

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LOW POWER AUDIO CODEC

by

Edwin W. Chan

Memorandum No. UCB/ERL M96/48

22 August 1996

c

LOW POWER AUDIO CODEC

by

Edwin W. Chan

Memorandum No. UCB/ERL M96/48

22 August 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Anaudio codec (coder and decoder) isthe interface between the analog domain and the digital

domain in atalking device. The reason why the analog audio signals are converted to digital sig

nals is that it is easier to manipulate and store digital rather than analog data.

The goal of this project is to cutdown the power dissipation of thecurrent audio codec in the

InfoPad Project as much as possible and to increase the signal bandwidth. This report shows that

bybuilding acustom chip for the InfoPad, it is possible tocut down the power dissipation of the

codec by an orderof magnitude, from 40 mW to 3 mW.

Both the encoding and the decoding path of the codec are described, particularly the design

details ofthe low power, linear phase decimation filter in the encoding path. The filter has asignal

bandwidth of7 kHz and an out-of-band attenuation of60dB. The power estimation isless than 0.4

mW. It consists of four stages. The first stage is a cascade of four comb filters. The secondand

third stage are halfband filters. The last stage is a droop-correction filter. Several different

approaches to lower the power dissipation of the filter will bediscussed inthis report.

Acknowledgments

I would like to extend my sincere appreciation to Professor Bernhard Boser for his guidance

and support over the past two years. The knowledge that I treasure from him isbeyond what I can

learn from textbooks. Also I would like to thank Professor Robert Brodersen for giving insightful

directions to the project, andreading this thesis.

Besides, I am grateful to the help of the research group of Professor Brodersen. In particular,

many thanks go to Dr. Andy Burstein, Dr. Sam Sheng, Tom Burd and Ian O'Donnell for solving a

lot of CAD tool problems that I encountered.

In addition, I would like to thank my fellow officemates in my own group. Tom Wongkomet,

Darrin Young, Colby Boles, Monico Ortiz, Eugene Cheung, Mark Lemkin and I have shared many

happy and depressing moments together.

Also I would like to thank Martin Tsai and Wai Lau for beating me in Risk, Pramote Pir-

iyapoksombut, Keng Fong and Tony Lin for beating me in Chess, George Chien and Jeff Ou for

beating me in Bridge, Li Lin for beating me in Go, as well as all those who beat me on the basket

ball court.

Special thanks goto Steve Lo for working out with me inearly mornings and helping me find

a job without a referral bonus.

Lastbut not the least, I amindebted to my parents, my brother and my sister for theircontinu

ing financial and moral support. Emailing with my brother and my sister at 4 a.m. in the morning

helped me work on my projectwithout falling asleep.

This research was supported by the Advanced Research Projects Agency.

Low Power Audio Codec

CHAPTER 1 Introduction

1.1 Goal and Motivation 1

1.2 Thesisorganization 4

CHAPTER 2 Encoding Path

2.1 Overview 5

2.2 Anti-Alias Filter 5

2.3 AnalogOversampling Sigma-Delta Modulator 7
2.4 Decimation Filter g

2.4.1 Three-Stage DecimationFilter 9

2.4.2 Four-Stage Decimation Filter 11

2.5 Summary 13

CHAPTER 3 Decimation Filter - Implementation

3.1 Overview 14

.3.2 Comb Filter 14

3.3 DirectImplementation Of Halfband Filters 17
3.4 Approaches ToReduce Power Dissipation 19

3.4.1 Polyphase Structure 20

3.4.2 MultirateAddressing Scheme 21

3.4.3 Multiplier-Free Arithmetic Logic Unit 23
3.4.4 Nested Multiplication 25

3.5 Complete Structure 26

3.6 PowerEstimation 27

3.7 Time Domain Analysis 29
3.8 Layout 33
3.9 Summary 34

CHAPTER 4 Decoding Path

4.1 Overview 35

4.2 Interpolation Filter 35

4.3 Digital Demodulator 37
4.4 Smoothing Filter 3g
4.5 Summary 39

CHAPTER 5 Conclusion

5.1 Conclusion 40

Appendix A

A. 1 First Halfband Filter Coefficients, Fl 41

A.2 Second Halfband Filter Coefficients, F2 42

A.3 Droop-Compensation Filter Coefficients, FD 43

A.4 Allocation Of RAMSpaces ForThe ThreeFilters 44
A.5 ROM Coefficients 47

References 51

CHAPTER 1

Introduction

1.1 Goal and Motivation

In a portable communication device, a low power design is very important to increase the bat

tery life. In the InfoPad Project [25], [26], the existing audio interface employs a general purpose

codec from Motorola (MCI45554), whichhasa powerdissipation of40mW. This is not desirable,

especially when compared to the power dissipation of theother InfoPad custom chips, likethePro

tocol Chip (1 mW) [28], and the video module (< 2mW) [29]. The existing codec has a signal

bandwidth of 3kHz and has aSNDR of 35dBwith adynamic range of 75dB (using mu-255 law).

This work discusses the design of a codec with morethan an order of magnitude reduced

power dissipation. The new codec cuts down the powerdissipation from 40 mW to less than 3

mW,and it increases the signal bandwidth from 3kHzto 7kHz for better audio recognition. Table

1.1 summaries the key specifications of the new codecandthe existing codec.

1.1 Goal and Motivation

Table 1.1: Key Specifications Of The Proposed And The Existing Codec

Existing Codec
(MC145554)

Proposed Codec

Nyquist Rate 8kHz 16kHz

Sampling Rate 8kHz 64x16kHz

(1.024 MHz)

Bandwidth 3kHz 7kHz

Dynamic Range -75 dB

(mu-255 law)

>72dB

SNDR -35 dB >72dB

Power Dissipation

(active)

40 mW <3mW

Figure 1.1 shows theblockdiagram of theaudio codec. Intheencoding path, there are an anti-

alias filter, an analog XA modulator and a decimation filter. It takes the analog signal from the

microphone of a headset and gives acorresponding digital code. The digital codewill thenbe sent

to theaudio chip of the InfoPad for storage or further computation. In thedecoding path, there are

an interpolation filter, a digital EA demodulator and a smoothing filter. The codec picksup the

digital data from the audio chip and outputs an analog signal to the earphones of aheadset.

Microphone Anti-Alias
Filter

Analog IA
Modulator

Decimation

Filter

Digital Outpul

(Audio Chip;

Digital Data _
(Audio Chip)

Interpolation
Filter

Digital £A
Demodulator

Smoothing
Filter

Earphones

Figure 1.1:The Block DiagramOf An Audio Codec

1.1 Goal and Motivation

In the encoding path, an oversampling IA modulator is used to move the quantization noise to

ahigher frequency band. This is why oversampling is avery attractive technique for low frequency
applications. Since we are using an oversampling modulator, the requirements for the anti-alias fil

ter in the front end are not stringent. It can be as simple as atwo or three pole Butterworth lowpass
filter, implemented with an active RC network.

A decimation filter is then used to transform the digitally modulated signal from short words

occurring at ahigh sampling rate to longer words at the Nyquist rate. Hence asteep cutoff charac

teristic isrequired toavoid aliasing. With aNyquist rate of 16kHz, the transition band of the filter

is permitted to extend from 7kHz to 9kHz.

Besides attenuating the quantization noise above the signal band from the analog ZA modula

tor, the decimation filter also suppresses other out-of-band noise within the signal path, such as

noise from the power supplies, substrate coupling or high frequency signal components. We will

ensure that the out-of-band noise will be attenuated by at least 60dB before being aliased into the
signal band (0-7kHz).

Other requirements on the decimation filter include the in-band ripples and phase distortion.

We would like to limit the ripples to be no more than 0.1 dB. To avoid phase distortion, we will

makeuse of alinear-phase filter design.

Table 1.2 summarizes the design specifications ofthe decimation filter. This report will detail
thewhole design process to meetthese specifications.

Table 1.2: Specifications Of The Decimation Filter

Transition band 7kHz-9kHz

out-of-band attenuation 60 dB

in-band ripple +/-0.1dB

phase distortion linear phase

1.2 Thesis organization

In the decoding path, an interpolation filter is used to raise the input word rate to afrequency
well above the Nyquist rate. The output words are then truncated and converted to the analog form
at the high sample rate by the oversampled demodulator. The digital demodulator, like its analog
counterpart, also shapes the quantization noise to ahigher frequency band. Hence asmoothing fil

ter is used to remove the out-of-band noise, as well as to avoid distortion in the power amplifier
and ear phones.

1.2 Thesis organization

This thesis is organized into five chapters. Chapter 2 discusses the function and the architec

ture ofthe building blocks in the encoding path, the anti-alias filter, the analog 2A oversampling
modulator and the decimation filter. Chapter 3 describes the actual implementation and the

approaches to reduce thepower dissipation of the decimation filter. Time domain verification and

the layout ofthe filter are also included. In Chapter 4, some ofthe design issues ofthe interpola
tion filter, the digital ZA demodulator and the smoothing filter in the decoding path ofthe audio
codec are discussed. Finally, Chapter 5 draws conclusions.

