Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A BDD-BASED ENVIRONMENT FOR FORMAL
VERIFICATION OF HARDWARE SYSTEMS

by

Ramin Hojati

Memorandum No. UCB/ERL M96/44

12 July 1996

A BDD-BASED ENVIRONMENT FOR FORMAL
VERIFICATION OF HARDWARE SYSTEMS

by

Ramin Hojati

Memorandum No. UCB/ERL M96/44

12 July 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

A BDD-Based Environment for Formal Verification of Hardware Systems
by

Ramin Hojati
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Robert K. Brayton, Chair

Validation is the bottleneck in many designs. If the designers are to design more complicated
circuits in less time with higher quality, better validation techniques are needed. Automatic formal
verification is a very promising approach, which has received wide-spread interest, especially after
the advent of Binary Decision Diagrams (BDDs) which have enabled the verification of some real-
istic examples. This thesis describes an environment for formal verification based on BDDs. Such
an environment can be used as the basis of a prototype for an industrial-strength verification tool

for hardware systems.

To create such a tool, several issues have to be addressed: concurrency model, fairness con-
straints, specification formats, efficient BDD-based algorithms for verifying an implementation
versus its specification, early failure detection, generation of error traces, state minimization, and
data abstraction. In this thesis, solutions for some aspects of the above issues is provided, trading
expressiveness with efficiency in many cases. Many of the algorithms have been implemented in

our prototype verification tool, HSIS, developed at UC Berkeley.

B By

Professor Robert K. Brayton
Dissertation Committee Chair

Contents

Contents iii
List of Lemmas and Theorems vii
List of Figures X
List of Tables xii
Acknowledgment X1
1 Introduction 1
1.1 MOUVALON.......ocitiriieecneereineeeseesesesaeserassesessessessessssessessssensansenssenes 1
1.2 OVEIVIEWcoruiiuiiiereceiesisestsesresesesessessesssassssesessesassesasassensessssnssnnn 2
1.3 Related RESEArCh.........ccovvvrreeneerererrneceireraseeesesessesssssessessessssssesensens 3
1.3.1 BDD ReSearchccooeeiveneririeneninenieneneseesensessessessessessensens 3
1.3.2 Theorem Provingcccoeeeevieieceevenenienresenreeresesesesrsesnssessenenns 4
1.3.3 Timing Verificationccccovveveererrerereneereneneeeresseseesessesssennes 4
1.3.4 Explicit State EXPlOrationccceccvrureereererresserrueneessessessessenne 4
1.4 Organization Of the ThesiScccceerreverererrenrernereetrereesreee e seesaens 4
2 Combinational/Sequential Concurrency Model and BLIF-MYV 6
2.1 INTOAUCHON......corererreereerieenreiereseereseresseseeseseessesaesasssensessassssrasssenes 6
2.2 The Combinational/Sequential (C/S) Concurrency Model................ 7
2.2.1 SYNLAX (oot rretee e e e r s seesae s resesaesnesneesesanene 7
2.2.2 Operational Semantics of C/Scccocoivvrnniniiirncneicenennenns 7
2.2.3 Denotational Semantics 0f C/Secoveeenvrrerrenrrnrncereceeeene 10
2.2.4 Representation Using BDDsccocovevercrevvencenieenenseensensensneene 10
2.3 Combinational/Sequential versus Other Concurrency Models.......... 11
2.3.1 Product of Safety Automatacccceeveurcceceescrcsisenscsseseesenaeas 11
2.3.2 Selection/Resolution Modelccocevivevvininvnsnncninnennnnecnne 12
2.3.3 Asynchronous Shared Memory (ASM) Modelcccoeerneenene 15
2.3.4 Node SYNCHIONOUScccrveruerrncreerenenenresansesnssuesssscensoneseossnsanenese 17
2.3.5 Kripke StHUCHUIEScccceverveerirreecreeenrseeeseeeneennsereessesseesassnnseneene 17
2.3.6 Summary of Concurrency Modelsccccceveeercernreneeneecsnenne 18
2.4 BLIF-MV ...ttt eestetsseeese st enssssssssessssesasenesesnsessases 18
2.4.1 BaSiC SYNLAXoccevivrvenrinurierrerinsennesessosessesssssessosesssssessesssessonsens 19
2.4.2 Additional FEaturesccccceeevecerereerenreneereneereesessesessessesasaens 24
2.4.3 Possible Future Changes and EXtensionsccccceevceveecveverenen. 26

iii

3 Early Quantification and Partitioned Transition Relations 27

3.1 INrOAUCHIONcoceieeiinirceerceetcsecnre et csnst e sesrnssanssstessessesassne 27
3.2 The Early Quantification Problem...........ccocceveveereeeerereerrernenccensssenens 31
3.3 A Greedy Algorithm for Early Quantification.......c.cccccocuvruenrierucnnnae 35
3.3.1 Data Structures for the Greedy Algorithmccceoevevrviinenee 36
3.3.2 The Greedy Algorithm in More Detailccceceeurricuereccnnnnnne 40
3.3.3 Complexity of the Greedy Algorithmccocevveeverceicncirecnnene 41
3.4 An Exact Algorithm for Early Quantification Given A Linear Order 41
3.4.1 COSt FUNCHONScceverueerrenrarrennsereesesesnnernenssnesessnssessassssssessssans 42
3.4.2 Correctness and COMPIEXILYc.ccecerereeerereerererrereesaessecsassessanes 43
3.4.3 Obtaining Linear Orderingcocvveeeeenvenirccsersesnsscssccersesscsaens 43
3.5 Experimental Results for Early Quantification........ccccoceeereeceeverenes 44
3.5.1 Experiments Building the Transition Relation of a Single FSM 44
3.5.2 Experiments Building the Product Graphccceceeeverervervnnenns 46
3.6 Experiments with Partitioned Transition Relationsc.cccecervueneee 47
3.7 CONCIUSIONSceeoveireerrrerenreeirresesesssaesesesseressssessesessssseresasssenesnesees 48
4 Symbolic Computations for Language Containment and Fair CTL .50
4.1 INtrOQUCHIONcoieeerieirirreereereneetraeesaeessssesessesesessasesaesesseseseessssssenes 50
4.2 Fairness CONSITAINLScc.ooccveueeriernrereresensseseesssssseressessosessessossesesasses 52
4.2.1 Positive Fairness Constraints (PFC)cocovveennrvenneeviieissneennns 53
4.2.2 Negative Fairness Constraints (NFC)ccccecveveeeeeevevvereennen. 53
4.2.3 Edge-Streett AUtOMALAccceveeeeeerrcnrneerinresessesnesessessescssssneneas 54
4.3 Computing Fair States.........cccecereererrreveeeeerrrreresesessessesssssssssesassessesesses 55
4.4 Fair CTL.....ucoiiriniiiniiiiinininiiicieneesessssessssssesessesssessssesasssassesssnes 59
441 CTL ..o erererese sttt sstsasassesesestssesassesssessanesessssesnas 59
4.4.2 Fair CTLoovovvvvverenee s 61
4.4.3 Fair CTL Model Checkingccccoevveverveverererererereessaenennneenene 61
4.5 Language CONtainmeNntccceerereerererereneneresneressesneresseseessnenseseses 63
4.5.1 Edge-Rabin AUtOmatacccceeeveeereereneereerreneinieecreeneenreeessne 65
4.5.2 Language Emptiness Check for Edge-Streett Automata 66
4.5.3 Expressiveness of Edge-Streett Automataccovevenenennnnes 67
4.6 Complementary Nature of MC and LC..........ccceeereeeeerercrerenernnn 68
4.6.1 A Property ClassifiCationcccocceeueeeererninerecerereressereserennens 68
4.6.2 MC VErsus LCoooeeirrirenerenesreseeereresreesesensnesssssssssssene 70
4.7 Early Failure DeteCtioncccecvveveuremneeereiecveseseesennesesessesesssssesssseses 71
4.7.1 Early Failure Detection for LCcooocvvvveereevrceeeenceesieeee 72
4.7.2 Early Failure Detection in Fair CTLc.coeeeveervereeeerereenrnnnen 73
4.8 Hierarchical VerifiCation...........ccccceevueeveverernueeereseseeseeesesesesesesesnnne 74
5 Generating Short Error Traces 77
5.1 INTOAUCHON......ccccuirrrererrrrsieceesrrerer et seesesesssnesessssesessssaeanes 77
5.2 UHHHEScoueveeeeeeeerercriernieiisiessesesesereseseseseseesesssesesssssesesesssssnsssonens 78
5.2.1 Finding The SCC of A Statecccceoeeerererererererreeeerenerenenens 78
5.2.2 Finding A Shortest Path Between Two Setsc.cceevereurnenen. 78
5.3 Debugging Algorithms for Language Containment........................... 79

iv

5.3.1 Finding a Path to a Fair Stateccccceeevverereneevenenrneceiserenenns 80

5.3.2 Finding A Fair Cycle in the L-Environmentccccceeeveennne 84
5.3.3 The edge-Streett Casecccoeererererrereneerrensenressesssssensesessnesens 87
5.4 Debugging for Fair CTLcccccvceverreverrerirenenesrenssesnesesesssssesesseses 88
3.5 Algorithms of [CGMZOS]........cccovmurriiirenererernnrenessnessssssssseseseneens 92
5.5.1 Debugging For Formulasccccceverrevecrrereceeseneeeereeseeneens 92
5.5.2 Debugging for Streett COnditionscceceevvvererenrererneserennne 93
6 Improving Language Emptiness Check Using Fairness Graphs 95
6.1 INIOQUCHONovvrnreervrensnrasrrnseestes s eessessssssessecssessesasssrsssessassssssasens 95
6.2 The Faimess Graph and Its Propertiescocoeveuerereenerenerereserenennne 96
6.3 Building the Fairness Graphcocccoevevevenevenencnnneeeressesensseresenens 98
6.3.1 AIZOTLIIMNSccoiinreirrererrnrenrrersnrtesesreasaeseseesessssassssessessessanes 99
6.3.2 Improving the Structure of the Fairness Graph 100
6.4 Clustering CyCle Sets.......cccouvreirreererrnrrntrrrreeersnssesesssssssessessesessesesne 105
6.4.1 The Clustering Problemccccoceovevenrreeerieeeceneeee e, 106
6.4.2 HeuristiC CIUSLEIINGcceevevrerereerererieereerersesessessesessesssssesensenenees 107
6.5 EXPEIIMENLScouercemererreerriereessesensessesesessesassasassessessessssesersessssensesens 107
7 Computing Fair Simulation Relations 109
7.1 INTOAUCHON.......uciriitieiecienrieeisesssrresseesesesresenessesesessesasasseessssasensesns 109
7.2 Simulation Relationsc..ccccovvenunrieenercnenrnieresesensssssesseesesssresssesens 110
7.2.1 Safety Simulation Relations and Language Containment 111
7.2.2 Computing Safety Simulation Relationsccccecevererurrennnnnn 113
7.2.3 Complexity of Checking and Computingcccceceeveevenrenenene 115
7.2.4 Output Determinizationc..ccceveveererreseereesessesessssesesseassessens 116
7.3 Fair Simulation Relations...........cccoecievmrevinieneniernenenrensrenssensensesesnenens 118
7.3.1 Preliminary Definitionscceeceveveereeerenreceeeereeeeencreenenens 119
7.3.2 Existential Fair Simulation Relations (EFSR'S)ccccoeoun..... 120
7.3.3 Universal Fair Simulation Relations (UFSR'S)ccccoo...... 123
7.4 Algorithms for Approximating UFSR's.........cccococeveeiivenrnrnniereennene 127
7.4.1 A Fast AlZOrithimc.ccccovveiveeererenreerrrerere e seeeenes 127
7.4.2 Better ApPProxXimationsc..cccccecevceeerieeneeermeesesesesessnssrnserens 129
7.4.3 Static Fair Simulationsc.ccceceveverervenieneecenennreeeserassnsessenes 131
7.5 Comments On EXPETIMENLSccccveeeuereerenrrneceeruereesressereessesseseenenens 132
8 Automatic Datapath Abstraction In Hardware Systemscccceeeane 133
8.1 INTOQUCHON........eceeeerrrreiieeeecenereeeraereesesssenaensesesesessesersssssessersseraraens 133
8.2 Integer Combinatorial/Sequential (ICS) Concurrency Model............ 136
8.2.1 SYNLAX ..cooirurereireererrereeriresesriresesessesessest et sessesessesesnessessssessssens 137
8.2.2 Operational Semantics Of ICScccooeeveeiiieveerecreceereereerenens 139
8.2.3 Creating ICS Models From the HDL Verilogcccccoevenne. 140
8.2.4 Faimess Constraints and Language Containment 141
8.3 Data Insensitive COntrollers............ccevueeveruenerveserreniesaeesvesesuesessessenes 144
8.3.1 0-1 Theorem for Data Insensitive Controllerscececeeerurunne. 144
8.3.2 An Application of the 0-1 Theoremcccoceeeeeereeveeneenreenenne. 147

8.3.3 Recognizing Data Insensitive Controllerscccevvrrvrveevenencne 147

8.4 Data Semi-Sensitive CONtrollers...........ccceveerereeuerrereeseereneenuereseneeseens 148
8.4.1 Data Comparison CONtrOlIErScccevceeevrerversesnesneresmseeseesones 149
8.4.2 Other Types of Data Semi-Sensitive Controllers 151

8.5 Verification Using Uninterpreted Functions and Finite Instantiations 155
8.5.1 OVEIVIEWcouiiceiinnenennennneesesesssiesesesssssessessesssssnensessssssanssssanss 155
8.5.2 Main ReSULsccceeueinerreirrereencirreeseneseereseensssenea e sassennesesnes 157
8.5.3 Applications to Superscalar MiCrOProCessorsccoeerereeneeens 164
8.5.4 Conclusions and Future DIireCionscceeereeeenecveresaeresseeenes 167

8.6 Symbolic Execution of ICS Models..........cccccorvrerrerrnerrenrecreseeceeseerenns 167
8.6.1 Reachability Analysis of ICS Modelscccceeerueeeecarecnecees 168
8.6.2 Comparison With Previous Workccceeveeevvennncnnccceennnnnens 171

9 Verification of Memory Systems With Out Of Order Execution 172

0.1 INTOAUCHONcoeerereirecreieserresrerenreesssresseesresessessessssessesssssssessessesens 172

9.2 Verification Problems for Memory Models.........c.cccevueurruecerreerneeeneas 173
9.2.1 History of Verifying Memory Modelscccoceeverreveerierennene. 174

9.3 Automata Models for TSO and PSO...........cccvevnevevievenncrerenereeenene 176
9.3.1 Automata Specifications of PSO and TSOcccceerveveerevenee 177

9.4 Hardware and Software Verificationc.cccooeeeerevenenereeresveneneeneens 180
9.4.1 Hardware Verificationc.ccceevereereeenreereresesnesssesesessesssnns 180
9.4.2 Program VerifiCationccccceeeeerereccnrnerenaesesssesseesesessesassescses 180

9.5 Abstraction and Symmetry in Memory Models.........cccccerureerrnennnen. 182
9.5.1 Reducing Memory Addresses and Data Valuescccceeeeeee 183
9.5.2 Reducing Number of Properties Using Symmetry 184

9.6 Experimental RESULLSc.cocvceerrrreerirrrneeeirrerennreseeseseesssessssnsesseseons 184
9.6.1 Hardware Verification Resultscccecevevverevenrevennerenrerennenence 184
9.6.2 Program verification IeSultsccoerevereereresenrernenesesenneseseenes 186

9.7 A Verification Strategy for Memory Models...........cceceevererrrrereneenne 186

Bibliography 188

vi

List of Lemmas and Theorems

Lemma2.2.1coovvevvvevneenanne. 7

Lemma2.2.2 crrerrernenreaes retreraesseernesrersaresanesanens vereesrneerenrennns rreereeen8

Lemma2.2.3 ...eoieiieeeceeeeeeeeeens 9

Lemma2.24 rerrrennens tereeererreesrresnreesarens verveeraneenens terreererueeesssnnrenennnas 9

Lemma 2.3.1 ... eeesrreeeeeerieeeessrtaeessrrenenraane verrereeeerennnnnens cerrnneneeeenenee 11
Lemma 2.3.2ooeeeiiieieeeeeeeens reteretereresseesraestaestbeoenaesseesennseesnanan14
Theorem 2.1 reeerreeeereesraeas veereeereraeenenrans terversnrerersraeeesnnes cerreeeeeen 14
Theorem 2.2eeveviieeeeeeecereeeeeenn. reteerreeresreeesnesaens rerrereseraereees ceerreeenenn 14
Lemma 2.3.3 veeererrereesrreeaaeas vreeeeeenane trreerreeesnneesnrrrerrraeensanrresns R [.}
Theorem 2.3ooeeevvvvieeeenne rreereererensaeresaeennens S rerrrrneaeerensnnnnnnns 16
Theorem 3.1 rerrreeerenernraees ereeerirereaeenaeaarans verrrreeeesenennnaranans verreeeereene 33
Lemma 3.3.1 .o see e terererteeesreeeesrareesesresessnes .38
Lemma 3.3.2
Lemma 3.3.3 ..ottt e e st e aenen rreeenrerinerens 39
Lemma3.34 ... tereeernreesnreesrressaresans rrverrreerensrneans verveeeerrnnecssennee 39
Lemma 3.3.5 creeeeeeererreerreesseeas rereerenreeeaeens tererersnresrrreenrneresesnseessenans40
Lemma 3.3.6 rerereerresneeenarennres reenrerreaaes terreessvesssrererssnerrsessarsesesasaesns 40
Theorem 3.2ccoeevvvevvnene reeereereresreenrreaeenresnnans reerrreesrreessreessrressaes " 1 |
Theorem 3.3 ... saenes reesteeseerneeraeseeesneeres s rennaeanns 41
Theorem 3.4cuvveemeeeeeeececeeeeaee reerneererrneenresreas SSUUOROURURUROUURRRRRRY - X |
Theorem 3.5ooveeeeereecnenenee rervernrrerarenaeas reeettrerresraeeseeesraresaeesnraesenaaeesraaan 43
Lemma 4.2.1 ... rreeesrersaeeesnnesrrreenreseraresanen 54
Theorem 4.1ccoouuveeennne. teeerrteeaerteeneerarerae reere s aestas e araeens reeerrreeenn—.. .58
Lemma4.4.1riveeeiniieneens Ceeeerteeeraeestreerateeanteeanneeesraeressnrrresesnnnes 63
Theorem 4.2 e rerreeerreenrreeaes treerveeteesrierreesaaeenraesttesrrnbesrarresrnnas 63
Lemma 4.5.] oot sa e e e e ernne e e naes 65
Theorem 4.3 rererreeesreeesansesraeens veveens treeereesseessresssresssnessrasesssneessaaessO T
TREOTEIM 4.4 ...ttt et te e eeseeeestasesssasesssasessesesssssnesesssnnessanes 72
Lemma4.7.1 ..o rerereeesrareeesraresennaes terrereseesssnnneaneneesannns 73
Lemma4.8.1 treeeeesseeersraeeeenneessnnessnnas trresrseersnaeessnneessnsesesssrsenssssrnsasenss 14
Lemma 4.8.2 ...t sreeseeesaeesrnessaessne e rneesssasasssssessssnrasasesssanne D
Lemma 5.2.1 ..ot trtesreessresnseersseennesssnresssrasersrnsess 1O
Lemma 5.3.1 vevereeees S teeeeeestesraesanesnseeraeestesaneaesnsneessraeeararananen 82
Lemma 5.3.2 treerstersseeesteesntesnreearaserreertessteraressteseseesnaesrerasannn S cernenenn82
LemMMA 5.3.3 .oeoorieeeeecteeerereeeesteercneeseraesseessserssssessssnesssssneesssrasaresssssreessses O
Lemma 5.34ccoevveennenn. rveeenraens eeeerressrreserresarresaraeeenneens IRUPRURURRIN .)
Lemma 5.3.5 ...coovvvveeeriveennen reeteeeeebesarererseseeraestaesreeseenseeseessresnaeeraessrrens OO
Lemma 5.3.6 vevnreees rteereareessaneersraesrteesabaesbae s anaessnsbeas rerrereeeerenerennnne 83
Lemma 5.3.7 tevenreereernneeranns rerrreeerereeerraaeeens tererereereeserennreraananans 83

------- 900000000000 000000t0rs0000000000c0rceTsrtOIROses

Lemma 5.3.8covvveervreeinnen. teeeesaeesraesreerbeebebeeaee tas b ae e raea s beae s besnaearenanss 83
Lemma 5.3.9 ...covvevrrereeecrereeeene. rereersreesteserarenneeas rereerrreennreesarreesnneesseerssee 83
Lemma 5.3.10 ccriiinreenriecneeeeencerenneeereeaens veeeressersressesssessessssssssanssesnnensees OO
Theorem 5.1oeueeeveveeeceeecreecneene eveens treerteesresssressnessressrneersresensesnsnresses OF
Lemma 5.3.11 ..o rreerresaereesresseesaesraeansrans RN .
Theorem 5.2cvcvevervennenrenrenereneesseeeesssesnessessens treeererneeseereeseessasssaerarerse 8D
Theorem 5.3 teeeetesteestestessesteessereshresssrasbensessersesnensessarsnensessasssessessaesserse OF
Lemma 6.2.1 tereeeeraersraeeeeessraessresraeennes teeeerreessranenneneas ISUTURURURRRURRRRUN ¥ |
Lemma 6.2.2 rerreesrsaeeesnnsesrerannes tereesseessnteessraeessanessannaressrnnneas w97
Lemma 6.2.3 ...t sseet s seessesseeneeessenesnnens SOURRRRRRRN * ¥ |
Lemma 6.24 teveerareraaessrassreesnaesaassaens treeerssesesseeeessaeeressranesnnaaranes 98
Lemma 6.2.5cuueeenene. teteerrreerarebnesarestearesrnesaressaesnreans trreernrenennens e 98
Theorem 6.1 verveeens teeeeersteesreatessaetesaeas s tasneaeaae e s aeaansaeesansaeeessraeaeenrananes 98
Lemma 6.3.1 reeteeesreesraresaeeasaesaesranassessaessasserasraessrestasersnresasassnsecssrasonne 3O
Lemma 6.3.2 reerreraesresraerrebestaes creerreessresnesrseessseesssnsessneessnsesnees 30
Theorem 6.2 reetereeesrrreeesraeessrressreeesaressnbeensans vrreenreesraessnnserseecssnesseesenns 102
Lemma 6.3.3ccoeeeunen rreerereesreenresrennns rerverrrassssesesssersssannessrsnesessnneessenees 103
Lemma 6.3.4ooeoeevereeeeeeereenee. teteeerresseeseraeesrresesraseanresessasanerens e 104
Lemma 6.3.5ccovvveevcnerennnen. eereeeerreeerareerterareresereesaeaeer st aeeeraeeeesaraeeesraes ..104
Theorem 6.3ccoeveevveeveeeeecrereceeesneene tereesseeesseessaaeenreesnaaeesrararansareessraees 106
Lemma 6.4.1 eereeertesrreesrrerseeereesassaeanen vrreereeeeseeessenesraessneessnecses 100
Theorem 6.4cuuuveennenne. reereerereeraas tetrreeraersraresreeraeesaresssresnreensnesares 106
Lemma 7.2.1 trteeeerareesnreenaaresaaeanaeesarenns teteeesrreesesnteresnaeaessraaesanes .11
Lemma 7.2.2 rerrveesraaeenns ceretererseesnreesntresraresaaeas teerereeeessnrnreeeserennrasenes 111
Lemma 7.2.3 rerreeereaeerernressrnresenne crreeerreeesrarenaesnns verveersrneeesrvnnnessranesssnnnens 111
Lemma 7.2.4cuueeeveennne revnreees
Lemma 7.2.5 terrveeresrreesrressnnes vereeeveens tertereeesaeeerreesrareesataeenes vereennnnenn 112
Lemma 7.2.6 vrveeereens
Lemma 7.2.7 crreeeerareeraenaes cereeeesraeesreaesaeesaaeerrneeersnaees rreerreesrarennaes e 113
Lemma7.2.8 rveeeeeerreressernesesan eertreesrreeeerraeees verrnrreereessssnnneeenses 114
Lemma 7.2.10 cerrrreeeenaaaees teereereseteesnaeerree e s raeesbraeanneneeserrnrens vreees 115
Lemma 7.2.11 e reerreerereenes oo rreveeeenneesreesanes oo 115
Lemma 7.2.12 ... eeeeseseeneseens vereerreennne rreeerrrersraressaeesareenes 116
Lemma 7.2.13 ceserataeeearsrareesarnnene cereesesseeeessrseaessnnenesessnntene ceveraeeees e 117
Lemma 7.2.14 erereeeraeressassrresnranes .
Lemma 7.2.15 ..t seeee e s see s e e s enns crrerreesreeraenenas ...118
Lemma 7.2.16 ..o e ersaeneseenens veeeerersrresesseesssressrressneees 1 18

