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Abstract

A BDD-Based Environment for Formal Verification ofHardware Systems

by

Ramin Hojati

Doctor of Philosophy in ComputerScience

Universityof California,Berkeley

Professor Robert K. Brayton, Chair

Validation is thebottleneck inmany designs. If the designers areto design more complicated

circuits in less timewithhigherquality, bettervalidation techniques are needed Automatic formal

verification is a very promising approach, which hasreceived wide-spread interest, especially after

the advent of Binary Decision Diagrams (BDDs) which have enabled the verificationofsomereal

istic examples. This thesis describes an environment for formal verification based on BDDs. Such

an environment can be usedas the basis of a prototype for an industrial-strength verification tool

for hardware systems.

To create such a tool, several issues have to be addressed: concurrency model, fairness con

straints, specification formats, efficient BDD-based algorithms for verifying an implementation

versus its specification, early failure detection, generation of errortraces, state minimization, and

data abstraction. In this thesis, solutions for some aspects of theabove issues isprovided, trading

expressiveness withefficiency in many cases. Many of thealgorithms havebeenimplemented in

our prototype verification tool, HSIS,developed at UC Berkeley.
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Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

In designing modern microprocessors and other complicated hardware systems, validation

engineers begin their work as soon as the design process begins. The validation teams are often

as large or larger than the design teams. Currently, validation is done using simulation, where

two commonly used techniques are developing ad hoc behavioral simulators for specific parts of

the design, and providing test vectors for conventional HDL simulators. This process is costly

both in terms of man-power and CPU time. Worse, there is no guarantee that the whole design

has been tested, and this problem is getting more severe with the increasing complexity of

designs. For example, [Hsu93] reports that in the design of a commercial microprocessor, a

more aggressive design had to be abandoned since the verification effort was expected to be too

large.

Formal design verification (verification hereafter) is the process of proving properties of

designs. Since verification checks all possible behaviors, it provides a guarantee that the verified

property holds for the design. Although, verification is still only as good as the properties

checked, generally it is much easier (and less time-consuming) to come up with a good set of

properties, than to develop a good set of lest vectors. Verification has the promise of reducing

the simulation time, as well as increasingthe level of confidence in the design.

The approach originally proposed for verifying software programs was to use a theorem-prover

for first or higher-order logic to prove the correctness of the program. This approach failed

mainly due to large human interactionnecessary to prove correctness of programs. Two develop

ments in the late 1970's and early 1980's made verification of hardware systems feasible. First,

it was suggested in [Pnu77] that temporal logic can be used for correctness specification. Since

temporal logic is more restrictive than first and higher order logics, the problem of checking an

implementation versus its specification becomes easier. Second, it was suggested by [EC81] and

[QS81] that finite-state systems can be used to capture implementations, which makes the prob

lem of verifying an implementation versus its specification decidable.



Most automatic verification techniques enumerate the set of reachable states, and then check

the property on the set of reachable states. Using explicit enumeration techniques, only up to a

few million states could be checkedusing this methodology. Bryant in [Bry86] suggested a data

structure, called Ordered Binary Decision Diagrams (BDDs), which could be used to capture

Boolean functions efficiently. Anothermajor breakthrough was suggested in [CBM89], where it

was shown that the set of reachable states of finite state systems can be efficiently produced and

manipulated in many casesusing BDDs. This allowed systems with many more orders of magni

tude to be verified. Since then intenseresearch has gone into driving formal verification towards

an everyday practice. This thesis studies several central issues which have to be considered in

making a BDD-based formal verification tool for hardware systems.

1.2 Overview

In order for verification to be used widely, it has to fit in the current design methodologies.

The central issue here is to use the same description in verification as in synthesis and simula

tion. To allow for multiple specification languages, and to create a formal entry language, in

chapter 2, we introduce a concurrecny model calledcombinational/sequential (C/S), and an inter

mediate format called BLIF-MV supporting this concurrecny model. To remove some unwanted

behavior introduced by non-determinism, expressive edge-Streett fairness constraintsare added.

The C/S descriptions often involve many small relations. The problem of building BDDs from

the C/S descriptions is formulated as the early quantification problem in chapter 3. It is shown

that a formulation of this problem is NP-complete in the number of variables and relations

involved, and efficient heuristic algorithms are given. These algorithms are also used to give a

solution to the partition transition relations problem, which reduces the memory requirement for

the BDD of the transition relation of the product machine.

A set of algorithms for verification using language containment and model checking is pre

sented in chapter 4. At the heart of these, is a set of algorithms computing various

approximations to the set of fair states of an ©-automaton, which is used for checking language

emptiness. The debugging problem for language containment and fair CTL model checking is

studied, and proved NP-complete in chapter 5. Then heuristic algorithms are given. The mate

rial described so far forms the basis of the formal verification tool, HSIS, developed at UC

Berkeley, and released to general public through anonymous FTP.

A set of more advanced topics is studied in the next few chapters. For language containment,



the concept of fairness graphs is introduced in chapter 6. These are used to speed up language

containment when many fairness constraints are involved. State minimization is another way to

reduce the number of reachable states. However, the complexity of this task is PSPACE-com-

plete. Two approximations to language containment based on simulation relations extended to

fairness constraints are presented in chapter 7, and theircomplexities are given. Since these prob

lems are still hard, heuristics are presented.

In many cases, often due to the size of the datapath elements, there is an explosion of the state

space. In chapter 8, a concurrency model, called Integer C/S (ICS), is introduced, which is an

extension of C/S, and allows uninterpreted and interpreted integer functions and predicates. A

set of results on datapath abstraction of subsetsof ICS models is proved, which allows the verifi

cation to proceed on small instantiations. Since these subsets can be automatically recognized,

the abstractions can be produced without any user intervention. For cases where finite instantia

tions do not work, a symbolic execution algorithm is presented. Since the state space of ICS

models can be infinite, the algorithm may not always terminate. However, it can be used to

check that no bad behavior in n steps, where n is a user-defined parameter.

The thesis is concluded in chapter9 by looking at the correctness problems for memory systems

which execute their instructions out of order. As an example, the SUN's SPARC-8 ([SUN90])

memory architecture is verified using the languagecontainment paradigm.

1.3 Related Research

In this section, we look at some important related research topics not covered in this thesis. In

each case, we give pointers to some introductory references.

1.3.1 BDD Research

There are four important optimization problems when dealing with BDDs: fast BDD package,

early quantification and partitioned transition relations, BDD minimization in presence of don't

cares, and variable ordering.

Fast BDD Package. The first BDD package was introduced in [Bry86]. In [BRB90], garbage

collection was introduced as a means of speeding up BDDcomputations. Recently, BDDpack

ages are being rewritten so that the number of cache misses are minimized ([KR961). This

research is related to the breadth-first search approaches which try to minimize the effect of page

faults when the BDDs no longer fit in the main memory ([OYY93], [AC94]).



BDD Minimization in Presence of don't cares. Most BDD-based reachability routines explore

the state space in a breadth-first search manner. Using this technique, the previous set of reach

able states can be used as a don't care set to minimize the frontier set. [SHBS94] introduces and

systematically studies a set of techniques for minimizing BDDs in presence of don't cares.

Variable Ordering. Variable ordering has a great impact on the speed of verification using

BDDs. [FOH93] introduces good heuristic algorithms for this problem. [Mc93] proves an inter

esting bound on the size of BDDs for the transition relation, based on the structure of the circuit

[Rud93] gives efficient dynamic re-ordering algorithms to automatically re-order variables dur

ing various BDD operations. [PSP94] enhances dynamic variable re-ordering by grouping

symmetric variables during re-ordering, and moving them as a unit

1.3.2 Theorem Proving

There has been considerable amount of research in hardware verification using theorem-prov

ing. Most of these efforts have concentrated on checking the correctoess of pipelined designs, by

comparing the pipelined implementation to its non-pipelined specification. [Cyr93] describes

one such methodology. The techniques presented in chapter 9 can also be used for this task.

1.3.3 Timing Verification

Timing verification involves verifying specifications and implementations which involve tim

ing constraints. In verifying synchronous hardware systems, which is the majority of hardware

systems, such constraints are not needed in practice. [Alu91] provides a good introduction to the

subject.

1.3.4 Explicit State Exploration

Explicit state exploration techniques appear to be more suitable for higher-level protocols

which can be specified in interleaving semantics. In this case, symmetry techniques ([ID93],

DES95]), state bit hashing ([Hol91]), and partial order techniques ([God94]) can be used to reduce

the size of the state space.

1.4 Organization of the Thesis

Chapter 2 describes the C/S concurrency model, shows how one can translate other concur

recny models into C/S, and gives the syntax for BLIF-MV. The early quantification and partition



transition relation problems are described in chapter 3. A set of BDD algorithms for language

containment and model checking are presented in chapter 4. Debugging methods for fair CTL

and language containment are presented in chapter 5. Chapter 6 describes a method for speeding

up language containment in presence of fairness constraints. Fair simulation relations, which

form the basis for state minimization of co-automata and can be used as an approximation to lan

guage containment, are studied in chapter 7. ICS models, data abstraction techniques using

finite instantiations, and reachability analysis of ICS models are described in chapter 8. Chapter

9 concludes the thesis by giving an application of verification to the correctoess of memory sys

tems with out-of-order execution.



Chapter 2

Combinational/Sequential Concurrency Model and BLIF-MV

2.1 Introduction

To make formal verification possible in real designs, several problems must be solved. In this

chapter, we concentrate on how verification can be integrated with logic synthesis and simula

tion. We have addressed this problem by creating a formal concurrency model, combinational/

sequential, and an associated intermediate format, BLIF-MV. BLIF-MV can be used for simula

tion, synthesis, and verification, where descriptions in high-level languages are compiled into it

This compilationprocess is describedin [Che94] for thehardwaredescription language, Verilog.

Our design methodology for synthesis and verification is as follows. The design is first written

in abstract terms, using non-determinism, in the user's favorite high-level language. The design

is then translated into BLIF-MV, and verification is performed on it Simulation is used at this

point to find easy bugs, whereas formal verification may be used to catch the harder ones. If the

user is satisfied with the verified parts, they can be synthesized into hardware or possibly

software.

In section2.2, we introduce C/S and give its operational and denotational semantics. In design

ing a concurrency model, one has to worry about expressiveness and conciseness. In section 2.3,

wc show how other popular concurrency modelscan be translated into C/S efficiently. In section

2.4, BLIF-MV, as an implementation of C/S, is introduced. In BLBF-MV, we have taken care to

introduce as few constructs as possible, whilenot sacrificingexpressiveness and the ability to pre

serve the structure of the user's specifications. BLIF-MV is the logical extension of BLIF

(Berkeley Logic Intermediate Format, [BLIF87]) to include non-determinism and multi-valued

variables.



2.2 The Combinational/Sequential (C/S) Concurrency Model

2.2.1 Syntax

In this section, the combinational/sequential (C/S) concurrency model is described. There are

threeprimitives: variables, tables (intuitively non-deterministic gates), and latches.

Definitions A variable takes values from some finite domain. A table is a relation defined

over a set of variables. The variables of a table are divided into two sets: inputs and outputs.

Latches are defined over two variables ranging over the same finite domain: input (or nextstate)

and output (or present state) of the latch. Note that present and next state variables may overlap.

This happens when an output of a latch is an input to another. With every latch, we associate a

set of initial values, which is a subset of the set of values of its variables. Every variable is the

output of exactly one table or latch. Hence, every input to a table or latch is the output of some

other table or latch, i.e. our systems are closed . A variable can be input to many tables or

latches. A state is an assignment of values to the latches of a model, where a value assigned to a

latch must be in its domain. An initial state is a state where every latch takes a value from its

set of initial values.

The concurrency model of C/S is exactly the same as synchronous hardware also, modulo the

fact that tables may be non-deterministic and signal may be non-deterministic instead of Bool

ean. If the tables are deterministic and the signals are Boolean, then we can think of them as

general gates. In this case, the above model is syntactically and semantically the same as syn

chronous hardware.

2.2.2 Operational Semantics of C/S

The operational semantics of C/S provides more insight into the meaning of C/S models. How

ever, it is not as concise as its denotational semantics. We give the operational semantics for a

subset of C/S models, where no combinational loops are allowed.

Definition A table graph is a directed graph where every node is a table. There is an arc from

u to v if some output variable of table u is an input to table v. A cyclic table graph is said to

contain a combinational loop (or cycle).

Lemma 2.2.1 Let an acyclic table graph G be given. Then, table T corresponding to a root

node either has no inputs or each one of its inputs is the output of some latch.

1. This is no restriction since it is always possible to replace an input by a table representing a non-deterministic
constant.



Proof Follows from the definition of a table graph (QED).

We define the operational semantics, restricting models not to contain combinational loops.

The operational semantics is defined in terms of a configuration or state graph and its transition

relation. Every node in the configuration graph corresponds to a set of values assigned to the

latches of the model. Since the domains of all variables are finite, the configuration graph is

finite. The initial states of the configuration graph are those where an initial value is assigned to

every latch. Let / denote a node (i.e. a state) in this graph. The following algorithm defines the

transitions from / to other nodes.

1. Fix a topological sort ofthe table graph.

2. Assign to the outputs of the latches the values given by I.

3. Assign values to the outputs of each table consistent with its inputs, processing the tables in the order

given by the topological sort. Moreprecisely, let a table T represent the relation R (/, o), where i rep

resents the inputs to the relation and o its outputs. Let the inputs have the assignment v (i). Choose

v (o) such that (v (/), v (o)) e R (/, o).

Note that in step 3 of the above algorithm (referred to as value propagation), due to non-deter

minism, there may be more than one assignment to the output of a table given an assignment to

its inputs. It is also possible that a table is not complete, i.e. there are inputs for which there are

no outputs. Then, the set of values assigned to an output of a table may be empty. The empty

values propagate, i.e. if one of the inputs to a table is empty, then the output is empty as well.

Lemma 2.2.2 shows that step 3 of the algorithm is well-defined.

Lemma 2.2.2 When a table is processed in step 3 of the above algorithm, each one of its inputs

has been assigned a value.

Proof Wename the tables T{ Tn according to their positions in the chosen topological sort,

where n is the number of tables. We proceed by induction on 1< iis n. T1 either has no inputs

or all of its inputs are outputs of latches (by lemma 2.2.1). The lemma holds in this case, since

step 1 assigns values to the latches. Now, let table T. and an input to it v be given, v is either

an output of a latch or a table. If it is the outputof a latch it has been assigned a value by step 1.

If it is the outputof a table, by the fact that the model is acyclic, and we have processed the table

in a topological sort, it has been assigned a value (QED).

We prove below that the algorithm is well-defined, i.e. no matter what topological sort is cho-



sen, the same transition relation is obtained.

Lemma 2.2.3 The above procedure assigns values to all next state variables (inputs of the

latches).

Proof Every input to a latch is either an output of a table ora latch. In either case, steps 1or3

assigns it a value (QED).

Lemma 2.2.4 Let / be an assignment of values to all latch outputs. Let f be an assignment to

all latch inputs obtained from the above procedure given topological sort Ox. Then, given

topological sort 02,1 canbe achieved from / by the above algorithm.

Proof This follows from noting that the order of processing of two tables in step 3 can be

swapped without any change in the final result as long as neither table is reachable from the other

one in the table graph. Since Ox can be obtained from 02 by doing such swaps, the result

follows (QED).

We assume the edges in the configuration graph are labeled by the values of a user-define sub

set of the variables called output variables. Therefore, the configuration graph is a safety

automaton (defined below) over the alphabet of the Cartesian product of the domains of the out

put variables. This in turn defines a language, which is the language of a C/S model according to

the operational model.

Definitions A safety automaton is a tuple (£, Q,T, T), where I is a finite alphabet, Q is a

finite set of states, T is a transition relation on QxlxQ, and / is a set of initial states. A run r

of an co-string x in A is an infinite sequence of states, such that the first state rQ e /, and for all

'» (*>xi> rl+\) e T. The set of states occurring infinitely often in a run r is called the infinitary

set of r, and is denoted by inf(r) . Since the set of states Q is finite, inf(r) is always a non

empty finite set. The set of all co-strings which have a run in A is called the behavior or lan

guage of A, and is denoted by L (A) . A finite state machine (FSM) is a safety automaton

where L = I; x Z0, Zy is theinput alphabet, and I0 is theoutput alphabet.

To handle combinational loops, one may proceed by breaking the loops arbitrarily, allowing the

newly created variables take any values in their domain, and following the above procedure.

Only those values should be accepted which are stable, i.e. all instances of the broken-up vari

ables take on the same value. The denotational semantics is simple and concise, and handles

combinational loops without any special treatment.



2.2.3 Denotational Semantics of C/S

The denotational semantics is given by describing what C/S models denote and what the syntac

tic and semantic algebras are. A C/S model denotes an co-language, defined over the output

variables. The language of a C/S model can be represented by two relations: transition and initial

state relations. The transition relation is defined over all variables and is denoted by T(x, i, y),

where x denotes the present state variables, y the next state variables, and i the rest of the vari

ables. To define the denotational semantics, we assume the set of present and next state variables

are distinct:. Therefore, if in a C/S model a present state variable is also a next state variable, a

buffer is inserted to create two distinct variables. The initial state relation is defined over present

state variables and is denoted by I(x).

To define the denotational semantics, we need to define what the syntactic and semantic objects

are, and how semantic objects are composed ([GT93]). There are two syntactic objects in the

syntactic domain: tables and initial values. There is only one semantic object: relation. Composi

tion of semantic objects is the join operation of relations, which corresponds to taking the

Boolean AND of the characteristic functions of the relations. The correspondence between the

syntactic and semantic domains is as follows. Each table (a syntactic object) represents a relation

(a semantic object), with the compositionoperationbeing the join operation of relations. The ini

tial values for each latch (a syntactic object) define a relation over the present state of that

variable (a semantic object). The composition between mitial state relations is again the join

operation of relations. Therefore, a C/S model denotes two relations: transition and initial state

relations. This defines a safety automaton over the Cartesian product of the output variables,

which in turndenotes an ©-language. It is not hard to show that the operational andDenotational

semantics define the same language, by showing that for purely combinational circuits the two

agree.

2.2.4 Representation Using BDDs

The denotational semantics can be easily implemented using BDDs. Since each table describes

a relation over a finite domain, it canberepresented bya BDD. Inour verification tool, werepre

sent each table by a multi-valued decision diagram or MDD ([Kam92]), since MDDs provide a

convenient multi-valued interface to BDDs. The product of all the BDDs is a transition relation

1. Our semantics for combinational loops discards those behaviors where some variable isoscillating, even
though this variable mayhave noimpact ontheoutputs. [SSBS96] provides algorithms for discovering such

10



T(x, i,y) which describes the (stable) behavior of the whole system. This transition relation is

used for simulation anddebugging, where information about outputvariables is needed. For veri

fication, we existentially quantify out all non-state variables, and get a transition relation denoted

by T(x, y). Inchapter 3, we introduce efficient algorithm for thisproblem.

23 Combinational/Sequential versusOther Concurrency Models

We will be comparing the expressive powers of different modeling schemes. To do so, we

need a notion of equivalence between languages. Since equality turns out to be too restrictive,

we use the following definition.

Definition Let language Ll defined over I be given. A language L2 defined over IxZ' is

projection-equivalent to Lx if the projection of L2 onto L is equal to Ll. Note that this notion

ofequivalence isone-way, i.e. L2 may be equivalent to Lx, but the reverse may notbe true.

Definition A concurrency model Cx has as much expressive power as another concurrecny

model C2 if given a system in Cx with language Lx there is another system in C2 with language

L2, where L2 is projection-equivalent to Lx.

In this section, we first define product of safety automata, and then introduce several popular

modeling schemes, and compare their relative expressive powers.

2.3.1 Product of Safety Automata

Definition Let A = (QA,1,IA>TA) and B = (QB,Z,1B,TB) be given. Then,

P=AxB=̂ QA xGfl, I, IA xIp rj, where T( {qA, qB), a, (q'A, q'B)) iff T(qA, a, q'A) and

T(9B,atq,B) .

Lemma2.3.1 Let P = AxB. Then, L(P) = L(A) nL(B) .

(

Proof Let x e L(P) . Then, there is a run r =
\ r

in P for jc . Now consider the
0D rntV VB "B J

sequence of states rQ rn ,... in A. By definition, this is a run in A. Hence, xe L(A) .

Similarly, xe L(B) . Now, let jce L(A) and ieL(B). We need to show that xe L(P) .

Consider the runs rQ ,..., rn ,... and rQ ,..., rn ,... for x in A and B, respectively. Consider the

ll



(r0 rn ^
sequence of states

(QED).

2.3.2 Selection/Resolution Model

In this section, we define the selection/resolution model, which is a simple synchronous model

ing scheme. We then prove some simple properties of the S/R model. We finally show that S/R

and C/S have the same expressive power, although C/S may be more concise. With the excep

tion of theorem 2.2 proving this fact, all results can be found in [Kur90].

Definition Aprocess is a 6-tuple P = (Q, lp 20, /, T, 0), where Q, /, and T are as before. Z7

denotes the input alphabet (all of our alphabets are finite unless otherwise stated), and 10

denotes the output alphabet. The output relation 0 is defined over Q x 2 ; intuitively a state

can have many outputs. The transition relation T is defined over AxL/xL(?x2 ; intuitively

given a state, an input symbol, and an output symbol, there may be more than one transition. The

language ofa process is generated as follows.

1. Start at an initial state.

2. At the current state,

Producean outputnon-deterministically.

Based on the output and input, choose a nextstate.

One can think of a process as a non-deterministic output non-deterministic transition Moore

machine. The only difference with a Moore machine is that a process can look at its output from

V °B nB J
in P. By checking the definition, this is a run for x in P

its current state to select its next state. More formally, jc =

exists a sequence of states in A, r- (r^ ...,rB,...) such that rQ is an initial state, and

[rt, x., xt ,ri+l JeTfor all i. Note that the language of aprocess is defined just in terms of the

edge labels. The outputs are introduced only for book-keeping purposes, and are not used in the

formal definitions. Hence, in effect a process is just a safety automaton defined over the alpha

bet Zyx Z0. In figure 2.1, an example process is shown, whose inputs are from the set a,b and

whose outputs are 0,1.

12
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A0M/-U in^ bAOUt=\ ^^

Figure 2.1: Example of a process in S/R

Sometimes the language of P is defined over some larger alphabet 2;x 20 x 2. In this case,

the edge symbols i/o are changed to z/o/- accordingly to reflect this, i.e. for each symbol we

assume there is an additionalelement which can take any value in £. In many cases, as opposed

to giving the symbols of the alphabet, a Boolean combination of variables ranging over £; and

10 is used. In this case, enlarging analphabet is the sameas enlarging the set of variables of the

alphabet. For example, the statement (x = 0) a (y = 1) specifies only one symbol if the alpha

bet is defined over two binary variables x and y, but it refers to two symbols if the alphabet

contains three binary variable jc , y and z.

Definition Let n interacting processes Pv ...,Pn be given such that the outputs of all processes

are distinct, and each input to a process is the output of some other process. In other words, the

system is closed, and each output is driven by exactly one process. Since every input is an out

put, the input and output variables arecollectively called the selection variables. The operational

semantics of the selection/resolution model is generated as follows:

1. All processes start at one oftheir initial states.

2. At every point,

Eachprocess non-deterministically chooses one of the outputspossible from its state (selection).

Based on the global selection, each process chooses a nextstate (resolution).

The language of Pv...,Pn according to the selection/resolution model is the set of values the

selection variables take in the above process.

Alternatively, a string x = (xv ...,xn,...) defined over the product alphabet of the selection

variables is in the language of the set of processes Pv ...,Pn according to selection/resolution

model if there exists asequence of global states sot ...,sn,... such that,

1. sQ is a global initial state.

2. For all /, the transition (s.,xjt si+l) is possible, i.e. for each process P., (jf. \j], J,., st+1 [/])

13



is atransition in P., where st [/] denotes the state of P in s{.

This views S/R as an edge-synchronous model. At every point in time, each process is at some

local state. The edge labels are interpreted as predicates or restrictions on the alphabet symbols.

To reach the next global state, a set of edges out of the current global state (one edge per process)

is chosen if their assignment to selection variables is consistent. This defines the transition rela

tion of a safety automaton, whose language is the same as the operational semantics of S/R.

Definition Let Pv ...,Pn according to the selection/resolution model be given. Then, the prod

uct process is defined to be the product of the corresponding safety automata, where the alphabet

is the product of the alphabets of the selection variables.

Lemma 2.3.2 Let Py ...,P„ according to the selection/resolution model be given. Then, the

language of the processes according to the selection/resolution model is the same as the language

of the product process.

Proof The proof follows directly from the edge-synchronous view of S/R and the definition of

the product automaton (QED).

Theorem 2.1 Let Pv...,Pn according to the selection/resolution model be given. Let Lx

denote the language of the processes according to the selection/resolution model, L2 the

language of the product process, L3 and the intersection of the languages of the Pt's. Then, we

have Lj = L2 = L3.

Proof Follows from the definition of the product process, and lemmas 2.3.1 and 2.3.2 (QED).

Theorem 2.2 The selection/resolution and combinational/sequential models have the same

expressive power.

Proof Let an S/R model with n processes Pv ..., P be given. To construct an equivalent C/S

model, proceed as follows.

1. For each process Pi, create a latch taking values from the setof states of Pi.

2. For each process P., have atable which encodes theoutputs of Pt.

3. For each process P., create a table which encodes the transition of P.. Inputs to each such

table may be the outputs of all tables created in step 2.

The equivalence follows from the operational semantics of S/R and C/S.

Conversely, let aC/S model be given. To get a corresponding S/R model, do the following:

1. Define the transitive fanin ofa variable x as all the relations which can be reached by tracing

14



backward from the relation whose output is x. The leaves of this transitive fanin are present

state variables. For each latch, create a process whose transitions are given by the intersection of

all the relations in the transitive fanin of the next state variable of the latch, after the intermediate

variables have been quantified out. Have each process output its state (hence each process is

Moore). Call these variables state-outputvariables.

2. For each output variable o, create a one state process whose output is o, and its edge labels

are defined by taking the intersection of all relations in the transitive fanin of o. Note that the

edge labels may involve state-output variables.

To get an equivalent language, project out the state-output variables. The equivalence follows

from the edge-synchronous view of S/R (QED).

Note that the translation from S/R into C/S can be done in small polynomial time and space.

However, the reverse might incur an exponential blow-up, since multiplying tables can blow up.

In languages (or systems) whichsupport the S/R model, the use of some functions corresponding

to a high-level language like C is provided. However, such functions are deterministic. It is pos

sible that one can compactly describe a non-deterministic relation using a set of non-

deterministic relations, where the translation into a language supporting S/R is still exponential.

2.3.3 Asynchronous Shared Memory (ASM) Model

In this section, we describe the Asynchronous Shared Memory (ASM) model which forms the

basis of some verification tools, such as Murphi ([DDHY92]) and Spin ([Hol91]). A model in

ASM consists of a set of n state variables qv ...,qn, a set of m memory locations mv ...,mm, an

output variable o, and a set of p guarded commands (transitions) ex e . The state variables

and memory locations are collectively called shared variables. A guard is a predicate on the

shared variables, whereas a command is a new assignment to the shared variables and the output

variable. The output associated with a guarded command e is sometimes called its action. The

operational semantics of ASM can be summarized as follows. Initially, all processes are at some

initial state, with all memory locations and state variables taking one of their mitial values. At

every point, a transition whose guard is active (evaluates to 1) is chosen, and its command is exe

cuted. The language of the system is defined over the values of the shared variables.

More precisely, let I* Z* denote the domains of the state variable, Z™,.... I™ the domains

of the memory locations, and Z° the domain of the output variable. The language ofthis system

15



according to ASM is defined over Hi!! xHz™ *Z° and is given as follows. A string

x = (Xj, ...,*,., ...) belongs to the language of the above system if the shared variables in jc0

take one of their initial values, and for each /, there exists some guarded command e. such that

its guard is true in xi, itscommand is true inand jc|+ x, and the value assigned to o in jcj +j is the

output of ej.

The product automaton of the system according to ASM is a safety automaton (Z, Q,T,r),

where Q=TltfxUtf* Z= gxZ°, and T^QxZxQ. (q, (q,a),q') e T if there exists a

guarded command e whose guard and command are true in q and q' respectively, and whose

action is a. q e I if all shared variables take one of their initial values.

Lemma 2.3.3 The language of the system according to ASM is equal to the language of its

product automaton.

Proof Follows from the definitions (QED).

Theorem 2.3 The ASM and selection/resolution models have the same expressive power.

Proof Given an S/R model, create the product process, which can be viewed as a system in

ASM with one state variable, no memory, and the guarded commands being the edges. The

complexity of this translation is exponential. Conversely, let a system in ASM be given. We

create a S/R model with m+ n+ 2 processes as follows.

1. Create a one-state "scheduler" process, which non-deterministically outputs / if the guard of

e. is true. Also create a one-state "output" process, which outputs the action of the guarded com

mand chosen by the scheduler.

2. For each shared variable vf. with domain Z.f create a process with state space Z.. The edge

(a, p) is labeled by a predicate restricting the output of the scheduler being j, if the command

of ej changes the value of v. from a to p.

The complexity of this translation is linear. To get an equivalent language, the state variables of

the scheduler and output processesare projected out. The equivalencefollows from the edge-syn

chronous view of S/R and the operational semantics of ASM (QED).

Remark Some interleaving models, such as the one defined in [God94], distinguish between

state variables and memory locations, and associate outputs with transitions. The partial order

methods of [God94] rely on such information.

16



2.3.4 Node Synchronous

In this subsection, we describe node-synchronous models, which sometimes come up in verifi

cation using theorem-provers. The node-synchronous model is similar to the edge-synchronous

model, except that the predicates are on the nodes as opposed to edges (there are no edge labels),

where a predicate is an assignment of values to variables. At every point the system is at some

global state. The system makes a transition to the next global state if

1. there is a global transition to this next state from the current state, and

2. all predicates in the next state are consistent, i.e. no variable is assigned two different values.

The language of a node-synchronous model is defined in terms of the global assignment to the

variables given by the above process.

Let (w, lu) denote a node u with label lu in the node-synchronous model. To translate an

automaton N in the node-synchronous model to an automaton M in the edge-synchronous

model, label each edge in N by the label of its starting vertex. Hence, an (unlabeled) edge

((". /„)» (v, /v)) in N becomes the labeled edge (u, lu, v) in M. This translation has linear com

plexity. Conversely, to translate an automaton M in the edge-synchronous model to an

automaton N in the node-synchronous model, for each labeled edge (u, oc,v) in M, create a

node (w,a), and edges ((k,a), (v,p)) for all pairs (v, p) e AT (created from edges

(v, p, v') e Mfor some v'. This translation has quadratic complexity, i.e. 0(\M\2).

2.3.5 Kripke Structures

In this subsection, we describe Kripke structures which are used in CTL model checking (see

section 4.4.1). A Kripke structure is a deterministic-output, non-deterministic-transition process.

Therefore, Kripke structures are a subclass of S/R processes, and hence inherit the concurrency

models of S/R. To get a Kripke structure K from a S/R process P, if a state s has / non-deter

ministic outputs ov ..., or create / copies of s in K, sv ...,sr where the output of each st is or

If there is an edge (s, ov t) in P, add to K all edges (sp op t.), for each /.e K associated with /.

This gives a translation procedure from Kripke structures into S/R, with complexity 0(n\P\) ,

where n is the maximum number of non-deterministic outputs from any state in P. Since

Kripke structures are a subset of S/R models, we conclude that Kripke structures and S/R are

polynomially transformable into each other. Since S/R can be polynomially translated into C/S,
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we conclude that Kripke structures can be polynomially translated into C/S.

2.3.6 Summary of Concurrency Models

We studied several concurrency models which form the basis of most verification tools and par

adigms. The selection/resolution model is a synchronous model, where a set of non-

deterministic Moore machines, described by giving their transition structures expliciUy, move in

lock-step. One can view S/R as an edge-synchronous model. We showed that S/R can be poly

nomially translated into C/S, whereas the reverse translation may be exponential. We next

introduced the asynchronous shared memory model, where a set of transition are fired one at a

time. ASM can be translated into C/S polynomially, whereas the reverse translation is exponen

tial. Node-synchronous models are similar to the edge-synchronous ones, and there is a

polynomial translation among them. Kripke structures are a subset of S/R models, where the out

puts are restricted to be deterministic. S/R models can be polynomially translated into Kripke

structures.

Figure 2.2: Translation complexity between various models

2.4 BLIF-MV

An intermediate format must address the following issues.

1. Well-defined and simple semantics. The semantics of the intermediate format should be

well-defined, so that user's specifications are translated unambiguously. BLIF-MV achieves this

by having C/S as its concurrecny model.

2. User-friendly. The interaction with the user must feed back variable names defined by the

user. Many high-level languages allow for symbolic or multi-valued variables. BLIF-MV

accommodates this by allowing multi-valued (MV) variables. Also, it is useful to display error

traces, returned by the verifier, in terms of the user's original source code. For this, the applica

tion-specific attribute mechanism of BLIF-MV can be used.
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3. Expressive. The generated code for the intermediate format should remain relatively small,

so that parsing time is reasonable. BLIF-MV uses relations to describe (possibly non-determinis

tic) behavior. Various constructs are allowed to make the specification of the relations more

compact. Also facilities for easily dealing with integers are introduced, since functions defined

on integers, such as addition, cannot be described compactly using multi-valued relations.

4. Structure preserving. It is important that the original structure of the user's specification is

preserved as much as possible for two reasons. First, interfacing with the user becomes easier.

Second, some algorithms may be able to take advantage of the initial structure. BLEF-MV pre

serves the structural aspects using hierarchical specification, multi-level logic, intermediate

variables, and pre-defined functions.

A first version of BLIF-MV was presented in [BMV91]. The version described here is the

result of experience with HSIS, and has several additions and changes to make BLIF-MV suit

able for compilation from high-level languages.

2.4.1 Basic Syntax

In this section we describe the basic syntax of BLIF-MV. The primitives of the language are:

multi-valued variable declarations, tables for describing relations, multi-valued latches, models

for describing a process, and subcircuits for instantiating models.

2.4.1.1 Variables

A multi-valued variable is declared as follows.

.mv <variable-list> <range> [<value-list>]

where < > implies a necessary argument, and f 1 an optional one. A variable-list is a set of

comma-separated variables. A value-list is a set of space-separated names. The default on value

list is 0,..., range-1. Examples are,

.mv varl, var2 3 apple orange banana

.mv four-bit-integer 16

2.4.1.2 Tables

Tables are used in BLIF-MV for describing relations. In this section, we first give the basic

method of defining a table, with more advanced features introduced next.

Table Definition. A table describes a relation between a set of variables. A table has a set of

inputs and a set of outputs. A table is defined as follows.

.names <in-l> ... <in-n> => <out-l> .... <out-m>

<row-l>
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<row-p>

If there is only one output, then the symbol "=>" canbe omitted. A table may have no inputs,

but must have at least one output. The rows of the table describe a relation between the vari

ables. Each row has m+n components. Each entry describes a set of values, which is a subset

of the values of the corresponding variable. Each row denotes the (cartesian) product of these

entries. An entry can be one the following:

1. "-", which denotes the universal set, i.e. the set of all values for a variable.

2. A single value, for example 3.

3. A list of values, for example (1, 3,5).

4. A range of values, for example 5-9.

Each entry can be complemented using"!".

As an example, assume variables x andy can eachtake 100 values, from 0-99. Consider the fol

lowing table.

.names x y

(10,21) !3

5 -

3-8 5-15

This first entry describes a relation between 10 and 21 and any number between 0 and 99 except

for 3. The second entry says that5 is in relation with any number. The third entry says thatnum

bersbetween 3 and8 are in relation to numbers between5 to 15. In this case, x is the input and y

is the output.

Symbolic Entries. One can also use symbolic entries in table specifications. Assume under a

column corresponding to variable x, we have the variable y (the syntax is =y). Then, the rela

tion corresponding to that entry is multiplied by the relation y - x. For example, consider a

multi-valued multiplexer, which has the following semantics: if x = 0, then z = y, otherwise

z = w, where x, is a binary variable controlling the multiplexer, and v, z, and w are multi-val

ued variables of the sametype. The table for this multiplexer is described as follows.

.names x y w z

0 - - =y

1 - - =w

The only restriction with symbolic entries is that the two variables which are made equal must

have the same domain, i.e. be of the same type.
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Default Values. With every table, a default value for the outputs can be given, which is

assigned to all the minterms in the input domain which were not assigned in the table. An exam

ple is as follows.

.names xl x2 => y2 y2

.def 0 0

1-11

Now, the two unspecified minterms, i.e. 00 and01, areassigned00.

2.4.1.3 Latches

Latch Definition. A latch is declared as follows.

.latch <latch-input> <latch-output>

where latch-input (next state) and latch-output (present state) are variables of the same type. An

example is as follows.

.latch ns ps

Latch Initialization. A latch is initialized (in general with a set of values) as follows,

.r <in-l> ... <in-n> <p.s.>

<row-l>

<row-m>

where p.s. is the present state variable of the latch we want to initialize, and in-l,...,in-n are any

set of variables. The syntax for describing the entries is the same as the syntax for describing

tables. An example is,

.r initial-state-input state

- =initial-state-input

This example says that the variable stale is equal to initial-state-input. Hence, it is possible to

write models where the initial state of the latches are parametrized. A latch may have more than

one initial state. Below, we show three ways to specify that the binary latch "ps" has two initial

states, 0 and 1.

J ps j ps .r ps

0 (0,1)
1 or or

2.4.1.4 Hierarchical Development

We describe how hierarchies aredefined, referenced, andwhat restrictions are placedon them.

Module Definition. In BLIF-MV, hierarchy is defined as a syntactic notion. This allows one to
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take a portion of a system and put a box around it This portion can then be re-used. The unit of

hierarchical development is called a model or module, and is declared as follows.

.model <model-name>

.inputs <variable-l> ... <variable-n>

.outputs <variable-l> ... <variable-m>

<command-l>

<command-p>

.end

A command is any one of the following: variable declaration, table definition, module instantia

tion (or reference), latch definition, or initial state declarations. In BLIF-MV, we distinguish

between four sets of variables: inputs (in), outputs (out), present state (ps), and next state (ns).

Table 2.1 shows the restrictions placed on variables inside a module's definition.

Table 2.1: Variable equalities inside models

in out p.s. n.s.

in no no yes

out yes yes

p.s. no

The justification for these rules are

1. in*out, which means an input and an output variable cannot be the same inside a module.

However, as we will see, one can connect the inputs and outputs of a module instantiation.

2. in* ps. This rule requires the outputof a latchdefined in a model not to be an input to it.

3. in = ns. This is allowed because we may want to input the next state of a latch.

4. out = ps. We may want to direcUy communicate the present state value of a latch defined in

one of the subcircuits with another one, without having to introduce another variable "out" with

the relation out = ps .

5. out = ns. Once the next state value is calculated, we may want to communicate that value

with another block.

1. This is alsoanefficiency issue in verification, sincecomputational efficiency is related to the numberof vari
ables in the system.
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6. ps±ns. In order to build a transition relation for the FSM corresponding to a model, the

present and next state variables must be distinct.

Module References (Instantiations). A model is instantiated as follows.

.subckt <model-name> <instance-name> <formal-actual-list>

The formal-actual-list defines the correspondence between formal and actual variables. This list

is a sequence of assignments, each separated bya space. The declaration is as follows.

formal-l=actual-l ... formal-n=actual-n

The actual variables are the ones declared in the current model, whereas the formal variables are

declared in the referenced model.

A hierarchy in BLIF-MV is always a tree, which implies that a subcircuit cannot be referenced

from any other subcircuits except for its parent. The first model encountered in a BLIF-MV file

is the root of the hierarchy. Let N be the parent module of M. The actual variable of a variable

x of M is x if either M is the root process or jc is not an input or output variable. Otherwise, the

actual variable of x is the actual variable of the variable corresponding to x in the formal-actual

list of N's instantiation. Table 2.1 shows the restrictions placed on actual variables in a

hierarchy.

Table 2.2: Actual variable equalities in hierarchies

in out p.s. n.s.

in yes yes yes

out yes yes

p.s. no

We give justification for two entries in table 2.1 which are different than the ones in table 2.1.

The justification for the rest of the entries is as before. Let ac (x) denote the actual variable of x.

1. ac (in) = ac (out), which means an input and an output variable can correspond to the same

actual variable. An example is where the user connects an output of a model to one of its inputs.

2. ac(in) - ac (ps). The only situation where this is allowed is when a ps variable is an out

put of a model's instantiation M which is in turn an input to M. Another situation where this

come up, but is illegal in BLIF-MV is when ac (ps) is driven by more than one source.
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2.4.1.5 Comment Lines

A comment is anything after "#" to the end of the line.

2.4.2 Additional Features

In this section, additional features of BLIF-MV are described.

2.4.2.1 Integers

There are some arithmetic operations which are very expensive to describe in terms of sym

bolic variables. Assume we want to specify the function c - a + b, where a and b are 16-bit

_ 16 16 32
integers. The symbolic table will be of size 2 x 2 =2 ! However, one can easily describe a

16-bit adder using the binary-valued components of the symbolic variables.

To handle such situations, the "bundle" construct is used. A bundle is a set of binary variables

associated with an integer variable. A bundle is declared as follows.

.bundle variable-name bit-n ... bit-1

where bit-n is the most significant bit As an example, to describe the relation c = a + b, we use

the following reference.

.subckt adder16 myadderl6 x=a y=b z=c

At some later point, we define adderl6 as follows.

model adder16 x y z

.inputs x y

.outputs z

.bundle x xl5 xl4 ... xO

.bundle y yl5 yl4 ... yO

.bundle % z!6 zl5 ... zO

/* a bit-wise description of a 16-bit adder */

.end

2.4.2.2 General Attributes

There is some information which is specific to certain tools. To allow for such information,

calledattributes, BLIF-MV uses the following general-purpose attribute construct

%attribute-name[information]%

One can associate an arbitrary number of attributes with BLBF-MV's basic objects. Specifically,

attributes can be associated with tables, variables, latches, subcircuits, and models. The

attributes associated with an object must be specified in pre-defined positions. For tables,

attributes must be given right after ".names" keyword; for variables, right after ".mv" keyword;
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for latches, right after ".latch" keyword; for latch initialization, right after ".r" keyword; for

model references rightafter".subckt" keyword; for models, rightafter".model" keyword. Exam

ples of attributes are temporary variables recognized by some tools, and source-code debugging

information. For instance, the line number where a variable is declared may be defined as

follows.

.mv %line=10% tempi 8

2.4.2.3 Temporary Subcircuits

Sometimes during translation from high-level languages, temporary subcircuits are created.

For example, to translate an if-statement, a multiplexer module may be created. These extra sub-

circuits are not part of the user's hierarchy. The ".macro" commandcan be used to identify such

subcircuits. This construct is different than the macro construct used in programming languages

to denote in-line expansion of code . A temporary subckt is declared exactly the same way as a

".subckt", except the word".subckt" is replaced by ".macro". An example is as follows.

.macro mymux mux2 control=a inl=b in2=c out=z

This construct is useful in specifying a technology mapped circuit, by using macros for standard

cells.

