the audio chip and outputs an analog signal to the earphones of a headset.

Microphone—] Anti-Alias Analog TA Decimation | Digital Output
Filter Modulator Filter (Audio Chip.

Digital Data _| Interpolation Digital ZA Smoothing |

(Audio Chip) Filter Demodulator Filer | Carphones

Figure 1.1: The Block Diagram Of An Audio Codec

1.1 Goal and Motivation 3

In the encoding path, an oversampling A modulator is used to move the quantization noise to
a higher frequency band. This is why oversampling is a very attractive technique for low frequency
applications. Since we are using an oversampling modulator, the requirements for the anti-alias fil-
ter in the front end are not stringent. It can be as simple as a two or three pole Butterworth lowpass
filter, implemented with an active RC network.

A decimation filter is then used to transform the digitally modulated signal from short words
occurring at a high sampling rate to longer words at the Nyquist rate. Hence a steep cutoff charac-
teristic is required to avoid aliasing. With a Nyquist rate of 16kHz, the transition band of the filter
is permitted to extend from 7kHz to 9kHz.

Besides attenuating the quantization noise above the signal band from the analog ZA modula-
tor, the decimation filter also suppresses other out-of-band noise within the signal path, such as
noise from the power supplies, substrate coupling or high frequency signal components. We will
ensure that the out-of-band noise will be attenuated by at least 60dB before being aliased into the
signal band (0-7kHz).

Other requirements on the decimation filter include the in-band ripples and phase distortion.
We would like to limit the ripples to be no more than 0.1 dB. To avoid phase distortion, we will

make use of alinear-phase filter design.

Table 1.2 summarizes the design specifications of the decimation filter. This report will detail

the whole design process to meet these specifications.

Table 1.2: Specifications Of The Decimation Filter

Transition band 7 kHz - 9 kHz
out-of-band attenuation 60 dB
in-band ripple +/- 0.1 dB
phase distortion linear phase

1.2 Thesis organization 4

In the decoding path, an interpolation filter is used to raise the input word rate to a frequency
well above the Nyquist rate. The output words are then truncated and converted to the analog form
at the high sample rate by the oversampled demodulator. The digital demodulator, like its analog
counterpart, also shapes the quantization noise to a higher frequency band. Hence a smoothing fil-
ter is used to remove the out-of-band noise, as well as to avoid distortion in the power amplifier

and ear phones.

1.2 Thesis organization

This thesis is organized into five chapters. Chapter 2 discusses the function and the architec-
ture of the building blocks in the encoding path, the anti-alias filter, the analog A oversampling
modulator and the decimation filter. Chapter 3 describes the actual implementation and the
approaches to reduce the power dissipation of the decimation filter. Time domain verification and
the layout of the filter are also included. In Chapter 4, some of the design issues of the interpola-
tion filter, the digital ZA demodulator and the smoothing filter in the decoding path of the audio

codec are discussed. Finally, Chapter S draws conclusions.

In addition, Appendix A lists the actual coefficients of different stages in the decimation filter,
the allocation of the RAM spaces to the different stages and the ROM control codes.

CHAPTER 2

Encoding Path

2.1 Overview

In this chapter, we will discuss the function and architectures of each building block in the
encoding path. We first begin with an anti-alias filter. A 3rd order lowpass active RC filter is given
as an example, and the power dissipation of the filter is estimated. Then the structure and the per-
formance of a 3rd order analog £A modulator satisfying the requirements in Table 1.1 will be pre-
sented. Finally, a 4-stage decimation filter will be shown to be suitable in our application. The
implementation and the power estimation of the decimation filter will be discussed in the next

chapter.

2.2 Anti-Alias Filter

An anti-alias filter is a lowpass continuous-time analog filter. It prevents the high frequency
noises from folding back to the signal bandwidth due to sampling. Only the part of the input spec-
trum which extends beyond (fgampie/2 - f5ignal) is responsible for aliasing. Consequently, an anti-
alias filter bears the characteristics of passing the baseband signal with the minimal distortion

while attenuating the noise outside (fsampte/2 - fsigna), as shown in Figure 2.1.

2.2 Anti-Alias Filter 6

A

passband transitsion band stopband

sample/2

magnitude

- frequency

(signal bandwidth)

Figure 2.1: Characteristics Of An Anti-Alias Filter

Oversampling filters usually have a sampling frequency much higher than Nyquist rate sam-
plers, so the transition band of the anti-alias filter for an oversampler can be much wider. Since the
complexity of a lowpass filter is a strong function of the ratio of the width of the transition band to

the width of the passband, the anti-alias filter for an oversampler is also much simpler.

In our applications, the sampling frequency of the analog £A modulator is 1.024 MHz while
the signal bandwidth is 7 kHz. A suitable filter can be a 3rd order Butterworth lowpass filter [20]
with a half-power frequency of 63 kHz. It gives a 72 dB attenuation at 505 kHz (fsampler2 - B)
where B is the signal bandwidth. It introduces less than 0.05 degree phase distortion and less 0.05
dB droop in the signal band.

The anti-alias filter can be implemented using an active RC filter, containing thin-oxide capac-
itors and polysilicon resistors. Figure 2.2 shows a 3rd order lowpass filter structure using a cascade

of a 2nd Order lowpass filter and first order section [20].

In Figure 2.2, two opamps are needed in the 3rd order lowpaés active RC filter. A 1.5 V class
AB CMOS opamp described in [21] has an average power dissipation of 0.135 mW, using a 2um
CMOS technology. In this project, a better fabrication technology, 0.8 pm CMOS technology, is
used, so the power dissipation of the anti-alias filter is expected to be lower than 0.3 mW.

2.3 Analog Oversampling Sigma-Delta Modulator 7

sz czl Czl

Figure 2.2: Structure of A 3rd Order Lowpass Active RC Filter

- 2.3 Analog Oversampling Sigma-Delta Modulator

An analog oversampling ZA modulator takes the output of the anti-alias filter and performs a
coarse amplitude quantization at a frequency much higher than the Nyquist rate and outputs a
PCM (pulse code modulation) code. It trades the resolution in time for resolution in amplitude, so
less precise analog circuits may be used. The output quantization noise spectrum will be shaped,
that is, the quantization noise energy is moved towards higher frequencies, which will then be

eliminated by the following digital decimation filter.

Two important parameters in designing an analog oversampling £A modulator are the order of
the modulator and the oversampling ratio (OSR), which is the ratio of the half of the sampling fre-
quency to the Nyquist rate (fsampte / (2 * Nyquist Rate)). A higher order modulator requires a lower
OSR, but increases the complexity of the modulator structure. There are two advantages of keep-
ing a low OSR. One of them is that the requirements of the opamp can be made less stringent,
because the modulator is running at a lower frequencies. The other advantage is that it can help

reduce the power dissipation of the following digital decimation filter.

With a first or second order modulator, stability is almost guaranteed. However, for a higher
order modulator, stability is maintained either by using a multi-bit quantizer or using a multistage
architecture (MASH) [12]. In the first case, the design challenge comes from maintaining the
speed and linearity of the quantizer. In the latter case, the challenge comes from the matching

accuracy between the noise transfer function of the analog modulator and the digital differentiator.

2.4 Decimation Filter 8

It is found that a 3rd order oversampled modulator with local feedback loops [11] gives a rea-
sonable compromise between the order and the complexity of the modulator. The structure of the
modulator is show in Figure 2.3. It is a single stage architecture with three feedback loops. Stabil-
ity is maintained by the local feedback loops. The output is a 4-bit digital output code. From [11],
with a rail-to-rail voltage of 2.5V, and an OSR of 64, or a sampling frequency of 1.024 MHz, the
modulator achieves 73 dB for a signal bandwidth of 8 kHz. The inpﬁt range is from -0.3 V to 0.3V
and dissipates 0.83 mW.

Output to the
Decimation Filter

1,,1,,15 are integrators;
j:k,l are scaling factors;
H),Hy,Hj; are digital cancellation circuits for the local feedback loops.

Figure 2.3: 3rd OrderZA Modulator With Local Feedback Loops

2.4 Decimation Filter

The main function of a decimation filter is to transform the modulated signal from short words
at a high sampling rate to longer words at the Nyquist rate. It is easy to argue that a sincX filter is

very efficient in removing the out-of-band noise of a (k-1)! order A modulator [5].

2.4.1 Three-Stage Decimation Filter 9

In our case, the decimation filter is designed for a 3rd order £A modulator, so a 41 order sinc
filter is used in our design. However the in-band droop of the sinc filter is intolerable if the deci-
mation is only done by the sinc? filter. This leads us to split the decimation process to more than
one stage. Figure 2.4 shows that in order to decimate an input signal by a factor of 64, the signal is
first decimated by (64/N) times in the sinc? filter, and further decimated by N times in an addi-
tional digital filter.