®0es0recssvssevessncnansnae *svescscssccsscscsns un-.nuuuuun113

Lemma 7.3.6 teseesererntereeteeesireshbaareseeesshetrreeessnnnnnaneasesanans reeeeeeeeenes e 120
Lemma 7.3.7 reeeerenrane reeeeeerrataseetereenaann terveremrenererarttaettttaanannanre ranennnrnnnnnen 121

viii

Lemma 7.3.8 rreereerreeresresreanesenes rerreraeeaeeraeanas vreeerneerreesreesseesnnens 121
Lemma 7.3.9 cerversneennne cereresreesaeesaeeebeesnabesarasenes
Lemma 7.3.10 .ottt svssaseste st e e e s e e saae s e e snennes 121
Lemma 7.3.11 ..o reeeerrrerrennes rreereseeraeesseesraennans rerrrrreeserreeesanns 121
Lemma 7.3.12ccoueu.e. rereenreens reeereeeeraeererreraeereeneeabeens rereeernereaaens 122
Lemma 7.3.13cuceu.... ereeerererseessesaeerressressnenneresasenee creeerereeesanesessnessanonses 122
Theorem 7.1 teteeerreerserenraesseenns rerreerraeesaeeeens eereesrreeereesrreesraeensas 123
Lemma 7.3.14 crreeeerreeennaes vreereeerrenrennrennns creeeeeraeerersnreessssenesssssnanesssnseses 123
Lemma 7.3.15 eversaresstessrresaassannnnesassases cerveesreraereenraanes cerrrererernenenn 123
Lemma 7.3.16cceveeuveneneee. ceteesttestnesteesresstasraessaesresessaessransrsransssessssessnes LD
Lemma 7.3.17 ... eetrerrertesteesreeenaeeesteerssteessrressrarsnnesan 124
Lemma 7.3.18 reveesrarerereseeseesrenseenseens vrerersreeesssvecssrsrnesessasneessrsraecssnne 1 24
Lemma 7.3.19cccvuvrvenenns cereenreererarenns tteerteessresersraressrsrreeessnaeesenraessanns 125
Lemma 7.3.20cceecuue. creeerreerresrearesseennns errrersesssseessaeessnneessanessssnesssessssns 120
Lemma 7.4.1ccovvvevveeviveecneenn. tteerareesteesaeesraressrneensaaaaeesnaraessnn verreeeennn 127
Lemma 7.4.2 ... reeeertesteeeteestarerteaea st eesharesstreesraesereaesaneenrreeas 128
Lemma 7.4.3 ... rerreeretneenns reeeeeraeresesseresssaranssasnnas eevereeeensnaeeeesnneeens 128
Lemma7.4.4 ... reterueeeressaeeareeaeerreeraesebaeesanseesraesnnras veeeeneee 128
Lemma 7.4.5 ...eveervreverrreenne. reerereeerenreresraesnaennns e creeersrrensrnennnenss 128
Lemma 7.4.6ueeveeeeeeecneecneeneee erreaeens trererrrreeesareeenrareerassaeasennsaes ... 128
Lemma 7.4.7coevvvennen. rresrnesaeerennne reeeerteestaeesreserrresesreneesenrteeeasnreessnas 130
Lemma 7.4.8 rereerraeens rreeeererenesennenane eeenns terereresrreesesnneessarressns 130

Lemma 7.4.10ccuvveveevnenenen. reerrreererresareaaenaes cerrreessersseeeesrsnnseessnnenses 131
Lemma 8.2.1 ...ttt saeeaees teterseeereraeesnreearaseranenenras 139
Lemma 8.2.2 tereereeneeerenresreaees teeeteeeestesnerseesbesreeraenaesraeeraesaatasaraeseenane 142
Lemma 8.2.3 reerrreenreerreesarens rreesrreereenes veeereesrraesrnnessrnerersesssrasessanees 143
Lemma 824 reersrreenenreens teveeerreeesseeeaeesaeesraeennasesraens reerreeeernrrreesnnees 144
Lemma 8.2.5 vveens vreeenrareerrreesraessnreaees crveeene e errreerrvessevensennees 144
Theorem 8.1cuoeerreeiiieiiece e reerressreesareetreeaeesraeresnrennns 145
Lemma 8.3.1 oo treetieeeeisteeesbeessreesraseeaeeesntreeeranne s eerrannesenrnresenaras 147
Lemma 84.1 reerereeseennans reeeerresereeesaeesteeeesartesaareseeerraaeseerrareeseranas 149
Lemma 8.4.2oceevveerrieeeeenene eeraeeas teeeesreaeereessessessreesnresaaesnnanes veeeenneen 150
Lemma 8.4.3 ...t e essesssessnee s aesasesssssasesaneesssnessssanes LD]
Lemma 844 rreeesseessrerereeersesaens ceveveeesraeesaenes cerreeeereeessnreeans vvreeenenens 152
Lemma 8.4.5 ...t rreesree st saeeae s e s e s e s s ae e s aee s e sesnsaanenaees 152
Lemma 8.4.6 ... reeeesaeesreesraeeesnresens rerereeeersnnaeranne 153
LemMA 8.4.7 ..ot ceeer e erstae s ree e sesane s ssaear e ssae e senrsanessssnnanennne 153
Lemma 8.4.8ccovvvvrveereeeenne tereeereresessreseressareanessreesrreerraasenreasanteenrreanas 154
TREOTEIMN 8.2coeeereereecreerreereereertestneneeesesssessessassaessssesssessassssessssasssanssnessas 1O T
Theorem 8.3 cereeesanaenas cerrreens tereessreessseereresssseesssaaesrssseenassnsasesssssnassssnsene LD
Lemma 8.5.1 ..ooveeoreeeciieeeteeenieeenneesrnesteessesessssessssnsessrnssesessrasasesssasassssane LOZ
Lemma 8.5.2 ..o, rreerernreesssaaeaeenrnaraerene reeeeeennraraeeeenen 162
Lemma 8.5.3 ...ccoveerviiernen, eeeeane reereeereerseessressessrresssenesssesrseesersaesssssassssaees 103
Lemma 8.5.4 ...ttt s s e sr e se s aeseesassesnaesesnns 163
Lemma 9.4.1ooieiiiiiiceienteeeccrenresrereseressaesrnreesssessnaesssnnsenssasessnseonse L 82

List of Figures

Figure 2.1: Example of a process in S/Rccccoevriennnicnscocsieniesunseeseesesnnne 13
Figure 2.2: Translation complexity between various models....................... 18
Figure 3.1: Examples of quantification tressccccoceevrerurscrvcencresresennnnns 33
Figure 3.2: Example of tree deCOMPOSItiON.........ccereeereseeriruerisveecseseensanaens 34
Figure 3.3: Quantification trees and tree decOmpoSitionsccovveuenenen. 35
Figure 3.4: A forest and its connection table..........cccoccecreeeeererecenrccnercnsnneens 37
Figure 3.5: Data structures for the greedy algorithm.........cococeverincrnvuenncecns 38
Figure 4.1: Example motivating fairness constraints.............c.ccccevevereeceuencns 53
Figure 4.2: Translating fairness constraints into edge-Streett conditions..... 55
Figure 4.3: Cyclic and acyclic SCCsccccovevrvenmennescnnicenininencneeneenenees 55
Figure 4.4: Effect of stable set OPeratorsccccevveveneeererceneerceeeneeennuenene 57
Figure 4.5: Difference between various fairness Setsc.ecevreeveveersrraenene 66
Figure 4.6: A hard to express property for CTL.........ccccoceveeeuerererercecenenenene 69
Figure 4.7: Ability of CTL to recognize StruCturescecceeeeeverereeennens 69
Figure 4.8: Automata for expressing invariancescecceeeeecereserseeeeens 70
Figure 5.1: Finding a shortest path between two Setsccoceeerrerervereneens 79
Figure 6.1: Examples of faimess graphs.........ccccccceveeereeerererreeecereesnsnssesenens 96
Figure 6.2: Shadow of a path may not be uniquecocceceveeeevevereererennens 97
Figure 6.3: A motivating example for lemma 6.2.3...........ccceceerererrererrenenes 97
Figure 6.4: Concept of fake dgescoerrvrvrerrererinrnrenernnrerereseeresessenssesens 101
Figure 6.5: Different cases in proof of theorem 6.3.........cccecevevrerevieerernennes 102
Figure 6.6: Examples motivating Optimization 2............ccceceverereerereererarensenas 103
Figure 6.7: Fake edges after optimization 2c.ccoeveeerererererenercenenennnn. 104
Figure 6.8: Example motivating optimization 3c.coccoueeeeeivevvvnrcnnnne 104
Figure 6.9: Fake edge after optimization 3..............ccccoevvvvveecereireineecennes 105
Figure 6.10: Clustering in fairness graphs............coevvvevevivvesreecvenernnnsnenne 107
Figure 7.1: Simulation relation versus language containment...................... 112
Figure 7.2: An inefficiency in computing SSRS...........ccovuerrevrveremerererncnnnn. 114
Figure 7.3: Output determinization and finding SR’S..........cceceverriveveveneennnns 117
Figure 7.4: Language containment vs. SSRs in output determinized FSMs 117
Figure 7.5: One state Buchi automaton accepting all strings 122
Figure 7.6: UFSR’s are not closed under union............coeeeveeeeneeeeereveeeeeneens 124
Figure 7.7: Reduction from SAT to finding UFSR’s..........ccccevvevvervvenenenee 125
Figure 7.8: EFSR’s are more general than UFESR’s............ccccoveeuvueeenenenennn. 127
Figure 7.9: Motivating examples for FSR algorithmsccoovevrueuennenee. 129
Figure 8.1: Components of a hardware system............ccccoeeererererererrernnnenes 133
Figure 8.2: Data sensitive CONIOLIErSoueveveeuvuereereeemeeeeeeeeseeeeeeneseeeees 145
Figure 8.3: Data semi-Sensitive CONIOLIETSccoveveveeveeeeeeeereriererenenens 149
Figure 8.4: Finite and integer parts in ICS models.............cceevevrvenrrereneneee. 168

Figure 9.1: The atomiCity PrOPErtYccceeeerevrrereeseeenerreesseresesesesesssnnnns 177

Figure 9.2: The termination Property..........ccceeeeeeeveseseseresseseeesessesesesersannnns 177
Figure 9.3: The value Propertyccccovrveveeeveressseseresrsesesseseseseseserserseenes 178
Figure 9.4: The LoadOp Propertycceceeeveeereeereeereererereresesssseseseesssssssces 178
Figure 9.5: The StoreStore property for TSOccoccvevermereveremerereerereeennn. 179
Figure 9.6: The StoreStore property for PSOccocoeovevvevnrrcnreneerneens 179
Figure 9.7: The StoreStoreEQqQ property..........ceeeevereeereerernreesersseesssesseeseseses 179
Figure 9.8: Lock/Unlock algorithmccccoervvveeeereerereerenrnerenesenesenesenenens 180
Figure 9.9: Automaton corresponding to Lock/Unlock algorithm................ 181
Figure 9.10: Automaton checking mutual exclusion...........ccceeeeeveeereerrerenene 181
Figure 9.11: Automaton checking critical section is reached....................... 181

xi

List of Tables

Table 2.1oueeeeereecrieciecrerrreanes
Table 2.2oovveevverreenreennnns
Table 3.1.
Table 3.2
Table 3.3.
Table 6.1 .
Table 9.1ovvvevvvreerrennee
Table 9.2

sesecseee

sss0vscvcscse

seseescressresecneee

sesseceessace

sessssccenss

sessssecen

secsssvssosssne secccscscse

secsesssseves

esesenscevecee

esse0sesrsscresee

sssvsccvvree

108
.. 186
... 186

secssesscsscse

esssscsssescs

sssessne

essesssecsesveces

eveesssseesecs

D T T T T

ssescscesenee

esseevons

essecseree

Acknowledgment

This work would not have been possible at all without the constant help and encouragement of
my advisor professor Robert K. Brayton. I am very much indebted to Dr. Robert Kurshan of
AT&T Bell laboratories for introducing me to the subject of formal verification. My gratitude
goes to the members of my dissertation committee professors Alberto Sangiovanni-Vincentelli
and Leo Harrington.

Many other individuals contributed significantly to this work. First, I would like to thank my
co-authors on several papers which made their way into this dissertation Adrian Isles, Sriram
Krishnan, Paul Loewenstein, Dr. Robert Mueler-Thuns, Tom Shiple, Serdar Tasiran, and Vigyan
Singhal. I would also like to thank the co-developers of the HSIS software, the co-presenters at
the verification theory seminars, and the co-instructors for EE290H1993 Adnan Aziz, Felice Bal-
arin, S. T. Cheng, Tim Kam, Sriram Krishnan, Rajeev Ranjan, Tom Shiple, Vigyan Singhal,
Serdar Tasiran, Tiziana Villa, and Huey Wang. From outside Berkeley, I have benefitted very
much from discussions with David Cyrluk, professor David Dill, professor Allen Emerson, Dr.
Patrice Godefroid, Dr. David Long, Dr. Ken McMillan, Dr. John Rushby, professor Shmuel
Safra, Dr. Hamid Savoj, Dr. Mandayam K. Srivas, Dr. Natarajan Shankar, Dr. Gary York, and
professor Moshe Vardi.

I am thankful to professors Blum, Karp, Vazirani, Yelick in computer science, and professors
Bade, Hald, Rieffel, Ribet, Solovay who all contributed to my education enormously. T am also
indebted to Semi-conductor Research Corporation for funding this research. Last but not least, 1

am thankful to my friends and family who believed in me.

X1

Chapter 1
Introduction

1.1 Motivation

In designing modern microprocessors and other complicated hardware systems, validation
engineers begin their work as soon as the design process begins. The validation teams are often
as large or larger than the design teams. Currently, validation is done using simulation, where
two commonly used techniques are developing ad hoc behavioral simulators for specific parts of
the design, and providing test vectors for conventional HDL simulators. This process is costly
both in terms of man-power and CPU time. Worse, there is no guarantee that the whole design
has been tested, and this problem is getting more severe with the increasing complexity of
designs. For example, [Hsu93] reports that in the design of a commercial microprocessor, a
more aggressive design had to be abandoned since the verification effort was expected to be too
large.

Formal design verification (verification hereafter) is the process of proving properties of
designs. Since verification checks all possible behaviors, it provides a guarantee that the verified
property holds for the design. Although, verification is still only as good as the properties
checked, generally it is much easier (and less time-consuming) to come up with a good set of
properties, than to develop a good sel of iest vectors. Verification has the promise of reducing
the simulation time, as well as increasing the level of confidence in the design.

The approach originally proposed for verifying software programs was to use a theorem-prover
for first or higher-order logic to prove the correctness of the program. This approach failed
mainly due to large human interaction necessary to prove correctness of programs. Two develop-
ments in the late 1970°s and early 1980’s made verification of hardware systems feasible. First,
it was suggested in [Pnu77] that temporal logic can be used for correctness specification. Since
temporal logic is more restrictive than first and higher order logics, the problem of checking an
implementation versus its specification becomes easier. Second, it was suggested by [EC81] and
[QS81] that finite-state systems can be used to capture implementations, which makes the prob-

lem of verifying an implementation versus its specification decidable.

1

Most automatic verification techniques enumerate the set of reachable states, and then check
the property on the set of reachable states. Using explicit enumeration techniques, only up to a
few million states could be checked using this methodology. Bryant in [Bry86] suggested a data
structure, called Ordered Binary Decision Diagrams (BDDs), which could be used to capture
Boolean functions efficiently. Another major breakthrough was suggested in [CBM89], where it
was shown that the set of reachable states of finite state systems can be efficiently produced and
manipulated in many cases using BDDs. This allowed systems with many more orders of magni-
tude to be verified. Since then intense research has gone into driving formal verification towards
an everyday practice. This thesis studies several central issues which have to be considered in

making a BDD-based formal verification tool for hardware systems.

1.2 Overview

In order for verification to be used widely, it has to fit in the current design methodologies.
The central issue here is to use the same description in verification as in synthesis and simula-

tion. To allow for multiple specification languages, and to create a formal entry language, in

chapter 2, we introduce a concurrecny model called combinational/sequential (C/S), and an inter-
mediate format called BLIF-MV supporting this concurrecny model. To remove some unwanted
behavior introduced by non-determinism, expressive edge-Streett faimess constraints are added.

The C/S descriptions often involve many small relations. The problem of building BDDs from

the C/S descriptions is formulated as the early quantification problem in chapter 3. It is shown
that a formulation of this problem is NP-complete in the number of variables and relations
involved, and efficient heuristic algorithms are given. These algorithms are also used to give a
solution to the partition transition relations problem, which reduces thc memory requircment for
the BDD of the transition relation of the product machine.

A set of algorithms for verification using language containment and model checking is pre-

sented in chapter 4. At the heart of these, is a set of algorithms computing various
approximations to the set of fair states of an ®w-automaton, which is used for checking language
emptiness. The debugging problem for language containment and fair CTL model checking is
studied, and proved NP-complete in chapter 5. Then heuristic algorithms are given. The mate-
rial described so far forms the basis of the formal verification tool, HSIS, developed at UC
Berkeley, and released to general public through anonymous FTP.

A set of more advanced topics is studied in the next few chapters. For language containment,

the concept of fairness graphs is introduced in chapter 6. These are used to speed up language
containment when many fairness constraints are involved. State minimization is another way to
reduce the number of reachable states. However, the complexity of this task is PSPACE-com-
plete. Two approximations to language containment based on simulation relations extended to
fairness constraints are presented in chapter 7, and their complexities are given. Since these prob-
lems are still hard, heuristics are presented.

In many cases, often due to the size of the datapath elements, there is an explosion of the state

space. In chapter 8, a concurrency model, called Integer C/S (ICS), is introduced, which is an
extension of C/S, and allows uninterpreted and interpreted integer functions and predicates. A
set of results on datapath abstraction of subsets of ICS models is proved, which allows the verifi-
cation to proceed on small instantiations. Since these subsets can be automatically recognized,
the abstractions can be produced without any user intervention. For cases where finite instantia-
tions do not work, a symbolic execution algorithm is presented. Since the state space of ICS
models can be infinite, the algorithm may not always terminate. However, it can be used to

check that no bad behavior in n steps, where » is a user-defined parameter.

The thesis is concluded in chapter 9 by looking at the correctness problems for memory systems
which execute their instructions out of order. As an example, the SUN’s SPARC-8 ([SUN90])

memory architecture is verified using the language containment paradigm.

1.3 Related Research

In this section, we look at some important related research topics not covered in this thesis. In

cach case, we give pointers to some introductory references.

1.3.1 BDD Research

There are four important optimization problems when dealing with BDDs: fast BDD package,
early quantification and partitioned transition relations, BDD minimization in presence of don’t
cares, and variable ordering.

Fast BDD Package. The first BDD package was introduced in [Bry86]. In [BRB90], garbage
collection was introduced as a means of speeding up BDD computations. Recently, BDD pack-
ages are being rewritten so that the number of cache misses are minimized ([KR96]). This
research is related to the breadth-first search approaches which try to minimize the effect of page
faults when the BDDs no longer fit in the main memory ([0YY93], [AC94]).

BDD Minimization in Presence of don’t cares. Most BDD-based reachability routines explore
the state space in a breadth-first search manner. Using this technique, the previous set of reach-
able states can be used as a don’t care set to minimize the frontier set. [SHBS94] introduces and
systematically studies a set of techniques for minimizing BDD:s in presence of don’t cares.

Variable Ordering. Variable ordering has a great impact on the speed of verification using
BDDs. [FOH93] introduces good heuristic algorithms for this problem. [Mc93] proves an inter-
esting bound on the size of BDDs for the transition relation, based on the structure of the circuit.
[Rud93] gives efficient dynamic re-ordering algorithms to automatically re-order variables dur-
ing various BDD operations. [PSP94] enhances dynamic variable re-ordering by grouping

symmetric variables during re-ordering, and moving them as a unit.

1.3.2 Theorem Proving

There has been considerable amount of research in hardware verification using theorem-prov-
ing. Most of these efforts have concentrated on checking the correctness of pipelined designs, by
comparing the pipelined implementation to its non-pipelined specification. [Cyr93] describes

one such methodology. The techniques presented in chapter 9 can also be used for this task.

1.3.3 Timing Verification

Timing verification involves verifying specifications and implementations which involve tim-
ing constraints. In verifying synchronous hardware systems, which is the majority of hardware
systems, such constraints are not needed in practice. [Alu91] provides a good introduction to the

subject.

1.3.4 Explicit State Exploration

Explicit state exploration techniques appear to be more suitable for higher-level protocols
which can be specified in interleaving semantics. In this case, symmetry techniques ({ID93],
[ES95)), state bit hashing ([Hol91]), and partial order techniques ({God94]) can be used to reduce

the size of the state space.

1.4 Organization of the Thesis

Chapter 2 describes the C/S concurrency model, shows how one can translate other concur-

recny models into C/S, and gives the syntax for BLIF-MV. The early quantification and partition

transition relation problems are described in chapter 3. A set of BDD algorithms for language
containment and model checking are presented in chapter 4. Debugging methods for fair CTL

and language containment are presented in chapter 5. Chapter 6 describes a method for speeding
up language containment in presence of faimess constraints. Fair simulation relations, which

form the basis for state minimization of @-automata and can be used as an approximation to lan-
guage containment, are studied in chapter 7. ICS models, data abstraction techniques using
finite instantiations, and reachability analysis of ICS models are described in chapter 8. Chapter

9 concludes the thesis by giving an application of verification to the correctness of memory sys-

tems with out-of-order execution.

Chapter 2
Combinational/Sequential Concurrency Model and BLIF-MV

2.1 Introduction

To make formal verification possible in real designs, several problems must be solved. In this
chapter, we concentrate on how verification can be integrated with logic synthesis and simula-
tion. We have addressed this problem by creating a formal concurrency model, combinational/
sequential, and an associated intermediate format, BLIF-MV. BLIF-MV can be used for simula-
tion, synthesis, and verification, where descriptions in high-level languages are compiled into it.
This compilation process is described in [Che94] for the hardware description language, Verilog.

Our design methodology for synthesis and verification is as follows. The design is first written
in abstract terms, using non-determinism, in the user’s favorite high-level language. The design
is then translated into BLIF-MYV, and verification is performed on it. Simulation is used at this
point to find easy bugs, whereas formal verification may be used to catch the harder ones. If the
user is satisfied with the verified parts, they can be synthesized into hardware or possibly

software.
In section 2.2, we introduce C/S and give its operational and denotational semantics. In design-

ing a concurrency model, one has to worry about expressiveness and conciseness. In section 2.3,

we show how other popular concurrency models can be translated into C/S efficicntly. In section

2.4, BLIF-MV, as an implementation of C/S, is introduced. In BLIF-MV, we have taken care to
introduce as few constructs as possible, while not sacrificing expressiveness and the ability to pre-
serve the structure of the user’s specifications. BLIF-MV is the logical extension of BLIF
(Berkeley Logic Intermediate Format, [BLIF87]) to include non-determinism and multi-valued

variables.

2.2 The Combinational/Sequential (C/S) Concurrency Model

2.2.1 Syntax

In this section, the combinational/sequential (C/S) concurrency model is described. There are
three primitives: variables, tables (intuitively non-deterministic gates), and latches.

Definitions A variable takes values from some finite domain. A table is a relation defined
over a set of variables. The variables of a table are divided into two sets: inputs and outputs.
Latches are defined over two variables ranging over the same finite domain: input (or next state)
and output (or present state) of the latch. Note that present and next state variables may overlap.
This happens when an output of a latch is an input to another. With every latch, we associate a
set of initial values, which is a subset of the set of values of its variables. Every variable is the

output of exactly one table or latch. Hence, every input to a table or latch is the output of some

other table or latch, i.e. our systems are closed. A variable can be input to many tables or
latches. A state is an assignment of values to the latches of a model, where a value assigned to a
latch must be in its domain. An initial state is a state where every latch takes a value from its
set of initial values.

The concurrency model of C/S is exactly the same as synchronous hardware also, modulo the
fact that tables may be non-deterministic and signal may be non-deterministic instead of Bool-
ean. If the tables are deterministic and the signals are Boolean, then we can think of them as
general gates. In this case, the above model is syntactically and semantically the same as syn-

chronous hardware.

2.2.2 Operational Semantics of C/S

The operational semantics of C/S provides more insight into the meaning of C/S models. How-
ever, it is not as concise as its denotational semantics. We give the operational semantics for a
subset of C/S models, where no combinational loops are allowed.

Definition A table graph is a directed graph where every node is a table. There is an arc from
u to v if some output variable of table « is an input to table v. A cyclic table graph is said to
contain a combinational loop (or cycle).

Lemma 2.2.1 Let an acyclic table graph G be given. Then, table T corresponding to a root

node either has no inputs or each one of its inputs is the output of some latch.

1. This is no restriction since it is always possible to replace an input by a table representing a non-deterministic
constant.

Proof Follows from the definition of a table graph (QED).

We define the operational semantics, restricting models not to contain combinational loops.
The operational semantics is defined in terms of a configuration or state graph and its transition
relation. Every node in the configuration graph corresponds to a set of values assigned to the
latches of the model. Since the domains of all variables are finite, the configuration graph is
finite. The initial states of the configuration graph are those where an initial value is assigned to

every latch. Let I denote a node (i.e. a state) in this graph. The following algorithm defines the

transitions from !/ to other nodes.

1. Fix a topological sort of the table graph.

2. Assign to the outputs of the latches the values given by 1.

3. Assign values to the outputs of each table consistent with its inputs, processing the tables in the order
given by the topological sort. More precisely, let a table T represent the relation R (i, 0) , where i rep-
resents the inputs to the relation and o its outputs. Let the inputs have the assignment v (i) . Choose

v(0) suchthat (v(i),v(0)) € R(i,0).

Note that in step 3 of the above algorithm (referred to as value propagation), due to non-deter-
minism, there may be more than one assignment to the output of a table given an assignment to
its inputs. It is also possible that a table is not complete, i.e. there are inputs for which there are
no outputs. Then, the set of values assigned to an output of a table may be empty. The empty
values propagate, i.e. if one of the inputs to a table is empty, then the output is empty as well.
Lemma 2.2.2 shows that step 3 of the algorithm is well-defined.

Lemma 2.2.2 When a table is processed in step 3 of the above algorithm, each one of its inputs

has been assigned a value.

Proof We name the tables T, ..., T, according to their positions in the chosen topological sort,

where # is the number of tables. We proceed by induction on 1<i<n. T, either has no inputs

or all of its inputs are outputs of latches (by lemma 2.2.1). The lemma holds in this case, since

step 1 assigns values to the latches. Now, let table T, and an input to it v be given. v is either

an output of a latch or a table. If it is the output of a latch it has been assigned a value by step 1.
If it is the output of a table, by the fact that the model is acyclic, and we have processed the table
in a topological sort, it has been assigned a value (QED).

We prove below that the algorithm is well-defined, i.e. no matter what topological sort is cho-

sen, the same transition relation is obtained.

Lemma 2.2.3 The above procedure assigns values to all next state variables (inputs of the
latches).

Proof Every input to a latch is either an output of a table or a latch. In either case, steps 1 or 3
assigns it a value (QED).

Lemma 2.2.4 Let | be an assignment of values to all latch outputs. Let I' be an assignment to
all latch inputs obtained from the above procedure given topological sort 0,. Then, given
topological sort 0,, I' can be achieved from ! by the above algorithm.

Proof This follows from noting that the order of processing of two tables in step 3 can be
swapped without any change in the final result as long as neither table is reachable from the other
one in the table graph. Since O, can be obtained from 0, by doing such swaps, the result
follows (QED).