2.4.2.4 Pre-Defined Functions

Definition To improve the efficiency of parsing and to better preserve the structure of user's

specifications, some tools may define a set of pre-defined models. A pre-defined model is used

like any other model, and can be referenced using both ".subckt" and ".macro" constructs. The

following is an example.

.subckt HSIS_ADDER16 myadderl6 x=a y=b z=c

which references a 16-bit adder defined and understood by HSIS. If an example is to be distrib

uted to tools which do not define these pre-defined models, a definition of the model in BLIF-

MV must be included. For example, in the case above hsis_adderi6 would need to be defined

using the bundle construct and a bit description of the adder. Hence, there must be a BLIF-MV

model associated with every pre-defined relations.

2.4.2.5 Miscellaneous

The ".include" command is used to include files. An example is as follows.

.include utilities.mv

1. The difference between .macro and in-line expansion is that for .macro, we nave the choice of building the
transition relation once and then using variable substitution to get new instances.
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2.4.3 Possible Future Changes and Extensions

In this subsection, we describe some further extensions being considered.

1. Typed variables. Variable types can be described using ".type" command using the following

format.

.type type-name range [value-list]

This would be used in a ".mv" construct to replace the range and value-list.

2. Bit ranges. To describe the range of integers, the number of bits can be given using the syn

tax, "Bn", where n is the number of bits. The following example defines the type large-integer

to be a 64-bit integer.

.type large-integer B64

3. Behavioral constructs. We are thinking of introducing behavioral constructs such as arrays

and iterators, and memory read/write operators. The need for these constructs arises from

abstraction techniques which require more information about the circuit structure (see chapter 8).
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Chapter 3

Early Quantification and Partitioned Transition Relations

3.1 Introduction

Design Verification is accomplished by specifying a system at a suitable level of abstraction

using a set of interacting FSMs, and then proving a set of properties that shouldhold for the sys

tem. Binary Decision Diagrams (BDDs, [Bry86]) have been used successfully in formal

verification to represent transition relations and manipulate sets of states. The first step of many

verification algorithms is computing the set of reachable states of the product machine. Indeed, a

significant subset of properties, the so-called safety properties, can be verified by checking that

the set of reachable states is contained in the set of "good" states. To compute the set of reach

able states, one first builds the BDD for the transition relation of the product machine by

conjuncting (or multiplying) the BDDs corresponding to each individual FSM. However, to com

pute the set of reachable states of the product machine, only the state variables of the product

machine are needed; the set of non-state variables, i.e. the input and output variables, can be elim

inated using existential quantification. The resulting graph is referred hereto as the product

graph.

More precisely, let T. (jr., /., v.) be the transition relation of the j-th machine, where x., >•• and
J J J J J J

ij represent its present state, next state, and non-state variables respectively. The transition rela

tion of the product graph is computed by T(x,y) = 3i(Tl(xvivyY) a... aTn(;tn,in,y„)) ,

where x, y, and i represent the set of all present state, next state, and non-state variables. This

computation can be sped up by making two observations.

1. Existentially quantifying a variable from a relation usually results in a smaller size BDD

(even though existential quantification can be exponential in the BDD size [McM94]).

2. 3v(Rl(u,v) aR2(u)) = (3vRl(u,v)) aR2(u) , where R1 depend on u and v, and R2

depends only on u. This operation of moving a quantifier inside a product is called the early

quantification principle. In general, quantification and conjunction do not commute.
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The early quantification problem (EQ) is to find a schedule for multiplication of relations and

quantification of variables so that the maximum size of any BDD encountered is minimized.

This schedule can be represented by a binary tree, called a quantification tree (or schedule),

where every node specifies which variables are quantified after the left and right children have

been multiplied. The leaves of the quantification tree are the original relations, referred to as leaf

or original relations . The term resulting at each node of the quantification tree is called a par

tial product, and corresponds to multiplying a set of leaf relations and quantifying a set of

variables.

Since it is hard to estimate the size of a BDD resulting from an operation such as multiplication

or quantification, we use the number of variables the BDD depends on (support of the BDD) as

an easily computable approximation. Two cost functions for approximating the cost of a node /

in a quantification tree can be defined. The support cost function is the number of variables in

the relation represented at t, whereas the un-quantified support cost function is the number of

variables in the relation obtained by multiplying the left and right children (and before quantify

ing the variables to be quantified at /). We show that the problem of finding a quantification tree

minimizing the un-quantified support cost function is NP-complete. We then suggest two heuris

tic algorithms for solving the early quantification problem.

Our first algorithm amounts to a "good" implementation of a greedy strategy. The idea is to

have a set of trees, representing partial products. A merge represents multiplying two partial

products and quantifying out all variables which do not appear in any other partial product. The

support cost function is used in this algorithm, i.e. the cost of a merge is the size of the support

set which results after the merge. A merge minimizing this cost is chosen, and the merge is per-

formed. If there are k partial products, then there are 0(k ) possible merges. The challenge

here is to design data structures so that choosing the best merge, and then updating the data struc

tures after a merge can be done efficientiy. We provide one solution to this.

The time required to find a good schedulebecomes importantwhen the size of the problem, i.e.

the number of relations or variables, is large. This come up in an environment where HDL

descriptions of non-deterministic FSMs are compiled into an intermediate format, such as BLEF-

MV ([HSIS94], [Che94]). The compiler may create many relations and intermediate variables

by representing a FSM as a multi-level netiist of relations. To find the transition relation of a

FSM, one can multiply all of the relations andquantify out the intermediate variables. This appli

cation gives rise to an instance of the early quantification problem, with possibly hundreds or

thousands of relations and variables.
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In general, this problem can arise in any verification system where a high-level description of a

large non-deterministic FSM is compiled into an intermediate format. Since there are many

input languages for verification tools, such as VHDL, Verilog, protocol languages, LOTOS, and

graphical languages, intermediate formats are indispensable for verification tools. Since the

descriptions can be non-deterministic, the relations are not functions, and hence functional com

position of BDDs cannot be used directly to compute the transition relation of the FSM. The

most general formulation we know of for computing the transition relation is in terms of early

quantification. Even in the absence of non-determinism, the early quantification formulation has

more degrees of freedom compared to the functional approaches such as the one in [Sis92],

which may lead to more efficient methods.

The second algorithm is geared to smaller problems. It uses the dynamic programming princi

ple to build an optimal quantification tree given a linear order for the leaf relations. Finding a

good linear order is an important sub-problem, and remains a challenge. However, one applica

tion of this algorithm is to optimize the greedy algorithm as follows.

1. Run the greedy algorithm to get a quantification tree. Then, derive a linear order from it.

2. Use the dynamic programming algorithm to build an optimal tree for that linear order.

The early quantification appears in other application areas besides formal verification. We are

aware of applications in the following areas.

1. In synthesis, in computing don't care sets ([Sav94]).

2. In implicit state minimization using BDD's ([KBVS94]).

3. In testing, where the satisfiability of a set of Boolean equations can be checked by testing

whether the BDD resulting from multiplying all Boolean equations and quantifying all variables

isl.

In most verification algorithms, the set of reachable states of the product graph needs to be com

puted. This set is the least fixed-point of Rk (y) = Rk_ Y(y) +3x (Rk_ {(x) a T(x, y)) , where Rk

represents the set of states reachable in k steps, R0 the setof mitial states, and T(x,y) is the tran

sition relation of the product graph. Often, in large problems, the BDD for T(x,y) cannot be

built due to space limitations. In such cases, since

T(x,y) = 3i(Tl(xl,ivyl) a ... *Tn(xn>i„>yn)) . we can write the fixed point computation as

RkM = Rk-1 OO +3*3/(Rk_! (x) a 7, (xv ij,yx) a ... a Tn(xn, in,yn)) , thereby avoiding com

puting T(x,y) . The trade-off with this approach is that computing the set of reachable states

usually takes longer.
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To speed-up this computation, partial collapsing can be used, i.e. individual transition relations

can be clustered (pre-multiplied) to create fewer relations to be multiplied at every step of the

reachability computation. Note that all variables in i which appear in only one cluster can be pre-

quantified out. Now, each step of the reachability computation is an instance of the early quanti

fication problem. The partitioned transition relations problem (PTR) is to find a clustering of

the transition relations, so that the time for computing the set of reachable states is minimized.

Our solution for this problem is related to first find a quantification tree for computing T(x, y)

using algorithms for early quantification. Then, the multiplications and quantifications given by

the quantification tree are performed until the sizes of the BDDs for the partial products become

larger than some threshold value. Assume that / partial products Pl,...,Pl result, and thata sub

set 1 of i remains to be quantified out. At eachreachability step, we have to solve an instance of

the earlyquantification problem with the /+1 terms, where the current set of reachable states Rk

is the additional term. We make two observations to avoid calling early quantification at each

step.

1. In mostcases, Rk involvesall of the x variables.

2. Any further collapsing of the partial products Pv...,Pl mightresult in a blow-up.

Hence, using observation 1, early quantification is called with a dummy set representing Rk

involving all jc variables, relations Pv ...,Pr and variables 7 and x to be quantified. Using

observation 2, the schedule is further restricted to be a linear chain with the first element being

the current set of reachable states. This schedule has the property that no partial products P. and

P. are directly multiplied. We take this as a fixed schedule for all iterations.

Four related papers should be mentioned.

1. [TSLBS90] used a balanced binary tree at each step of the reachability computation to com

pute Rk(y) = Rk_l(y)+ 3x3i(Rk_x(x) aTx (xvi,fyx) a ... aTn(xn,/„,y„)) . Early

quantification was not addressed, balanced binary trees were used as quantification trees in each

step of the reachability computation, and no partial collapsing was performed.

2. In [BCL91] partial collapsing and then use of linear chain was proposed. However, no auto

matic algorithms were given, and the partial collapsing and linear order were chosen manually.

3. [CC93] introduces a new "exist" generalized cofactor which allows for distribution of con

junction and quantification. Their technique for the early quantification problem is quadratic in
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the number of relations, and hence is not practical when the number of relations is large, as may

be the case when HDL descriptions of non-deterministic FSMs are translated into intermediate

formats ([Che94]). However, it appears that for the partitioned transition relation problem one

can use both our techniques and theirs to achieve better results. Using our techniques the number

of transition relations is reduced by automatically clustering highly correlated FSMs. Then using

the techniques of [CC93] the reachability stepcan be sped up. We have not performed any exper

iments with this idea.

4. [GB94] addressed the problem of partition transition relations and gave a simple greedy algo

rithm for it, without addressing the early quantification problem.

Another technique for reducing the sizes of BDDs is dynamic variable reordering (DR,

[Rud931). BDDs are very sensitive to the order of the variables. DR changes this order dynami

cally during each BDD operation in order to reduce the size of BDDs. EQ and PTRs appear to

be orthogonal to DR, i.e. the application of one technique does not render another ineffective.

This chapter is organized as follows. Section 3.2 presents the early quantification problem.

Section 3.3 describes our greedy algorithm for early quantification, whereas in section 3.4 the

exact algorithm given a linear ordering of the relations is described. Section 3.5 gives our experi

ments with early quantification, whereas section 3.6 discusses our experiments with the

partitioned transition relations. Future directions are given in section 3.7.

3.2 The Early Quantification Problem

In this section, we formulate the early quantification problem, and prove an abstraction of it is

NP-complete.

Assume a relation R(x) is given, where the variable x ranges over a finite domain of size n.

The characteristic function of R can be represented by a Boolean equation over logn variables.

In general, if R(xv ..., xk) is a relation over finite domains with nv ...,nk elements respectively,

then the characteristic function of R can be represented by a Boolean equation over

log(nx) + ... + \og(nk) variables. We denote all logn Boolean variables corresponding to a

finite domain x of size « byjt, knowing that x represents a set of Boolean variables. A conve

nient multi-valued interface to the BDD package is described in [Kam91].

Definition Let n relations flj (ux),..., Rn (un) begiven, where each u. represents a setof vari-
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ables on which R. depends. Let u = \jut , i.e. the set of all variables. Let xq u. The early

quantification problem (EQ) is to compute in minimum space the BDD corresponding to

3jc(rtj (Mj) a ... a Rn(un)) , where each R. is represented by a BDD. Wecall R{ Rn the leaf

relations, x the quantifying variables,and u the occurringvariables.

Definition A quantification tree is a rooted binary tree, where the leaves are the R.*s. Each

node / contains a set of variables q(t) £ jc , which occur only in the relations contained in the

subtree rooted at t. The set q(t) represents the set of variables which should be quantified after

the left and right children have been multiplied. R(t) denotes the relation represented at /,

obtained by multiplying the children of / and quantifyingthe variables q(t). The cost of a quan

tification tree is the maximum of the costs of all nodes (to be defined below) in the tree.

Definition Apartial product is of the form P = 3x, ...3x. [R. a ... a R. ], where R.,...,R.

are leaf relations, xl,...,xl are quantifying variables not occurring in any other leaf relations

except for R., ...,Ri. The partial product P can be represented by a quantification tree for

3x/ ...3x/ [r. a... aR. J, and can be part of aquantification tree for 3x(R{ a... aRn). Con

versely, each node in a quantification tree represents a partial product.

Since it is hard to get a good a priori bound on the size of a BDD resulting from a multiplica

tion or quantification, we use the size of the support set of a BDD as an approximation. In this

context, two cost functions for a node t can be defined.

1. Support costfunction, which is the size of the support of the relation R(t) at node /, i.e.

the size of the support of R(t). Note that we assume that if two BDDs rtj and R2 with support

sets Sj and S2 are multiplied, the resulting BDD depends on Slus2. This is an approximation

to reality since the real support is a subset of Sx u s2. This multiplication and quantification can

be done in one BDD operation, called BDD-and-smooth. Unless otherwise stated, by cost of a

node, we mean the support cost.

2. Un-quantified support (UQS) costfunction, which is the size of the support of the relation

obtained by multiplying the children (but before the variables q (t) are quantified). For example,

the support cost of 3x(Rx(x,y) *R2(y,z)) is 2, whereas its un-quantified support cost is 3.

This cost function makes sense since the space taken by BDD-and-smooth may be correlated to
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the size of the BDD resulting from multiplying the two functions.

It can be shown that if early quantification is restricted to linear chains, i.e. arranging the rela

tion in an array and multiplying and quantifying from left to right, then the cost (support cost)

may increase by a factor of logn, where n is the number of relations. The following example

shows an instance of early quantification with 7 relations and 7 variables. The variable depen

dency of each relation can be defined using the binary tree shown in the left part of figure 3.1.

Each node of this tree is labeled by some R.. Each R. is dependent on *., and any other x. such

that R; and R. are neighbors in the tree. For example, R2 is dependent on x3, x4, and jc2 , and

rt3 is dependent on x2 and x3. Let 3jc2...3jc7 (/?1 a ... a/?7) be computed. The minimum cost

over all quantification trees is 3, whereas that of linear chains is 4. By generalizing this example,

one can build an example with 2n - 1 relations and variables, such that the minimum cost over all

quantification trees is 3, whereas that of linear chains is logn+ 1.

The tree of variable
dependency structure for the
set of 7 relations and 7
variables.

A quantification tree of cost of 3.

R2 R3

*5V*7

' A quantification tree of cost of
3A R, 4, representing a linear chain.

The maximum cost is achieved

when /?5 is multiplied, where
tlie support is xj, jcj, jc<j xy.

Figure 3.1: Examples of quantification tress

Theorem 3.1 Answering the question of whether a quantification treeof un-quantified support

cost less than c exists is NP-complete.

Proof To see the problem is in NP, just guessthe quantification tree and verify that it is a valid

one, and has cost less than c. To show the problem is NP-hard, we reduce the minimum width

tree decomposition (MWTD) problem, described in [RS861 and proven NP-complete in

[ACP87], to it Given an undirected graph G = (V, E) , a tree decomposition is an undirected

tree T, where every node i in the tree is marked by some Xyc V, and the following conditions

are satisfied. -

33



1. Every node in V appears in some X., i.e. uX. = V.

2. Every edge (u, v) e E lies insome X., i.e. there is some Xf. such that ue Xi and v <= Xf..

3. If there is path from / to j passing through k in T, then X.n X. g X..
I J K

The wMMr of a tree decomposition is majc(|Xl). Answering the question of whether a tree

decomposition of width less than c exists is NP-complete. Figure 3.2 gives an example of a

graph with one of its tree decompositions. The figure on the right shows a rooted tree, derived

from the undirected tree in the middle.

4 3

Figure 3.2: Example of tree decomposition

The figure on the left shows a
graph on 5 nodes. The middle
figure shows a tree decomposition
of width 3, and the right figure is a
rooted tree corresponding to the
undirected tree in the middle.

Let V = {vj,..., vn} , and E = {ev..., em} . The reduction to early quantification is as fol

lows. Create n variables vv ...,vn. For each edge ek = (v,., v.) , create arelation ek(vv v.) , and

ask whether a quantification tree of UQS cost less than k for 3vl...3vft(e1 a ... a«J exists.

Assume a tree decomposition T of width less than c exists. Make T rooted. Starting from the

leaves, recursively create the quantification tree as follows. Let node ne T be marked by Xn,

and have children cl ck. Let Qv...,Qk be the quantification trees for c,, ...,ck. Let

ev ...,e{ be those edges which lie inside Xn, but do not appear in Qx Qk, or anywhere else in

the quantification tree built so far. Build an arbitrary quantification tree Tn for node n on the

leaves {Qv..., Qk} u {ex et} , quantifying a variable u if all edges involving u appear in

fii Qk or are among ex er Figure 3.3 shows the quantification tree for the tree decompo

sition in figure 3.1, where the groupings show what happens after different nodes of the tree

decomposition are processed.

To see that the cost of the resulting quantification tree built by this procedure is less than c, we

proceed by induction on the above recursive procedure. If n is a leaf in the tree decomposition

T, then the un-quantified supports in the quantification tree Qn are contained in Xn. Hence,
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UQS cost of n is less than c. If n is an intermediate node with children cv ..., ck, by the induc

tive assumption, the UQS costs of Qv ..., Qk are less than c. Let Sv ..., Sk denote the supports

at Qv ..., Qk after the variables to be quantified have been quantified. Weneed to show 5,qXn

for each S.. Let ue S.. Then, there is some edge e involving u which does not appear in Q..

Since n will be on the path from u to the node in T in which e lies, by condition 3 of tree

decompositions, we have ue Xn.

The quantification tree built by the above
algorithm for the tree decomposition in

figure 3.2. Note that the leaves
correspond to the edges of G. The un-
quantified support cost of this
quantification tree is 3.

Figure 3.3: Quantification trees and tree decompositions

We now show that a quantification tree of cost less than c leads to a tree decomposition of

width less than c. Assume a quantification tree Q with UQS cost less than c for

3vr..3vn (er a ... a em) is given. Define T to have the same tree structure as Q, and let Xn for

node n e T be the un-quantified support at n e Q. We need to show T satisfies the three condi

tions of a tree decomposition, and has width less than c. Conditions 1 and 2 are satisfied since

the leaves of Q are the edges of G. Let it be on the path from / to ;' in T. I,et it e X}. n X .

Then, u can be first quantified from the common root r of / and j. If k = r, we are done, since

u belongs to the un-quantified support of r. Otherwise, then, k is a descendent of r, and hence

contains u. In both cases, ue X^. The width of T is less than c, sincethe size of the set of vari

ables at node n e T is equal to the size of the un-quantified support at n e Q (QED).

3.3 A Greedy Algorithm for Early Quantification

In this section, we describe a greedy algorithm for early quantification. Assume an instance of

earlyquantification of the form 3*j. ..3xm (Rj a ... a Rn) is given.
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Definition Two partial products are disjoint if they have no relations in common. Let Px and

P2 be disjoint We say partial product P is the result of merging Px and P2 if the set of rela

tions of P is the union of the relations of Pl and P2, and the set of quantifying variables of P

contains those of P, and P2 and any other variable which appears only in Pl and P2. Let u{,

u2, and u be the supports of Px, P2, and P, respectively. The costof merging Px and P2 is

|«|-MAX(|m1|,IkJ) . If Pj and P2 are represented by quantification trees tx and t2, merging

themamounts to forming anew quantification tree t whose children are r1 and r2, and whose set

of quantifying variables are thosevariables which appear only in tx and t2 and are not quantified

in tl and t2.

In some applications, such as compilation of high-level languages to intermediate formats, the

set of BDDs to be multiplied contain many constants. Let a constant BDD be one whose support

includes only one variable, and the number of minterms it represents is 1. An example is the

BDD for the relation x = 5. Constant propagation, which repeatedly multiplies the constant

BDDs into every relation in which they appear, is effective in reducing the size of the leaf rela

tions. We assume constant propagation is performed before our algorithms for early

quantification are called, although this does not change our algorithms in any way. Our greedy

algorithm is described below.

1. Start with each relation, and quantifythose variables which appear in only one relation. Set done to

false.

2. Until there is only one quantificationtree left or done is true,

2.1 Choosea minimum cost merge, among a "subset" of possible merges.

2.2 If the cost ofthe chosen merge is less than some user-definedvalue, perform the

merge. Otherwise set done to true.

After describing the data structures needed for efficiently implementing this algorithm, the

details of the algorithm are given.

3.3.1 Data Structures for the Greedy Algorithm

The greedy algorithm maintains a forest F of disjoint quantification trees Tv ...,Tk. Active

variables are a subset of the variables to be quantified, which have not been quantified in
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Tv ...,Tk. The connections of an active variable are those T. 's (among T{ Tk) in which it

appears. Each node in every Tt is given a unique integer identifier. The variable connection

table for a variable v is a hash table which contains the set of connections of v. The connection

table is a hash table which points to the variable connection table for everyvariable v. Insertion

into and deletion from both of these tables can be done in constant time. Figure 3.4 gives an

example of a forest and itsconnection table, where are five leafrelations Rl(xl,x2), R2(x2,x3),

R3 (x3> x4)» ^4 (*4» xs)» ^5 (*5> Xj), and 3x1...3x5(R1a...a R5) is to be computed.

3 R,

A forest of 3

1 quantification trees,

ff< where every node
5 has a unique

identifier.

Xl —* '
7

X4
h

4 7

X5 4 5w

The connection table for
the forest in the left figure.

Figure 3.4: A forest and its connection table

Definition A merge M is a tuple (tv t2, c,s), where tx and t2 are the twoquantification trees

to be merged, c is the cost of M, and s is the size of the support after the merge. Note that in

computing a merge no BDD operations are needed.

All merges are managed in a cost array, where merges of the same cost are in the same bucket.

A low and high marker keep track of the lowest and highest cost merges. The bucket for a cost c

points to a support array. A position s in a support array A for some cost c points to a doubly

linked list containing all merges of support size s (and cost c). Hence, given c and s, the linked

list L(c,s) , linking all merges of cost c and support s, can be found in constant time. Since a

merge can appear in only one such linked list, the next and last pointers are maintained inside the

data structure for a merge. For a support array A, the high and low markers keep track of the

smallest and largest support sizes contained in A. These are the first and last positions in A for

which the linked list of merges in not empty.

The cost array is of fixed size (-CL, CH), where CL and CH are non-negative constants. A

merge whose cost is lower than -CL or greater than CH is inserted in the bucket for -CL and

CH, respectively. Similarly, the support arrays areof fixed size (0,SH). In our implementation,

CL = CH = 100, and SH ~ 200 since a BDD with more than two hundred variables is rarely
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built. The merge table is an array indexed by the identifiers of the quantification trees, pointing

to the set of merges in which the quantification tree is involved. Figure 3.5 gives the merges,

cost array, and merge table for the forest in figure 3.4.

Ml 4 5 2 0

M2 4 7 2 0

M3 5 7 2 0

Three possible merges. The
components of a merge
represents the identifiers of the
quantification trees, the support
sizes after the merge, and the
cost of the merge, respectively.

1 2 3 4 5 6 7

1L. JL v

Ml Ml M2

M2 m: M3

The merge table. For each
quantification tree, there is an entry in
the merge table pointing to a hash table
of the merges in which the quantification
tree is involved.

-1 0 1

"

0 1 2

IMil

The cost array.
Both low and high
markers point to 0.

Support array for
cost 2. Both low
and high markers
point to 2.

M3I Linked list for
merges of cost 0
and support 2.

Figure 3.5: Data structures for the greedy algorithm

In what follows, we will prove some complexity results of the data structures. We assume

o - O(m) where o is the total number of variables, and m is the number of quantifying vari

ables. This assumption is reasonable since we have observed that in large instances of early

quantification, a large proportion of the variables are quantified. If this is not the case, then m

has to be replaced by o in all of our results below. In our implementation of quantification trees,

at every node /, we store two sets of BDD variables: q (t) and s (t), which are the sets of quanti

fying and support variables at node /, respectively. Each BDD variable is represented by a

unique integer identifier, and the sets q (t) and s (t) are in increasing order of BDD variable

identifiers.

Lemma 3.3.1 A merge M = (/,, t2, c, s) can be computed in time 0 (m) .

Proof To compute M, s has to to be computed. Let r{ and r2 be the roots of tx and t2.

Since s(rx) and s (r2) are in sorted order, scan them in increasing order. If a variable v occurs

in both s(rx) and s(r2), and hasonlytwo connections, mark it as quantified. Otherwise, v will

be in the support after the merge. The results follows by noting that the number of connections

of a variable can be looked up in constant time from the variable connection table, and the

assumption that o = O (m) (QED).

Lemma 3.3.2 A merge M - (tv t2, c,s) can be inserted into or deleted from the merge table

in constant time.
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Proof Let Hx and H2 be the hash tables containing the merges for tx and t2. H1 and H2 can

be looked up from the merge table in constant time. The lemma follows by noting that insertion

intoand deletion from a hash table is aconstant timeoperation (QED).

Lemma 3.3.3 A merge M= (tv t2, c, s) can be inserted into ordeleted from the cost array in

constant time.

Proof Insertion can be done by inserting M at the beginning of L(c, s). Deletion is done by

adjusting the next and last pointers, maintained in M. If M is the first link in L(c,s), then

L(c,s) is set to point to the second one (QED).

Definition A merge M = (tv t2, s,c) isperformed by following the procedure below.

1. Create anewquantification tree / with children tx and t2, and set q(t) to contain those quan

tifying variables which have notbeen quantified in t] and t2, and occur only in tY and t2.

2. Update the connection table by deleting the variables in q (t). Update the variable connection

table for a variable v occurring in /j (in t2) by deleting the connections to tx (to t2) and adding

a connection to t.

3. Delete M from the merge table and cost array.

4. Delete each merge M = (tvt'2,s',c') involving tl from the merge table and cost array, and

inserta merge M" - (t, t'2, s", c") into the merge table and cost array.

5. Update merges involving t2 as in the previous step.

Lemma 3.3.4 A merge can be performed in 0 (nm) time.

Proof The set q(t) in step 1 can be computed by visiting each variable in s(t{) and a(/2)

once (recall the variables in s(tx) and s(t2) are in sorted order). Hence, step 1 takes O(m)

time. Step 2 takes 0 (m) time since insertion into and deletion from the connection table and

variable connection tables can be done in constant time. By lemmas 3.3.2 and 3.3.3, step 3 can

be performed in constant time. There are at most n merges involving tx, since the number of

quantification trees is less than n. By lemmas 3.3.1, 3.3.2 and 3.3.3, steps 4 and 5 take O(nm).

The lemma follows (QED).
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3.3.2 The Greedy Algorithm in More Detail

A main point left unresolved in the greedy algorithm is how a subsetof possible merges is cho-

sen. If there are k quantification trees in a forest F, there are 0(k ) possible merges. If k is

large, it may not be possible to build the data structures for all merges. Our approach, given

below, is to perform low-cost merges (to be defined precisely below) first on a small subset of

possible merges. This will reduce the size of F. On this smaller forest, and for higher cost

merges, a bigger subset of possible merges is considered.

1. Create the small merge table: for an active variable v with two connections, create a merge between

the two quantificationtrees in which v appears.

2. Perform merges with a small maximum cost Ms, i.e. choose a minimum cost merge, and perform the

merge if its cost is not greater than Ms.

3. Create thefull merge table: for an activevariable v whose number of connections is less than some

maximum value EM, create allpossible pairwise merges between the quantification trees in which v

appears. Arrange inan arbitraryring, all quantification treescontaining somevariable u whose num

ber ofconnections is larger than EM. Create amerge between any neighboring quantification trees in

this ring.

4. Perform merges, i.e. choose a minimum cost merge and perform the merge, until left with only one

quantification tree (if the merge table is empty, choose two arbitrary subtrees).

For our implementation, we let Ms = 0 and EM = 50. We have the following results.

Lemma 3.3.5 The number of merges created by the small merge table isbounded by O(m) .

Proof There are at most m active variables having two connections. For each such variable,

at most one merge is created in the small merge table (QED).

Lemma 3.3.6 The number ofmerges created by the full merge table is bounded by 0 (m +n) .

Proof The number of merges created due to active variables whose number of connections are

less than EM is bounded by 0 (m). Since there are at most n quantification trees (there are no

more quantification trees than leaf relations), at most 0 (n) merges are created due to the ring in

step 3 (QED).
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3.3.3 Complexity of the Greedy Algorithm

Theorem 3.2 The running time ofthe algorithm is bounded by max(0(n2m) ,0(m2)) .

Proof The time to create merges is bounded by 0(m2 +mn) by lemmas 3.3.1, 3.3.5 and

3.3.6. Since at most 0 (n) merges are performed, by lemma 3.3.4, the total time for performing

2
merges is 0 (n m) . The theorem follows (QED).

When the number of relations is large, the early quantification problem may be (and is the case

in our experience) sparse, i.e. every variable appears in 0(1) relations, and every relation has

0(1) variables. Hence, for sparse problems, 0 (n) = 0 (m) .

Theorem 3.3 If the early quantification problem is sparse, then the running time of the

algorithm is O (n) .

Proof There are at most 0 (n) merges created by the small and full merge tables. Performing

a merge takes constant time, since every quantification tree is involved in a constant number of

merges, and the size of the support of the quantification trees is bounded by a constant. Hence,

performing the merges takes 0 (n) time (QED).

3.4 An Exact Algorithm for Early Quantification Given A Linear Order

Let an instance of early quantification 3jtr..3;tm (Rx a ... a Rn) , and an ordering R.,..., fl. of

the relations be given. Without loss of generality, we assume ix = 1,..., in = n. Given a quantifi

cation tree /, its linear realization is an ordering of the leaf relations obtained by a depth-first

search visiting left child, right child, and the root, respectively. Intuitively, the linear realization

is the left-to-right ordering of the leaves of /. In this section, we give an algorithm which returns

in polynomial time a minimum cost quantification tree over all those quantification trees whose

linear realization is /?,,..., R„.
I n

Let p[ij] be the partial product 3x(Ri a ...aRj) , where x is the subset ofquantifying vari

ables which occur only in R.,...,/?.. Let cost[ij] be the minimum cost over all quantification

trees for p [i,j] whose linear realization is /?.,...,/?.. If t is a quantification tree whose linear

realization is Rit...,Rj, then there exists k, i£k<j, such that the linear realization of the left

child of the root is Ri,...,Rk, and the linear realization of the right child of the root is
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Rk+ j,..., Rj. Index k is called the separator of t. The idea of the algorithm is to calculate the

best way of computing partial products of the form p [i,j] . In the algorithm given below, first

the cost of the original terms is computed. Then, the best way of computing p [i,j] for increas

ing j - i is calculated.

0. Preprocessing step: quantify out any variablespresentin only one relation.

1. For i = 1,..., n, initialize cost [i, i] .

2. Ford = 1 n-1,

For i = 1, ...,n-l

; = / + /

COSt [i,j] = oo

For k = i, ...J-I

q - ComputeCost (i,j, k) (described below).

If q< cost [i,j] , then cost [i,j] = q, and seperator[i,j] = k.

3.4.1 Cost Functions

In the above algorithm, ComputeCost (i,j,k) is a function returning the cost of computing

p [i,j] in a quantification tree where the left (right) child of the root is a quantification tree of

minimum cost whose linear realization is R. Rk (Rk+ v ...,/?). Let t be a node in a quantifi

cation free, representing partial product p, and having children / and r. We have experimented

with the following two cost functions.

1. The un-quantified support cost function returns MAX(\s(l) us(r)\,\s(l)\,\s(r)\) , where

\s(n)| denotes the size of the support at some node n. Note that \s(I) u s (r)\ denotes the size

of the support.at / before the variables q(t) are quantified.

2. The variable duration costfunction, motivated in [BCL91], measures the cost of quantifying

a variable v as the number of multiplications that has to be performed starting from the original

relations to form the partial product from which v is quantified. Intuitively, it enforces the princi

ple "the earlier you quantify a variable the better." More precisely, let |/j be the number of

intermediate nodes in /, which is also the number of multiplications needed to form the partial

product p (represented by 0 starting from the original relations. Let \q(t)\ denote the number

of variables to be quantified at / Then, cos/(/) = cos/(/) +cos/(r) +|^(r)||r|. Note that the
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cost of / can be determined in both cases from the costs of / and r.

3.4.2 Correctness and Complexity

Theorem 3.4 Given a linear ordering of the relations, the above algorithm returns a minimum

cost quantification tree for the given cost function.

Proof A quantification tree of cost cost [l,n] can be built using the separators. Hence, it

suffices to show cost [i,j] is the minimum cost of computing p [i,j], subject to the linear order.

To show this, we use induction on the number of terms in a partial product p [i,j]. The base

case, i.e. p [i, i], holds since there is only one way to compute p [i, i] . The claim follows from

the inductive assumption and by noting that the algorithm tries all possible ways of computing

p [i,j] from smaller sub-partial products subject to the linear ordering (QED).

Theorem 3.5 The above algorithm runs in 0(n m) , where n is the number of relations and m

is the number of variables to be quantified.

Proof The algorithm computes cost [I,;] for / = 1 n-1 and jZi. There are 0(n2) such

calculations. To compute cost [ij] , for all k, i<k <>j- 1, the support and quantifying variables

of a quantification tree t whose left and right children are the partial products p [i, k] and

p[k+ IJ] have to be computed. For a quantifying variable v, let l(v) and r(v) denote the

smallest and largest indices of the relations in which v occurs, v is in the support of / iff

l(v) <i or j<r(v) ; v is quantified at t iff i^l(v) <k<r(v) <>j. By pre-computing l(v) and

r(v) for all quantifying variables, the support and quantifying variables at / can be determined

in 0(m) time. To determine cost [/,;'] , O(n) such calculations are needed. The theorem

follows (QED)

Remark In theorem 3.5, as before, we assume o = O(m), where o is the total number of

variables.

3.4.3 Obtaining Linear Ordering

A minimum cost quantification tree can be built by finding a suitable linear order and running

the above algorithm. Linear realizations of minimum cost quantification trees are among linear

orders on which the algorithm will return a minimum cost quantification tree. Currentiy, we use

the linear realization of the quantification tree returned by the greedy algorithm. Finding good

linear orders for this algorithm remains a challenge.
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3.5 Experimental Results for Early Quantification

Since our package is integrated into HSIS, we have experimented with a set of academic and

industrial verification examples. The input language to HSIS is Verilog, extended to handle non-

determinism. Most verification examples (and, in general, high-level designs) are described as a

set of interacting and possibly non-deterministic FSMs. Instances of early quantification arise in

two places:

1. As each Verilog process (representing a FSM) is translated into BLIF-MV, a multi-level

structure consisting of many small non-deterministic relations is created. To form the transition

relation of a FSM, all relations have to be multiplied and the intermediate variables quantified.

In this application, it is not uncommon to call the routine with thousands of relations.

2. After the transition relation for each FSM is built, to form the product graph, all these rela

tions are multiplied and non-state variables are quantified. In this application, the input usually

consists of less than 100 relations, where each relation is the transition relation for one of the

FSMs.

The next two sections summarize our experiments within each of these applications. The exam

ples we used are: Gigamax, a multi-processor cache coherency protocol distributed with the tool

SMV([McM93]); Scheduler, an academic example from [Mi189]; 2mdlc, a message data link

controller obtained from industry.

3.5.1 Experiments Building the Transition Relation of a Single FSM

In this section, we present our experiments with the largest FSMs for each of our three exam

ples. We experimented with three algorithms. The first one (G) is the greedy algorithm,

presented in section 3.3. Our second algorithm (B) returns a balanced binary tree built from the

original relations, quantifying variables as soon as possible. Our third algorithm (L) is a greedy

algorithm building a quantification tree representing a linear chain, where relations are multiplied

from left to right, quantifying a variable as soon as possible. It is obtained by restricting our

greedy algorithm to choose a minimum cost merge involving the quantification tree resulting

from the previous merge.

Table 3.1 shows the results of our experiments. Columns 2 and 3 of the table give the number

of relations and variables before and after constant propagation. Column 4 shows the total time

to find the schedule and perform the multiplications and quantifications (for these experiments,

the time to find the schedule was negligible). Column 5 contains the number of nodes for the
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largest BDD seen, whereas column 6 gives the maximum support set encountered. In column 7,

G stands for the greedy algorithm, B for the balanced binary tree algorithm, andL for the greedy

algorithm restricted to return linear chains. Our experiments were run on a DECsystem 5900

with 440MB of RAM.

Table 3.1: Experiments building transition relation of one FSM

Examples
# of reins/after

const, prop.

# of vars/after

const, prop
time in sees. largest BDD max support alg

Diners 122/80 128/86

0.1

0.08

0.12

40

145

205

12

22

26

G

B

L

Gigamax 153/100 148/95

0.29

0.89

3.63

202

3370

3014

14

30

33

G

B

L

Scheduler 106/69 104/67

0.25

0.40

0.61

253

1074

502

12

23

22

G

B

L

2mdlc-fsml 212/144 187/119

1.50

2.60

40.1

8982

11261

23731

37

42

49

G

B

L

2mdlc-fsm2 820/556 809/545

3.02

20.1

177.5

274

62468

62468

24

46

46

G

B

L

2mdlc-fsm3 3188/2194 2179/1373

11.58 1644

space-out

space-out

38

space-out

space-out

G

B

L

Our experiments can be summarized as follows.

1. The support cost function tracks well with the sizes of the BDDs.

2. In all examples, the greedy algorithm performs better than the other two. The difference

becomes much larger as the size of the problem grows. In our largest example, the greedy algo

rithm is the only one which can finish building the BDD.

3. The running-time of all three algorithms to find a schedule were a fraction of the time needed

for the BDD operations. Hence, they are not reported here.

4. Constant propagation is effective in reducing the numberof relations in this application. We

think that this an impact on the total time, although this was not measured.

3.5.2 Experiments Building the Product Graph

For experiments building the product graph, we included the dynamic programming algorithm

as well as the algorithms of the previous section (greedy, balanced binary tree, and linear chain).

We experimented with two dynamic programming algorithms. The first one, referred to as DS,
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uses the un-quantified support cost function on a linear order obtained from the quantification

tree returned by the greedy algorithm. The second one, referred to as DV, uses the variable dura

tion cost function on a linear order obtained by restricting the greedy algorithm to linear chains.

Table 3.2 shows the result of our experiments. Columns 2 and 3 give the number of relations

and quantifying variables, respectively. Column 4 gives the size of the maximum BDD encoun

tered, whereas column 5 gives the cost of the quantification tree. Note for DV, this cost, given in

parentheses, is as described in section 3.4.1. In column 6, the time for performing the multiplica

tions and quantifications is given. For DS and DV, the time to find the schedule is also given.

The last column shows the different algorithms.

Table 3.2: Experiments building the product graph

Example
#of

reins.

# of quant,
vars.

largest
BDD

cost

time in sees

sched/BDD ops. algorithm

Gigamax 11 22 8507

5693

4256

15042

176163

31

21

(127)

31

36

2.36

0.04/1.48

0.01/2.77

6.42

6.87

G

DS

DV

B

L

Scheduler 12 39 49999

49999

49999

102691

102691

194

166

(1143)

194

194

20.29

0.06/21.03

0.01/27.47

44.0

95.61

G

DS

DV

B

L

2mdlc 20 18 2393

2393

2718

40

40

(120)
space-out

space-out

0.32

0.12/4.22

0.02/2.86

space-out

space-out

G

DS

DV

B

L

Our experiments can be summarized as follows.

1. The greedy algorithm gives good results in this applicationalso.

2. Although the dynamic programming algorithm always returns a lower cost quantificationtree

when given the linear realization of the quantification tree returned by the greedy algorithm, this

does not always translate into shorter processing time for the BDD operations. For the case of

2mdlc, it performs substantially worse.

3. For our examples, where the number of relations is less than 40, the time taken by the

dynamic programming algorithm is a fraction of a second.
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3.6 Experiments with Partitioned Transition Relations

The partitioned transition relations (PTR) problem was defined in section 1, and our solution

based on early quantification was given. In this section, we describe our experiments with this

problem. The example we worked with is a model of the memory system for the SPARC8 multi

processor architecture ([SUN90]). To get a goodBDDvariable ordering, the description was flat

tened. This description when translated into BLIF-MV results in 1800 relations and 1783

intermediate variables , which need to be quantified. The transition relation for this model cannot

be built. However, if the set of reachable states R is computed, and the relations are restricted to

R, then the transition relation can be built. The reason is that the un-restricted transition relation

represents transitions in both the reachable and unreachable parts of the state space. As Ken

McMillan has also observed, if the unreachable part of the state space in not "well-behaved," as

is the case with our example, then the BDDfor the un-restricted transitionrelation might blow up.

Our algorithm for PTR first calls early quantification to get a quantification tree, and then per

forms the multiplications and quantifications until the sizes of the BDDs become larger than a

threshold value. At this point, a set of partially collapsed BDDs is obtained, which are arranged

in a linear chain and are used to compute the set of reachable states. Table 3.3 shows the result of

our experiments, where the columns represent various threshold values, the time taken to form

the clusters, the number of clusters, the time for computing the set of reachable states, and the

total time, respectively. All times are in CPU seconds.

Table 3.3: Experiments with partitioned transition relations

threshold collapse (time) # clusters reach (time) total time

100 9.98 59 43.83 53.81

1000 9.05 24 13.96 23.01

5000 9.07 21 12.77 21.84

15000 10.46 19 5.60 16.06

50000 15.25 17 1.79 17.04

200000 50.83 9 3.83 54.66

Our experiments can be summarized as follows.

1. PTRs are vital to verify this example.

2. Partial collapsing is veryusefulto reducethe timetakento compute the set of reachablestates.
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3. Although partial collapsing with low or high threshold values gives poor results, there is a

range for which partial collapsing does not appear to be too sensitive to the threshold value used.

3.7 Conclusions

Formal verification tools based on BDDs are being used more and more in industrial applica

tions. The central problem for these tools is computing the set of reachable states of the product

graph. To do so, a representation of the transition relation of the product graph is needed. In this

paper, we have attacked this problem. Our contributions are as follows.

1. We have formulated the early quantification problem, which is the most general formulation

we know of for computing the BDD for transition relations of individual FSMs and the product

graph. We have shown an abstraction of this problem is NP-complete.

2. We have given a greedy algorithm for heuristically solving the early quantification prob

lem. This algorithm is fast, and has produced very good experimental results on all of our

examples. We have also given a dynamic programming algorithm for solving the problem opti

mally when restricted to a given linear ordering of the relations.

3. For large examples, the BDD for the transition relation of the product graph may be too

large to build. In such cases, partitioned transition relations can be used. We have followed the

formulation of [BCL91], but have given automatic algorithms, based on our algorithms for early

quantification, for solving this problem.