A droop-compensation filter is added to the architecture to compensate as much in-band droop
produced by the 4® order sinc filter as possible.

. 4 . . . Droo
Input—] Sinc /] Digital Filter -/ Cmmngaﬁon Output
o] [
f;=1.024 MHz f= (1.024/N) MHz f=16kHz

Figure 2.4: The Basic Structure Of The Decimation Filter

In the next two sub-sections, we will contrast the performance and complexity of two architec-
tures. One of them is a 3-stage design, in which the second decimation factor, N, of the digital filter

is 2. The other one is a 4-stage design, in which N is 4.

2.4.1 Three-Stage Decimation Filter

The first architecture that we look into is to have the second decimation factor, N, equal to 2.
Halfband filters are particularly suitable for this 2-to-1 decimation [6], because they have the the
characteristics of passing signals up to a half of the Nyquist frquency, or a quarter of the Nyquist
rate. The implementatiqn of halfband filters will be discussed more in details in Chapter 3. Conse-
quently, we come up with the architecture as shown in Figure 2.5. The halfband filter is designed
by using the design “trick” as illustrated in [8] and the impulse response coefficients of this filter
are listed in Appendix A. Figure 2.6 shows the performance of the three-stage decimation filter.

2.4.1 Three-Stage Decimation Filter

10

Input—] Sinc

magnitude (dB)

-10

-20

-40

-50

=70

-80

~80

-100
0

|/

f.= 1.024 MHz

Halfband
Filter

/|

E

f=32kHz

Droop
Compensation

[Output

Figure 2.5: The 3-Stage Decimation Filter

f= 16 kHz

piroop-correction

x 10

Figure 2.6: The Performance Of The 3 Stages Of The First Architecture

2.4.2 Four-Stage Decimation Filter 11

The transition band is from 7 kHz to 9 kHz. The in-band droop after the halfband filter is 2.8
dB. With the 15-tap droop-compensation filter, which consists of 8 non-zero taps, the in-band
droop can be corrected up to +/- 0.2 dB, which is still not very desirable.

2.4.2 Four-Stage Decimation Filter

Another architecture we look into is a 4-stage decimation filter. It has the same basic structure
as in Figure 2.4, with the second decimation factor of 4. Instead of designing a sharp cutoff digital

filter with a decimation ratio of 4, we make use of two halfband filter stages, as shown in Figure
2.7.

— 1 qinet /| First |_/_| Second |/_| Droop I
Input Sinc Halfband Halfbat;d Compensation| _output
ll6 2 l 2
) J
f=1024MHz f=64kHz £.=32 kKHz f.= 16 kHz

Figure 2.7: The 4-Stage Decimation Filter

The transition bandwidth can be less stringent in the first half-band filter. The F8 half-band fil-
ter given in [6], with a scaling factor, is used in our design. There are only 5 non-zero coefficients
in this filter. The second half-band filter is the same as the one in section 2.4.2. The impulse

response coefficients are also listed in Appendix A. Figure 2.8 shows the performance of the four
stages of the filter.

The in-band droop before the droop-compensation filter is 0.68 dB. With a 7-tap droop-com-

pensation filter, that is, 4 non-zero coefficients, the droop can be reduced to +/-0.02dB, which is
well below the 0.1 dB specification.

We can see that both architectures have the same transition bandwidth, but the in-band ripples
in the second architecture, +/- 0.02 dB, is much better than that of the first one, +/- 0.2 dB. Also,

2.4.2 Four-Stage Decimation Filter 12

the additional filter needed in the second architecture, which has only 5 non-zero coefficients, is
somewhat compensated by the simpler droop-correction filter (4 coefficients less). Hence, the sec-
ond architecture is adopted. Figure 2.9 shows the overall performance of the decimation filter,

including the sinc filter, two halfband filters and the droop-compensation filter.

WO E0 XD 400 KO0 @00 THO K0 OO0
oyt

magnitude (dB)

frequency(Hz) x 10*

Figure 2.8: The Performance Of The 4 Stages Of The Second Architecture

2.5 Summary 13

g B T] R P
E wQOF e * S T
" W0 =0 o ED 6D MM MR K00
§ B 0] S S AP S -
£ T R S -
lg :

-100 - i :
! 3 4 5
frequency(Hz)

Figure 2.9: The Performance Of The Overall Filter Performance

2.5 Summary

Both the three-stage and four-stage decimation filters are considered. The four-stage decima-
tion filter has less drooping effect in the baseband, but the number of non-zero coefficients for both
filters are about the same. However, as we will cover the multirate addressing scheme in Section
3.4.2, the additional stage will result a more complex scheme. Nevertheless, the increase in com-
plexity in the addressing scheme is justified by the better performance, so the four-stage architec-
ture is more appropriate for the decimation filter. The implementation and the power dissipation of

the decimation filter will be discussed in the next chapter.

Besides the functions of the other building blocks of the encoding path are discussed. The total

power dissipation of the anti-alias filter and the analog £A modulator is found to be less than
1.1mW.

14

CHAPTER 3

Decimation Filter --

Implementation

3.1 Overview

In Chapter 2, we discussed two different architectures of the decimation filter. In this chapter,
we will look at the actual implementation of the filter. We will discuss how to implement the sinc?
function, using a cascade of 4 comb filters, and the halfband filters. As mentioned in Chapter 2, we
have two halfband filter stages, each of which running at a different frequency. Section 3.3 will
introduce a multirate addressing scheme, which only needs a single RAM and a single ROM to
store all the required taps for both the halfband filters and the droop-compensation filter. Simula-

tion results and the power estimation will be presented in Section 3.4.

3.2 Comb Filter

A comb filter of length D is an FIR ﬁl}er with all D coefficients equal to one. It has a transfer

function of

1-2z
1-z-1

H(z) = @3.1)

In the frequency domain,

3.2 Comb Filter 15

H(el®%) = ¢

sn()

This will give the first order sinc function. From (3.1), the denominator can be implemented

. wt
—jor- 210 S0 (Dz) (32)
T

by a delay-free integrator (DFI), while the numerator can be implemented by a differentiator, as
shown in Figure 3.1a. A delay block, z'}, is simply a register. However, in the actual implementa-
tion, we would like to use a discrete digital integrator (DDI), that is, moving the delay block to the
forward path (Figure 3.1b). Only a delay term will be added to the transfer function in (3.1). This
serves as a pipeline action and cuts the critical path between the input and the output. It is particu-

larly important in the higher order cases.

. Z’D‘
A ¢J z » OUT

- A /
Y Y

Delay-Free Integrator ~ p.Delay Differentiator
(@

IN Z‘l " Z-D
:{2} — OUT
_/
'

- A
Y

Discrete Digital Integrator D-Delay Differentiator
()

Figure 3.1: Single Stage Comb Filter

3.2 Comb Filter 16

To obtain a 4th order sinc function, we just need to cascade 4 comb filters together, see Figure
3.2.

Discrete Digital
I Integrator
D-Dela
D-D Differet)x'tiator

Figure 3.2: Implementation Of A 4th Order Sinc Function

Two more design issues have to be considered. One of them is the process of decimation and

the other is the overflow problem in the integrators.

The most straight forward way to decimate the sinc* output by a factor of D is to subsample
the output every D cycles. In other words, many output data will be thrown away. This will waste a
lot of computational efforts. In order to only calculate the samples that we need, we would do the
decimation between the integrator sectioﬁ and the differentiator section. To maintain the same
transfer function, all the D-delay blocks in the differentiators are replaced by the unity delay block,

as shown in Figure 3.3.

The data overflow problem in the integrator section can be overcome by using a two’s comple-
mentation calculation, which allows wrap-around from the most positive number to the most nega-

tive. However, a minimum wordlength of each integrator has to be met. From [18],

minimum wordlength = N log; D + B;, 3.3)
where N is the number of integrator stages, D is the decimation ratio and By, is the number of input
bits. In our design, N = 4, D = 16 and B, = 4, the minimum wordlength is then 20 bits. The com-
plete sinc? block is illustrated in Figure 3.3.