We assume the edges in the configuration graph are labeled by the values of a user-define sub-
set of the variables called output variables. Therefore, the configuration graph is a safety
automaton (defined below) over the alphabet of the Cartesian product of the domains of the out-

put variables. This in turn defines a language, which is the language of a C/S model according to

the operational model.
Definitions A safety automaton is a tuple (X, Q,7,I), where I is a finite alphabet, Q is a
finite set of states, T is a transition relation on ¢ xZ x Q, and I is a set of initial states. A run r

of an @-string x in A is an infinitc scquence of states, such that the first state r, e I, and for all

i, (rpx,r;,,) € T. The set of states occurring infinitcly often in a run r is called the infinitary

set of r, and is denoted by inf(r) . Since the set of states Q is finite, inf(r) is always a non-
empty finite set. The set of all ®@-strings which have a run in A is called the behavior or lan-
guage of A, and is denoted by L(A). A finite state machine (FSM) is a safety automaton

where £ = X, xZ), X, is the input alphabet, and X, is the output alphabet.

To handle combinational loops, one may proceed by breaking the loops arbitrarily, allowing the
newly created variables take any values in their domain, and following the above procedure.
Only those values should be accepted which are stable, i.e. all instances of the broken-up vari-

ables take on the same value. The denotational semantics is simple and concise, and handles

combinational loops without any special treatment. |

2.2.3 Denotational Semantics of C/S

The denotational semantics is given by describing what C/S models denote and what the syntac-
tic and semantic algebras are. A C/S model denotes an ®-language, defined over the output
variables. The language of a C/S model can be represented by two relations: transition and initial
state relations. The transition relation is defined over all variables and is denoted by T(x,i,y) ,
where x denotes the present state variables, y the next state variables, and i the rest of the vari-
ables. To define the denotational semantics, we assume the set of present and next state variables
are distinct:. Therefore, if in a C/S model a present state variable is also a next state variable, a
buffer is inserted to create two distinct variables. The initial state relation is defined over present
state variables and is denoted by 7(x) .

To define the denotational semantics, we need to define what the syntactic and semantic objects
are, and how semantic objects are composed ([GT93]). There are two syntactic objects in the
syntactic domain: tables and initial values. There is only one semantic object: relation. Composi-
tion of semantic objects is the join operation of relations, which corresponds to taking the
Boolean AND of the characteristic functions of the relations. The correspondence between the
syntactic and semantic domains is as follows. Each table (a syntactic object) represents a relation
(a semantic object), with the composition operation being the join operation of relations. The ini-
tial values for each latch (a syntactic object) define a relation over the present state of that
variable (a semantic object). The composition between initial state relations is again the join
operation of relations. Therefore, a C/S model denotes two relations: transition and initial state
relations. This defines a safety automaton over the Cartesian product of the output variables,
which in turn denotes an ®-language. It is not hard to show (hat the operational and Denotational

semantics define the same language, by showing that for purely combinational circuits the two
agree.

2.2.4 Representation Using BDDs

The denotational semantics can be easily implemented using BDDs. Since each table describes
a relation over a finite domain, it can be represented by a BDD. In our verification tool, we repre-
sent each table by a multi-valued decision diagram or MDD ([Kam92]), since MDDs provide a
convenient multi-valued interface to BDDs. The product of all the BDDs is a transition relation

1. Our semantics for combinational loops discards those behaviors where some variable is oscillating, even

though this variable may have no impact on the outputs. [SSBS96] provides algorithms for discovering such
cases.

10

T(x,i,y) which describes the (stable) behavior of the whole system. This transition relation is
used for simulation and debugging, where information about output variables is needed. For veri-

fication, we existentially quantify out all non-state variables, and get a transition relation denoted

by T'(x,y) . Inchapter 3, we introduce efficient algorithm for this problem.

2.3 Combinational/Sequential versus Other Concurrency Models

We will be comparing the expressive powers of different modeling schemes. To do so, we
need a notion of equivalence between languages. Since equality turns out to be too restrictive,

we use the following definition.

Definition Let language L, defined over = be given. A language L, defined over Ex X' is
projection-equivalent to L, if the projection of L, onto I is equal to L,. Note that this notion
of equivalence is one-way, i.e. L, may be equivalent to L, but the reverse may not be true.

Definition A concurrency model C, has as much expressive power as another concurrecny
model C, if given a system in C, with language L, there is another system in C, with language
L,, where L, is projection-equivalentto L, .

In this section, we first define product of safety automata, and then introduce several popular

modeling schemes, and compare their relative expressive powers.

2.3.1 Product of Safety Automata
Definition Let A=(Q,%1,7T,) and B= (Qp, L, 15, Tg) be given. Then,
P=AxB= (QAX Qp T 1, X1, T), where T((q,,4p),4. (94, 4'p)) iff T(q4.a,4,) and

T(gpa,q'g) .

Lemma 2.3.1 Let P = AxB, Then, L(P) = L(A) NL(B).

T r
A By
Proof Let xe L(P) . Then, thereisarun r = [r s] in P for x. Now consider the
0p]
sequence of states r, reer Ty oo in A. By definition, this is a run in A. Hence, xe L(4) .
A

Similarly, xe L(B). Now, let xe L(A) and xe L(B). We need to show that xe L(P).

Consider the runs r,y , ..., 7, ,... and ry, ..., 7, ,... for x in A and B, respectively. Consider the
A A B B

11

r r
0 n,

sequence of states [r A, ey J in P. By checking the definition, this is a run for x in P
0, np

(QED).

2.3.2 Selection/Resolution Model

In this section, we define the selection/resolution model, which is a simple synchronous model-
ing scheme. We then prove some simple properties of the S/R model. We finally show that S/R

and C/S have the same expressive power, although C/S may be more concise. With the excep-
tion of theorem 2.2 proving this fact, all results can be found in [Kur90].

Definition A process is a 6-tuple P = (Q,X2,%,,1,T,0) ,where Q, I, and T are as before. Z,

denotes the input alphabet (all of our alphabets are finite unless otherwise stated), and Z,

z
denotes the output alphabet. The output relation 0 is defined over @ x2 °; intuitively a state

can have many outputs. The transition relation T is defined over AxZ;x X, x ZQ; intuitively

given a state, an input symbol, and an output symbol, there may be more than one transition. The

language of a process is generated as follows.

1. Start at an initial state.
2. At the current state,
Produce an output non-deterministically.

Based on the output and input, choose a next state.

One can think of a process as a non-deterministic output non-dcterministic transition Moore

machine. The only differcnce with a Moore machine is that a process can look at its output from
xol xnl
its current state to select its next state. More formally, x = gty v |€ L (P) if there

0 no

exists a sequence of states in A, r = (rgp--s Ty -..) such that ry is an initial state, and

(r‘., XipXi o Tis 1) € T for all i. Note that the language of a process is defined just in terms of the

edge labels. The outputs are introduced only for book-keeping purposes, and are not used in the

formal definitions. Hence, in effect a process is just a safety automaton defined over the alpha-

bet X,xZ,. In figure 2.1, an example process is shown, whose inputs are from the set a, b and

whose outputs are 0, 1.

12

in=anoutzgl neb
m=a (X00) ~ PO TYrob,
Figure 2.1: Example of a process in S/R

Sometimes the language of P is defined over some larger alphabet £, xZ,xXZ. In this case,

the edge symbols i/o are changed to i/o/- accordingly to reflect this, i.e. for each symbol we
assume there is an additional element which can take any value in £. In many cases, as opposed
to giving the symbols of the alphabet, a Boolean combination of variables ranging over X, and
Z, is used. In this case, enlarging an alphabet is the same as enlarging the set of variables of the
alphabet. For example, the statement (x=0) A (y=1) specifies only one symbol if the alpha-
bet is defined over two binary variables x and y, but it refers to two symbols if the alphabet
contains three binary variable x, y and z.

Definition Let n interacting processes P, ..., P, be given such that the outputs of all processes

are distinct, and each input to a process is the output of some other process. In other words, the
system is closed, and each output is driven by exactly one process. Since every input is an out-
put, the input and output variables are collectively called the selection variables. The operational

semantics of the selection/resolution model is generated as follows:

1. All processes start at one of their initial states.

2. At every point,
Each process non-deterministically chooses one of the outputs possible from its state (selection).

Based on the global selection, each process chooses a next state (resolution).

The language of P,, ..., P, according to the selection/resolution model is the set of values the
selection variables take in the above process.

Alternatively, a string x = (x,,...,x,,...) defined over the product alphabet of the selection
variables is in the language of the set of processes P, ..., P, according to selection/resolution
model if there exists a sequence of global states s, ..., s, ... such that,

1. s, is a global initial state.

2. For all i, the transition (s, x;s;,,) is possible, i.e. for each process P;, (s;[jl,x;s;,, 1)

13

is a transition in P;, where s, (j] denotes the state of P; in s;.

This views S/R as an edge-synchronous model. At every point in time, each process is at some
local state. The edge labels are interpreted as predicates or restrictions on the alphabet symbols.
To reach the next global state, a set of edges out of the current global state (one edge per process)
is chosen if their assignment to selection variables is consistent. This defines the transition rela-
tion of a safety automaton, whose language is the same as the operational semantics of S/R.

Definition Let P, ..., P, according to the selection/resolution model be given. Then, the prod-
uct process is defined to be the product of the corresponding safety automata, where the alphabet
is the product of the alphabets of the selection variables.

Lemma 2.3.2 Let P, ..., P, according to the selection/resolution model be given. Then, the
language of the processes according to the selection/resolution model is the same as the language
of the product process.

Proof The proof follows directly from the edge-synchronous view of S/R and the definition of
the product automaton (QED).

Theorem 2.1 Let P,, ..., P, according to the selection/resolution model be given. Let L,
denote the language of the processes according to the selection/resolution model, L, the
language of the product process, L, and the intersection of the languages of the P,’s. Then, we
have L, = L, = L,.

Proof Follows from the definition of the product process, and lemmas 2.3.1 and 2.3.2 (QED).

Theorem 2.2 The selection/resolution and combinational/sequential models have the same

expressive power.

Proof Let an S/R model with n processes P,, ..., P, be given. To construct an equivalent C/S
model, proceed as follows.
1. For each process P, create a latch taking values from the set of states of P, .

2. For each process P;, have a table which encodes the outputs of P;.

3. For each process P;, create a table which encodes the transition of P;. Inputs to each such

table may be the outputs of all tables created in step 2.
The equivalence follows from the operational semantics of S/R and C/S.
Conversely, let a C/S model be given. To get a corresponding S/R model, do the following:

1. Define the transitive fanin of a variable x as all the relations which can be reached by tracing

14

backward from the relation whose output is x. The leaves of this transitive fanin are present
state variables. For each latch, create a process whose transitions are given by the intersection of
all the relations in the transitive fanin of the next state variable of the latch, after the intermediate
variables have been quantified out. Have each process output its state (hence each process is
Moore). Call these variables state-output variables.

2. For each output variable o, create a one state process whose output is o, and its edge labels
are defined by taking the intersection of all relations in the transitive fanin of 0. Note that the
edge labels may involve state-output variables.

To get an equivalent language, project out the state-output variables. The equivalence follows
from the edge-synchronous view of S/R (QED).

Note that the translation from S/R into C/S can be done in small polynomial time and space.
However, the reverse might incur an exponential blow-up, since multiplying tables can blow up.
In languages (or systems) which support the S/R model, the use of some functions corresponding
to a high-level language like C is provided. However, such functions are deterministic. It is pos-
sible that one can compactly describe a non-deterministic relation using a set of non-

deterministic relations, where the translation into a language supporting S/R is still exponential.

2.3.3 Asynchronous Shared Memory (ASM) Model

In this section, we describe the Asynchronous Shared Memory (ASM) model which forms the
basis of some verification tools, such as Murphi ((DDHY92]) and Spin ([Hol91]). A model in

ASM consists of a set of n state variables g, ..., g,, a set of m memory locations mg,...,m,, an
output variable o, and a set of p guarded commands (transitions) e,, ...,e,. The state variables

and memory locations are collectively called shared variables. A guard is a predicate on the
shared variables, whereas a command is a new assignment to the shared variables and the output
variable. The output associated with a guarded command e is sometimes called its action. The
operational semantics of ASM can be summarized as follows. Initially, all processes are at some
initial state, with all memory locations and state variables taking one of their initial values. At
every point, a transition whose guard is active (evaluates to 1) is chosen, and its command is exe-

cuted. The language of the system is defined over the values of the shared variables.

More precisely, let Z{,...,Z! denote the domains of the state variable, X7, ..., X" the domains

of the memory locations, and £° the domain of the output variable. The language of this system

15

according to ASM is defined over l'[z:.’xl'l):;"xzo and is given as follows. A string
i J

X = (X}, ...,X%;...) belongs to the language of the above system if the shared variables in x,
take one of their initial values, and for each i, there exists some guarded command ¢ such that
its guard is true in x;, its command is true in and x, _ , , and the value assigned to o in x; , is the
output of ¢

The product automaton of the system according to ASM is a safety automaton (Z,Q,7,1),
where Q = HZ?XHZ}", =0xX’, and TcOxZIxQ. (q,(q,0),q) eT if there exists a
i J

guarded command e whose guard and command are true in ¢ and ¢' respectively, and whose
actionis a. ¢ e 7 if all shared variables take one of their initial values.

Lemma 2.3.3 The language of the system according to ASM is equal to the language of its
product automaton.

Proof Follows from the definitions (QED).

Theorem 2.3 The ASM and selection/resolution models have the same expressive power.

Proof Given an S/R model, create the product process, which can be viewed as a system in
ASM with one state variable, no memory, and the guarded‘commands being the edges. The
complexity of this translation is exponential. Conversely, let a system in ASM be given. We

create a S/R model with m + n+ 2 processes as follows.
1. Create a one-state "scheduler” process, which non-deterministically outputs j if the guard of

e; is true. Also create a one-state "output” process, which outputs the action of the guarded com-

mand choscn by the schedulcr.

2. For each shared variable v, with domain X, create a process with state space Z,. The edge

(a, B) is labeled by a predicate restricting the output of the scheduler being j, if the command

of ¢ changes the value of v; from a to B.

The complexity of this translation is linear. To get an equivalent language, the state variables of
the scheduler and output processes are projected out. The equivalence follows from the edge-syn-
chronous view of S/R and the operational semantics of ASM (QED).

Remark Some interleaving models, such as the one defined in [God94], distinguish between
state variables and memory locations, and associate outputs with transitions. The partial order

methods of [God94] rely on such information.

16

2.3.4 Node Synchronous

In this subsection, we describe node-synchronous models, which sometimes come up in verifi-
cation using theorem-provers. The node-synchronous model is similar to the edge-synchronous
model, except that the predicates are on the nodes as opposed to edges (there are no edge labels),
where a predicate is an assignment of values to variables. At every point the system is at some
global state. The system makes a transition to the next global state if
1. there is a global transition to this next state from the current state, and
2. all predicates in the next state are consistent, i.e. no variable is assigned two different values.
The language of a node-synchronous model is defined in terms of the global assignment to the

variables given by the above process.

Let (u,1,) denote a node u with label I, in the node-synchronous model. To translate an
automaton N in the node-synchronous model to an automaton M in the edge-synchronous
model, label each edge in N by the label of its starting vertex. Hence, an (unlabeled) edge

((u,1), (v,1))) in N becomes the labeled edge (u, l,v) in M. This translation has linear com-

plexity. Conversely, to translate an automaton M in the edge-synchronous model to an
automaton N in the node-synchronous model, for each labeled edge (u,0,v) in M, create a

node (u,0), and edges ((u,), (v,B)) for all pairs (v,B) e N (created from edges

(v,B,v) € M for some v'. This translation has quadratic complexity, i.e. 0 (IMIZ) .

2.3.5 Kripke Structures

In this subsection, we describe Kripke structures which are used in CTL model checking (see
section 4.4.1). A Kripke structure is a deterministic-output, non-deterministic-transition process.
Therefore, Kripke structures are a subclass of S/R processes, and hence inherit the concurrency
models of S/R. To get a Kripke structure X from a S/R process P, if a state s has ! non-deter-

ministic outputs o,, ..., 0,, create ! copies of s in K, s, ..., s;, where the output of each s, is o,.
If there is an edge (s, o,1) in P, add to K all edges (sp 0, tj), for each € K associated with r.

This gives a translation procedure from Kripke structures into S/R, with complexity O (n|P|) ,
where n is the maximum number of non-deterministic outputs from any state in P. Since
Kripke structures are a subset of S/R models, we conclude that Kripke structures and S/R are
polynomially transformable into each other. Since S/R can be polynomially translated into C/S,

17

we conclude that Kripke structures can be polynomially translated into C/S.

2.3.6 Summary of Concurrency Models

We studied several concurrency models which form the basis of most verification tools and par-
adigms. The selection/resolution model is a synchronous model, where a set of non-
deterministic Moore machines, described by giving their transition structures explicitly, move in
lock-step. One can view S/R as an edge-synchronous model. We showed that S/R can be poly-
nomially translated into C/S, whereas the reverse translation may be exponential. We next
introduced the asynchronous shared memory model, where a set of transition are fired one at a
time. ASM can be translated into C/S polynomially, whereas the reverse translation is exponen-
tial. Node-synchronous models are similar to the edge-synchronous ones, and there is a
polynomial translation among them. Kripke structures are a subset of S/R models, where the out-
puts are restricted to be deterministic. S/R models can be polynomially translated into Kripke
structures.

Figure 2.2: Translation complexity between various models

2.4 BLIF-MV

An intermediate format must address the following issues.

1. Well-defined and simple semantics. The semantics of the intermediate format should be
well-defined, so that user’s specifications are translated unambiguously. BLIF-MV achieves this
by having C/S as its concurrecny model.

2. User-friendly. The interaction with the user must feed back variable names defined by the
user. Many high-level languages allow for symbolic or multi-valued variables. BLIF-MV
accommodates this by allowing multi-valued (MV) variables. Also, it is useful to display error
traces, returned by the verifier, in terms of the user’s original source code. For this, the applica-
tion-specific attribute mechanism of BLIF-MV can be used.

18

3. Expressive. The generated code for the intermediate format should remain relatively small,
so that parsing time is reasonable. BLIF-MYV uses relations to describe (possibly non-determinis-
tic) behavior. Various constructs are allowed to make the specification of the relations more
compact. Also facilities for easily dealing with integers are introduced, since functions defined
on integers, such as addition, cannot be described compactly using multi-valued relations.

4. Structure preserving. It is important that the original structure of the user’s specification is
preserved as much as possible for two reasons. First, interfacing with the user becomes easier.
Second, some algorithms may be able to take advantage of the initial structure. BLIF-MV pre-
serves the structural aspects using hierarchical specification, multi-level logic, intermediate
variables, and pre-defined functions.

A first version of BLIF-MV was presented in [BMV91]. The version described here is the
result of experience with HSIS, and has several additions and changes to make BLIF-MV suit-

able for compilation from high-level languages.

2.4.1 Basic Syntax

In this section we describe the basic syntax of BLIF-MV. The primitives of the language are:
multi-valued variable declarations, tables for describing relations, multi-valued latches, models

for describing a process, and subcircuits for instantiating models.

2.4.1.1 \Variables
A multi-valued variable is declared as follows.
.mv <variable-list> <range> [<value-list>)
where < > implies a necessary argument, and [] an optional one. A variable-list is a set of
comma-separated variablcs. A value-list is a set of spacc-scparated names. The default on valuc
listis 0,..., range-1. Examples are,
.mv varl, var2 3 apple orange banana

.mv four-bit-integer 16

2.4.1.2 Tables
Tables are used in BLIF-MV for describing relations. In this section, we first give the basic
method of defining a table, with more advanced features introduced next.
Table Definition. A table describes a relation between a set of variables. A table has a set of
inputs and a set of outputs. A table is defined as follows.

.names <in-1> ... <in-n> => <out-1> <out-m>

<row-1>

19

<row-p>
If there is only one output, then the symbol "=>" can be omitted. A table may have no inputs,
but must have at least one output. The rows of the table describe a relation between the vari-
ables. Each row has m +n components. Each entry describes a set of values, which is a subset
of the values of the corresponding variable. Each row denotes the (cartesian) product of these
entries. An entry can be one the following:
1. "-", which denotes the universal set, i.e. the set of all values for a variable.
2. A ssingle value, for example 3.
3. Alist of values, for example (1, 3, 5).
4. A range of values, for example 5-9,
Each entry can be complemented using "!".
As an example, assume variables x and y can each take 100 values, from 0-99. Consider the fol-
lowing table.
.names X y
(10,21) '3
5 -
3-8 5-15
This first entry describes a relation between 10 and 21 and any number between 0 and 99 except
for 3. The second entry says that 5 is in relation with any number. The third entry says that num-
bers between 3 and 8 are in relation to numbers between 5 to 15. In this case, x is the input and y
is the output.
Symbolic Entries. One can also use symbolic entries in tablc specifications. Assume under a
column corresponding to variable x, we have the variable y (the syntax is =y). Then, the rela-
tion corresponding to that entry is multiplied by the relation y = x. For example, consider a

multi-valued multiplexer, which has the following semantics: if x = 0, then z = y, otherwise

z = w, where x, is a binary variable controlling the multiplexer, and y, z, and w are multi-val-

ued variables of the same type. The table for this multiplexer is described as follows.
.names Xy w z
0 - - =y
1 - - =w
The only restriction with symbolic entries is that the two variables which are made equal must

have the same domain, i.e. be of the same type.

20

Default Values. With every table, a default value for the outputs can be given, which is
assigned to all the minterms in the input domain which were not assigned in the table. An exam-
ple is as follows.

.names x1 x2 => y2 y2
.def 0 0
1 -11

Now, the two unspecified minterms, i.e. 00 and 01, are assigned 00.

2.4.1.3 Latches
Latch Definition. A latch is declared as follows.
.latch <latch-input> <latch-output>
where latch-input (next state) and latch-output (present state) are variables of the same type. An
example is as follows.
.latch ns ps
Latch Initialization. A latch is initialized (in general with a set of values) as follows.
.r <in-1> ... <in-n> <p.s.>

<row-1>

<row-m>
where p.s. is the present state variable of the latch we want to initialize, and in-1,...,in-n are any
set of variables. The syntax for describing the entries is the same as the syntax for describing
tables. An example is,

.r initial-state-input state

- =initial-state-input

This example says that the variable state is equal to initial-state-input. Hence, it is possible (o

write models where the initial state of the latches are parametrized. A latch may have more than
one initial state. Below, we show three ways to specify that the binary latch “ps” has two initial
states, 0 and 1.

rIps Ips I ps
0 (8)) -
1 or or

2.4.1.4 Hierarchical Development

We describe how hierarchies are defined, referenced, and what restrictions are placed on them.

Module Definition. In BLIF-MV, hierarchy is defined as a syntactic notion. This allows one to

21

take a portion of a system and put a box around it. This portion can then be re-used. The unit of
hierarchical development is called a model or module, and is declared as follows.

.model <model-name>

.inputs <variable-1> ... <variable-n>

.outputs <variable-1> ... <variable-m>

<command-1>

<command-p>

.end
A command is any one of the following: variable declaration, table definition, module instantia-
tion (or reference), latch definition, or initial state declarations. In BLIF-MV, we distinguish

between four sets of variables: inputs (in), outputs (out), present state (ps), and next state (ns).

Table 2.1 shows the restrictions placed on variables inside a module’s definition.

Table 2.1: Variable equalities inside models

in out p-s. n.s.

in no no yes
out yes
p.s. no

The justification for these rules are

1. in+#our, which means an input and an output variable cannot be the same inside a module.
However, as we will see, one can connect the inputs and outputs of a module instantiation.

2. in#ps. This rule requires the output of a latch defined in a model not to be an input to it.

3. in = ns. This is allowed because we may want to input the next state of a latch.

4. out = ps. We may want to directly communicate the present state value of a latch defined in
one of the subcircuits with another one, without having to introduce another variable “out” with
1

the relation out = ps °.

5. out = ns. Once the next state value is calculated, we may want to communicate that value

with another block.

1. This isalso an efficiency issue in verification, since computational efficiency is related to the number of vari-
ables in the system.

22

6. ps#ns. In order to build a transition relation for the FSM corresponding to a model, the
present and next state variables must be distinct.
Module References (Instantiations). A model is instantiated as follows.
.subckt <model-name> <instance-name> <formal-actual-list>

The formal-actual-list defines the correspondence between formal and actual variables. This list

is a sequence of assignments, each separated by a space. The declaration is as follows.
formal-l=actual-1 ... formal-n=actual-n
The actual variables are the ones declared in the current model, whereas the formal variables are

declared in the referenced model.

A hierarchy in BLIF-MV is always a tree, which implies that a subcircuit cannot be referenced
from any other subcircuits except for its parent. The first model encountered in a BLIF-MV file
is the root of the hierarchy. Let N be the parent module of M. The actual variable of a variable
x of M is x if either M is the root process or x is not an input or output variable. Otherwise, the
actual variable of x is the actual variable of the variable corresponding to x in the formal-actual
list of N’s instantiation. Table 2.1 shows the restrictions placed on actual variables in a

hierarchy.

Table 2.2: Actual variable equalities in hierarchies

We give justification for two entries in table 2.1 which are different than the ones in table 2.1.
The justification for the rest of the entries is as before. Let ac(x) denote the actual variable of x.
1. ac(in) = ac (out) , which means an input and an output variable can correspond to the same
actual variable. An example is where the user connects an output of a model to one of its inputs.
2. ac(in) = ac(ps). The only situation where this is allowed is when a ps variable is an out-
put of a model’s instantiation M which is in turn an input to M. Another situation where this

come up, but is illegal in BLIF-MV is when ac(ps) is driven by more than one source.

23

2.4.1.5 Comment Lines

A comment is anything after "# " to the end of the line.

2.4.2 Additional Features
In this section, additional features of BLIF-MV are described.

2.4.2.1 Integers
There are some arithmetic operations which are very expensive to describe in terms of sym-

bolic variables. Assume we want to specify the function ¢ = a+ b, where a and b are 16-bit

integers. The symbolic table will be of size 2" %2 = 2% However, one can easily describe a
16-bit adder using the binary-valued components of the symbolic variables.
To handle such situations, the “bundle” construct is used. A bundle is a set of binary variables

associated with an integer variable. A bundle is declared as follows.

.bundle variable-name bit-n ... bit-1
where bit-n is the most significant bit. As an example, to describe the relation ¢ = a + b, we use
the following reference.

.subckt adderl6é myadderlé x=a y=b z=c
At some later point, we define adder16 as follows.

model adderl6 xy 2z

.inputs x y

.outputs z

.bundle x x15 x14 ... x0
.bundle y y15 y14 ... yo0
.bundle z z16 z15 ... z0

/* a bit-wise description of a 16-bit adder */

.end

2.4.2.2 General Attributes

There is some information which is specific to certain tools. To allow for such information,
called attributes, BLIF-MYV uses the following general-purpose attribute construct.