A few directions for further research can be suggested.

1. We have shown the early quantification problem is NP-complete when the un-quantified

support cost function is used. Complexity of early quantification with the support or variable

duration cost functions needs to be investigated, although it is reasonable to expect the problem

to remain NP-complete in these cases as well.

2. Experiments using the greedy algorithm with un-quantified support cost function, and the

dynamic programming algorithm using support cost function need to performed.

3. Algorithms for finding good linear orders for the dynamic programming algorithm are

needed. Algorithms for one-dimensional placement may be used as a starting point
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Chapter 4

Symbolic Computations for Language Containment and Fair CTL

4.1 Introduction

In providing a system for design verification, there are many issues which have to be addressed. In

this chapter, we look at several problems: specification of systems, specification of properties,

checking of properties, early failure detection, and hierarchical verification.

Specifying the System. In chapter 3, we introduced the combinational/sequential (C/S) concur

rency model, to which HDL's can be compiled. However, non-determinism and abstraction may

result in unwanted behaviors. An example is in modeling unbounded delays, where we want to

allow the system to stay at a state s for some finite but unknown amount of time. The behaviors

where the system is in s forever should be excluded. An easy abstraction would allow infinite

delays, but then all properties of the system should only be checked on traces, where the system

gets out of s infinitely often if it enters s infinitely often. A second example of unwanted behav

ior is in modeling schedulers. Assume that a set of processes is executed in a system controlled

by afair scheduler: one which disallows starvationof processes. An example of a fair scheduler

is a round robin scheduler. To avoid having to model the details of a particular scheduler, system

constraints can be used to disallow looking at traces where one process is blocked forever. Such

constraints on a system's traces are calledfairness constraints (FCs). Therefore, a hardware sys

tem consists of a (possibly abstract) model of the hardware plus a set of fairness constraints. In

this chapter, we introduce various forms of specifying FCs.

Specifying Properties. We use two methods for specifying properties, CTL [CES86] and edge-

Rabin automata (an extension of Rabin automata, [Rab72]). Combined with the fairness con

straints (also called acceptance conditions in the context of specifying properties), this provides

the ability of specifying any property describable by "fair CTL" plus any "omega-regular" prop

erty. Although these two sets overlap, they are not strictiy comparable. Hence, not only does

this provide a larger set of properties that can be specified than either alone, it also benefits the

user by offering a choice according to which is more convenient, efficient or succinct. Since the
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symbolic methods for proving these two types of properties have many common features, it is

not necessary to have to choose between the two in designing a formal verification system. We

provide both without too much additional effort.

Checking Properties. Checking that a system satisfies a CTL formula is called model check

ing (MC). A set of symbolic methods for model checking a subset of fair CTL was first given in

[BCMDH92]. These are based on fixed point computations which have efficient BDD ([Bry86])

implementations. The CTL formula is unrolled creating a parse tree, and the states for which

each sub formula holds is computed successively.

Checking that the system satisfies a property specified as a Rabin automaton is done by lan

guage containment (LC). Here one needs to prove that the language of the system (set of its

traces satisfying the fairness constraints, known asfair traces) is contained in the language of the

property automaton (the set of input sequences acceptedby the automaton). This is usually done

by complementing the property automaton and taking the product of the system with the result.

If the resulting product has no fair traces (its language is empty), then the property is proved. An

interesting property of our language containment environment, known as the edge-Streett'edge-

Rabin (eSeR)environment, is that the languagecontainment check for this environment is poly

nomial, whereas this check is NP-complete for the next natural (in some sense) extension to this

environment ([HSB94]).

For both LC an MC we need to compute a set of states called fair reachable states, denoted

Fair+, which can reach a "fair cycle", a cycle whose traversal satisfies all the fairness con

straints. We present several algorithms for computing Fair+ [HTKB92]. These are based on

the ideas of [EL85] on how to translate fair CTL formulas into ^.-calculus. In addition, for LC

we give an alternative algorithm, which views LC as a sequence of transformations which trim

portions of the state space where no fair behavior can occur.

Early Failure Detection. In practice, a verification tool is more often used when there are

bugs in the specification. So a good debugging environment associated with formal design verifi

cation is essential. We provide two aids, early failure detection and short error traces. Early

failure detection (EFD) refers to finding "easy" bugs quickly, that is without having to go

through the complete MC or LC process. In this we try to emulate what simulation is good at,

where bugs are discovered easily by simulating relatively random inputs. We provide a set of

EFD LC algorithms which although not complete, empirically seem to find most bugs. Hence

the entire LC computation often can be avoided.

Short error traces are useful in providing the user with a more easily understood counter-exam-
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pie to the property. An error trace is simply a simulation trace that does not display the required

property. One advantage with symbolic methods is that when an error occurs, internally the set

of all counter-examples is effectively available. The task of finding a short error trace is to find a

fair trace of the system which is as short as possible. Since an error trace involves an initial seg

ment plus a cycle, we provide algorithms to find a shortest path to a fair cycle and then a short

fair cycle. Although we do not guarantee that the trace produced is shortest, experience is that

they are quite short and these short traces are very useful for debugging purposes. Techniques

for finding short error traces are described in chapter 5.

Hierarchical Verification. Even though symbolic BDD methods are quite powerful, eventu

ally the system to be implemented becomes too complex and the state space becomes too large.

Then it is necessary to use abstraction to describe the system in order to verify a property. It is

desirable that if the property holds for the abstracted system then it also holds for the refined

detailed version. It is known, for all omega-regular properties and for some CTL properties, that

if the language of the abstract system contains the language of the refined system, then such prop

erties holding for the abstract system also hold for the refined system. We give algorithms for

checking language containment between two systems with edge-Streett fairness conditions,

where for example one may be the detailed system which should be contained in the other

abstract representation.

Most methods described in this paper have been implemented in HSIS. The outiine is the chap

ter is as follows. Section 4.2 describes eight types of fairness conditions and their translations

into edge-Streettconditions. Section 4.3 presents the algorithms for computing the fair reachable

states, Fair+. Sections 4.4 and 4.5 give symbolic algorithms for MC and LC respectively. Sec

tion 4.6 discusses the advantages for providing both LC and MC capabilities. Section 4.7

describes some of the techniques used for early failure detection. Section 4.8 discusses hierarchi

cal verification strategies and presents some algorithms for this.

4.2 Fairness Constraints

To restrict the behavior of abstract FSM's, fairness constraints are introduced. Fairness con

straints put restrictions on which runs are accepting. An co-string is accepted, i.e. is part of the

behavior of the system, if and only if it has an accepting run, where the acceptance condition

comes from the fairness constraints. In this section, we first give eight different forms to

describe fairness constraints, and although all are not necessary for completeness, they can make
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it easier for the user to specify the total set of fairness constraints. We then show that all these

fairness constraints can be translated into a more restricted format, known as edge-Streett fair

ness constraints. Fairness constraints can be divided into negative and positive constraints.

Within each category, various kinds of fairness constraints are allowed.

4.2.1 Positive Fairness Constraints (PFC)

We motivate positive fairness constraints by an example. Consider the scheduler given below,

which schedules processes 0,..., n in a round robin fashion. If no FCs are imposed, then the

scheduler can schedule one of the processes forever. To impose fairness, we restrict the behavior

of this machine, by asserting that only those behaviors are accepting, where the edge (n,0) is

taken infinitely often (i.e. a positive fair edge constraint). Intuitively, this means that the sched

uler keeps cycling through all the processes.

This scheduler schedules processes in a round
rabin fashion, allowing each process to continue
for an arbitrary amount of time. To ensure
fairness, the edge (n,0) is declared as a positive
fair edge, one which must be taken infinitely often.

Figure4.1: Example motivating fairness constraints

In what follows, let r be a run. There are four types of PFCs.

1. Positive FairNodes. A set S of states oneof which must be visited infinitely often (<»-often),

i.e. inf(r) nS*0.

2. PositiveFair Edges. A set of edges one of which must be traversed «>-often.

3. Positive FairSubset. A set S of states which mustbe visited «>-often and exited only finitely

many times, i.e. inf(r) q S for a run r.

4. Positive Canonical Fairness Constraints (PCFC). A constraint of the form F~(S) +G°° (T) ,

where 5 and r are subsets of states. This constraint is satisfied by a run r iff inf(r) nS*0 (r

visits the set S «>-often) or inf(r) q T (after some point, r consists only of states in T).

A set of PFCs are satisfied if all are satisfied.

4.2.2 Negative Fairness Constraints (NFC)

Similarly, there are four types of NFCs.

1. NegativeFair Node. A state q which must visited only finitely many times, i.e. it should not
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be traversed *»-often (inf(r) n q = 0).

2. NegativeFair Edge. An edge which must be visited only finitely many times.

3. NegativeFair Subset. A set of states which either must be visited only finitely many times, or

exited «»-often, i.e. inf(r) nS*0.

4. Negative Canonical Fairness Constraints (NCFC). A constraint of the form F~(S) a G°° (T),

where S and T are subsets of nodes. This constraint is satisfied by a run r iff inf(r) n S = 0 or

infix) nf*0.

Note that a run is accepting iff all the positive and negative fairness constraints are satisfied, i.e.

.11 Pj a II Nj holds, where P. is apositive fairness constraint, and AT- is anegative one.

4.2.3 Edge-Streett Automata

To make algorithm design easier, we translate a FSM with the above fairness constraints to a

more restricted form, known as edge-Streett automata.

Definition An edge-Streett automaton is a FSM with the following fairness constraints: a set

of negative fair edge constraints, a set of positive fair edge constraints, and a set of positive

canonical fairness constraints. A run is accepting if all of the fairness constraints are satisfied.

Lemma 4.2.1 A system with the above positive and negative fairness constraints can be

expressed as an edge-Streett automaton, so that the set of accepting runs is the same in both

systems.

Proof We show how each positive or negative fairness constraint can be converted to one of

die fairness constraints allowed by edge-Streett automata. Since, negative fair edge constraints,

positive fair edges constraints, and PCFC's are allowed by edge-Streett automata, we only need

the following transformations.

1. Positive fair nodes. Let S be a set of positive nodes, one of which must be traversed «>-often.

Create a constraint of theform F~ (S) +G°° (0).

2. Positive fair subset. Let 5 be a positive fair subset Create a constraint of the form

F~ (0) + G°° (S) .

3. Negative fair node. Mark each incoming and outgoing edge q of a negative node as negative

edges. Alternatively, we cancreate a CFC of the form F°° (0) + G~ (q).

4. Negative fair subset For each negative fair subset S, create a PCFC of the form
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F~(S)+G~(0).

5. NCFC. Transform a NCFCF~(S) AG~(r) to a PCFC F~(T) + G~(S) (QED).

The following figure shows the conversions of lemma 4.2.1.

Positive

Fair node S F~(S)+G°°(0)

Fair edges N/A

Fair subset S F~(0)+G~(S)

PCFC N/A

Negative

Fair node q F~(0)+G~(?)

Fair edges N/A

Fair subset S F~(S)+G~(0)

NCFCF~(S) AG~(r) F00(f)+G0°(5)

Figure4.2: Translating fairness constraints into edge-Streett conditions

4.3 Computing Fair States

At the heart of MC and many LC algorithms, is a function which computes the set of all fair

reachable states, i.e. those from which there is an accepting run. An accepting run according to

fairness constraints is called &fair path. In this section, we present an algorithm for this task,

which is a modification of the Emerson-Lei computation, presented in [EL85], and re-formulated

in the language containment environment by [TKB91]. In [HTKB92], several other ways of

computing this set are given. In what follows, let G be a graph, V the set of its vertices, Ac V,

and T(x, y) its transition relation, i.e. its set of edges.

Definition A cyclic strongly connected component (CSCC) of G is an SCC of G which con

tains at least one cycle. The remaining SCC's are single node SCC's with no self-loops. These

arc called acyclic strongly connected components (ASCCs).

This graph contains three SCCs:
(1), {2,3}, (4). Thefirst one is acy-

4 ] elk, the last two cyclic.

Figure4.3: Cyclic and acyclic SCCs

Definition Let F be a monotone increasing *-ary predicate transformer. Define the leastfix-

point of F given Q, denoted by u (X, Q) .FX where Q is a Jt-ary predicate over sets Dv .... Dk,
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by the set F*(Q) , for the least / such that F(Fi(Q)) =F*(Q) , where F°(Q) = Q. Intuitively,

X is the variable we are recurring on, and Q is its initial value. Similarly, define the greatest fix-

point of a monotone decreasing jfc-ary predicate transformer F given Q, denoted by

v(X,Q).F(X), by the set F*(Q) , for the least i such that F(Fi(Q)) = F*(Q) , where

P (Q) = Q. We restrict attention to finite domains for which the fixpoints of monotone predi

cate transformers are well-defined.

Definition Let Sj(A,y) = 3x(A(x) AT(x,y)) and St(x,A) = 3y(A(y) AT(x,y)) . Thus,

Sr (A,y) are the (one-step) successors of A(x) and Sx (x,A) are the (one-step) predecessors of

A(y).

Definition Let /?, (A, y) = A(y) v S, (A, y) , RY (x, A) = A(jc) v 5, (jc, A) ,

/? (A,y) =u(X,A) .Rx (X,y) , R*(x,A) =\i(X,A) .R{ (x,X) . Note that the first two are "one-

step" operators, while the last two are fixed-point computations. One should read R (A, y) as

the set of points reachable from A. Similarly R (x,A) is the set of points that can reach A.

Note that Rx (A, y) and Rx (x, A) are monotone increasing predicate transformers.

Definition Let Ux (A, y) = S, (A, y) a A(y) and £/, (jc, A) = 51 (jc, A) a A(x) . Thus,

U1 (A, y) denotes the set of states in A which have predecessors in A, and Ul (jc, A) denotes the

setof states in A which have successors in A. Note that Ux (A, y) and Ul (jc, A) are monotone

decreasing.

Definition We define two "stable set" operators, S*(A,y) =v(X,A).U1 (X,y) and

S (x, A) = v (X, A) .U1 (jc, X). One can think of the first as calculating the backward stable set

contained in A, i.e. the set of all vertices in A which are reached by some vertex involved in

some cycle in A. The second is the forward stable set of A, i.e. the set of all vertices which can

reach some vertex involved in some cycle in A) .

1. The backward operators introduced in this section will be used in the next section.
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Figure 4.4: Effect of stable set operators

Definition Given a set of positive fair edges constraints {£.} , n CFC's of the form

F°°(Si) +G°°(T.), and a current set of states S, with S^S and r.cS, the forward fair-path

operator returns a set of states M £ S such that for each xe M:

1. for each E., there is a path in M, starting at jc , and reaching some edge E., and

2. for each condition F°° (St) +G°° (T.), either jc e 7\, or there is a path in M, starting at jc , and

reaching a state in Sr

The computation for this operator is FP(S) = IT [R*(x,St) +rj a UR\x,E*J , where

n is the number ofCFCs, St and T. are the sets in the i-th CFC F~ (5,) +G~ (7^.) , p is the num

ber of positive edge constraints, E?j represents the set of head states of the ;* -th set of positive

fair edges Ej after these edges arc restricted to S, and FP(S) is the result of the forward fair

path operator. The corresponding backwardfair-path operator is similar, except that the direc

tion of the path is the reverse. The computation for the backward fair-path operator is

BP (S) - ft (R* (Sit y) +T.) a II R*[ yEp yJ, where yE. represents the set of tail states of the ; -
i = iv J j = l v J J J

th set of positive fair edges E'. after these edges are restricted to S.

Definition Let a/air cycle be a cycle whose infinite traversal satisfies all fairness constraints.

Let a/air state be a state involved in some fair cycle. Let Fair denote the set of all fair states.

Let a fair reachable state be a state which can reach some fair state. Let Fair+ denote the set of
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fair reachable states.

The algorithm for computing the set of all fair reachable states is described as follows.

1. Restrict the transition relation T (x, y) to the set of reachablestates.

2. Removenegativefair edgesfrom T(x,y).

3. Let A0 be the setofreachable states. Repeat until convergence,

3.1 Apply the forward stable set operator; AJ +1/2 = S (x,At).

3.2 Apply the forwardfair-path operator; .Ai+l - FP (A|+1/2)

*

4. Let the set computedin step 3 be U. Return R (jc, U), i.e. the set of states whichcan reach U

Theorem 4.1 The above algorithm computes Fair+.

Proof Denote the set returned by the above algorithm by W. To show Fair+ q W, it suffices

to show FairaU. Let jce Fair. Then, jc is in some fair cycle. So, it is not deleted by the

forward fair-path and stable set operators. Since, jc is a reachable state, we conclude jc e U.

To show W^Fair+, it suffices to show UQFair+: since any xeW can reach U which can

then reach a fair cycle, it follows that jc can reach a fair cycle. Now, let jc e U. We will show

jc g Fair+. Assume to the contrary that jc cannotreach a fair cycle. Then, there are two cases:

Case 1. x cannot reach a cycle, in whichcase, jc is deleted by the forward stable set operator.

Case 2. jc can only reach non-fair cycles. Consider the subgraph reachable from x. Consider

any one of the leaf SCC's (one which cannot reach any other SCC) of this subgraph. Call it C.

Since C was not deleted by the forward fair-path operator, it must be that all positive edge con

straints are satisfied, i.e. for each set of positive edges, one of the edges is included in C. Also

for the z'-th CFC, every state in C is either included in T. orcan reach some St. Since, states in

C can only reach themselves, and since vertices in C only have edges to vertices in C, it follows

that C is either included in Ti or contains some node of Sr Hence, a cycle y which goes

through all nodes and edges of C satisfies the i-th fairness constraint. We conclude that y satis

fies all positive edge constraints and all CFCs (y satisfies the negative fair edges constraints

since all the negative fair edges were removed). Hence, y is fair. But this is a contradiction to jc

not being able to reach any fair cycles (QED).

There is another operator which can be used in step 3 of the above algorithm to quickly elimi-
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nate portions of the state space in which no fair reachable states exist. Given a set of states S,

theforward trim operator is defined by the following.

Perform thefollowing until there are no more changes:

For each F°° (SJ +G^(Tp,ifRlly,SnSinTi\QSnSinfi,letS = Sn (Tt u S.), where

S is the current set ofstates.

The backward trim operator is defined by replacing /?J St nfj., yJ by rA jc, SJ nT. J. One can

easily show that the trim operators does not delete any fair reachable states. In chapter 6, we

extend the trim operator by analyzing the graph induced by fairness constraints. This analysis

can result in deletion of portions of the state space where no fair behavior exists. These tech

niques are especially useful when the fair states are being computed as part of a language

emptiness check.

Remark Computing the set Fair when BDDs are used is more difficult than computing Fair+

since it involves a transitive closure computation rather than just reachability. One way to com

pute it is to modify the above algorithm as follows. Let C(S) denote the set of all cyclic

strongly connected components containing some state of S. For any set S, C(S) can be com

puted easily from the transitive closure of the underlying graph. In the forward stable set and

«

fair-path operators, replace the reachability computations of the form R (x, S) by C(S) . By fol

lowing the same line of reasoning as before, one can prove that the set U computed by the above

algorithm in step 3 is the set Fair.

4.4 Fair CTL

We first define Computation Tree Logic (CTL) ([CES86]), and then introduce fair CTL

([EL85]), and give a symbolic model checking algorithm for this logic.

4.4.1 CTL

Definition Let AP denote a set of atomic propositions, i.e. a set of symbols. The syntax of

CTL is described as follows.

1. Any atomic proposition P is a CTL formula.

2. If / and g are CTL formulas, so are the following: f ,f+g, EXf, E [fUg] , and EGf.
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Definition A Kripke structure on AP is a finite directed node-labeled graph, where the node

labels are subsets of AP (see also section 2.3.5). We assume that every state in a Kripke struc

ture has some successor. If a state s is labeled by P e AP, we say that P is true at s. If a node

is not labeled by some P e AP, it is assumed that P is true there. Intuitively, the atomic proposi

tions are the outputs produced at the states.

Definition The semantics of a CTL formula (p is defined in terms of a state s in a Kripke struc

ture S. We say <p is true at s if one of the following holds:

1. <p = P for atomic proposition P, and P is true at s.

2. <p = / for CTL formula /, not satisfied at s.

3. <p = /+ g for CTL formulas / and g, such that either / or g is satisfied at s.

4. <p = EXf for CTL formula/, such that there is some (infinite) path n(0),n(l),... starting at

jc,where/holdsat it (1).

5. (p = E IfUg] for CTL formulas / and g, such that there exists a path n in S starting at s,

where the first time g is true along rc, / has been true for all previous times. Intuitively, this

means that / is true until g becomes true. Note that g has to become true along k .

6. 9 = EGf for CTL formula /, such that there exists a path n starting at s, where / is true every

where along n .

We say (p holds for S if it holds at some initial state.

For ease of readability, we introduce the following syntactic abbreviations, with their intended

meanings.

a. AXf= EXf , meaning / is true at all successors of s.

b. EFfs E [truellf] , meaning thereexists a pathstarting at s along which / finally becomes true.

c. AFf= EGf meaning for every path n starting at s, f is true at some state along n, i.e. it

becomes true along n.

d. AGf= EFf , meaning for every path n starting at s, f is true along all states of n, i.e. / is true

at all states reachable from s.

e. A \fUg] b E [gUfg] a EGg meaning that for all paths n starting at s, the first time g is true, /

has been true for all previous times.
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4.4.2 Fair CTL

Definition Let F°°f (infinitely often f) hold for a path n in S iff the CTL formula / holds for

aninfinite number of times along n. Let G°°g (almost everywhere g) hold for a path n iff after

a finite amount of time the CTL formula g holds forever along k . These operators are some

times called the infinitary operators.

Assume a Kripke structure S, a formula q> of the type F~/ (or G°°f) where f is a CTL formula,

and a path n in 5, are given. One can calculate the set of states in which / is true, create a new

atomic proposition Q, and assign Q to all nodes in which / is true. Now F°°/ (or G°°/) is true of

n iff F°°Q (or G°°Q) is true of n. Hence, we assume that only atomic propositions are used in

conjunction with the infinitary operators.

Definition A general fairness constraint is any Boolean combination of infinitary operators.

A canonical fairness constraint (CFC) is a fairness constraint of the form

m " ( oo oo ^
X .II1 F~Pii +G^Qr. ,where P.. and Qit are atomic propositions.

i = li = i

[EL85] showed that any general fairness constraint can be expressed as a CFC, but, the transla

tion may be exponential; however, they argued that most practical fairness constraints can be

represented efficiendy using CFCs.

Definition A formula in the logic fair CTL is a pair (9, O) , where 9 is a CTL formula and 4>

is a canonical fairness constraint. The truth of (9,4>) is determined at a state s by interpreting

the quantifiers only over those (infinite) paths which satisfy the fairness constraint $ (i.e. the

fair paths).

Example Let s be a reachable state such that atomic proposition P is true at s, but s is not fair

reachable (i.e. s cannot reach a fair cycle). Then, the formula P holds at s, but EFP does not.

4.4.3 Fair CTL Model Checking

[EL85] introduced Fair CTL and gave an algorithm to model check fair CTL formulas. This

algorithm relied on finding a fair strongly connected component of the graph, i.e. a SCC which

completely contains a fair path. The first step in detection of fair SCC's finds all SCC's of the

graph. Unfortunately, this operation is very time-consuming (on large graphs), even when BDDs

are used ([HTKB92]). [BCMDH92] first presented a BDD-based algorithm for a subset of fair
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CTL, where the fairness constraint is ofthe form f[ [F~P.\. In this paper, we present an algo

rithm for full fair CTL, which uses the fair reachable state computation of section 4.3 as a

subroutine.

Remark To compute fair-states for a system S with fairness constraints of the form

X IT \F~Pij+GO°Qij)> we compute fair-states for each constraint n (F~^/ +G~2/J» and

then take their union. So, for the remainder of this section, we assume the fairness constraints

are of the form II F~P.. +G°°Q.. J.
j = i v v 'JJ

To model check a fair CTL formula, we start from the leaves of the parse tree of the formula

(which are atomic propositions), and compute the set of states satisfying each subformula. If

some initial state is in the final set of states (i.e. at the root of the parse tree for the formula), then

the original formula is satisfied. For example to compute the set of states satisfying f+g, we

first compute the set of states satisfying /, the set of states satisfying g, and take their union. If

an initial state is in this union, the formula is satisfied.

In order to present a MC algorithm for fair CTL, we need to present algorithms for six cases:

AP P,f+g,f , EGf, EXf, and E [fUg] . In general, / and g areCTL formulas, and we assume

the sets of states satisfying / and g are known. Let F be the set of fair reachable states of the

system (Fair+). The following algorithm performs the task. Let S (f) denote the set of states

satisfiedby a CTL formula /. Let r(jc, y) denote the transition graph of the Kripke structure.

1. AP P. Return S(P).

2. f+ g. Return S(f) uS(g) .

3. f . Return Sjfj.

4. EGf. Compute the set offair reachable states, satisfying EGf, using thefollowing algorithm.

4a. Restrict T(x, y) to S(f). Call the result T (x, y).

4b. Return the set computed by thefair reachable state computation using T (jc, y) withthe samefair

ness constraints.

5. EXf. Return the intersection of theset ofstateswhosenext states satisfyf, with F:

U(x) Bjjd.SOjAf)

6. E [fUg] . Compute theset offair-states satisfying E \fUg], using thefollowing fixed-point compu-
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tation.

U0 = S(g)nF

Vt(x) ^Ui_l (x) + (5, (jc, Ut_,) a5(f))

To prove the correcmess of the above algorithm, we need one lemma.

Lemma 4.4.1 Assume a fair path ic is given. Then, every state along n is a fair reachable

state.

Proof The set of infinitely occurring states of the path satisfies the fairness constraints. For

any state s along tc, consider the path tc', obtained by restricting tc to start at s. The set of

infinitely occurring states of tc and ic* are the same. Hence, tc' satisfies the fairness constraints,

and therefore s is a fair reachable state (QED).

Theorem 4.2 Our algorithm correctly model checks fair CTL.

Proof We prove the correctoess of the last three operations.

1. EGf. Let s satisfy EGf. Then, there exists a path tc starting at s, along which / is always

true. If we restrict the graph to states where / is true, tc is still a fair path of this new graph.

Hence, the algorithm returns all states s which satisfy EGf. To see that it does not return any

other state,note that it returns fair reachable states of a graph, where/ holdseverywhere. Hence,

all fair paths it considers satisfy EGf.

2. EXf. If s satisfies EXf, then there exists a fair path starting at s whose next state / satisfies

/. By the above lemma, /e F. Conversely, if s is such that for one of its next states t, te F

and re S(f) , then s satisfies EXf. So, states whose next states are in S(f) nF are exacdy the

states satisfying EXf.

3. E \fUg] . Let s satisfy E[fUg] . Then, there is a path from s to a fair reachable state t such

that g holds at /, and / holds at the states between s and / along the path. Therefore, the above

computation includes s, since /e S(g) nF, and s reaches t along a path on which / is always

true. Conversely, any state returned by the computation satisfies E\fUg] (QED).

Remark All of the stepsof the above algorithm can be efficientiy implemented usingBDDs.

4.5 Language Containment

In this section, we are concerned with co-automata specifications. Using language containment

for formal verification, one represents a super-set of the desirable behaviors of the system using

an co-automaton T. Onecan thinkof T as specifying acceptable patternsfor the tracesof the sys-
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tem. An example is: only those traces are acceptable where each request is eventually followed

by a service. This property can be specified by a two-state automaton. One then checks that the

language of the system, which is represented by an co-automaton S, is included in the language

of the property automaton T, L(S) qL(T) . Doing so, the user is guaranteed that the system is

incapable of producing traces which do not have the desired pattern. This is called verifying a

system with respect to a property. This verification continues until the user is convinced that the

intersection of the languages of the properties is equal (or maybe very close) to the desired set of

behaviors.

The above scheme first appeared in [VW86], who suggested specifying both the system and the

property using Buchi automata, and gave an algorithm for language containment in this environ

ment. The usual method to verify that L(S) qL(T) is by checking that L(S) nL(T) is empty

(known as language emptiness check). However, complementing an co-automaton is a PSPACE-

complete problem, and the best known algorithms have exponential complexity ([SVW87],

[Saf891).

JKur87b] introduced an environment, where the acceptance conditions of the system and the

property are complementary. The system is modeled by an L-process, whereas the property is

modeled by a deterministic L-automaton. An L-process is a process (section 2.3.2) with the fair

ness constraints being negative fair subsets and edges. The negative fair subsets are called cycle

sets, whereas the negative fair edges are called recur edges. A run is accepting if 1) it does not

traverse some recur edge «».often, and 2) its set of infinitely occurring states is not contained in

any cycle set. An L-automaton is syntactically the same, except that a run is accepting if some

recur edge is traversed «>-oftcn, or if the set of infinitely occurring states is contained in some

cycle set. We refer to tiiis method for verification as the L-environment. Computing the comple

ment of the language of a property is trivial: since the acceptance conditions of L-processes and

L-automata are complementary, one can just think of the L-automaton as an L-process. Based on

this paradigm, the first software tool for automatic verification of finite-state systems using lan

guage containment was built ([HK90]). The advent of BDDs allows for handling very large state

spaces.

In this section, we introduce a new language containment based formal verification environ

ment, which contains the L-environment as a subset. The advantage of this environment is that

specifications can be more compact, however, the algorithms remain as efficient as the algo

rithms for the L-environment. Specifically, if the specifications come from the L-environment,

the algorithms reduce to those for die L-environment ([HTKB92]).
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In this environment, the system is modeled using edge-Streett automata, whereas the properties

are modeled using edge-Rabin automata. We call this environment the eSeR-environment.

Edge-Rabin automata have two useful properties. First, the set of deterministic edge-Rabin

automata accept the whole set of co-regular languages . In general, if an automaton is determinis

tic, complementation is much easier" The second property is that deterministic edge-Rabin

automata can be compactly complemented into edge-Streett automata. Hence, the language con

tainment check is reduced to checking that the language of an edge-Streett automaton, formed by

taking the product of the complement of the property and the system, is empty. We first define

edge-Rabin automata, and show how one can complement a deterministic edge-Rabin automaton

into an edge-Streett automaton. We then present the language emptiness check for edge-Streett

automata. We conclude by discussing some expressiveness results about our environment.

4.5.1 Edge-Rabin Automata

Definition An edge-Rabin automaton R is an automaton A augmented with a set of fairness

constraints, each of the following form:

1. Positive fair edge constraint, which is an edge of A.

2. Negative fair edges constraint, which is a set of edges of A.

3. Canonical fairness constraint (CFC), which is of the form F°°(S) a G°°(T) , where S and T

are sets of states.

An co-string jc of A is accepted (x e L(A)) if there is a run r of x in A such that at least one of

the fairness constraints is satisfied, i.e.

1. r traverses some positive fair edge «»-often, or

2. for some set of negative fair edges E, r does not traverse any of the edges in E °°-often, or

3. for some CFC F~ (S) a G~ (T), inf(r) nS^0 and inf(r) q T..

Lemma 4.5.1 For every deterministic edge-Rabin automaton R, there is a deterministic edge-

Streett automaton S with the same transition structure and no more fairness constraints, which

accepts the complement of the language of R.

1. Deterministic l^automatacannot express all co-regular languages,however, one can define any co-regular
languageby taking an intersection of a finite (possibly large) number of languagesexpressed by determinis
tic L-automata ([Kur87b]).

2. [CDK93] gives the complexity of languagecontainment between various types of automata when the speci
fication automata are deterministic.
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Proof For the set of all positive edge constraints in R, create one set of negative edges in S.

For each negative fair edges constraint in R, create a set of positive fair edges in S. For each

F~ (Sp aG°° (7\), create aconstraint G~( JA +F~\T.). Let jc eL(S) . Since Sand Rare both
deterministic, jc has a unique run r in both S and R, which is rejected in R, i.e. xe L(R).

Thus,L(S)qL(T) . One can similarly show that if jc e L(R) then jc £ L (S) (QED).

Remark When BDDs are used for representing sets of states (like S. and 7\), computing the

complement of an edge-Rabin automaton by the above procedure is trivial, since complementing

a BDD can be done in constant time.

4.5.2 Language Emptiness Check for Edge-Streett Automata

The language of an edge-Streett automaton is empty iff there are no fair paths. Hence, one way

to check for language emptiness is to use the fair reachable states computation: this returns a non

empty set precisely when the language of the automaton is not empty. In language containment,

we are only interested in the set of fair states (denoted Fair, section 4.3). However, the fair

reachable state computation returns a super-set of the fair states. We now define the set Fairt

which is a better approximation to Fair than Fair+.

Definition Let Fairt denote the set of states which can reach some fair cycle and can be

reached from some fair cycle. We have Fair c Fairt q Fair+. Figure 4.5 shows the difference

between these sets.

Original
graph

Fair Fairt Fair+

Figure 4.5: Difference between various fairness sets

The following algorithm computes a subset of Fairt, containing Fair (the proof is similar to
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the proof of the correctness of the algorithm for Fair+ computation).

1. Remove negative fair edges.

2. Start with reachable states.

3. Repeat thefollowing operators untilconvergence:

3.1.a Apply the forward fair-path.

3.Lb Apply the forward stable set.

3.1.c Apply the forward trim.

3.2.a Apply the backwardfair-path.

3.2.b Apply the backward stable set.

3.2.c Apply the backward trim.

Step 3 of the above algorithm is known as die main computation. In a later section, we will

modify this algorithm by checking for easy failures.

4.5.3 Expressiveness of Edge-Streett Automata

In this subsection, we present two expressiveness results. First, we discuss why the eSeR-envi-

ronment enjoys a sense of maximality. Second, we compare the compactness of specifications in

the eSeR-environment to those in the L-environment. The heart of the language containment

check is an emptiness check for edge-Streett automata. One may ask if it is possible to make the

environment even more powerful without sacrificing too much efficiency (the language empti

ness check for edge-Streett automata can be done in small polynomial time). In some sense, the

next most natural extension is to allow acceptance constraints of the form of a product of sums of

an arbitrary number of F '̂s and G*°'s. Since the sum ofa set of F°° (St) 's is just equivalent to

F°°f KjSi J, only one F°° suffices. It remains to answer whether allowing more G°° 's will sacri-
i

fice efficiency. [EL85] basically answered this question (they were looking at a slightly different

problem).

Theorem 4.3 The problem of determining whether the language of an automaton with

acceptance conditions of the form III G°°(5/) +G~(ri)J is empty, is NP-complete (in the
i

number of states and faimess constraints).

Proof (sketch) The problem is in NP. The answer is a set of states which can be traversed

infinitely often, such that all fairness constraints are satisfied. Just guess this set of states, and
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check that this set is contained in St or T. for all i. To prove the problem is NP-complete, just

use the reduction of [EL851, which was employed to show the fair state problem with faimess

constraints of the above type is NP-complete. [EL85] reduces 3SAT to a graph with fairness

constraints of the above type. Now, the language of the automaton is non-empty iff the original

formula is satisfiable (QED).

Since the language emptiness check for Streett automata is done in polynomial-time, and the

next natural extension makes the language emptiness check NP-complete, the eSeR-environment

enjoys a sense of maximality.

Remark [HSB94] discusses several compactness issues of the eSeR-environment. The most

important result is that translating an edge-Street automaton into an L-process is exponential in

the worst case. To facilitate Streett automata in the L-environment, [Kur94J translates each

Streett fairness constraint into an L-process. Checking the language emptiness of the original

Streettautomaton now reduces to checking the language emptiness of the intersection of the orig

inal transition structure and the new L-processes. The regular emptiness check is exponential in

this case. However, [Kur94] presents a polynomial emptiness algorithm (mimicking our empti

ness algorithm for edge-Streett automata), which takes advantage of the special structure of this

problem.

4.6 Complementary Nature of MC and LC

In this section, we give a classification of properties, which constitutes a different way of look

ing at property specification methods, such as CTL and edge-Rabin automata. We argue that,

using this view, LC and MC are somewhatcomplementary.

4.6.1 A Property Classification

The properties one might want to verify about a system can be divided into three sets: string

properties, language properties, and system properties.

1. String Properties. Theseproperties mustbe satisfied by every trace of the system, i.e. every

CD-string in the language of the system. An example is: for every trace of the system, if request 1

is pending when request 2 is generated, then request 1 is serviced before request 2. The edge-

Rabin automaton recognizing this propertyis given in figure 4.6.
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else

else

else else true

"Else" means under the

remaining conditions, "true"
means always. The highlighted
edges denote positive fair edges
and the highlighted box a
positive fair subset.

Figure 4.6: A hard to express property for CTL

Much is known about the hierarchy of specification languages for traces. At the highest level is

the set of co-regular languages, which is recognized by non-deterministic Buchi automata as well

as deterministic Rabin automata ([Cho74]). Linear Temporal Logic (LTL) is another method to

specify string properties, which is properly contained in co-regular languages ([Wol83] shows

that the property p is true at every even state is not expressible in LTL). [Eme90] gives a survey

of such expressiveness results.

2. Language Properties. These are properties of the languages, not expressible as string prop

erties. For example, one might wish to verify that if strings x and y are in the language then

string z is also in the language. Consider the CTL property P - AGEFp, which says for all

reachable states s, there exists a path from s to some state t where atomic proposition p holds.

Any system having the above property P has the following language property Q: Q is the set of

languages L such that if yz e L, where y is a finite string and z is an infinite one, then there

exists a string w, with p occurring in w, such that yw e L.

3. System Properties. These properties distinguish between transition structures, possiblyhav

ing the same language. An example is the above CTL property P -AGEFp, which

distinguishes between the systems shown in figure 4.7, having the same language.

The CTL property AGEFp holds for the
first system, but it does not hold for the
second. Note that both systems have
the same language. Hence, CTL has
the power to distinguish between
different implementations of the same
behavior.

Figure4.7: Ability of CTL to recognize structures
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4.6.2 MC versus LC

To compareMC andLC, we firstneed to define expressiveness of a specification language.

Definition A specification language (P, A) is a set P (usually infinite) of finite strings over

some alphabet, and an algorithm A to decide whether a system S satisfies some property p e P.

An example is the set of all CTL formulas as P, and a CTL model checking algoridim as A. In

this case, the alphabet is the set of all outputs of all systems, plus symbols used in CTL formu

las. We assume that systems are given in the C/S model. Other common finite state models can

be used instead. Let A(S,p) be the resultreturned by algorithm A on system S on propertyp.

Definition Given two specification languages (PvAt) and (P2,A2), we say P2 is at least as

expressive as Px, if V/^ e Px, 3p2 e P2 such that VS(A, (pvS) = A2 (p2, S)) . The intuition is

that given a property px in Px, we can come up with a corresponding property p2 in P2, such

that for any system S, px holds of S iffp2 holds of S, i.e. p2 is true on exacdy the same setof

systems S that px is true..

An important subclass of trace properties, called invariance properties, is expressible in both

MC and LC. Invariance properties are of the type "no bad event happens in anyreachable state

of the system." Invariance properties areexpressed by formulas of type AGp in CTL (p may be

a Boolean formula of atomic propositions) or as edge-Rabin automata of the typeshown in figure

4.8.

true This edge-Rabin automaton expresses the
invariance property that in all states p is true. If
we ever visit the second state, we will stay there
forever, and the resulting siring is rejected.6N5

Figure4.8: Automata for expressing invariances

Moreover, some simple liveness properties, i.e. properties of the form "some good event will

happen in the future", are alsoexpressible by bothmethods. However, thereare string properties

expressible by co-automata, but not expressible by CTL. An example ([Wol83]) is the property

"at all even times p holds." There are other properties, usually involving sequencing of events,

which are very hard or impossible to express in CTL. An example is "if reql happened before

real, then servl shouldhappenbefore servl" (figure 4.6). Properties depending on sequencing

of events occur often in practice. Examples are memory systems and pipeline computers. It is
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our experience that even when a property involving sequences of events is expressible in both

CTL and edge-Rabin automata, it is harder to find the correct CTL formula for it

On the other hand, no language or system properties are expressible by co-automata. In general,

properties involving the existential quantifier of CTL are not expressible by co-automata. These

properties are significant, because sometimes we want to ensure that a certain behavior is possi

ble, e.g. it is always possible to reach a safe state from any state of the system. The CTL formula

AGEFp, which involves existential quantification, expresses this property.

We believe LC and MC provide different, useful capabilities to the user, and therefore, are

somewhat complementary. By combining the two environments, we gain more expressive power

and ease of expression; a larger set of properties can be more easily specified and verified. It

remains to determine how much of an overlap there is in the useful expressive powers of CTL

and co-regular languages.

Remark It may also be the case that debugging with CTL properties is easier, since the debug

ger unfolds the formula one operator at a time. Language containment, however, gives all the

debugging information back to the user in one bunch. Hence, at every point in debugging CTL

formulas, less information is fed back to the user. Another possible advantage is that with CTL,

one can do one reached state computation and then check any number of formulas. Finally, one

can always directiy write the property as part of the system by forming a monitor which repre

sents the complement property. Then model checking EFtrue is the same as language

emptiness. However, this requires the user to explicidy complement the property automaton.

Also, it may not be possible to take advantage of all optimizations tailored for language contain

ment in this setting (see chapter 6).

4.7 Early Failure Detection

We present techniques for early failure detection (EFD). We first present a classification of

errors for LC, and show how each can be computed. In most cases where a property fails, it is

not necessary to compute the full set of reachable states to find the error. Indeed, since the

notion of an easy error in many cases corresponds to an error which is reproducible in a few

steps, we expect to compute only a few reachability steps before the error is found. We combine

this idea with a classification of fair cycles to give an algorithm for EFD during LC. The idea of

avoiding the full reachability set is used then to give a EFD algorithm for ACTL, i.e. CTL formu

las involving only universal quantification, and with complementation applied only to atomic
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propositions.

4.7.1 Early Failure Detection for LC

In LC, a failure is an co-string accepted by an edge-Streett automaton. Given the transition rela

tion with negative fair edges removed, and a subset R of the reachable states, we define the

following set of fair cycles of R. Let S = nS., where the S(. 's are the cycle sets..
i

1. Cycles of the first kind. Cycles entirely contained in S, and satisfying the positive edge con

straints. Any such cycle is fair.

2. Cycles of the second kind. Cycles not of the first kind but intersecting S, and satisfying the

positive edge constraints.

3. Cycles ofthe third kind. Any fair cycle not of the first two kinds.

To find the cycles of the first kind, run the stable set operator on S. If the resulting set is not

empty, run the main computation (given in subsection 4.5.2) on this set with the positive edge

constraints . To find cycles of the second kind, run the main computation on R, with the faimess

constraints being the positive edge constraints, and a constraint of the form F°°(S). If a non

empty set is returned, some fair behavior exists.

Theorem 4.4 If there are no cycles of the first or second kind, the main computation can be

restricted to S n R.

Proof We can delete the states in S from consideration, because there are no cycles of the first

or second kind, and hence there cannot be any fair cycles involving states in S (QED).

To avoid computing the full reachability set, as we compute the set of reachable states, we can

perform a cheap test which may find some errors. The following is an implementation of this

idea. We start with the current set equal to the set / of initial states.

1. Using breadth-first search (BFS), compute the set ofstates RD, reachable in D orfewer steps from

the current set.