In addition, Appendix A lists the actual coefficients ofdifferent stages in the decimation filter,

the allocation of the RAMspaces tothe different stages and the ROM control codes.

CHAPTER 2

Encoding Path

2.1 Overview

In this chapter, wewill discuss the function and architectures of each building block in the

encoding path. We first begin with an anti-alias filter. A 3rd order lowpass active RC filter is given

as an example, and the power dissipation ofthe filter is estimated. Then the structure and the per

formance ofa3rd order analog ZA modulator satisfying the requirements in Table 1.1 will be pre

sented. Finally, a4-stage decimation filter will be shown to be suitable in our application. The

implementation and the power estimation of the decimation filter will be discussed in the next

chapter.

2.2 Anti-Alias Filter

An anti-alias filter is alowpass continuous-time analog filter. It prevents the high frequency

noises from folding back to the signal bandwidth due to sampling. Only the part ofthe input spec

trum which extends beyond (fsampie/2 - f^ai) isresponsible for aliasing. Consequently, an anti-

alias filter bears the characteristics of passing the baseband signal with the ininimal distortion

while attenuating the noise outside (fsampie/2 - fsignal), as shown in Figure 2.1.

2.2 Anti-Alias Filter

passband trensitsioo band stopband

3

i
E

(signal bandwidth)
sample/2

• frequency

Figure 2.1: Characteristics Of An Anti-Alias Filter

Oversampling filters usually have a sampling frequency much higher than Nyquist rate sam

plers, so thetransition band of theanti-alias filter for an oversampler can bemuchwider. Since the

complexity of a lowpass filter is a strong function of the ratio of the width of the transition band to

the width of the passband, the anti-alias filter for an oversampler is also much simpler.

In ourapplications, the sampling frequency of the analog ZA modulator is 1.024 MHz while

the signal bandwidth is7 kHz. A suitable filter can bea 3rd order Butterworth lowpass filter [20]

with ahalf-power frequency of63 kHz. It gives a72 dB attenuation at 505 kHz (fsampie/2 - B),
where B is the signal bandwidth. It introduces less than 0.05 degree phase distortion and less0.05

dB droop in the signal band.

The anti-alias filter can be implemented using an active RC filter, containing thin-oxide capac

itors and polysilicon resistors. Figure 2.2 shows a3rd order lowpass filter structure using acascade

of a 2nd Order lowpass filter and first order section [20].

In Figure 2.2, two opamps are needed in the3rd order lowpass active RC filter. A 1.5 V class

AB CMOS opamp described in [21] has an average power dissipation of 0.135 mW, using a2u.m

CMOS technology. In this project, abetter fabrication technology, 0.8 u,m CMOS technology, is

used, so the power dissipation of the anti-alias filter is expected to be lowerthan 0.3 mW.

2.3 Analog Oversampling Sigma-Delta Modulator

rm" -VW—'•

Ci

Wr
Ri

R4

rout

CoT

Figure 2.2: Structure of A 3rd Order Lowpass ActiveRC Filter

2.3 Analog Oversampling Sigma-Delta Modulator

An analog oversampling ZA modulator takes the output ofthe anti-alias filter and performs a

coarse amplitude quantization at a frequency much higher than the Nyquist rate and outputs a

PCM (pulse code modulation) code. It trades the resolution in time for resolution in amplitude, so

less precise analog circuits may be used. The output quantization noise spectrum will be shaped,

that is, the quantization noise energy is moved towards higher frequencies, which will then be

eliminated by the following digital decimation filter.

Two important parameters indesigning an analog oversampling LA modulator are theorder of

the modulator and the oversampling ratio (OSR), which is the ratio ofthe half ofthe sampling fre

quency tothe Nyquist rate (fsampie / (2 *Nyquist Rate)). A higher order modulator requires alower

OSR, but increases the complexity ofthe modulator structure. There are two advantages ofkeep

ing alow OSR. One ofthem is that the requirements ofthe opamp can be made less stringent,

because the modulator is running at alower frequencies. The other advantage is that itcan help
reduce the power dissipation of the following digital decimation filter.

With afirst or second order modulator, stability is almost guaranteed. However, for ahigher

order modulator, stability is maintained either by using amulti-bit quantizer or using amultistage

architecture (MASH) [12]. In the first case, the design challenge comes from maintaining the

speed and linearity of the quantizer. In the latter case, the challenge comes from the matching

accuracy between the noise transfer function ofthe analog modulator and the digital differentiator.

2.4 Decimation Filter

It is found that a3rd order oversampled modulator with local feedback loops [11] gives area

sonable compromise between the order and the complexity of the modulator. The structure of the

modulator is show in Figure 2.3. It is asingle stage architecture with three feedback loops. Stabil

ity is maintained by the local feedback loops. The output is a4-bit digital output code. From [11],

with arail-to-rail voltage of2.5V, and an OSR of64, or asampling frequency of 1.024 MHz, the

modulator achieves 73 dB for asignal bandwidth of8kHz. The input range is from -0.3 V to 0.3V

and dissipates 0.83 mW.

Input
from

Anti"
Alias Filter

rlocal feedback lpqp^

11,12,13 areintegrators;

j,k,l are scaling factors;

Hj.H2.H3 are digital cancellation circuits for thelocal feedback loops.

Output to the
Decimation Filter

Figure 2.3:3rdOrderIA Modulator With Local Feedback Loops

2.4 Decimation Filter

Themain function of adecimation filter istotransform the modulated signal from short words

atahigh sampling rate to longer words atthe Nyquist rate. It is easy to argue that a sinck filter is

very efficient in removing the out-of-band noise ofa(k-1)* order LA modulator [5].

2.4.1 Three-Stage Decimation Filter

In ourcase, the decimation filter is designed for a 3rd order LA modulator, so a4th order sine

filter isused in our design. However the in-band droop of the sine4 filter is intolerable if the deci

mation is only done by the sine4 filter. This leads us to split the decimation process to more than

one stage. Figure 2.4 shows that inorder todecimate an input signal by a factor of 64,thesignal is

first decimated by (64/N) times in the sine4 filter, and further decimated byNtimes in an addi
tional digital filter.

A droop-compensation filter isadded tothe architecture tocompensate as much in-band droop

produced by the 4th order sine filter as possible.

Input"

fs= 1.024 MHz fs= (1.024/N) MHz

Droop
Compensation

fs= 16 kHz

Output

Figure 2.4: The Basic Structure Of The Decimation Filter

In the next two sub-sections, wewill contrast the performance and complexity of twoarchitec

tures. One of them isa3-stage design, in which the second decimation factor, N,of the digital filter

is 2. The other one is a 4-stage design, in which N is 4.

2.4.1 Three-Stage Decimation Filter

The first architecture that we look into isto have the second decimation factor, N, equal to 2.

Halfband filters are particularly suitable for this 2-to-l decimation [6], because they have the the

characteristics of passing signals up to ahalf of the Nyquist frquency, or aquarter of the Nyquist

rate. The implementation of halfband filters will bediscussed more indetails inChapter 3.Conse

quently, we come up with the architecture as shown in Figure 2.5. The halfband filter isdesigned

by using the design "trick" as illustrated in [8] and the impulse response coefficients of this filter

are listed in Appendix A. Figure 2.6 shows the performance of thethree-stage decimation filter.

2.4.1 Three-Stage Decimation Filter

Input"

fs= 1.024MHz fs=32kHz

Figure2.5:The 3-Stage Decimation Filter

1.5 2
frequency(Hz)

fs=16kHz

xlO

Figure2.6:The Performance OfThe 3 Stages OfThe FirstArchitecture

10

Output

2.4.2 Four-Stage Decimation Filter 11

The transition band is from 7 kHz to 9 kHz.The in-band droop afterthe halfband filter is 2.8

dB. With the 15-tap droop-compensation filter, which consists of 8 non-zero taps, the in-band

droop can be corrected up to +/-0.2 dB, which is still not very desirable.

2.4.2 Four-Stage Decimation Filter

Another architecture we look into is a 4-stagedecimation filter. It has the same basic structure

asin Figure 2.4, withthesecond decimation factor of 4. Instead of designing a sharp cutoffdigital

filter with a decimation ratio of 4, we make useof two halfband filter stages, as shown in Figure

2.7.

Input"

1

16

fs= 1.024 MHz

First
Halfband

fs=64kHz

/

fs=32kHz

Figure 2.7: The 4-Stage Decimation Filter

2

Droop
Compensation

fs= 16 kHz

output

The transition bandwidth can be less stringentin the first half-band filter. The F8 half-band fil

ter given in [6], with a scaling factor, is used in ourdesign. There are only 5 non-zero coefficients

in this filter. The second half-band filter is the same as the one in section 2.4.2. The impulse

response coefficients are also listed in Appendix A. Figure 2.8 shows the performance of the four

stages of the filter.

The in-band droop before the droop-compensation filter is 0.68 dB. With a7-tap droop-com

pensation filter, that is, 4 non-zero coefficients, the droop canbe reduced to +/-0.02dB, which is

well below the 0.1 dB specification.