$attribute-name(information]%
One can associate an arbitrary number of attributes with BLIF-MV’s basic objects. Specifically,
attributes can be associated with tables, variables, latches, subcircuits, and models. The
attributes associated with an object must be specified in pre-defined positions. For tables,

attributes must be given right after “.names” keyword; for variables, right after “.mv” keyword;

24

for latches, right after “Jlatch” keyword; for latch initialization, right after “.r” keyword; for
model references right after “.subckt” keyword; for models, right after “.model” keyword. Exam-
ples of attributes are temporary variables recognized by some tools, and source-code debugging
information. For instance, the line number where a variable is declared may be defined as
follows.

.mv $line=10% templ 8

2.4.2.3 Temporary Subcircuits

Sometimes during translation from high-level languages, temporary subcircuits are created.
For example, to translate an if-statement, a multiplexer module may be created. These extra sub-
circuits are not part of the user’s hierarchy. The “.macro” command can be used to identify such

subcircuits. This construct is different than the macro construct used in programming languages

to denote in-line expansion of code!

. A temporary subckt is declared exactly the same way as a
“.subckt”, except the word “.subckt” is replaced by “.macro”. An example is as follows.

.macro mymux mux2 control=a inl=b in2=c out=z
This construct is useful in specifying a technology mapped circuit, by using macros for standard

cells.

2.4.24 Pre-Defined Functions

Definition To improve the efficiency of parsing and to better preserve the structure of user’s
specifications, some tools may define a set of pre-defined models. A pre-defined model is used
like any other model, and can be referenced using both “.subckt” and “.macro” constructs. The
following is an example.

.subckt HSIS_ADDER16 myadderlé x=a y=b z=c

which rcfercnces a 16-bit adder defined and understood by HSIS. If an cxample is to be distrib-
uted to tools which do not define these pre-defined models, a definition of the model in BLIF-
MYV must be included. For example, in the case above HSIS_ADDER16 would need to be defined
using the bundle construct and a bit description of the adder. Hence, there must be a BLIF-MV

model associated with every pre-defined relations.

2.4.2.5 Miscellaneous

The ".include” command is used to include files. An example is as follows.

.include utilities.mv

1. The difference between .macro and in-line expansion is that for .macro, we have the choice of building the
transition relation once and then using variable substitution to get new instances.

25

2.4.3 Possible Future Changes and Extensions

In this subsection, we describe some further extensions being considered.
1. Typed variables. Variable types can be described using ".type" command using the following
format.
.type type-name range [value-list]
This would be used in a ".mv" construct to replace the range and value-list.
2. Bit ranges. To describe the range of integers, the number of bits can be given using the syn-
tax, "Bn", where n is the number of bits. The following example defines the type large-integer
to be a 64-bit integer.
.type large-integer Bé64
3. Behavioral constructs. We are thinking of introducing behavioral constructs such as arrays

and iterators, and memory read/write operators. The need for these constructs arises from

abstraction techniques which require more information about the circuit structure (see chapter 8).

Acknowledgment

The material presented in sections 2.2 and 2.3 are based mainly on the author’s lecture notes

given for the course EE290H, UC Berkeley, fall of 1993. The material presented in section 2.4 is
based mainly on the unpublished manuscript [BMV93].

26

Chapter 3
Early Quantification and Partitioned Transition Relations

3.1 Introduction

Design Verification is accomplished by specifying a system at a suitable level of abstraction
using a set of interacting FSMs, and then proving a set of properties that should hold for the sys-
tem. Binary Decision Diagrams (BDDs, [Bry86]) have been used successfully in formal
verification (o represent transition relations and manipulate sets of states. The first step of many
verification algorithms is computing the set of reachable states of the product machine. Indeed, a
significant subset of properties, the so-called safety properties, can be verified by checking that
the set of reachable states is contained in the set of “good” states. To compute the set of reach-
able states, one first builds the BDD for the transition relation of the product machine by
conjuncting (or multiplying) the BDDs corresponding to each individual FSM. However, to com-
pute the set of reachable states of the product machine, only the state variables of the product
machine are needed; the set of non-state variables, i.e. the input and output variables, can be elim-
inated using existential quantification. The resulting graph is referred hereto as the product
graph.

More precisely, let Tj(xj, i yj) be the transition relation of the j-th machine, where Xjs ¥ and
i ; represent its present state, next state, and non-state variables respectively. The transition rela-
tion of the product graph is computed by T(x,y) = 3i (TyCpipy) Acce AT, (X000, 9,))

where x, y, and i represent the set of all present state, next state, and non-state variables. This
computation can be sped up by making two observations.
1. Existentially quantifying a variable from a relation usually results in a smaller size BDD

(even though existential quantification can be exponential in the BDD size [McM94]).

2. (R, (u,v) ARy (1)) = (FVR,(u,v)) AR,(u), where R, depend on u and v, and R,

depends only on «. This operation of moving a quantifier inside a product is called the early

quantification principle. In general, quantification and conjunction do not commute.

27

The early quantification problem (EQ) is to find a schedule for multiplication of relations and
quantification of variables so that the maximum size of any BDD encountered is minimized.
This schedule can be represented by a binary tree, called a quantification tree (or schedule),
where every node specifies which variables are quantified after the left and right children have
been multiplied. The leaves of the quantification tree are the original relations, referred to as leaf
or original relations . The term resulting at each node of the quantification tree is called a par-
tial product, and corresponds to multiplying a set of leaf relations and quantifying a set of
variables.

Since it is hard to estimate the size of a BDD resulting from an operation such as multiplication
or quantification, we use the number of variables the BDD depends on (support of the BDD) as
an easily computable approximation. Two cost functions for approximating the cost of a node ¢
in a quantification tree can be defined. The support cost function is the number of variables in
the relation represented at ¢, whereas the un-quantified support cost function is the number of
variables in the relation obtained by multiplying the left and right children (and before quantify-
ing the variables to be quantified at 7). We show that the problem of finding a quantification tree
minimizing the un-quantified support cost function is NP-complete. We then suggest two heuris-
tic algorithms for solving the early quantification problem.

Our first algorithm amounts to a “good” implementation of a greedy strategy. The idea is to
have a set of trees, representing partial products. A merge represents multiplying two partial
products and quantifying out all variables which do not appear in any other partial product. The
support cost function is used in this algorithm, i.e. the cost of a merge is the size of the support

set which results after the merge. A merge minimizing this cost is chosen, and the merge is per-

formed. If there are k partial products, then there are O (k2) possible merges. The challenge
here is to design data structures so that choosing the best merge, and then updating the data struc-
tures after a merge can be done efficiently. We provide one solution to this.

The time required to find a good schedule becomes important when the size of the problem, i.e.
the number of relations or variables, is large. This come up in an environment where HDL
descriptions of non-deterministic FSMs are compiled into an intermediate format, such as BLIF-
MV ({HSIS94], [Che94]). The compiler may create many relations and intermediate variables
by representing a FSM as a multi-level netlist of relations. To find the transition relation of a
FSM, one can multiply all of the relations and quantify out the intermediate variables. This appli-
cation gives rise to an instance of the early quantification problem, with possibly hundreds or

thousands of relations and variables.

28

In general, this problem can arise in any verification system where a high-level description of a
large non-deterministic FSM is compiled into an intermediate format. Since there are many
input languages for verification tools, such as VHDL, Verilog, protocol languages, LOTOS, and
graphical languages, intermediate formats are indispensable for verification tools. Since the
descriptions can be non-deterministic, the relations are not functions, and hence functional com-
position of BDDs cannot be used directly to compute the transition relation of the FSM. The
most general formulation we know of for computing the transition relation is in terms of early
quantification. Even in the absence of non-determinism, the early quantification formulation has
more degrees of freedom compared to the functional approaches such as the one in [Sis92],
which may lead to more efficient methods.

The second algorithm is geared to smaller problems. It uses the dynamic programming princi-
ple to build an optimal quantification tree given a linear order for the leaf relations. Finding a
good linear order is an important sub-problem, and remains a challenge. However, one applica-
tion of this algorithm is to optimize the greedy algorithm as follows.

1. Run the greedy algorithm to get a quantification tree. Then, derive a linear order from it.
2. Use the dynamic programming algorithm to build an optimal tree for that linear order.

The early quantification appears in other application areas besides formal verification. We are
aware of applications in the following areas.
1. In synthesis, in computing don’t care sets ([Sav94]).
2. In implicit state minimization using BDD’s ((KBVS94)).
3. In testing, where the satisfiability of a set of Boolean equations can be checked by testing
whether the BDD resulting from multiplying all Boolean equations and quanti{ying all variables
is 1.

In most verification algorithms, the set of reachable states of the product graph needs to be com-

puted. This set is the least fixed-point of R, (y) = R,_,(y) +3x(R,_,(x) AT(x,y)), where R,
represents the set of states reachable in & steps, R, the set of initial states, and T (x,y) is the tran-

sition relation of the product graph. Often, in large problems, the BDD for T(x,y) cannot be

built due to space limitations. In such cases, since
T(x,y) = (T (x},ip,y) A-.. AT, (x,,i,Y,)), we can write the fixed point computation as
R, (y) =R, _, () +3IxFi(R,_ (X) AT, (xy,ip,y) Ao AT, (x,,0,¥,)) , thereby avoiding com-

puting T(x,y) . The trade-off with this approach is that computing the set of reachable states

usually takes longer.

29

To speed-up this computation, partial collapsing can be used, i.e. individual transition relations
can be clustered (pre-multiplied) to create fewer relations to be multiplied at every step of the
reachability computation. Note that all variables in i which appear in only one cluster can be pre-
quantified out. Now, each step of the reachability computation is an instance of the early quanti-
fication problem. The partitioned transition relations problem (PTR) is to find a clustering of
the transition relations, so that the time for computing the set of reachable states is minimized.

Our solution for this problem is related to first find a quantification tree for computing 7 (x, y)
using algorithms for early quantification. Then, the multiplications and quantifications given by
the quantification tree are performed until the sizes of the BDDs for the partial products become
larger than some threshold value. Assume that / partial products P, ..., P; result, and that a sub-

set 7 of i remains to be quantified out. At each reachability step, we have to solve an instance of

the early quantification problem with the I+ 1 terms, where the current set of reachable states R,

is the additional term. We make two observations to avoid calling early quantification at each
step.

1. In most cases, R, involves all of the x variables.
2. Any further collapsing of the partial products P,, ..., P, might result in a blow-up.

Hence, using observation 1, early quantification is called with a dummy set representing R,

involving all x variables, relations P, ..., P;, and variables i and x to be quantified. Using

observation 2, the schedule is further restricted to be a linear chain with the first element being

the current sct of reachable states. This schedule has the property that no partial products P; and
P; are directly multiplied. We take this as a fixed schedule for all iterations.

Four related papers should be mentioned.

1. [TSLBS90] used a balanced binary tree at each step of the reachability computation to com-
pute Re(y) =R (M +I\IAi(Ry_ () AT (xyy iy y)) Aee AT, (X005, - Early
quantification was not addressed, balanced binary trees were used as quantification trees in each
step of the reachability computation, and no partial collapsing was performed.

2. In [BCL91] partial collapsing and then use of linear chain was proposed. However, no auto-
matic algorithms were given, and the partial collapsing and linear order were chosen manually.

3. [CC93] introduces a new “exist” generalized cofactor which allows for distribution of con-

junction and quantification. Their technique for the early quantification problem is quadratic in

30

the number of relations, and hence is not practical when the number of relations is large, as may
be the case when HDL descriptions of non-deterministic FSMs are translated into intermediate
formats ([Che94]). However, it appears that for the partitioned transition relation problem one
can use both our techniques and theirs to achieve better results. Using our techniques the number
of transition relations is reduced by automatically clustering higﬁly correlated FSMs. Then using
the techniques of [CC93] the reachability step can be sped up. We have not performed any exper-
iments with this idea.
4. [GB94] addressed the problem of partition transition relations and gave a simple greedy algo-
rithm for it, without addressing the early quantification problem.

Another technique for reducing the sizes of BDDs is dynamic variable reordering (DR,
[Rud93]). BDDs are very sensitive to the order of the variables. DR changes this order dynami-
cally during each BDD operation in order to reduce the size of BDDs. EQ and PTRs appear to

be orthogonal to DR, i.e. the application of one technique does not render another ineffective.
This chapter is organized as follows. Section 3.2 presents the early quantification problem.
Section 3.3 describes our greedy algorithm for early quantification, whereas in section 3.4 the
exact algorithm given a linear ordering of the relations is described. Section 3.5 gives our experi-
ments with early quantification, whereas section 3.6 discusses our experiments with the

partitioned transition relations. Future directions are given in section 3.7.

3.2 The Early Quantification Problem

In this section, we formulate the early quantification problem, and prove an abstraction of it is

NP-complete.
Assume a relation R (x) is given, where the variable x ranges over a linite domain of size n.

The characteristic function of R can be represented by a Boolean equation over logn variables.
In general, if R(x,, ..., x;) is arelation over finite domains with n,, ..., n, elements respectively,
then the characteristic function of R can be represented by a Boolean equation over
log (n,) +... +log (n,) variables. We denote all logn Boolean variables corresponding to a

finite domain x of size n by x, knowing that x represents a set of Boolean variables. A conve-

nient multi-valued interface to the BDD package is described in [Kam91].

Definition Let n relations R 1(uy), .., R, (u,) be given, where each u; represents a set of vari-

31

ables on which R; depends. Let u = Uy, , ie. the set of all variables. Let xcu. The early

quantification problem (EQ) is to compute in minimum space the BDD corresponding to

3x (R, (uy) A... AR, (u,)) , where each R, is represented by a BDD. We call R,,...,R, the leaf

relations, x the quantifying variables, and u the occurring variables.

Definition A quantification tree is a rooted binary tree, where the leaves are the R, ‘s. Each

node ¢ contains a set of variables g (r) c x, which occur only in the relations contained in the
subtree rooted at 1. The set g (s) represents the set of variables which should be quantified after
the left and right children have been multiplied. R(f) denotes the relation represented at ¢,
obtained by multiplying the children of ¢ and quantifying the variables ¢ () . The cost of a quan-

tification tree is the maximum of the costs of all nodes (to be defined below) in the tree.

i
J

Definition A partial product is of the form P = 3:c,l...3x,k(R,.l A AR‘-.), where R,.l, .o R,
J
are leaf relations, Xpo oo Xy arE quantifying variables not occurring in any other leaf relations

except for R‘.l, R Rt',-‘

The partial product P can be represented by a quantification tree for

3x; ...3x, (R,. A... ARi), and can be part of a quantification tree for 3x(R;A...AR)). Con-
1 k 1 /]

versely, each node in a quantification tree represents a partial product.
Since it is hard to get a good a priori bound on the size of a BDD resulting from a multiplica-
tion or quantification, we use the size of the support set of a BDD as an approximation. In this

context, two cost functions for a node ¢ can be defined.

1. Support cost function, which is the size of the support of the relation R (r) at node ¢, i.e.
the size of the support of R(¢) . Note that we assume that if two BDDs R, and R, with support
sets | and §, are multiplied, the resulting BDD depends on S, us,. This is an approximation
to reality since the real support is a subset of §; Us,. This multiplication and quantification can

be done in one BDD operation, called BDD-and-smooth. Unless otherwise stated, by cost of a

node, we mean the support cost.
2. Un-quantified support (UQS) cost function, which is the size of the support of the relation
obtained by multiplying the children (but before the variables ¢ (1) are quantified). For example,

the support cost of 3x (R, (x,y) AR,(y,2)) is 2, whereas its un-quantified support cost is 3.

This cost function makes sense since the space taken by BDD-and-smooth may be correlated to

32

the size of the BDD resulting from multiplying the two functions.

It can be shown that if early quantification is restricted to linear chains, i.e. arranging the rela-
tion in an array and multiplying and quantifying from left to right, then the cost (support cost)
may increase by a factor of logn, where n is the number of relations. The following example
shows an instance of early quantification with 7 relations and 7 variables. The variable depen-
dency of each relation can be defined using the binary tree shown in the left part of figure 3.1.

Each node of this tree is labeled by some R ;- Each R, is dependent on x,, and any other x; such
that R; and R; are neighbors in the tree. For example, R, is dependent on x,, x,, and x,, and
R, is dependent on x, and x,. Let 3x,...3x,(R; A... AR;) be computed. The minimum cost
over all quantification trees is 3, whereas that of linear chains is 4. By generalizing this example,

one can build an example with 2" - 1 relations and variables, such that the minimum cost over all

quantification trees is 3, whereas that of linear chains is logn + 1.

Xgy X
SN°7
R

R

](5 Ry
R3 R4 6 7
The tree of variable Ry, R,
dependency structure Jor the x A quantification tree of cost of
set of 7 relations and 7 A quantification tree of cost of 3. 4 4 representing a linear chain.

variables . The maximum cost is achieved

R2 R3 when Rs is multiplied, where
the support is x}, x5, X6 X7

Figure 3.1: Examples of quantification tress

Theorem 3.1 Answering the question of whether a quantification tree of un-quantified support
cost less than ¢ exists is NP-complete.

Proof To see the problem is in NP, just guess the quantification tree and verify that it is a valid
one, and has cost less than ¢. To show the problem is NP-hard, we reduce the minimum width
tree decomposition (MWTD) problem, described in [RS86] and proven NP-complete in
[ACP87], to it. Given an undirected graph G = (V, E), a tree decomposition is an undirected

tree T, where every node i in the tree is marked by some X ;S V, and the following conditions

are satisfied. -

33

1. Every node in V appears in some X,,ie. UX, = V.

2. Every edge (4, v) € E lies in some X;, i.. there is some X;suchthat ue X; and ve X;.

3. If there is path from i to j passing through k in T, then X;nX;,cX,.

The width of a tree decomposition is max(|X,.|) . Answering the question of whether a tree

decomposition of width less than ¢ exists is NP-complete. Figure 3.2 gives an example of a
graph with one of its tree decompositions. The figure on the right shows a rooted tree, derived

from the undirected tree in the middle.

2 The figure on the left shows a
’ @ graph on S nodes. The middle

5 @ @ @ Jigure shows a tree decomposition

@ @ of width 3, and the right figure is a

4 3 rooted tree corresponding to the
undirected tree in the middle.

Figure 3.2: Example of tree decomposition

Let V= {v,..,v,},and E = {e},...,e,} . The reduction to early quantification is as fol-

lows. Create n variables Vp . v,. Foreachedge e, = (v, "j) , Create a relation e, (v, Vj) , and
ask whether a quantification tree of UQS cost less than & for Iv,..3v, (e, A...Ae,) exists.

Assume a tree decomposition T of width less than ¢ exists. Make T rooted. Starting from the

leaves, recursively create the quantification tree as follows. Let node ne T be marked by X,
and have children c,,...,c,. Let 0;,...,Q, be the quantification trees for c,,...,c,. Let
€ -eer € be those edges which lie inside X e but do not appear in Qs - Q> Or anywherc else in

the quantification tree built so far. Build an arbitrary quantification tree T, for node n on the
leaves {Q,,...,0;} U {e,,...,¢;} , quantifying a variable u if all edges involving u appear in

0, ..., Q, or are among e,, ..., ¢;. Figure 3.3 shows the quantification tree for the tree decompo-
sition in figure 3.1, where the groupings show what happens after different nodes of the tree
decomposition are processed.

To see that the cost of the resulting quantification tree built by this procedure is less than ¢, we
proceed by induction on the above recursive procedure. If n is a leaf in the tree decomposition

T, then the un-quantified supports in the quantification tree Q, are contained in X, . Hence,

34

UQS cost of n is less than c¢. If n is an intermediate node with children ¢, ..., ¢, , by the induc-
tive assumption, the UQS costs of Q,, ..., 0, are less than ¢. Let S, ..., S, denote the supports
at 0,, ..., @, after the variables to be quantified have been quantified. We need to show Sj cX,
for each S;. Let ue S;. Then, there is some edge e involving 4 which does not appear in Q ;-

Since n will be on the path from u to the node in T in which e lies, by condition 3 of tree

decompositions, we have u e X, .

The quantification tree built by the above
algorithm for the tree decomposition in
figure 3.2. Note that the leaves
AN correspond to the edges of G. The un-

quantified support cost of this
quantification tree is 3.

Figure 3.3: Quantification trees and tree decompositions

We now show that a quantification tree of cost less than ¢ leads to a tree decomposition of
width less than ¢. Assume a quantification tree Q with UQS cost less than ¢ for

Iv,...v,(e; A...Ae,) is given. Define T to have the same tree structure as @, and let X, for

node ne T be the un-quantified support at ne Q. We need to show T satisfies the three condi-
tions of a tree decomposition, and has width less than ¢. Conditions 1 and 2 are satisfied since

the leaves of Q are the edges of G. Let k be on the path from i to j in T. Let ue X;nX;.

Then, u can be first quantified from the common root r of i and j. If k = r, we are done, since
u belongs to the un-quantified support of r. Otherwise, then, k is a descendent of r, and hence

contains . In both cases, u e X, . The width of T is less than c, since the size of the set of vari-

ables at node n e T is equal to the size of the un-quantified support at ne ¢ (QED).

3.3 A Greedy Algorithm for Early Quantification

In this section, we describe a greedy algorithm for early quantification. Assume an instance of

early quantification of the form 3x,...3x (R, A... AR)) is given.

35

Definition Two partial products are disjoint if they have no relations in common. Let P, and
P, be disjoint. We say partial product P is the result of merging P, and P, if the set of rela-
tions of P is the union of the relations of P, and P,, and the set of quantifying variables of P
contains those of P, and P, and any other variable which appears only in P, and P,. Let u,,
u,, and u be the supports of P,, P,, and P, respectively. The cost of merging P, and P, is
|ul - MAX (|u,|, |uy|) . If P, and P, are represented by quantification trees ¢, and ¢,, merging
them amounts to forming a new quantification tree + whose children are 1, and 1, , and whose set
of quantifying variables are those variables which appear only in 7, and 7, and are not quantified
inz andys,.

In some applications, such as compilation of high-level languages to intermediate formats, the

set of BDDs to be multiplied contain many constants. Let a constant BDD be one whose support
includes only one variable, and the number of minterms it represents is 1. An example is the
BDD for the relation x = 5. Constant propagation, which repeatedly multiplies the constant
BDDs into every relation in which they appear, is effective in reducing the size of the leaf rela-
tions. We assume constant propagation is performed before our algorithms for early
quantification are called, although this does not change our algorithms in any way. Our greedy

algorithm is described below.

1. Start with each relation, and quantify those variables which appear in only one relation. Set done to
false.

2. Until there is only one quantification tree left or done is true,
2.1 Choose a minimun: cost merge, among a “subset” of possible merges.
2.2 If the cost of the chosen merge is less than some user-defined value, perform the

merge. Otherwise set done to true.

After describing the data structures needed for efficiently implementing this algorithm, the

details of the algorithm are given.

3.3.1 Data Structures for the Greedy Algorithm

The greedy algorithm maintains a forest F of disjoint quantification trees T,,...,T,. Active

variables are a subset of the variables to be quantified, which have not been quantified in

36

T}, ..., Ty. The connections of an active variable are those T;‘s (among T, ..., T,) in which it
appears. Each node in every T, is given a unique integer identifier. The variable connection

table for a variable v is a hash table which contains the set of connections of v. The connection
table is a hash table which points to the variable connection table for every variable v. Insertion
into and deletion from both of these tables can be done in constant time. Figure 3.4 gives an

example of a forest and its connection table, where are five leaf relations Ry (x,x5) , Ry (x5, x3)

Ry(x3,x4) s Ry(x4%5) , Rs(x5,x;) ,and 3x,...3x5(R; A ... AR;) is to be computed.

AX
3 A forest of 3 xn—s]7]
6 4 5 quantification trees,
2 Ry R R where every node *4 4] 7]
2 4 75 has a unique Xg _W‘I
1 R2 identifier.
The connection table for
the forest in the left figure.

Figure 3.4: A forest and its connection table

Definition A merge M is atuple (1,1,,c,s), where t; and 1, are the two quantification trees

to be merged, c is the cost of M, and s is the size of the support after the merge. Note that in
computing a merge no BDD operations are needed.

All merges are managed in a cost array, where merges of the same cost are in the same bucket.
A low and high marker keep track of the lowest and highest cost merges. The bucket for a cost ¢
points to a support array. A position s in a support array A for some cost ¢ points to a doubly
linked list containing all merges of support size s (and cost ¢). Hence, given ¢ and s, the linked
list L(c,s) , linking all merges of cost ¢ and support s, can be found in constant time. Since a
merge can appear in only one such linked list, the next and last pointers are maintained inside the
data structure for a merge. For a support array A, the high and low markers keep track of the
smallest and largest support sizes contained in A. These are the first and last positions in A for

which the linked list of merges in not empty.

The cost array is of fixed size (~C,, C), where C; and C, are non-negative constants. A
merge whose cost is lower than -C; or greater than Cj, is inserted in the bucket for -C; and
Cy, respectively. Similarly, the support arrays are of fixed size (0, S;) . In our implementation,

C, = CH = 100, and S = 200 since a BDD with more than two hundred variables is rarely

37

built. The merge table is an array indexed by the identifiers of the quantification trees, pointing
to the set of merges in which the quantification tree is involved. Figure 3.5 gives the merges,

cost array, and merge table for the forest in figure 3.4.

The cost array.
Mi{ 4] 5]2] 0f 1{2|3)4a|s5] 6| 7] [..[qTol1]... Bot low and high
le 4 I 7 I 2 I Ol : markers poins to 0.

Support array for

cost 2. Both low
M3|5[7]2] 0] MY M1 O 1| 2| " and high markers
Three possible merges. The M m point 10 2.
components of a mergel mu, meroe gable. For each
represents _the identifiers of the qumn:ficarifn tree, there is an entry in Linked list for
quantification irees, the suppor | g, merge table pointing to a hash table merges of cost 0
sizes after the merge, and the of the merges in which the quantification and support 2.
cost of the merge, respectively. tree is involved.

Figure 3.5: Data structures for the greedy algorithm

In what follows, we will prove some complexity results of the data structures. We assume
o = 0(m) where o is the total number of variables, and m is the number of quantifying vari-
ables. This assumption is reasonable since we have observed that in large instances of early
quantification, a large proportion of the variables are quantified. If this is not the case, then m
has to be replaced by o in all of our results below. In our implementation of quantification trees,
at every node 1, we store two sets of BDD variables: ¢ () and s (¢) , which are the sets of quanti-
fying and support variables at node r, respectively. Each BDD variable is represented by a
unique integer identifier, and the sets ¢ (r) and s(r) are in increasing order of BDD variable

identifiers.