2. Check if there are any cycles ofthe first kind in RD. Ifso, stop.

3. Ifnone isfound, setthe current setequal to RD, go tostep 1, continuing the BFSfor another D steps

1. One can similarly check for cycles entirely contained in r\T., since any such cycle is fair, and
i

these cycles can be easily detected using stable set operators.
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or untilall reachable states are computed.

Intuitively, the algorithm takes a few BFS reachability steps (D steps), and then checks

whether there are any (easily found) fair cycles of the first kind in this set. Since easy errors are

almost always of the first kind, and since checking for these is less computationally expensive

than checking cycles of the second kind, we only invoke EFD here with cycles of the first kind

(although obviously other fair cycles could be checked as well). The process continues until an

error is found, or the full set of reachable states is computed.

4.7.2 Early Failure Detection in Fair CTL

We do not know how to extend EFD techniques to general CTL formulas. However, the tech

nique described in subsection 4.7.1 can be applied to ACTL formulas, where the idea is to take a

few reachability steps, and then check whether the formula is satisfied. The trouble with formu

las involving existential quantification is that the reachable states not yet visited may be

"witnesses" for the existential quantification. This problem does not arise with ACTL formulas.

Definition A CTL formula is in positive normalform (PNF) if all negations are applied to

atomic propositions, and the only Boolean operators used are "AND" and "OR". Any CTL for

mula can be written in this form.

Definition A CTL formula is afor all CTL (ACTL) formula if when written in PNF it does not

involve existential quantification.

Lemma 4.7.1 Let 5 be a subset of the reachable states R. Let $ be an ACTL formula,

interpreted over CFC <I>. Let s € S. If $ does not hold at s (over 0) in S, then (J> does not hold

at s (over O) in R.

Proof We use induction over the size of CTL formulas. Assume <j> does not hold at s in S.

Note that § is interpreted over fair paths, and the fair paths in S are a subset of the fair paths in

R.

1. $ = P, P some proposition. Since P is not a label of s, (j) does not hold in S, and hence not

in R either.

2. <|> = f+g, where / and g are CTL formulas. By the same reasoning as in case 1, neither /

nor g hold at s in S. By the inductive assumption, neither / nor g hold of s in R. The conclu

sion follows.

3. <J> =fAg. Similar to case 2.
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4. § = AGf. Since <j> does not hold in S, there is some state t reachable from s along a fair

path n, such that / does not hold at t. By the inductive assumption, / does not hold of / in R.

Since n is a fair path in R, <J> does not hold of s in R.

5. AXf. Proof is similar to case 4.

6. AfUg. Proof is similar to case 4 (QED).

Since we do not have any way of quickly determining whether an ACTL formula is not satis

fied, the check should be applied more sparingly than for edge-Rabin automata. The problem of

extending quick failure checks to ACTL formulas, analogous to the cycles of the first kind,

remains open.

4.8 Hierarchical Verification

The design process can be done hierarchically. For large designs, this may be the only way to

verify it. The designer may first abstract the design, and prove some properties about it. Next,

the designer may add more detail. For example, a module may be implemented by three more

detailed ones. By definition, a subsystem implements another if the behavior of the implementa

tion is contained in the behavior of the specification at a higher level. This means that the

language of the lower level implementation must be contained in the language of the higher level

specification.

Since systems are specified using edge-Streett automata, this requires checking language con

tainment between two edge-Streett automata. [Kur92] presents an algorithm for language

containment of two L-processes (this comes up in the L-environment because of his use of the

homomorphic reductions). We present an algorithm with the same flavor for our problem.

Assume two edge-Streett automata A and B are given, where B is deterministic. Using the fol

lowing two lemmas, the problem of containment of L(A) in L(B) is reduced to a finite set of

language containments between edge-Streett and edge-Rabin automata.

Lemma 4.8.1 Let A and B be edge-automata with B being deterministic. L(A) qL(B) iff

L(A) qL (Bt), for all 1£ i: £ n, where n is the number of fairness constraints of B, and each Bt

has the same transition structure of B, but only one of the fairness constraints of B (the set of

negative edges is considered as one faimess constraint, whereas each positive edge and each

constraint F°° (5f.) +G°° (T() isaseparate fairness constraint).

Proof (=>) Assume L(A) e L(B). Let j: be a trace of A. We have to show x is a trace of
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each Bi. Assume jc is not a possible trace of some Bt. Then, that fairness constraint is not

satisfied on x. Hence, x is not a trace of B. So, L(A) <tL (B), which is a contradiction.

(<=) Assume to the contrary that L(A) aL(B) . Let x be a string in L(A) and not in L(B).

Then, some fairness constraint of B is not satisfied on x. Let it be constraintj. Then, x is not a

trace of B. (QED).

Lemma4.8.2 If a deterministic edge-Streett automaton S has only one fairness constraint, then

there exists a deterministic edge-Rabin automaton, with the same transition structure and at most

two fairness constraints which accepts the same language.

Proof We have to show the transformation for each kind of fairness constraint We have three

cases:

1. A negative fair edge. Create an edge-Rabin automaton with the edge being a negative fair edge

constraint

2. A set of positive fair edges. Create an edge-Rabin automaton with the edges being a positive

fair edges constraint.

3. A constraint of the form F°° (Sp +G°° (7\). Create an edge-Rabin automaton with two CFCs:

F°°(True) aG00^;) and F~ (S.) a G°°(True) (QED).

Note that the algorithm for language containment between two edge-Streett automata is rather

efficient For checking L(A) qL (B), we have to solve n problems (n being the number of con

straints of B), each of which can be solved very efficiendy. Since, these faimess constraint are

given by the user, we expect n to be small.

Remark One can also use the algorithm reported in [Saf92] for the above task. Given a deter

ministic Streett automaton with n states and h CFCs, [Saf92]'s algorithm returns a deterministic

Rabin automaton with nl °s states and h+1 CFCs accepting the same language. Although

this algorithm is exponential in h, if h is small, as it is expected to be in practice, this algorithm

may be practical.

If B is non-deterministic, then the language containment check is more expensive. [Saf92] pro

posed an (exponential) algorithm for determinizing a non-deterministic Streett automaton into a

deterministic Rabin automaton. One can translate an edge-Streett automaton into a Streett autom

aton, using techniques similar to the node-recur transform of [Kur87a]. Hence, the problem of

testing for language inclusion of an edge-Streett automaton into another edge-Streett automaton
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can be reduced to testing the language inclusion of an edge-Streett automaton into a deterministic

Rabin automaton, for which we have presented algorithms. The requirement that B be a non-

deterministic automaton may not be too severe since it appears that in practice many specifica

tions may be effectively deterministic, i.e. have deterministic transition structures, since Moore

machines with non-deterministic outputs and deterministic transitions (as is the case with L-pro-

cesses in [Kur92]) can be used for the necessary abstractions in many cases. In those cases,

where the finite state machine is viewed as an automaton the output non-determinism is simply

seen as another input which can take any value. For cases where the associated automaton is non-

deterministic, [THB95] presents semi-implicit implementation of determinization procedures for

co-automata.

Acknowledgment

This material presented in this chapter is based mainly on [HB95a].

76



Chapter 5

Generating Short Error Traces

5.1 Introduction

An important part of any verification system is generating error traces. To make it easier for

the user to locate the bug, the error trace should be short. In general, a short error trace is easier

to understand and follow. In this chapter, we study how short error traces can be generated for

both language containment and fair CTL model checking. We first build a debugging environ

ment for generating short error traces for language containment, and then use this environment

and additional ideas to generate short error traces for fair CTL model checking. Since, as we will

prove, the problem is NP-hard in both cases, heuristics are needed. However, all of our algo

rithms are based on BDDs, hence, they are capable of handling large state spaces.

An overview of the algorithms to come is as follows. An error trace in LC consists of two

parts: a path from an mitial state to some fair state x, and a fair cycle starting at x. We present

BDD-based algorithms which guarantee that the initial path of the error trace is minimum among

all error traces. Then, a heuristic algorithm is given which returns a short fair cycle starting at x.

This problem is NP-complete, and it is the source of why debugging for LC is NP-hard. As for

CTL, we unwind the CTL formula one operator at a time, giving debugging information about

the topmost operator. This has the advantage of giving the debugging information to the user

incrementally. For ACTL formulas the debugger can return the debug structure automatically,

whereas when existential quantification is used, the user has to interact with the debugger to find

the source of error. Recall that the quantifiers in the CTL formulas are interpreted over the fair

paths.

The flow of this chapter is as follows. In section 5.2, we present some BDD-based utilities. In

section 5.3, the debugging problem for LC is proven NP-complete and heuristic algorithms for it

are given. Section 5.4 describes techniques for debugging of fair CTL formulas, using the algo

rithm of section 5.3. A comparisons between our algorithms and those of [CGMZ95] is given in

section 5.5. Almost all of the algorithms presented in sections 5.3 and 5.4 have been imple-
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mented in HSIS.

5.2 Utilities

In this section, we present BDD-based algorithms for finding the strongly connected compo

nents (SCC) of a vertex, and the shortest path between two sets of states. The definitions for

cyclic and acyclic SCC's were given in section 4.3. In what follows, we freely interchange set

operations (such as intersection and union) with Boolean operations (such as AND and OR) on

the BDDs representing these sets.

5.2.1 Finding The SCC of A State

Lemma 5.2.1 Let s be a state. Let R (s,y) denote the set of states reached by s, whereas

R (x, s) is the set of states which can reach s.

a. TheSCC of s is computed by the formula SCCS = R (s,y) a R (x, s)

b. Thecomputation Cs = R (R: (s, y),y) a R (x, s) returns the empty set if s is an ASCC. Oth

erwise, it returns the CSCC of s.

Proof Fait a follows from the definition of a SCC. Now, assume that s is an ASCC. Then s

is not reachable from R{(s,y) , i.e. the set of states reachable from s in one step. Hence

R (Rx(s,y),y) and R (x,s) cannot have a point in common, implying Cs = 0. Now, assume

s belongs to some CSCC S. Then, all states in S are forward reachable from R{(s,y) and

backward reachable from s. Hence, CSCCS q Cs. Conversely, all states in S are reached by s

and canreach s. Thus, Cs g CSCCS. Hence, CSCCS = Cs (QED).

5.2.2 Finding A Shortest Path Between Two Sets

Let Src and Dest be two subsets of vertices V. We want to find a shortest path from Src to

Dest. The following algorithm returns a path (s0,..., sn) , where s0 e Src and sn e Dest, and n

is minimum. The algorithm works in two stages. In the first stage, using breadth-firstsearch, all

states distance 1,2,... from Src are generated until Dest is reached. This search mechanism

guarantees that the path length is shortest During the second pass, one such shortestpath from

78



Src to Dest is found, by searching backward from Dest until Src is reached.

1 Let i = 0, FQ = src.

2 While F;n Dest = 0,

Fi+1 = *i (Fi»v) •and' = ' + 1

3 Let n = i am/ s„e F„r\ Dest.
n n

4 Forj = n -1 awn to 0,

Choose Sj arbitrarilyfrom F.r\Rl (x, sj+l),

5 Return (sQ,sv ...,*„) .

This algorithm is applied in several places in the debugger, and is a useful utility. The follow

ing figure depicts how the algorithm works.

*ofcs»

Src

]K* K- «y

" s\ ^> *2 \ r4
z,*^
'.

fef •*% Dest

During the forward search, the set of
reachable states are computed until Dest is
reached. Then, the backward search starts
by picking a state in the intersection of the
reachable states and Dest. One backward
reachability step is performed, the intersec
tion with reachable states in that level is
taken, and an arbitrary state is chosen.
Theprocess continues until Src is reached.

Figure5.1: Finding a shortest path between two sets

5.3 Debugging Algorithms for Language Containment

In this section, wc present BDD-based algorithms for finding an error trace for LC. The first

BDD-based algorithm for this problem was presented in [Tou91] for the L-environment, and was

implemented in [Ste921. [Tou91],s algorithm depended on having the transitive closure of the

transition relation. However, as [HTKB92] points out the transitive closure computation is

expensive. Here, we present a debugger for the eSeR-environment, which contains the L-envi

ronment as a subset. Our debugger needs very little pre-processed information, i.e. only a set B

containing a subset of fair states. The algorithm consists of two parts: finding a fair state x clos

est to an initial state, and returning a short fair cycle starting at x. In this section, we first show

how a path to a fair state is found. The algorithm for finding a short fair cycle is given first for

the L-environment, and then for the eSeR-environment
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5.3.1 Finding a Path to a Fair State

The algorithm starts from the set of initial states, and computes the set of reachable states R

until the set B (assumed to contain some fair states) is reached. Then, it arbitrarily chooses a

state x in R n B, and calls the subroutine is-Fair to determine whether x is fair. If x is fair,

is-Fair returns a fair connected component containing x. Afair connected component (FCC)

is a connected component (where there is a path between any two states) where negative fair

edges are removed, and where a cycle traversing all its vertices and edges satisfies all fairness

constraints. If x is not fair, the subroutine is-Fair deletes from B a set of unfair states including

x. This process of choosing a state, checking whether it is fair, and deleting some unfair states,

continues until a fair state is found or Rn B = 0. In the latter case, more reachability steps are

performed until Rn B is non-empty again, in which case we fall back into the loop of choosing a

state arbitrarily and checking whether it is fair. The algorithm is as follows.

Path FindingAlgorithm

1 Let R be the set of initial states and B - B.

2 Whileafair state has not beenfound

2.1 While RnB*0

2.1.1 Let xe RnB.

2.1.2 Let C = is-Fair (B,x). IfC*0, return x and C.

2.2 Let R = R1 (R, y), and goback to2.1.

The subroutine is-Fair (B, x) consists of a main loop which computes the fair connected com

ponent of x with respect to the CFCs (i.e. F°°(S.) +G~(7\) *s). The main loop computes W,

the SCC of x in the current set of states cur-R, where cur-R is initially set to be the set of all

reachable states. It then calls get-Fair(W, CFCs) to get the fair subset of Wwith respect to the

CFCs, fair-W. If fair-W*W, the states in W-fair-W are removed from B. If x was not

deleted, i.e. x e fair-W, the main loop is repeated with cur-R = fair-W. If W= fair-W, Wsat

isfies the CFCs. It is thenchecked that the positive fair edges constraints can also be satisfied

in W. If so, Wis returned. Otherwise it is removed from B. The algorithm is as follows.
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is-Fair (B,x)

0 Let W = cur-R = R, where R is thesetof reachable states. Consider thetransition relation T with

the negativefair edges removed.

1 While done isfalse

1.1 Let Wbethe SCC of x in cur-R using the transition relation T.

1.2 If W is a single state withnoself-loops, let B = B - x, and return 0.

1.3 Otherwise, letfair-W = get-Fair (W, CFCs), cur-R = fair-W, and B = B- (W-fair-W) .

1.4 If xt fair-W, return 0.

else ifW- fair-W, set done to true,

else go back to 1.1.

2 If each positive fair edges constraint E. is satisfied in W, i.e. some edge in E- is present in T

restricted to W, return W. Otherwise, let B = B - W, and return 0.

The idea for computing the fair subset of Wis to check, for each CFC Fc°(Si) +G°°(rj.),

whether W intersects St. If not, Wis restricted to 7\, and the process continues until all CFCs

can be satisfied. The CFCs which cause such a restriction can be marked as inactive, since fur

ther restrictions will not affect the satisfaction of these CFCs. The algorithm is as follows.

get-Fair (W, CFCs)

0 Mark all CFCs as active. Set cur-W = W.

1 For each CFC F~ (5.) + G~ (T.)

if cur-W r\Si = 0

1.1 Let cur-W = cur-W n T{, and mark the i-th CFC as inactive.

1.2 For allactive F~(5.) +G~(T.) 's processed sofar,

1.2.1 ifcur-W nSj = 0,let cur-W = cur-W r\T.,and mark the j -th CFC as inactive.

2 Return cur-W.

Definition A fair set U with respect to the CFCs is a set of states which satisfies all CFCs,

i.e. for each F°° (St) +G°° (T{) ,either c7 n St *0 or U£ T..
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Lemma 5.3.1 For a set W, S - get-Fair (W, CFCs) is the largest fair subset of W.

Proof The algorithm maintains the invariance that for all CFCs F°°(Si) +G~(T.) processed

so far, either cur-WnS^0 or cur-W QTr Therefore, cur-W satisfies all CFCs at the end,

and hence is a fair subset of W. We show maximality of S by showing that for any fair set

VsW, the algorithm maintains the invariance Vq cur-W at all times. Since initially

cur-W = W, Vq cur-W holds initially. Now assume Vq cur-W before step 1.1. Since

cur-Wr\St- 0, we have Vr\Si - 0. Therefore, by V being a fair set VqT.. It follows that

Vq cur-W r\Tr So, Vq cur-W after step 1.1. By a similar reasoning, one can show that if

Vq cur-W before step 1.2.1, it holds afterwards also (QED).

Lemma 5.3.2 Let jc be a fair state, and V a fair connected component containing x. Then,

is-Fair (B,x) maintains the invariances Vq W and Vq cur-R at all times.

Proof Initially Vq cur-R and VqW since W= cur-R = R. Assume before step 1.1,

Vq cur-R and VqW. Then, since V is a fair connected component containing x, and VqW,

we have that V is a subset of SCC(x) in the graph restricted to cur-R. Therefore, VqW after

step 1.1 (note that step 1.1 does not modify cur-R). Now, assume Vq W and Vq cur-R before

step 1.3. By lemma 5.3.1 and V being a fair subset of W, we have Vcfair-W. Hence,

Vq cur-R afterstep 1.3 (note thatstep 1.1 doesnot modify W) (QED).

Lemma 5.3.3 If is-Fair (B,x) returns a non-trivial set, then it is a fair connected component

containing x.

Proof The only way step 1returns a non-trivial set is if W= fair-W at step 1.4. That means

that W satisfies all CFCs, and it is a SCC containing x in cur-R. This implies that W is a fair

connected component with respect to the CFCs and the negative fair edges. The only way step 2

returns a non-trivial set is if all positive edges constraints can be satisfied. It follows that W is a

fair connected component containing x with respect to all fairness constraints (QED).

Lemma 5.3.4 Step 1of is-Fair (B, x) terminates (and hence the algorithm terminates).

Proof This follows by noticing that at step 1.3 either W=fair-W, in which case step 1

terminates, or fair-W is a proper subset of W (and hence cur-R), in which case the states in

W-fair-W are removed from cur-R (QED).
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Lemma 5.3.5 If x is a fair state, then is-Fair (B,x) returns a maximal fair connected

component containing x.

Proof By lemma 5.3.4 step 1 terminates, and by lemma 5.3.2, at the end of step 1, for any fair

connected component V containing jc, we have VqW. Since jc is fair, each positive fair edges

constraint can be satisfied in V and hence in W. Therefore, step 2 returns W. By lemma 5.3.3,

W is a fair connected component By VqW for any other fair connected component V

containing jc , W is a maximal fairconnected component (QED)

Lemma 5.3.6 If is-Fair (B,x) returns a non-trivial set, then jc is fair.

Proof Follows from lemma 5.3.3 (QED).

Lemma 5.3.7 x is not fair if and only if is-Fair (B, x) returns the empty set.

Proof Let jc be unfair. By lemma 5.3.4 the algorithm terminates. Since jc is unfair, by

lemma 5.3.6, is-Fair (B, x) = 0. The reverse direction follows from lemma 5.3.5 (QED).

Lemma 5.3.8 If jc is unfair, then jc is deleted from B.

Proof By lemma 5.3.7, is-Fair(B,x) returns the empty set. This can only happen in steps

1.2,1.4, and 2. In all these cases, jc is deleted from B before 0 is returned (QED).

Now, we will prove that the subroutine is-Fair only deletes unfair states. To prove this, we

need the following lemma.

Lemma 5.3.9 Let T be a fair cycle. Step 1 of is-Fair (B,x) maintains two invariances: if

rn W*0,then Tq W, and if T n cur-R * 0, then Tq cur-R.

Proof Both invariances are true after step 0. Now, assume they are true before step 1.1, and

let TnW*0 after step 1.1 (note that step 1.1. does not modify cur-R). We need to show

TqW. Since TnW*0, and since Wqcur-R, we have Tncur-R*0. By the second

invariance, it follows Tq cur-R. Since T is a cycle containing jc, and since Tq cur-R, it

follows that TqSCC(x) in cur-R, i.e. TqW, as was desired. Now, assume the invariances

hold before step 1.3. Let rn cur-R *0 after step 1.3 (note that step 1.1. does not modify W).

We need to show T e cur-R. Since T n cur-R * 0, and since cur-R q W, we have r n W* 0.

By the first invariance holding, it follows TqW. By lemma 5.3.1 and by T being a fair subset

of W, we have T q get-Fair (W, CFCs) , which implies T q cur-R, as was desired (QED).
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Lemma 5.3.10 The subroutine is-Fair (B,x) only removes unfair states from B.

Proof We have to consider steps 1.2,1.3, and 2 of the subroutine. In step 1.2, only state jc can

be deleted, in which case since is-Fair returns the empty set, and by lemma 5.3.7, jc is unfair.

Now, consider step 1.3, and let ye W-fair-W be a fair state, i.e. ye T for some fair cycle T.

We have Tc\W±0, which by lemma 5.3.9 implies TqW. Now, by lemma 5.3.1 and by r

being s fair subset of W, we have Tqfair-W. But, this is a contradiction since y € fair-W. We

conclude all states in W-fair-W are unfair. Now, consider step 2, and assume some positive fair

edges constraint E. cannot be satisfied in W (i.e. Efr\W = 0), but there exists some fair

ye W. Let ye T for some fair cycle T. We have rn W*0, which by lemma 5.3.9 implies

TqW. By E. n W = 0, we have E. n T = 0. This means r cannot be a fair cycle, which is a

contradiction. We conclude W only contains unfair states (QED).

Theorem 5.1 The path finding algorithm reports a fair connected component closest to the

initial states.

Proof The algorithm terminates since at every point either a fair connected component is

found (lemma 5.3.5), or some states are deleted from B (lemma 5.3.8). The correctness of the

algorithm follows from the fact that the subroutine is-Fair only deletes unfair states (lemma

5.3.10). To prove the minimality, let x be the fair state reported by the above algorithm, whose

distance from the initial states is /. The lemma follows by noting that all states in B of distance

less than / have been determined to be unfair, and were removed from B (QED).

Some remarks are in order.

1. Some properties of the set B can make the debugging task easier. For example, if the set B

contains only fair states, then the first jc chosen will be fair, and no further search is needed.

n

2. If the faimess constraints come from the L-environment, i.e. are of the type II F°°(Si),

then W either contains no fair cycle, or its fair subset is equal to it. Thus, the main loop of

is-Fair ends after one iteration.

5.3.2 Finding A Fair Cycle in the L-Environment

Now that we have found a fair state jc and a fair connected component W containing it, the

next step is to find a short fair cycle starting at jc in W. We first study the problem for die L-
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environment, i.e. for fairness constraints of the type II F°* (Ss). Note that the negative fair
/=i '

edges are assumed to have been removed from W. As we show next, the complexity of returning

a short error trace is NP-complete.

5.3.2.1 Complexity

Lemma 5.3.11 Let G be a graph on m vertices V = {Vj,..., vm}, and Vv..., Vn be subsets of

V. Then, answering the question of "whether there exists a cycle of length less than k visiting

each V" is NP-Complete.

Proof 1. Proof of membership in NP. Just guess the cycle, and check whether the cycle visits

each V.. This check can be done in poly-time.

2. Proof of NP-Hardness. We reduce "Min Cover" ([GJ79]) to our problem. Let a set

S = {sv...,sm} , and subsets of S, Uv...,Un be given where a set Ui is covered by s- if

Sj<= Ur Create acomplete graph G with m vertices, vv ...,vm. Create n subsets of vertices of

G, Vv ..., Vn, as follows: v^. e V. iff s-e Ui. Note that the size of G is polynomial inthe size of

the original min covering problem. Now assume cycle C with vertices {v.,.... v. } of length k
M 'k

visits each V.. The cover jf. ,...,si visits every Vr and is of size k. Conversely, if there is a

cover of size k, there is a set of vertices in G visiting each V.. Since G is complete, there is a

cycle among these vertices (QED).

Theorem 5.2 Let theshorterrortraceproblem be the problem of finding a fair path in a graph

n

with fairness constraints of the form II F~(Sj) such tiiat the total length of the path is

minimum. The decision problem corresponding to the short error trace problem is NP-complete.

Proof The fair path consists of two segments: a path from initial states to a fair state x, and a

fair cycle starting at jc . Membership in NP follows by guessing the fair path and checking thatit

is indeed a fair path, whichcanbe done in polynomial time. By makingall states mitial, we get a

reduction from the problem of lemma 5.3.11 to the shorterror trace problem (QED).

5.3.2.2 The Basic Heuristic Algorithm

Let W be a FCC (fair connected component). The following algorithm finds a short fair cycle

in W. It constructs a fair cycle gradually by extending an existing path. Let P = (xv ...,xm)
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be the current path. All the F~ (S.) 's intersecting P are marked as inactive. If all F*°(S.) *s are

inactive, we augment P by a path from jcb to jct, and report this as the fair cycle. Otherwise, let

F^Si^ ...,F™Sik be the current set of active F°°(Si) 's, ordered in some arbitrary manner (more

experiments may show that some orderings give better results than others). We heuristically try

to find a state which causes many of active faimess constraints to become inactive. Let / be the

maximum number such that Wn[ n 5,- I*0. Let Q=Sn ( n 5- ).We choose astate jc e Q
V=i V v; = i V

such that the distance between jcm (the last state of P) and xm +1 is minimum, using the general

shortest path finding algorithm. Note, by augmenting P by this path, we can mark

F°°(Si),..., F°°(S;) 's as inactive. The following algorithm implements this idea.

Path Extension Algorithm

1 Let Q = WnS( and I = 2.

2 While k*l and QnS.*0

Let Q = QnSt,andl = /+1.

3 Return a shortest path from xmto Q.

The following algorithm uses the above path extension method and starting vertex x to find a

short bad cycle in W.

Short Cycle Algorithm

1 Let JCj = jc and P - (x{) .

2 While not done

2.1 Mark as inactive all the F°° (St) 's which intersect P.

2.2 If there are no more active F°° (5,) 's,/hh/ apath from the last state ofP to xx> and quit.

Else extend P by calling the above path extension routine.

5.3.2.3 Some Optimization

In this subsection, we present some optimizations which can be applied to the algo

rithm of the previous subsection.

86



Optimization 1. When the path finding algorithm is called in step 2 of the path extension algo

rithm, one can try to choose the states so that more faimess constraints become satisfied. For

example, assume apath from xto some set Qis wanted with F~f S( ),..., F~( S{ Jbeing still

active. Let J?. *s be the states reached during the forward search of the path finding algorithm.

During the backward pass, if J?.nS. *0 for some active FySi J, then choose a state from

/?, n 5. , thereby making F\ S, ) inactive.
1 « V 'qlJ

Optimization 2. To further decrease the cycle's length, the following algorithm can be used as a

post-processing step.

1. Startwithall nodesin the cycle, andfind a minimum cover, where a cover is a set of verticessuch that

each F°° (5f) is visited.

2. Arrange the points in the cover in the same order as the originalfair cycle.

3. Finda shortest path between consecutive pointsofthe cover. Useoptimization 1 during thisprocess,

eliminatingpoints in the cover ifthey become inactive.

It is easy to see that the length of the new cycle is guaranteed to be no longer than the original

length (note that the vertices in the cover are arranged in the same order as the original cycle).

Step 3 of the above algorithm can be improved by forming a new covering problem after the

shortest path between two points in the new cover is calculated; some vertices in the new cover

may be eliminated since the vertices in the path between two points can cause some active

F°° (St) to become inactive.

5.3.3 The edge-Streett Case

The algorithm of subsection 5.3.1, which finds a path to a fair state, returns a fair connected

component Wcontaining some fair state x which serves as the starting point for the fair cycle. It

also guarantees that S.n W*0 for the "active" CFCs, and that for the inactive CFCs, WqT.

and hence are already satisfied. Hence, we can restrict our attention to 5 '̂s of the active CFCs.

The algorithm of subsection 5.3.2 finds a fair cycle, when the faimess constraints are of the form

Hf°° (S.). If we disregard the positive edge constraints, since all inactive CFCs are already sat-
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isfied and for all active CFCs St n W* 0, we can use the algorithm of subsection 5.3.2 on the

5/s of the active CFCs. Note that this solution may be sub-optimal since we have not consid

ered the 7Vs of the active CFCs. For example, assume W is a complete graph on 2 vertices, and

there is an active CFC F°° {2} +G°° {1} , and the starting state is 1. Our algorithm will return

the cycle (1,2), whereas the cycle consisting of the self-loop on 1 is a shorter fair cycle.

Also, the positive edge constraints may not be satisfied by the solution returned by the algo

rithm of subsection 5.3.2. To satisfy a given positive edge constraint, consisting of the set of

edges E. (x,y) and not satisfied by the current cycle C = (cv ..., cm+ j) , we look for a closest

state Cj in C to the starting vertices of the edges in Et. Let the chosen starting vertex be u. We

then choose a closest path from some vertex v to c^+l)modn, such that (u, v) e E{(x,y) . We

call this operation patching the cycle with respect to the positive edge constraint Ei. We repeal

this process for all positive edge constraints. The algorithm to find a fair cycle is, thus, summa

rized as:

1. Find acycle by calling algorithms ofsubsection 5.3.2 on the St 's ofactive F°° (S.) +G°° (T.) 's.

2. Patch the cycle with respect to each positive fair edges constraint.

Note that the above algorithm always works since W is a fair connected component, i.e. it con

tains at least one edge from each positive fair edges constraint.

Remark One can improve the quality of the algorithm for the edge-Streett case by modifying

the algorithm of subsection 5.3.2, so that it only considers those active CFCs whose T. 's are vio

lated, i.e. there is somestate in the current pathwhich does not lie in T{.

5.4 Debugging for Fair CTL

In this section, we describe a debugger for fair CTL formulas based on the debugging environ

ment of section 5.3 for LC. Since CTL formulas are interpreted over computation trees, a

witness for falsity of a formula $ is a computation tree, called a debug tree, on which <J> does not

hold. For ACTL formulas, it is possible to finitely describe a class of debug traces. For other for

mulas involving existential quantification, user interaction is required to explore the debug trees.

As an example, consider the ACTL formula AGAFp. A class of debug drees can be described
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by giving two fair paths n{ and ic2, such that tc, starts at some mitial state, p never holds along

n2, and the initial state of tc2 is some state belonging to it,. Intuitively, n{ and tc2 are wit

nesses to the formulas AGAFp and AFp not holding, respectively. Now, consider the formula

AGEFp. One can present a path rc, along which there exists some state si such that EFp does

nothold at st. However, to prove that EFp does notholdat s( involves presenting all computa

tion trees starting at si. Hence, user interaction is needed to explore a subsetof the debug trees.

Definition For an ACTL formula $ not holding at x, a debug structure is defined recursively

as follows.

1. <(> = P, for some atomic proposition P. The state x.

2. $ = fAg. A debug structure for/ or g, whichever does not hold at x.

3. ty = /+ g. Debug structures for both / and g at x.

4. $ = AXf. A fair path tc = tc(0), ...,n(n),..., such that / does not hold at tc(1) , and the

debug structure for / at jc (1).

5. <j> = AGf. Afairpath tc = tc(0), ...,tc(i), ...,Tc(n),..., such that/does nothold at n(i) for

some i, and the debug structure for / at tc (0 . Recall a fair path is represented finitely by an ini

tial segment and a fair cycle.

6. <j> = AFf. A fair path tc = tc(0), ...,tc(/i), ..., such that / is false at all tc(i') 's, and the

debug structures for / at all tc(i) *s.

7. <1> = A (fUg). There are two possibilities in this case.

a. A fair path tc = tc(0),..., tc(/),..., tc(n),... such dial / is false at tc (i) , and g is false at all

tc (j) 's for j£i . The debug structure for / at tc (i) , and the debug structures for g at all tc (J) \s

for ; £ i are also given.

b. A fair path tc = tc(0), ...,ic(n),... such that g is false at all tc(/) % and the debug struc

tures for g at all tc(j) ls.

Theorem 5.3 Let the size of a debug structure be the number of states in it. Determining the

debug structure (for ACTL formulas) of minimum size in the presence of fairness constraints of

n

the form JI ^°° (St) isNP-complete.

Proof From the definition of debug structures, it follows that a debug structure is polynomial

in the size of the formula and system, and it can polynomially be checked whether a debug
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structure is valid. Hence, the problem is in NP. To see the problem is NP-hard, reduce the short

error trace problem of subsection 5.3.2.1 to our problem, with the CTL formula being

AF(false). Note that any fair pathsatisfiesthis formula (QED).

Remark The complexity of finding adebug structure of minimum length for ACTL formulas in

the absence of fairness constraints is unknown.

We now present a debugger for fair CTL. Let $ be a CTL formula in positive normal form

(PNF). The formula <J> does not hold for the system if it does not hold at some initial state s0. In

this case, we have to give s0 and provide a proof of why it does nothold at *0. The debugger

works incrementally, giving debugging information one operator at a time, and leaving it to the

user to direct the debugger as to what other information is needed next. At every point, the input

is a CTL formula \y, and a fair state x in which y is false. The formula \y and state x constitute

the state of the debugger. Every state output by the debuggers is given a unique identifier, and

the user can refer back to any previously visited state. This feature is used to backtrack and

explore other paths to get further debugging information.

As an example, consider the formulas AGAFf. The debugger first gives a path from some ini

tial state s0 to some state x where AFf is false. Then, the user can either ask for a fair path

from x, or a proof of why AFf is false at x. In the latter case, the debugger presents a fair path

tc along which / is always false. All states along tc are given a unique identifier, and the user is

given the option to explore why / is false at any of these states. The user can pop back from

such explorations, and explore why / does not hold at other states of tc . The algorithm is as

follows.

1. \|f = P, for some atomic proposition P. Report x.

2. y = /+ g. In this case, ask the user which of the formulas to pursue further, since both are

false. Assume / is chosen. The debugger is recursively called with / at x. The user can come

back to this state, and call the debugger with g at x later on.

3. \j/ = /a g. Choose (arbitrarily if there is a choice) one of the formulas f or g which does

not hold at x, and call the debugger with this formula at x.

4. y = AXf. Choose (arbitrarily if there is a choice) a fair next state of x in which / does not

hold. Give the user the option of having a fair path starting at x, or debugging / at x.

5. vp = AGf. Call the shortest path algorithm of section 5.2 to find a shortest path between x
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and the set of fair states satisfying /. Let y be a closest state in Fair+ to x where / does not

hold. Report the path from x to y, and give the user the option of having a fair path starting at

y, or debugging / at y.

6. y sb AFf. In this case, we have to find a fair path from x along which / never becomes

true. Call the LC debugger with S (f) as the reachable set, fn Fair+ as the bad set, and x as

the initial state. To speed up the LC debugger, the forward and backward stable set operators can

be applied to /n Fair+ , to delete states which cannot reach or be reached by cycles. Report the

error trace, and allow the user to ask why / does not hold at any state along the error trace.

7. \|/ = A [fUg] , where /* true. There are two possibilities: there is a fair path along which

either g never becomes true, or / does not hold until g becomes true. Consider the set of states

S = fngn Fair+. Find a shortest path tc from x to S, along which /a g holds. Let ye S be

the endpoint of tc. Report re, and ask the user whether a fair path from y, or a proof of why / and

g do not hold at y, is desired. If such a path tc does not exist, call the LC debugger with x as the

initial state, S (g) as the reachable set and the set U = g n Fair+ as the bad states. Give the user

the option to explore why g does not holds along the error trace returned by the LC debugger. To

guarantee minimality of the initial segment, one can get an error trace for both possibilities, and

choose the one whose initial segment is smaller.

8. \|/ ss EXf. Tell the user how many next states x has, and ask for user constraints on the set

of next states of interest The constraints are a set of state variables and values for them (recall

that each state is a product state). Enumerate those next states which satisfy the user constraints

and are in Fair+ until the user chooses a next state y. Call the debugger recursively with / at

y. In this case, the user had thought / holds at y, whereas it does not.

9. t|f = EGf. If/ does not hold at x, call the debugger with / at x. Otherwise, let N(x)

denote the set of next states of x, subject to some user constraints. Let St = N(x) nfn Fair+,

and S2 ss: N(x) nfn Fair+. Ask the user to choose S{ or S2. If S1 is chosen, enumerate all

states in Sx until the user chooses a next state y. In this case, the user is following the path

expected to have satisfied EGf. Call the debugger recursively on EGf and y. If S2 is chosen,

enumerate all states in S2 until the userchooses a next state y, and call the debugger recursively

on / at y. In this case, the user had thought / holds at y, whereas it does not.
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10. \|/ = EFf. In this case, we know for all next states of x, y does not hold. Let

S sb N(x) nFair+, where N(x) denotes the set of next states of x, subject to user constraints.

Enumerate S until the userchooses a nextstate y. Ask the userto choose between proving why

EFf or / does not hold at y. Call the debuggerrecursively with the chosen formula and y.

11. v sb e IfUg] , where/* true. If x satisfies /a g, print x, and ask whether the user wants

to see a fair path starting at x, or prove why / and g are false at x. Otherwise, / holds at x.

Ask the user if a proof of why g does not at x is desired. If not, tell the user the number of next

states satisfying / and /a g, and ask which set to enumerate next Enumerate the corresponding

set of states, subject to user constraints and being in Fair+, until the user chooses a next state y.

Call the debugger with E [fUg] at y.

Remark For ACTL formulas in absence of fairness constraints, one can prove a minimality

result by slightly modifying the algorithm. For each formula of the type AGf, AXf, and

A(fUg) , an infinite path showing the falsity of the formula is returned. An infinite path consist

of an initial segment and a cycle. Now, it is easy to see that at each step the witness path

returned has the property that its initial segment is of minium length, and the cycle is a shortest

cycle containingthe last elementof the initial segment.

5.5 Algorithms of [CGMZ95]

In this section, we compare our algorithms to those of [CGMZ95].

5.5.1 Debugging For EGf Formulas

[CGMZ95] describes an algorithm for finding an error tracefor the formula EGf under fairness

constraints of the form TlF°°pi. This algorithm can then be used as the basis for debugging fair

CTL formulas. The algorithm picks a state s e Fair+ (initially, s is some initial state), and tries

to find a fair cyclecontaining s, by satisfying the fairness constraints one at a time. To satisfy a

faimess constraint of the form F°°p. from a state u, the algorithm finds a shortest path from u to

some state in p.. Note that the algorithm may leave the SCC of u in this process. When all fair

ness constraints are satisfied, a path from the last state to s is found. If no such path exists, then

the procedure is repeated with last state of the path as thenew seed. Note that the cycle may not
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be completed due to the algorithm having left the SCC of s. The algorithm is guaranteed to find

an error trace since the seed will eventually end up in a leaf SCC of Fair+. This leaf SCC is

guaranteed to contain a fair cycle.

Finding a short witness for the formula EGf under the fairness constraints HF°°p. can he

accomplished using the LC debugger by restricting the set of reachable states to S(f) nR, where

S (f) denotes the set of states satisfying /, and R is the set of reachable states. Our algorithm for

this task, presented in section 5.3, finds a state s e Fairt which is closest to the initial states. If

the SCC of s is fair, then the algorithm finds a fair cycle in it. Otherwise, the states in SCC of s

are deleted, and the search is re-started. Hence, it can guarantee that in the error trace, the padi

from the initial state to the fair cycle is minimum. Note that if the set Fair (the set of states

involved in some fair cycle) is used instead of Fairt, we would be guaranteed that the SCC of

s is fair. But computing Fair is difficult Hence, the set Fairt is used as an approximation.

The algorithm of [CGMZ95] may be faster, since it does not compute the SCC of any state

(note that this can be done using only reachability computations). However, it is expected to pro

duce worse results, or run even longer. For example, assume s belongs to some fair cycle. If the

graph consists of several SCC's, then [CGMZ95]'s algorithm may leave the SCC of s, and hence

never find a fair cycle involving s. In this case, a new state has to be picked and the computation

re-started. Also, the error trace will become unnecessarily long, due to the fact that an error trace

in the first SCC was missed. Incidentally, for the algorithm of [CGMZ95], if the set Fair was

used in place of Fair+, the situation does not change much, i.e. it might still produce long error

traces.

5.5.2 Debugging for Streett Conditions

The second main contribution of [CGMZ95] is giving an algorithmfor debugging under Streett

n

conditions, i.e. fairness constraints of the form II F™(p,) +G°°(q.). Since there isa fair cycle,

we are guaranteed that there exists aset of0.°° (r.), where 0 ~(r.) is F°° (pt) or G°° (q.), such

n

that there is a fair cycle for the faimess constraint II 0,~ (n) • This fair cycle is a fair cycle of
i = i ' '

the original problem. To find the 0~(rt) 's, the algorithm makes n calls to the language con-
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tainment routine. First the language emptiness routine is called with

F°°(p,) a II F°°(p.) +G~(j.) as the fairness constraint. If there is a fair cycle, then
i' = 2

0i°°(ri) = F~(P\) - Otherwise, 01~(r1) sb G°°(pj). Next the language emptiness routine is
n

called with 0.°° (p.) a F°° (p2) a II F~ (p.) +G°° (qt) as the fairness constraint. If there isa fair
i = 2

cycle, then 02°°(r2) == F°°(p2) . Otherwise, 02°°(r2) == G~(p2). This process continues until

all 0;°°(r,) 's are determined. Let pf, ...,pi be those rf 's for which 0/° s= f~. Let ^ ,..., ^A

be those r; *s for which 0^°° = G°°. The algorithm for finding counter-examples for the formula

EGf under the faimess constraint nF°V- is now called with f = qh a ... Aq. , and the p.'s

being pt,...,pt. This error trace is an error trace for the graph under the Streett faimess

conditions.

Since each language containment check is expensive, this algorithm is expected to have high

complexity cost Note that our algorithm presented in section 5.3 does not need to call the lan

guage containment routine. Also, [CGMZ95]'s algorithm can generate long error traces due to

thefact thatforsome choices for 0~ (r.) %there may beshorter error traces.
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Chapter 6

Improving Language Emptiness Check Using Fairness Graphs

6.1 Introduction

We present techniques to speed up the main computation for language containment Recall that

language containment reduces to checking whether the language of the product automaton is

empty. To do so, the set of reachable states is computed, and early failure detection is per

formed. If no errors are found, a computation called the main computation is started, which

returns a superset of fair states (section 4.5). In some cases, the main computation is a significant

portion of the running-time of the algorithm. Our hope is to make language containment with

fairness constraints essentially as efficient as language containment without faimess constraints,

i.e. reduce the complexity of verification to that of computing the reachable set The techniques

we present in this chapter apply to the L-environment, which is an important subset of the eSeR-

environment Hence, we assume we are given a graph with negative fair subset constraints, or

cycle sets. A cycle is fair if it is not entirely contained in any cycle set. Note that at this stage,

all negative fair edges have been removed .

We propose to take advantage of a graph induced by the fairness constraints (i.e. cycle sets),

known as thefairness graph. If this graph is acyclic, then we prove that there are no fair runs.