Wecan see that both architectures have the same transition bandwidth, but the in-band ripples

in the second architecture, +/- 0.02 dB, is muchbetter than thatof the first one,+/-0.2 dB. Also,

2.4.2 Four-Stage Decimation Filter
12

the additional filter needed in the second architecture, which has only 5 non-zero coefficients, is

somewhat compensated by the simpler droop-correction filter (4coefficients less). Hence, the sec

ond architecture is adopted. Figure 2.9 shows the overall performance of the decimation filter,

including the sine filter, two halfband filters and the droop-compensation filter.

3 4
frequency(Hz)

x 10

Figure 2.8: ThePerformance OfThe 4 Stages OfTheSecond Architecture

2.5 Summary

3 4
frequency(Hz)

Figure 2.9: The Performance Of The Overall Filter Performance

13

x10

2.5 Summary

Both the three-stage and four-stage decimation filters are considered. The four-stage decima

tion filter has less drooping effectin thebaseband, butthenumber of non-zero coefficients for both

filters are about the same. However, as we will cover the multirate addressing scheme in Section

3.4.2, theadditional stage will result amore complex scheme. Nevertheless, theincrease in com

plexity in the addressing scheme is justified by the better performance, so the four-stage architec

ture is more appropriate for the decimation filter. The implementation and the power dissipation of
the decimation filter will be discussed in thenextchapter.

Besides the functions of the other building blocks of the encoding path are discussed. Thetotal

power dissipation of the anti-alias filter and the analog ZA modulator is found to be less than

l.lmW.

CHAPTER 3

Decimation Filter --

Implementation

14

3.1 Overview

In Chapter 2, we discussed two different architectures of the decimation filter. In this chapter,

we will look at the actual implementation of the filter. We will discuss how toimplement the sine4

function, using acascade of4comb filters, and the halfband filters. Asmentioned inChapter 2, we

have twohalfband filter stages, each of which running ata different frequency. Section 3.3 will

introduce amultirate addressing scheme, which only needs asingle RAM and a single ROM to

store all the required taps for both thehalfband filters and thedroop-compensation filter. Simula

tion results and the power estimation will be presented in Section 3.4.

3.2 Comb Filter

A comb filter of length D is an FIR filter with all Dcoefficients equal to one. It has a transfer

function of

l-z~D

««=H^ (3i)

In the frequency domain,

3.2 Comb Filter

H(eJwt) = e
-j(DX (D-l)

(. /T>©tY\

su,h
TXdtY

15

(3.2)

This will give the first order sine function. From (3.1), thedenominator can be implemented

by a delay-free integrator (DFI), while thenumerator can be implemented by a differentiator, as

shown in Figure 3.1a. Adelay block, z*1, is simply aregister. However, in the actual implementa

tion, we would liketouseadiscrete digital integrator (DDI), that is,moving thedelay block to the

forward path (Figure 3.1b). Only a delay term willbe added to the transfer function in (3.1). This

serves as a pipeline action and cuts thecritical path between theinput and theoutput. It is particu

larly important in the higher ordercases.

Delay-Free Integrator D-Detay Differentiator
(a)

Discrete Digital Integrator D-Delay Differentiator

(b)

Figure 3.1: Single Stage Comb Filter

OUT

OUT

3.2 Comb Filter 16

To obtain a4th order sine function, we just needto cascade 4 comb filters together, see Figure

3.2.

IN - I - I _ I - I

1—~—I Discrete Digital
I l I Integrator

r—l D-Delay
1>LM Differentiator

D-D - D-D - D-D - D-D OUT

Figure 3.2: Implementation Of A 4th Order Sine Function

Two more design issues have to be considered. One of them is the processof decimation and

the other is the overflow problem in the integrators.

The most straight forward way to decimate the sine4 output bya factor ofDisto subsample

the output every D cycles. In otherwords, many outputdata will be thrown away. This will wastea

lot of computational efforts. In order to only calculate the samples that we need, we would do the

decimation between the integrator section and the differentiator section. To maintain the same

transfer function, all the D-delay blocks in the differentiators are replaced by the unity delay block,

as shown in Figure 3.3.

The data overflowproblem in the integrator section canbe overcomeby using a two's comple

mentationcalculation, which allows wrap-around fromthe most positivenumberto the most nega

tive. However, a minimum wordlengthof eachintegrator has to be met. From [18],

minimum wordlength = N log2D + Bin (3.3)

where N is thenumber of integrator stages, D is thedecimation ratio and B^ is thenumber of input

bits. In our design, N =4, D = 16andBin =4, the minimum wordlength is then 20 bits. The com

plete sine4 block isillustrated in Figure 3.3.

3.3 Direct Implementation Of Halfband Fitters

4b

IN-7^ I

*D

I - I I -/- D-7 D-7 -

~ I Discrete Digital
1 I Integrator (20b)

17

7TT1 Unity Delay
P"7 I Differentiator (20b)

D-7 - D-7 -7^ OUT

20b

Figure 3.3: Implementation OfThe Complete Sine4 Block

3.3 Direct Implementation Of Halfband Filters

A halfband filter isalinear-phase lowpass FIR filter, having the the characteristics of passing

signals up to ahalf ofthe Nyquist frquency, or aquarter ofthe Nyquist rate. Therefore it ispartic

ularly attractive indecimating signal frequency by2. The technique for designing ahalfband filter

(H) whose number of taps (N) is always odd is described in [8]. If we label the first coefficient,

H(0), we find that all oddcoefficients, except themiddle one, H((N-l)/2), are zero.

As mentioned in the last chapter, therearetwo halfband filters. The first halfband filter has 5

non-zero coefficients while the second one has 19. A direct implementation of the first halfband

filter is shown in Figure 3.4. However, to compute one output, the data stored in the registers need

tobe circularly shifted to acommon point where they are multiplied by the appropriate coeffi

cients. The large amount of data transfer not only has aconsiderable power dissipation, but also

wastes a lot of area. In addition, in case of acascade of several filters, one multiplier isneeded for

each filter.

In our example, X isa22-bit, 64 kHz input. From Figure 3.4, there are 16 22b registers, 122b

MUX, 122b adder, 122b multiplier, and a15 word x22 bit ROM. There are 15 registers in the tap

line, so the filter needs to run at a frequency 15 times faster than the input frequency, that is, 960

kHz. Similarly, the second halfband filter needs 7222b registers, 122b MUX, 122b adder, 122b

3.3 Direct Implementation Of Halfband Filters 18

multiplier and a71 word X 22 bitROM. The input frequency of the second halfband filter is 32

kHz and the filter runs at a frequency 71 times faster than the input frequency.

Figure 3.4: DirectImplementation Of The First Halfband Filter

We use anew tool developed in the University ofCalifornia, Berkeley, PowerPlay, to estimate

the power dissipation ofthis implementation. PowerPlay estimate the power dissipation ofacom

ponent by calculating its effective capacitance (P =CV2 f). The effective capacitance ofeach dig

ital component is modelled as a setof formulas, based on measured data. The data for ROM are

not available yet. We estimate the effective capacitance for ROM by using half ofthe capacitance
for RAM.

Table 3.1 shows the power dissipation ofthe two halfband filters. For an input data rate of64

kHz and avolatge supply of1V, the power estimation is about 870 jiW. The high level ofpower

dissipation is mainly due to the large amount of data shift, so direction implementation is defi

nitely not agood soluation. In the next section, we will discuss some approaches that reduce the

power dissipation down to below 300 U.W.

3.4 Approaches To Reduce PowerDissipation 19

Table 3.1: PowerDissipation ofTwo Halfband Filters

Description Quantity
Effective

Capacitance
(pF)

Operating
Frequency

(kHz)

Power

Dissipation
(HW)

First Halfband Filter:

15 word x 22 bit ROM 1 19a 960 18.2

22b register 16 2.1 960 32.3

22b adder 1 5.9 960 5.7

22b MUX 1 0.9 960 0.9

22b multiplier 1 122.5 960 117.6

Second Halfband Filter:

71wordx22bitROM 1 25.7b 2272 58.4

22b register 72 2.1 2272 343.5

22b adder 1 5.9 2272 13.4

22b MUX 1 0.9 2272 2

22b multiplier 1 122.5 2272 278.3

TOTAL 870.3

b. Estimation from 1/2of the capacitance of RAM

3.4 Approaches To Reduce Power Dissipation

One ofthe most efficient ways to reduce power dissipation isto lower the supply voltage. In

our application, the decimation filter isrunning at around 2MHz, which is slow enough toreduce

the supply voltage to 1V to 1.2 V. Asthe supply voltage is already very low, parallelism may not

help inthis case. In this section, four approaches to further reduce power dissipation are discussed.

They are using a polyphase structure, employing amultirate addressing scheme, using amulti

plier-free arithmetic &logic unit and making using ofnested multiplication computation.

3.4.1 Polyphase Structure 20

3.4.1 Polyphase Structure

Without loss of generosity, only the first halfband filter will bediscussed here. The filter con

sists of5non-zero coefficients. Apolyphase structure [2] shown in Figure 3.5 is used to implement
the halfband filter.