Lemma 3.3.1 A merge M = (1,,1,,¢,5) can be computed in time O (m) .
Proof To compute M, s has to to bc computed. Let r, and r, be the roots of 7, and ¢,.
Since s (ry) and s(r,) are in sorted order, scan them in increasing order. If a variable v occurs

in both s(r,) and s (r,) , and has only two connections, mark it as quantified. Otherwise, v will

be in the support after the merge. The results follows by noting that the number of connections
of a variable can be looked up in constant time from the variable connection table, and the
assumption that 0 = 0 (m) (QED).

Lemma 3.3.2 A merge M = (1,,1,,¢,5) can be inserted into or deleted from the merge table

in constant time.

38

Proof Let H, and H, be the hash tables containing the merges for t, and £,. H, and H, can

be looked up from the merge table in constant time. The lemma follows by noting that insertion

into and deletion from a hash table is a constant time operation (QED).

Lemma 3.3.3 A merge M = (1,15, ¢,5) can be inserted into or deleted from the cost array in
constant time.

Proof Insertion can be done by inserting M at the beginning of L (c,s) . Deletion is done by

adjusting the next and last pointers, maintained in M. If M is the first link in L(c,s) , then
L(c,s) is set to point to the second one (QED).

Definition A merge M = (t,,1,,s,¢c) is performed by following the procedure below.
1. Create a new quantification tree ¢ with children ¢, and ¢,, and set ¢ () to contain those quan-
tifying variables which have not been quantified in ¢, and #,, and occur only in ¢, and ¢, .

2. Update the connection table by deleting the variables in ¢ () . Update the variable connection

table for a variable v occurring in 7, (in z,) by deleting the connections to f, (to ¢,) and adding

aconnection to 7.

3. Delete M from the merge table and cost array.
4. Delete each merge M = (1,1,,5',¢) involving ¢, from the merge table and cost array, and
insert a merge M" = (t,7,,s", ¢") into the merge table and cost array.
5. Update merges involving ¢, as in the previous step.

Lemma 3.3.4 A merge can be performed in O (nm) time.

Proof The set g(r) in step 1 can be computed by visiting each variable in s(r;) and s (1,)
once (recall the variables in s(7;) and s(t,) are in sorted order). Hence, step 1 takes O (m)

time. Step 2 takes O(m) time since insertion into and deletion from the connection table and

variable connection tables can be done in constant time. By lemmas 3.3.2 and 3.3.3, step 3 can

be performed in constant time. There are at most » merges involving #,, since the number of

quantification trees is less than n. By lemmas 3.3.1, 3.3.2 and 3.3.3, steps 4 and 5 take O (nm) .
The lemma follows (QED).

39

3.3.2 The Greedy Algorithm in More Detail
A main point left unresolved in the greedy algorithm is how a subset of possible merges is cho-

sen. If there are k quantification trees in a forest F, there are O (kz) possible merges. If & is
large, it may not be possible to build the data structures for all merges. Our approach, given
below, is to perform low-cost merges (to be defined precisely below) first on a small subset of
possible merges. This will reduce the size of F. On this smaller forest, and for higher cost

merges, a bigger subset of possible merges is considered.

1. Create the small merge table: for an active variable v with two connections, create a merge between
the two quantification trees in which v appears.

2. Perform merges with a small maximum cost M, i.e. choose a minimum cost merge, and perform the
merge if its cost is not greater than M.

3. Create the full merge table: for an active variable v whose number of connections is less than some

maximum value E,,, create all possible pairwise merges between the quantification trees in which v

appears. Arrange in an arbitrary ring, all quantification trees containing some variable u whose num-
ber of connections is larger than E v+ Create a merge between any neighboring quantification trees in
this ring.

4. Perform merges, i.e. choose a minimum cost merge and perform the merge, until left with only one

quantification tree (if the merge table is empty, choose two arbitrary subtrees).

For our implementation, we let Mg = 0 and E,, = 50. We have the following results.

Lemma 3.3.5 The number of merges created by the small merge table is bounded by O (m) .

Proof There are at most m active variables having two connections. For each such variable,

at most one merge is created in the small merge table (QED).
Lemma 3.3.6 The number of merges created by the full merge table is bounded by O (m + n) .
Proof The number of merges created due to active variables whose number of connections are
less than E,, is bounded by O (m) . Since there are at most n quantification trees (there are no

more quantification trees than leaf relations), at most O (n) merges are created due to the ring in
step 3 (QED).

40

3.3.3 Complexity of the Greedy Algorithm

Theorem 3.2 The running time of the algorithm is bounded by max (0 (nzm) ,0 (mz)) .

Proof The time to create merges is bounded by 0(m2+mn) by lemmas 3.3.1, 3.3.5 and

3.3.6. Since at most O (n) merges are performed, by lemma 3.3.4, the total time for performing

merges is O (n°m) . The theorem follows (QED).

When the number of relations is large, the early quantification problem may be (and is the case
in our experience) sparse, i.e. every variable appears in O (1) relations, and every relation has
0 (1) variables. Hence, for sparse problems, O (n) = O (m) .

Theorem 3.3 If the early quantification problem is sparse, then the running time of the
algorithm is O (n) .

Proof There are at most O (n) merges created by the small and full merge tables. Performing
a merge takes constant time, since every quantification tree is involved in a constant number of
merges, and the size of the support of the quantification trees is bounded by a constant. Hence,

performing the merges takes O (n) time (QED).

3.4 An Exact Algorithm for Early Quantification Given A Linear Order

Let an instance of early quantification 3x,...3x, (R, A... AR,) , and an ordering R".’ ...R, of

i

the relations be given. Without loss of generality, we assume i, = 1, ..., i, = n. Given a quantifi-
cation tree t, its linear realization is an ordering of the leaf relations obtained by a depth-first
search visiting left child, right child, and the root, respectively. Intuitively, the linear realization
is the left-to-right ordering of the leaves of 7. In this seclion, we give an algorithm which returns
in polynomial time a minimum cost quantification tree over all those quantification trees whose
linear realization is R, ..., R, .
Let p[i,j] be the partial product 3% (R; A ... AR), where X is the subset of quantifying vari-

ables which occur only in R, ..., R;. Let cost [i,j] be the minimum cost over all quantification

trees for p [i,j] whose linear realization is R, ..., R;. If ¢ is a quantification tree whose linear
realization is R, ..., R;, then there exists k, i<k<j, such that the linear realization of the left

child of the root is R, ...,R,, and the linear realization of the right child of the root is

41

R,y - R;. Index k is called the separator of 1. The idea of the algorithm is to calculate the

best way of computing partial products of the form p [i,j] . In the algorithm given below, first
the cost of the original terms is computed. Then, the best way of computing p [i,j] for increas-

ing j-1i is calculated.

0. Preprocessing step: quantify out any variables present in only one relation.
1. Fori = 1,...,n, initialize cost[i, i] .
2 Ford=1,..,n-1,
Fori=1,..,n-1
j=i+l
cost [i,j] = e
Fork=1i,..j-1
q = ComputeCost (i, j, k) (described below).
If g<cost[i,], then cost[i,j]1 = q,and seperator[i,jl = k.

3.4.1 Cost Functions

In the above algorithm, ComputeCost (i,j, k) is a function returning the cost of computing
pli,jl in a quantification tree where the left (right) child of the root is a quantification tree of
minimum cost whose linear realization is R,...R, (R, 1 e Rj). Let ¢ be a node in a quantifi-
cation tree, representing partial product p, and having children ! and r. We have experimented
with the following two cost functions.

1. The un-quantified support cost function returns MAX (|s (1) us (D], Is (D], |s (N)]) , where
Is (n)| denotes the size of the support at some node n. Note that |s(!) Us(r)| denotes the size
of the support.at ¢ before the variables ¢ (f) are quantified.

2. The variable duration cost function, motivated in [BCL91], measures the cost of quantifying
a variable v as the number of multiplications that has to be performed starting from the original
relations to form the partial product from which v is quantified. Intuitively, it enforces the princi-
ple “the earlier you quantify a variable the better.” More precisely, let || be the number of
intermediate nodes in , which is also the number of multiplications needed to form the partial
product p (represented by ¢) starting from the original relations. Let |q (f)| denote the number

of variables to be quantified at + Then, cost(f) = cosr(l) +cost(r) +|g(n)|ll. Note that the

42

cost of 1 can be determined in both cases from the costs of / and r.

3.4.2 Correctness and Complexity

Theorem 3.4 Given a linear ordering of the relations, the above algorithm returns a minimum

cost quantification tree for the given cost function.

Proof A quantification tree of cost cost [1,sn] can be built using the separators. Hence, it
suffices to show cost [i,] is the minimum cost of computing p [i, j] , subject to the linear order.
To show this, we use induction on the number of terms in a partial product p [i,j1 . The base
case, i.e. p [i,i], holds since there is only one way to compute p[i,i] . The claim follows from
the inductive assumption and by noting that the algorithm tries all possible ways of computing
p[i,j1 from smaller sub-partial products subject to the linear ordering (QED).

Theorem 3.5 The above algorithm runs in O (nsm) , where n is the number of relations and m

is the number of variables to be quantified.

Proof The algorithm computes cost [i,j] fori = 1,...,n-1 and j2i. There are O(nz) such
calculations. To compute cost [i, /] , for all k, i<k<j~1, the support and quantifying variables
of a quantification tree + whose left and right children are the partial products p [, k] and
plk+1,j] have to be computed. For a quantifying variable v, let I(v) and r(v) denote the
smallest and largest indices of the relations in which v occurs. v is in the support of r iff
I(v) <i or j<r(v),; v is quantified at r iff i<I(v) <k<r(v) j. By pre-computing /(v) and
r(v) for all quantifying variables, the support and quantifying variables at ¢ can be determined
in 0(m) time. To deterine cost[i,jl, O(n) such calculations are needed. The theorem
follows (QED)

Remark In theorem 3.5, as before, we assume o = O (m), where o is the total number of

variables.

3.4.3 Obtaining Linear Ordering

A minimum cost quantification tree can be built by finding a suitable linear order and running
the above algorithm. Linear realizations of minimum cost quantification trees are among linear
orders on which the algorithm will return a minimum cost quantification tree. Currently, we use
the linear realization of the quantification tree returned by the greedy algorithm. Finding good

linear orders for this algorithm remains a challenge.

43

3.5 Experimental Results for Early Quantification

Since our package is integrated into HSIS, we have experimented with a set of academic and
industrial verification examples. The input language to HSIS is Verilog, extended to handle non-
determinism. Most verification examples (and, in general, high-level designs) are described as a
set of interacting and possibly non-deterministic FSMs. Instances of early quantification arise in
two places:

1. As each Verilog process (representing a FSM) is translated into BLIF-MV, a multi-level
structure consisting of many small non-deterministic relations is created. To form the transition
relation of a FSM, all relations have to be multiplied and the intermediate variables quantified.
In this application, it is not uncommon to call the routine with thousands of relations.

2. After the transition relation for each FSM is built, to form the product graph, all these rela-
tions are multiplied and non-state variables are quantified. In this application, the input usually
consists of less than 100 relations, where each relation is the transition relation for one of the
FSMs.

The next two sections summarize our experiments within each of these applications. The exam-
ples we used are: Gigamax, a multi-processor cache coherency protocol distributed with the tool
SMV([McM93]); Scheduler, an academic example from [Mil89]; 2mdlc, a message data link
controller obtained from industry.

3.5.1 Experiments Building the Transition Relation of a Single FSM

In this section, we present our experiments with the largest FSMs for each of our three exam-

ples. We experimented with three algorithms. The first one (G) is the greedy algorithm,

presented in section 3.3. Our second algorithm (B) returns a balanced binary tree built from the
original relations, quantifying variables as soon as possible. Our third algorithm (L) is a greedy
algorithm building a quantification tree representing a lincar chain, where relations are multiplied
from left to right, quantifying a variable as soon as possible. It is obtained by restricting our
greedy algorithm to choose a minimum cost merge involving the quantification tree resulting

from the previous merge.

Table 3.1 shows the results of our experiments. Columns 2 and 3 of the table give the number
of relations and variables before and after constant propagation. Column 4 shows the total time
to find the schedule and perform the multiplications and quantifications (for these experiments,

the time to find the schedule was negligible). Column 5 contains the number of nodes for the

largest BDD seen, whereas column 6 gives the maximum support set encountered. In column 7,
G stands for the greedy algorithm, B for the balanced binary tree algorithm, and L for the greedy
algorithm restricted to retumn linear chains. Our experiments were run on a DECsystem 5900
with 40MB of RAM.

Table 3.1: Experiments building transition relation of one FSM

of relns/after # of vars/after s
Examples const. prop. const. prop time in secs. | largest BDD | max support alg

01 40 12 G

Diners 122/80 128/86 0.08 145 22 B
0.12 205 26 L

0.29 202 14 G

Gigamax 153/100 148/95 0.89 3370 30 B
3.63 3014 33 L

0.25 253 12 G

Scheduler 106/69 104/67 0.40 1074 23 B
0.61 502 2 L

1.50 8982 37 G

2mdlc-fsmi 212/144 187/119 2.60 11261 42 B
40.1 23731 49 L

3.02 274 4 G

2mdic-fsm2 820/556 809/545 20.1 62468 46 B
177.5 62468 46 L

11.58 1644 38 G

2mdlc-fsm3 318872194 2179/1373 space-out space-out B
space-out space-out L

Our experiments can be summarized as follows.
1. The support cost function tracks well with the sizes of the BDDs.
2. In all examples, the greedy algorithm performs better than the other two. The difference
becomes much larger as the size of the problem grows. In our largest example, the greedy algo-
rithm is the only one which can finish building the BDD.
3. The running-time of all three algorithms to find a schedule were a fraction of the time needed
for the BDD operations. Hence, they are not reported here.
4. Constant propagation is effective in reducing the number of relations in this application. We

think that this an impact on the total time, although this was not measured.

3.5.2 Experiments Building the Product Graph

For experiments building the product graph, we included the dynamic programming algorithm
as well as the algorithms of the previous section (greedy, balanced binary tree, and linear chain).

We experimented with two dynamic programming algorithms. The first one, referred to as DS,

45

uses the un-quantified support cost function on a linear order obtained from the quantification
tree returned by the greedy algorithm. The second one, referred to as DV, uses the variable dura-
tion cost function on a linear order obtained by restricting the greedy algorithm to linear chains.
Table 3.2 shows the result of our experiments. Columns 2 and 3 give the number of relations
and quantifying variables, respectively. Column 4 gives the size of the maximum BDD encoun-
tered, whereas column 5 gives the cost of the quantification tree. Note for DV, this cost, given in
parentheses, is as described in section 3.4.1. In column 6, the time for performing the multiplica-

tions and quantifications is given. For DS and DV, the time to find the schedule is also given.

The last column shows the different algorithms,

Table 3.2: Experiments building the product graph

time in secs
Example rﬁlzi. # oigxsz‘mt. laBrlg)t;;t cost sched/BDD ops. | algorithm
———— e e —————

Gigamax 11 22 8507 31 2.36 G
5693 21 0.04/1.48 DS
4256 (127) 0.0172.77 DV
15042 31 6.42 B
176163 36 6.87 L

Scheduler 12 39 49999 194 20.29 G
49999 166 0.06/21.03 DS
49999 (1143) 0.01/21.47 DV
102691 194 44.0 B
102691 194 95.61 L

2mdlc 20 18 2393 40 0.32 G
2393 40 0.12/4.22 DS
2718 (120) 0.02/2.86 DV
- space-out space-out B
- space-out space-out L

Our experiments can be summarized as follows.
1. The grecdy élgorithm gives good results in this application also.
2. Although the dynamic programming algorithm always returns a lower cost quantification tree
when given the linear realization of the quantification tree returned by the greedy algorithm, this
does not always translate into shorter processing time for the BDD operations. For the case of
2mdlc, it performs substantially worse.
3. For our examples, where the number of relations is less than 40, the time taken by the

dynamic programming algorithm is a fraction of a second.

46

3.6 Experiments with Partitioned Transition Relations

The partitioned transition relations (PTR) problem was defined in section 1, and our solution
based on early quantification was given. In this section, we describe our experiments with this
problem. The example we worked with is a model of the memory system for the SPARCS8 multi-
processor architecture ([SUN90]). To get a good BDD variable ordering, the description was flat-
tened. This description when translated into BLIF-MV results in 1800 relations and 1783
intermediate variables , which need to be quantified. The transition relation for this model cannot
be built. However, if the set of reachable states R is computed, and the relations are restricted to
R, then the transition relation can be built. The reason is that the un-restricted transition relation
represents transitions in both the reachable and unreachable parts of the state space. As Ken
McMillan has also observed, if the unreachable part of the state space in not “well-behaved,” as
is the case with our example, then the BDD for the un-restricted transition relation might blow up.

Our algorithm for PTR first calls early quantification to get a quantification tree, and then per-
forms the multiplications and quantifications until the sizes of the BDDs become larger than a

threshold value. At this point, a set of partially collapsed BDDs is obtained, which are arranged

in a linear chain and are used to compute the set of reachable states. Table 3.3 shows the result of
our experiments, where the columns represent various threshold values, the time taken to form
the clusters, the number of clusters, the time for computing the set of reachable states, and the

total time, respectively. All times are in CPU seconds.

Table 3.3: Experiments with partitioned transition relations

threshold collapse (time) # clusters reach (time) total time
100 9.98 59 43.83 53.81
1000 9.05 24 13.96 23.01
5000 9.07 21 12.77 21.84
15000 1046 19 5.60 16.06
50000 15.25 17 1.79 17.04
200000 50.83 9 3.83 54.66

Our experiments can be summarized as follows.
1. PTRs are vital to verify this example.

2. Partial collapsing is very useful to reduce the time taken to compute the set of reachable states.

47

3. Although partial collapsing with low or high threshold values gives poor results, there is a
range for which partial collapsing does not appear to be too sensitive to the threshold value used.

3.7 Conclusions

Formal verification tools based on BDDs are being used more and more in industrial applica-
tions. The central problem for these tools is computing the set of reachable states of the product
graph. To do so, a representation of the transition relation of the product graph‘is needed. In this
paper, we have attacked this problem. Our contributions are as follows.

1. We have formulated the early quantification problem, which is the most general formulation
we know of for computing the BDD for transition relations of individual FSMs and the product
graph. We have shown an abstraction of this problem is NP-complete.

2. We have given a greedy algorithm for heuristically solving the early quantification prob-
lem. This algorithm is fast, and has produced very good experimental results on all of our
examples. We have also given a dynamic programming algorithm for solving the problem opti-
mally when restricted to a given linear ordering of the relations.

3. For large examples, the BDD for the transition relation of the product graph may be too
large to build. In such cases, partitioned transition relations can be used. We have followed the
formulation of [BCL91], but have given automatic algorithms, based on our algorithms for early
quantification, for solving this problem.

A few directions for further research can be suggested.

1. We have shown the early quantification problem is NP-complete when the un-quantified
support cost function is used. Complexity of early quantification with the support or variable
duration cost functions needs to be investigated, although it is reasonable to expect the problem
to remain NP-complete in these cases as well.

2. Experiments using the greedy algorithm with un-quantified support cost function, and the
dynamic programming algorithm using support cost function need to performed.

3. Algorithms for finding good linear orders for the dynamic programming algorithm are

needed. Algorithms for one-dimensional placement may be used as a starting point.

Acknowledgment

A first version of this work appeared in [HKB94]. The version presented in this chapter is
based mainly on an unpublished manuscript written by the author, S. Krishnan, and R. Brayton.

48

Ken McMilllan pointed us to the minimum-width tree decomposition problem for the reduction
to show early quantification with un-quantified support is NP-complete. General discussions

with Tom Shiple were useful.

49

Chapter 4
Symbolic Computations for Language Containment and Fair CTL

4.1 Introduction

In providing a system for design verification, there are many issues which have to be addressed. In
this chapter, we look at several problems: specification of systems, specification of properties,

checking of properties, early failure detection, and hierarchical verification.

Specifying the System. In chapter 3, we introduced the combinational/sequential (C/S) concur-
rency model, to which HDL’s can be compiled. However, non-determinism and abstraction may
result in unwanted behaviors. An example is in modeling unbounded delays, where we want to
allow the system to stay at a state s for some finite but unknown amount of time. The behaviors
where the system is in s forever should be excluded. An easy abstraction would allow infinite
delays, but then all properties of the system should only be checked on traces, where the system
gets out of s infinitely often if it enters s infinitely often. A second example of unwanted behav-
ior is in modeling schedulers. Assume that a set of processes is executed in a system controlled
by a fair scheduler: one which disallows starvation of processes. An example of a fair scheduler
is a round robin scheduler. To avoid having to model the details of a particular scheduler, system
constraints can be used to disallow looking at traces where one process is blocked forever. Such
constraints on a system’s traces are called fairness constraints (FCs). Therefore, a hardware sys-
tem consists of a (possibly abstract) model of the hardware plus a set of faimess constraints. In
this chapter, we introduce various forms of specilying FCs.

Specifying Properties. We use two methods for specifying properties, CTL [CES86] and edge-
Rabin automata (an extension of Rabin automata, [Rab72]). Combined with the fairness con-
straints (also called acceptance conditions in the context of specifying properties), this provides
the ability of specifying any property describable by “fair CTL” plus any “omega-regular” prop-
erty. Although these two sets overlap, they are not strictly comparable. Hence, not only does
this provide a larger set of properties that can be specified than either alone, it also benefits the

user by offering a choice according to which is more convenient, efficient or succinct. Since the

50

symbolic methods for proving these two types of properties have many common features, it is
not necessary to have to choose between the two in designing a formal verification system. We
provide both without too much additional effort.

Checking Properties. Checking that a system satisfies a CTL formula is called model check-
ing (MC). A set of symbolic methods for model checking a subset of fair CTL was first given in
[BCMDH92]. These are based on fixed point computations which have efficient BDD ([Bry86])
implementations. The CTL formula is unrolled creating a parse tree, and the states for which
each sub formula holds is computed successively.

Checking that the system satisfies a property specified as a Rabin automaton is done by lan-
guage containment (LC). Here one needs to prove that the language of the system (set of its
traces satisfying the fairness constraints, known as fair traces) is contained in the language of the
property automaton (the set of input sequences accepted by the automaton). This is usually done
by complementing the property automaton and taking the product of the system with the result.
If the resulting product has no fair traces (its language is empty), then the property is proved. An
interesting property of our language containment environment, known as the edge-Streett/edge-
Rabin (eSeR) environment, is that the language containment check for this environment is poly-
nomial, whereas this check is NP-complete for the next natural (in some sense) extension to this
environment ([HSB94]).

For both LC an MC we need to compute a set of states called fair reachable states, denoted
Fair+, which can reach a “fair cycle”, a cycle whose traversal satisfies all the fairness con-
straints. We present several algorithms for computing Fair+ [HTKB92). These are based on
the ideas of [EL85] on how to translate fair CTL formulas into p-calculus. In addition, for LC
we give an alternative algorithm, which views LC as a sequence of transformations which trim
portions of the state spacc where no fair behavior can occur.

Early Failure Detection. In practice, a verification tool is more oftcn uscd when there are
bugs in the specification. So a good debugging environment associated with formal design verifi-
cation is essential. We provide two aids, early failure detection and short error traces. Early
failure detection (EFD) refers to finding “easy” bugs quickly, that is without having to go
through the complete MC or LC process. In this we try to emulate what simulation is good at,
where bugs are discovered easily by simulating relatively random inputs. We provide a set of
EFD LC algorithms which although not complete, empirically seem to find most bugs. Hence
the entire LC computation often can be avoided.

Short error traces are useful in providing the user with a more easily understood counter-exam-

51

ple to the property. An error trace is simply a simulation trace that does not display the required
property. One advantage with symbolic methods is that when an error occurs, internally the set
of all counter-examples is effectively available. The task of finding a short error trace is to find a
fair trace of the system which is as short as possible. Since an error trace involves an initial seg-
ment plus a cycle, we provide algorithms to find a shortest path to a fair cycle and then a short
fair cycle. Although we do not guarantee that the trace produced is shortest, experience is that
they are quite short and these short traces are very useful for debugging purposes. Techniques
for finding short error traces are described in chapter 5.

Hierarchical Verification. Even though symbolic BDD methods are quite powerful, eventu-
ally the system to be implemented becomes too complex and the state space becomes too large.
Then it is necessary to use abstraction to describe the system in order to verify a property. It is
desirable that if the property holds for the abstracted system then it also holds for the refined
detailed version. It is known, for all omega-regular properties and for some CTL properties, that
if the language of the abstract system contains the language of the refined system, then such prop-
erties holding for the abstract system also hold for the refined system. We give algorithms for
checking language containment between two systems with edge-Streett faimess conditions,
where for example one may be the detailed system which should be contained in the other
abstract representation.

Most methods described in this paper have been implemented in HSIS. The outline is the chap-
ter is as follows. Section 4.2 describes eight types of fairness conditions and their translations
into edge-Streett conditions. Section 4.3 presents the algorithms for computing the fair reachable
states, Fair+. Sections 4.4 and 4.5 give symbolic algorithms for MC and LC respectively. Sec-
tion 4.6 discusses thc advantages for providing both LC and MC capabilitics. Scction 4.7

describes some of the techniques used for early failure detection. Scction 4.8 discusses hierarchi-

cal verification strategies and presents some algorithms for this.

4.2 Fairness Constraints

To restrict the behavior of abstract FSM’s, fairness constraints are introduced. Fairness con-
straints put restrictions on which runs are accepfing. An w-string is accepted, i.e. is part of the
behavior of the system, if and only if it has an accepting run, where the acceptance condition
comes from the faimess constraints. In this section, we first give eigiu different forms to

describe faimess constraints, and although all are not necessary for completeness, they can make

52

it easier for the user to specify the total set of fairness constraints. We then show that all these
fairess constraints can be translated into a more restricted format, known as edge-Streett fair-
ness constraints. Fairness constraints can be divided into negative and positive constraints.

Within each category, various kinds of fairness constraints are allowed.

4.2.1 Positive Fairness Constraints (PFC)

We motivate positive fairness constraints by an example. Consider the scheduler given below,
which schedules processes 0, ...,n in a round robin fashion. If no FCs are imposed, then the
scheduler can schedule one of the processes forever. To impose fairness, we restrict the behavior
of this machine, by asserting that only those behaviors are accepting, where the edge (n,0) is
taken infinitely often (i.e. a positive fair edge constraint). Intuitively, this means that the sched-

uler keeps cycling through all the processes.