3.3 Direct Implementation Of Halfband Filters 17

Discrete Digital
I Integrator (20b)
Unity Dela
D-/| Differentiator (20b)
4b tD
INoAA T HIHIHI —{ D-1 H D-1 H D-1 (4 D-1 -+~ OUT

20b

Figure 3.3: Implementation Of The Complete Sinc? Block

3.3 Direct Implementation Of Halfband Filters

A halfband filter is a linear-phase lowpass FIR filter, having the the characteristics of passing
signals up to a half of the Nyquist frquency, or a quarter of the Nyquist rate. Therefore it is partic-
ularly attractive in decimating signal frequency by 2. The technique for designing a halfband filter
(H) whose number of taps (N) is always odd is described in [8]. If we label the first coefficient,
H(0), we find that all odd coefficients, except the middle one, H(N-1)/2), are zero.

As mentioned in the last chapter, there are two halfband filters. The first halfband filter has 5
non-zero coefficients while the second one has 19. A direct implementation of the first halfband
filter is shown in Figure 3.4. However, to compute one output, the data stored in the registers need
to be circularly shifted to a common point where they are multiplied by the appropriate coeffi-
cients. The large amount of data transfer not only has a considerable power dissipation, but also
wastes a lot of area. In addition, in case of a cascade of several filters, one multiplier is needed for

each filter.

In our example, X is a 22-bit, 64 kHz input. From Figure 3.4, there are 16 22b registers, 1 22b
MUX, 1 22b adder, 1 22b multiplier, and a 15 word x 22 bit ROM. There are 15 registers in the tap
line, so the filter needs to run at a frequency 15 times faster than the input frequency, that is, 960
kHz. Similarly, the second halfband filter needs 72 22b registers, 1 22b MUX, 1 22b adder, 1 22b

3.3 Direct Implementation Of Halfband Filters 18

multiplier and a 71 word X 22 bit ROM. The input frequency of the second halfband filter is 32
kHz and the filter runs at a frequency 71 times faster than the input frequency.

15 registers
-¢ -
X ROM
N) coefficients

Figure 3.4: Direct Implementation Of The First Halfband Filter

We use a new tool developed in the University of California, Berkeley, PowerPlay, to estimate
the power dissipation of this implementation. PowerPlay estimate the power dissipation of a com-
ponent by calculating its effective capacitance (P = C V2 f). The effective capacitance of each dig-
ital component is modelled as a set of formulas, based on measured data. The data for ROM are
not available yet. We estimate the effective capacitance for ROM by using half of the capacitance
for RAM.

Table 3.1 shows the power dissipation of the two halfband filters. For an input data rate of 64
kHz and a volatge supply of 1 V, the power estimation is about 870 p W. The high level of power
dissipation is mainly due to the large amount of data shift, so direction implementation is defi-
nitely not a good soluation. In the next section, we will discuss some approaches that reduce the

power dissipation down to below 300 pW.

3.4 Approaches To Reduce Power Dissipation

19

Table 3.1: Power Dissipation of Two Halfband Filters

Effective Operating Power
Description Quantity | Capacitance | Frequency | Dissipation
®F) (kHz) (LW)
15 word x 22 bit ROM 1 192 960 18.2
22b register 16 2.1 960 323
22b adder 1 59 960 5.7
22b MUX 1 0.9 960 0.9
22b multiplier 1 122.5 960 117.6
Second Halfband Filter:
71word x 22 bit ROM 1 25.7° 2272 584
22b register 72 2.1 2272 343.5
22b adder 1 59 2272 134
22b MUX 1 0.9 2272 2
22b multiplier 1 122.5 2272 278.3
TOTAL 870.3

a. Esumation from 172 of the capacitance of RAM
b. Estimation from 1/2 of the capacitance of RAM

3.4 Approaches To Reduce Power Dissipation

One of the most efficient ways to reduce power dissipation is to lower the supply voltage. In

our application, the decimation filter is running at around 2 MHz, which is slow enough to reduce

the supply voltage to 1 V to 1.2 V. As the supply voltage is already very low, parallelism may not

help in this case. In this section, four approaches to further reduce power dissipation are discussed.

They are using a polyphase structure, employing a multirate addressing scheme, using a multi-

plier-free arithmetic & logic unit and making using of nested multiplication computation.

3.4.1 Polyphase Structure 20

3.4.1 Polyphase Structure

Without loss of generosity, only the first halfband filter will be discussed here. The filter con-
sists of 5 non-zero coefficients. A polyphase structure [2] shown in Figure 3.5 is used to implement
the halfband filter.

The alternate switch at the input X, or commutator, directs the even input data to the upper
branch and the odd to the lower branch. Since the halfband filter is linear phase, the impulse
response coefficients are symmetrical, hence both branches are folded backwards. The splitting of
the data into the even and odd branches is to take advantage of the fact that all but one odd coeffi-
cients are zero. This makes the implementation of the odd branch considerably simpler. All ele-
ments shown in broken lines in Figure 3.5 need not be implemented. This reduces the
computational complexity by nearly 50 %. An output is only calculated when an even datum is
input, that is, the input rate is twice the output rate. This automatically achieves the decimation

process by a factor of two.

The second halfband filter is implemented in a similar fashion

Figure 3.5: Polyphase Implementation Of The First Halfband Filter

3.4.2 Multirate Addressing Scheme 21

3.4.2 Multirate Addressing Scheme

As we can see in Section 3.3, the filter tap line is implemented in a long line of registers. Alter-
natively, the filter input data can be stored in a RAM. Whenever a multiplication is to be done, only
the corresponding tap is accessed. By using this method, data no longer need to be transferred in a
circular fashion. The number of words in a RAM will equal the length of a tapped line. Each new
word (datum) is stored in the next higher location in the RAM, compared to its previous word.
After storing the last input in the last location of the RAM, the next input will be stored back in the
Oth location of the RAM, hence overwriting the old datum.

The way we determine the correct address is shown in Figure 3.6. The correct address is the
sum of a base address and a virtual address. The base address records the most recent input datum.
It is incremented by one whenever a new datum is received. It is basically a counter. The virtual
address records the delayed tap address, assuming the most recent datum is stored in 0% location
of the RAM. It is stored in a ROM. In other words, the locations in the RAM can be considered as
the tapped line.

Base Address| Counter |

Virtual Addressl ROM

Figure 3.6: Implementation of the correct address of the RAM

Correct Address

To implement more than one filter, we can still use only one single RAM, provided the number
of words of the RAM equals to the sum of the lengths of the tapped lines. Different base address

counters are used to keep track of the most recent datum location for different filters.

However, the above scheme only works well for single rate filters. To implement several filters
with different sampling rates, there will be a problem. For example, Figure 3.6 shows that 2 three-
tapped filters, A and B, are implemented in a RAM, with A samples twice as fast as B. After a cer-

tain number of cycles, all the delayed tap values of B are overwritten.

3.4.2 Multirate Addressing Scheme 22

A0 =S B3 p--y A6
Al : Al '>[B4 |
A2 _Ll:_. A2 A2 |
BO , A3 A3

Bl i Ad Ad

Figure 3.7: Problem of multirate filters in a single RAM

A multirate addressing scheme [2] is proposed to solve the problem. If a RAM is used to
implement two multirate filters, say filter A samples n times faster than filter B, filter A data should
be stored in forms of n sections. For example, filter A samples twice as fast as filter B, so filter A
data are stored in two sections. Figure 3.8 shows how the multirate addressing scheme works. We
can see that old data (compared to the delayed tap line) of filter A are overwritten by its own new
data, instead of the “useful” delayed tap values of filter B. This idea can be extended to accommo-
date any number of stages of different sampling rates. However, the more number of stages is, the

more complex of the scheme will be.

The actual allocations of the locations of the RAM to the last three filters of the four-stage dec-

imation filter are listed in Appendix A.

A0 o~ B3 |---; [B3
A2 \ [Tz | '] Bs
Al 1 A4 [As
B0 | Liel A > A6
Bl : Bl o] AS
B2 [---* [B2 B2

Figure 3.8: Multirate Addressing Scheme In A Single RAM

3.4.3 Muttiplier-Free Arithmetic Logic Unit 23

With this multirate addressing scheme, we get rid of long lines of registers and combine the
tap lines of several filters into a single RAM. This help cutting down the power dissipation and the

chip area.

3.4.3 Multiplier-Free Arithmetic Logic Unit

All the computations of the two halfband filters and the droop-compensation filter are done in
2’s complement. The computations basically are the multiplication of a delayed tap by its corre-
sponding coefficients and the additions of the products. For audio applications, since the output
frequency is relatively low, it is possible to use a sequence of additions and shifts to perform the
multiplications, so we do not need to implement the multiplier in the arithmetic unit. We can do so
by carefully selecting our filter coefficients and quantizing them to some CSD (canonic signed-
digit) codes [4], which are numbers representable as sums or differences of powers of two[4],[7].
All the coefficients of the two halfband filters and the droop-compensation filter can be repre-
sented in 128 adding and shifting sequences. No multiplier is needed. This will greatly reduce the

complexity of the decimation filter.