The alternate switch at the input X, or commutator, directs the even input data to the upper

branch and the odd to the lower branch. Since the halfband filter is linear phase, the impulse

response coefficients are symmetrical, hence both branches are folded backwards. The splitting of

the data into the even and odd branches istotake advantage of the fact that all but one odd coeffi

cients are zero. This makes the implementation ofthe odd branch considerably simpler. All ele

ments shown in broken lines in Figure 3.5 need not be implemented. This reduces the

computational complexity by nearly 50 %. An output is only calculated when an even datum is

input, that is, the input rate is twice the output rate. This automatically achieves the decimation

process by a factor of two.

The second halfband filter is implemented in a similar fashion

-1 n •1 ti -1 it

<V' Cjv C4w Ctf'

C,=4 C3=0J C5=4 C,a

^TT

tJ
' .-1 • ,-I

Zl 2-'

Figure3.5: PolyphaseImplementation Of The FirstHalfbandFilter

3.4.2 Multirate Addressing Scheme 21

3.4.2 Multirate Addressing Scheme

As wecan see inSection 3.3, the filter tap line is implemented inalong line of registers. Alter

natively, the filter input data can bestored inaRAM. Whenever amultiplication is tobedone, only

the corresponding tap is accessed. By using this method, data nolonger need tobe transferred in a

circular fashion. The number of words inaRAM will equal the length of atapped line. Each new

word (datum) is stored in the next higher location in the RAM, compared to its previous word.

After storing the last input in the last location ofthe RAM, the next input will bestored back inthe

Oth location of theRAM, hence overwriting theold datum.

The way wedetermine the correct address is shown in Figure 3.6. The correct address is the

sum ofabase address and avirtual address. The base address records the most recent input datum.

It is incremented byone whenever anew datum is received. It isbasically acounter. The virtual

address records the delayed tap address, assuming the most recent datum is stored in 0th location

of the RAM. It is stored in aROM. In other words, the locations inthe RAMcan beconsidered as

the tapped line.

Base Address

Correct Address

Virtual Address

Figure 3.6: Implementation of the correct address of the RAM

To implement more than one filter, we can still use only one single RAM, provided the number

ofwords ofthe RAM equals to the sum ofthe lengths ofthe tapped lines. Different base address

counters are usedto keep track of themostrecent datum location for different filters.

However, the above scheme only works well for single rate filters. To implement several filters

with different sampling rates, there will be aproblem. For example, Figure 3.6 shows that 2three-

tapped filters, A and B, are implemented in aRAM, with A samples twice as fast as B.After acer

tain number of cycles, all thedelayed tap values of B are overwritten.

3.4.2 MultirateAddressing Scheme

AO
i

i

4*
i

i

B3 A6

Al Al B4

A2 A2 A2

BO A3 A3

Bl A4 A4

B2 B2 A5

22

Figure 3.7: Problem of multirate filters in a single RAM

A multirate addressing scheme [2] is proposed to solve the problem. If a RAM is used to

implement twomultirate filters, say filter A samples n times faster than filter B, filter A data should

be stored in forms of n sections. For example, filter A samples twiceas fast as filter B, so filter A

data are stored in two sections. Figure 3.8 shows how the multirate addressing scheme works. We

can see that old data (compared to the delayed tap line) of filter A are overwritten by its own new

data, instead of the "useful" delayed tapvalues of filter B. This ideacanbe extendedto accommo

date any number of stages of different sampling rates. However, the more number of stages is, the

more complex of the scheme will be.

The actual allocations of the locations of the RAMtothe last three filters of the four-stage dec

imation filterarelisted in Appendix A.

AO r>' B3
i

B3

A2 A2 B4

A4Al A4

L
BO A3 A6

Bl

*

Bl A5

B2 B2 B2

Figure 3.8: Multirate Addressing Scheme In A Single RAM

3.4.3 Multiplier-Free Arithmetic Logic Unit 23

With this multirate addressing scheme, we get rid of long lines of registers and combine the

tap lines of several filters into a single RAM.Tnishelp cutting down the power dissipation and the

chip area.

3.4.3 Multiplier-Free Arithmetic Logic Unit

All the computations of thetwo halfband filters and thedroop-compensation filter are done in

2's complement. The computations basically are the multiplication of a delayed tap by its corre

sponding coefficients and the additions of the products. For audio applications, since the output

frequency isrelatively low, it is possible to use asequence ofadditions and shifts to perform the

multiplications, sowedonotneed toimplement the multiplier in the arithmetic unit. We can do so

by carefully selecting our filter coefficients and quantizing them to some CSD (canonic signed-

digit) codes [4], which are numbers representable as sums or differences of powers of two[4],[7].

All the coefficients of the two halfband filters and the droop-compensation filter can be repre

sented in 128 adding and shifting sequences. No multiplier isneeded. This will greatly reduce the

complexity of the decimation filter.

Figure 3.9 shows apossible structure ofthe arithmetic logic unit. It consists of4 registers, 6

multiplexors, a shifter, an adder and arounding logic block. The ROM isnot storing the coeffi

cients directly, but the sequence ofadding and shifting ofthe corresponding coefficients. 13 bits of

the 22-bit ROM are used to control ofthe registers, the shifter and the multiplexors, which deter

mine the sequences of adding and shifting. The other 9 bits of the ROM are used to control the

read/write operation of the RAM, update the base address of each filter and store the virtual

addresses of alldelayed taps.

3.4.3 Multiplier-Free Arithmetic Logic Unit

IN2 •

(Comb
output)

ROM10

J

-*• §

INI
ROM11 ROM12

*—»

(RAVI
outp it)

r><

ROM 13

K
CO

~>

CM

W

ROM 14

ROM17

A

ROM9

OUT1

(RAM
input)

ROM 15

l\M

ROM21-19

y3b

Is
\
*>

•P' \

ROM18

••0'' k

*>

Figure 3.9: The 22-bit Arithmetic Logic Unit

ROM9-21: controlling bits
ROM8: update base address
ROM7: RAM write
ROMO-6: virtual address

24

The shifter is a logarithmic shifter, which iscapable of shifting anumber by 7 bit positions, i.e.

having 3 controlling pins. The roundingunit, as shown in Figure3.10, is used to ensure the round

ing adder output to the nearest least significant bit.The arithmetic unit receives two input,one

from the cascade ofcomb filters and the other from the RAM output. The sine4 fflter output isthe

input data stream for the first halfband filter. The RAM output is the delayed tap to be multiplied

byits corresponding multiplier. Whenever there isanew sine4 filter output, the arithmetic unit will

3.4.4 Nested Multiplication 25

store (or write) that value into the RAM through MUX5. Then the unit will read the two delayed

tap values

that have the same corresponding coefficient,to REG2 and REG3. Remember that all the filters are

linear phase, so theirimpulseresponse taps are symmetrical. The sum of the two values are then

stored in REG2 and REG3. The value inREG2 can then be shifted and added back to REG3. By

repeating this adding and shifting sequence, the delayed tap value becomes the product of the

delayed tap value and its corresponding coefficient. This value isthen stored inREGl temporarily.

When the product of the other pair delayed tap values is calculated, it will be added to REGl and

then stored back in REGl. After repeating the similar procedure to every delayed tap in a filter,

REGl will store the output of that filter. The output will thenbe stored in the RAM.

shift3

shift4

shifts

shift6

ROM 15

shiftO

shift 1

shift2

ROM 19
ROM20

k

ROM 19
I ROM2C

al I

V

Figure 3.10:RoundingLogic

ROM21

|J>
Cin

7

3.4.4 Nested Multiplication

An additional means of reducing the power dissipation is to employ the Horner's multiplica

tion scheme, or nested multiplication incomputation. Partial products, rather than the multipli-

3.5 Complete Structure 26

cand, are shifted and added. For example, anormal multiplication of the multiplicand x by the

CSD coefficient 3/8 is performed as:

3 1 J
8* = 4*+8* <31>

The corresponding nested multiplication is performed as:

3 I f I \

This reduces the number ofbits required to be shifted inthe shifter. In our example, a shifter

capable of shifting an input by7 bit positions is enough. The nested multiplication also help

reduce the quantization error. To prevent any overflow problems during the nested multiplication

operations, two more bits are added on top of the 20-bit sine4 filter output, resulting in a22-bit

arithmetic logic unit.

The actual codestored in the ROM is listed in Appendix A.

3.5 Complete Structure

The complete structure of the decimation is shown in Figure 3.11. The input frequency (from

themodulator output) is 1.024 MHz. Theclock frequency is only2.048 MHztomaintain a 16 kHz

output rate.

The actual 12-bit output is taken from bit 8 to bit 19 of the 22-bit ALU output, i.e. bit 0 tobit

7, bit 20 and bit 21 of the ALU are dropped.

Some designs [2] would like totake advantage of the multirate addressing scheme and use the

ROM to implement the integrator stage of the Comb filter, which operate at arelatively low data

rate. This can help reduce the chip area. This isnot done here because of two reasons. Firstly, all

the coefficients are nicely packed in the 128-word ROM, leaving no more room for another filter.