This scheduler schedules processes in a round
rabin fashion, allowing each process to continue
for an arbitrary amount of time. To ensure
fairness, the edge (m,0) is declared as a positive
fair edge, one which must be taken infinitely often.

Figure 4.1: Example motivating fairness constraints

In what follows, let r be a run. There are four types of PFCs.
1. Positive Fair Nodes. A set S of states one of which must be visited infinitely often (co-often),
ie. inf(ry nS+d.
2. Positive Fair Edges. A set of edges one of which must be traversed co-often.
3. Positive Fair Subset. A set S of states which must be visited «-often and exited only finitely

many times, i.e. inf(r) c§ forarun r.

4. Positive Canonical Fairness Constraints (PCFC). A constraint of the form F~ (S) +G™ (T) ,
where S and T are subsets of states. This constraint is satisfied by a run r iff inf(r) NS= QD (r

visits the set § co-often) or inf(r) ¢ T (after some point, r consists only of states in T').
A set of PFCs are satisfied if all are satisfied.

4.2.2 Negative Fairness Constraints (NFC)

Similarly, there are four types of NFCs.

1. Negative Fair Node. A state ¢ which must visited only finitely many times, i.e. it should not

53

be traversed co-often (inf(r) ng = @).
2. Negative Fair Edge. An edge which must be visited only finitely many times.
3. Negative Fair Subset. A set of states which either must be visited only finitely many times, or

exited eo-often, i.e. inf(r) NS+ @.

4. Negative Canonical Fairness Constraints (NCFC). A constraint of the form F (S) AG™ (T),

where S and T are subsets of nodes. This constraint is satisfied by arun r iff inf(r) S = @ or

inf(r) n T#QD.

Note that a run is accepting iff all the positive and negative fairness constraints are satisfied, i.e.

k !
_l'Il P;A .Hl N; holds, where P; is a positive fairness constraint, and N; is a negative one.
1= J=

4.2.3 Edge-Streett Automata

To make algorithm design easier, we translate a FSM with the above fairness constraints to a
more restricted form, known as edge-Streett automata.

Definition An edge-Streett automaton is a FSM with the following fairness constraints: a set
of negative fair edge constraints, a set of positive fair edge constraints, and a set of positive
canonical fairness constraints. A run is accepting if all of the fairness constraints are satisfied.

Lemma 4.2.1 A system with the above positive and negative fairness constraints can be
expressed as an edge-Streett automaton, so that the set of accepting runs is the same in both
systems.

Proof We show how each positive or negative fairness constraint can be converted to one of
the fairness constraints allowed by edge-Streett automata. Since, negative fair edge constraints,
positive fair edges constraints, and PCFC’s are allowed by edge-Streett automata, we only need

the following transformations.

1. Positive fair nodes. Let S be a set of positive nodes, one of which must be traversed so-often.
Create a constraint of the form F~ (S) + G~ () .

2. Positive fair subset. Let § be a positive fair subset. Create a constraint of the form
F~ (D) +G"(S) .

3. Negative fair node. Mark each incoming and outgoing edge ¢ of a negative node as negative

edges. Alternatively, we can create a CFC of the form F~ (@) + G~ (7).

4. Negative fair subset. For each negative fair subset S, create a PCFC of the form

54

F~(5) +G~ (D).
5. NCFC. Transform a NCFC F (S) AG (T) to aPCFEC F" (T) +G" (S) (QED).

The following figure shows the conversions of lemma 4.2.1.

Positive Negative
FairnodeS |F (S) +G (D) Fair node ¢ F~ (D) +G"(q)
Fairedges |N/A Fair edges N/A
Fair subsetS | F™~ (@) + G (S) Fair subset § F(5) +G” ()
PCFC N/A INCECF™(5) AG™(D|F™ (1) +G™(5)

Figure 4.2: Translating fairness constraints into edge-Streett conditions

4.3 Computing Fair States

At the heart of MC and many LC algorithms, is a function which computes the set of all fair
reachable states, i.e. those from which there is an accepting run. An accepting run according to
fairness constraints is called a fair path. In this section, we present an algorithm for this task,
which is a modification of the Emerson-Lei computation, presented in [EL85]), and re-formulated
in the language containment environment by [TKB91]. In [HTKB92], several other ways of
computing this set are given. In what follows, let G be a graph, V the set of its vertices, Ac V,
and T (x,y) its transition relation, i.e. its set of edges.

Definition A cyclic strongly connected component (CSCC) of G is an SCC of G which con-
tains at least one cycle. The remaining SCC’s are single node SCC’s with no self-loops. Thesc

arc called acyclic strongly connected components (ASCCs). .

This graph contains three SCC5:
{1}, {2,3), (4). The first one is acy-
clic, the last two cyclic.

Figure 4.3: Cyclic and acyclic SCCs

Definition Let F be a monotone increasing k -ary predicate transformer. Define the least fix-

point of F given Q, denoted by (X, Q) .FX where Q is a k-ary predicate over sets D,,D,,

55

by the set F* (Q) , for the least i such that F (F (Q)) = F (Q) , where F°(Q) = Q. Intuitively,
X is the variable we are recurring on, and Q is its initial value. Similarly, define the greatest fix-

point of a monotone decreasing k-ary predicate transformer F given Q, denoted by
v(X,0).F(X), by the set F (Q), for the least i such that F(F (Q)) = F (Q), where

FO(Q) = Q. We restrict attention to finite domains for which the fixpoints of monotone predi-

cate transformers are well-defined.

Definition Let $;(A,y) =3x(A(x) AT(x,y)) and S,(x,4) = Jy(A(y) AT(x,y)). Thus,
S, (A,y) are the (one-step) successors of A (x) and S, (x,A) are the (one-step) predecessors of
A(y).

Definition Let R (A,y) =A() VS, (4, R (x,A) = A(x) vS, (x4),

R (Ay) = (X, A).R (X)), R (x4) = (X, A).R,(x,X). Note that the first two are “one-

step” operators, while the last two are fixed-point computations. One should read R (A,y) as

the set of points reachable from A. Similarly R (x,A) is the set of points that can reach A.

Note that R, (4, y) and R, (x,A) are monotone increasing predicate transformers.
Definition Let U, (A,y) = S,(A,y) AA(y) and U,(x,A) = S,(x,A) AA(x). Thus,
U,(4,y) denotes the set of states in A which have predecessors in A, and U 1 (x,A) denotes the

set of states in A which have successors in A. Note that U, (4,y) and U, (x,A) are monotone

decreasing.

Definition We define two “stable set” operators, s (4,y) =v(X,4).U;(X,y) and

S' (x,A) = v(X,A).U,(x,X) . One can think of the first as calculating the backward stable set

contained in A, i.e. the set of all vertices in A which are reached by some vertex involved in
some cycle in A. The second is the forward stable set of A , i.e. the set of all vertices which can

reach some vertex involved in some cycle in A)l.

1. The backward operators introduced in this section will be used in the next section.

56

The original After backward After forward
graph stable set operator stable set operator

Figure 4.4: Effect of stable set operators

Definition Given a set of positive fair edges constraints {Ej} , n CFC’s of the form

F”(Si) + G”(T,.) , and a current set of states S, with S;c§ and T;c S, the forward fair-path

operator returns a set of states M c § such that for each xe M:

1. for each E;, there is apath in M, starting at x, and reaching some edge E;, and

2. for each condition F™ (S;) +G™ (T,) , either x & T}, or there is a path in M, starting at x, and
reaching a state in .

n

P
The computation for this operator is FP(S) = (Il (R' (x,5;) + T,.)) A(II R'(x, E ,-)), where
i=1 j=1

n is the number of CFCs, S; and T; are the sets in the i-th CFC F~ (S)) + G (T)) , p is the num-

ber of positive edge constraints, E" j represents the sct of head states of the j-th set of positive
fair edgces Ej after these cdges arc restricted to S, and FP(S) is the result of the forward fair
path operator. The corresponding backward fair-path operator is similar, except that the direc-
tion of the path is the reverse. The computation for the backward fair-path operator is

n . P .
BP(S) = II (R (S, y) + T‘.) A l'[lR (yEJ, y) , where "Ej represents the set of tail states of the j -
i=1 Jj=

th set of positive fair edges Ej after these edges are restricted to §.

Definition Let a fair cycle be a cycle whose infinite traversal satisfies all faimess constraints.
Let a fair state be a state involved in some fair cycle. Let Fair denote the set of all fair states.

Let a fair reachable state be a state which can reach some fair state. Let Fair+ denote the set of

57

fair reachable states.

The algorithm for computing the set of all fair reachable states is described as follows.

1. Restrict the transition relation T (x, y) to the set of reachable states.
2. Remove negative fair edges from T (x,y) .

3. Let A be the set of reachable states. Repeat until convergence,

3.1 Apply the forward stable set operator; A; , ; ,, = s (x,4) .

3.2 Apply the forward fair-path operator; \A; | = FP(A;, ,,,)
4. Let the set computed in step 3 be U. Return R (x, U) , i.e. the set of states which can reach U

Theorem 4.1 The above algorithm computes Fair+.

Proof Denote the set returned by the above algorithm by W. To show Fair+ ¢ W, it suffices
to show Fairc U. Let xe Fair. Then, x is in some fair cycle. So, it is not deleted by the
forward fair-path and stable set operators. Since, x is a reachable state, we conclude xe U.

To show W Fair+, it suffices to show U g Fair+: since any xe W can reach U which can
then reach a fair cycle, it follows that x can reach a fair cycle. Now, let xe U. We will show
x € Fair+. Assume to the contrary that x cannot reach a fair cycle. Then, there are two cases:
Case 1. x cannot reach a cycle, in which case, x is deleted by the forward stable set operator.
Case 2. x can only reach non-fair cycles. Consider the subgraph reachable from x. Consider
any one of the leaf SCC’s (one which cannot reach any other SCC) of this subgraph. Call it C.
Since C was not deleted by the forward fair-path operator, it must be that all positive edge con-
straints are satisfied, i.e. for each set of positive edges, one of the edges is included in C. Also

for the i-th CFC, every state in C is either included in T; or can reach some S;. Since, states in

C can only reach themselves, and since vertices in C only have edges to vertices in C, it follows

that C is either included in 7; or contains some node of §;. Hence, a cycle Y which goes

through all nodes and edges of C satisfies the i-th faimess constraint. We conclude that y satis-
fies all positive edge constraints and all CFCs (y satisfies the negative fair edges constraints
since all the negative fair edges were removed). Hence, v is fair. But this is a contradiction to x
not being able to reach any fair cycles (QED).

There is another operator which can be used in step 3 of the above algorithm to quickly elimi-

58

nate portions of the state space in which no fair reachable states exist. Given a set of states S,

the forward trim operator is defined by the following.

Perform the following until there are no more changes:
Foreach ™ (S) +G™(T)) .if R(% Sn5,nT;) eSO 5,n T, let S = SO\ (T,US)) , where
S is the current set of states.

The backward trim operator is defined by replacing Rl(S‘:. NT, y) by Rl(x, 5.n T’,J . One can

easily show that the trim operators does not delete any fair reachable states. In chapter 6, we
extend the trim operator by analyzing the graph induced by fairness constraints. This analysis
can result in deletion of portions of the state space where no fair behavior exists. These tech-
niques are especially useful when the fair states are being computed as part of a language

emptiness check.

Remark Computing the set Fair when BDDs are used is more difficult than computing Fair+
since it involves a transitive closure computation rather than just reachability. One way to com-
pute it is to modify the above algorithm as follows. Let C(S) deno‘c the set of all cyclic

strongly connected components containing some state of S. For any set §, C(S) can be com-

puted easily from the transitive closure of the underlying graph. In the forward stable set and

fair-path operators, replace the reachability computations of the form R (x,8) by C(S). By fol-
lowing the same line of reasoning as before, one can prove that the set U computed by the above

algorithm in step 3 is the set Fair.

4.4 Fair CTL

We first define Computation Tree Logic (CTL) ([CES86]), and thcn introduce fair CTL
([EL8S)), and give a symbolic model checking algorithm for this logic.

44.1 CTL

Definition Let AP denote a set of atomic propositions, i.e. a set of symbols. The syntax of
CTL is described as follows.

1. Any atomic proposition P is a CTL formula.

2. If f and g are CTL formulas, so are the following: f , f+ g, EXf, E(fUgl , and EGf.

59

Definition A Kripke structure on AP is a finite directed node-labeled graph, where the node
labels are subsets of AP (see also section 2.3.5). We assume that every state in a Kripke struc-

ture has some successor. If a state s is labeled by Pe AP, we say that P is true at s. /f a node

is not labeled by some P e AP, it is assumed that P is true there. Intuitively, the atomic proposi-
tions are the outputs produced at the states.

Definition The semantics of a CTL formula ¢ is defined in terms of a state s in a Kripke struc-
ture S. We say ¢ is true at s if one of the following holds:

1. ¢ = P for atomic proposition P, and P is true at s.

2. ¢ = f for CTL formula f, not satisfied at 5.
3. ¢ = f+g for CTL formulas f and g, such that either f or g is satisfied at s.
4. ¢ = EXf for CTL formula f, such that there is some (infinite) path ®(0), ® (1), ... starting at
x, where f holds at ®(1) .
5. ¢ = E[fUg) for CTL formulas f and g, such that there exists a path = in § starting at s,
where the first time g is true along =, f has been true for all previous times. Intuitively, this
means that f is true until g becomes true. Note that g has to become true along = .
6. ¢ = EGf for CTL formula £, such that there exists a path © starting at s, where f is true every-
where along «.

We say ¢ holds for S if it holds at some initial state.

For ease of readability, we introduce the following syntactic abbreviations, with their intended
meanings.
a. AXf= E—Xf , meaning f is truc at all successors of s.

b. EFf=E [trueUf] , meaning there exists a path starting at s along which s finally becomes true.

c. AFf=EGf meaning for every path & starting at s, f is true at some state along =, i.e. it

becomes true along x.

d. AGfEET]" , meaning for every path n starting at s, f is true along all states of =, i.e. f is true

at all states reachable from s.

e. A[fUgl =E[gUf g] A EGg meaning that for all paths © starting at s, the first time g is true, f

has been true for all previous times.

60

4.4.2 Fair CTL

Definition Let Ff (infinitely often 1) hold for a path in S iff the CTL formula f holds for

an infinite number of times along n. Let G~ g (almost everywhere g) hold for a path n iff after
a finite amount of time the CTL formula g holds forever along n. These operators are some-

times called the infinitary operators.

Assume a Kripke structure S, a formula ¢ of the type F f (or G™f) where f is a CTL formula,

and a path = in §, are given. One can calculate the set of states in which f is true, create a new
atomic proposition @, and assign Q to all nodes in which s is true. Now Ff (or G f) is true of

m iff F-Q (or G Q) is true of n. Hence, we assume that only atomic propositions are used in
conjunction with the infinitary operators.

Definition A general fairness constraint is any Boolean combination of infinitary operators.
A canonical fairness constraint (CFC) is a faimess constraint of the form
m n
2 II

RIRS 1(F P‘.j +G Q,.j) , where Py and Q‘.j are atomic propositions.

[EL85] showed that any general fairess constraint can be expressed as a CFC, but, the transla-
tion may be exponential; however, they argued that most practical faimess constraints can be

represented efficiently using CFCs.

Definition A formula in the logic fair CTL is a pair (¢, ®) , where ¢ is a CTL formula and &
is a canonical fairness constraint. The truth of (¢, ®) is determined at a state s by interpreting
the quantifiers only over those (infinite) paths which satisfy the fairness constraint & (i.e. the
fair paths).

Example Let s be a reachable state such that atomic proposition P is true at s, but s is not fair

reachable (i.e. s cannot reach a fair cycle). Then, the formula P holds at s, but EFP does not.

4.4.3 Fair CTL Model Checking

[EL85] introduced Fair CTL and gave an algorithm to model check fair CTL formulas. This
algorithm relied on finding a fair strongly connected component of the graph, i.e. a SCC which
completely contains a fair path. The first step in detection of fair SCC'’s finds all SCC’s of the
graph. Unfortunately, this operation is very time-consuming (on large graphs), even when BDDs
are used ([HTKB92]). [BCMDH92] first presented a BDD-based algorithm for a subset of fair

61

n
CTL, where the faimess constraint is of the form 'HI(F"P,.). In this paper, we present an algo-
1=

rithm for full fair CTL, which uses the fair reachable state computation of section 4.3 as a
subroutine.

Remark To compute fair-states for a system S with faimess constraints of the form
m n n
ig,ljl;ll(F”PiﬁG“Qij), we compute fair-states for each constraint '_I;[l(F"PﬁG”QJ.), and

then take their union. So, for the remainder of this section, we assume the fairness constraints
” - -3 o
are of the form [] (F P.+G Q)
j=1 ij ij

To model check a fair CTL formula, we start from the leaves of the parse tree of the formula
(which are atomic propositions), and compute the set of states satisfying each subformula. If

some initial state is in the final set of states (i.e. at the root of the parse tree for the formula), then
the original formula is satisfied. For example to compute the set of states satisfying f+g, we
first compute the set of states satisfying f, the set of states satisfying g, and take their union. If
an initial state is in this union, the formula is satisfied.

In order to present a MC algorithm for fair CTL, we need to present algorithms for six cases:
AP P, f+g,f, EGf, EXf,and E(fUg] . In general, f and g are CTL formulas, and we assume
the sets of states satisfying f and g are known. Let F be the set of fair reachable states of the
system (Fair+). The following algorithm performs the task. Let S(f) denote the set of states

satisfied by a CTL formula f. Let T(x,y) denote the transition graph of the Kripke structure.

1. AP P. Return S(P) .

2. f+g. Raeurn S(f) uS(g) .

3 F. Return S(f) .

4. EGf. Compute the set of fair reachable states, satisfying EGf, using the following algorithm.
4a. Restrict T(x,y) to S(f) . Callthe result T (x,y) .

4b. Return the set computed by the fair reachable state computation using T (x,y) with the same fair-

ness constraints.

5. EXf. Return the intersection of the set of states whose next states satisfy f, with F :
UM) =5,(x,S() AF)

6. E[fUg]. Compute the set of fair-states satisfying E [fUg) , using the following fixed-point compu-

62

tation.
Uo =S(g NnF
Uy(x) = U;_, (1) + (S, (6 U;_)) AS(N)

To prove the correctness of the above algorithm, we need one lemma.

Lemma 4.4.1 Assume a fair path = is given. Then, every state along = is a fair reachable
state.

Proof The set of infinitely occurring states of the path satisfies the faimess constraints. For
any state s along =, consider the path =n', obtained by restricting © to start at s. The set of
infinitely occurring states of n# and =’ are the same. Hence, n' satisfies the fairness constraints,
and therefore s is a fair reachable state (QED).

Theorem 4.2 Our algorithm correctly model checks fair CTL.

Proof We prove the correctness of the last three operations.
1. EGf. Let s satisfy EGf. Then, there exists a path = starting at s, along which f is always
true. If we restrict the graph to states where f is true, m is still a fair path of this new graph.
Hence, the algorithm returns all states s which satisfy EGf. To see that it does not return any
other state, note that it returns fair reachable states of a graph, where f holds everywhere. Hence,
all fair paths it considers satisfy EGf.
2. EXf. If s satisfies EXf, then there exists a fair path starting at s whose next state ¢ satisfies
f. By the above lemma, re F. Conversely, if s is such that for one of its next states ¢, re F
and e S(f) , then s satisfies EXf. So, states whose next states are in S(f) N F are exactly the
states satisfying EXf.
3. E[fUg]. Let s satisfy E[fUg] . Then, there is a path from s to a fair reachable state s such
that g holds at ¢, and f holds at the states between s and ¢ along the path. Therefore, the above
computation includes s, since te S(g) NF, and s reaches ¢ along a path on which f is always
true. Conversely, any state returned by the computation satisfies E [fUg] (QED).

Remark All of the steps of the above algorithm can be efficiently implemented using BDDs.

4.5 Language Containment

In this section, we are concered with @-automata specifications. Using language containment
for formal verification, one represents a super-set of the desirable behaviors of the system using

an @-automaton T. One can think of T as specifying acceptable patterns for the traces of the sys-

63

tem. An example is: only those traces are acceptable where each request is eventually followed
by a service. This property can be specified by a two-state automaton. One then checks that the
language of the system, which is represented by an w-automaton S, is included in the language
of the property automaton T, L(S) ¢ L(T). Doing so, the user is guaranteed that the system is
incapable of producing traces which do not have the desired pattern. This is called verifying a
system with respect to a property. This verification continues until the user is convinced that the
intersection of the languages of the properties is equal (or maybe very close) to the desired set of
behaviors.

The above scheme first appeared in [VW86], who suggested specifying both the system and the

property using Buchi automata, and gave an algorithm for language containment in this environ-

ment. The usual method to verify that L(S) c L(T) is by checking that L(S) NL(T) is empty
(known as language emptiness check). However, complementing an @-automaton is a PSPACE-
complete problem, and the best known algorithms have exponential complexity ([SVW87],
[Saf89]).

[Kur87b] introduced an environment, where the acceptance conditions of the system and the

property are complementary. The system is modeled by an L-process, whereas the property is

modeled by a deterministic L-automaton. An L-process is a process (section 2.3.2) with the fair-
ness constraints being negative fair subsets and edges. The negative fair subsets are called cycle
sets, whereas the negative fair edges are called recur edges. A run is accepting if 1) it does not
traverse some recur edge co-often, and 2) its set of infinitely occurring states is not contained in
any cycle set. An L-automaton is syntactically the same, except that a run is accepting if some
recur edge is traversed eo-often, or if the set of infinitely occurring states is contained in some
cycle set. We rcfer to this method for verification as the L-environment. Computing the complc-
ment of the language of a property is trivial: since the acceptance conditions of L-processes and
L-automata are complementary, one can just think of the L-automaton as an L-process. Based on
this paradigm, the first software tool for automatic verification of finite-state systems using lan-
guage containment was built ((HK90]). The advent of BDDs allows for handling very large state
spaces. |

In this section, we introduce a new language containment based formal verification environ-
ment, which contains the L-environment as a subset. The advantage of this environment is that
specifications can be more compact, however, the algorithms remain as efficient as the algo-
rithms for the L-environment. Specifically, if the specifications come from the L-environment,
the algorithms reduce to those for the L-environment ((HTKB92]).

64

In this environment, the system is modeled using edge-Streett automata, whereas the properties
are modeled using edge-Rabin automata. We call this environment the eSeR-environment.
Edge-Rabin automata have two useful properties. First, the set of deterministic edge-Rabin

1

automata accept the whole set of @-regular languages”™. In general, if an automaton is determinis-

tic, complementation is much easier?. The second property is that deterministic edge-Rabin
automata can be compactly complemented into edge-Streett automata. Hence, the language con-
tainment check is reduced to checking that the language of an edge-Streett automaton, formed by
taking the product of the complement of the property and the system, is empty. We first define
edge-Rabin automata, and show how one can complement a deterministic edge-Rabin automaton
into an edge-Streett automaton. We then present the language emptiness check for edge-Sireett

automata. We conclude by discussing some expressiveness results about our environment.

4.5.1 Edge-Rabin Automata

Definition An edge-Rabin automaton R is an automaton A augmented with a set of fairness
constraints, each of the following form:
1. Positive fair edge constraint, which is an edge of A.

2. Negative fair edges constraint, which is a set of edges of A.

3. Canonical fairness constraint (CFC), which is of the form F~ (S) AG (T), where S and T

are sets of states.
An o-string x of A is accepted (xe L(A))if thereisarun r of x in A such that at least one of
the fairness constraints is satisfied, i.e.

1. r traverses some positive fair edge e<-often, or

2. for somc set of negative fair edges £, r docs not traverse any of the edges in E ee-often, or
3. for some CFC F~(8) AG™(T) , inf(r) N S;#@ and inf(r) < T;.

Lemma 4.5.1 For every deterministic edge-Rabin automaton R, there is a deterministic edge-
Streett automaton § with the same transition structure and no more fairness constraints, which

accepts the complement of the language of R.

1. Deterministic L-automata cannot express all @-regular languages, however, one can define any w-regular
language by taking an intersection of a finite (possibly large) number of languages expressed by determinis-
tic L-automata ([Kur87b)).

2. [CDK93] gives the complexity of language containment between various types of automata when the speci-
fication automata are deterministic.

65

Proof For the set of all positive edge constraints in R, create one set of negative edges in S.

For each negative fair edges constraint in R, create a set of positive fair edges in S. For each

F”(S;) AG™ (T, , create a constraint G"(S’})-{- Fw('T:.). Let xe L(S). Since S and R are both
deterministic, x has a unique run r in both § and R, which is rejected in R, ie. x¢ L(R).
Thus,L (S) c L(7) . One can similarly show thatif xe L(R) then x¢ L(S) (QED).

Remark When BDDs are used for representing sets of states (like S; and T,), computing the

complement of an edge-Rabin automaton by the above procedure is trivial, since complementing

a BDD can be done in constant time.

4.5.2 Language Emptiness Check for Edge-Streett Automata

The language of an edge-Streett automaton is empty iff there are no fair paths. Hence, one way
to check for language emptiness is to use the fair reachable states computation: this returns a non-

empty set precisely when the language of the automaton is not empty. In language containment,
we are only interested in the set of fair states (denoted Fair, section 4.3). However, the fair
reachable state computation returns a super-set of the fair states. We now define the set Fairt
which is a better approximation to Fair than Fair+.

Definition Let Fairt denote the set of states which can reach some fair cycle and can be

reached from some fair cycle. We have Fair c Fairt ¢ Fair+. Figure 4.5 shows the difference

between these sets.

¥
<& <

Original Fair i Fairt $ Fair+
z graph @

Figure 4.5: Difference between various fairness sets

The following algorithm computes a subset of Fairt, containing Fair (the proof is similar to

66

the proof of the correctness of the algorithm for Fair+ computation).

1. Remove negative fair edges.
2. Start with reachable states.
3. Repeat the following operators until convergence:
3.1.a Apply the forward fair-path.
3.1.b Apply the forward stable set.
3.1.c Apply the forward trim.
3.2.a Apply the backward fair-path.
3.2.b Apply the backward stable set.
3.2.c Apply the backward trim.

Step 3 of the above algorithm is known as the main computation. In a later section, we will

modify this algorithm by checking for easy failures.