Figure 3.9 shows a possible structure of the arithmetic logic unit. It consists of 4 registers, 6
multiplexors, a shifter, an adder and a rounding logic block. The ROM is not storing the coeffi-
cients directly, but the sequence of adding and shifting of the corresponding coefficients. 13 bits of
the 22-bit ROM are used to control of the registers, the shifter and the multiplexors, which deter-
mine the sequences of adding and shifting. The other 9 bits of the ROM are used to control the
read/write operation of the RAM, update the base address of each filter and store the virtual
addresses of all delayed taps.

3.4.3 Multiplier-Free Arithmetic Logic Unit 24

ROM21-19
ROM17 3b
IN2
.
(Comb 7 ROM15
output) : rounding
[logic
ROL?IO £
- r Tb by
O N
N1 ROMI11 R0h112
ROM16
> o
(RA\'{) 2 H
ou <
(=4
qT— é —-
ROM18
ROM13 ROM14
ﬂo” Om
. (output
g filter)

ROM?9-21: controlling bits
ROMS: update base address

Figure 3.9: The 22-bit Arithmetic Logic Unit ROM7: RAM write
ROMO0-6: virtual address

The shifter is a logarithmic shifter, which is capable of shifting a number by 7 bit positions, i.e.
having 3 controlling pins. The rounding unit, as shown in Figure 3.10, is used to ensure the round-
ing adder output to the nearest least significant bit. The arithmetic unit receives two input, one
from the cascade of comb filters and the other from the RAM output. The sinc* filter output is the
input data stream for the first halfband filter. The RAM output is the delayed tap to be multiplied

by its corresponding multiplier. Whenever there is a new sinc? filter output, the arithmetic unit will

3.4.4 Nested Multiplication . 25

store (or write) that value into the RAM through MUXS. Then the unit will read the two delayed
tap values

that have the same corresponding coefficient, to REG2 and REG3. Remember that all the filters are
linear phase, so their impulse response taps are symmetrical. The sum of the two values are then
stored in REG2 and REG3. The value in REG2 can then be shifted and added back to REG3. By
repeating this adding and shifting sequence, the delayed tap value becomes the product of the
delayed tap value and its corresponding coefficient. This value is then stored in REG1 temporarily.
When the product of the other pair delayed tap values is calculated, it will be added to REG1 and
then stored back in REG1. After repeating the similar procedure to every delayed tap in a filter,
REG] will store the output of that filter. The output will then be stored in the RAM.

ROM19
ROM20

shift3
shift4
shift5
shift6

MUXA

ROM21

ROM19

ROM20 Cin

MUXC

ROM1S

shift0
shift]

shift2

MUXB

Figure 3.10: Rounding Logic

3.4.4 Nested Multiplication

An additional means of reducing the power dissipation is to employ the Horner’s multiplica-

tion scheme, or nested multiplication in computation. Partial products, rather than the multipli-

3.5 Complete Structure 26

cand, are shifted and added. For example, a normal multiplication of the multiplicand x by the

CSD coefficient 3/8 is performed as:

3. =1..,1
§x = 4Jt+8x @3.1D

The corresponding nested multiplication is performed as:
3 1 1
¥ (x + 5):) 3.2)

"I‘his reduces the number of bits required to be shifted in the shifter. In our example, a shifter
capable of shifting an input by 7 bit positions is enough. The nested multiplication also help
reduce the quantization error. To prevent any overflow problems during the nested multiplication
operations, two more bits are added on top of the 20-bit sinc? filter output, resulting in a 22-bit

arithmetic logic unit.

The actual code stored in the ROM is listed in Appendix A.

3.5 Complete Structure

The complete structure of the decimation is shown in Figure 3.11. The input frequency (from
the modulator output) is 1.024 MHz. The clock frequency is only 2.048 MHz to maintain a 16 kHz

output rate.

The actual 12-bit output is taken from bit 8 to bit 19 of the 22-bit ALU output, i.e. bit O to bit
7, bit 20 and bit 21 of the ALU are dropped.

Some designs [2] would like to take advantage of the multirate addressing scheme and use the
ROM to implement the integrator stage of the Comb filter, which operate at a relatively low data
rate. This can help reduce the chip area. This is not done here because of two reasons. Firstly, all
the coefficients are nicely packed in the 128-word ROM, leaving no more room for another filter.
Only a simple 7-b counter is used to address each of the ROM location. Secondly, with an output
rate of 16 kHz and an operating frequency of 2.048 MHz, we have at most 128 cycles to perform
one output, which are already used up by the 128-word ROM.

3.6 Power Estimation 27
0to 75 Tb IN
P> wrap-around 4
counter - addr RAMOUI
, 76wordsx22bits
1b mod-76 adder
R/W
0to 127
——p wrap-around |—] addr
clk counter ROM oOUT .
1b .
128wordsx22bits 29b
13b IN1 OUT1 .,
Arithmetic 7
; . Unit filter
4-b Sinc? Filter —~——
Modulator —4—IN 7~ N2 ouT2 12p0utPut
output Figure 3.3 22b Figure 3.8

Figure 3.11: Complete Structure

3.6 Power Estimation

The power dissipation of the entire decimation filter is estimated by using PowerPlay. Table

3.2 shows the effective capcitance of each building block of the decimation filter. The data for the

shifter is not available yet. Since we are using a logarithmic shifter with maximal shift width of 7

bits to the right [22], there are three levels of pass transistor logic, we estimate the effective capac-

itance of our shifter to be 5 times the capacitance of a register. For an input data rate of 1.024 MHz

and a volatge supply of 1V, the power estimation is about 270 p W. With a voltage supply of 1.2 V,

the power estimation is about 390 p W. Hence the decimation filter should not dissipate more than

0.4 mW.

3.6 Power Estimation

28

Table 3.2: Power Dissipation Of The Entire Decimation Filter

Description

Sinc Integrator:

Quantity

Effective
Capacitance

Operating
Frequency

Power
Dissipation

(23] (kHz) (nW)

20b adder 54 2048 44.2
20b register 1.9 2048 15.6
Sinc Differentiator:
20b adder 4 54 128 28
20b register 5 1.9 128 12
ROM_addr counter:
7b counter 1 1.1 2048 23
RAM_addr counter:
7b counter 1 1.1 2048 23
7b adder 2 1.9 2048 7.8
7b MUX 1 0.3 2048 0.6
ROM:
128 word x 22 bit 1 32.6° 2048 66.8
RAM:
76 word x 22 bit 1 52.7 1216 64.1
ALU:
22b register 3 2.1 2048 12.9
12b register 1 1.1 2048 23
22b MUX 6 09 2048 11.1
22b shifter (shift by 7 bit 1 10.5° 2048 215
positions)
22b adder 1 59 2048 12.1
22b inverter 1 2.1 2048 4.3
TOTAL 272

—_a. Estimation from 172 of capacitance of a RAM

b. Estimation from 5 times of capacitance of a register

3.7 Time Domain Analysis | 29

3.7 Time Domain Analysis

Viewdraw program, under the Viewlogic tool sets, is used to enter the schematic diagram of
the decimation filter. We then use the Viewsim program, another Viewlogic program, to verify the
performance of the decimation filter in the time domain. We first use MATLAB to generate the
modulator output data, which are fed into the Viewsim program as the input of the decimation fil-
ter. The Viewsim output data are then extracted using UNIX commands and plotted in MATLAB.

Figure 3.12, Figure 3.13 and Figure 3.14 show the filter output for an input of 1 kHz, 7 kHz
and 9 kHz sine wave respectively. The actual 12-bit filter output is extracted from the 3rd MSB of
the ALU output and onwards. The first two MSBs are excluded becasue they are just additional
bits used to prevent overflowing during the computation process. The sampling frequency of the
filter is 16 kHz.

In Figure 3.12, a smooth 1 kHz sine wave is obtained at the output. In Figure 3.13, the rugged
output waveform represents the sampling version of the 7 kHz. Since the sampling frequency is 16
kHz, there are only 2.29 samples for each cycle of the sine wave, which accounts for the rugged-
ness of the waveform. In Figure 3.13, the uneven magnitude of the comb filter output is due to
printer aliasing while the spike in the output waveform is due to the initial transient effect only.

The ripples in the tail is due to the LSB round-off error of the 12-bit output.

From the three figures, we can see that the transition band lies from 7 kHz to 9 kHz and con-
firms the frequency response of the decimation filter in Figure 2.9.