Only asimple 7-b counter isused to address each of the ROM location. Secondly, with an output

rate of 16 kHz and an operating frequency of 2.048 MHz, we have at most 128 cycles to perform

one output, which arealready used up by the 128-word ROM.

3.6 Power Estimation

elk

0 to 127

wrap-around

counter

Oto75

> wrap-around

counter

-/-
lb

addr

ROM OUT

128wordsx22bits

4-b
Modulator —•/-

output

Sine4 Filter
IN out

Figure 3.3

Figure 3.11: Complete Structure

7b

-7<-

7b

mod-76 adder

lb

13b

22b

IN

addr

76wordsx22bits

R/W

RAM
OUT

22b

INI OUTl

Arithmetic
ctrl Logic

Unit
IN2 OUT2

Figure 3.8

-7—

22b

27

filter

output
12b

3.6 Power Estimation

The power dissipation of the entire decimation filter isestimated byusing PowerPlay. Table

3.2 shows the effectivecapcitance of each building block of the decimation filter. The data for the

shifter is not available yet. Sincewe are using a logarithmic shifter with maximal shift widthof 7

bits to the right [22], there are three levels ofpass transistor logic, we estimate the effective capac

itance ofour shifter tobe5times the capacitance ofaregister. For an input data rate of 1.024 MHz

and avolatge supply of 1V, the power estimation isabout 270 \iW. With avoltage supply of 1.2 V,

the power estimation isabout 390 ftW. Hence the decimation filter should not dissipate more than

0.4 mW.

3.6 Power Estimation 28

Table 3.2: PowerDissipation Of The Entire Decimation Filter

Description Quantity
Effective

Capacitance
(pF)

Operating
Frequency

(kHz)

Power

Dissipation
(HW)

Sine Integrator:

20b adder 4 5.4 2048 44.2

20b register 4 1.9 2048 15.6

Sine Differentiator:

20b adder 4 5.4 128 2.8

20b register 5 1.9 128 1.2

ROM_addr counter:

7b counter 1 1.1 2048 2.3

RAM_addr counter:

7b counter 1 1.1 2048 2.3

7b adder 2 1.9 2048 7.8

7b MUX 1 0.3 2048 0.6

ROM:

128 word x 22 bit 1 32.6a 2048 66.8

RAM:

76 word x 22 bit 1 52.7 1216 64.1

ALU:

22b register 3 2.1 2048 12.9

12b register 1 1.1 2048 2.3

22b MUX 6 0.9 2048 11.1

22b shifter (shift by 7 bit
positions)

1 10.5b 2048 21.5

22b adder 1 5.9 2048 12.1

22b inverter 1 2.1 2048 4.3

TOTAL 272
a. estimation rrom 1/2 of capaciiance or aKAM

b.Estimation from 5 times of capacitance of aregister

3.7 Time Domain Analysis 29

3.7 Time Domain Analysis

Viewdraw program, under the Viewlogic tool sets, is used to enter the schematic diagram of

the decimation filter. We then use the Viewsim program, another Viewlogic program, to verify the

performance of the decimation filter in the time domain. We first use MATLAB to generate the

modulator output data, which are fed into the Viewsim program as the input of the decimation fil

ter. The Viewsim output data are then extracted using UNIX commands and plotted inMATLAB.

Figure 3.12, Figure 3.13 and Figure 3.14 show the filter output for an input of 1kHz, 7 kHz

and 9 kHz sine wave respectively. The actual 12-bit filter output is extracted from the3rd MSB of

the ALU output and onwards. The first two MSBs are excluded becasue they are just additional

bits used to prevent overflowing during the computation process. The sampling frequency ofthe

filter is 16 kHz.

In Figure 3.12, asmooth 1kHz sine wave is obtained at the output. In Figure 3.13, the rugged

output waveform represents the sampling version ofthe 7kHz. Since the sampling frequency is 16

kHz, there are only 2.29 samples for each cycle ofthe sine wave, which accounts for the rugged-

ness of the waveform. In Figure 3.13, the uneven magnitude of the comb filter output isdue to

printer aliasing while the spike in the output waveform is due to the initial transient effect only.

The ripples in the tail isdue tothe LSB round-off error of the 12-bit output.

From the three figures, we can see that the transition band lies from 7 kHz to 9 kHz andcon

firms the frequency response of thedecimation filter inFigure 2.9.

3.7 Time Domain Analysis

x104 Comb Filter Output

2 4

time (ms)

Actual 12-bit Output

2 4

time (ms)

x104 ALU Output

©

1°
(0

E

-2

2 4

time (ms)

Figure 3.12: Viewsim outputs for a1kHz sine wave input (f^p^ =16 kHz)

30

3.7 Time Domain Analysis

x1Q4 Comb Filter Output

2 4

time (ms)

Actual 12-bit Output

2 4

time (ms)

x10* ALU Output

2 4

time (ms)

Figure 3.13: Viewsim outputs for a7kHz sine wave input (fsampie =16 kHz)

31

3.7 Time Domain Analysis

80

60

a> 40

3

c 20
U)

E 0

x104 Comb Filter Output

2 4

time (ms)

Actual 12-bit Output

*v\M Wa * :-

' i

-20

-40
0 2 4

time (ms)

32

2

1.5

1 1
3

c 0.5

(0

E 0

-0.5

_1

x104 ALU Output

*M yYTvv"

2 4

time (ms)

Figure 3.14: Viewsim outputs for a9kHz sine wave input (fsample = 16 kHz)

3.8 Layout 33

3.8 Layout

Figure 3.14 shows the layout ofthe decimation filter, generated by the automated layout tool

Lager. The area is 32.45 x106 X2 , which is 20.7 mm2 if a0.8 urn technology is used. It is obvi
ously not optimized.

5886 k

(4.7 mm)

5513 X

(4.4 mm)

Figure 3.14: Magic Layout Of The Decimation Filter

3.9 Summary 34

3.9 Summary

A very area-efficient, low power design of the decimation filter is proposed. It consists of 4

stages. The first stage is a cascade of 4 comb filters, which is then followed by 2 halfband filters.

The last stage is the droop-compensation filter. The overall filter is linear-phase. It receives a 4-bit

input and produces a 12-b output. It provides a decimation factor of 64 and has an out-of-band

attenuation of 60 dB. The power dissipation of the decimation filter is estimated to be less than 0.4

mW.

From Chapter 2, the power dissipation of theanti-alias filter and the analog modulator is esti

mated to be under 1.1 mW. Consequently the total power dissipation of the encoding path will be

below 1.5 mW.

35

CHAPTER 4

Decoding Path

4.1 Overview

After discussing the decimation filter in previous chapters, which completes the encoding

path, we are going to look into some of the design issues inthe decoding path inthis chapter. We

will first investigate the interpolation filter, then the digital IA demodulator and finally the

smoothing filter.

4.2 Interpolation Filter

An interpolation filter is used to raise the input word rate to a frequency well above the

Nyquist rate, so that ademodulator can be used to truncate the words and convert the signal to the

analog form at the high sample rate. The requirements for attenuating the out-of-band images of

the signal spectrum in the interpolation filter are less stringent than thosein the decimation filter.

Consequently,we can safely use the specifications for the decimation filter here.

The structure of the interpolation filter, asshown in Figure 4.1, is verysimilar to a decimation

filter (Figure 2.4). The order of the building blocks in the interpolation filter is just the reverse of

that of the decimation filter, except the cascade of the comb filters are replaced by a zero-order-

hold stage. This has two major advantages. Firstly, the comb filters, which are running at arela-

4.2 Interpolation Filter
36

tively high frequency, burns aconsiderable portion of power in the decimation filter. They also

take up a lot ofdie area. Replacing the comb filters with a zero-order-hold stage will save both

power dissipation and area. Secondly, the droop in the base band due the sine4 function (0.68 dB)

is much bigger than that in a zero-order-hold stage, which isonly 0.17dB. As a result, either the

droop-compensation filter can be simpler orthe in-band droop can be improved.

Input

2

fc=16kHz

Second
Halfband

fc=32 kHz fe=64 kHz

Figure 4.1: The4-stage Interpolation Filter

Figure 4.2 shows theperformance of theinterpolation filter.

3 4
frequency(Hz)

Figure4.2: Performance Of The Interpolation Filter

16

Zero-Order
Hold Stage Output

fs= 1.024 MHz

4.3 Digital Demodulator 37

4.3 Digital XA Demodulator

Asmentioned in the previous section, the digital ZA demodulator is used to truncate the inter

polated words and convert them to the analog form at the high sample rate.

When designing adigital ZA demodulator, there are some design issues that are quite different
from those indesigning the analog modulator.

Firstly, when we design an analog modulator, we need to consider the quantization noise, ther
mal noise (kT/C) and op-amp noise. However, only quantization noise affects the performance ofa
digital demodulator. This means that the specifications for the digital demodulator is less severe.

Secondly, in an analog modulator, gain blocks are implemented by using the ratios of capaci
tances, which is very flexible. However, in adigital demodulator, again ofpowers of2is achieved

by shifting the data bits left or right. Therefore, no additional building blocks are needed. For a

gain other than powers of 2, either amultiplier or additional shifting and adding sequences are
needed. This increases the design complexity drastically.