4.5.3 Expressiveness of Edge-Streett Automata

In this subsection, we present two expressiveness results. First, we discuss why the eSeR-envi-
ronment enjoys a sense of maximality. Second, we compare the compactness of specifications in
the eSeR-environment to those in the L-environment. The heart of the language containment
check is an emptiness check for edge-Streett automata. One may ask if it is possible to make the
environment even more powerful without sacrificing too much efficiency (the language empti-
ness check for edge-Streett automata can be done in small polynomial time). In some sense, the

next most natural extension is to allow acceptance constraints of the form of a product of sums of

an arbitrary number of F~'s and G 's. Since the sum of a set of F~ (S;) 's is just equivalent to

F“(US,.) ,only one F~ sufficcs. It remains to answer whether allowing more G™ 's will sacri-
i

fice efficiency. [EL85] basically answered this question (they were looking at a slightly different
problem).

Theorem 4.3 The problem of determining whether the language of an automaton with
acceptance conditions of the form II(G (S) +G°°(T,.)) is empty, is NP-complete (in the
i

number of states and fairness constraints).
Proof (sketch) The problem is in NP. The answer is a set of states which can be traversed

infinitely often, such that all fairess constraints are satisfied. Just guess this set of states, and

67

check that this set is contained in §; or T; for all i. To prove the problem is NP-complete, just

use the reduction of [EL85], which was employed to show the fair state problem with faimess
constraints of the above type is NP-complete. [EL85] reduces 3SAT to a graph with fairness
constraints of the above type. Now, the language of the automaton is non-empty iff the original
formula is satisfiable (QED).

Since the language emptiness check for Streett automata is done in polynomial-time, and the
next natural extension makes the language emptiness check NP-complete, the eSeR-environment
enjoys a sense of maximality.

Remark [HSB94] discusses several compactness issues of the eSeR-environment. The most
important result is that translating an edge-Street automaton into an L-process is exponential in
the worst case. To facilitate Streett automata in the L-environment, [Kur94) translates each
Streett faimess constraint into an L-process. Checking the language emptiness of the original
Streett automaton now reduces to checking the language emptiness of the intersection of the orig-
inal transition structure and the new L-processes. The regular emptiness check is exponential in
this case. However, [Kur94] presents a polynomial emptiness algorithm (mimicking our empti-
ness algorithm for edge-Streett automata), which takes advantage of the special structure of this

problem.

4.6 Complementary Nature of MC and LC

In this section, we give a classification of properties, which constitutes a different way of look-
ing at property specification methods, such as CTL and edge-Rabin automata. We argue that,

using this view, LC and MC are somewhat complementary.

4.6.1 A Property Classification

The properties one might want to verify about a system can be divided into three sets: string
properties, language properties, and system properties.

1. String Properties. These properties must be satisfied by every trace of the system, i.e. every
@-string in the language of the system. An example is: for every trace of the system, if request 1

is pending when request 2 is generated, then request 1 is serviced before request 2. The edge-

Rabin automaton recognizing this property is given in figure 4.6.

68

“Else” means under the
remaining conditions, “true”
means always. The highlighted
edges denote positive fair edges
and the highlighted box a
positive fair subset.

else Figure 4.6: A hard to express property for CTL

Much is known about the hierarchy of specification languages for traces. At the highest level is
the set of w-regular languages, which is recognized by non-deterministic Buchi automata as well
as deterministic Rabin automata ([Cho74]). Linear Temporal Logic (LTL) is another method to
specify string properties, which is properly contained in w-regular languages ([Wol83] shows
that the property p is true at every even state is not expressible in LTL). [Eme90] gives a survey
of such expressiveness results.

2. Language Properties. These are properties of the languages, not expressible as string prop-
ertics. For example, one might wish to verify that if strings x and y are in the language then
string z is also in the language. Consider the CTL property P = AGEFp, which says for all
reachable states s, there exists a path from s to some state 1 where atomic proposition p holds.
Any system having the above property P has the following language property Q: Q is the set of
languages L such that if yze L, where y is a finite string and z is an infinite one, then there
exists a string w, with p occurring in w, such that ywe L.

3. System Properties. These properties distinguish between transition structures, possibly hav-

ing the same language. An example is the above CTL property P = AGEFp, which

distinguishes between the systems shown in figure 4.7, having the same language.

The CTL property AGEFp holds for the
first system, but it does not hold for the
second. Note that both systems have
the same language. Hence, CTL has
the power to distinguish between
different implementations of the same
behavior.

r
9

Se
AO IO

Figure 4.7: Ability of CTL to recognize structures

69

Y
&

4.6.2 MC versus LC

To compare MC and LC, we first need to define expressiveness of a specification language.

Definition A specification language (P, A) is a set P (usually infinite) of finite strings over
some alphabet, and an algorithm A to decide whether a system S satisfies some property pe P.
An example is the set of all CTL formulas as P, and a CTL model checking algorithm as A. In
this case, the alphabet is the set of all outputs of all systems, plus symbols used in CTL formu-
las. We assume that systems are given in the C/S model. Other common finite state models can

be used instead. Let A (S, p) be the result returned by algorithm A on system S on property p.

Definition Given two specification languages (P|,A,) and (P, A,) , we say P, is at least as
expressive as P, if Vp, e P, Jp, € P, such that VS (4, (p,,S) =4, (p,,S)) . The intuition is
that given a property p, in P,, we can come up with a corresponding property p, in P,, such
that for any system S, p, holds of § iff p, holds of §, i.e. p, is true on exactly the same set of
systems § that p, is true..

An important subclass of trace properties, called invariance properties, is expressible in both
MC and LC. Invariance properties are of the type “no bad event happens in any reachable state
of the system.” Invariance properties are expressed by formulas of type AGp in CTL (p may be
a Boolean formula of atomic propositions) or as edge-Rabin automata of the type shown in figure

4.8.

p true This edge-Rabin automaton expresses the
’-‘f S invariance property that in all states p is true. If

we ever visit the second state, we will stay there
- forever, and the resulting string is rejected.

A

Figure 4.8: Automata for expressing invariances

Moreover, some simple liveness properties, i.e. properties of the form “some good event will
happen in the future”, are also expressible by both methods. However, there are string properties
expressible by w-automata, but not expressible by CTL. An example ([Wol83)) is the property
“at all even times p holds.” There are other properties, usually involving sequencing of events,

which are very hard or impossible to express in CTL. An example is “if reql happened before

req2, then servl should happen before serv2 “ (figure 4.6). Properties depending on sequencing

of events occur often in practice. Examples are memory systems and pipeline computers. It is

70

our experience that even when a property involving sequences of events is expressible in both
CTL and edge-Rabin automata, it is harder to find the correct CTL formula for it.

On the other hand, no language or system prdpertics are expressible by w-automata. In general,
properties involving the existential quantifier of CTL are not expressible by @w-automata. These
properties are significant, because sometimes we want to ensure that a certain behavior is possi-
ble, e.g. it is always possible to reach a safe state from any state of the system. The CTL formula
AGEFp , which involves existential quantification, expresses this property.

We believe LC and MC provide different, useful capabilities to the user, and therefore, are
somewhat complementary. By combining the two environments, we gain more expressive power
and ease of expression; a larger set of properties can be more easily specified and verified. It
remains to determine how much of an overlap there is in the useful expressive powers of CTL
and ®-regular languages.

Remark It may also be the case that debugging with CTL properties is easier, since the debug-
ger unfolds the formula one operator at a time. Language containment, however, gives all the
debugging information back to the user in one bunch. Hence, at every point in debugging CTL
formulas, less information is fed back to the user. Another possible advantage is that with CTL,
one can do one reached state computation and then check any number of formulas. Finally, one
can always directly write the property as part of the system by forming a monitor which repre-
sents the complement propeﬁy. Then model checking EFtrue is the same as language
emptiness. However, this requires the user to explicitly complement the property automaton.
Also, it may not be possible to take advantage of all optimizations tailored for language contain-

ment in this setting (see chapter 6).

4.7 Early Failure Detection

We present techniques for early failure detection (EFD). We first present a classification of
errors for LC, and show how each can be computed. In most cases where a property fails, it is
not necessary to compute the full set of reachable states to find the error. Indeed, since the
notion of an easy error in many cases corresponds to an error which is reproducible in a few
steps, we expect to compute only a few reachability steps before the error is found. We combine
this idea with a classification of fair cycles to give an algorithm for EFD during LC. The idea of
avoiding the full reachability set is used then to give a EFD algorithm for ACTL, i.e. CTL formu-

las involving only universal quantification, and with complementation applied only to atomic

)

propositions.

4.7.1 Early Failure Detection for LC

In LC, a failure is an w-string accepted by an edge-Streett automaton. Given the transition rela-

tion with negative fair edges removed, and a subset R of the reachable states, we define the

following set of fair cycles of R. Let § = NS, where the S, ‘s are the cycle sets..
i

1. Cycles of the first kind. Cycles entirely contained in §, and satisfying the positive edge con-
straints. Any such cycle is fair.
2. Cycles of the second kind. Cycles not of the first kind but intersecting S, and satis{fying the
positive edge constraints.
3. Cycles of the third kind. Any fair cycle not of the first two kinds.

To find the cycles of the first kind, run the stable set operator on S. If the resulting set is not

empty, run the main computation (given in subsection 4.5.2) on this set with the positive edge

1

constraints”. To find cycles of the second kind, run the main computation on R, with the faimess

constraints being the positive edge constraints, and a constraint of the form F~ (S). If a non-
empty set is returned, some fair behavior exists.

Theorem 4.4 1If there are no cycles of the first or second kind, the main computation can be
restricted to SN R.

Proof We can delete the states in § from consideration, because there are no cycles of the first
or second kind, and hence there cannot be any fair cycles involving states in § (QED).

To avoid computing the full reachability set, as we compute the set of reachable states, we can
perform a cheap test which may find some errors. The following is an implementation of this

idea. We start with the current set equal to the set I of initial states.

1. Using breadth-first search (BFS), compute the set of states Ry, reachable in D or fewer steps from
the current set.

2. Check if there are any cycles of the first kind in R,. If so, stop.

3. Ifnone is found, set the current set equal 1o R, go to step 1, continuing the BFS for another D steps

1. One can similarly check for cycles entirely contained in NT;, since any such cycle is fair, and
i
these cycles can be easily detected using stable set operators.

72

or until all reachable states are computed.

Intuitively, the algorithm takes a few BFS reachability steps (D steps), and then checks
whether there are any (easily found) fair cycles of the first kind in this set. Since easy errors are
almost always of the first kind, and since checking for these is less computationally expensive
than checking cycles of the second kind, we only invoke EFD here with cycles of the first kind
(although obviously other fair cycles could be checked as well). The process continues until an

error is found, or the full set of reachable states is computed.

4.7.2 Early Failure Detection in Fair CTL

We do not know how to extend EFD techniques to general CTL formulas. Howcver, the tech-

nique described in subsection 4.7.1 can be applied to ACTL formulas, where the idea is to take a
few reachability steps, and then check whether the formula is satisfied. The trouble with formu-
las involving existential quantification is that the reachable states not yet visited may be
“witnesses” for the existential quantification. This problem does not arise with ACTL formulas.

Definition A CTL formula is in positive normal form (PNF) if all negations are applied to
atomic propositions, and the only Boolean operators used are “AND” and “OR”. Any CTL for-
mula can be written in this form.

Definition A CTL formula is a for all CTL (ACTL) formula if when written in PNF it does not
involve existential quantification.

Lemma 4.7.1 Let S be a subset of the reachable states R. Let ¢ be an ACTL formula,
interpreted over CFC ®. Let se S. If ¢ does not hold at s (over @) in S, then ¢ does not hold
at s (over ®)in R.

Proof We use induction over the size of CTL formulas. Assumc ¢ does not hold at s in S.
Note that ¢ is interpreted over fair paths, and the fair paths in S are a subset of the fair paths in
R.

1. ¢ = P, P some proposition. Since P is not a label of s, ¢ does not hold in §, and hence not
in R either.

2. ¢ = f+g, where f and g are CTL formulas. By the same reasoning as in case 1, neither f
nor g hold at s in S. By the inductive assumption, neither f nor g hold of s in R. The conclu-
sion follows.

3. ¢ = fAag. Similar to case 2.

73

4. ¢ = AGf. Since ¢ does not hold in §, there is some state ¢ reachable from s along a fair
path =, such that f does not hold at r. By the inductive assumption, f does not hold of ¢ in R.
Since = is a fair path in R, ¢ does not hold of s in R.
5. AXf. Proof is similar to case 4.
6. AfUg. Proof is similar to case 4 (QED).

Since we do not have any way of quickly determining whether an ACTL formula is not satis-
fied, the check should be applied more sparingly than for edge-Rabin automata. The problem of
extending quick failure checks to ACTL formulas, analogous to the cycles of the first kind,

remains open.

4.8 Hierarchical Verification

The design process can be done hierarchically. For large designs, this may be the only way to
verify it. The designer may first abstract the design, and prove some properties about it. Next,
the designer may add more detail. For example, a module may be implemented by three more
detailed ones. By definition, a subsystem implements another if the behavior of the implementa-
tion is contained in the behavior of the specification at a higher level. This means that the
language of the lower level implementation must be contained in the language of the higher level
specification.

Since systems are specified using edge-Streett automata, this requires checking language con-
tainment between two edge-Strectt automata. [Kur92] presents an algorithm for language
containment of two L-processes (this comes up in the L-environment because of his use of the
homomorphic reductions). We prcsent an algorithm with the same flavor for our problcm.
Assume two edge-Streett automata A and B are given, where B is deterministic. Using the fol-
lowing two lemmas, the problem of containment of L(A) in L(B) is reduced to a finite set of
language containments between edge-Streett and edge-Rabin automata.

Lemma 4.8.1 Let A and B be edge-automata with B being deterministic. L(A) ¢ L(B) iff

L(A) cL(B),for all 1 <i<n, where n is the number of fairness constraints of B, and each B,

has the same transition structure of B, but only one of the faimess constraints of B (the set of

negative edges is considered as one faimess constraint, whereas each positive edge and each
constraint F~ Sy + G~ (T;) is a separate fairness constraint).

Proof (=>) Assume L(A) cL(B). Let x be a trace of A. We have to show x is a trace of

74

each B;. Assume x is not a possible trace of some B;. Then, that faimess constraint is not

satisfied on x. Hence, x is not a trace of B. So, L(A) ¢ L(B) , which is a contradiction.
(<=) Assume to the contrary that L (A) ¢ L(B) . Let x be a string in L(A) and not in L(B).
Then, some fairness constraint of B is not satisfied on x. Let it be constraint j. Then, x is not a

trace of B; (QED).

Lemma 4.8.2 If a deterministic edge-Streett automaton S has only one fairness constraint, then
there exists a deterministic edge-Rabin automaton, with the same transition structure and at most
two fairess constraints which accepts the same language.

Proof We have to show the transformation for each kind of fairness constraint. We have threc
cases:

1. A negative fair edge. Create an edge-Rabin automaton with the edge being a negative fair edge
constraint.

2. A set of positive fair edges. Create an edge-Rabin automaton with the edges being a positive

fair edges constraint.

3. A constraint of the form F~ (S;) +G™ (T,) . Create an edge-Rabin automaton with two CFCs:

F”(True) AG™ (T, and F~(S)) G (True) (QED).

Note that the algorithm for language containment between two edge-Streett automata is rather
efficient. For checking L (A) ¢ L (B), we have to solve n problems (n being the number of con-
straints of B), each of which can be solved very efficiently. Since, these faimess constraint are
given by the user, we expect n to be small.

Remark One can also usc the algorithm reported in [Saf92] for the above task. Given a dcter-

ministic Streett automaton with n states and h CFCs, [Saf92]'s algorithm returns a deterministic

Rabin automaton with n2"'%" states and h+1 CFCs accepting the same language. Although
this algorithm is exponential in A, if 4 is small, as it is expected to be in practice, this algorithm
may be practical.

If B is non-deterministic, then the language containment check is more expensive. [Saf92] pro-
posed an (exponential) algorithm for determinizing a non-deterministic Streett automaton into a
deterministic Rabin automaton. One can translate an edge-Streett automaton into a Streett autom-
aton, using techniques similar to the node-recur transform of [Kur87a). Hence, the problem of

testing for language inclusion of an edge-Streett automaton into another edge-Streett automaton

5

can be reduced to testing the language inclusion of an edge-Streett automaton into a deterministic
Rabin automaton, for which we have presented algorithms. The requirement that B be a non-
deterministic automaton may not be too severe since it appears that in practice many specifica-
tions may be effectively deterministic, i.e. have deterministic transition structures, since Moore
machines with non-deterministic outputs and deterministic transitions (as is the case with L-pro-
cesses in [Kur92]) can be used for the necessary abstractions in many cases. In those cases,
where the finite state machine is viewed as an automaton the output non-determinism is simply
seen as another input which can take any value. For cases where the associated automaton is non-

deterministic, [THB9S5] presents semi-implicit implementation of determinization procedures for

®-automata.

Acknowledgment
This material presented in this chapter is based mainly on [HB95a).

76

Chapter §
Generating Short Error Traces

5.1 Introduction

An important part of any verification system is generating error traces. To make it easier for
the user to locate the bug, the error trace should be short. In general, a short error trace is easier
to understand and follow. In this chapter, we study how short error traces can be generated for
both language containment and fair CTL model checking. We first build a debugging environ-
ment for generating short error traces for language containment, and then use this environment
and additional ideas to generate short error traces for fair CTL model checking. Since, as we will
prove, the problem is NP-hard in both cases, heuristics are needed. However, all of our algo-
rithms are based on BDDs, hence, they are capable of handling large state spaces.

An overview of the algorithms to come is as follows. An error trace in LC consists of two
parts: a path from an initial state to some fair state x, and a fair cycle starting at x. We present
BDD-based algorithms which guarantee that the initial path of the error trace is minimum among
all error traces. Then, a heuristic algorithm is given which returns a short fair cycle starting at x.
This problem is NP-complete, and it is the source of why debugging for LC is NP-hard. As for
CTL, we unwind the CTL formula one operator at a time, giving debugging information about
the topmost operator. This has the advantage of giving the debugging information to the user
incrementally. For ACTL formulas the debugger can return the debug structure automatically,
whereas when existential quantification is used, the user has to interact with the debugger to find
the source of error. Recall that the quantifiers in the CTL formulas are interpreted over the fair

paths.

The flow of this chapter is as follows. In section 5.2, we present some BDD-based utilities. In
section 5.3, the debugging problem for LC is proven NP-complete and heuristic algorithms for it
are given. Section 5.4 describes techniques for debugging of fair CTL formulas, using the algo-
rithm of section 5.3. A comparisons between our algorithms and those of [CGMZ95] is given in

section 5.5. Almost all of the algorithms presented in sections 5.3 and 5.4 have been imple-

77

mented in HSIS.

5.2 Utilities

In this section, we present BDD-based algorithms for finding the strongly connected compo-
nents (SCC) of a vertex, and the shortest path between two sets of states. The definitions for

cyclic and acyclic SCC’s were given in section 4.3. In what follows, we freely interchange set
operations (such as intersection and union) with Boolean operations (such as AND and OR) on

the BDDs representing these sets.
5.2.1 Finding The SCC of A State

Lemma 5.2.1 Let s be a state. Let R (s,y) denote the set of states reached by s, whereas
R (x,s) is the set of states which can reach s.

a. The SCC of s is computed by the formula SCC, = R (s,) AR (%,5)

b. The computation C, = R (R, (5,),y) AR (x,s) returns the empty set if s is an ASCC. Oth-

erwise, it returns the CSCC of s.
Proof Part a follows from the definition of a SCC. Now, assume that s is an ASCC. Then s

is not reachable from R, (s,y), i.e. the set of states reachable from s in one step. Hence
R (R,(s,y),y) and R (x,5) cannot have a point in common, implying C, = @. Now, assume
s belongs to some CSCC §. Then, all states in S are forward reachable from R, (s,y) and

backward reachable from s. Hence, CSCC,c C,. Conversely, all states in S are reached by s

and can reach s. Thus, C,c CSCC,. Hence, CSCC, = C, (QED).

5.2.2 Finding A Shortest Path Between Two Sets

Let Src and Dest be two subsets of vertices V. We want to find a shortest path from Src to
Dest. The following algorithm returns a path (s, ..., s,,) , where s, e Src and s, € Dest, and n
is minimum. The algorithm works in two stages. In the first stage, using breadth-first search, all

states distance 1,2, ... from Src are generated until Dest is reached. This search mechanism

guarantees that the path length is shortest. During the second pass, one such shortest path from

78

Src to Dest is found, by searching backward from Desr until Src is reached.
ILeti=0,F,=src.
2 While F;n Dest = @,
Fio,=R(Fyy).,andi=i+1

3 Letn

i and 5, € anDest.

4 Forj = n-1 downto0,

Choose 5; arbitrarily from Fj AR, (x, Sis E

5 Return (S Sps -0 8,p) -

This algorithm is applied in several places in the debugger, and is a useful utility. The follow-
ing figure depicts how the algorithm works.

During the forward search, the set of
reachable states are computed until Dest is
reached. Then, the backward search starts
by picking a state in the intersection of the
reachable states and Dest. One backward
reachability step is performed, the intersec-
tion with reachable siates in that level is
taken, and an arbitrary state is chosen.
The process continues until Src is reached.

Figure 5.1: Finding a shortest path between two sets

5.3 Debugging Algorithms for Language Containment

In this section, we prescint BDD-based algorithms for tinding an error trace for LLC. The first
BDD-based algorithm for this problem was presented in [Tou91] for the L-environment, and was
implemented in [Ste92]. [Tou91]’s algorithm depended on having the transitive closure of the
transition relation. However, as [HTKB92] points out the transitive closure computation is
expensive. Here, we present a debugger for the eSeR-environment, which contains the L-envi-
ronment as a subset. Our debugger needs very little pre-processed information, i.e. only a set B
containing a subset of fair states. The algorithm consists of two parts: finding a fair state x clos-
est to an initial state, and returning a short fair cycle starting at x. In this section, we first show
how a path to a fair state is found. The algorithm for finding a short fair cycle is given first for

the L-environment, and then for the eSeR-environment.

79

5.3.1 Finding a Path to a Fair State

The algorithm starts from the set of initial states, and computes the set of reachable states R

until the set B (assumed to contain some fair states) is reached. Then, it arbitrarily chooses a

state x in RN B, and calls the subroutine is-Fair to determine whether x is fair. If x is fair,
is-Fair returns a fair connected component containing x. A fair connected component (FCC)
is a connected component (where there is a path between any two states) where negative fair

edges are removed, and where a cycle traversing all its vertices and edges satisfies all fairness

constraints. If x is not fair, the subroutine is-Fair deletes from B a set of unfair states including

x. This process of choosing a state, checking whether it is fair, and deleting some unfair states,
continues until a fair state is found or RN B = @. In the latter case, more reachability steps are

performed until R~ B is non-empty again, in which case we fall back into the loop of choosing a

state arbitrarily and checking whether it is fair. The algorithm is as follows.
Path Finding Algorithm

1 Let R be the set of initial states and B = B.
2 While a fair state has not been found

2.1 Whilt RnB=2Q
211 Letxe RN B.

2.1.2 Let C = is-Fair(B,x). If C# @, return x and C.

22 Let R = R (R, y) , and go back 10 2.1.

The subroutine is-Fair (B, x) consists of a main loop which computes the fair connected com-

ponent of x with respect to the CFC’s (i.e. F~ (S;) +G™ (T, ‘s). The main loop computes W,
the SCC of x in the current set of states cur-R, where cur-R is initially set to be the set of all

reachable states. It then calls get-Fair (W, CFC's) to get the fair subset of W with respect to the

CEC’s, fair-W. If fair-W# W, the states in W-fair-W are removed from B. If x was not
deleted, i.e. x € fair-W, the main loop is repeated with cur-R = fair-W. f W = fair-W, W sat-
isfies the CFC’s. It is then checked that the positive fair edges constraints can also be satisfied

in W. If so, W is returned. Otherwise it is removed from B. The algorithm is as follows.

80

is-Fair (B, x)

0 Let W = cur-R = R, where R is the set of reachable states. Consider the transition relation T with
the negative fair edges removed.
1 While done is false

1.1 Let W be the SCC of x in cur-R using the transition relation T.
1.2 if W is a single state with no self-loops, let B = B~x, and return @ .

1.3 Otherwise, let fair-W = get-Fair (W, CFC's) , cur-R = fair-W,and B = B- (W-fair-W) .
14 If xe fair-W, return @.

else if W = fair-W, set done 1o true.

else go back to 1.1.
2 If each positive fair edges constraint Ej is satisfied in W, ie. some edge in Ej is present in T

restrictedto W, return W. Otherwise, let B = B— W, and return @ .

The idea for computing the fair subset of W is to check, for each CFC F”(Si) + G°°(Tl.) ,
whether W intersects §;. If not, W is restricted to T;, and the process continues until all CFC's

can be satisfied. The CFC's which cause such a restriction can be marked as inactive, since fur-

ther restrictions will not affect the satisfaction of these CFC's. The algorithm is as follows.
get-Fair (W, CFC's)
0 Mark all CFC's as active. Set cur-W = W,
1 Foreach CFC F™(S,) +G™(T)
ifcur-Wns, =@
1.1 Let cur-W = cur-WnNT;, and mark the i-th CFC as inactive.
1.2 For all active F~ (Sj) +G” (Tj) ‘s processed so far,
12.1 if cur-Wn Sj = @, let cur-W = cur-Wn I} and mark the j -th CFC as inactive.

2 Return cur-W.

Definition A fair set U with respect to the CFC’s is a set of states which satisfies all CFC’s,

i.e. for each F~(S) +G™ (T)) ,either Un ;2@ or UcT;.

81

Lemma 5.3.1 For aset W, S = get-Fair (W, CFC's) is the largest fair subset of W.
Proof The algorithm maintains the invariance that for all CFC’s F~ (S;) +G" (T;) processed
so far, either cur-WnS;#@ or cur-WcT,. Therefore, cur-W satisfies all CFC’s at the end,

and hence is a fair subset of W. We show maximality of § by showing that for any fair set
Vc W, the algorithm maintains the invariance Vgcur-W at all times. Since initially
cur-W = W, Vgcur-W holds initially,. Now assume Vccur-W before step 1.1. Since

cur-WnSs; = @, wehave VNS, = @. Therefore, by V being a fair set V¢ T;. It follows that
Vecur-WnT,. So, Vccur-W after step 1.1. By a similar reasoning, one can show that if

V¢ cur-W before step 1.2.1, it holds afterwards also (QED).