Hence, the main computation can be bypassed. If it contains cycles, then in some situations we

can combine sets of fairness constraints, and hence reduce the number of fairness constraints in

the main computation. The problem of minimizing the number of fairness constraints at this step

is equivalent to the partition into forest problem, which is NP-complete (GJ79]). So we use a

greedy heuristic for it We have implemented our techniques in the formal verification system

HSIS using BDD's. Based on limited experience, we observed that our techniques can reduce

the run-time of the main computation.

The chapter's flow is as follows. Section 6.2 defines the faimess graph and states its proper-

1. This formulation is equivalentto checkinglanguage emptiness fora graph with the productof Buchi condi

tions as the fairness constraint. Ifc j, c2, ...,Cfl are the cycle sets, c~v c~2, ..., c~n are the Buchi constraints.
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ties. Section 6.3 presents our BDD-based method for building the fairness graph. Section 6.4

formulates the optimization problem associated with clustering the cycle sets, states its NP-com-

pleteness, and describes our heuristic. Section 6.5 presents some experimental results.

6.2 The Fairness Graph and Its Properties

In what follows, we assume Q is the state graph of an automaton with cycle sets cv ...,cn,

such that every state is contained in at least one cycle set (which is the case after early failure

detection). Recall that early failure detection (section 4.7) checks that there are no fair cycles

containing a state of lie].

Definition The fairness graph Qf induced by the cycle sets is a graph on n nodes c\,...,cn

which has an edge from vertex c,- to Cj iff there exists an edge (u, v) in Q such that ue c{,

ve Cj, and vg cr

Examples In figure 6.1, three examples of graphs and their faimess graphs are given. The origi

nal graphs are on top, and the fairness graphs are at the bottom. Each oval around the vertices

signifies a cycle set. Note that in example b, there is no edge from the first cycle set to the sec

ond one, since there is no edge from cl to c2 whose endpoint is not in cx. Also, note that in

example c, although there is no cycle in the original graph, there is a cycle in the faimess graph.

a b c

Figure6.1: Examples of fairness graphs

state graph

faimess graph

Definition Leta path in Q xv ...,x be given. Let cv..., c bea sequence of cycle sets define

recursively from {xt} such that xxe c, for all /, j.ec,, and for it! if xisci_l, then
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ci ~ ci-1 • ^e °^ ^*S sequence aprojection of a path. Let a shadow of a path be obtained

from a projection by deleting consecutive duplicate copies of a cycle set.

Intuitively, as we follow a path we go through a sequence of cycle sets. A shadow of a path is

obtained by only counting those cycle sets which are different than the current one. Note that a

shadow of a path is a sequence of nodes in its faimess graph. Figure 6.2 gives an example of a

state graph and its faimess graph, which shows that the shadow of a path may not be unique,

since the projection of a path may not be unique.

[4 C4

Figure 6.2: Shadow of a path may not be unique

Wehave the following properties for Qf, the faimess graph, which follow direcdy from the def

inition of the fairness graph.

Lemma 6.2.1 There are noself-loops in Qf.

Lemma 6.2.2 Let r = jr.,..., * , x, be a cycle of states, a shadow of which visits c,,..., c,, c:
i n i M '* 'l

inorder. Then, there isacorresponding cycle c,-,..., c,, c, in Qf.

To motivate the next central lemma, consider the example shown in figure 6.3. A state graph

Q is shown on the left with its faimess graph on the right. There is one fair cycle in Q, one of

its projections is (cv c2, r3) , which is not acycle in the fairness graph. Another projection, how

ever, is (cyc2,c3) which is a cycle in the faimess graph. The next lemma proves that for every

fair cycle in Q, there is a cyclic projection, andhence a cycle in the faimess graph.

c

•i— O"

Figure 6.3: A motivating example for lemma 6.2.3

Lemma 6.2.3 Every fair cycle in Q has a projection which is a cycle containing more than one
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node (recall that a fair cycle is a cycle not contained in any of the cycle sets).

Proof Let T = (xv ...,xp, xj be a fair cycle in Q. Every projection of T has more than one

node by the definition of a fair cycle, i.e. r is not contained entirely in any cycle set. Now,

consider a projection of T, P{ =[ch ...,Cp,cp+l), where ci*cp+1. If x^cp, then

ci,..., cp, c\ is also a projection, and we are done. Assume x{ e cp, which implies cp+\ = cp.

Since T is not contained in any cycle set, there exists \<l<p-l such that jc/+1 «s cp and

Xj.e cp for l£i£/. Consider the projection P2 obtained from Px by replacing the first /

elements by cp. Since P2 is a cycle, the lemma follows (QED).

Lemma 6.2.4 Every fair cycle in Q has a shadow which is a cycle containing more than one

node.

Proof Follows from lemma 6.2.3 (QED).

Lemma 6.2.5 There may be acycle c,y..., cJjt, c^ in gy, but no corresponding cycle in Qthat

visits c.,...,ci,ci .
'l 'k M

Proof Figure 6.1c is an example (QED).

Theorem 6.1 If Qf isacyclic, then there are no fair cycles in Q.

Proof Assume that there is a fair cycle T in Q. By lemma 6.2.4, there exists a shadow of T

which is a cycle containing more than one node. By lemma 6.2.2, there exists a cycle in Qf

(QED).

6.3 Building the Fairness Graph

Building the fairness graph is the most time-consuming part of our algorithm. Note that with

out using BDD's, building this graph would be very time-consuming, sincepossibly all edges in

the product L-process may need to be visited. There are many ways to build this graph using

BDD's, some performing better than others. In section 6.3.1, we first present a naive algorithm,

and then present one which improves the performance of the first one. In section 6.3.2, we dis

cuss ways ofbetter reflecting the structure of Q in Qf, by deleting states which cannot contain

any fair cycles.
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6.3.1 Algorithms

To build the faimess graph using BDD's, we introduce two new variables which take values

from 1 ton, where n is the number of cycle sets. The first variable,denoted by x', corresponds

to a present state of Qa the second one, denoted by y*, corresponds to a next state. We eventu

ally build a transition relation R(x\ y'), which represents Qf. Let A(x) represent the active set

of states, which is originally the set of reachable states with the states in rv deleted (these
i J

states are deleted after early failure detection). We assume the transition relation of Q, T(x, y),

is restricted to A(x), and that the negative fair edges have been deleted from T. The following

lemma provides a straight-forward way to build the fairness graph.

Lemma 6.3.1 R(x\y') =lIi3x3y^T(x,y) ac(.(x) Ac.(y) ac~(yj a(jc' =0a(/=;))
» ;

2 2 2computes Qf. This computation does In quantifications, 5n Boolean AND's, and n Boolean

OR's.

Proof Forevery pairof cycle sets c( and c the above computation checks whether there is an

edge (i,j) in Qf. Hence, R represents Qf. The number ofoperations follows by expanding the

above sums, which has exactly n terms (QED).

The improved version involves re-arranging the order of various operations.

Lemma 6.3.2 Xly\Y(3x(T(x, y) ac( (jc) )) ac~Jy) a (jc' =/) Jac;. (y) a (y' =;) computes

Qf. Moreover, it takes In quantifications, 5n Boolean AND's, and In Boolean OR's.

Proof It suffices to show that the above equation is algebraically equal to the one in the

previous lemma. This follows by noticing that existential quantification and Boolean OR

commute. To count the number of operations, note that

X(3* (T(x, y) a cf (x))) a ct (y) a (x' = i) is independent ofj and has to computed only once.

It requires n quantifications, 3n Boolean AND's, and n Boolean OR's. The outer computation

takes n quantifications (once for each ;'), In Boolean AND's, and n Boolean OR's. The bounds

follow (QED).

Algorithmically, we can think of this expression as consisting of two passes over the cycle sets,

with the firstpasscomputing S(x\ y) = X (3jc (T(x, y) a c. (jc) )) a c.(y) a (jc* = /')
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/. LetS(x,y) = 0.

Foreach cycle set c{

1. U{(y) = (3x(T(x,y)ACi(x)))AC~(y).

2. S(x\y) = S(jc',y) + (Ut(y) a (x' = i)).

The second pass takes S (x\ y) and returns the fairness graph R(x\ y'). The algorithm is as

follows.

//. LetR(x\y) = 0.

For each cycle set c-

1. Wj(x') =ly(S(x',y)ACj(y))

2. R(x\y') = R(x',y') + (Wj(x') a (y' =;)) .

We remark that Ut (y) is the set of states in cj which are reached by some states in cf, and

W.(x') is the set ofcycle sets ck that have an edge to a state in c~kncj. We use these observa

tions in the next section. Note that the l/{.'s can all be computed in parallel. Once S is

computed, all the W. *s can also be computed in parallel.

6.3.2 Improving the Structure of the Fairness Graph

As the faimess graph is being built, sets of states where no fair behavior can exist are deleted.

This process will change the fairness graph. In this section, we study what states can be deleted,

and how inaccurate the fairness graph can become.

Definition A cycle set c. is said to be a sink cycle set, if there is no edge («,v), where ue c(

but ve cf.. Similarly, a cycle set ci is said to be a source cycle set if there is no incoming edge

(u, v), where ue ci but ve c{. No states of a sink and source cycle sets can be involved in a

fair cycle.

Consider example a in figure 6.4, where svs2,sys4 are the states and cvc2,cyc4 are the

cycle sets. Assume in the first pass we process cv c2, cy c4 in that order. When processing c4,

we find that U4 (y) = 0, which means c4 has no outgoing edges, i.e. it is a sinkcycle set. No
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state of a sinkcycle setcan be involved in any fair cycles. Hence, s4 can be deleted from Q, and

c4 from Qf. Now, s2 has no outgoing edges, and can be deleted by the forward stable set opera

tor (recall this operator deletes any states which cannot reach a cycle). Let optimization 1 denote

the deletion of sink cycle sets as well as the applicationof forward and backward stable set opera

tors in the first pass. Optimization 1in this example deletes s2, s4 and c4 from Q.

Figure 6.4: Concept of fake edges

More precisely, with optimization one enabled, pass 1 becomes as follows.

/. Let S(x,y) = Q.andA = R, where R is the set of reachablestates..

For each cycle set ct

1. Uj(y) = (3x(T(x,y)ACi(x)))AC.(y).

2. // U^O , S(x',y) = S(x',y) + (t/,.(y) a (x' = 0) •

3. If Uj = 0, A = Aa cj, apply the forward and backward stable set operators to A , and let

T(x,y) = T(x,y)AA(x)AA(y).

Now, consider example b in figure 6.4. Assume in the first pass cv c2, c3 are processed in

order. Since c3 is a sinkcycle set, states s3 and s4 are deleted. The stable set operators cannot

delete any more states in this case. When we processed cx, we added the pair (l,s3) to

S(x\ y), which means Cj has an edge to s3. But since j3 is deleted from the graph, this is no

longer true. The question is whether we will have an edge (1,2) in R(x\y') . We call such

edges in R(x',y') which should not exist in the final faimess graph, fake edges. Assume we

modified our algorithm in step 1 of pass 2 to ^.(jc') =3y(S(x',y) ac-(v) AA(y)) , where
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A(y) is the current active set of states in Q. Note that in the first pass, we always restrict

r(jc, y) to A (jc) . Also assume that the stable set operators are originally applied to Q, before

the building of the fairness graph is started. We have the following important theorem.

Theorem 6.2 If optimization 1 is applied during the first pass, then R(x\ y) contains no fake

edges.

Proof Let (u, v) be an edge in Q such that ae cr ve c, and vg c. (figure 6.5 a). Then,

(u, v) gives rise to a fake edge (i,j) in R(x',y') iff at least one of a or v is deleted by

optimization 1. We distinguish between three cases.

Case 1. v is deleted by optimization 1. Then v e c. in the second pass, and the pair (i, v) gets

deleted from S(x\ y) in pass 2, step 1, and does not gives rise to the edge (i,;) in R(x\ y').

Case 2. Only u is deleted in the first pass, and this occurs because u belongs to some sink cycle

set ck. We have that v e ck, otherwise it would have also been deleted. But, we have an edge

from ck to Cj because ue ck, ve c•, and v€ ck. Therefore, ck is not asink cycle set which isa

contradiction.

Case 3. Only u is deleted in the first pass, andthis occursbecauseof an application of one of the

stable set operators after some sink cycle set ck is deleted (figure 6.5 b). Since v is not deleted,

v can reach a cycle. Hence, u can reach a cycle, after ck was deleted. Thus, u is notdeleted by

the forward stable set operator. So, u is deleted by the backward stable set operator. Since,

before deletion of ck, u could be reached by some cycle, there is a cycle in ck which can reach

u. But, since u<£. ck, there is a path from ck to some state not in ck. This implies that ck has an

out-going edge contradicting that ck is a sinkcycle set (QED).

Figure 6.5: Different cases in proof of theorem 6.3

Now, consider example a in figure 6.7. Assume in the second pass, we process cx and c2 in
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that order. When processing c2, we find that W2 (jc') = 0. Note that we mayhave W. (x') = 0,

but Cj isnot a source cycle set, as example ain figure 6.7 shows where cx is not a source cycle

setbut W{ (jc*) = 0 (figure 6.3 and cx is another example). Similarly, we may have W.(x') *0,

but c4- is a source cycle set as example b in figure 6.7 where c2 is a source cycle set but

W2(jc') *0. However, if H^.(jc') =0, we can conclude those states which are unique to c- can

not be involved in any fair cycle.

v 0 CQ>-^>

Figure 6.6: Examples motivating optimization 2

Lemma 6.3.3 If W.(x') = 0, then the statesunique to c. are not fair.

Proof Assume to the contrary that xx is unique to c., and is fair. Let C = (jcp ..., jcn, xx) be a

fair cycle containing JCj. Then, by lemma 6.2.3, there exists a projection of C,

P=[ci,...,ci,ci J, which is acycle and contains more than one node. Since JCj is unique to

c., C; = c.. Let \<l£n be the largest such that c, *c.. Then, jc.e c, , jc,.,, e c:, and
j 'x j *•' 'I j » •/ »+ * j

xui€ ct. Therefore, the edge (jc7,jc/+ ,) gives rise to the edge fc.txu 1] in S(jc,y), and to

the node ct in W. (jc') . This is in contradiction to W. (x') = 0 (QED).

Let optimization 2 be the deletion of states unique to c. where W.(x') = 0, and the application

of the stable set operators in the second pass. Hence, pass 2 with optimization 2 applied is as

follows.

II.LetR(x',y') = 0.

For each cycle set c•.

1. Wj(x') =3y(S(x\y)ACj(y))

2. IfW.*0, R(x',y') = R(x\y') + (W.(x') a (y'=j)).

3. IfW.-0,A = AAu. where u. = en u c. are the unique state of c., apply theforward andj j j j j#j j
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backwardstable set operators to A , and let T(x,y) = T(x,y) aA(x) aA(v) .

Lemma 6.3.4 Applying optimization 2 can result in fake edges.

Proof Consider figure 6.7. In pass 2 of the algorithm, after c2 is processed the edge (1,2) is

added to R(jc*, y'). Then, in processing c3, we find that W3 (x*) = 0, so we can delete state 1

which is unique to c3. State 2 cannot be reached by a cycle, and will be deleted by the stable set

operators, which makes the edge (1,2) a fake edge (QED).

i

Figure 6.7: Fake edges after optimization 2

Consider figure 6.8. After the fairness graph is built, we notice that c3 is not involved in any

cycles of the faimess graph. The unique states of such a cycle set cannot be involved in any fair

cycle, and can be deleted from the state graph (by the same reasoning as the proof of lemma

6.3.3). Let optimization 3 denote the deletion of unique states of such cycle sets and the applica

tion of the stable set operators,after the fairness graphis built

Figure 6.8: Example motivating optimization 3

Lemma 6.3.5 Application of optimization 3 can result in fake edges.

Proof Figure 6.9 gives an example, where the state graph Q is on the left and the faimess

graph Qf on the right. Optimization 3 deletes state 2. The stable set operators delete state 1,

which inturn makes the edge (cv c3) in Qf fake (QED).
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Figure6.9: Fake edge after optimization 3

In summary, optimization 1 does not create fake edges, whereas optimizations 2 and 3 might

If optimizations 2 and 3 are included when the fairness graph is being built, two algorithms can

be implemented to deal with fake edges. The first algorithm is as follows.

1. Do the first pass with optimization 1.

2. Do the second pass with optimization 2. If any states are deleted, go back to step 1, and restart with

those states deleted. Otherwise, go to step 3.

3. Perform optimization 3 on thefairness graph. Ifany states are deleted, go back to step 1, and restart

the computation with those states deleted.

Note that the first algorithm re-starts the computation as soon as any state is deleted by optimiza

tion 2 and 3. The second algorithm is given below.

1. Do the first pass with optimization 1.

2. Do the second pass with optimization 2.

3. Perform optimization 3 on thefairness graph.

4. Ifany states are deleted in steps 2 or 3, go back to step 1 when all states deleted so far remaindeleted.

This algorithm carries out the computation to the end, ignoring possible fake edges. At the end,

if there is a possibility of fake edges (because of deletion of states by optimizations 2 or 3), the

computation is re-started.

6.4 Clustering Cycle Sets

In this section, we formulate the problem of clustering the cycle sets to minimize the number of

faimess constraints. We show that the problem is NP-complete, and propose a heuristic solution.
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6.4.1 The Clustering Problem

Definition An acyclic cluster is aset of vertices in Qf which does not contain acycle.

Theorem 6.3 Let Sv ...,Sp be a partition of vertices of Qf such that every S- is an acyclic

cluster. Let Q have the same states as Q, but with p cycle sets c\,..., c'p, where c\ is formed

by taking the union of all cycle sets in S.. Then, a cycle is fair in Q iff it is fair in Q.

Proof Let T be a fair cycle in Q. The only way T is not a fair cycle in Q is for T to be

entirely contained in some c\. Assume this is the case. Let Q" = tft, and let the cycle sets in Q"

be the cycle sets in S.. T is still a fair cycle in Qn, andby lemma6.2.4, it has a shadow whichis

acycle in Q"f. But this cycle is also acycle in Qf, which is contradictory to the assumption that

each S. is an acyclic cluster. Conversely, assume r is a fair cycle in Q'. If T is not a fair cycle

in Q, then T is contained entirely insome c.. Let's say c. is in some partition Sr Since T is

fair in Q, it isnot entirely contained in Si. Hence it cannot be contained in c (QED).

Note that the above theorem can be used to reduce the number of fairness constraints. We call

this technique clustering. The associated optimization problem is to decompose a directed graph

(Qf) into a minimum set ofacyclic clusters. This problem isNP-complete, since it isequivalent

to thePartition into Forest problem described in [GJ79]. We now show how thisproblem can be

reduced to the decomposition ofeach strongly connected component (SCC) of Qf.

Lemma 6.4.1 Let the SCC's of Qf be given. Assume each is partitioned separately into a set

of acyclic clusters. The union of a set of acyclic clusters each from different SCC's is again an

acyclic cluster.

Proof This follows from the definition of SCC's (QED).

Theorem 6.4 Assume each SCC of Qf can be decomposed into a minimum of mt acyclic

clusters. Let M = max {m,} . Then, M is the solution of theclustering problem.

Proof Clearly by lemma 6.4.1, a solution with M clusters can be constructed by clusters with

at most one element from each SCC. Now assume M is not minimum, and let a set of AT < M

acyclic clusters S1,...,SM> be given. We can build a clustering W, W^ for each SCC W

with at most NT clusters by taking w. = StnW. This contradicts that m. is a minimum solution

106



for each SCC (QED).

The above theorem gives us a way of clustering vertices of Qf by processing each SCC sepa

rately. Further, it tells us which SCC to work on the hardest

Example Consider the example in figure 6.10, which shows a fairness graph with three SCC's:

{1,2,3}, {4,5,6} , and {7,8,9,10} . The first SCC can be decomposed into {1, (2,3)} , the

second into {4, (5,6)} , the third into {(7,8), (9,10)} . Thus, M - 2. The final decomposi

tion is {(1,4,7,8), (2,3,5,6,9,10)} , and we have reduced the cycle sets from 10 to 2.

5

Figure 6.10: Clustering in fairness graphs

6.4.2 Heuristic Clustering

We use a simple recursive, greedy heuristic for the clustering of each SCC, which is described

below.

1. If two vertices do not form a cycle, merge them into a hyper node.

2. If any merges wereperformed in step 1, call the routine recursively on the graphformed by taking

each cluster as a node.

This algorithm allows many clusters to grow concurrendy, as opposed of starting with one and

continuously adding to it. Another heuristic is to maximally grow a cluster until no more nodes

can be added, and then continue with the next one. We propose to process the SCC's in decreas

ing size. Since we donotneed to decompose a small SCC into less than M = majc {m,} seen so

far, we can use this as an early bounding step to speed up processing.

6.5 Experiments

We have implemented our algorithms in HSIS. To test our algorithms, we used an abstracted

description of SUN's Sparc-8 memory model [SUN90], [DNP93]. The memory model is mod

eled abstractly as a single port device that grants write access to the attached processors by
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randomly selecting one.

For our experiments we mapped an assembly code sequence (from [SUN90]) that implements

spin locking to an automaton representing a processor. To model general computation, both the

automata for the processor and the memory have several states with self loops: the processor can

stay in an idle state indefinitely long beforeattempting to acquire the lock; it can also wait indefi

nitely long returning to its computation loop, and stay in its critical section (after acquiring the

lock) for an unspecified period of time. Each of these states becomes a one-element cycle set,

since we want to exclude the behavior from the system where processors remain in one state for

ever. Similarly, we require that the memory does not always choose to service the same

processor, i.e. the memory is "fair".

We verified the liveness property that a processor will eventually be able to acquire the lock,

for systems with 3 and 4 processors. The results are summarized in table 1. All times are in sec

onds and are measured on a DECsystem 5000/260 with 128MB of memory.

Table 6.1

num of processors 3 4

reachable states num 10685 143228

reachability 5.35 116.7

main comp. w/o f.g. 5.47 61.45

total time w/o f.g. 15.10 221.98

building the f.g 1.45 14.81

main comp. with f.g 0.0 0.0

total time with f.g. 11.11 175.1

improvement factor for main
computation

3.77 4.15

Note that in tiiis example, we were able to decide the language containment check byonly ana

lyzing the fairness graph. Hence, the main computation time with the fairness graph analysis is

0. The last row is obtained by taking the time of main computation without our technique,

divided by thesum of building thefairness graph and the time for themain computation with our

technique.
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Chapter 7

Computing Fair Simulation Relations

7.1 Introduction

Simulation relations, which are approximations to language containment, come up in several

places in verification.

1. Non-deterministic property checking. In property checking, simulation relations can be used

in place of language containment. If the property is deterministic, then a simulation relation

exists iff the language of the system is contained in the language of the property. In this case,

there seems to be no computational advantage in using simulation relations instead of language

containment. If the property is non-deterministic, then existence of a simulation relation implies

that the language of the system is contained in the language of the property, although the con

verse does not hold. However, if the property is non-deterministic, and if determinization proves

to be cosdy, then simulation relations may be an economical alternative.

2. State Minimization. Practical systems have many regular structures. Therefore, many states

in the product machine of such systems are equivalent. Minimization reduces the size of a sys

tem by deleting equivalent states. Minimization does not change the behavior of a system. In an

automaton A, if two states have exacdy the same set of traces (i.e. are trace equivalent), they can

be merged. This process is known as state minimization. However, checking whether two states

are trace equivalent is PSPACE-complete. As an approximation, simulation relations between an

automaton and itself can be computed. If two states simulate each other, we have that they are

trace equivalent, and can be merged.

3. Hierarchical Verification. Hierarchical verification is the process of verifying properties at

a high-level of abstraction, then refining the abstract models according to some criteria, and

being ensured that the properties still hold at lower levels of abstraction. In hierarchical verifica

tion, simulation relations can be used in two places. If ACTL properties are proved of the

abstract model, then the existence of a simulation relation between the detailed model and the

abstract one, guarantees that the properties continue to hold at lower levels of abstraction

([GL91]). If automata are used for property specification, we only need to prove that the lan-
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guage of the detailed model is contained in the abstract model to ensure that the properties

proved at the abstract levels continue to hold at detailed levels. If the abstract model is non-deter

ministic, then checking this language containment can be very expensive. In such case, it may be

possible to prove the abstract model simulates the detailed model, which would imply the lan

guage of the detailed model is contained in the abstract one.

Simulation relations were first introduced in [Mil71], and have been used in formal verification

in state minimization and property verification. Computing simulation relations in the presence

of fairness constraints, referred to as fair simulation relations (FSRs), is a difficult and challeng

ing problem. In the eSeR-environment, there are two situations where we need to know whether

there is a FSR from A2 to Ax. The first comes up in property verification, where Ax is anedge-

Streett automaton and A2 is an edge-Rabin automaton. The second comes up in state minimiza

tion and hierarchical verification, where Ax and A2 are edge-Streett automata.

In this paper, we study a notion of equivalence for FSRs, called existential FSRs (EFSRs) intro

duced in [GL91], and argue that it is a naturalnotion for FSRs. However, the existence problem

for EFSRs even for Buchi conditions is PSPACE-complete. We then define a weaker equiva

lence, called UFSRs, which is a generalization of "dynamic-live-cycles Buchi simulation

relation" of [DHW91] to general fairness constraints. Using a result of [DHW91] we prove that

if j4, is edge-Streett, and A2 is edge-Streett or edge-Rabin, then the problem of existence of a

USFRfromAj to A2 is NP-complete. Finally, we give approximation algorithms, based on

BDDs and language containment algorithms, for computing UFSRs for the two problems which

come up in our environment

The flow of the chapter is as follows. In section7.2, the classical theory of simulation relations

is reviewed. In section 7.3, we define EFSRs and UFSRs, and prove or review some results

about them. In section 7.4, algorithms for computing UFSRs are given. Section 7.5 gives some

comments on experiments.

7.2 Simulation Relations

In this section, we review the classical theory of simulation relations, known as safety simula

tion relations. Assume FSMs Ax and A2, with state spaces Qx and Q2 are given.

Definition We say A2 safely simulates A,, or there is a safe simulation relation (SSR) from
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A2 to A1, if there exists a relation R(svs2) between Ax and A2 such that the following condi

tions hold.

1. (Transition Relation Condition) Vsx e SvWj e Sv Va e Z, Vs2 <= S2 if Tx (sv a, s'x) and

/? (sv s2) hold, then 3j'2e S2 such that r2 (s2, a, s'2) and /? (s'vs'2) hold.

2. (Initial State Condition) Vsj € /j, 3s2 e 72 such that R(sv s2) holds.

Intuitively, condition 1 states that if Aj can doa move, A2 is able to match it. Condition 2 states

thateach initial state of Ax is simulated bysome initial state of A2.

Definition Let P = Ax xA2 denote the product machine of Ax and A2. Theproduct relation

Rp is defined by thereachable states of P, i.e. Rp (sv s2) iff (sv s2) is reachable in P.

7.2.1 Safety Simulation Relations and Language Containment

In this section, the relationship between SSRs and language containment (LC) is studied. Most

of these results are known in the literature. Unless noted otherwise, the results apply to lan

guages on both finite and infinite strings. There are no fairness constraints.

Definition Let A2 safely simulate Ax by the SSR R. Let string o have arunr, inA,. r2 is a

simulating run of rx on a in A2 if:

a. r2 (0) is an initial state of A2, where r (i) denotes the i -th state of r.

b. Forall /, (rx (i),r2(i)) e R, and there is a transition (r2 (i), o (i), r2 (i + 1)) in A2.

Lemma 7.2.1 (easy) If A2 safely simulates A,, then for every run in Ax, there is a simulating

run in A2.

The following two lemmas show that although existence of SSRs implies language contain

ment, the converse is not true.

Lemma 7.2.2 (literature) If A2 safely simulates Ax, L(AX) qL(A2) .

Proof Let rx be a run for a e L(Ax). Then, a simulating run of o in A2 is an accepting run

for o in A2. Hence, o e L(A2) (QED).

Lemma 7.2.3 (literature) If A2 is non-deterministic and L(AX) qL(A2) , there may be no

simulation relation.

Proof The following is an example.
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We have L(AX) QL(A2) ,
but no simulation relation exists.

b(Tp qpc

Figure 7.1: Simulation relation versus language containment

The following two lemmas will be used in constructing algorithms for computing SSRs.

Lemma 7.2.4 ([DHW91]) Let L(AX) qL(A2) , Ax be non-deadlocking (i.e. all states have

some outgoing edge), and A2 be deterministic. Let P = Ax xA2. Then, the product relation Rp

is aSSR from A2 to Aj.

Proof The initial state condition is trivially satisfied, since every initial state of Ax is related

to the initial state of A2. Let (sx,s2) be reachable in P, and Tx (sx, a,s'x) hold. To prove the

transition relation condition holds, we will show there exists s2 such that (sx,s2) is reachable

in P and T(s2, a,s2) holds. Let r be apath in P from some initial state to (sx, s2) . Let 6 be a

string corresponding to r. Let ri be the projection of f in Ax. Since Ax is non-deadlocking,

complete ^ to an infinite run rx which coincides with f\ initially, goes through the edge

(sx,s\), and does something arbitrary after that Let o coincide with 6 initially, take the value

a, and then take values consistent with the ran r{. We have that rx is a run for o. By

L(A{) cL(A2) and determinism of A2, there is a unique run in A2 for o. This run coincides

with the projection of r initially, and goes through some state s'2 such that T2 (s2, a, s'2) . We

have that (s\, s'2) is reachable in P, and T(s2, a, s2) holds, as was desired (QED).

Lemma 7.2.5 Let Ax be non-deadlocking. A pair of states (x,y) cannot belong to any

simulation relation from A2 to Ax if there is some finite string o whichhas a run starting at x in

Ax,butno run starting at y in A2.

Proof Assume to the contrary that there is a SSR R from A2 to Ax which relates x to y.

Form automata A'x and A'2, with the same transition structures as Ax and A2, but with initial
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states x and y, respectively. Then R is also a SSR from A'x to A'2. By lemma 7.2.2,

L(A\) qL(A'2) . But this is a contradiction to the assumption that there is some string which

has a runfrom x in Ax,butno runfrom y in A2 (QED).

7.2.2 Computing Safety Simulation Relations

Lemma 7.2.6 (literature) Safety simulation relations are closed under union.

Proof Let R' and R" be SSRs. Let /? = /?'u JT. We need to show /? is a SSR. Let jc be an

initial state of Ax. Then, since R' is a SSR, there exists y aninitial state of A2 such that R' (x, y)

holds. Since RcR, we have that R(x,y) holds also. Hence, R satisfies the initial state

condition. To show the transition relation condition holds, let R(sx,s2) and T(sx, a,s'x) hold.

Since R = R'kjR", we have (sx,s2) e /?' or (sx,s2), e /?". Without loss of generality, assume

(sx,s2) e /?'. Then, there exists s\ such that (s',,^) e K, and r(j2, a,s'2) holds. Since

R' c /?, we have i? (j'j, s'2) and T(s2, a, s'2) hold, as was desired (QED).

Definition Let EQ be a relation on state spaces of Aj and A2. The relation computed by the

fixpoint E. +j (x,y) = VaVz((E.(x,y) a Tx (jc, a,z)) -»3w(T2(y, a, w) aEi(z,w))) is the

refinement of E0 by thetransition relation condition.

The following algorithm finds the largest SSR from A2 to A1 (existence of "the largest SSR" is

implied by lemma 7.2.6).

1. Let EQ (x,y) = 1, i.e. allstates ofAx are related toallstates ofA2.

2. Let E be the refinement of EQ by the transition relation condition.

3. Return E if it satisfies theinitialstate condition. Otherwise return theempty set.

The following two lemmas prove the correctoess of the algorithm.

Lemma 7.2.7 (literature) Let Ax x and A2 denote Ax and A2 with jc and y as initial states

respectively. Let £ be the relation computed in step 2 of the above algorithm. Then, (x, y) e E

iff A2y safely simulates Ax , which implies the above algorithm computes a safety simulation

relation.
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Proof If (x, y) e E, then both conditions of aSSR are satisfied. Hence, A2 safely simulates

AXx. Conversely, assume (jc,y) e E, and let Em be the relation from which (x,y) is first

deleted. We prove by induction on m that if (jc, y) is deleted from Em then there is no SSR

from A2y to AXx. If m = 1, (jc,y) isdeleted from Ex since there exists some symbol a such

thatonly one of jc and y has a transition on a. Hence, (jc,y) cannot belong to any SSRs. Now,

assume the claim holds for all pairs deleted up to iteration m. (jc, y) is deleted from Em since

there is jc' , next state of jc on some symbol a, such that no next states of y on a is related to jc' .

If some SSR relates jc and y, then some next state of y on a can safely simulate jc* . By

inductive assumption, this is not the case (QED).

Lemma 7.2.8 (literature) The above algorithm computes the largest SSR.

Proof By lemma7.2.7, we know thatthe computed relation is a SSR. To show it is the largest

one, assume to the contrary that E is a SSR, (x,y) e E, and (jc,y) e E. (x,y) € E implies

that A2y safely simulates AXx. But (jc, y) £ E isin contradiction with lemma 7.2.7 (QED).

Consider the example of figure 7.2. The above algorithm will take 5 iterations to find the SSR

{(0,0'), (1, r)} . One can speed up the above algorithm on this example by letting E0 be the

product relation. The computed relation is called the product safety simulation relation

(PSSR). For this example, step 2 of the above algorithm when E0 is the product relation takes

only one iteration. This speedup is achieved by not considering the un-reachable states in the

productgraph which slow down the convergence of the original algorithm.

«. •*a

Ai

a a

A
b ^ a ^ a

0 "2 0 \* $ '4' '5* "6'>.' >.' &
Figure 7.2: An inefficiency in computing SSRs

Definition Let R be a SSR from A2 to Ax. The product graph induced by R, GR, is defined

to be the set of reachable states of the graph GR whose state space is R, whose initial states are

all (x,y) e R such that jc is an initial state of Ax and y is an initial state of A2, and there is a
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transition ((sx, s2), a, (s'x, s'2)) in GR if (sx, a, s'x) is anedge in Ax and (s2, a, s'2) is anedge

inA2.

Lemma 7.2.9 Let R be a SSR from A2 to At. Then GrqRp, i.e. the product graph induced

by R is a subset of the product relation.

Proof First, note that if (x, y) e GR and (jc, y) e /?p, then all outgoing edges of (jc,y) in GR

are contained in Rp. The lemma follows by induction since all initial states of GR are in Rp

(QED).

Lemma 7.2.10 ThePSSR exists iff there is a SSR from A2 to Ax.

Proof Since the PSSR is a SSR, we only need to show that if a SSR R exists, then the PSSR

S also exists. By lemma 7.2.9, we have GrqRp. Since all pairs in GR satisfy the transition

relation condition, we have GrqS, i.e. they will not get deleted by step 2 of the algorithm. It

follows that the PSSR S exists (QED).

7.2.3 Complexity of Checking and Computing

In this subsection, we give some upper bounds on the complexity of checking and computing

SSRs. These bounds are not meant to be tight. In what follows, let nx, mx, n2, m2 be thenum

ber of nodes and edges of Ax and A2, respectively, and |Z| be the size of the alphabet. We

assume mx = 0(nx) and m2 = 0(n2) (note that we are not ruling out that mx and m2 can be

8(/tj) and6(n2) respectively).

Lemma 7.2.11 Checking whether a given relation R is a SSR from A2 to Aj can be done in

0(mx\l\m2).

Proof The following algorithm does the job.

1. For each edge (ux, vx) inAx and symbol a,

2. For each node u2 e A2 such that R(ux, u2) holds,

Ensure that there isan edge (u2, v2) in A2 on a such that R(vx, v2) holds.

Note thatgiven an edge (ux,vx) and symbol a, step 2 at most visits all edges of A2. Assum-
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ing that checking whether R(u,v) holds can be done in constant time, the lemma follows (QED).

Lemma 7.2.12 Complexity of finding the largest SSR is ol |Z|nxn2m m2).

Proof The algorithm for checking a SSR identifies all pairs which do not satisfy the transition

relation condition. The number of times this procedure is called is bounded by 0 (nxn2), which

is thenumber of pairs in EQ. Theresult follows bylemma 7.2.11. (QED)

Remark The algorithms of subsection 7.2.2 can be described by U-calculus formulas. For

example, \l((Xx,X2), (Ix,I2)).F((XX,X2)) computes the product transition relation, where

F((Xx, X2)) is the monotone increasing predicate transformer (Xx, X2) +Rx ((Xx, X2), y), and

Rx ((Xx, X2), y) represents the setof nextstates of (Xx, X2) in theproduct graph (see section 4.3

for notations of fixpoint operators). Similarly, one can define a fixpoint expression for the refine

ment of a relation by the transition relation condition. BDDs can be used to compute a relation

described by a p-calculus formula on finite graphs. [HTKB92] introduced a complexity class for

such computations, which is roughly based on how many sets of state variables the relation being

computed in a fixpoint expression depends on, and how many nested levels of fixpoint opera

tions the expressions contains. According to this classification, the BDD complexity of these

computations is BDDX x for Ax xA2, which says the relations being computed in the fixpoint

expressions for these computations involve one set of state variables, and have one nested level

offixpoints. This is the same BDD complexity as performing reachability on AxxA2.

7.2.4 Output Determinization

In this section, we describe a language preserving transformation which increases the chance of

existence of a SSR, at a slight computation time increase.

Definition Let a safety automaton A= (Z, Q, T, I) be given. Let AOD = (Z, Q0D, T0D, I0D),

the output determinization ofA, be defined as follows. Let Q0D qQxZ, and be defined by

(q,a) e Q if qe Q and there is q' e Qsuch that (q, a, q') e T. If (q, a) e QOD, and qe /,

then (q,a)sI0D. Let ((q,a),a, (q',b)) e T°D if (q,a)eQ0D, (q\b)eQ0D, and

(q, a, q') e T. Note that all transitions from (q, a) are marked with a.

The following lemmas show that byoutput determinizing Ax, and then looking for a simulation
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ODrelation from A2 to Ax , one can answer the question of L(Ax) qL (A2) more accurately. How

ever, the extra complexity may not justify the improved accuracy. Incidentally, [DHW911

requires both Ax and A2 to be output deterministic.

OD.
Lemma 7.2.13 L(A) = L(A ) , hence output determinization is language preserving.

Proof The lemma follows by noticing string o = o0, av ... has arun r = r0, rx,... in A iff o

ODhas anm (r0, o0), (rx, ax),... in A (QED).

ODLemma 7.2.14 A2 safely simulates Ax implies A2 safely simulates Ax . However, the

converse is not true.

ODProof Let R be a SSR from A2 to Ax. If (qx,q2) e R, let ((tf^fl),^) e /? for each

oz> .
symbol a which is the label of some outgoing edge from q.. It is easy to check that R is a

OD
SSR from A2 to Ax . The example in figure 7.3 shows that the converse is not true, i.e. if A2

ODsafely simulates Ax , we cannot deduce A2 safely simulates A1 (QED).

-"A

Figure 7.3: Output determinization and finding SR's

As figure 7.4 shows, it is easy to find examples of where L(A x) c L(A2) butno SSR from A2

to Aj exists. The following lemma shows that output determinizing A2 does not increase the

chance of finding aSSR from A2 to Ax.

A

d cUJ CDd

Figure 7.4: Language containment vs. SSRs in output determinized FSMs

Ab b
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Lemma 7.2.15 A2 safely simulates A°D iff A2 safely simulates A°D.

Proof Let Rbe aSSR from A°D to A°D. Define R', aSSR from A2 to A°D, as follows. If

((q,a), (q',a)) gR, let ((q,a),q') e R'. Conversely, let R' be a SSR from A2 to A^D.

Define R, aSSR from A2° to AfD, as follows. If ((q,a),q') e R', let ((q,a), (q\a)) eR.

Note that if ((q,a), q') e R', then there is an outgoing edge from q' which is labeled by a

(QED).

Lemma 7.2.16 The complexity of checking aSSR from A2 to A°D is 0(mx\I\m2).

P/-00/ Apply the algorithm of lemma 7.2.11. Every edge of Ax will be visited once since

each such edge is labeled by exacdy one symbol. There are 0(mx\l\) edges in A°D. Since step

2 takes 0 (m2) time, the lemma follows (QED).

Lemma 7.2.17 The complexity of checking aSSR from A2 to A°D is of |Z|2nin2m1m2J.

Proof Follows from lemma 7.2.12 by noting the number ofnodes of A°D is \I\nx (QED).

7.3 Fair Simulation Relations

In this section, we introduce simulation relations in the presence of fairness constraints. Our

definitions are general and apply to anyfaimess condition. However, the complexity of the exist

ence problem, which we also call the computation problem, depends on the type of the fairness

constraint. Our first definition, called existential fair simulation relation (EFSR), makes the com

putation problem even for Buchi conditions PSPACE-hard, whereas the second definition, called

universal fair simulation relations (UFSR), makes it NP-complete for edge-Streett conditions

(which include Buchi conditions as a subset). EFSRs first appeared in [GL91], whereas UFSRs

were defined originally in [DHW91] for Buchi automata, and were called dynamic-live-cycles

Buchi simulation relations.

Both definitions have the property that if A2 is deterministic and L(AX) qL(A2) , then a fair

simulation relation from A2 to Ax exists. In what follows, we assume that from all states ofA2,

there exists a fair path. We call such automata reduced. This assumption is needed to prove the

above propertyof our definitions. This is a minor restriction, since most systemsare expected to
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satisfy this condition, and if not, language containment algorithms of chapter 4 can be used to

easily find this set, and restrict the automata to this set. This operation does not change the lan

guage (i.e. behavior) of the system.

7.3.1 Preliminary Definitions

Definition A Buchi automaton A is a FSM with one faimess constraint of the form F°° (S) .

The set S is called the set of final states of A. An (^automaton denotes an edge-Streett, edge-

Rabin or Buchi automaton.

Definition A fair constraint G is said to be the complementof fair constraint F iff whenever a

run is accepting according to G it is not accepting according to F.

Lemma 7.3.1 (easy) The complementof a set of positive edges is a set of negative edges. The

complement of F°°(S) +G°°(T) is G°°(S) aF°°(7) . The complement of F~(S) aG°°(T) is

G~(S) +F~(T).

Lemma 7.3.2 Let Aj be an edge-Streett automaton. Let A2 be an edge-Rabin or edge-Streett

automaton. Let A have the transition structure of Ax xA2, and the faimess constraint FxaF~2.

Then, the sets Fair (Fair+, and Fairt) of A can be computed in poly-time.

Proof If A2 is edge-Rabin, then A is just an edge-Streett automaton, and the lemma follows.

If A2 is edge-Streett, then build 5/s which each have the same transition structure as Ax xA2,

and the fairness constraint Fx a F*2, where F2 is the i-th fairness constraint ofA2. The Fair set

of A is the union of the Fair set of B. 's (similarly for Fair+ and Fairt) (QED).

Definition Let A be A without any fairness constraints, i.e. every run is accepting (a safety

automaton).

We will now prove that if Ax is reduced and L(AX) qL(A2) , then l( A/Jell A2J. This
result will be used in later sections.

Lemma 7.3.3 (easy) Every run in a reduced automaton can be extended to a fair run.

Lemma 7.3.4 (easy) A reduced automaton is non-deadlocking.