Thirdly, in an analog modulator, the output of the quantizer is simply fed back to the input
summation node. In adigital demodulator, no quantizers are needed. The most significant bit of
the output will be like the output ofaquantizer. This single bit must be fed back to the multi-bit

input summation node in such away that it represents the most positive or negative number.

After knowing that the specifications for the digital demodulator is less stringent, and the fact
that gain blocks other than powers of 2drastically increase the design complexity, we find that
higher order topologies do not help reduce power consumption for low frequency applications, like
the audio codec. Using simple structures, like the one in Figure 4.3, is the key solution.

Figure 4.4 shows the performance of the demodulator in Figure 4.3. We can see that using an
oversampling ratio (M) of 128 ismore than enough for the specifications of the audio codec. The

power dissipation will only be in the u.W range, which is still insignificant when compared to the
power dissipation of the interpolation filter orthedecimation filter.

4.4 Smoothing Filter

Digital
input
X

Figure 4.3: 2ndOrder Single-bit Sigma Delta Demodulator

100

Figure 4.4: Performance Of A Second Order Sigma Delta Modulator

Sign Bit
Output
Y

38

4.4 Smoothing Filter

A smoothing filter is simply alow pass filter, which removes all the high frequency compo

nents of the demodulator output. With a2nd Order ZA demodulator, the smoothing filter must be

4.5 Summary 39

at least ofthe third order. This can be implemented as the anti-alias filter, or by using acascade of

biquad filters. The power dissipation of the smoothing filter should be similar to that of the anti-
alias filter.

4.5 Summary

The design issues ofthe building blocks ofthe decoding path have been discussed. We can see

that the design complexity ofthe decoding path is less stringent than that in the encoding path. The

decoding path is going to take up less area and burn less power than the encoding path From Chap
ter 3, theencoding path is found to dissipate less than 1.5 mW, sowe can conclude that theentire

codec will dissipate less than 3 mW.

40

CHAPTER 5

Conclusion

5.1 Conclusion

This report shows that itispossible to cut down the power dissipation of the audio interface by

an order of magnitude, from 40 mW to 3 mW. The approach uses a custom chip to replace the

existing audio general-purpose codec.

Several techniques are used to minimize the power dissipation of the decimation filter. A 128

word-ROM is used to achieve the desired specifications. It is also shown that the numberof RAM

words is not restricted to be a power of two. In our case, weusethe minimum number of words,

76 words instead of 128 words, to store the delayed tap lines of the two halfband filters and the

droop-compensation filter. A slightly more complex structure is then required for the RAM

address counter, but this is justified by the reduction in size of the RAM.

However, onedrawback of using themultiplier-free Arithemetic & Logic Unit (ALU) is that it

requires additional efforts to quantized the filter coefficients to the canonic signed digit (CSD)

code. This in turn makes the decimation filter less portable. Whenever there is achange in the

design specifications, theentire process of quantization needs toberepeated.

Appendix A

A.1 First Halfband Filter Coefficients, F1

All coefficients are zeros unless stated otherwise.

Table A.3: First Halfband Filter Coefficients

41

Tap
Coefficients

Before

Rounding
Canonic Signed Digits Rounded

Coefficients

F1(0),F1(14) -0.003741 - 2"8 + 2"12 -0.003662

F1(2),F1(12) 0.020574 T*> + 2"8 + 2'10 0.020508

F1(4),F1(10) -0.072319 -2-4-r7-r9 -0.072266

F1(6),F1(8) 0.305486 2"2 +2-4-2'7 0.305664

Fl(7) 0.5 r1 0.5

42

A.2 Second Halfband Filter Coefficients, F2

All coefficients are zeros unless stated otherwise.

Table A.4: First Halfband Filter Coefficients

Tap
Coefficients

Before

Rounding
Canonic Signed Digits Rounded

Coefficients

F2(0),F2(70) -0.000589 -2-n-2-13 -0.000611

F2(2), F2(68) 0.000722 rio.2-i2
0.000732

F2(4), F2(66) -0.001148 _2-l0.2-l2 + 2-l4
-0.001160

F2(6), F2(64) 0.001722 2-9.2-12
0.001709

F2(8),F2(62) -0.002478 -r9-rn -0.002441

F2(10),F2(60) 0.003453 2-8.2-n 0.003418

F2(12),F2(58) -0.004691 .2-8.2-l0 + 2-l2.2-l4 -0.004700

F2(14),F2(56) 0.006251 2-7-2-9 +2-n-2-13 0.006226

F2(16),F2(54) -0.008203 -r7-2-n + r13 -0.008179

F2(18),F2(52) 0.010652 2-6.2-8.2-10.2-13 0.010620

F2(20), F2(50) -0.013746 -2-6+2-9-r14 -0.013733

F2(22), F2(48) 0.017726 2"6 + 2-9 + 2"13 0.017700

F2(24), F2(46) -0.023004 -2-5 + 2_7 + 2-n-2-14 -0.023010

F2(26), F2(44) 0.030362 2-5. 2-l0 + 2-13
0.030396

F2(28), F2(42) -0.041482 -2-5-2-7-2-9-2-n -0.041504

F2(30), F2(40) 0.060758 2-4-2"9+r12 0.060791

F2(32), F2(38) -0.104339 .2-3 + 2-6 +2-8 + 2-10 +2-13 -0.104370

F2(34),F2(36) 0.317718 2-2 +2-4 +r7-2-9-2"n-2-13 0.317749

Fl(35) 0.5 r1 0.5

A.3 Droop-Compensation Filter Coefficients, FD

All coefficients are zeros unless stated otherwise.

Table A.5: DroopFilter Coefficients

43

Tap
Coefficients

Before

Rounding
Canonic Signed Digits Rounded

Coefficients

FD(0), FD(6) -0.000874 . 2-10 + 2-13
-0.000856

FD(1),FD(5) 0.003739 2-8 + 2-l2
0.003664

FD(2), FD(4) -0.020277 . 2-6.2-8.2-i0 +2-l2
-0.020264

FD(3) 1 2° 1

44

A.4 Allocation Of RAM Spaces For The Three Filters

Table A.4 shows how the 76 RAM spaces are allocated to the three filters: first halfband fil-

ter,Fl(N), second halfband filter, F2(T), droop-compensation filter, FD(Z).

In the first halfband filter, according to the multirate addressing scheme, the most recent 14

tap values are stored into 4 sections, two of which record the odd tap values and the other two

record the even tap values. More spaces areallocatedto store the even tap values, but it is not very

significant in this case.

In the second halfband filter, 53 most recent tap values are stored into 2 sections, one of which

records odd tap values and the other records the even tap values. In this filter, we can clearly see

that the number of spaces allocated to store the even tap values nearly doubles that for the odd tap

values.

The droop-compensation filter is not a halfband filter, so all 7 tap values are stored in one sec

tion.

When the first datum, F1(N), to the first halfband filterarrives, it replaces the old tap value fo

the first halfband filter, F1(N-11). When the output of the first halfband filter, or the first datum to

the second halfband filter, F2(T), is available, it replaces the old tap value of the droop-compensa

tion filter, FD(Z-7). While the calculation in the second halfband filter is going on, the first half-

band filter takes up two more data, with F1(N+1) replacing F1(N-14) and Fl(N+2) replacing the

old tap value of the second halfband filter, F2(N-37). When the output of the second halfband filter

is ready, FD(Z), Fl(N-9) is replaced. After that the fourth datum to the first halfband filter,

Fl(N+3), arrivesand replaces F1(N-16). A second Fl output, F2(T+1), will take the place of F2(T-

73). Finally, FD will generate the filter output.

For every output datum FD generates, F2 receives two more data while Fl recieves four,

which corresponds to a decimation factor of4.

45

Table A.6: Allocation Of RAM Spaces For The Three Filters

Tap line RAM
space

Access Order
Tap line RAM

space
Acces Order

Fl: F2:

Fl(N-9) 0 5th: FD(Z) F2(T-62) 38

Fl(N-5) 1 F2(T-60) 39

F1(N-1) 2 F2(T-58) 40

F1(N-16) 3 6th: Fl(N+3) F2(T-56) 41

F1(N-12) 4 F2(T-54) 42

Fl(N-8) 5 F2(T-52) 43

Fl(N-4) 6 F2(T-50) 44

F1(N-11) 7 lst:Fl(N) F2(T-48) 45

Fl(N-7) 8 F2(T-46) 46

Fl(N-3) 9 F2(T-44) 47

F1(N-14) 10 3rd:Fl(N+l) F2(T-42) 48

F1(N-10) 11 F2(T-40) 49

Fl(N-6) 12 F2(T-38) 50

Fl(N-2) 13 F2(T-36) 51

F2: F2(T-34) 52

F2(T-37) 14 4th:Fl(N+2) F2(T-32) 53

F2(T-35) 15 F2(T-30) 54

F2(T-33) 16 F2(T-28) 55

F2(T-31) 17 F2(T-26) 56

F2(T-29) 18 F2(T-24) 57

F2(T-27) 19 F2(T-22) 58

F2(T-25) 20 F2(T-20) 59

F2(T-23) 21 F2(T-18) 60

F2(T-21) 22 F2(T-16) 61

46

Table A.6: Allocation Of RAM Spaces For The Three Filters

Tap line RAM

space
Access Order

Tap line RAM
space

Acces Order

F2(T-19) 23 F2(T-14) 62

F2(T-17) 24 F2(T-12) 63

F2(T-15) 25 F2(T-10) 64

F2(T-13) 26 F2(T-8) 65

F2(T-11) 27 F2(T-6) 66

F2(T-9) 28 F2(T-4) 67

F2(T-7) 29 F2(T-2) 68

F2(T-5) 30 FD:

F2(T-3) 31 FD(Z-7) 69 2nd: F2(T)

F2(T-1) 32 FD(Z-6) 70

F2(T-72) 33 7th: F2(T+1) FD(Z-5) 71

F2(T-70) 34 FD(Z-4) 72

F2(T-68) 35 FD(Z-3) 73

F2(T-66) 36 FD(Z-2) 74

F2(T-64) 37 FD(Z-l) 75

47

A.5 ROM Coefficients

The following list showsthe 128 operations and the corresponding 22b code,"regl", "reg2",

"reg3"referto the threeregisters in the ALU, Figure 3.9.**#!" refersto the RAM position#7.