3.7 Time Domain Analysis

30

magnitude

Figure 3.12: Viewsim outputs for a 1 kHz sine wave input (fsampte = 16 kHz)

. 0 Y 1 ISR
T .
=) :
'E EER PR S P! U0 PN SRR R T
o .
@« .
E y
) \/\/U
4 ; :
0 2 4 6
time (ms)

Actual 12-bit Qutput
_50 B S
100} Uu
-150 5

0 2 4 6
time (ms)

X 104 Comb Filter Outp

x 10° ALU Output
4 ; n ;
2

Q

°

2 :

50 s

@® :

3 :
_2:UU, :
4 : ;

0 2 4 6
time (ms)

3.7 Time Domain Analysis 31

magnitude

X 104 Comb Filter Output X 104 ALU OUtput
4 ; : 4 . :
2 I AR LR ERRRERE - - TRTTSRRRURR | 18| (N | M| | N | PO -
o [Hiit il : (]
° ! f °
HH 5 ——— 2, A —
g | i 2 i |
E ; Hi E
—o | J{itaat LT L R o HEHERE
-4 -4
0 2 4 6 0 2 4 6
time (ms) time (ms)
Actual 12-bit Output
150 : ;
100} oo
50 | "‘ | B || EERERRREERREr
. (A —
50t 18] |1 .
~100}- e ZUTEIIRI
-150 : 5
0 2 4 6
time (ms)

Figure 3.13: Viewsim outputs for a 7 kHz sine wave input (fsample = 16 kHz)

3.7 Time Domain Analysis 32
x10* Comb Filter Output 3 x10* ALU Output
e s
2
g Ili ‘ “ ii;|'ii.¢ .§ 1
2 off | | P I —— = g
@ | | I I | g :
E it (it E ;
%) r :
__4 N H _1 A
0 2 4 6 0 2 a 6
time (ms) time (ms)
Actual 12-bit Output
80 : T
60 ...
40

magnitude

time (ms)

Figure 3.14: Viewsim outputs for a 9 kHz sine wave input (fsample = 16 kHz)

3.8 Layout 33

3.8 Layout

Figure 3.14 shows the layout of the decimation filter, generated by the automated layout tool
Lager. The area is 32.45 x 106 A2 , which is 20.7 mm? if a 0.8 i m technology is used. It is obvi-

ously not optimized.

PATE bt 1), v Pt TH s
] Tap—
3l
=: Integrators
I‘-;‘
RAM §
=]
Differentiators
ROM
5886 A ,
(4.7 mm) 4 Ir==— : o
- ROM_ADDR 5
o
e
[
e
s
g
v ALU
RAM_ADDR ; -
Y | 5
i 5513 A -
(4.4 mm)

Figure 3.14: Magic Layout Of The Decimation Filter

3.9 Summary 34

3.9 Summary

A very area-efficient, low power design of the decimation filter is proposed. It consists of 4
stages. The first stage is a cascade of 4 comb filters, which is then followed by 2 halfband filters.
The last stage is the droop-compensation filter. The ovérall filter is linear-phase. It receives a 4-bit
input and produces a 12-b output. It provides a decimation factor of 64 and has an out-of-band
attenuation of 60 dB. The power dissipation of the decimation filter is estimated to be less than 0.4
mW.

From Chapter 2, the power dissipation of the anti-alias filter and the analog modulator is esti-
mated to be under 1.1 mW. Consequently the total power dissipation of the encoding path will be
below 1.5 mW.

35

CHAPTER 4

Decoding Path

4.1 Overview

After discussing the decimation filter in previous chapters, which completes the encoding
path, we are going to look into some of the design issues in the decoding path in this chapter. We
will first investigate the interpolation filter, then the digital A demodulator and finally the

smoothing filter.

4.2 Interpolation Filter

An interpolation filter is used to raise the input word rate to a frequency well above the
Nyquist rate, so that a demodulator can be used to truncate the words and convert the signal to the
analog form at the high sample rate. The requirements for attenuating the out-of-band images of
the signal spectrum in the interpolation filter are less stringent than those in the decimation filter.

Consequently, we can safely use the specifications for the decimation filter here.

The structure of the interpolation filter, as shown in Figure 4.1, is very similar to a decimation
filter (Figure 2.4). The order of the building blocks in the interpolation filter is just the reverse of
that of the decimation filter, except the cascade of the comb filters are replaced by a zero-order-

hold stage. This has two major advantages. Firstly, the comb filters, which are running at a rela-

4.2 Interpolation Filter 36

tively high frequency, burns a considerable portion of power in the decimation filter. They also
take up a lot of die area. Replacing the comb filters with a zero-order-hold stage will save both
power dissipation and area. Secondly, the droop in the base band due the sinc? function (0.68 dB)
is much bigger than that in a zero-order-hold stage, which is only 0.17dB. As a result, either the

droop-compensation filter can be simpler or the in-band droop can be improved.

—| Droop /| Second |_/_| First |/ | Zero-Order|
Input | Compensation Halfband Halfband Hold Stage [Output
2 2 16

f=16 kHz f;=32 kHz f;=64 kHz f=1.024 MHz

Figure 4.1: The 4-stage Interpolation Filter

Figure 4.2 shows the performance of the interpolation filter.

magnitude (dB)

3
. frequency(Hz)

Figure 4.2: Performance Of The Interpolation Filter

4.3 Digital Demodulator 37

4.3 Digital ZA Demodulator

As mentioned in the previous section, the digital ZA demodulator is used to truncate the inter-

polated words and convert them to the analog form at the high sample rate.

When designing a digital ZA demodulator, there are some design issues that are quite different
from those in designing the analog modulator.

Firstly, when we design an analog modulator, we need to consider the quantization noise, ther-
mal noise (kT/C) and op-amp noise. However, only quantization noise affects the performance of a
digital demodulator. This means that the specifications for the digital demodulator is less severe.

Secondly, in an analog modulator, gain blocks are implemented by using the ratios of capaci-
tances, which is very flexible. However, in a digital demodulator, a gain of powers of 2 is achieved
by shifting the data bits left or right. Therefore, no additional building blocks are needed. For a
gain other than powers of 2, either a multiplier or additional shifting and adding sequences are

needed. This increases the design complexity drastically.

Thirdly, in an analog modulator, the output of the quantizer is simply fed back to the input
summation node. In a digital demodulator, no quantizers are needed. The most significant bit of
the output will be like the output of a quantizer. This single bit must be fed back to the multi-bit

input summation node in such a way that it represents the most positive or negative number.

After knowing that the specifications for the digital demodulator is less stringent, and the fact
that gain blocks other than powers of 2 drastically increase the design complexity, we find that
higher order topologies do not help reduce power consumption for low frequency applications, like

the audio codec. Using simple structures, like the one in Figure 4.3, is the key solution.

Figure 4.4 shows the performance of the demodulator in Figure 4.3. We can see that using an
oversampling ratio (M) of 128 is more than enough for the specifications of the audio codec. The
power dissipation will only be in the 0 W range, which is still insignificant when compared to the
power dissipation of the interpolation filter or the decimation filter.

4.4 Smoothing Filter 38

Digital e 00 4 ot 1] Sign Bit
1 N . 1, 1
input z IH 2! Z Z | 2! | > Oi!t‘put
X 126 - + - + Y

2 . 1bg

Figure 4.3: 2nd Order Single-bit Sigma Delta Demodulator

SNR (dB)

=40 =35 -30 =25 =20 -15 -10 -5 0
input (dB)

Figure 4.4: Performance Of A Second Order Sigma Delta Modulator

4.4 Smoothing Filter
A smoothing filter is simply a low pass filter, which removes all the high frequency compo-

nents of the demodulator output. With a 2nd Order A demodulator, the smoothing filter must be

4.5 Summary 39

at least of the third order. This can be implemented as the anti-alias filter, or by using a cascade of
biquad filters. The power dissipation of the smoothing filter should be similar to that of the anti-
alias filter.

4.5 Summary

The design issues of the building blocks of the decoding path have been discussed. We can see
that the design complexity of the decoding path is less stringent than that in the encoding path. The
decoding path is going to take up less area and burn less power than the encoding path From Chap-
ter 3, the encoding path is found to dissipate less than 1.5 mW, so we can conclude that the entire

codec will dissipate less than 3 mW.

40

CHAPTER 5

Conclusion

5.1 Conclusion

This report shows that it is possible to cut down the power dissipation of the audio interface by
an order of magnitude, from 40 mW to 3 mW. The approach uses a custom chip to replace the

existing audio general-purpose codec.