Lemma 7.3.5 If an co-string o does not have a run in a safety automaton A, then there exists

an n such that av ..., an does not have a run in A.
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Proof Assume nosuch n exists i.e. for all n, ax,...,an has a run. Consider the tree of runs of

o in A, denoted by Tc, where the root of the tree is the initial state of A, and there is an edge

between nodes u and v at levels i and /+ 1 of the tree if there is a transition (u, v) in A on

c.. Then, Ta is unbounded, i.e. infinite. Since Tc is infinite and finite branching, by Konig's

lemma, there is an infinite path in Ta. This path is an infinite run for a in A. Wehave reached

a contradiction (QED).

Lemma 7.3.6 If Axis reduced and L(Ax) qL(A2) ,then L\AX\ elIa2J .

Proof Assume there is a string o which has a run r in Ax , but no run in A2 . By lemma

7.3.5, let n be such that cx, ...,o„ has no run in A2 . Since o has a run in Ax, and since Ax is

reduced, cx, •••,cn can be extended to an infinite string 6 which is accepted by Ax. Since

L(AX) ^L(A2), o has an accepting run in A2, and hence a run in A2 , contradicting that

Oj,..., on hasno run in A2 (QED).

7.3.2 Existential Fair Simulation Relations (EFSR's)

Definition Assume automata Ax and A2 having faimess constraints are given. A2 is said to

existentially fair simulate Ax (A2 ESF A,) if there exists a SSR R from S2 to Sx which satis

fies the following additional condition:

Existentialfair condition: For every accepting (fair) run r = rQ, rx,... ofstring o in Ax, there

exists an accepting (fair) simulating run r* = r'0, r'x>... of r in A2, i.e. Vi ((r/tr\) e R) , and rQ

and r'0 areinitial states in Ax and A2 respectively.

EFSRs appear to be the natural extension of SSR's to faimess constraints. One indication is

that there is a SSR from A2 to Ax ifffor every run ofevery string in Ax there exists some simu

lating run in A2. Sincefor safety automata, every run is accepting (fair), then in the presence of

fairness constraints, we expect the result to be "there exists a fair simulation relation from A2 to

Ax iff for every accepting run ofevery string in Ax there exists some accepting simulating run in

A2." This statement is true when EFSRs are used and Aj is reduced. The following lemmas pro-
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vide additional indications that EFSRs are the natural extension of SSR's.

Lemma 7.3.7 ([GL91]) EFSRs are closed under union.

Proof Let R' and R" be two EFSRs from A2 to A,. Let R = R' u R". R is a SSR since SSRs

are closed under union, and we know R and R' are SSRs. Let r be an accepting run of Ax on

o. Since R' is an EFSR, there is a fair simulating path f in A2 with respect to R. Since R'qR,

f is also a fair simulating path with respect to R (QED).

Remark Note that by the proof of lemma 7.3.7, the union of an EFSR and a SSR is still an

EFSR.

Lemma 7.3.8 If A2 existentially fair simulates Ax, then L(AX) qL (A2).

Proof Clear from definitions (QED).

Lemma 7.3.9 If Ax is reduced, L(AX) qL(A2) , and A2 is deterministic, then the product

relation Rp defines an EFSR.

Proof By lemma 7.3.6, l( AjjczJ A2). By lemma 7.3.4 Axs is non-deadlocking. By

lemma 7.2.4, Rp is aSSR from A2 to Ax , which implies it is aSSR from A2 to Ax. To see Rp

satisfies the existential fair condition, assume o has an accepting run rx in Ax. Since

L(AX) ^L(A2) and A2 is deterministic, o has a unique accepting run r2 in A2. Since A2

safely simulates Ax, every run of a string in Ax has a simulating run in A2. Since o has a

unique accepting run r2 in A2, r2 is a simulating run. We conclude r2 is a fair simulating run,

as was desired (QED).

Lemma 7.3.10 If L(AX) qL(A2) , A2 is deterministic, but Ax is not reduced, then there may

be no EFSRs.

Proof Let A, be a one-state automaton, with a self-loop on some symbol ael, and no

fairness constraints (implying L(AX) = 0). Let A2 be a one-state automaton with no edges.

We have that L(AX) - L(A2) - 0, but there are no SSRs, and hence no EFSRs from A2 to Ax

(QED).

Lemma 7.3.11 Checking an EFSR is PSPACE-hard for Buchi conditions.

Proof We reduce universality of ©-automata (i.e. that all strings are accepted), which was
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proved PSPACE-complete in [SVW87] to our problem. Assume Buchi automaton A is given.

Complete A by having undefined transitions go toa dead state. Call this automaton A2. Let Aj

be the following one-state automaton which accepts Z*.

Figure 7.5: One stateBuchi automaton accepting all strings

Let R be the relation where every state in A2 isrelated to the single state of Ax. R isaSSR, and

it satisfies the existential fair condition (i.e. it is an EFSR) iff L(A2) =Z®. We have thus

reduced universality of Buchi automatato checking EFSRs (QED).

Lemma 7.3.12 Existence of an EFSR is PSPACE-hard for Buchi conditions

Proof The same reduction as the above lemma can be used here as well (QED).

The question of whetherchecking or finding EFSRs is in PSPACE depends on the type of the

faimess constraints. Since all relations between A2 and Ax can be generated in PSPACE, and

since checking whether a relation is a SSR canbe done in polynomial time (and space), the exist

ence of an EFSR can be decided in PSPACE if the existential fair condition can be checked in

PSPACE. Lemma 7.3.13 shows that checking this condition canbe reduced to a language con

tainment check.

Lemma 7.3.13 Let relation R be aSSR from A2 to Ax. Then, there are automata Ax and A~2,

with the same transition relation and fairness constraints as A2 and Ax but widi polynomially

larger alphabet, such that R satisfies the existential fair condition iff L(A\) qL(A2) .

Proof Let Z = Qx x Z. If (q, a, q') is an edge of Ax create the edge (q, (q, a),q') in A",. If

(p,a,p%) is an edge of A2 and R(q,p) holds (p simulates q), create the edge (p, (q,a),p') in

A2. Assume I(Ai) <zL(A2). We need to show that R does not satisfy the existential fair

condition. Let o = ((q0,a0), (qx,ax),...) , qte Ax, oe L(A\) and oe L(Ai) . Consider

a = (aQ,ax,...) , with a fair run r = (q0,qx,...) in Ax. If r has a fair simulating run in A2,

then oe L(Ai) .which is a contradiction. Conversely, assume R does not satisfy the existential

fair condition. Then, there exists o = (a^ ax,...) with a fair run r = (q0, qx,...) in A,, but no
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simulating runs in A2. Let o = ((q^a^), (qx,ax),...). We have that oel(Ai). If

o e L(Ai), then there is a fair run (p0,px,...) in A~2 on o. So (Pq,px, ...) is a fair run for o in

A2, and it simulates (<70, <?,, •••), contradicting the assumption that (#0, #j,...) has no fair

simulating runs in A2. We conclude oe L(A2), and have L(A\) aL(A2), as was desired

(QED).

Theorem 7.1 The existence and checking problems of EFSRs for Buchi conditions are

PSPACE-complete.

Proof Follows from lemmas 7.3.11, 7.3.12, and 7.3.13, and the fact that the language

containment problem for Buchi automata can be decided in PSPACE ([SVW87]).

7.3.3 Universal Fair Simulation Relations (UFSR's)

We define universal fair simulation relations, which are generalizations to general faimess con

straints of the notion of "dynamic-live-cycles Buchi simulation relations" defined for Buchi

automata in [DHW91].

Definition Assume automata Ax and A2 having fairness constraints are given. A2 is said to

universally fair simulate Ax (A2 UFS Aj) if there exists a SSR R from S2 to Sx, and satisfying

the following additional condition:

Universal fair condition: For every accepting (fair) run r of string o in Aj, all simulating

runs of r in A2 are accepting (fair).

Lemma 7.3.14 (easy) If A2 UFS Ax, then I (A,) qL(A2) .

Lemma 7.3.15 If L(Ax) e L(A2) , A2 isdeterministic, and Ax is reduced, then aUFSR exists .

Proof By lemma 7.3.9, an EFSR exists. Since A2 is deterministic, this EFSR is a UFSR

(QED).

Lemma 7.3.16 ([DHW91]) UFSRs are not closed under union. Hence there may be no

maximal UFSR.

Proof Figure 7.6 provides a counter-example, where A and A' are two Buchi automata (the

1. [DHW91] proved a similartheorem for their equivalencerelation(dynamic-live-cycles Buchi simulation

relations). However, the requirement that A. be reduced,was not stated. If A. is not reduced, the theorem

is invalid, as shown by the counter-example of lemma 7.3.10.
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shaded states are final states), having exactly the same transition graph. All edges have the same

label a, and the initial states are 0 and 0'. The language ofboth automata is the string a*. Let

R = { (0,0'), (1,1'), (2,2'), (3,1'), (4,2') } , and R' = { (0,0'), (1,3'), (2,4'), (3,3'), (4,4')}

be two UFSRs. Ru R' is not a USFR, since the run (0,1,4) (the cross bar denotes taking the

set of states infinitely often) is fair in A but one of its simulating runs (0*, r, 4*) is not fair in A'

(QED).

4 2\

A ^3 A'

Figure7.6: UFSR's are not closed under union

Lemma 7.3.17 Let Ax and A2 with faimess constraints Fx and F2 be given. Let R be aSSR

from A2 to Al. Let P be GR (the product graph induced by R) with fairness constraints

Fja Y2. Then, R satisfies the universal fair condition iff there are no fair (or fair reachable)

states in P.

Proof Assume there is some fair state in P. That means there is a string a with a run r in P,

such that the projection of r to Ax, rx, satisfies Fx, and the projection of r to A2, r2, does not

satisfy F2. Since r2 is a simulating run for rx, the universal fair condition is violated.

Conversely, assume there are no fair states, and assume to the contrary that the universal fair

condition is violated. Then, there is a run rx in Ax on some string o and a corresponding

simulating run r2 such that rx satisfies Fx and r2 does not satisfy F2. The run r in P whose

projections are rx and r2 is a fair run in P, contradicting that there are some fair states in P

(QED).

Lemma 7.3.18 If Ax is edge-Streett, and A2 is edge-Streett or edge-Rabin, then checking

whether arelation R isaUSFR from A2 to Ax can bedone in polynomial time.

Proof We know that safe simulation conditions canbe checked in polynomial time. Let P be

as in lemma 7.3.17. By lemma 7.3.2, the fair reachable states of P can be computed in
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polynomial time in the size of P. But, the size of P is polynomial in the sizes of Aj and A2.

Hence, by lemma 7.3.17, and the fact that computing the fair states of P is polynomial, the

universal fair condition can also be checked in polynomial time (QED).

Lemma 7.3.19 If Ax is edge-Streett, and A2 isedge-Streett or edge-Rabin, then the problem of

existence of a USFR is NP-complete.

Proof It is easy to see that the problem is in NP: just guess the relation, and check it (which

takes polynomial time by lemma 7.3.18). To show the problem is NP-complete, we reduce 3-

SAT to it . Assume m clauses Cx,..., Cm, and n variables xx, ...,xn are given. Assume each

variable is used in some clause. Build Buchi automata Ax and A2 as follows (figure 7.7).

Figure 7.7: Reduction from SAT to finding UFSR's

The alphabet is £ = {a,dx, ...,dm} , which are all newly introduced constants. The edges of

Aj are (sl,di,Ci) and (Cita,tx) for 1<i<m, and the edge (tx,a,t}) . The edges of A2 are

(s2, dt, Ci) for 1<i<m, from each C, to the corresponding literals in clause Ci (so there are

three such edges for each Q), the edges [x?a,x.j, [x.,a,*.J, (xt,a,t2) and [xita,t2\ for

1£j<<, m, and the edge (t2, a, t2). The final (accepting) state of Ax is tx, and that of A2 is t2.

Several remarks are in order.

1. sx is matched to s2 and C. is matched to Q in every UFSR. If xt and xt are matched to

anything, they are matched to tx, but they may beunmatched.

1. Ibis reduction appearedin an un-published versionof [DHW91].
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2. X; and x. are not both matched with tx, because otherwise the cycle (sx, Cp /,, tv ...) can

bematched by sx, C,-, xt, xt, xt, jc],..., where the first is accepting but notthe second.

3. From remark 2, it follows that t2 is matched with tx.

Leta satisfying assignment lv ...,ln be given. Make the corresponding literal nodes in A2 sim

ulate (i.e. match) tx, which gives usa simulation relation R. Now any cycle in A, is of the form

(sx, CPtj, /,,...), which is accepting. These cycles are simulated by (accepting) cycles of the

form ysx, Ci, Ij, t2, t2,.'..J, where Ij is aliteral satisfied in Cr It follows that the R is aUFSR.

Now, let a UFSR R be given. We want to find a satisfying assignment. By remark 2, a variable

and its negation are not both matched to tx. Take the induced assignment, i.e. those literals

matched to tx. If a variable does not appear in this assignment, give it an arbitrary value. Now

for every clause C., there is acycle of the form [sv Ci, l,t2,t2, ...J to simulate the fair cycle

(sx, Ciytx, tx,...), where I. is the assignment we have chosen. This means that the assignment

satisfies C.. Hence, every clause is satisfied as desired (QED).

Lemma 7.3.20 Existence of EFSRs does not imply existence of UFSRs (although the reverse

is easily seen to be true). Hence, EFSRs are better approximations to language containment than

UFSRs.

Proof Figure 7.8 gives an example of where there is an EFSR (a in Ax is related to every

state of A2) but no UFSR. The reason there are no UFSRs is as follows. Every SSR must

contain (a, 0) to satisfy the initial state condition. It must also contain cither (a, 1) or (a, 3).

If it contains (a, 1) it will also contain (a, 2) ; if it contains (a, 3) it will also contain (a, 4).

Ifitcontains (a, 1) but not (a, 3), then the string aab*0 has no accepting simulating run in A2.

Ifitcontains (a, 3) but not (a, 1), then the string a00 has no accepting simulating run in A2. If

it contains both (a, 1) and (a, 3), then a® and aab* have both accepting and non-accepting

simulating runs in A2. Hence, in everycase, therelation is not aUFSR (QED).
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In this figure two Buchi automata are
shown, where the highlighted states are
final. The language qf these automata is

£ = (a + b) . There is a EFSR
from the first to the second, but no UFSRs.

Figure 7.8: EFSR's are more general than UFSR's

7.4 Algorithms for Approximating UFSR's

In this section, we give heuristic approximation algorithms for UFSRs. These algorithms are

meant as initial starting points, which have to be refined by experimentation. Our algorithms can

be applied to any type of fairness constraints, and only depend on the ability to compute the sets

Fair, Fair+, and Fairt, given some fairness constraint. The efficiency of computing these sets

depends on the notion of faimess used. For the problems which come up in the eSeR environ

ment, the algorithms are polynomial.

7.4.1 A Fast Algorithm

Letreduced automata Ax and A2 with fairness constraints Fx and F2 be given. The following

algorithm computes a UFSR R.

1. Let RQ = Rp, the product relation ofAxand A2.

2. Let Fair be the set offair states ofRQ with the fairness constraint FxaF~2.

3. Let Rx = RQn Fair, i.e. delete the states in Fair from RQ.

4. Let R bethe refinement of Rx bythe transition relation condition.

The above algorithm first deletes all states which violate the universal fair condition in the prod

uct relation. It then refines the relation by the transition relation condition.

Lemma 7.4.1 If R is non-empty, then R is a UFSR.

Proof We only need to check whether R satisfies the universal fair condition. This follows

from lemma 7.3.17, noting that every fair run of R is also a fair run of RQ, and the fact that the

product graph induced by the product relation is the product relation (QED).

Remark The above algorithm computes the extension of the equivalence relation "live-cycles

Buchi simulation relations" of [DHW91] to general faimess constraints.
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We think of simulation relations as approximations to language containment. When faimess is

used, we need to trade expressiveness (how well we approximate language containment) with

complexity. One way to measure expressiveness ([DHW911) is whether the approximation is

exact when A2 is deterministic. This is the case for both EFSRs and UFSRs. The following

lemmashowsthat the above approximation algorithm toUFSRs preserves this property.

Lemma 7.4.2 If A2 is deterministic, then the algorithm returns aUFSRif oneexists.

Proof By lemma 7.3.14, if a UFSR exists, L(AX) gL(A2) . By the fact that A2 is

deterministic and L(AX) qL(A2) , the set Fair in step 1 of the algorithm is empty, which

implies the set returned by the algorithm is the product relation Rp. By lemma 7.3.9, this

relation is an EFSR, and hence aUFSR (QED).

Lemma 7.4.3 If A2 is non-deterministic, the above algorithm maynot find aUFSR evenif one

exists.

Proof Consider figure 7.6 in the proof of lemma 7.3.16 which shows UFSRs are not closed

under union. Since, the cycle ((0,0'), (1, r), (4,4')) violates the universal fair simulation con

dition, states (0,0'), (1,1'), and (4,4') are deleted from the product graph. Since (0,0') is

part of every simulation relation, we conclude no simulation relation can exist However, as we

saw before, thereare two UFSRs for this example (QED).

Lemma 7.4.4 (easy) If the set Fair can be computed in poly time, then the algorithm runs in

poly-time.

Lemma 7.4.5 If A, is edge-Streett, and A2 is edge-Streett or edge-Rabin, then the algorithm

runs in poly-time.

Proof Follows from lemmas 7.3.2 and7.4.4 (QED).

Lemma 7.4.6 If instead of Fair aset T where Fair g 7/ is deleted from RQ, then the relation

R computed by the above algorithm is still a UFSR.

Proof As before R is a SSR. It also satisfies the universal fair condition, since all fair states

of R0 are deleted (QED).

Since, when BDDs are used Fair is hard to compute, one can use Fairt as an easily comput

able approximation. In some cases, such as in non-deterministic property checking we may be

willing to try harder in finding a fair simulation relation, since the alternative (in this case, deter

minization of the property automaton) may be very costiy. In some cases, such as state
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minimization, the extra effort may not be justified. Since Fair = 0 implies Fairt = 0, if

Fairt is used in the algorithm, lemma 7.4.2 still holds.

7.4.2 Better Approximations

In this section, we present improvements to the algorithm of section 7.4.1. Figure 7.9 shows

two automata Ax and A2, with their product relation having fairness constraint Fx a F~2 (denoted

by R0). The states (2,4) and 1,3 in the product automata arc fair. Since (2,5) docs not sat

isfy the initial condition property, the algorithm of section 7.4.1 won't find a UFSR. However, if

we only delete (2,4), then all other states become unfair. As this example suggests, in general,

it may not be necessary to delete all fair states to restore the universal fairness condition.

. a a "*" example shows twoBuchi automata, with states 2 and
f7\ /7>^ ?C\ ^lH^ S being final, and 1, and 3 being initial. State 3 can

h A1 J V4; h A 3^ ft fjp simulate 1 in a relation which includes (1,3), (2,5).
"l A2 However, in Rq the cycle (1,3),(2,4) is a fair cycle.

r*\^a—•"•\__iwr-v Hence, (1,3) and (2,4) are deleted by the algorithm of the
^Pf }^-^ij^M h"^& * d previous section, and no UFSR is found (although one

Figure 7.9: Motivating examples for FSR algorithms

Ideally, we want to delete a minimum number of states whose deletion will cause the set of fair

states to become empty. We present methods to choose a heuristically good set. The modified

algorithm refines the current relation by the safe simulation condition, computes fair states, and

deletes a subset of the fair states. This process is repeated until convergence is achieved.

Definition Let an edge-Streett automaton A be given. Given a fairness constraint F of A, its

restriction set RE (F) is defined as follows.

1. If F = F~P +G°°Q,ihenRF(F) = PuQ.

r

n
*=i

n

2. If F isa set ofnegative fair edges {(ux, Vj),..., (un, vn)} , then RE(F) = Yl ("* u vk)

3. If F isa set ofpositive fair edges {(ux, vx),..., (un, vn)} , then RE(F) = n (uk u vk) .

The modified algorithm iterates over a two pass procedure until convergence is achieved. In

the first pass, a subset of the fair states is chosen and deleted, whereas in the second pass the rela

tion is refined with respect to the transition relation condition. The algorithm is as follows.
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1. Let R0 be the product relation ofAx andA2.

2. Until convergence is achieved,

2a. Compute the set offair states ofR., Fair., and let D. = Fairi.

2b. For each fairness constraint F., let D. = D. n RE (F.), i.e. restrict D- bythe restriction set

of F.. Ifthe result is empty, leave Df. unchanged, and continue with the next fairness con

straint.

2c. Let R. +1/2 = Ri n 5j., i.e. delete the states in Dt from Rt.

2d. Let R. +xbe the refinement ofR. +1/2 by the transition relation condition.

For the example in figure 7.9, the faimess constraint is F~(2,-) a G~(-, {3,4}). The modi

fied algorithm will only delete (2,4). Hence, the UFSR will be found. We now present

modifications for the case of state minimization, which guarantees states of the form (jc, jc) will

notbe deleted by the algorithm. It remains to be seen whether these changes improve thequality

of the results in practice.

Let A be an edge-Streett automaton being minimized, with a set of n faimess constraints

Fx,...,Fn. Let A* beacopy of A, with fairness constraints Fx,...,Fn.

Lemma 7.4.7 The relation R = {(x, jc') : } is aUFSR from A to A'.

Proof Since (x,x') e R for the initial states, the initial condition property holds. Let (x, a, y)

be an edge in A with (x,x') e R. Since (y,y') e R, the transition relation condition is also

satisfied. Letxvx2,... be a fair run in A. The only simulating run in A' is x'x,x'2,..., which is

fair. Hence, the universal fair condition is also satisfied (QED).

In the case of state minimization, we modify the above algorithm as follows. The fairness con

straints on AxA' is ( ft F^\ ft F, = £ (F; IT F-l.
Vi=i V^y=i J) y=lV U=\ v

1. Since every state can simulate itself, we let D. = Fair, n (ps *ps') initially in step 2a, where

ps and ps' represent the present states of A and A respectively.

2. At every point in step 2a, we are dealing with a faimess constraint of the form

FxA...AFnAFj for some j. In this case, F. and Fj are processed first in computing D..

Lemma 7.4.8 In state minimization, if Fair{*0, then Dt.* 0 initially, i.e. if Fairi* 0, some
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state will be deleted.

Proof We need to show there is some fair state of R. which is not of the form (x,x').

Assume to thecontrary that all fair states of R. are of the form (x, x'). Then, there is a faircycle

((xx,x\),..., (XpX'j)) . This implies that {xx, ...,*,} and {x'x, ...,*»,} satisfy Fj and Fjt

which is a contradiction (QED).

Lemma 7.4.9 In state minimization, refinement by the transition relation condition of a

relation R which includes allstates of theform (x, x%), does not delete anysuchstates.

Proof Such states are deleted only if for some edge (x, a,y) the state y is not related to /.

This is not the case by the assumption (QED).

Lemma 7.4.10 Our modified algorithm does not delete any states of the form (x,x') when

used for state minimization.

Proof Initially all such nodes are present By construction, in state minimization, D. does not

include any states of the form (jc, jc') . The result follows from lemma 7.4.9 (QED).

7.4.3 Static Fair Simulations

[DHW911 gave another type of fair simulations for Buchi automata, called "final-final Buchi

simulation relations." This equivalence is very crude, and appears to be only appropriate for

state minimization, or Buchi conditions. We generalize this notion to edge-Streett automata for

the case of state minimization.

Definition A relation R from edge-Streett automaton A to A is a static fair simulation rela

tion (SFSR) if R is a SSR, and if R(x, y) holds, then x and y are not distinguished by any

fairness set. Two statesx and v aredistinguished by afairness set if

1. for some fairness constraint F~P +G~Q, exacdy one of x or y belongs to P (Q).

2. for some state z, only oneof (jc, z) or (y, z) is a positive (negative) fair edge.

3. for some state vv, only oneof (vv, x) or (vv, y) is a positive (negative) fairedge.

Let S(x, y) be the relation where all states, not distinguished by any fairness set, are related.

SFSRs are seen to be closed under union, and the largest SFSR can be built by starting from

S(x, y) and applying the safe simulation relation condition until convergence. Since computing

S(x,y) is simple, this equivalence relation is fast to compute. If Ax and A2 are two arbitrary

edge-Streett automata, there does not seem to be any natural way of defining SFSRs. However,
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if they are Buchi, then one can define SFSRs by requiring the final states and non-final states to

be related. In this case, it seems that SFSRs do not give us very good approximations to lan

guage containment. For example, if Ax and A2 consist of two cycles whose onlydifference is in

the position of final states, no SFSR exists. This example shows that SFSRs are not complete

with respect to deterministic right-hand sides, i.e. it may be that L(Ax) q L(A2) , and A2 isdeter

ministic, but no SFSR exists.

7.5 Comments on Experiments

We have presented three methodsfor approximating UFSRs: static fair simulation relations, the

algorithm of section 7.4.1, and the modified algorithm of section 7.4.2. Two parameters can

affect the performance of these algorithms The first, calledfair approximation, determines to

what degree the set Fair is approximated. There are three choices: Fair, Fairt, and Fair+.

The second parameter called output determinization indicates whether A2 should be output

determinized. Combining the three algorithms with the the two parameters, we get a total of 18

different algorithms. Experiments with these algorithm are needed to determine theirs run-time

versus quality trade-offs.
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Chapter 8

Automatic Datapath Abstraction In Hardware Systems

8.1 Introduction

A hardware system canbe divided into three major components: control, datapath, andmemory

(figure 8.1). The control part consists of a set of interacting FSM's which, depending on data

values and their internal states, produce a set of control signals for the datapath. The datapath

consists of functions, predicates, and registers, which based on the control signals, operate on

data. The data often consists of integers. The memory acts as a container for values, and commu

nicates with the datapath.

memory
value

datapath

j^ . _____ ^ hardware system consists of
' ' three major components:

control, datapath, and memory.control

Control signal

Figure 8.1: Components of a hardware system

Properties can be classified as control, data, and data/control. Control properties are those

which involve only the control signals, and many times can be verified without considering the

datapath. An example is that no two control signals of a bus are asserted at the same time. Most

existing automatic verification techniques are suitable only for verifying such properties. There

fore, a verification expert needs to manually abstract the datapath. This process is time-

consuming and often involves a third-party's understanding of the design.

Dataproperties are those which the datapath must satisfy. For example, for a pipelined datap

ath, one verifies that values appear on time where they are needed. The most successful

technique to attack such properties has been theorem-proving. The data properties, addressed so

far, fall into thosefor which automatic or almost automatic theorem-proving is possible. The the-

orem-prover PVS (DPVS93]) has been used to prove such properties almost automatically (the

proofs involve a few routine proof commands).

Data/Control properties involve bothcontrol signals and datapath variables. An example is "if

an add command is issued, and no exceptions occur, then in 3 time steps, location c contains
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a+b." In general, such properties are the most difficult to verify, and only ad hoc techniques

have been used to verify them.

Abstraction is the process of reducing the proofof a property on an infiniteor large state space

(concrete model) to a proof on a smaller state space (abstract model). Based on how well the

abstract model approximates the concrete one with respect to the property, abstractions can be

divided into threecategories. Exact abstractions are those, where the property holds for the con

crete model iff it holds for the abstract one. [MPS92] provides an example of exact abstractions,

where n -state counters whose data values are not used by other FSMs are reduced to 3-state

FSMs. Conservative abstractions are tiiose where if the property holds in the abstract model it

holds in the concrete model. The homomorphism theory of [Kur92] is an example of (manual)

conservative approximations. Aggressive abstractions are those where if the property does not

hold in the abstract model thenit does not hold in the concrete model. Aggressive abstraction are

often used to find bugs. If a conservative abstraction fails, an aggressive abstraction may con

firm the property does not hold. Similarly, if an aggressive abstraction holds, conservative

abstractions may be used to possibly confirm the property holds.

Abstractions of hardware systems can also beclassified by their level of granularity. Datapath

abstractions are those which eliminate portions of the datapath or reduce the number of bits in

the datapath. Control abstractions are those which reduce the number of output values or states

of a state machine based on equivalence with respect to a property. For example, some property

may only be sensitive to two values of a multi-valued variable. In such cases, other values may

be collapsed together. Control properties may not be behavior-preserving. For example,

[HKB94] presents a technique for reducing the states of a FSM which does not preserve the

behavior: if the original machine canproduce an output in n steps, then the reduced machine can

also produce it in n steps.

The main problem with formal verification is capacity. Notcounting the on-chip cache, current

microprocessors contain in the order of tens of thousands of latches. For example, UltraSparc

([Sparc95]) contains 20,000 clocked elements. However, the current BDD-based techniques for

verification can atbesthandle circuits with a few hundred latches. This verification gap can be

made smaller by using modular verification, in which different subsystems such as dispatch

units, memory subsystems, businterfaces, and functional units are verified separately. When ver

ifying a subsystem, other subsystems are replaced (manually) by simple modules which contain

the behavior of the detailed modules they replace. Our approach istomodel the circuits using inte

ger combinational/sequential (ICS) concurrency model, and use datapath abstraction to nullify
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the effect of large datapaths and memory elements onthe state explosion problem.

ICS is based on the combinational/sequential (C/S) semantics (chapter 2), and extends it by 1)

introducing integer variables, 2) interpreted and uninterpreted predicates and functions on inte

gers, and 3) interpreted memory functions. ICS easily supports non-determinism and faimess

constraints, and if theextensions are notused, it reduces to C/S. One can extend the general the

ory of verification using language containment ([Kur92] and chapter 4) to ICS models. Again if

the ICS extensions are notused, the theory reduces to the theory of language containment onC/S

models. Using ICS models, the datapath variables are modeled as integers, functional units as

uninterpreted functions, and memory as infinite memory. ICS models can easily and automati

cally be extracted from descriptions in hardware description languages such asVerilog, withvery

litde work on the partof the designers.

Given a property, verification of ICS models proceeds using two techniques. For a subset of

circuits where certain structural properties hold, verification can be done using finite instantia

tions, where the integer variables are replaced by variables a few bits wide, and the uninterpreted

functions are given appropriate interpretations (meanings). By performing this reduction, we

generally get a model which can be attacked using current verification techniques (e.g. SMV,

HSIS, etc.). If this reduction is not possible, a symbolic simulation algorithm can be used to ver

ify the property directly. Symbolic simulation does not always terminate, but termination is

guaranteedin some cases, such as some correctness propertiesof pipelined circuits.

The first kind of circuits we study for abstraction using finite instantiations are data insensitive

controllers. Intuitively, these only move data around, and are not sensitive to the values of the

data. It appears that many communication protocols fall into this category. We prove that for

verifying certain types of safety properties, a single bit of data for each variable is sufficient.

Data sensitive controllers, on the other hand, interrogate data values, i.e. apply predicates to

them, as well as move them around. A typical memory controller with respect to operations on

memory addresses is an example. We show that, depending on the predicates applied (we allow

comparisons, equality, sign, and mod), a few bits can suffice to check the property. We also

prove a negative result which gives an example of where finite instantiations cannot be used.

Since we use ICS models and the language containment paradigm, all our results unless other

wise stated, apply to liveness as well as safety properties. Algorithms for automatically

recognizing data sensitive and insensitive controllers are given. In chapter 9, we use these results

to verify a memory model by reducing integer data values to binary, and integer memory

addresses to a small number.
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In modem microprocessors, there are two especially hard-to-design components. One is the

memory subsystem and its interfaces; the other is the fetch-issue-execution-writeback unit, which

we refer to as the pipeline control. Issues such as speculative execution, out-of-order comple

tion, register re-naming, and interrupts make the design of pipeline controls difficult Since

pipeline control communicates with functional units, these must be modeled also for proving

some correctness properties. For example, let v(r) denote the value of register r, and assume

we are interested in proving property P: when instruction r3 = ADD(rx,r2) , is about to be

retired, the value which is written back is v(r{) +v(r2). To prove P directiy, we need to model

the integer functional unit. However, the fact that the functional unit does "addition" is irrelevant

for the correctness of pipeline control: it can be modeled as an uninterpreted function. We

extend our results for finite instantiations to the case of uninterpreted functions, and present exact

and aggressive abstractions.

A symbolic simulation algorithm can also be used to verify data and control/data properties.

The set of reachable states of the composition of the model and the complement of the property

is then computed, and it is verified that no fair path exists. However, the set of reachable states

may be infinite, in which case language containment is undecidable. Verification can then be

approximated in the sense that it can be checked that no errors of a given length n exist. If all

reachable statesare computed within n steps, this verification is exact Wepresent a BDD-based

algorithm for symbolic verification of ICS models.

The flow of the chapter is as follows. Section 8.2 presents the syntax of ICS, its operational

semantics, its derivation from descriptions in hardware description languages (HDL's), how fair

ness constraints are specified, and how language containment is done. Data insensitive and

sensitive controllers, theorems about their exact abstractions, and algorithms for recognizing

them are described in sections 8.3 and 8.4. The extension of finite instantiations results to unin

terpreted functions is presented in section 8.5. Section 8.6 gives a BDD-based algorithm for the

symbolic execution of ICS models.

8.2 Integer Combinatorial/Sequential (ICS) Concurrency Model

In this section, the integer combinational/sequential concurrency model is described. ICS is

designed to represent systems composed of control, datapath, and memory. Some machinery is

given to reason about integers, andhow they affectstate spaces.
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8.2.1 Syntax

The primitives are: variables, tables, interpreted functions and predicates, uninterpreted func

tions and predicates, constant creators, latches, and memoryfunctions.

Variables. Variables are of two types: finite and integer. Finite variables take values from

some finite domain; integer variables take integer values (0,1,2,...).

Tables. A table is a relation defined over a set of finite variables, divided into inputs and out

puts. A table is a function if for every possible input tuple there is at most one output tuple

(incompletely specified functions are allowed). Otherwise it is a relation. If a table has only one

binary output, and is a function, then it is apredicate.

Interpreted Functions and Predicates. A predefined set of functions and relations over inte

gers is built in. The interpreted functions are: y := x, y := if(b,x) , z := mux(b,x,y) , z:-x + y,

y:=x + c, where x, y, and z are integer variables, b a binary variable, and c a numeral

(0,1,2,...). The interpreted predicates are y - x (equality), y<x, x = c, (x mod m) = r, and

(jcmod m) <r,

Uninterpreted Functions and Predicates. These are a set of function and predicate symbols

with their arities and domain variables given. Forexample, f(xx, x2) may be the specification of

an uninterpreted integer function defined over binary variable xx andinteger variable jc2 . Predi

cates of the form jc = term, where x is an integer variable, and term is an ICS term are also

allowed. An ICS term is built recursively from numerals, constants, interpreted and uninter

preted functions. Therefore, numerals and constants are ICS terms, and if / is an n-ary function

and /j, ...,tn are ICS terms, then f(tx, ...,/„) is also an ICS term. Note that ICS terms do not

involve any variables or predicates. Examples of ICS terms are c0, f(c0, cx) , g( 15,f(c2, c3)),

and cx + c2.

Constant Creators. A constant creator is a special element with no input, and an integer out

put Intuitively, it is a higher-order function, which creates a new constant (i.e. a function with

no argument) each time called. Intuitively, a constant creator models an unconstrained integer

input.

Latches. A latch is defined on two variables over the same domain: input (or next state) and

output (or present state). Present and next state variables may overlap, e.g. when an output of a

latch is an input to another. Every latch has a set of initial values, which are a subset of the

domain of its variables. If the latch is integer-valued, then the initial value set can either be a
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finite set of numerals, or a given constant. Predicates can be used in combination with constants

to create an infinite set of initial values. For example, to declare that the initial set of a latch is

all integers greater than 5, we let the initial value be some constant c0. In the first state, the out

put of the latch is input to a predicate jc>5, and the machine continues only if the predicate

holds. Hence, only those behaviors are allowed where the initial value of the latch is an integer

greater than 5.

Memory Functions. Two functions read and write are provided with their usual interpretation;

read is a binary function of a memory and a location; write is a ternary function, whose argu

ments are a memory, a location, and a value. Location and value are variables in the model.

Reading a location which has not been written, returnsa new constant (like a constant creator).

Definition A generalized gate is a table, an interpreted or uninterpreted function or predicate,

or a constant creator.

Definition Data movement operations are jc :=y, z :=mux(b,x,y) , and y := if(b,x) , where

jc, y, z are integer variables, and b is binary.

Every model has only a finite number of variables, latches, and generalized gates. Every vari

able is the outputof exacdy one generalized gate or latch. Hence, every input to a generalized

gate or latch is the output of some other generalized gate or latch; ICS models are closed. A vari

able can be input to many generalizedgates or latches.

Definition A state is a triple (latch,memories,predicates) , where,

a. latch is an assignment of values to the latches. For finite valued latches, the value comes

from the domain. For integer valued latches, the value is an ICS term.

b. memories is a set of memoryelements, where amemory is a setof pairs of ICS terms, where

the first denotes a location and the second a value.

c. predicates is a set ofatomicformulas, where an atomic formula is any interpreted or uninter

preted predicate applied to ICS terms. Examples are c0<f(cx) and P(f(c0, cx), g(cQ)). Note

that (c0 <f(cx)) a (P (f(c0, cx), g(c0))) is not an atomic formula. Intuitively, predicates ata

state s, is the set of assumptions made to reach s.

Definition Given two ICS terms tx and t2, and two sets of atomic formulas P - {Px,..., Pn}

and Q = {Qx Qm} , tx is equal to t2 subject to P and Q, denoted as /J = U iff the for

mula (Px a ... a Pn a Qx a ... a Qm) => (tx =t2) is valid. For example, if tx = x,
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P = {x>7,jc£8} , t2 = 8, and Q = 0, then /j = /2 subject to P and (2 since

(jc>7 a jc < 8) => (jc = 8) is valid. The equality of two ICS terms can be decided using the algo

rithms of [Sho79] and [Sho82].

Notation If P - {Px,..., Pn} is a set of predicates, we willuse P to denote Px a ... a Pn. For

example, P-» (b = 1) is the formula (Px a ... aPb) -» (fc = 1) .

Definition Let states $j =[l,,[mJ, ...,M^J,pJ and *2 =[l2,[a^, ...,Af^),P2J be given.
sx = s2 if the following hold.

a. Let tx and t2 denote the values of the i-th latch in Lj and L2, respectively. Ifthe i-th latch

must hold.is finite, then tx = t2; otherwise, fA = t2
/>,

b. Let Mk [i] =yak [i],vk [i] J denote the /-th address/value pair in m\, the k-th memory ele

ment of sx. Then, for each Mk[i] there exists A^[/] such that fli[i]| =a2k\j]\ and

vl[i]

ir,

= v^ [/] Similarly, for each M? [/] there must exist m\ [i] such that2
= v

p *WJ '"*"*' x""°l WAi°l JM*

2

i

2=a^ [j] and v^ [i] = vj [/]
P2 p,

c. Px=P2,i.e.Px=>P2 and P2=>Pr

Definition An ini/ia/ store is a state (latchinit, 0,0), where latchinit is an assignment of an

initial value to each latch.

Lemma S.2.1 It is decidable whether two stales are equal.

Proof The problem reduces to deciding whether two ICS terms are equal subject to predicate

constraints,which can be decided using the techniques of [Sho79] and [Sho82] (QED).

8.2.2 Operational Semantics of ICS

The operational semantics of ICS describes how a transition between two states of an ICS

model occurs.

Definition A gate graph G is a directed graph where each node is a generalized gate.

(u, v) e G if some output variable of the generalized gate u is an input to the generalized gate

v. A cyclicgate graph is said to contain a combinational loop (orcycle).
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Remark Foran acyclic gate graph G, a root node either has noinputs or is a latch.

Our operational semantics is restricted toacyclic graphs and isdefined in terms of a configura

tion (orstate) graph and its transition relation. Every node in the configuration graph is a pair

(s, n), where s is a state of the model, and n represents the number of constants created so far.

An initial state of the configuration graph is of the form (sinit, k), where sinit is an initial state

of the model, and k the number of constants in sinit. An edge (transition) is defined by the fol

lowing algorithm which, given a state u = ((L,M,P),n) in the configuration graph, assigns a

new value to all next state variables (creating L), and creates a new memory Af, a new set of

predicates P, and a new counter n'. In this case, we say there is an edge (u, v) in the configura

tion graph, where v = ((L, Af,P), n'). State transitions are computed as follows.

0. Let P = P, ri = n.

1. Let a user-given total order on all memoryoperations be given. Choose a topological sort 0 of the

gate graph consistent with this memory order.

2. Assign the values given by L to the outputs of the latches.

3. Assign values to the outputsof each generalizedgate consistent with its inputs, processing the gener

alized gates in the topological order 0. More precisely, let a generalized gate g (i, o) be given,

where i represents the inputs to the gate and o its output.

a. If g is a table representing the relation R (i, o), then (i,o) e R.

b.Ifg is an interpreted or uninterpretedfunction, then o - g(i), where o and i areICS terms.

c. If g is an interpreted or uninterpreted predicate, if F -> (g = 0) is valid, let g = 0; //

P -> (g = 1) is valid, let g - 1; otherwiselet o = 0 or o - 1, and P - Fu {g = o) .

d. Ifg isa constant creator, then o = cn,, where c . is afresh constant. Let n' = ri+1.

Step 3 is referred to as valuepropagation. Note that the configuration graph is finite-branch

ing, i.e. for every state, there are a finite number of next states. It is possible that a table is not

complete, i.e. there are inputs for which there are no outputs. Then, the set of values assigned to

an output of a table may be empty. The empty values propagate, i.e. if one of the inputs to a

table is empty, then the output is empty as well.

8.2.3 Creating ICS Models From the HDL Verilog

In the HSIS environment, Verilog descriptions are compiled into BLIF-MV. BLBF-MV has a
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library of pre-defined functions and predicates on finite-sized integers. For example,

addA (x, y, z) may mean that two 4-bit integers jc and y are added to get the 5-bit integer z. To

extend this to be able to compile a Verilog description into an ICS model, we describe below

how the various new constructs in ICS can be obtained.

1. Tables, finite variables, and finite latches can be specified as usual.

2. To get integer variables, latches, functions, and predicates, identify a set of variables as inte

gers, and instruct the compiler to use BLIF-MV's library functions.

3. To gel uninterpreted functions (predicates), use subcircuits returning integer (Boolean) values

whose definitions are not given. These will translate into undefined subcircuits in BLIF-MV.

8.2.4 Fairness Constraints and Language Containment

In this section, we describe how to construct an automaton from an ICS description, how to

define faimess constraints on this automaton, what its language is, how to specify properties, and

how language containment is performed by checking language emptiness.

8.2.4.1 Fairness Constraints in ICS Models

Definition Let an acyclic ICS model Mbe given. The symbolic automaton of M, AM, is the

configuration graph defined by the operational semantics of ICS. The alphabet of AM is the Car

tesian product of the alphabets of the non-state variable, and isdenoted by I.M. The alphabet of

the integer variables is the set of the ICS terms of M (a countable set), whereas the alphabet of

the finite variables is their domains. Let an co-string x over the alphabet EM be given, r isarun

of x in AM if r0 is an initial state of AM, and for all /, there is a transition from r. to r ,

assigning jcf. to non-state variables.