ROM operations

0.store#7(F1(N))
1.reg2 = read#7

2. reg3, regl = reg3 + reg2
reg2 = read #4

3. regl = reg3 • (regl » 4)
reg3=read#13

4. reg3, reg2 = reg3 + reg2
5. reg2=reg3+(reg2 » 2)
6. reg3 = reg3 + (reg2 » 2)

reg2 = read #6
7. regl = reg3 - (regl » 2)

reg3 = read #11

8. reg3, reg2 = reg3 + reg2
9. reg2 = reg3 + (reg2 » 2)
10. reg3 = reg3 + (reg2 » 3)

reg2 = read #5
11. regl = reg3 - (regl » 2)

reg3 = read #12

12. reg3, reg2 = reg3 + reg2
13. reg2 «= reg3• (reg2 » 3)
14. reg2 = reg3 • (reg2 » 3)
15. reg3 = reg3 + (reg2 » 2)
16. regl = reg3 - (regl » 2)

reg3 = read #8

17. regl = reg3 + (regl » 1)
reg2 = read #34

18. regl, reg3 = regl » 1

19. store regl (F2(T)) into #69

20. reg3, regl «= reg3 + reg2
reg2 = read #35

21. regl = reg3 + (regl » 2)
reg3 = read #68

22. reg3, reg2 = reg3 + reg2
23. reg3 = reg3 - (reg2 » 2)

reg2 = read #36
24. regl = reg3 • (regl »1)

reg3 »read #67

25. reg3, reg2 = reg3 + reg2
26. reg2 »reg3 - (reg2 » 2)
27. reg3 = reg3 + (reg2 » 2)

reg2 = read #37
28. regl = reg3 • regl

reg3 »read #66

29. reg3, reg2 = reg3 + reg2
30. reg3 = reg3 • (reg2 » 3)

reg2 = read #38
31. regl = reg3 • (regl »1)

r eg3 = read #65

32. reg3, reg2 = reg3 + reg2
store #10 (F1(N+1))

33. reg3 « reg3 + (reg2 » 2)

22b Code

00011 1011 1110 00 0000111
0001010110110 010000111

0001010 00 0100 010000100

1001011011101010001101

000 1010 00 0010 01 0001101
010101010 0010010001101
0101010 00 01 10 01 0000110

010101101 1101010001011

000 10 10 00 0010 01 0001011
010101010 0010 010001011
011 1010 00 0110 010000101

010101101 1101010001100

000 10 10 00 00 10 01 0001100
011 1011 10 0010 010001100
011 1011 10 0010 010001100
0101010 001010 010001100
010101101 1001010001000

001 101011 0101010100010

001 0010 00 11 01 01 0100010

0001010101110 001000101

0001010 00 01 00 01 0100011

0101010 01 110101 1000100

0001010 00 0010 01 1000100
010101100 0110 010100100

001 101101 110101 1000011

0001010 00 0010 011000011
010101110 0010 011000011
0101010 00 0110 010100101

0001011011101011000010

0001010 00 0010 01 1000010
011101100 0110 010100110

001 101101 110101 1000001

00011 10 00 0010 00 0001010

010 10 10 00 01 10 01 0100111

reg2 = read #39
34. regl = reg3 - regl 0001011 01 11 01 01 1000000

reg3 = read #64

35. reg3, reg2=reg3 + reg2 0001010000010011000000
36. reg3 = reg3 - (reg2 » 3) 011 1011 00 01 10 01 0101000

reg2 = read #40
37. regl «reg3 • (regl »1) 001 1011 0111 01 01 0111111

reg3 = read #63

38. reg3, reg2 = reg3 + reg2 0001010 00 0010 01 0111111
39. reg2 = reg3 - (reg2 » 2) 010101110 0010 01 0111111
40. reg3 a reg3 + (reg2 » 2) 0101010 00 0110 01 0101001

reg2 = read #41
41.reg1=reg3-reg1 0001011011101010111110

reg3 &read #62

42. reg3, reg2 = reg3 + reg2 0001010 00 0010 01 0111110
43. reg2=reg3 - (reg2» 2) 0101011 100010 01 0111110
44. reg2 a reg3 - (reg2 » 2) 010101110 0010 01 0111110
45. reg3 = reg3 - (reg2 » 2) 010 1011 00 01 10 01 0101010

reg2 = read #42
46. regl = reg3 - (regl » 1) 001 1011 01 10 01 01 0111101

reg3 = read #61

47. reg3, reg2 = reg3 + reg2 000 1010 00 0010 01 0111101
48. reg2 = reg3 - (reg2 » 2) 010 1011 10 0010 01 0111101
49. reg3 = reg3 + (reg2 » 4) 1001010 00 01 10 01 0101011

reg2 = read #43
50. regl = reg3 - regl 000 1011 01 11 01 01 0111100

reg3 = read #60

51. reg3, reg2 = reg3 + reg2 0001010 00 0010 01 0111100
52. reg2 =reg3+(reg2» 3) 011 101010 0010 01 0111100
53. reg2 = reg3 + (reg2 » 2) 0101010 10 0010 01 0111100
54. reg3 = reg3 - (reg2 » 2) 01010 11 00 01 10 01 0101100

reg2 = read #44
55. regl = reg3 - (regl » 1) 001 1011 0111 01 01 0111011

reg3 a read #59

56. reg3, reg2 = reg3 + reg2 0001010 00 0010 01 0111011
57. reg2= reg3 • (reg2» 5) 101 1011 10 0010 01 0111011
58. reg3 = reg3 - (reg2 » 3) 0111011 00 01 10 01 0101101

reg2 = read #45
59. regl =reg3-reg1 000101101 110101 0111010

reg3 = read #58

60. reg3, reg2 = reg3 + reg2 0001010 00 0010 01 0111010
61. reg2=reg3+(reg2 » 4) 100 101010 0010 01 0111010
62. reg3 = reg3 + (reg2 » 3) 011 1010 00 0110 01 0101110

reg2 = read #46
63. regl = reg3 - regl 0001011 0111 01 01 0111001

reg3 a read #57

64.store#14(F1(N+2)) 00011 1011 11 1100 0001110

65. reg3, reg2 = reg3 + reg2 0001010 00 0010 01 0001110
66. reg2=reg3- (reg2 » 3) 011 1011 100010 01 0001110
67. reg2 = reg3 + (reg2 » 4) 100101010 0010 01 0001110
68. reg3 = reg3 • (reg2 » 2) 0101011 00 01 10 01 0101111

reg2 a read #47
69. reg1=reg3-(reg1»1) 001101101110101 0111000

reg3 a read #56

70. reg3, reg2 «= reg3 + reg2 0001010 00 0010 01 0111000
71. reg2 = reg3 - (reg2 » 3) 011 101110 0010 01 0111000
72. reg3 a reg3 - (reg2 » 5) 101 1011 00 0110 01 0110000

reg2 a read #48
73. regl = reg3 - regl 0001011 0111 01 01 0110111

reg3 a read #55

74. reg3, reg2 «= reg3 + reg2 0001010 00 0010 01 0110111
75. reg2= reg3+(reg2» 2) 010101010 0010 01 0110111
76. reg2 =reg3 +(reg2 » 2) 010101010 0010 01 0110111
77. reg3 = reg3 + (reg2 » 2) 0101010 00 01 10 01 0110001

reg2 = read #49
78. regl a reg3 - regl 0001011 0111 01 01 0110110

reg3 a read #54

48

79. reg3. reg2 a reg3 + reg2
80. reg2a reg3• (reg2 » 3)
81. reg3 a reg3 - (reg2 » 5)

reg2 = read #50
82. regl a reg3 - (regl » 1)

reg3 a read #53

83. reg3, reg2 a reg3 + reg2
84. reg2a reg3+(reg2 » 3
85. reg2 a reg3 + (reg2 » 2
86. reg2 a reg3 + (reg2 » 2
87. reg3 = reg3 - (reg2 » 3)

reg2 a read #51
88. regl a reg3 - (regl »1)

reg3 a read #52

89. reg3, reg2 a reg3 + reg2
90. reg2=reg3+(reg2 » 2
91. reg2 a reg3 + (reg2 » 2
92. reg2 = reg3 - (reg2 » 2)
93. reg2 "
94. reg3

reg2
95. regl

reg3

reg3+(reg2» 3)
reg3 + (reg2 » 2)
read #4
reg3-(reg1 »1)
read #15

96. regl = reg3 + (regl » 1)
store #3 (Sine #4)