Several techniques are used to minimize the power dissipation of the decimation filter. A 128
word-ROM is used to achieve the desired specifications. It is also shown that the number of RAM
words is not rerstricted to be a power of two. In our case, we use the minimum number of words,
76 words instead of 128 words, to store the delayed tap lines of the two halfband filters and the
droop-compensation filter. A slightly more complex structure is then required for the RAM

address counter, but this is justified by the reduction in size of the RAM.

However, one drawback of using the multiplier-free Arithemetic & Logic Unit (ALU) is that it
requires additional efforts to quantized the filter coefficients to the canonic signed digit (CSD)
code. This in turn makes the decimation filter less portable. Whenever there is a change in the

design specifications, the entire process of quantization needs to be repeated.

4]

Appendix A

A.1 First Halfband Filter Coefficients, F1

All coefficients are zeros unless stated otherwise.

Table A.3: First Halfband Filter Coefficients

Coefficients . s . . Rounded
Tap Befo;e Canonic Signed Digits Coefficients
Rounding
F1(0), FI(14) | -0.00374] .28 4212 [-0.003662 |
F1(2), F1(12) 0.020574 264284210 0.020508
F1(4), F1(10) -0.072319 -24.27.29 -0.072266
F1(6), F1(8) 0.305486 2242427 0.305664
F1(7) 0.5 2’1 0.5

42

A.2 Second Halfband Filter Coefficients, F2

All coefficients are zeros unless stated otherwise.

Table A .4: First Halfband Filter Coefficients

Coefficients
- .. Rounded
Tap R?:f,?{;, . Canonic Signed Digits Coefficients
e ——
F2(0), F2(70) -0.000589 -2 1113 -0.000611
F2(2), F2(68) 0.000722 210 _o-12 0.000732
F2(4), F2(66) -0.001148 =210 912 o-14 -0.001160
F2(6), F2(64) 0.001722 29212 0.001709
F2(8), F2(62) -0.002478 -29.11 -0.002441
F2(10), F2(60) 0.003453 28911 0.003418
F2(12), F2(58) -0.004691 -28.9710 512 _o-14 -0.004700
F2(14), F2(56) 0.006251 27.294211 213 0.006226
F2(16), F2(54) -0.008203 22T o13 -0.008179
F2(18), F2(52) 0.010652 26.28_210_»o-13 0.010620
F2(20), F2(50) -0.013746 -26429. 214 -0.013733
F2(22), F2(48) 0.017726 264294213 0.017700
F2(24), F2(46) -0.023004 2254274011 14 -0.023010
F2(26), F2(44) 0.030362 25,210 2-13 0.030396
F2(28), F2(42) -0.041482 -25.27.99_211 -0.041504
F2(30), F2(40) 0.060758 24.294212 0.060791
F2(32), F2(38) 0.104339 | -23426428,210,913 | 9704370
F2(34), F2(36) 0317718 | 22+24427.29.211.213 [0317749
F1(35) 0.5 271 0.5

43

A.3 Droop-Compensation Filter Coefficients, FD

All coefficients are zeros unless stated otherwise.

Table A.5: Droop Filter Coefficients

Tap

Coefficients
Before

Canonic Signed Digits

Rounding
FD(0), FD(6) -0.000874 -2710 4913 -0.000856

Rounded
Coefficients

FD(1), FD(5) 0.003739 284012 0.003664
FD(2), FD(4) -0.020277 -26.28_ 910 512 -0.020264
FD(3) 1 20 1

A.4 Allocation Of RAM Spaces For The Three Filters

Table A.4 shows how the 76 RAM spaces are allocated to the three filters: first halfband fil-
ter, F1(N), second halfband filter, F2(T), droop-compensation filter, FD(Z).

In the first halfband filter, according to the multirate addressing scheme, the most recent 14
tap values are stored into 4 sections, two of which record the odd tap values and the other two
record the even tap values. More spaces are allocated to store the even tap values, but it is not very

significant in this case.

In the second halfband filter, 53 most recent tap values are stored into 2 sections, one of which
records odd tap values and the other records the even tap values. In this filter, we can clearly see
that the number of spaces allocated to store the even tap values nearly doubles that for the odd tap

values.

The droop-compensation filter is not a halfband filter, so all 7 tap values are stored in one sec-

tion.

When the first datum, F1(N), to the first halfband filter arrives, it replaces the old tap value fo
the first halfband filter, F1(N-11). When the output of the first halfband filter, or the first datum to
the second halfband filter, F2(T), is available, it replaces the old tap value of the droop-compensa-
tion filter, FD(Z-7). While the calculation in the second halfband filter is going on, the first half-
band filter takes up two more data, with F1(N+1) replacing F1(N-14) and F1(N+2) replacing the
old tap value of the second halfband filter, F2(N-37). When the output of the second halfband filter
is ready, FD(Z), F1(N-9) is replaced. After that the fourth datum to the first halfband filter,
F1(N+3), arrives and replaces F1(N-16). A second F1 output, F2(T+1), will take the place of F2(T-
73). Finally, FD will generate the filter output. '

For every output datum FD generates, F2 receives two more data while F1 recieves four,

which corresponds to a decimation factor of 4.

45

Table A.6: Allocation Of RAM Spaces For The Three Filters

Tap line

space

Access Order

Tap line

space

Acces Order

FI(N-9) 5th: FD(Z) F2(T-62) | 38

F2(T-60) | 39

F2(T-58) | 40
FI(N-16) 6th: FIN+3) || F2(T-56) | 41
FI(N-12) F2(T-54) | 42
F1(N-8) F2T-52) | 43
F1(N-4) F2(T-50) | 44
F1(N-11) 1st: F1(N) F2(T48) | 45
F1(N-7) F2(T-46) | 46
F1(N-3) F2(T-44) | 47
F1(N-14) 3rd: FIN+1) || F2(T42) | 48
FIN-10) | 11 F2(T-40) | 49
FIN-6) | 12 F2(T-38) | 50
FIN-2) | 13 F2(T-36) | 51
F2: F2(T-34) | 52
FXT-37) | 14 4th: FIN+2) || F2(T32) | 53
F2T-35) | 15 F2(T-30) | 54
F2(T-33) | 16 F2(T-28) | 55
F2(T-31) | 17 F2(T-26) | 56
F2(T-29) | 18 F2(T-24) | 57
F2(T-27) | 19 F2(T-22) | 58
F2(T-25) | 20 | F2cr-20) | 59
F2(T-23) | 21 | F2cr-18) | 60
F2T21) | 22 | F2r-16) | 61

46

Table A.6: Allocation Of RAM Spaces For The Three Filters

Tap line gp‘;l:g Access Order Tap line m Acces Order
F2(T-19) | 23 — F2(T-14) =6—2—
F2(T-17) | 24 F2(T-12) | 63
F2(T-15) | 25 " F2(T-10) | 64
F2(T-13) | 26 F2(T-8) 65
F2(T-11) | 27 F2(T-6) 66
F2(T-9) 28 F2(T-4) 67
F2(T-7) 29 F2(T-2) 68
F2(T-5) 30 FD:
F2(T-3) 31 FD(Z-7) 69 2nd: F2(T)
F2(T-1) 32 FD(Z-6) 70
w 33 7th: F2(T+1) FD(Z-5) 71
F2(T-70) | 34 || FD(Z-4) 72
F2(T-68) | 35 FD(Z-3) 73
F2(T-66) | 36 FD(Z-2) 74
F2(T-64) | 37 FD(Z-1) 75

47

A.5 ROM Coefficients

The following list shows the 128 operations and the corresponding 22b code. “reg1”, “reg2”,
“reg3” refer to the three registers in the ALU, Figure 3.9. “#7” refers to the RAM position #7.