If the model has inputs, we close it by allowing the finite inputs to take any value in their

domains, while the integer inputs are driven by constant creators. Hence, the notion of symbolic

automaton carries to models with inputs. We allow edge-Streett fairness constraints1 to be

placed onlyon finite valued latches. For example, onecan restrict the acceptable runs to be such

thata finite-valued latch / takes some value a in its domain infinitely often. Fairness constraints

are generally placed on the control part Since control circuits are finite state, the restriction of

1. One can allow other types of fairness constraints as well. The language emptiness check for edge-Streett
fairness constraints is polynomial, while their next natural extension has anNP-complete languages contain
ment check.
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faimess constraints to finite latches is expected not tobe severe in practice.

Definition A run r is fair if all fairness constraints are satisfied. More specifically, for each

finite latch /, the set of infinitelyoccurring values which / takes in the run r satisfies all fairness

constraints placed on /. The symbolic language (or just language) of symbolic automaton M,

Ls (M), is the setof all strings which have a fair run in AM.

Definition The concrete language of a symbolic language L with respect to aninterpretation /

(an interpretation of all uninterpreted functions and predicates), denoted by Lc (L, I), is obtained

by allowing the constants to take any possible integer value for all jc e L. The concrete language

of M with respect to interpretation / is Lc(Ls (M), I) .

Definition Let symbolic languages L, L, L" be given. L is contained in L, denoted as

L£ L, if for every interpretation I, LC(L,I) q Lc(L, I). L is thecomplement of L, denoted as

L = L, if for all interpretations /, LC(L,I) - LC(L,I) . L" is the intersection of L and L,

denoted as L" = LnL, if for every interpretation /, LC(L",I) = LC(L,I) nLc(L',I) . Simi

larly union of symbolic languages is defined.

Definition Let models M and N be given. The composition M • N is defined as follows. If M

and N have no variables in common, or the common variables are not outputs in both models,

the composition of the two models is their syntactic composition. For each common variable

which is an output in both M and N, rename one of them, and add a one state automaton which

checks that the two outputs are equal.

Lemma 8.2.2 Let models M and N be given. Then, L(M»N) - L(M) nL(N) , i.e.

composition of models corresponds to taking the intersection of their languages.

Proof Let an interpretation I be given. We need to show

LC(M»N,I) = LC(M,I) nLc(N,I) . Let jce LC(M*N,I) . x gives interpretations for all

constants of M and N. Also, the values assigned by jc to the variables is consistent with the

transition structures of M and N. Hence, xe LC(M,I) nLc(N,I). Conversely, let

jce LC(M,I) nLc(N,I). x gives interpretations for all constants of M*N. Note that since

jc e LC(M, I) r\Lc(N,I), the common variables of M and N are assigned the same value. Also,

the values assigned by jc to the variables is consistent with the transition structures of M*N.
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Hence, xeLc(M»N, I) (QED).

8.2.4.2 Property Checking

Lemma 8.2.2 implies that the classical results of verification using language containment are

valid. For example, to do property checking, the complement automaton of the property can be

composed with the system, and the language of the composed system can be checked for empti

ness. We will define property automata so that complementing them is straight-forward.

Definition An (edge-Rabin) property automaton is a complete (i.e. for every symbol there is a

transition) edge-Rabin automaton with no outputs. Note that property automata can have integer

inputs. All latches of a property automaton are finite valued, i.e. a property automaton has a

finite number of states. The ouly allowed integer operation arc integer predicates which are

applied to integer inputs, but the alphabet of a property automaton can take an infinite number

due to integer inputs.

Definition Let A be a property automaton. The finite encapsulation of A, AF, is obtained by

replacing each integer predicate (applied to integer inputs) with a binary input variable. Note

that AF is aregular edge-Rabin automaton with finite alphabet and finite numberof states.

Lemma 8.2.3 Propertyautomatacan be complemented.

Proof Let R be aproperty automaton, and RF its finite encapsulation. Since RF is aregular

edge-Rabin automaton, it can be complemented into an edge-Streett automaton. Let the

complement be R~^. Replace each binary variable introduced in Rj. with the predicate it replaced

in R. Call the resulting automaton R. We have that L(R) is the complement of L(R) . To

make presenting the proof simpler, assume R has only one integer input x, and one integer

predicate P. Let cx,c2,... be the symbolic inputs to R and R An interpretation / assigns

integer values ix, i2,... to cx, c2,..., and ameaning to P. By construction, we have that RF and

R~F each have one binary input, RF accepts P(ix),P(i2),..., and R~F rejects P(ix),P(i2),....

Since ix,i2,... has the same runs in R as P(ix),P(i2),... in Rp, it follows that R rejects

ix, i2,.... Similarly, weone show that if R accepts ix, i2,...,R rejects it (QED).

8.2.4.3 HierarchicalVerification

Besides property checking, language containment appears in hierarchical verification. Hierar-
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chical verification is the process of checking that the language of an abstract model contains the

language ofa detailed model. Since we don't know how tocomplement general symbolic autom

ata, we restrict hierarchical verification to a subset of symbolic automata, called control

automata. Since control automata are where non-determinism (and hence refinement) occurs,

this may not be too restrictive in practice.

Definition A control automaton is a property automaton which is allowed to have only finite

outputs. The finite encapsulation of a control automaton can be defined similar to the case of

property automaton.

Lemma 8.2.4 Control automatacan be complemented.

Proof Since the outputs are finite-valued, the automaton can be complemented. The same

procedure as in the proof of lemma 8.2.3 can now be applied to form the complement (QED).

8.2.4.4 Checking Emptiness of ICSModels

Verification using language containment involves complementing the property automaton, and

checking whether there is a fair path in the composition of the system and the complement of the

property. In order to do this, we need to compute the set of reachable states, and check whether

there are any fair paths. However, the set of reachable states may be infinite. Hence, we com

pute the set of states reachable in at most n steps, for some given n. We then check that no fair

path in this subset of the reachable states exists. In practice, since many error traces are short (if

they exist), this technique should be quite effective.

Lemma 8.2.5 The language emptiness check of ICS model is undecidable.

Proof Theorem 8.2 in section 8.5 provides the proof (QED).

8.3 Data Insensitive Controllers

In this section, we formalize the notion of data insensitive controllers (DICs). We then prove a

theorem which can be used to verify the property that DICs correctly move data around on a sys

tem where the integer variables are replaced by single bit binary variables. A practical

application of this result is then described, and an algorithm for automatically recognizing DICs

is given.

8.3.1 0-1 Theorem for Data Insensitive Controllers

Definition Let the data movement operations be jc := v, z := mux(b,x,y) , and y := if(b,x) ,
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where jc, y, z are integer variables, and b is binary.

Definition Let an ICS model M be given. Af is a data insensitive controller (DIC) with

respect to a set of variables X, called data insensitive variables (DIV), if the following holds.

1. The only operations allowed on the variables in X are data movement operations and

jc := constant-creator where all variables involved in these operations belong to X.

2. If / e X is a state variable, then the initial value of / is a fresh constant

3. If some constant creator C is input to some jc e X, then C is not input to any other variable

zeX.

The (generalized) gates in a DIC are naturally divided into two disjoint parts. The first, called

the data sensitive part, contains the gates which drive the variables not in DIVs, whereas the sec

ond called the data insensitive part, contains those gates which drive the DIVs. The binary

variables which appear in the data insensitive part are driven by gates in the data sensitive part.

No gate in the data sensitive parthas a DIV as an input.

Data Sensitive Part

Data Insensitive Part

Thedata sensitive part generates the control signalsfor the
_. . • data insensitive part. Changing the values of variables in
Y W Wvana8iesycOD,ro1 **' data insensitive P*"* does not 4Tect the values of the
» T • data sensitive part.

Figure 8.2: Data sensitive controllers

Definition Let Af be aDIC with respect to X. The binary instantiation of M, M2, is formed

by replacing allvariables in X by binary ones,replacing eachconstant creator driving a DIV by a

gate which produces 0 or 1 non-dcterministically, and replacing the initial values of all latches in

X by the set {0,1} .

Tfieorem8.1 (0-1 Theorem for Data-Insensitive Controllers) Let an ICS model M be data

insensitive with respect to a set of variables X. Let property P specify that when binary variable

b becomes 1, then jc = y, where {jc,y} qX. Then, P holds for M iff P holds for A/2.

Proof If P holds for M, then P holds for M2, since binary values are a subset of integer

values. Now assume P does not hold for M. Then, there exists a sequence of states sx,...,sn

and a sequence of assignments to non-state variables ax,...,an_x, such that sx is an initial state,

si+x is reached from s. in M on ar a. for i<n- 1 assigns 0 to b, anX assigns 1 to b and
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different values to x and y. We will build s"x, ...,s'n and dx,..., a„_ i, where all variables in X

are assigned binary values in a. and s. for all /, si+1 is reached from s. in M2 on a., a. for

i<n- 1 assign 0 to ft, a„_ 1 assigns 1 to ft, and a„ _2 assigns 0 to jc and 1 to y.

Let the data sensitive variables take the same values in di and s. as in at and st *s. This is pos

sible since the values of the data insensitive variables do not affect the values of the data

sensitive partition. It follows that the values of thebinary control variables which are input to the

data insensitive part also remain die same in ai and s- 's.

Consider state sn _x and how jc and y arc assigned atstage n. From thedefinition of DICs and

the operational semantics of ICS models, it follows that either there exists a constant creator C

such that x = C(n- 1) , where C(n-l) denotes the value of the constant creator assigned by

an_ j, or there exists an integer latch / such that jc = l(n- 1), where /(n-1) is the value of /

at state sn_ x. If we trace this value to its source, we find the value of jc assigned by sn_ x and

an- i is eclual t0 me value of some integer latch f at sx,or to the value of some constant creator

C assigned by some a.t i £ n -1. Assign the value 0 to this source, i.e. the initial value of I or

the value of C. Similarly find T or C for y and assign it the value 1. Arbitrarily choose val

ues for the rest of the constant creators and initial states. Since the values of the binary control

variables is the same as before, the claim follows (QED).

Historical Remark [W0I86] introduced the notion of data-independent controllers for simple

reactive programs, which are conceptually very similar to our data-insensitive controllers. How

ever, the results of [Wol86J, specifically theorem 5.4, seem to be essentially different than our0-

1 theorem. [Wol86rs theorem 5.4 basically applies to properties which can be written as"for all

tuples ix,...,in with distinct values, P(ix,...,in) should hold", where P is a linear temporal

logic formula over the variables ix,..., in. Such a property can also be expressed as an infinite

conjunction of linear temporal logic formulas of the form P(vx,...,vn), where v,, ...,vn are

value assignments to ix,..., in. However, our 0-1 theorem is equivalent to an infinite disjunction,

i.e. "when b occurs either jc = y = 0,orjc = y= l,orjc = y = 2, etc."

One in general may be interested in proving the property "repeatedly whenever binary variable

b becomes 1, then jc = y." To do so, create Af from M by adding a two-state FSM, which out-
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puts a variable ft'. This FSM stays in its first state for an arbitrary amount of time, outputting

ft' = 0. It can non-deterministically make a transition to its second state, outputting ft' = 1. It

then stays in its second state forever outputting ft' = 0. Let F be the property "when binary vari

able ft' becomes 1, then jc = y." It is easy to see that P holds of M iff F holds of Af.

However, the 0-1 theorem applies to the latter case.

We also emphasize that this theorem also applies to finite state systems and can be used to

abstract datapaths from a large number of bits to a single bit

8.3.2 An Application of the 0-1 Theorem

A memory controller in a multi-processor takes load and store operations from the processors,

and executes them. To gain more speed, it can do memory operations out of order. To make

sure the memory works correcdy, a property known as the value axiom is proved about the mem

ory system (chapter 9). The value axiom says if a load is issued to location a, the value returned

by the memory model when the load is serviced should be the value of the most recent pending

store to a, or if there are no pending stores, the value stored at a currendy.

To check the value property, a temporary latch can be added to the model, which stores the cor

rect value of the load when the load is issued. This can be done by checking the memory's

buffers to see if there are any pending stores to location a. When the load is serviced (ft = 1), it

is checked that the value returned by the memory is the same as the value stored in this tempo

rary latch (jc = y). The memory controller is a DIC with respect to the data variables giving the

values to be stored at locations. Hence, by the 0-1 theorem and the remark in the previous sec

tion, it suffices to check the property only on binary values.

8.3.3 Recognizing Data Insensitive Controllers

DICs can be automatically recognized with a polynomial time algorithm (in the size of the inte

ger partition) which finds the largest set of variables according to which a model is a DIC.

Lemma 8.3.1 If an ICS model Af is a DIC with respect to X and a DIC with respect to Y, then

it is a DIC withrespect to Xu Y. Hence, there is a largest set of variables DIV(M) according to

which Af is a DIC.

Proof Follows directly from the definition ofDICs (QED).

The following algorithm finds DIV(M). The algorithm proceeds by marking off any variable

which cannot be a DIV. The remaining variables are in DIV(M) .
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0. Let X betheset of all integer variables.

1. Delete from X those variables involved in any operations other than data movement, i.e. violating

condition 1 ofDICs.

2. Deletefrom X any variable violating condition 3 ofDICs, i.e. fanning-out toanelement not inX.

3. Delete from X those variables involved insome integer operation (including data movement) with

variables notin X. Goback tostep1.

4. ReturnX as DIV(M) .

8.4 Data Semi-Sensitive Controllers

In this section, we present results about a class of circuits, called data semi-sensitive circuits

(DSSC), which not only move data around, but also apply predicates to them. We identify sub

classes of these circuits, where properties can be proved by replacing the ranges of integer

variables by a small finite range. Recognizing DSSCs and any of the subsets we present in this

section is straight-forward. In what follows, checking a property on a system Af is done by

checking for the language emptiness of the composition of the complement of the property and

Af.

Definition The predicates jc<c, jc = c, x<y, x = y, (jc mod m) = d, and (jc mod m) <d are

called integer predicates. Note that the predicates Even(x) and Odd(x) are special cases of

(jc mod m) = d.

Definition An ICS model Af is a data semi-sensitive controller (DSSC) if the only operations

on integer variables are data movement, jc :=constant-creator, and integer predicates. The initial

value of all integer latches is a fresh constant.

A DSSC canbepictured as shown in figure 8.3, where the model is divided into two parts: inte

ger and finite. The integer part contains the gates which drive the integer variables, whereas the

finite part contains those which drive the finite variables. The communication between the two

parts is restricted to a set of binary control variables. The control variables produced in the inte

ger part are the outputs of the integer predicates. The gates in the finite part take only finite

variables as inputs.

148



Integer Part

A A The binary control control variables. The binary variables
T T van'°'C8 oatou/ from f/« inteeer Darts are the

Finite Part

The communication between the two
parts is restricted to a set of binary

output from the integer parts are the
outputs ofthe integer predicates.

Figure 8.3: Data semi-sensitive controllers

Definition Let Af be a DSSC. The n-ary instantiation of Af denoted by Afn, is formed by

replacing all integers variables by finite variables taking values from 0,1,...,n- 1. The initial

value of an integer is the set 0,1,..., n - 1.

8.4.1 Data Comparison Controllers

Data comparison controllers are a subclass of DSSCs which move data around, and compare

them. We prove finite instantiations can be used to verify language emptiness for these circuits.

A practical example of where datacomparison controllers comeup is given.

Definition A DSSC which only involves data movement operations, the predicate jc = y, and

constant creators is called a data comparison controller.

Lemma 8.4.1 Let Af be a data comparison controller with n integer variables, and Af its n-

ary instantiation. Then, L(M) = 0 iff L(Mn) = 0.

Proof If £,(Af) = 0, it trivially follows that L(Mn) = 0. Now assume Z, (Af) * 0. We want

to showL(Afn) * 0. Let s0, a0,sx, ax,... be a fair run in Af, where st and ai are assignment of

values to state and non-state variables respectively. Let .r,, ...,.vM be the integer variables. We

will build a fair run s0, d0, s"x, dx,... in AfH such that the following two conditions hold for all /.

1. The values assigned to the finite variables (including the binary variables) by s~., a", arc die

same as those assigned by s.,ai.

2. Let aXi an t and en,,-,.... an>, be the values assigned by sit at and st, dk to the integer

values. Then, ak . = a, . iff a*,, = a/,,.

A string respecting the above two properties is accepting in Afn since 1) the fairness constraints

of M and Afn are the same, 2) the fairness constraints areplaced onlyon finite latches, and 3) for

each such latch the set of infinitely occurring values in sx,s2,... is the same as s"x, s2 The
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existenceof such a string follows from the following three claims.

Claim 1. There exists an initial state i"0 in Afn such that the above two properties are respected

for the latch variables. Let the finite latches in i*0 have the same values as in s0. Let otj,..., a

be the assignment given to the integer latches /,,.... lp by s0,a0. Choose dx, ...,dp such that

a,. = a• iff &. = a..

Claim 2. Given a state s{ where the latch variables satisfy the above two properties, there

exists an di such that all variables satisfy the two properties. Consider a topological sort of the

gate graph, gx gm, where m is the number of gates. By induction assume the two properties

hold for all latch variables and all variables which are outputs of gates gk for k<l. If gt is a

finite table, by property 1, the output of gt can be assigned the same value it was given by ai. If

gt is an integer comparator or data movement element, by property 2, its output will have the

same value as in at. If gt is a constant creator, and if it was assigned a value equal to one of the

integer variables processed so far by a.% let's say x, then assign it the value given to jc . If not,

assign it a value distinct from all integer variables which have been assigned value so far in step

i. Thus, the two properties also hold for g{. Note that no more than n distinct integer values are

needed.

Claim 3. If the two properties hold for sp di, then they hold for si+i. This follows by the fact

the latch variables in si+ x have the same values as the next state variables assigned by si,ai

(QED lemma 8.4.1).

A result similar to lemma 8.4.1 appeared in [ID93]. The main difference is that lemma 8.4.1

applies to bothliveness and safety properties. The fact that lemma 8.4.1 applies to liveness prop

erties comes basically for free as a consequence of dealing with ICS models. As anexample, the

property "if request and jc = y, then eventually acknowledge and z = w" can be proved in our

framework, but is not dealt with in [ID931.

Remark Adrian Isles [Isl95] has noticed that the bound for lemma 8.4.1 can be improved by let

ting n be the number of integer latches plus constant creators.

Lemma 8.4.2 There is a data comparison controller Af having n integer variables such that
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L(Af)*0 and L(Af.) = 0 for/<n-2.

Proof Let Af have « integer variables JCj, ...,jcb_2 , yx, y2, where xx, ...,^n_2 are integer

latches with their initial states being fresh constants, and yx and y2 are the inputs to a

comparator. Let Af also contain abinary latch / whose initial state is 1, aLJ-state counter, and

enough gates to distinguish whether all initial values assigned to xx, ...,xn_2 aredistinct It does

so, by using the comparator and comparing two numbers at every cycle (note that the values of

jCj, ...,jch2 are unchanged throughout the computation). Hence, it needs (-1 cycles to do all

thecomparisons. Initially / = 1, and it is set to 0 if at any cycle yx = y2. If / = 0, Af falls into

a dead state and does not accept any strings. Hence, Af has an accepting run, when all the initial

values of xlt..., jcn_2 are distinct. However, for i< n- 2, at least two of the latches must have

the same initial values. Hence, Af. does not have a run, i.e. L(M.) = 0 (QED).

One application of data comparison controllers is in memory systems of multi-processors.

These memory controllers have a buffer for each processor where the memory instructions (load

and store) are placed. To perform verification, we assume the sizes of the buffers and the num

ber of processors are finite (chapter 9). However, it is assumed that the number of memory

locations is infinite. If the memory controller only compares memory addresses to each other,

which is what one might expect, then it is a data comparison controller with respect to the

addresses. Hence, a small number of addresses suffice to prove the properties. This number is

proportional to the sizes of the buffers. Combining diis result with the 0-1 theorem for data

insensitive controllers, we get that once the sizes of die instruction buffers are fixed, then a mem

ory controller can be verified using binary data bits, and a finite (and small) number of memory

locations without losing any accuracy in verification.

8.4.2 Other Types of Data Semi-Sensitive Controllers

We present results on circuits which use more sophisticated integer predicates (such as jc < c,

(jc mod m) = r, and jc < y). Our results show that the only situation where finite instantiations

cannot be used is when both data movement and the predicate x < y are used.

Lemma 8.4.3 There exists a DSSC controller Af involving data movement operations and
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predicate jc <y such that L(Af) * 0 but L(Mn) = 0 for all n.

Proof We will build an ICS model Af whose only runs are on strictly increasing sequences of

integers. Let Af consist of an integer latch jc , an integer variable y, a binary variable b, three

gates and no fairness constraints (i.e. all runs are accepting). The first gate assigns y a fresh

constant The secondgate does the comparison jc<y, producing the binary variable b. The last

gate is x = if(b,y), which assigns jc the value of y if b = 1. Let the initial value of x be a

fresh constant Intuitively, the circuit assigns jc an initial value, checks whether y has been

assigned a larger value, and if so sets jc to the value of y. All runs of Af assign strictiy

increasing values to x. Hence no finite instantiationcan have a run (QED).

Lemma 8.4.4 Let Af be a DSSC with n integer variables, p predicates of the form jc = ct,

using only data movement operations and the predicate x = y. Then, L(M) = 0 iff

I\Mn+p) =0, where Mn+p is Af with the predicates ofthe form jc =c; changed to jc =/.

Proof The proof parallels the proof of lemma 8.4.1. The second property in the proof of

lemma 8.4.1 is now modified to "ot^. = atJ iff a*,,- = a/tJ, and ak . = c7 iff a*,, = /." The

only other difference arises when a constantcreator g, which is assigned a value v different than

all variables assigned so far by (sjt at), is processed. If v = ct for some /, then g is assigned /

in s.,a.. Otherwise, a value v Zp and not equal to any of the variables created so far is assigned

to g. Since there are n distinct variables, at most n+p values are used (QED).

Remark In the proof of lemma 8.4.4, if there are no predicates of the form jc = y, tiien p + 1

values suffice. This is the core of [Wol86rs techniques, where the predicates x = cf represent

the atomic formulas of die temporal logic formula. Note that as [W0I86] argues, for such a cir

cuit Af (involving data movement and x = cx *s), if emptiness holds for a setof distinct constants

Cj,..., c , then it holds for any circuit obtained from M by replacing cx c by another set of

distinct constants cx,..., c .

Lemma 8.4.5 Let Af be a DSSC with n integer variables, using only data movement

operations, and the predicates x=y, jc =cr and x<dy Let C=MAX (MAX (ct), MAX (dp) .

Then, L(Af) =0 ifflfAf.) =0, where n=C+n+1.
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Proof The proof parallels that of lemma 8.4.1. The second property in the proof of lemma

8.4.1 is now modified to "ak . = a;,. iff a*,,- = a/,,, and o^ i = c7 iff a*,/ = ct, and ak t<d-

iff a*t, <dj." The only other difference is when aconstant creator g, which is assigned a value

v different than all variables assigned so far by (*,•,a,), is processed. If v£C, then g is

assigned the same value as v in sP a{. Otherwise, a value greater than C and not equal to any of

the variables created so far is assigned to g. Since at most n values greater than C are used, the

bound follows (QED).

One can get a bound for lemma 8.4.5 which is independent of the values of the constants. Let

p and q predicates of the forms x = ct and x<d- respectively be given. Further assume

dj £dj+x. Let hj be the number of cJ. *s which occur between d. and d-x. Intuitively, between

dj and dj+x, n+h. values are needed. By re-assigning value to x<d.*s and jc = ct *s as in the

proof of lemma 8.4.4, the emptiness check can be done on a system where the integer variables

take on (q+1) (n+l) +p values (there are q+ 1 intervals between d. *s each requiring n+ h-

values, and £^ =p). We have the following result

Lemma 8.4.6 Let Af be a DSSC with n integer variables, using only data movement

operations, p predicates of the form x - c{, q predicates of the form x<d-, and the predicate

x - y. There exists a system Af derived from Af such that the integer variables take on

(q+l) (n+\) +p values, and L(M) = 0 iff L(N) = 0.

Proof Given above (QED).

Lemma 8.4.7 Let Af be a DSSC with n integer variables, using only data movement

operations, and the predicates jc =y, jc =ct, x<d., (x mod mk) - rk, fxmod m^ I<r^. Let

C= MAX(MAX(Cj),MAX(dp) , and N be the common multiple of all the mk's and m^'s.

Then, L(M) =0 iff l(M.) =0, where h=C+Nn+ 1.

Proof The proof parallels that of lemma 8.4.1. The second property in the proof of lemma

8.4.1 is now modified to "o^ .=ati iff a*,, =a/,,, and a^. =ct iff a~k {=c7, and OLki<dj

iff (Xk,i<dj, and (ati modmk) =rk iff ^a/./modm^J =rk, and Ia7 {mod m*^ I<r'k. iff
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^ajt,mod m\j<r'k>" The only other difference arises when aconstant creator g, which is

assigned a value v different than all variables assigned so far by (s., aj), is processed. If v£ C,

then g is assigned the same value as v in Sg, a{. Odierwise, a value v greater than C and not

equal to any of the variables created so far such that (vmodmp =(vmodmJ and

fvmodm'A -\vmodm'^J for all k and Kis assigned to g by spar The bound follows by

noting that 1) at most n values greater than C and with given residues with respect to mk 's and

m'̂ *s are needed, and 2) for a set of residues with respect to mk *s and m'̂ % and for any o,

there is a number between o ando + N which has the same residues (QED).

The following lemma states that although the predicate x<y cannot be used with data move

ment operations, but it can be used with all other predicates so long as there are no data

movement operations.

Lemma 8.4.8 Let Af be a DSSC with n integervariables using no data movement operations.

Let m be,

a. n, if Af involves only the predicates jc = y and jc <y.

b. C+n+1, if M involves the predicates x = y, jc<y, jc = cx, x<d., and

C = MAX (MAX (cj), MAX (dp) .

c. C+Nn+l, if Af involves the predicates x = y, x<y, x = ct, x<djt (jcmodm^) = rk,

fjc mod mK')<r^t where C=MAX (MAX (cj), MAX (dp), and Nis the least common multiple

of the mk 's and m^ 's.

Then, L(Af) = 0 iff L(Afm) = 0.

Proof a. The proof parallels the proof of lemma 8.4.1. The second property in the proof of

lemma 8.4.1 is now modified to"a^ . = az,. iff a*,, = a/,,, and ak .<at . iff a*,,< a/,i." Since

there are no data movement operations in Af, at every state s., the integer variables are assigned

fresh constants. Let the constants be ct x,..„c{ r Now choose the constants cit \,..., c,t/ such

that the second property holds of the constants. Assign the restof the gates asbefore,

b. Similar to part a, except that given constant c, „ ..., c,, if c. .<, C, let c, s = c,,.
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c. Similar to proof of part b and lemma 8.4.7 (QED).

8.5 Verification Using Uninterpreted Functions and Finite Instantiations

8.5.1 Overview

In this section, we first prove that if ICS models are allowed to contain uninterpreted functions

with predicates of the form jc = y, where jc and y are integers, then the reachability problem

(whether a specific state s is reachable) becomes undecidable. This provides a limit for the appli

cability of finite instantiation techniques when uninterpreted functions are used. However, in

verifying many properties of pipeline controls, where the functional units are replaced by uninter

preted functions, the predicates operating on data can be abstracted to be unconstrained inputs,

i.e. taking any value 0 or 1. Therefore, data predicates are not needed in the model, but just in

the property.

We prove thatfor ICS models with only uninterpreted functions, an important class of proper

ties of the form "when binary variable b become true, (jc, = a,) a ... a (jc = a ) ", where jcs
i i m m i

are integer variables and a,- 's are ICS terms, can be verified using finite instantiations. This

result can be used, for example, to prove the following property Q, using two-bit integers, and

appropriate interpretations for the uninterpreted functions. The property Q is: "Assuming rx and

r2 contain cx and c2 initially, if the instruction r3 = ADD(rx, r2) (call it /) is issued after any

stream of instructions which do not modify rx and r2 , the result which is written to r3 when /

is retired is ADD (cx, c2) ." Note that c{ and c2 can be any arbitrary integers, and all instruc

tions before / cannot modify r, and r2, but can read them. One can also prove that if any

instruction after / has asone of its sources r3 (and no intervening instruction has written to r,),

then it will receive the value ADD (cx, c2), i.e. the bypass circuitry works correcdy in this case.

Let v(r) denote the value of register r, and assume we are interested in proving property P:

when instruction r3 = ADD(rx,r2), is about to be retired, the value which is written back is

v(rx) +v(r2). Property Q is only an approximation to property P sinceno instruction before /

is allowed to modify rx and r2. To verify P, our approach is to run the unpipelined machine N

in parallel with the implementation Af. N halts after it executes I. After Af retires /, it is
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checked that the r3 registers of M and N are equal. This property has the form "when b

becomes true, jc = y", where jc and y are integer variables.

Although we do not have techniques for exact verification using finite instantiations for this

property (and there is some evidence that if such techniques exists, they may be expensive), we

provide techniques which prove the property for a class of possible bugs. For example, they can

catch anybug such that when b becomes true, the ICS terms stored at jc and y differ in the num

ber of times some constant or uninterpreted function is used. For example, if jc contains f(a, b)

and y contains f(g (a), b), then this bug will be uncovered, since the function g does not occur

in f(a, b). Verifying this bug requires only one bit for eachinteger variable. This approach pro

vides a combination of testing and verification, and should be effective in exposing bugs where

little data variation is needed. [HYMD95] technique combines verification and simulation by

building the graph of the "control part", and then producing a set of test vectors which ensure

that all control arcs are traversed. This uncovered many subde bugs, and confirms that, for

exposing bugs in microprocessors, little data variation is needed. Our third technique is related

to this in the sense that a very large set of test vectors is covered (specifically all control arcs will

be checked), although 100% coverage is not obtainedas with formally proving the property.

There is an extensive literature on verifying microprocessors. In most of these approaches

([Cyr93], [BD94], [Sri95]), a pipelined machine is compared to an unpipelined machine by prov

ing that one step of the unpipelined machine is "equivalent" to one step of the pipelined one.

These approaches require the user to provide a subset of the possible states of the implementation

machine in which the correspondence can be proved. This set has to be large enough to contain

all reachable states (otherwise verification is not complete), but it should not be too large to con

tain unreachable states in which the machine may behave unpredictably. Providing such an

invariance, in theory, is equivalent to providing the set of reachable states, and therefore can be

very challenging for complicated machines. These techniques have not so far been applied to the

superscalar processors. [BaD94] also requires substantial user intervention, by asking the users

to provide p-relations, and restricting the circuits to be A:-definite. On the other hand, symbolic

simulation algorithm of [Cor93] and [SS95]. However, [Cor93] does not give an algorithm for

pipelined machines, and [SS95] requires some user intervention, and their algorithm may not ter

minate and can give false negative results. To our knowledge, there is no previous literature on

verification using uninterpreted functions and finite instantiations.

The paper is organized as follows. Subsection 8.5.2 contains the technical part proving the
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three main results: undecidability of ICS models with the predicate jc = y, verificationof proper

ties involving jc = term, and partial verification of properties involving the predicate jc = y.

Section 8.5.3 gives an application to the correctness of superscalar microprocessors. Section

8.5.4 discusses future research directions.

8.5.2 Main Results

In section 8.4, we showed that language emptiness of ICS models with only constant creators,

data movement operations, and the predicate x - y can be decided using finite instantiations. In

this section, we prove the problem is undecidable if we allow, in addition, uninterpreted func

tions (and even disallow constant creators).

8.5.2.1 Undecidability of ICSModels withPredicate x = y

Theorem 8.2 The reachability problem for ICS models involving data movement operations,

uninterpreted functions and the predicate jc = y is undecidable (note no constant creators are

allowed).

Proof We reduce the halting problem for two-counter machines to our problem. A two-

counter machine is a FSM with two integer variables called counters [HU79]. The counters can

be incremented, decremented, and tested against zero. A transition can be represented as

(s, condx, cond2, opx, op2, s') , where,

a. s and s' are the current and next states respectively.

b. condx and cond2 are conditions on whether counters 1 and 2 are zero, not zero, or don't

care. The transition is taken only if the conditions are satisfied in slate s.

c. opx and op2 are the operations performed on counters 1 and 2. Increment, decrement, and no-

op are the possible choices.

For a two-counter machine M, we create an ICS model AT with one uninterpreted function /

representing increment, and a latch initialized toa constant c0 and always holding thatvalue.

1. For each counter, we define an increment circuit which operates as follows. Let / be the

input to the incrementcircuit When the circuit is enabled, it sets temporary variables y and z to

f(T) and c0 respectively. The circuit continues only if y*z. This is accomplished by using an

incompletely specified function which has an output only if y*z. If z*I, the circuit then lets
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z = f(z), and repeats the process. If z = /, the circuit outputs /(/). Note that we have ensured

that the only possible executions for N are those where no value between c0 and / is equal to

/(J).

2. To decrement a counter, we define a circuit which operates as follows. When enabled, it first

checks that its input / is not cQ. If so, it returns c0, otherwise it sets atemporary variable y to

c0, and compares f(y) to I. If the two are equal, it outputs y. If not, it lets y = f(y), and

repeats the process. It finally outputs a y forwhich / = f(y).

3. To test avariable / against 0, N just checks whether / = c0.

N simulates Af by checking for a transition (s, condx, cond2, opx, op2, s') , that condx and cond2

hold, and then performs opx and op2 (using the subcircuits defined above), and moves to s'.

Let/ (/) =/(/ ~ (I)). Wenote the following during the operation of N.

1. The increment subcircuit does not create an inconsistency, i.e. there are some interpretations

for which all the predicates of the form / (c0) *f (c0) (which this subcircuit creates) can be sat

isfied. One such interpretation is having integers as the domain, with / replaced by the

increment operation on integers.

2. The decrement subcircuitalways terminates. The reason is that the value at the input of a dec

rement subcircuit is always some formula /*(c0) , for some n, since these are the only values

created by N. Also, note that if the input to adecrement subcircuit is f (cQ), then the output of

the circuit is f~ (c0), since when N created f (c0) it ensured that for all 0£i€n-l,

/(c0)*/(c0).

3. During the execution of N, the test / = c0 returns true iff / is actually the formula c0. To

prove this, assume for some value i, {(c0) =c0. This is not possible since when / (Cg) was

created, the increment circuitry ensured that / (c0) *c0.

It follows that if

a. Af is at some state s, and N is at its corresponding state s, and

b. if the two counters of Af take the values i and k respectively, and the two counters of N take
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/ (c0) and / (c0) respectively, and

c. if Af makes a transition (s,condx,cond2,opx,op2,s'), with counters taking on f and k'

respectively,

then N will eventually end up in its state s' with counters taking / (cQ) and / (c0) respec

tively. Since N merely simulates Af, the reverse is also true. Hence, Af falls into its halt state iff

N reaches a corresponding halt state (QED).

Note thatthe proofof theorem 8.2 shows that the reachability problem for ICS models becomes

undecidable when in addition to data movement operations and the predicate jc = y, only one

uninterpreted function (f), and one constant (c0) are allowed.

8.5.2.2 Verification of Properties Involving Predicate x = term

Theorem 8.3 Let Af be an ICS model with constant creators, data movement operations, and

uninterpreted functions. Assume,

a. the integer latches in M take only constants as their initial values^;

b. property P is "when b becomes true, (jc0 =a0) a ...a (jcm_ x=am_ x) ", where b and jc,. 's

are binary and integer variables of Af respectively, at *s are ICS terms, and the constants in the

a,, 's refer to the initial values of integer latches;

c. n is the number of all subformulas in the a. 's;

d. Mn +j is a finite instantiation of Af where the uninterpreted functions and the constants in the

a. *s are replaced by appropriate functions (constructed below) and constants on n+1 values

(i.e. ["log (n +1)"1 bits), and the constant creators are allowed to take values only from the set

0,...,n.

Let Pn+X be the property P which results from this interpretation. Then, P holds for Af iff

/>, holds for Af ,.
n+i B+ 1

Proof Recall that a state s in an ICS model is a tuple (L, Mem, P), where L is an assignment

of values of all latches, Mem is a set of memory elements, and P is a set of predicates. Hence,

1. Not allowingnumerals asinitial values of integer latchesis nota severerestriction in this case, since numer
alsare useful when interpretedinteger functionsareallowed, which is not the case here.
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f(a) may be equal to f(b) in s if a = b is a true predicate in s. Since there are no other

integer predicates in M, two ICS terms are equal in any state of Af iff they are exacdy the same

formula. The idea behind the proofis that if a formula p contains a subformula which does not

occur in some other formula y, then p and y are not equal in any state of M. Hence, the set of

all formulas can be divided into a finite set of equivalence classes: those which occur as a

subformula in some a, and all other formulas.

Let p0, ...,?„_! denote the set of all subformulas of af*s, where po, ..,$m_x is a0,..., am_,.

To define Afn +x, we need to give an interpretation / to each uninterpreted function / of Af, and

the constants which occur in the of- *s. If aconstant ct occurs as subformula p^, then let c{ take

the value k in Afn+ j. For each uninterpreted function/, let/(*) = / if f($k) = pr Otherwise

let J(k) = n. Similarly define other uninterpreted functions of different arities, where if one of

the argument is n, then the output is also n. Note that the value n propagates. Note that each

predicate xt = at in Af becomes jc,. = i in Mn +j.

Assume P holds for M. Hence, by definition, P holds for all interpretations given to constants

and uninterpreted functions. A set of such interpretations are represented by Afn +j and Ptt +l.

These interpretations are produced by defining the uninterpreted functions as we did above, and

allowing the constants to take values only from the domain 0,..., n. Hence, it follows that Pn +X

holds for M„^..
n +1

Conversely, assume P does not hold for Af. Then, there exists a run

r = s0,a0,svax, ...,ak_vs in Af such that b holds in sk but for some i, jr^a,.. We will build

a run r = so>&o>h>fib •••»3*-i,Sjt in Afn+1 such that b holds in sk and jc,*/, i.e. Pn+X does

not hold for Afn +j. We do so by ensuring the following two invariants hold of all variables in

any transitions (st, a., si+x) and [sh ah si+ij.

a. All finite (non-integer) latches take the same values in (sp apsi+x) and (sit a„ 5,+1J.

b. If some integer variable z takes an ICS term pt in (sp ap si+x), then z takes the value k in

[sit ait 5,+ iJ. Otherwise, z takes the value n.
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We will show how sQ, a0, sx can be constructed satisfying the above invariances; theother tran

sitions are similar. Let O0 be the topological ordering of the gates used in the transition

(si'ai'si+0 mM- ^e W*H use *e same ordering to generate the transition [5,-,fi„ J/+iJ in

Mn+l. The roots of 0Q are either latches (taking one of their initial values) or constant creators.

For finite latches, let them take the same initial value in s0 as in s0. Since the constants in the

a. (s can only refer to the initial values of integer latches, if the initial value of a latch / is a con

stant and it occurs as a subformula p^ in one of the a,. *s, assign it k. Otherwise, assign it n.

Assign n to the constant creators. Now, by induction, assume the above two invariants hold,

before some generalized gate g in Afn +x is processed. We show theyhold for theoutput of g.

Case 1. If g is a finite table, then its inputs are the same as those in s0, a0,sx. Hence, its output

can be assigned the same value as in sq, ao> $1 •

Case 2. If g is a data movement element, since the invariants hold for its input, they will hold

for its output

Case 3. If g is an uninterpreted function f, by the second invariant, and the definition of J, the

second invariance will hold for the output of g.

It could be the case that processing gate g will affect whether the invariants hold for other vari

ables besides the output of g. For example, if integer predicates were allowed, two formulas

which were not equal before the predicate was processed, could become equal afterwards. This

is not a problem in this case, since Af does not have any integer predicates. Continuing by induc

tion as above, die run r = s0, a0, slt hi 2*_ lt J* can be constructed (QED).

8.5.2.3 Partial Verification of Properties Involving Predicatex = y

In the following, let Af be an ICS model with constant creators, data movement elements, unin

terpreted functions. Restrict Af so that the initial values of the latches are constants. Let

property P be "when the binary variable b becomes true, the two integer variables jc and y are

equal".

Definition Let a be an ICS term. Let fQ, ...,/m be the uninterpreted functions occurring in a.

Given numerals aQ, ...,am, the linear expansion of a with respect to a0, ...,am, Iin (a) , is
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obtained by adding all the symbols occurring in a, with each f. having value at. For example,

given uninterpreted function / and g with corresponding values (1,0), the linear expansion of

ICS t&rm f((g (a, b)),f(a)) is \+Q + a + b+l+a which is 2 + 2a + b.

Lemma 8.5.1 Let a be an ICS term, involving uninterpreted functions f0, ...,fm and constants

c0, ...,cn. Let a0,...,am be a set of numerals. If each ft is given the interpretation, which

returns the sumof its arguments plus at, then the value of a under this interpretation is lin (a).

Proof Clear from the definitions (QED).

Lemma 8.5.2 Assume P does not hold for M, and let * be a given integer. Assume for some

runr = sQ,a0, ...,an_x,sn,

a. in sn, b becomes true, jc = a,y = p,a*p,

b. for some constant c{ occurring in a or p, the coefficients of ct in lin (a) and /m(p) with

respect to 0,0,..., 0 (denoted by n. and n. ) have different residues modulo k.
*a '0

Let Mk be a finite instantiation of M, obtained by letting the constant creators take values 0 and

1, and each uninterpreted function f. returning the sum of its arguments modulo k. Then, P

does not hold for Mk either.

Proof Since there are no integer predicates, the values which the integer variables take have

no impact on the finite variables. Hence, there exists arun r = So, ho,..., an_ lts„ in Afk which

agrees with r on the values of finite variables. By the definition of f. 's and lemma 8.5.1, each

integer variable z in sphj can take the value lin(z) , where z denotes the value of z in s,a..

Let all constants be 0, except for c,, which is 1. It follows that jc and y will take n. and n.
' 'a Jp

respectively in sn. These values are not equal by assumption. Hence, P does not hold for Mk

(QED).

An example of the application of lemma 8.5.2 is the following. Assume, for some run jc = a,

y = P, a =f(a,b) and p =f(a,c). Then lin(a) = a+ b, and /m(P) = a+c. Since the

coefficients of b and c are not equal modulo 2, P will not hold of Af2.

To answer the question of how many k 's should be tried, note that if two integers a and b

have the same residues modulo three primes PX,P2,P3, a-b and b<a, then
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a = b+n(Px x P2 x P3) for some n. It is expected that even one bit integers, for which k = 2,

will expose many of the bugs, since most bugs are control bugs, and should occur under many

different data combinations.

Notation For an ICS term a, let af denote the number of times / occurs in a.

Notation For an uninterpreted function /, let SJa) denote a function which adds a to the sum

of the arguments of /. Hence, SA\) denotes a function which adds 1 to the sum of /'s

arguments.

Lemma 8.5.3 Let P not hold for Af. Let k be an integer. Let there be a run

r = sQ, aQ, '••>a„_i,sn> such that in sn, b = l,jc = a,y = p,a*p, and for some uninterpreted

function / of Af, a,* p. modulo k. Let Mk be a finite instantiation of Af, obtained by letting the

constant creators take value 0, / returning 5.(1) modulo k, and each other uninterpreted

function g*f returning S (0) modulo k. Then, P does nothold for Af^.

Proof The proof follows by noticing that in Af^, one can create a run in which when b

becomes true jc takes a, modulo k and y takes p. modulo k, which are not the same by

assumption (QED).