97. regl a regl »1
reg3 = read#14

98. store reg1(FD(Z)) into #0

99. reg3, regl a reg3 + reg2
reg2 a read #7

00. regl = reg3 - (regl » 4)
reg3 = read #11

01. reg3, reg2 a reg3 + reg2
02. reg2=reg3+(reg2 » 2
03. reg3 = reg3 + (reg2 » 2

reg2 a read #5
04. regl a reg3 - (regl » 2)

reg3 a read #13

05. reg3, reg2 a reg3 + reg2
06. reg2a reg3+(reg2 » 2}
07. reg3 = reg3 + (reg2 » 3)

reg2 a read #6
08. regl a reg3 - (regl » 2)

reg3aread#12

09. reg3, reg2 = reg3 + reg2
10. reg2 a reg3• (reg2» 3)
11. reg2 = reg3 - (reg2 » 3)
12. reg3 a reg3 + (reg2 » 2)
13. regl a reg3 - (regl » 2)

reg3 = read #1

14. regl = reg3 + (regl »1)
reg2 = read #70

15. regl a regl » 1
r eg3 = read #0

16. store reg1(F2(T+1)) into #33

17. reg3, regl a reg3+reg2
reg2 a read #71

18. regl = reg3 • (regl » 3)
reg3 a read #75

19. reg3, reg2 a reg3 + reg2
20. reg3 a reg3 • (reg2 » 4)

reg2 a read #72
21. regl a reg3 - (regl » 2)

reg3 a read #74

22. reg3, reg2 a reg3 + reg2
23. reg2 a reg3 • (reg2 » 2)

0001010 00 0010 010110110
011 1011 10 0010 010110110
101 101100 01 10 010110010

001 101101 1101010110101

000 1010 00 0010 01 0110101
011 101010 0010 010110101
0101010 10 0010 01 0110101
010101010 0010 010110101
011 101100 0110 010110011

001 101101 1101010110100

00010
01010
01010
01010
011 10
01010

1000
1010
1010
11 10
1010
1000

0010 01
0010 01
00 10 01
0010 01
00 10 01
01 10 01

0110011
0110011
0110011
0110011
0110011
0000100

001 101101 1001010001111

001 11 1011 10 01 00 0000011

001 0010 01 1101010001110

000101011 11 10 00 0000000

000 10 10 00 01 00 01 0000111

1001011011101010001011

000 10 10 00 00 10 01 0001011
010101010 0010 010001011
010 10 10 00 01 10 01 0000101

010101101 1101010001101

0001010 00 00 10 01 0001101
010101010 0010 010001101
011 1010 00 01 10 010000110

010101101 1101010001100

0001010 00 0010 01 0001100
011 1011 10 0010 010001100
0111011 10 0010 010001100
010 10 10 00 10 10 01 0001100
010101101 10 01010000001

0011010110101011000110

001 0010 01 11 01 01 0000000

000101010 11 10 00 0100001

0001010 00 0100 01 1000111

011101101 1101011001011

000 1010 00 0010 01 1001011
100 10 11 00 01 10 01 1001000

0101011 01 1101 01 1001010

00010 10 00 0010 01 1001010
0101011 10 0010 01 1001010

49

24. reg2= reg3 +(reg2» 2) 010101010 0010 011001010
25. reg3 = reg3 + (reg2 » 2) 0101010 001010 011001010
26. regl = reg3 - (regl » 2) 0101011 01 10 01 011001001

reg3 = read #73
27. regl = reg3 - (regl » 6) 11010 01 01 11 0111 0001010

reg3 = read#10

50

51

References

I] B. P. Brandt and B. A. Wooley, "A Low-Power, Area-Efficient Digital Filter for Decimation
and Interpolation," IEEE Journal of Solid State Circuits, vol. 29, no. 6, June 1994,1995, pp
679-687.

2] B. P. Brant, "Oversampled Analog-To-Digital Conversion," PhD thesis, Stanford University,
August 1991.

3] A. Oppenheim and R. Schafer, Digital Signal Processing, Prentice Hall, 1975.

4] H. Samueli, "An Improved Search Algorithm for theDesign of Multiplierless FIR Filters with
Powers-of-Two Coefficients," IEEE Trans, onCircuits and Systems, vol.36, no.7, July 1989.

5] J. C. Candy, "Decimation for Sigma Delta Modulation," IEEE Trans, on Communications,
vol. COM-34, no. 1, January 1986.

6] D. J. Goodman and M.J. Carey, •'Nine Digital Filters for Decimation and Interpolation," IEEE
Trans, on Acoustics, Speech, and Signal Processing, vol. ASSP-25, no. 2, April 1977.

7] K. Hwang, Computer Arithmetic, Principles, Architecture, and Design. New York: Wiley,
1979.

8] P. P. Vaidyanathan and T. Q. Nguyen, "A "trick" for the Design of FIR Half-Band Filters,"
IEEE Trans, on Circuits and Systems, vol. CAS-34, no. 3, March 1987.

9] S. Chu andC. S. Burrus, "Multirate Filter Designs UsingComb Filters," IEEETrans, on Cir
cuits and Systerms, vol. CAS-31, no. 11, Novermber 1984.

10] B. Leung, "Design of LowPower Oversampled Sigma-Delta Modulators," Technical Report,
Electricaland Computer Engineering Department, U. ofWaterloo, June 1995.

II] J. C. Candy and G. C. Temes, "Oversampling Methods for A/D and D/A Conversion," Over-
sampling Delta-Sigma Data Converters, IEEE Press, 1991.

12] R. W. Brodersen, Anatomy of a Silicon Compiler, Kluwer Academic Publishers, 1992.

13] Q. Zhao and Y. Tadokoro, "A Simple Design of FTR Filters with Powers-of-Two Coeffi
cients,"IEEETrans, on Circuits and Systerms, vol. 35, no. 5, May 1988.

14] A. B. Carlson, Communication Systems, McGraw-Hill, 1988.

15] J. M. Rabaey, S. P. Pope, R. W. Brodersen, "An Integrated Automated Layout Generation
System for DSP Circuits," IEEE Trans, onComputer-Aided Design, vol. CAD-4, no. 3, July
1985.

16] R. W. Brodersen, A. Chandrakasan, S. Sheng, "Design Techniques for Portable Systems,"
ISSCC Dig. Tech. Papers, pp. 168-169, February 1993.

17] E. B. Hogenauer, "An Economical Class of Digital Filters for Decimation and Interpolation,"
IEEE Trans, onAcoustics, Speech,, and Signal Processing, vol. ASSP-29, no.2, April 1981.

18] M. G. Bellanger, J.L. Daguet and G.P.Lepagnol, "Interpolation, Extrpolation, andReduction
of Computation Speed in Digital Filters," IEEE Trans, on Acoustics, Speech, and Signal Pro-

52

cessing, vol. ASSP-22, no. 4, August 1974.

[19] R. Gregorian and G. C. Temes, Analog MOS Integrated CircuitsForSignal Processing, John
Wiley & Sons, Inc, 1986.

[20] G. S. Moschytz and P. Horn, Active Filter Design Handbook, John Wiley & Sons, Inc, 1981.

[21] R. Dongen,V. Rikkink, M. Degrauwe, "A 1.5V classAB CMOS Biffer Amplifier forDriving
Low-Resistance Loads," ISSCC 1995 Digest, pp. 48-49, February 1995.

[22] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall, 1996.

[23] R. E. Crochiereand L. R. Rabiner, Multirate Digital Signal Processing, PrenticeHall, 1983.

[24] L. R. Rabiner and G. Gold, Theory And Application Of Digital Signal Processing, Prentice
Hall, 1975.

[25] URL: http://infopad.EECS.Berkeley.EDU

[26] B. Richards and R. Brodersen, "InfoPad: The design of a portable multmedia terminal," 2nd
International Workshop on Mobile Multi-Media Communications Proceedings, April 1995,
p.S2/l/l-6.

[27] Motorola Telecommunications Device Data, pp. 2.627 - 2.640.

[28] A. Chandrakasan, A. Burstein and R. Brodersen, "A Low PowerChipset for Portable Multi
media Applications," ISSCC 1994Digest, pp. 82-83, February 1994.

[29] I.Donnell and A. Chandrakasan, ARAPReport, October 1994 - April 1995, URL: /http://info-
pad.EECS.Berkeley.EDU/infopad-ftp/reports/A.Multimedia.Communication.System.Provid-
ing .Wireless.Access/

	Copyright notice 1995
	ERL-96-48