ROM operations

0. store #7 (Fi(N))
1. reg2 = read #7

2. reg3, regl = reg3 + reg2
re%Z:rgead# 9 ¢
3.reg1 =reg3 - sreg1 >> 4)

reg3 = read #13

4. reg3, reg2 = reg3 + reg2

5.reg2 = reg3 + éregz >> 2

6. reg3 = reg3 + (reg2 >> 2
reg2 = read #6

7.reg1 =r0g3 - (reg1 >> 2)
reg3 = read #11

8. reg3, reg2 = reg3 + reg2

9. reg2 = reg3 + (reg2 >> 2)

10. reg3 = reg3 + (reg2 >> 3)
reg2 = read #5

11.reg1 =reg3 - (reg1 >> 2)
reg3 = read #

12. reg3, reg2 = reg3 + reg2

13. reg2 = reg3 - (reg2 >> 3

14. reg2 = reg3 - (reg2 >> 3

15. reg3 = reg3 + (reg2 >> 2)

16. reg1 =reg3 - S’eg1 >> 2)
reg3 = read #

17.reg1 =reg3 + (reg1 >> 1)
reg2 = read #
18. reg1, reg3 = reg1 > 1

22b Code

000 11 10 11 11 10 00 0000111
000 10 10 11 01 10 01 0000111

000 10 10 00 01 00 01 0000100
100 10 11 01 11 01 01 0001101
000 10 10 00 00 10 01 0001101
010 10 10 10 00 10 01 0001101
010 10 10 00 01 10 01 0000110
01010 11 01 11 01 01 0001011
000 10 10 00 00 10 01 0001011
01010 10 10 00 10 01 0001011
01110 10 00 01 10 01 0000101

010101101 11 01 01 0001100

000 10 10 00 00 10 01 0001100
011 10 11 10 060 10 01 0001100
01110 11 10 00 10 01 0001100
010 10 10 00 10 10 01 0001100
010 10 11 01 10 01 01 0001000

00110 10 11 01 01 01 0100010
00100 10 00 11 01 01 0100010

19. store reg1 (F2(T)) into #69

20. reg3, regt = regs + reg2
reg2 = read #

21.reg1 =reg3 + (reg1 >> 2)
reg3 = read #68

22. reg3, reg2 = reg3 + reg2

28.reg3 = rag3 - éregz >>2)

2. tegﬁsfegg#(1551)
reg1 = re| regl >>
rega = read #67 - 9

25, reg3, reg2 = reg3 + reg2
26. reg2 = reg3 - (reg2 >> 2)
27. reg3 = reg3 + (regz >>2)
reg2 = read #37
28. reg1 =reg3 - regi
reg3 = read #86

29. reg3, reg2 = reg3 + reg2

30. reg3 = reg3 - (rag2 >> 3)
reg2 = read #38

31. regt = reg3 - (reg1 >> 1)
r ega = read #65

32. reg3, re re:?
stora #10 (F1(+1))
33. rag3 = reg3 + (reg2 >> 2)

000 10 10 10 11 10 00 1000101
000 10 10 00 01 00 01 0100011
010101001 11 01 01 1000100
000 10 10 00 00 10 01 1000100
0101011 00 01 10 01 0100100
001 10 11 01 11 01 01 1000011
000 10 10 00 00 10 01 1000011
010 10 11 10 00 10 01 1000011
010 10 10 00 01 10 01 0100101
000 10 11 01 11 01 01 1000010
000 10 10 00 00 10 01 1000010
011 10 11 00 01 10 01 0100110
00110 11 01 11 01 01 1000001

000 11 10 00 00 10 00 0001010
010 10 10 00 01 10 01 0100111

48

reg2 = read #39
34. reg1 = reg3 - reg1
reg3 = read #64

35. reg3, reg2 = reg3 + reg2
36. reg3 = rag3 - (reg2 >> 3)
a7 reg% = re;g #40 1551)
. reg1 = reg3 - (regt >>
regs = read #éa

38. reg3, reg2 = reg3 + reg2
39.reg2 = rggs - (rg?;z >>2)
40. reg3 = reg3 + (reg2 >> 2)
reg2 = read #41
41. reg1 = reg3 - reg1
reg3 = read #62

42. reg3, reg2 = reg3 + reg2

43. reg2 = reg3 - (reg2 >> 2

44. reg2 = reg3 - (reg2 >> 2

45. reg3 =reg3 - (reg2 >> 2
reg2 = read #42

46. reg1 = reg3 - (reg1 >> 1)
reg3 = read #61

47. reg3, reg2 = reg3 + reg2
48. reg2 = reg3 - (reg2 >> 2)
49. reg3 = reg3 + (reg2 >> 4)
reg2 = read #43
§0. reg1 = reg3 - reg1
reg3 = read #60

51. reg3, reg2 = reg3 + reg2

52. reg2 = reg3 + (reg2 >> 3

53. reg2 =reg3 + (reg2 >> 2

54. reg3 = reg3 - (reg2 >> 2)
reg2 = read #44

§5. reg1 = reg3 - (reg1 >> 1)
reg3 = read #59

56. reg3, reg2 = reg3 + reg2
57.reg2 =reg3 - (reg2 >> §
58. reg3 =reg3 - (reg2 >> 3
reg2 = read #45
59. reg1 = reg3 - reg1
reg3 = read #58

60. reg3, reg2 = reg3 + reg2
61. reg2 = reg3 + ?’692 >>4
62. reg3 =reg3 + (reg2 >> 3
reg2 = read #46
63. reg1 =reg3 - reg1
reg3 = read #57

64. store #14 (F1(N+2))

65. reg3, reg2 = reg3 + reg2

66. reg2 = reg3 - (reg2 >> 32

67. reg2 = reg3 + (reg2 >> 4)

68. reg3 = reg3 - (reg2 >> 2)
reg2 = read #47

69. reg1 = reg3 - (reg1 >> 1)
reg3 = read #56

70. reg3, reg2 = reg3 + re
71. tegz =rag3 - (reg2 >>g§
72. reg3 = reg3 - (reg2 >> 5
reg2 = read #48
73. reg1 = reg3 - reg1
reg3 = read #55

74. reg3, reg2 = reg3 + reg2
75. reg2 = reg3 + (reg2 >> 2
76. reg2 = reg3 + (reg2 >> 2
77. reg3 = reg3 + (reg2 >> 2
reg2 = read #49
78. reg1 = reg3 - reg1
reg3 = read #54

000 10 11 01 11 01 01 1000000

000 10 10 00 00 10 01 1000000
0111011 0001 10 01 0101000

0011011 01 1101 01 0111111

000 10 10 00 00 10 01 0111111
0101011 1000 10 01 0111111
010 10 10 00 01 10 01 0101001

00010 11 01 1101 01 0111110

000 10 10 00 00 10 01 0111110
01010 11 1000 10 01 0111110
01010 11 10 00 10 01 0111110
01010 11 00 01 10 01 0101010

00110 11 01 1001 01 0111101

000 10 10 00 00 10 01 0111101
010 10 11 1000 10 01 0111101
10010 10 00 01 10 01 0101011

000 10 11 01 11 01 01 0111100

000 10 10 00 00 10 01 0111100
011 10 10 10 00 10 01 0111100
010 10 10 10 00 10 01 0111100
01010 11 00 01 10 01 0101100

00110 11 01 11 01 01 0111011
000 10 10 00 00 10 01 0111011
101 10 11 10 00 10 01 0111011
011 10 11 00 01 10 01 0101101
000 10 11 01 11 01 01 0111010
000 10 10 00 00 10 01 0111010
100 1010 10 00 10 01 0111010
011 10 10 00 01 10 01 0101110

000 10 11 01 11 01 01 0111001

0001110 11 11 11 00 0001110

000 10 10 00 00 10 01 0001110
01110 11 10 00 10 01 0001110
100 10 10 10 00 10 01 0001110
01010 11 00 01 10 01 0101111

001 10 11 01 11 01 01 0111000
000 10 10 00 00 10 01 0111000
011 10 11 10 00 10 01 0111000
101 10 11 00 01 10 01 0110000
000 10 11 01 11 01 01 0110111
000 10 10 00 00 10 01 0110111
010101010 00 10 01 0110111
01010 10 10 00 10 01 0110111
010 10 10 00 01 10 01 0110001

000 10 11 01 11 01 01 0110110

49

79. reg3, reg2 = reg3 + reg2
80. reg2 = reg3 - (reg2 >> 3
81.reg3 =reg3 - (reg2 >> 5
82 wg?: reag #50 155 1)
. reg1 =reg3 - (reg1 >>
regs = fegd #5(;3 9

83. reg3, reg2 = reg3 + reg2

84. reg2 =reg3 + (reg2 >> 3

85. reg2 = reg3 + (reg2 >> 2

86. reg2 = reg3 + (reg2 >> 2

87. reg3 = reg3 - (reg2 >> 3)
reg2 = read #51

88. reg1 = reg3 - éreg1 > 1)
reg3 = read #52

89. reg3, reg2 = reg3 + reg2
90. reg2 = reg3 + 21992 >>2
91. reg2 = reg3 + (reg2 >> 2
92. reg2 = reg3 - (reg2 >> 2)
93. reg2 = reg3 + iregz >3
94. reg3 = reg3 + (reg2 >> 2
reg2 = read #4
95. reg1 = reg3 - (reg1 >> 1)
reg3 = read #15

96. reg1 = reg3 + (reg1 >> 1)
store #3 (Sinc #4)
97.reg1 =regl >> 1
reg3 = read #14

000 10 10 00 00 10 01 0110110
0111011 1000 10 01 0110110
10110 11 00 01 10 01 0110010