Lemma 8.5.4 If techniques of lemmas 8.5.2 and 8.5.3 do not uncover any bugs in the

verification of P, assuming that sufficiently many k 's have been tried, the only possible bugs are

where when b = 1, jc and y take unequal ICS terms, but the number of occurrences of every

symbol is exacdy the same.

Proof Follows directly from lemmas 8.5.2 and 8.5.3 (QED).

An example of the situation in lemma 8.5.4 is jc = f(g (a, b),a) and y = f(a, g(a,b)) . A sim

ple technique which seems to produce good results is to have each uninterpreted functions return

a weighted sum modulo k of its arguments, where the i -th argument is multiplied by i. For

example, in this case, jc = (a + 2b) + 2a = 3a + 2b and y = a + 2 (a + 2b) - 3a + 4b, where the

coefficients of b are not the same. By creating finite instantiations where the constant creators

are allowed to take values (0,1) , and the uninterpreted functions are defined as above, such

bugs can be uncovered.
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8.5.3 Applications to Superscalar Microprocessors

Wepresent an application of the results of the previous section to some correctness problems of

superscalar microprocessors (see [Joh91] and [HP90] for background information). Superscalar

microprocessors take advantage of instruction parallelism by allowing multiple instructions to be

issued and completed in any cycle. Many commercial microprocessors designed in the past few

years are superscalar. Throughout this section, we consider an imaginary processor Af, which

issues instructions out-of-order, allows out-of-order completion of instructions, does register

renaming, allows speculative execution, and retires (writes back) the instructions in order. In all

superscalar microprocessors we know off, results are retired in-order sinceprecise interrupts and

speculative execution (where a branch'soutcome in predicted in advance) needto be supported.

When an instruction is issued, it enters a reorder buffer ([SP86]). Thereorder buffer is a table

consisting of a set of rows corresponding to different instructions and a set of columns corre

sponding to information about the instructions. The rows of the table are implemented as a

circular FIFO. Hence, there are two pointers: head and tail, pointing to the first and last entries.

The columns consist of an entry number (or tag), destination register, result, exception informa

tion, valid bit saying whether the result is valid, and the program counter of the instruction.

When an instruction is issued, it is given theentry pointed to by the tail of the reorder buffer, and

the instruction is sent to the reservation stations of the functional units for execution.

A reservation station is a buffer which contains all instructions waiting to be executed in a

functional unit. Eachentry in a reservation station contains the following fields: the instruction's

tag, operation to be performed on the two sources, values of sources 1 and 2 or tags for the

instructions which will produce them, and2 bits stating whether sources 1 and 2 arc valid. When

an instruction is issued, if one of its arguments, say register r, has not been computed, then die

tag for the last instruction in the reorder buffer which will write r is saved in the instruction's

entry at its reservation station. When an instruction finishes, the result is written to any reserva

tion station which is waiting for this result by comparing the tag of the instruction to the tags at

the reservation stations.

When the instruction at the head of the reorder buffer contains valid information, and there are

no exceptions, then the result is written to the destination register. If there is an exceptionassoci

ated with the instruction, then the writing of results is stopped, and the corresponding exception

handler is called. The program counter of the instruction is used to resume execution after the

exception handler returns. To implement speculative execution, if the wrong branch was taken

after a jump instruction,all entries after die jump instruction are deleted from the reorder buffer.
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Consider an instruction /, r3 = ADD(rx, r2),where rx and r2 are source registers, r3 the des

tination, and the values stored at rx and r2 areconstants a and b. A property P one may want

to verify is that if / is issued with tag number /, when / is at the top of the reorder buffer, then

the value stored under the result entry in the reorder buffer is ADD(a, b), provided that there are

no exceptions associated with /. To use the results of the previous section, several assumptions

are made.

1. The number of registers and the size of the memory is finite.

2. The predicates operating on data can take any value (0,1) at any point in time. This abstrac

tion might prevent us from proving P by allowing too much behavior only if the correctness

proof somehow depends on always making the same choice for a predicate Q, i.e. if at some

point Q(jc) = 1, then at a later point, Q(jc) should be 1 as well. This would imply that the pipe

line control remembers the value of Q(jc) , which does not appear to be the case in general.

3. We assume that the instructions are generated non-deterministically, but no instruction before

/ is issued is allowed to modify rx or r2. The initial values for rx and r2 are set to be the con

stants a and b respectively. To catch errors associated with speculative execution, a program

buffer is provided. The program buffer is implemented as a circular FIFO, and has a tail and a

head pointer. The tail pointer marks the location where the next instruction is retired. The head

pointer points to where the current instruction is being read. As soon as an instruction is retired,

a new instruction is produced (non-deterministically) in its place. An instruction has four fields:

operation, sources 1 and 2, and destination.

4. Each functional unit is replaced by an uninterpreted function.

The verification of this property can then be done by replacing each integer variable by two bit

variables, since ADD(a,b) has three subformulas: a, b and ADD(a,b) . Each functional unit

should also be replaced by the function described in the proof of theorem 8.3.

The process of verificationusing a tool such as [HSIS94] would be as follows (we have not yet

implemented the techniques presented in this paper). The Verilog description of the reorder

bufferand its interface to the functional unitsarechosenfor verification by the user. The descrip

tion is compiled into the intermediate format BLIF-MV (chapter 2). The compiler is instructed

to use library functions for integer operations such as addition (as opposed to creating a circuit

implementing addition), and to leave the functional units undefined. For example, z := jc +y for

32 bit integers is compiled into HSIS -add- 32 (x,y,z). For our Verilog compiler ([Che94]),
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the user needs to identify the uninterpreted functions. The user then inputs the property as an

automaton or a CTL formula. The BLIF-MV file and the property are read, and are used to auto

matically extract an ICS model. It is then checked whether the property can be verified using

finite instantiations. If so, the finite instantiation is created automatically and the standard verifi

cation routines are called.

For example, if the property is "when the result of instruction ADD (rx, r2) is written back,

ADD (a, b) is saved", then a finite instantiation with two bits is created. Formulas a, b and

ADD(a, b) are represented by 0,1, and 2 respectively. Value 3 is used to denote all other formu

las. If there is an error, the result hasto be changed to be readable by the user. Specifically, the

integer values need to be changed to formulas. One solution is to use formulas a, b and

ADD(a, b) for 0, 1, and 2 respectively, and use some special symbol such as other to denote

other formulas. The usercan thenuse this error trace to correct the design.

To get an idea of how large (in terms of the number of latches) the reduced systems can get,

assume there are 4 registers, 4 memory locations, 4 instructions in the program buffer, 1 bit for

exception information, 2 bits for data, and the tags of the reorder buffer are the locations of each

entry in the buffer and therefore are not stored in the buffer, then the reorder buffer requires 8

bits per entry. If we further assume there is 1 bit for the operation in each functional unit and 2

bit tags, then each entry in the reservation stations requires 9 latches. Assuming that 8 different

instructions are modeled, the program buffer requires 9 latches perentry. If there are 4 entries in

the program and reorder buffers, and 2 reservation stations each holding 2 entries, we get a total

of 128 latches: 8 for registers, 8 for memory, 40 for the program buffer (36 for entries and 4 for

pointers), 36 for the reorder buffer (32 for entries and 4 for pointers), and 36 for reservation sta

tions. In general, let m denote the numberof bits for memory locations, r the number of bits for

registers, d the number of bits for data, x the number of bits for exception information, / the

number of functional units, e the number of nurtures in each reservation station, o the number of

bits in the operations ateach functional unit, i thenumber of bits required to represent aninstruc

tion type, p and b are the number of bits for the sizes of the program and reorder buffers. Then,

the total number of latches is given by

[d(2r +2m)] + [2p(i +3max(r,m)) +2p] +[2b(r+d +x+ 1+p) +2b] +fe(\ogb +2d +2+o) .
Another property one might verify of Af is that when the result of / is computed, any instruc

tion in the reservation stations waiting for the result of /, will receive ADD (a, b). This property
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tests the by-pass circuitry. Yet, a stronger property to verify is that for any stream of instruc

tions, even those which modify r{ and r2 before / is issued, when / is retired, the value written

back is ADD(v(rx),v(r2)), where v(rx) and v(r2) denote the values of registers rx and r2

when / was issued. To verify this property, one solution is to run an instruction level interpreter

N in parallel with Af. N merely executes the functional specification of each instruction. It

duplicates the memory and registers of Af, and stops right after it executes /. After Af writes

back /, it is checked that the r3 registers of Af and AT are equal. To verify this property, tech

niques of section 8.5.2.3 are needed.

8.5.4 Conclusions and Future Directions

The finite instantiation techniques are a way of addressing state space explosion due to wide

datapaths, by reducing the size of the datapaths to a few bits, with no or little sacrifice in verifica

tion's accuracy. We extended the results of sections 8.3 and 8.4 to uninterpreted functions, and

applied the techniques to the correctness of pipeline controls of superscalar processors. We also

showed the limits of the finite instantiation methods by proving that the problem becomes unde

cidable when uninterpreted functions and the predicate jc = y are used simultaneously. An

important research area is studying the ramification of considering infinite memory. A simple

case where the memory is never read by the machine but only read once by the property is dealt

with in chapter 9. Also, in cases where finite instantiation cannot be applied, efficient symbolic

execution algorithms are needed. We present such an algorithm next.

8.6 Symbolic Executionof ICS Models

The idea for symbolic execution of ICS models (which can be infinite) is to compute the set of

states reachable in n steps, and check whether some infinite accepting path exists in this subset.

An overview of a symbolic algorithm using BDDsfor an acyclic ICS model Af is given below.

1. Compute the set of reachable states, or a subset of it reachable in n steps. Letthisset be S, andrep

resent it using BDDs

2. Let Ts be the transition relation ofmodel M restricted to S. Represent Ts using BDDs.

3. Using techniques ofchapter 4, check whether there are any accepting runs in Ts.
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Step 3of the above algorithm iswell-defined. Inwhat follows, we explain steps 1and 2 indetail.

8.6.1 Reachability Analysis of ICS Models

In this section, we present our algorithm for computing the set of reachable states of ICS mod

els. To compute the set of reachable states, three continually expanding domains are used. The

term domain Ht is a table of all ICS terms which have been stored in latches in states visited so

far. The predicate domain Hp is a table of all predicate tables enumerated so far, where a predi

cate table contains a set of predicates. The memory domain HM is a table ofmemories, where a

memory is a table from ICS terms to ICS terms. Onecan encode a variable ranging over a finite

domain, using a set of binary variables. We call a set of binary variables corresponding to a

finite-valued variable also a variable. The set of states reachable in i steps is represented by a

BDD, where there is a variable for each finite latch, a variable for each integer latch ranging over

all terms in HJt a variable p ranging over all predicate combinations in Hp, and a variable m

whose domain is all memories in HM. Note that the number of variables as well as their ranges

are finite.

Finite

xP->yF

bf ty
Integer

Figure8.4: Finite and integer parts in ICS models

LetxF, yF, Xj, and y; represent the present and next states of the finite and integer parts respec

tively, as shown in figure 8.4. Note that jc7 and y7 contain variables for integer latches, as well

as predicate and memory tables. Let TF(xpypb,w) and Tj(xpypb,w) be the transition rela

tions for the finite and integer parts. Although TF can be computed easily by taking the

intersection of all the finite tables, Tj may be infinite, and hence cannot be fully computed. Let

RiUpXj) be the set of states reached after / steps. We have

Ri +1 (>p ?/) = 3b3w3xj3xF (TF (xpyp b, w) a R. (xp xj) a Tj (xp yp b,w)) . By re-arranging the

terms we get Rui(ypy,) = 3b3w3xJ(3xF{TF(xpypb9w) a tf,. (jcp *7)) ATI(xpypb,w)) .
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Let Ui(ypxp b,w) = 3xF(TF(xpyp b,w) aR.(xpxp). The algorithm first computes

Ui(ypxpb,w), and then the portion of TI(xpypb,w) corresponding to all minterms in

Ui(yp>xpb,w). Note that this is exacdy the part of Tj(xpypb,w) needed to compute

Ri+1 (vp VP • '^ne algorithm maintains the invariance that in every state (lp lpp, m) the set of

predicates in p imply that the addresses of the memory m are distinct The algorithm is sketched

first with more details given later.

1. Let U^ypXphw) = 3xF(TF(xpypb,w) aR.(xpxp) .

2. For each (xp b,w) e 3yFU. (yp xp b,w),

2a. Propagate values through theinteger part, choosing the values given by b to integer predicates if

possible. Ifnot, the tuple (xpb,w) is inconsistent, sostop this value propagation.

2b. Add to Hj the new ICS terms assigned to next state variables. Extend the range of all integer

latches to accommodate this.

2c. Add the new integer predicates to the predicate table. If the new predicate table is not in Hpt add

it to it, and extend the range of p.

2d. Ifthe new memory has not been encountered before, add it to HM, and extend the range ofm.

3. Let Ti+X(xpypb,w) =I{/)awa (jc7, y7)} , where y7 are the new values assigned to integer

latches, predicate table and memory as the result ofpropagating (xp b,w). Note that there may be

several such choices.

4. Let Ri+, (yp yp =3b3w3Xf[ Uf (yp xp b, w) a7^+, (xp yr b, w) J.

The details of step 2 above are as follows.

1. In step 2a, given apredicate Q and abinary value (true or false) for it bQ, the validity of

both QxA...AQk^ (Q =Qb) and Ql a... AQk^^Q =g;J are checked, where (Qx Qk)
are all the predicates in the predicate table of jc7 . If the former is valid, value propagation is con

tinued. If the latter is valid, value propagation is stopped. If neither is valid, then Q is added to

the predicate table, and is set to Qb.

2. If the memory operation read(x) is encountered during value propagation, find an address
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y in MH, such that Qx a ... a Qk -> (jc =y) is valid, and return the value pointed to by y. If no

such address is found, for each address y in MH, check whether Qx a ...a Qk -> (jc*y) is valid.

For each address y where this is not valid, introduce a new predicate jc = y, and make a case

split based on whether this predicate is tone. If it is true, then return thevalue pointed to by y. In

the case where all such predicates are false, return a fresh new constant This last situation corre

sponds to reading a location whose value is unknown.

3. If during value propagation, the memory operation write(x, d) (write the value d to address

jc) is encountered, check whether for any address y Qx a ... a Qk -» (jc =y) is valid. If such a y

is found, change the value of y to d. If not, check the validity of Qx a ... a Qk-> (x*y) for

each address y. Foreach address y where this is not valid, introduce a new predicate jc = y, and

make a case split based on whether this predicate is tone. If it is true, change the value of y to d.

If all such predicates are false, add a new entry (jc, d) to the memory. This last situation corre

sponds to writing to a new address.

4. If we disallow arithmetic functions and predicates (addition, mod, etc.), only congruenceclo

sure ([NO80]) (which is fast) is needed for deciding validity of logical formulas which arise

during reachability analysis.

5. After value propagation, it is checked whether the created memory and predicate table has

been encountered before. If not, the ranges of HM and Hp are extended.

The complexity of the algorithm is based on the complexity of the finite partition, the number

of predicates in the datapath, the amount of communication from the finite partition into integer

partition (the set w), and the number of distinct pairs of (lp m) atevery point in time.

Remark If only integer functions and predicates are used, there arc no constant creators, and

the integer latches are initialized to a finite set of values, then the ICS terms obtained during

value propagation are integers, and can be evaluated using the computer's arithmetic functions.

This situation might for instance come up when handling a complete micro-processor. In this

case, the above algorithm can be used to generate all states reachable within n steps. If there is

no non-determinism, then the algorithm reduces to a simulation algorithm, which uses BDDs to

represent the control part, and uses the computer's arithmetic functions to compute the values

encountered in the datapath.
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8.6.2 Comparison With Previous Work

Three previous works are most relevant.

1. Functional Equality. [BD94] introduced techniques for checking equality of two functions:

one corresponding to flushing the pipeline first and then running one instruction on the specifica

tion, and the other corresponding to running one instruction on the implementation and then

flushing the pipeline. This type of verification can be approximated (by comparing the reached

states along die two paths) using ICS models, and its verification is dccidablc, since the pipeline

is executed only for a finite number of steps. The disadvantage of [BD941's method compared to

the ICS approach is that it is very specialized, i.e., general property checking cannot be done.

However, it might have a computational advantage on those problems where both techniques are

applicable.

2. Extended Temporal Logic. [CN94] introduced an extended temporal logic, called ground

temporal logic, with pretty much the same expressiveness as ICS models. They suggested that

transition diagrams be translated into this logic, and the validity of the formulas be checked.

This approach has the same drawbacks as when validity of linear temporal logics is used as the

computational means for verification; there are no known efficient procedures for model check

ing a linear temporal formula by checking the validity of an LTL formula expressing both the

transition structure and the property. In particular, one can expect that systems with large control

circuitry cannot be efficiently model checked using this approach.

3. Multi-Way Decision Graphs (MDGs, [Cor93]). MDGs, which can represent finite and inte

ger latches as one data structure, do not appear to be directly applicable since they do not provide

any means for representing memories or predicates.
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Chapter 9

Verification of Memory Systems With Out Of Order Execution

9.1 Introduction

In orderto achieve higherperformance, a memory module mayservice requests issued by a pro

cessor out of order ([Dub88], [GLL90]). In general, the more relaxed the memorymodel, i.e. the

more out-of-order execution is allowed, the higher the performance. However, this extra perfor

mance comes at the cost ofmore complicatedprogramming ([AH90]). Recendy, there have been

efforts to develop formal models for such memory systems ([SFC91], [Col92]). These models

concisely specify the memory system, and allow for manual or automatic verification. One such

formal model is the partialordermodel ([SFC91]), which consists of a set of mathematical prop

erties that the memorymodel has to satisfy.

In this chapter, we expressthese mathematical properties using co-automata. Language contain

ment can then be used to automatically verify that these properties hold for a hardware system.

We refer to this type of verification as hardware verification. In some cases, one may want to

verify the correctness of programs written for some architecture, where an architecture is a fam

ily of memory systems satisfying a set of properties. We present a general framework based on

language containment to perform such software verifications. An approach used previously

([DPN93]) is to take an abstract implementation, and prove the properties of the programs run

ning on this implementation. However, this technique cannot guarantee that the program will

have the desired property running on any implementation of the memory model unless it is

proven (possibly using a theorem-prover) that the abstract implementation is the most general

implementation of thearchitecture. In contrast, ourtechnique provides sucha guarantee.

The size of the state space is a key limiting factor in automatic verification using state space

exploration. The state space depends on the numberof data values, lengths of the internal buff

ers, number of processors, and number of memory locations. Ideally, we would like to verify

systems with all these parameters being unbounded We use abstraction results from chapter 8 to

reduce the number of data values to just two, and the number of memory locations to a small

number without losing any accuracy in our verification, once the number of processors and the
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sizes of the buffers are fixed. As an example, we study SPARC'S V8 memory model ([Sun90]).

We describe the complete formal specification, and give some experimental results on a simple

model. The BDD-based verification tool SMV ([McM93]) was used for our experiments.

The chapter is organized as follows. In section 9.2, we formulate various verification problems

for memory models, and discuss some previous works on verifying memory systems. In section

9.3, the language containment paradigm is introduced, and formal specifications for total store

ordering (TSO) and partial store ordering (PSO) memory models of the SPARC architecture

([Sun90]) are given. Section 9.4 explains how to deal with the complexity of verification by

making simplifying assumptions and by developing a verification strategy. Section 9.5 applies

some data abstraction results and symmetry arguments to simplify the verification task without

losing accuracy. Section 9.6 gives our experimental results. Section 9.7 presents a verification

strategy for memory models.

9.2 Verification Problems for Memory Models

A memory model or memory architecture is a set of properties (also called rules or axioms)

which determine what set of behaviors is allowed. These rules restrict the amount of out-of-

order execution the memory system can have. An example of a rule is: if a processor issues a

store to a location followed by a load from the same location, then the store is performed first

We recognize three general categories of verification problems when dealing with memory

models.

1. Hardware Verification amounts to verifying whether a given hardware system satisfies a set

of properties. This verification arises in two different ways.

a. As hardware designers attempt to increase the performance of memory models, they come up

with new designs. They might then try to formally specify their implementations by checking

whether a given implementation satisfies a set of properties. Hence, verification is used to define

the memory architecture.

b. Sometimes hardware designers are given an architecturalspecification, i.e. a set of properties,

and they would like to verify that their implementation satisfies the architectural specification.

In this case, verification is used to verify an implementation versus its formal specification.

2. Software Verification is the process of verifying that a program runs correctly on a given

architecture. For instance, one may verify that a correctly functioning program on an old archi

tecture behaves correctly on a new architecture. Given a program and an architecture, there are
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two software verifications of interest:

a. Software Property Verification checks that a program running on a given architecture has a

certain property, such as mutual exclusion.

b. Software I/O (Input/Output) Verification checks that given a set of inputs the program can or

cannot produce some set of outputs ([Col92]). Usually, the user has some property in mind to

check for correctness. The designer specifies some initial values (similar to test vectors) and

some set of desirable final values. Software I/O verification is similar to simulation, whereas

software propertyverification more closely follows the classical definition of formal verification.

3. Architectural Verification ([Col92]) investigates the relationship between different architec

tures. In particular, one may ask whether two architectures

a. are distinguishable, i.e. there is some program and some input sequence for which the set of

outputs generated by the two programs is different;

b. have some implication relation, i.e. whether a set of properties imply another set of proper

ties. This kind ofverification is known asproperty implication.

From the above set of problems, hardware and software property verifications are the more

practically significant problems. It appears that software I/O verification is in general used to

checksome property. Hence, by offering a solution for software property verification, software 1/

O verificationdoes not have much practical use. In theory, softwareI/O verification canbe done

in our framework, however,we donot give anymethods for doing so.

9.2.1 History ofVerifying Memory Models

In this section,we describe some previousefforts in verifying memory systems.

9.2.1.1 Partial Order Approaches [SFC91]

Given a program, partial order methods describe the properties of memory systems by a set of

axioms. Assume we are given a finite multi-processor program. Two partial orders on pro

grams' instructions are defined: one on the set of requests (;)> and one on the set of services (<).

These two orders correspond to the relative timing of events. The axioms relate the order of

requests to the order of services. For instance, one axiom might be of the form

(S, /, a,x, /, R); (S, i, b,x, /, R) -» (S, i, a,x, /, A) < (S, i, b,x, /,A), which is interpreted as: if a pro

cessor requests two memory stores to two different locations, then the first is serviced before the

second. [SFC91] describes the axioms needed for modeling TSO and PSO.

The partial order models have been used only for formal specification, i.e. no automatic verifi-

174



cation has been applied to them so far. The verifications performed using them have been

program verifications, where one proves (with paper and pencil) that a small program produces

the desired set of outputs, when run on a system satisfying the axioms of a given memory. For

example, [SFC91] gives the code and proof of correctness for achieving mutual exclusion of two

processes in their critical sections on a machine supporting PSO.

9.2.1.2 Graph Set Approaches [Col92]

In this approach, a graph is built where the nodes are the events in the system. The processors

are allowed to have local memory. Hence, for every read/write event a set of read/write events

(one for each processor) is generated. [Col92] describes two types of verification with this

approach: program and (limited form of) architectural verification. For program verification, one

proceeds as follows:

1. A set ofrules defining the memory models is selected

2. A program consisting of code, initial values of arguments for each memory location, and final

values of arguments is chosen.

3. Each rule imposes a finite set of constraints on the relative ordering of events. These con

straints are represented by a set of graphs, called graph set, where the nodes are the set of events

of the program. A graph set represents all possible behaviors of the program, running on the

given memory model. If any of the graphs in the graphset is acyclic, then there is a possible exe

cution of the program computing the final results from the initial ones. For architectural

verification, [Col92] deals with the fact that a set of rules does not imply another set by giving

counter-examples, and gives a few manual proofs for property implication problems ([Col92],

chapter 15).

The methodology presented in [Col92] is close to ours, in the sense that all possible behaviors

arerepresented. A major disadvantage is a lack ofmethods for dealing with H/W and property S/

W verifications. Also, no efficient algorithms for automating software I/O verification is pre

sented, although it may be possible to automate [Co192]'smethods for it

9.2.1.3 The Operational Model Approach

[DPN93] describes an operational approach. A simple implementation of a given memory

model is developed, which is later proved ([PD95]) to be equivalent to its partial order specifica

tion. What is meant by equivalence is that a memory system satisfies its partial order formal

specification if and only if the behavior of the memory system is included in the behavior of the
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operational model. The form of verification reported is program verification, where the mutual

exclusion for a fragment of a synchronization code is automatically verified. [GMG91] describes

another operational approach to software verification using manual theorem-proving.

93 Automata Models for TSO and PSO

Assume we are given three memory operations load (£), store (S) and atomic load-store (ALS),

p processors, m memory locations, v values, / program labels, and a flag indicating whether the

operation is a request (R) or service (A for acknowledged). An event is represented by a 6-tuple

(operation, processor, memory location, value, label, service/request). Note that we have

assumed that all processors see the effect of services at the same time; this property is known as

atomicityofoperations ([GLL90]). This is in contrast to the models described in [Col92], where

each process has a local memory, and hence the effect of a load or store can be seen at different

times at different processes. The models described in [Col92] can easily be accommodated by

adding another field to the event tuple, specifying which processor is observing the effect of the

operation. We ensure atomicity of operations by having a single shared global memory. If the

processors have local caches, the equivalence of the machine with and without caches should be

verified independentiy.

Since the 6-tuple notation is not very readable, we adapt the notationused in [SFC91] with one

addition: for each operation, a flag is added to indicatewhether the operation is a request (R) or a

service (S). Therefore, La denotes a load from location a by processor i, sfan denotes a store to

location a by processor / of value n, [i^^] denotes an atomic load-store (note the stored

value has been omitted, we will make such abbreviationswhen the meaning is clear), SO denotes

a store operation, O denotes any operation, O-R and O-S represent request and service for

operation O respectively, and (O,n) denotes operation O with label n.

The program labels are unique time stamps. Hence the same operations to the same location at

different times will have different labels. If a request for an operation with label k occurs, we

are guaranteed that next service with label k corresponds to that operation. To get a finite state

system, one has to bound the number of labels of a program. These programs are called pro

grams offinite character, and have a constant bound on the number of un-serviced instructions.

We re-cycle the labels so that we can verify infinite programs of finite character. However, we

never re-cycle a label, until its corresponding operation has been serviced. This fact will reduce
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the number of automata we need, since sometimes we do not need to keep track of all the infor

mation in an instruction, and just its label. For each type of property, we specify the number of

automata needed per processor. Note that for an atomic load-store, the services for the load and

store parts have the same label.

93.1 Automata Specifications of PSO and TSO

Most axioms of a partial order specification exclude some set of behaviors and accept others.

For example, in the model presented in [SFC91], all axioms, except for the order axiom,reject or

accept some set of behaviors. The order axiom seems to be included for technical reasons, aris

ing from dealing with partial orders. We directly translate each axiom of [SFC91] into an co-

automaton such that if a hardware system satisfies an axioms, then the system's language is con

tained in the language of the corresponding property.

Atomicity asserts that an atomic load-store happen atomicalry, i.e. no other stores can occur

between the load and storeparts of an atomic load-store. For eachatomic load-store [L'jsf], we

define the following co-automaton. We need px I such automata, one per processor per label. In

the graphical representations of co-automata, dashed rectangles represent positive fair subsets,

dashededges representpositive fair edges,and text insidenodesrepresentnames of states.

e,se any other
&jL'£] -^n)j^^-S,nir^S (Sd-S,n')

Figure 9.1: The atomicity property

Termination asserts that all stores and atomic load-stores terminate. This is a liveness prop

erty, i.e. a property of the form "something good will happen eventualty." Our specification of

atomicity guaranteed that all atomic load-stores terminate; the behavior where an atomic load-

store is requested and not serviced is not accepted. Hence, we only have to worry about stores

now. For each store &, wedefine thefollowing co-automaton, pxl such automata areneeded

\tf —R n), S—N This automaton
served] T "—^fnt\'\^ specifies that every

xAM^^' store is eventually
\S - S, n) serviced

Figure 9.2: The termination property
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Value asserts that the value returned by a load issued by processor i from location a is the

value written by the "last store" to location a. We will denote by v[sJJ and v[lH the values

of a store or a load service to location a by processor /'. The automaton for this axiom stays in

its initial state until it receives the request s/a-R or sfa-S (servicing ofastore by adifferent pro

cessor). At this point, the automaton remembers the value to be stored. When L'a-R occurs the

automaton sets a flag and waits for L'a- 5, at which point it compares v[z/J with its remem

bered value. If they arenot equal, die automaton goes to a dead state. The automaton requires

2v +2 states, where v is the number of datavalues, pxlxm such automata areneeded.

1. init-if^-R goto (v[s^], OJ
else if S/Q-S goto (v[s£),o)
else stay put

2. (k,0):\fSfa-Rgoto(v[^o)
elseifS/a-5goto(v[s/J,o)
else if {Lla-R,n) goto (A, 1)
else stay put

3. (k, 1) :if (l!a - S, nj and v[z^] =kgoto init
else if(LQ - S, n) and v[iflJ *kgoto dead.
else stay put

4. State dead: stay put.

Figure 9.3: The value property

LoadOp states that if a processor issues an operation after it has issued a load operation, the

load is serviced first, i.e. loads are "blocking." For every load l' and every operation O*, we

define an co-automaton as follows. We need px I such automata.

Figure 9.4: The LoadOp property
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StoreStore (TSO) states that for every processor, SO's are serviced in the same order as

requested, px Ix (/ - 1) such automata are needed.

Figure 9.5: The StoreStore property for TSO

To specify PSO, we leave the first four axioms unchanged. We add the following two axioms.

StoreStore (PSO) states two SO's of a processor separated by an stbar are serviced in the same

order as requested, px Ix (l-\) such automata are needed.

Figure 9.6: The StoreStore property for PSO

StoreStoreEq states two SO's of a processor to a location are serviced in the same order as

requested. We need px Ix (/-I) xm such automata.

Figure9.7: The StoreStoreEq property
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9.4 Hardware and Software Verification

In this section, we discuss how one proceeds to verifymemorysystemsusing the language con

tainment paradigm.

9.4.1 Hardware Verification

In formal verification, one models the system as well as its environment The environment in

our case is the set of all possible programs. To model the instructions, for each processor, we

add a process which non-deterministically chooses any instruction to any location with any

value. Foreach processor, there is a memory buffer which stores the store requests of theproces

sor. If die memory buffer is full, the "noop" instruction is generated. Thelabel of thegenerated

instruction is any available label, where an available label is one which is not the label of any

pending instruction

9.4.2 Program Verification

Assume we are given a program,a memory model, and a property on the program to check. As

an example, assume we have a set of processes, running on a PSO memory model. To gain

exclusive access to its critical section, each process attempts to set a lock using a spin lock proce

dure. If successful, it enters its critical section and after exiting it resets the lock. To implement

lock and unlock procedures, one can use the following algorithm ([Sun90] with some modifica

tions). Note diat 0 means lock is free.

%'ocKrlb'clc)
retry: atomtcally load lock into a, and store 1 into lock.

if a = 0 goto out

loop: load a into lock

if a * 0 goto loop elsegoto retry
out:

inlocK(lock)
Stbar

store 0 in lock

Figure 9.8: Lock/Unlock algorithm

A safety property one might want to verify is that no two processes enter their critical sections

at the sametime. A liveness property of interest is that all processes eventually enter their criti

cal sections. To deal with non-memory related operations such as test or jump, one can either

180



model all operations ([DPN93]), or turn the programs into automata specifications using only

loads, stores, and atomic load-stores. Note that by using an automaton to model the program,

some details, such as the program counter, need not be modeled. Figure 9.9 presents an automa

ton for the above algorithms.

f '(file

(retry) >(

[L'locka'^lock]]-S I
and a = 0

KM

else

(a = 0)

\l!alock\-R
loop)

[L'a]-SA(a*\)
true

Figure 9.9: Automaton correspondingto LockAJnlock algorithm

The following automaton checks for the mutual exclusion ofthe processes.

dp

(CSX arS~2 a^a...a Z^"\ or
(CS2 a£3J aU5~2 a... aUS')or

(CSn AC5J ArS"2 A... ACSnl)
<p

Figure 9.10: Automaton checking mutual exclusion

The following co-automaton checks that processor / finally enters its critical section

CS,

Figure 9.11: Automaton checking critical section is reached

We now show how one can verify these properties for an architecture using language contain

ment Let A be an architecture, P a program, and T a property which should hold of P running

on A. L(P) and 1(7) are well-defined. Let L(A) be the intersection of the languages of all

axioms which involve amemory request of P. For example, if [^Jo^^l] - R is amemory

request generated by P, the atomicity axiom is intersected with L(A). The number of such
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automata is finite and proportional to the number of memory requests of the program. We call

the intersection of all such automata the most general implementation (MGI) ofarchitecture A

given program P.

Lemma 9.4.1 Program P has the property T for any implementation / of the architecture A

iff L(A) nL(P)QL(T).

Proof Since L(I)QL(A) for any /, if L(A) n L(P) QL(T), we have that

L(I) C\L(P) QL(T), i.e. P has the property T running on /. Now assume P has the property

T for any implementation /. The set of all possible axioms constitutes an implementation.

However, the axioms not involving memory requests of P do not constrain L(A). It follows

that 104) C\L(P)QL(T) (QED).

Let O be an abstract operational model. It is easy to check that L(O) HL(P) QL(T) and

L(O) QL(A) . However, it may be the case that L(A) <£L(O), in which case for some imple

mentation /, L(I) CiL(P)qlL(T) may be true although L(O) DL(P)QL(T). Hence, by

verifying the program runs correctly on an operational model, one cannot guarantee that the pro

gram has the desired property for all implementations unless it is proved that the operational

model and the architectural specification are equivalent The disadvantage of the MGI approach

is that L(A) 's representation may be large (in terms of state space). A back of envelope compu

tation is as follows. The current verification techniques are expected to handle about 20-100

automata, each having 4 states. If the architecture has 10 rules expressible by roughly 4 state

automata, and for each instruction on average 4 apply, then the program is allowed 5-25 different

memory request. This seems to cover a large number of small test programs.

9.5 Abstraction and Symmetry in Memory Models

A memory model has four parameters: processors, memory buffers (to queue up memory

requests), data values, and memory addresses. One would like to verify the rules of the architec

ture for any system with any values assigned to these parameters. However, when using state

space exploration tools, one needs to give finite instantiation to all parameters. In this section,

by applying results of chapter 8, we show that once the number of processors and memory buff

ers is fixed, one can verify all of the properties with binary data values, and a small number of

memory addresses without loss of accuracy in verification. Using the fact that our implementa

tion of the memory system is symmetric, we then show that from each class of properties only
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one representativeneeds to be verified. For example, if the termination property is proved for a

representative processor and label, then it holds for all processors and labels.

9.5.1 Reducing Memory Addresses and Data Values

Let p be the number of processors, m the number of variables holding memory addresses, and

T any property except for the value axiom. The data values get produced, move through the

memory buffers, but they are never looked at. Hence, the verification of T is independent of the

data values, i.e. they can be deleted. Moreover, since the memory is never read, although it is

written to, it can also be disregarded in proving T. The memory addresses get produced non-

deterministically by the processes, and move through the buffers. The memory system may com

pare them against one another, but does not perform any other operation on them. Chapter 8

shows that for such systems, called data semi-sensitive controllers, T can be proved using only

m + 1 values for addresses.

Now let T be the value axiom for aload L,'a - R. When memory services the load, i.e. l! - S is

set, either the value is retrieved from the buffer, or from location a. Note that the values written

and read from memory do not affect the model, since the model ignores the values read from the

memory. But the property automaton is sensitive to the values written to location a. In this

case, the memory cannotbe disregarded. We show a simple generalization of results of chapter 8

tells us that only m+ 1 locations suffice. Assume there is an error trace e given unbounded

memory. We will show there is an error trace e where there are only m+ 1 memory addresses,

the control and data values are the same as in e, and the values written to a in e are the same as

those written in e. Hence, e is also an error trace. To obtain e from e proceed as follows.

Every address in the system is produced non-deterministically by the processes. If any such

address is a, leave it unchanged. Otherwise, change it to one of the other m values so that two

memory addresses are equal in e iff they are equal in e. Note that since there are m buffers,

therecan be at most m outstanding requests, hence m distinct addresses. The control signals are

left unchanged, and the values written to a are the same as e. We conclude e is also an error

trace. Since the number of memory locations is finite, the system is a data insensitive controller

with respect to data values. By the 0-1 theorem of chapter 8, we have that two data values suf

fice to check the value axiom.
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9.5.2 Reducing Number ofProperties Using Symmetry

Consider a property such as termination. Given a processor, we have to check this property for

every label. Assume we have checked the property for label 0. We will show the property holds

for any other label / when the system is symmetric with respect to labels (the notion of symme

try can be made precise as is done for example in [IP93]). Assume not, and consider an error

trace e. Replace every occurrence of label / with 0, and every occurrence of label 0 with label

/. By symmetry with respect to the labels, the error trace still remains an error trace. This is in

contradiction to the property passing for label 0. Hence, we conclude that the property holds for

all labels. By using similar arguments for symmetric systems with respect to memory locations

and processors , we conclude for every property, it suffices to check only one representative.

This is a substantial decrease in the number ofproperties which have to be checked

9.6 Experimental Results

In this section, we describe our experimental results for hardware and software verifications.

9.6.1 Hardware Verification Results

In our hardware model, there are two types of processes: one modeling the processors, and the

other modeling the memory. The system consists of one memory process and two or more pro

cessors. Memory and processors communicate through store buffers: there is one store buffer

per processor. A processor enqueues its store instructions (both store and load-stores). We make

the assumption that only store instructions enter the store buffer. Hence, loads are modelled as

direct reads from memory or the store buffer. When the memory choosesto service a processor,

it dequeues the store instruction from the respective queue. The memory non-deterministically

chooses which processor to serve next. For liveness properties (such as the termination axiom)

this means that we need to introduce fairness constraints excluding the possibility of starvation

for a process.

For verifying the memory axioms, we let each processor execute a non-deterministic stream of

load and store instructions. All processes interact according to an interleaving model of computa

tion: at each "clock tick" at most one process is active and updates its state variables while all

state variables of the inactive processes hold their previous value. Again, to ensure progress of

the whole system, we need to introduce the fairness constraint that each process is active infi

nitely often. Since the store buffer has limited depth, processors can only handle as many un-
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serviced store instructions as there are slots in the store buffer. This reflects the limitation that

we can only verify infinite programs with finitely manyopen requests. In order to verify proper

ties involving more than one un-serviced store in a row we need to attach labels to store

instructions. The number of possible labels is the total number of un-serviced store requests

allowed in the system. Each processor has the same number of possible labels; this number also

determines the depth of the store buffer.

Some bookkeeping is required to "recycle" the labels as they become available. Every label

has a one bit flag that keeps track ofwhether it is used or free. When a storerequest with a par

ticular label is entered into the buffer, the label becomes used. When the memory services a

request, the corresponding label becomes free. In order to use the symmetry argument intro

duced above, a processor needs to choose a free label arbitrarily instead of choosing it in a

particular order. Note that in some cases, it may actually be advantageous to use an asymmetric

model initially in order to reduce the state space and possibly obtain answers faster.

Table 9.1 summarizes our experiments for hardware verification. For each experiment, we

combine the same model of a processor with either a TSO or PSO model of the memory to build

the complete system. We verified the following axioms: termination, order of stores is preserved

on the TSO model (StoreStore-TSO), order of stores to the same address is preserved on the PSO

model (StoreStoreEq) and the value axiom (value), term was verified on the TSO model for sim

plicity. The number behind a property's name stands for the two different system configurations

we examined to see how the verification scales with larger models: configuration 1 has two pro

cessors and store buffers of depth two and configuration 2 has three processors and store buffers

of depth two. For our experiments, the number of addresses are the same as the depth of the

store buffer. All experiments were run on a Sun Sparc-10 machine with 128 MB of memory. No

optimizing options were used for SMV. The table lists the number of state variables in die sys

tem, the number of reachable states, the time it took to compute the set of reachable states, the

time spent in property verification, the total time including compilation, and the amount ofmem

ory used. Compilation includes parsing, semantic analysis, and building the transition relation.

Note that the verification time is only the time spent for verifying one representative set of param

eters, since we are using the symmetry argument. Configuration 2 of the value property took

much more space and time than all other configurations. The table shows that we can verify axi

oms for systems of interesting sizes in reasonable time. It also demonstrates the state explosion

for larger systems.
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Table 9.1: Hardware verification results

Prop.
# of state

vars
# of reach states

reach state

(sec.)
verif.

(sec)
total time

(sec)
mem

(MB)

termination 1 40 1.59 xlO8 23.4 10.2 44.4 3.9

termination2 57 1.29xlO12 410 282.3 722.9 25.8

StoreStore-TSOl 42 1.67 x IO8 40.5 0.13 51.6 3.7

StoreStore-TS02 59 1.35 xlO12 671.8 1.0 704.4 34

StoreStoreEql 43 6.04xlO10 31.2 0.03 44.9 3.6

StoreStoreEq2 60 6.04xlO15 557.1 0.03 588.9 34

valuel 46 3.36 x IO9 229.4 0.28 255.9 14.76

value2 65 1.08 xlO14 19421.6 4.9 19451.8 201.8

9.6.2 Program verification results

In this experiment, we modeled the synchronization code from section 9.4.2, and verified the

mutual exclusion property: no two processors can be in their critical sections at the same time.

The model consists of one automaton per processor that models the synchronization code as well

as a number of automata representing the axioms needed to make the property pass (the most gen

eral implementationof section 9.4.2). The two configurations we verified (critl, crit2) have two

and three processors respectively. The verificationtime is the time needed to verify that no two

processors can be in their critical sections at the same time. Compared to hardware verification

the size of the state space here is much smaller, leading to shorter run times and smaller memory

requirements.

Table 9.2: Software property verification results

Prop
# of state

vars
# of reach states

reach,

state (sec.)
verif.

(sec)
total time

(sec)
mem (MB)

critl 22 3376 5.1 2.5 1&6 4.67

crit2 32 1.16 xlO5 79.5 87.7 177.8 7.32

9.7 A Verification Strategy for Memory Models

We propose the following strategy to design and simultaneously verify memory systems with

out-of-order servicing of requests.

1. Design a formal specification for the system. First develop a set of small programs, and
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specify their correctness criteria. Come up with a set of properties of the system which is

believed to characterize the system, and writediem as automata specifications. Verify, usingthe

most general implementation (MGI) concept, that these properties aresufficient to imply the cor

rectness of the sample programs. Given a large and general enough set of programs, this

procedure may be used to derivethe axiomatic specification of the system incrementally.

2. If needed, designan operational model. For example, for applications programmers, it may

be easier to work with an operational model. If so, design such a model and verify that it satis

fies all of the properties. If the operational model is simple enough, it may be possible to verify

that it hasexactlythe sameset ofbehaviors asme MGI usinga theorem-prover.

3. Verify the hardware system satisfies its formal specification. Performthe verification hierar

chically, i.e. verify the hardware system before irrelevant details are added For example, if it

can be proved that the system with and without local processor caches has exactly the same

behavior, prove the correctness of the system with respect to out-of-order execution with no

caches.
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