0011011 01 11 01 01 0110101

000101

0 010110101
011 10 18

000010

1000 10 01 0110101
010 10 10 10 00 10 01 0110101
010 10 10 10 00 10 01 0110101
011 10 11 00 01 10 01 0110011

00110 11 01 11 01 01 0110100

01 0110011
010101 0010110011
0111010 10 00 10 01 0110011
010 10 10 00 01 10 01 0000100

001 10 11 01 10 01 01 0001111

8888

001 11 10 11 10 01 00 0000011
001 00 10 01 11 01 01 0001110

98. store reg1(FD(2)) into #0

99. reg3, reg1 = reg3 + rag2
reg2 = read #7

00. reg1 = reg3 - (reg1 >> 4)
reg3 = read #11

01. reg3, reg2 = reg3 + reg2

02. reg2 = reg3 + (reg2 >> 2

03. reg3 = reg3 + (reg2 >> 2
reg2 = read #5

04. reg1 = rag3 - srag1 >>2)
reg3 = read #13

05. reg3, reg2 = reg3 + reg2

06. reg2 = reg3 + ?egz >> 2;

07. reg3 = reg3 + (reg2 >> 3
reg2 = read #6

08. reg1 =reg3 - (reg1 >> 2)
reg3 = read #12

09. reg3, reg2 = reg3 + reg2

10. reg2 = reg3 - (reg2 >> 3‘

11. reg2 = reg3 - (reg2 >> 3

12. reg3 = reg3 + (reg2 >> 2)

13. reg1 =reg3 - (reg1 >> 2)
reg3 = read #1

14. reg1 = reg3 + (reg1 >> 1)
reg2 = read #70

15. reg1 = reg1 >> 1
reg3 = read #0

000 10 10 11 11 10 00 0000000
000 10 10 00 01 00 01 0000111
100 10 11 01 11 01 01 0001011
000 10 10 00 00 10 01 0001011
010 10 10 10 00 10 01 0001011
010 10 10 00 01 10 01 0000101
010 10 11 01 11 01 01 0001101
000 10 10 00 00 10 01 0001101
010 10 10 10 00 10 01 06001101
011 10 10 00 01 10 01 0000110

010 10 11 01 11 01 01 0001100

000 10 10 00 00 10 01 0001100
011 10 11 10 00 10 01 0001100
01110 11 10 00 10 01 06001100
010 10 10 00 10 10 01 0001100
01010 11 01 10 01 01 0000001

001 1010 11 01 01 01 1000110
001 00 10 01 11 01 01 0000000

16. store reg1(F2(T+1)) into #33

17.reg3, regl = + reg2
reg2 = read #7

18. reg1 = reg3 - (reg1 >> 3)
reg3 = read #75

19. reg3, reg2 = reg3 + reg2

20. reg3 = reg3 - (reg2 >> 4)
reg2 = read #72

21.reg1 =reg3 - ;reg1 >>2)
reg3 = read #74

22. reg3, reg2 = reg3 + ro|
23. rgggargg3-(rg92 >>922)

000 10 10 10 11 10 00 0100001
000 10 10 00 01 00 01 1000111
011 10 11 01 11 01 01 1001011
000 10 10 00 00 10 01 1001011
100 10 11 00 01 10 01 1001000
0101011 01 11 01 01 1001010

000 10 10 00 00 10 01 1001010
010 10 11 10 00 10 01 1001010

50

24. reg2 = reg3 + (regz >>2

25. reg3 = reg3 + (reg2 >> 2

26. reg1 =reg3 - (reg1 >> 2)
reg3 = read #73

27.1eg1 = reg3 - (reg1 >> 6)
reg3 = read #10

010 10 10 10 00 10 01 1001010
01010 10 00 10 10 01 1001010
01010 11 01 1001 01 1001001

1101001 01 11 01 11 0001010

51

References

(1] B. P. Brandt and B. A. Wooley, “A Low-Power, Area-Efficient Digital Filter for Decimation
and Interpolation,” IEEE Journal of Solid State Circuits, vol. 29, no. 6, June 1994, 1995, PP
679-687.

[2] B. P. Brant, “Oversampled Analog-To-Digital Conversion,” PhD thesis, Stanford University,
August 1991.

[3] A.Oppenheim and R. Schafer, Digital Signal Processing, Prentice Hall, 1975.

[4] H. Samueli, “An Improved Search Algorithm for the Design of Multiplierless FIR Filters with
Powers-of-Two Coefficients,” IEEE Trans. on Circuits and Systems, vol. 36, no. 7, July 1989.

[5] J. C. Candy, “Decimation for Sigma Delta Modulation,” IEEE Trans. on Communications,
vol. COM-34, no. 1, January 1986.

[6] D.J. Goodman and M. J. Carey, “Nine Digital Filters for Decimation and Interpolation,” IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-25, no. 2, April 1977.

(7] K. Hwang, Computer Arithmetic, Principles, Architecture, and Design. New York: Wiley,
1979.

[8] P. P. Vaidyanathan and T. Q. Nguyen, “A “trick” for the Design of FIR Half-Band Filters,”
IEEE Trans. on Circuits and Systems, vol. CAS-34, no. 3, March 1987.

[9] S.Chu and C. S. Burrus, “Multirate Filter Designs Using Comb Filters,” IEEE Trans. on Cir-
cuits and Systerms, vol. CAS-31, no. 11, Novermber 1984.

[10] B. Leung, “Design of Low Power Oversampled Sigma-Delta Modulators,” Technical Report,
Electrical and Computer Engineering Department, U. of Waterloo, June 1995.

[11] J. C. Candy and G. C. Temes, “Oversampling Methods for A/D and D/A Conversion,” Over-
sampling Delta-Sigma Data Converters, IEEE Press, 1991.

[12] R. W. Brodersen, Anatomy of a Silicon Compiler, Kluwer Academic Publishers, 1992.

[13] Q. Zhao and Y. Tadokoro, “A Simple Design of FIR Filters with Powers-of-Two Coeffi-
cients,” IEEE Trans. on Circuits and Systerms, vol. 35, no. 5, May 1988.

[14] A.B. Carlson, Communication Systems, McGraw-Hill, 1988.

[15] J. M. Rabaey, S. P. Pope, R. W. Brodersen, “An Integrated Automated Layout Generation
System for DSP Circuits,” IEEE Trans. on Computer-Aided Design, vol. CAD-4, no. 3, July
1985.

[16] R. W. Brodersen, A. Chandrakasan, S. Sheng, “Design Techniques for Portable Systems,”
ISSCC Dig. Tech. Papers, pp. 168-169, February 1993.

[17] E. B. Hogenauer, “An Economical Class of Digital Filters for Decimation and Interpolation,”
IEEE Trans. on Acoustics, Speech,, and Signal Processing, vol. ASSP-29, no. 2, April 1981.

[18] M.G. Bellanger, J. L. Daguet and G. P. Lepagnol, “Interpolation, Extrpolation, and Reduction
of Computation Speed in Digital Filters,” IEEE Trans. on Acoustics, Speech, and Signal Pro-

52

cessing, vol. ASSP-22, no. 4, August 1974.

[19] R. Gregorian and G. C. Temes, Analog MOS Integrated Circuits For Signal Processing, John
Wiley & Sons, Inc, 1986.

[20] G. S. Moschytz and P. Horn, Active Filter Design Handbook, John Wiley & Sons, Inc, 1981.

" [21] R.Dongen, V. Rikkink, M. Degrauwe, “A 1.5 V class AB CMOS Biffer Amplifier for Driving
Low-Resistance Loads,” ISSCC 1995 Digest, pp. 48-49, February 1995.

[22] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996.
[23] R.E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice Hall, 1983.

[24] L. R. Rabiner and G. Gold, Theory And Application Of Digital Signal Processing, Prentice
Hall, 1975.

[25] URL.: http://infopad.EECS.Berkeley. EDU

[26] B. Richards and R. Brodersen, “InfoPad: The design of a portable multmedia terminal,” 2nd
International Workshop on Mobile Multi-Media Communications Proceedings, April 1995,
p.S2/1/1-6.

[27] Motorola Telecommunications Device Data, pp. 2.627 - 2.640.

[28] A.Chandrakasan, A. Burstein and R. Brodersen, “A Low Power Chipset for Portable Multi-
media Applications,” ISSCC 1994 Digest, pp. 82-83, February 1994.

[29] 1. Donnell and A. Chandrakasan, ARAP Report, October 1994 - April 1995, URL.: /http://info-

pad.EECS.Berkeley. EDU/infopad-ftp/reports/A.Multimedia.Communication.System.Provid-
ing.Wireless.Access/

	Copyright notice 1995
	ERL-96-48