Lemma 5.3.2 Let x be a fair state, and V a fair connected component containing x. Then,

is-Fair (B, x) maintains the invariances Vc W and V c cur-R at all times.

Proof Initially Vccur-R and VoW since W = cur-R = R. Assume before step 1.1,
Vceur-R and Vg W. Then, since V is a fair connected component containing x, and Vg W,
we have that V is a subset of SCC(x) in the graph restricted to cur-R. Therefore, Vc W after
step 1.1 (note that step 1.1 does not modify cur-R). Now, assume Vc W and V < cur-R before
step 1.3. By lemma 5.3.1 and V being a fair subset of W, we have Vcfair-W. Hence,

V< cur-R after step 1.3 (note that step 1.1 does not modify W) (QED).

Lemma 5.3.3 If is-Fair (B, x) returns a non-trivial set, then it is a fair connected component
containing x.

Proof The only way stcp 1 rcturns a non-trivial set is if W = fair-W at step 1.4. That mcans
that W satisfies all CFC’s, and it is a SCC containing x in cur-R. This implies that W is a fair
connccted component with respect to the CFC’s and the negative fair edges. The only way step 2
returns a non-trivial set is if all positive edges constraints can be satisfied. It follows that W is a

fair connected component containing x with respect to all fairness constraints (QED).

Lemma 5.3.4 Step 1 of is-Fair(B,x) terminates (and hence the algorithm terminates).
Proof This follows by noticing that at step 1.3 either W = fair-W, in which case step 1
terminates, or fair-W is a proper subset of W (and hence cur-R), in which case the states in

W-fair-W are removed from cur-R (QED).

82

Lemma 5.3.5 If x is a fair state, then is-Fair(B,x) retums a maximal fair connected

component containing x.

Proof By lemma 5.3.4 step 1 terminates, and by lemma 5.3.2, at the end of step 1, for any fair
connected component V containing x, we have Vc W. Since x is fair, each positive fair edges
constraint can be satisfied in V and hence in W. Therefore, step 2 returns W. By lemma 5.3.3,

W is a fair connected component. By Vc W for any other fair connected component V

containing x, W is a maximal fair connected component (QED)

Lemma 5.3.6 If is-Fair (B, x) returns a non-trivial set, then x is fair.

Proof Follows from lemma 5.3.3 (QED).

Lemma 5.3.7 x is not fair if and only if is-Fair (B, x) returns the empty set.

Proof Let x be unfair. By lemma 5.3.4 the algorithm terminates. Since x is unfair, by
lemma 5.3.6, is-Fair(B,x) = @. The reverse direction follows from lemma 5.3.5 (QED).

Lemma 5.3.8 If x is unfair, then x is deleted from B.

Proof By lemma 5.3.7, is-Fair(B,x) returns the empty set. This can only happen in steps

1.2, 1.4, and 2. In all these cases, x is deleted from B before @ is returned (QED).

Now, we will prove that the subroutine is-Fair only deletes unfair states. To prove this, we

need the following lemma.

Lemma 5.3.9 Let T be a fair cycle. Step 1 of is-Fair(B,x) maintains two invariances: if
Frmwz@,thenTcW,andif Tncur-R#@D,then T ccur-R.

Proof Both invariances are true after step 0. Now, assume they are true before step 1.1, and
let TnW=#@ after step 1.1 (note that step 1.1. does not modify cur-R). We need to show
FcW. Since TnW=z@, and since Wgcur-R, we have 'ncur-R#@. By the second
invariance, it follows I'ccur-R. Since T is a cycle containing x, and since I' ¢ cur-R, it
follows that T c SCC(x) in cur-R, i.e. T c W, as was desired. Now, assume the invariances
hold before step 1.3. Let I' ncur-R# @ after step 1.3 (note that step 1.1. does not modify W).
We need to show I'c cur-R. Since I' ncur-R+# @, and since cur-Rc W, we have TnW=# @,
By the first invariance holding, it follows I'c W. By lemma 5.3.1 and by T' being a fair subset

of W, we have I ¢ get-Fair (W, CFC's) , which implies I" ¢ cur-R, as was desired (QED).

83

Lemma 5.3.10 The subroutine is-Fair (B, x) only removes unfair states from B.

Proof We have to consider steps 1.2, 1.3, and 2 of the subroutine. In step 1.2, only state x can
be deleted, in which case since is-Fair returns the empty set, and by lemma 5.3.7, x is unfair,
Now, consider step 1.3, and let y e W-fair-W be a fair state, i.e. ye I' for some fair cycle I'.
We have ' W= @, which by lemma 5.3.9 implies I'c W. Now, by lemma 5.3.1 and by T
being s fair subset of W, we have I c fair-W. But, this is a contradiction since y ¢ fair-W. We
conclude all states in W~ fair-W are unfair. Now, consider step 2, and assume some positive fair

edges constraint E; cannot be satisfied in W (i.e. E,nW = @), but there exists some fair

ye W. Let ye T for some fair cycle I'. We have I'n W« @, which by lemma 5.3.9 implies
Fcw. By E,NnW = @&, we have E;nT = @. This means I' cannot be a fair cycle, which is a

contradiction. We conclude W only contains unfair states (QED).

Theorem 5.1 The path finding algorithm reports a fair connected component closest to the

initial states.

Proof The algorithm terminates since at every point either a fair connected component is
found (lemma 5.3.5), or some states are deleted from B (lemma 5.3.8). The correctness of the
algorithm follows from the fact that the subroutine is-Fair only deletes unfair states (lemma
5.3.10). To prove the minimality, let x be the fair state reported by the above algorithm, whose
distance from the initial states is /. The lemma follows by noting that all states in B of distance

less than I have been determined to be unfair, and were removed from B (QED).

Some remarks are in order.
1. Some properties of the set B can make the debugging task easier. For example, if the set B

contains only fair states, then the first x chosen will be fair, and no further search is needed.

n
2. If the faimess constraints come from the L-environment, i.e. are of the type .I'[l F7(S),
1=

then W either contains no fair cycle, or its fair subset is equal to it. Thus, the main loop of

is-Fair ends after one iteration.

5.3.2 Finding A Fair Cycle in the L-Environment

Now that we have found a fair state x and a fair connected component W containing it, the

next step is to find a short fair cycle starting at x in W. We first study the problem for the L-

84

n
environment, i.e. for fainess constraints of the type 'Hn F (S) . Note that the negative fair
1=

edges are assumed to have been removed from W. As we show next, the complexity of returning

a short error trace is NP-complete.

5.3.2.1 Complexity
Lemma 5.3.11 Let G be a graphon m vertices V = {v,...,v,},and V,, ..., V, be subsets of

V. Then, answering the question of “whether there exists a cycle of length less than k visiting

each V,” is NP-Complete.

Proof 1. Proof of membership in NP. Just guess the cycle, and check whether the cycle visits

each V;. This check can be done in poly-time.

2. Proof of NP-Hardness. We reduce “Min Cover” ([GJ79]) to our problem. Let a sect
S= {s)...s,}, and subsets of §, U,,...,U, be given where a set U, is covered by 5; if
sie U,. Create a complete graph G with m vertices, Vi - ¥, . Create n subsets of vertices of
G, V,..V,, asfollows: v;e V, iff sje U;. Note that the size of G is polynomial in the size of
the original min covering problem. Now assume cycle C with vertices {v,.l, o v,.k} of length &
visits each V;. The cover Sip e Sy, visits every V;, and is of size k. Conversely, if there is a
cover of size k, there is a set of vertices in G visiting each V;. Since G is complete, there is a
cycle among these vertices (QED).

Theorem 5.2 Let the short error trace problem be the problem of finding a fair path in a graph
with fairness constraints of the form ilf[l F"(S,.) such that the total length of the path is

minimum. The decision problem corresponding to the short error trace problem is NP-complete.
Proof The fair path consists of two segments: a path from initial states to a fair state x, and a

fair cycle starting at x. Membership in NP follows by guessing the fair path and checking that it

is indeed a fair path, which can be done in polynomial time. By making all states initial, we get a

reduction from the problem of lemma 5.3.11 to the short error trace problem (QED).

5.3.2.2 The Basic Heuristic Algorithm
Let W be a FCC (fair connected component). The following algorithm finds a short fair cycle

in W. It constructs a fair cycle gradually by extending an existing path. Let P = (x5 oees X))

85

be the current path. All the F~ (S,) ‘s intersecting P are marked as inactive. If all F™ (S)) ‘s are

inactive, we augment P by a path from x, to x,, and report this as the fair cycle. Otherwise, let

F°°S,-,, F"S,-k be the current set of active F~ (S,) ‘s, ordered in some arbitrary manner (more
experiments may show that some orderings give better results than others). We heuristically try

to find a state which causes many of active fairness constraints to become inactive. Let I be the

1
maximum number such that Wn(o)

1
0 ‘.j)ae@. LctQ=Sn(.r\lsij).chhooseastatexeQ
]= 7=

such that the distance between x,, (the last state of P) and x is minimum, using the general

m+1
shortest path finding algorithm. Note, by augmenting P by this path, we can mark
F (S,.l) R o (s;) ‘s as inactive. The following algorithm implements this idea.
Path Extension Algorithm
ILetQ=WnS; andl=2.
2 While k#1 and QN S, #@
Let Q = QnS,.l,andI =l+1.

3 Return a shortest path from x,, to Q.

The following algorithm uses the above path extension method and starting vertex x to find a

short bad cycle in W.

Short Cycle Algorithm
ILletx, =xand P = (x).

2 While not done

2.1 Mark as inactive all the F~ (S ‘s which intersect P .

2.2 If there are no more active F~ (Sp ‘s, find a path from the last state of P to x,, and quit.

Else extend P by calling the above path extension routine.

5.3.2.3 Some Optimization
In this subsection, we present some optimizations which can be applied to the algo-

rithm of the previous subsection.

86

Optimization 1. When the path finding algorithm is called in step 2 of the path extension algo-

rithm, one can try to choose the states so that more faimess constraints become satisfied. For

example, assume a path from x to some set Q is wanted with F"’(S,.' 1)’ oy F“(S,.k
+ 1

) being still
active. Let R ‘s be the states reached during the forward search of the path finding algorithm.

During the backward pass, if R,nS, #@ for some active F”(Si), then choose a state from
q [{}

RN Si, , thereby making F"(S,.") inactive.
Optimization 2. To further decrease the cycle’s length, the following algorithm can be used as a
post-processing step.
1. Start with all nodes in the cycle, and find a minimum cover, where a cover is a set of vertices such that
each F~ (S;) isvisited.

2. Arrange the points in the cover in the same order as the original fair cycle.
3. Find a shortest path between consecutive points of the cover. Use optimization 1 during this process,

eliminating points in the cover if they become inactive.

It is easy to see that the length of the new cycle is guaranteed to be no longer than the original
length (note that the vertices in the cover are arranged in the same order as the original cycle).
Step 3 of the above algorithm can be improved by forming a new covering problem after the
shortest path between two points in the new cover is calculated; some vertices in the new cover

may be eliminated since the vertices in the path between two points can cause some active

F”(S,) to become inactive.

5.3.3 The edge-Streett Case

The algorithm of subsection 5.3.1, which finds a path to a fair state, returns a fair connected
component W containing some fair state x which serves as the starting point for the fair cycle. It

also guarantees that S, W# @ for the “active” CFC's, and that for the inactive CFC’s, W¢ T
and hence are already satisfied. Hence, we can restrict our attention to §;'s of the active CFC'’s.
The algorithm of subsection 5.3.2 finds a fair cycle, when the fairness constraints are of the form

I (S,) . If we disregard the positive edge constraints, since all inactive CFC's are already sat-

87

isfied and for all active CFC's §;n W# @, we can use the algorithm of subsection 5.3.2 on the
S,'s of the active CFC's. Note that this solution may be sub-optimal since we have not consid-

ered the T;'s of the active CFC's. For example, assume W is a complete graph on 2 vertices, and

there is an active CFC F~ {2} +G" {1}, and the starting state is 1. Our algorithm will return
the cycle (1,2), whereas the cycle consisting of the self-loop on 1 is a shorter fair cycle.

Also, the positive edge constraints may not be satisfied by the solution returned by the algo-
rithm of subsection 5.3.2. To satisfy a given positive edge constraint, consisting of the set of

edges E;(x,y) and not satisfied by the current cycle C = (¢, ...,c,,,) , we look for a closest
state ¢; in C to the starting vertices of the edges in E;. Let the chosen starting vertex be u. We
then choose a closest path from some vertex v to € i+ 1) modn® such that (u,v) € E;(x,y) . We
call this operation patching the cycle with respect o the positive edge constraint E;. We repecat

this process for all positive edge constraints. The algorithm to find a fair cycle is, thus, summa-

rized as:

1. Find a cycle by calling algorithms of subsection 5.3.2 onthe S,'s of active F (S;) +G ™ (T)) s.

2. Patch the cycle with respect to each positive fair edges constraint.

Note that the above algorithm always works since W is a fair connected component, i.e. it con-
tains at least one edge from each positive fair edges constraint.

Remark One can improve the quality of thc algorithm for thc edge-Streett casc by modifying

the algorithm of subsection 5.3.2, so that it only considers those active CFC’s whose T, ‘s are vio-

lated, i.e. there is some state in the current path which does not lie in T;.

5.4 Debugging for Fair CTL

In this section, we describe a debugger for fair CTL formulas based on the debugging environ-
ment of section 5.3 for LC. Since CTL formulas are interpreted over computation trees, a
witness for falsity of a formula ¢ is a computation tree, called a debug tree, on which ¢ does not
hold. For ACTL formulas, it is possible to finitely describe a class of debug traces. For other for-
mulas involving existential quantification, user interaction is required to explore the debug trees.

As an example, consider the ACTL formula AGAFp. A class of debug trees can be described

88

by giving two fair paths n, and =, , such that x, starts at some initial state, p never holds along
7,, and the initial state of n, is some state belonging to x,. Intuitively, =, and =, are wit-

nesses to the formulas AGAFp and AFp not holding, respectively. Now, consider the formula

AGEFp. One can present a path ©, along which there exists some state s; such that EFp does

not hold at s;. However, to prove that EFp does not hold at s; involves presenting all computa-

tion trees starting at s5;. Hence, user interaction is needed to explore a subset of the debug trees.
Definition For an ACTL formula ¢ not holding at x, a debug structure is defined recursively

as follows.

1. ¢ = P, for some atomic proposition P. The state x.

2. ¢ = fag. A debug structure for f or g, whichever does not hold at x.

3. ¢ = f+g. Debug structures for both f and g at x.

4. ¢ = AXf. A fair path = = n(0),...,x(n), ..., such that f does not hold at (1), and the

debug structure for f at w(1) .

5. ¢ = AGf. A fair path ® = n(0), ..., n(i),...,®(n), ..., such that f does not hold at = (i) for

some i, and the debug structure for f at n (i) . Recall a fair path is represented finitely by an ini-

tial segment and a fair cycle.

6. ¢ = AFf. A fair path & = n(0),...,x(n), ..., such that f is false at all =(i) ‘s, and the
debug structures for f at all & (i) ‘s.

7. ¢ = A(fUg) . There are two possibilities in this case.

a. A fair path = = n(0), ..., (i), ...,®(n), ... such that f is false at (i) , and g is false at all
n(j) ‘s for j<i . The debug structure for f at = (i) , and the debug structures for g at all = (j) ‘s
for j<i are also given.

b. A fair path © = = (0),...,x(n), ... such that g is false at all =(j) ‘s, and the debug struc-
tures for g at all = (j) ‘s.

Theorem 5.3 Let the size of a debug structure be the number of states in it. Determining the

debug structure (for ACTL formulas) of minimum size in the presence of fairness constraints of
n
the form 'I'Il F”(S;) is NP-complete.
i=
Proof From the definition of debug structures, it follows that a debug structure is polynomial

in the size of the formula and system, and it can polynomially be checked whether a debug

89

structure is valid. Hence, the problem is in NP. To see the problem is NP-hard, reduce the short
error trace problem of subsection 5.3.2.1 to our problem, with the CTL formula being
AF (false) . Note that any fair path satisfies this formula (QED).

Remark The complexity of finding a debug structure of minimum length for ACTL formulas in

the absence of fairness constraints is unknown.

We now present a debugger for fair CTL. Let ¢ be a CTL formula in positive normal form
(PNF). The formula ¢ does not hold for the system if it does not hold at some initial state s,. In
this case, we have to give s, and provide a proof of why it does not hold at so- The debugger
works incrementally, giving debugging information one operator at a time, and leaving it to the
user to direct the debugger as to what other information is needed next. At every point, the input
is a CTL formula v, and a fair state x in which v is false. The formula y and state x constitute
the state of the debugger. Every state output by the debuggers is given a unique identifier, and
the user can refer back to any previously visited state. This feature is used to backtrack and
explore other paths to get further debugging information.

As an example, consider the formulas AGAFf. The debugger first gives a path from some ini-

tial state s, to some state x where AFf is false. Then, the user can either ask for a fair path

from x, or a proof of why AFf is false at x. In the latter case, the debugger presents a fair path
= along which f is always false. All states along n are given a unique identifier, and the user is
given the option to explore why f is false at any of these states. The user can pop back from
such explorations, and explore why f does not hold at other states of ®. The algorithm is as
follows.

1. y = P, for some atomic proposition . Report x.

2. y = f+g. In this case, ask the user which of the formulas to pursue further, since both are
false. Assume f is chosen. The debugger is recursively called with f at x. The user can come
back to this state, and call the debugger with g at x later on.

3. ¢ =fAag. Choose (arbitrarily if there is a choice) one of the formulas f or g which does
not hold at x, and call the debugger with this formula at x.

4. y = AXf. Choose (arbitrarily if there is a choice) a fair next state of x in which f does not
hold. Give the user the option of having a fair path starting at x, or debugging f at x.

5. y = AGf. Call the shortest path algorithm of section 5.2 to find a shortest path between x

90

and the set of fair states satisfying f. Let y be a closest state in Fair+ to x where f does not
hold. Report the path from x to y, and give the user the option of having a fair path starting at
y, or debugging f at y.

6. y = AFf. In this case, we have to find a fair path from x along which f never becomes
true. Call the LC debugger with S(f) as the reachable set, f~ Fair+ as the bad set, and x as
the initial state. To speed up the LC debugger, the forward and backward stable set operators can
be applied to f Fair+ , to delete states which cannot reach or be rcached by cycles. Report the
error trace, and allow the user to ask why f does not hold at any state along the error trace.

7. ¢ = A[fUg], where f#rrue. There are two possibilities: there is a fair path along which
either g never becomes true, or f does not hold until g becomes true. Consider the set of states
S = fngn Fair+. Find a shortest path & from x to S, along which fA g holds. Let ye S be
the endpoint of ©. Report =, and ask the user whether a fair path from y, or a proof of why f and

g donot hold at y, is desired. If such a path = does not exist, call the LC debugger with x as the

initial state, S(g) as the reachable set, and the set U = g N Fair+ as the bad states. Give the user

the option to explore why g does not holds along the error trace returned by the LC debugger. To
guarantee minimality of the initial segment, one can get an error trace for both possibilities, and

choose the one whose initial segment is smaller.

8. y = EXf. Tell the user how many next states x has, and ask for user constraints on the set
of next states of interest. The constraints are a set of state variables and values for them (recall
that each state is a product state). Enumerate those next states which satisfy the user constraints
and are in Fair+ until the user chooscs a next state y. Call the debugger recursively with f at
y. In this case, the user had thought f holds at y, whereas it does not.

9. w = EGf. If f does not hold at x, call the debugger with f at x. Otherwise, let N(x)

denote the set of next states of x, subject to some user constraints. Let §, = N(x) nfn Fair+,
and S, = N(x) n fN Fair+. Ask the user to choose §, or §,. If §, is chosen, enumerate all
states in S, until the user chooses a next state y. In this case, the user is following the path
expected to have satisfied EGf. Call the debugger recursively on EGf and y. If S, is chosen,
enumerate all states in S, until the user chooses a next state y, and call the debugger recursively

on f at y. In this case, the user had thought f holds at y, whereas it does not.

91

10. y = EFf. In this case, we know for all next states of x, y does not hold. Let
§ = N(x) nFair+, where N(x) denotes the set of next states of x, subject to user constraints.
Enumerate S until the user chooses a next state y. Ask the user to choose between proving why

EFf or f does not hold at y. Call the debugger recursively with the chosen formula and y.

11. y = E[fUg], where f#true. If x satisfies fA g, print x, and ask whether the user wants
to see a fair path starting at x, or prove why f and g are false at x. Otherwise, f holds at x.

Ask the user if a proof of why g does not at x is desired. If not, tell the user the number of next

states satisfying f and fA g, and ask which set to enumerate next. Enumerate the corresponding
set of states, subject to user constraints and being in Fair+, until the user chooses a next state y.
Call the debugger with E [fUg] at y.

Remark For ACTL formulas in absence of fairness constraints, one can prove a minimality
result by slightly modifying the algorithm. For each formula of the type AGf, AXf, and
A (fUg) , an infinite path showing the falsity of the formula is returned. An infinite path consist
of an initial segment and a cycle. Now, it is easy to see that at each step the witness path

returned has the property that its initial segment is of minium length, and the cycle is a shortest

cycle containing the last element of the initial segment.

5.5 Algorithms of [CGMZ95]

In this section, we compare our algorithms to those of [CGMZ95).

5.5.1 Debugging For EG/ Formulas

[CGMZ95] describes an algorithm for finding an error trace for the formula EGf under faimess
constraints of the form HF“p,.. This algorithm can then be used as the basis for debugging fair
]

CTL formulas. The algorithm picks a state s € Fair+ (initially, s is some initial state), and tries

to find a fair cycle containing s, by satisfying the fairness constraints one at a time. To satisfy a
fairness constraint of the form F”p,. from a state u, the algorithm finds a shortest path from u to
some state in p,. Note that the algorithm may leave the SCC of « in this process. When all fair-

ness constraints are satisfied, a path from the last state to s is found. If no such path exists, then

the procedure is repeated with last state of the path as the new seed. Note that the cycle may not

92

be completed due to the algorithm having left the SCC of s. The algorithm is guaranteed to find

an error trace since the seed will eventually end up in a leaf SCC of Fair+. This leaf SCC is

guaranteed to contain a fair cycle.
Finding a short witness for the formula EGf under the faimess constraints HF”pi can be
!

accomplished using the LC debugger by restricting the set of reachable states to S(f) N R, where
S (N denotes the set of states satisfying f, and R is the set of rcachable states. Our algorithm for
this task, prescnted in section 5.3, finds a state s € Fairt which is closest to the initial statcs. If
the SCC of s is fair, then the algorithm finds a fair cycle in it. Otherwise, the states in SCC of s
are deleted, and the search is re-started. Hence, it can guarantee that in the error trace, the path
from the initial state to the fair cycle is minimum. Note that if the set Fair (the set of states
involved in some fair cycle) is used instead of Fairt, we would be guaranteed that the SCC of
s is fair. But computing Fair is difficult. Hence, the set Fairt is used as an approximation.
The algorithm of [CGMZ95] may be faster, since it does not compute the SCC of any state
(note that this can be done using only reachability computations). However, it is expected to pro-
duce worse results, or run even longer. For example, assume s belongs to some fair cycle. If the
graph consists of several SCC's, then [CGMZ95]’s algorithm may leave the SCC of s, and hence
never find a fair cycle involving s. In this case, a new state has to be picked and the computation
re-started. Also, the error trace will become unnecessarily long, due to the fact that an error trace
in the first SCC was missed. Incidentally, for the algorithm of [CGMZ95], if the set Fair was

used in place of Fair+, the situation does not change much, i.e. it might still produce long error

traces.

5.5.2 Debugging for Streett Conditions

The second main contribution of [CGMZ95] is giving an algorithm for debugging under Streett
conditions, i.e. fairness constraints of the form ilf[l F~ (p,) + G°°(q,.) . Since there is a fair cycle,
we are guaranteed that there exists a set of 0, (r,) , where 0,” (r) is F~ (p,) or G™ (g,) , such
that there is a fair cycle for the fairness constraint l.lz[l Oi"(r‘.) . This fair cycle is a fair cycle of

the original problem. To find the 0,.“ (r;) ‘s, the algorithm makes n calls to the language con-

93

tainment routine. First, the language emptiness routine 1is called with
F~(p)) A ifle” (p;) +G (g;) as the faimess constraint. If there is a fair cycle, then
0,”(ry) = F~(p,). Otherwise, 0,”(r;) = G (p,). Next the language emptiness routine is
called with 0,” (p,) AF" (p,) A iI:[2F°° (p) +G" (g;) as the fairness constraint. If there is a fair
cycle, then 0,7 (r,) = F~ (p,) . Otherwise, 0, (r,) = G™ (p,) . This process continues until
all 0;” (r,) ‘s are determined. Let p, , ..., p; be those ;s for which 0 =F . Letgy, . .q
be those r; ‘s for which 0,” = G,”. The algorithm for finding counter-examples for the formula

EGf under the fairness constraint [JF"p; is now called with f = Gy A - Ady» and the p;'s
3
being p;,...,p; . This error trace is an error trace for the graph under the Streett faimess
J

conditions.
Since each language containment check is expensive, this algorithm is expected to have high

complexity cost. Note that our algorithm presented in section 5.3 does not need to call the lan-

guage containment routine. Also, [CGMZ95]’s algorithm can generate long error traces due to

the fact that for some choices for 0,.°° (r;) ‘s, there may be shorter error traces.

Acknowledgment

This material presented in this chapter is based mainly on [HBK93] and [HSB94].

94

Chapter 6
Improving Language Emptiness Check Using Fairness Graphs

6.1 Introduction

We present techniques to speed up the main computation for language containment. Recall that
language containment reduces to checking whether the language of the product automaton is
empty. To do so, the set of reachable states is computed, and early failure detection is per-

formed. If no errors are found, a computation called the main computation is started, which

returns a superset of fair states (section 4.5). In some cases, the main computation is a significant
portion of the running-time of the algorithm. Our hope is to make language containment with
fairness constraints essentially as efficient as language containment without fairness constraints,
i.e. reduce the complexity of verification to that of computing the reachable set. The techniques
we present in this chapter apply to the L-environment, which is an important subset of the eSeR-
environment. Hence, we assume we are given a graph with negative fair subset constraints, or
cycle sets. A cycle is fair if it is not entirely contained in any cycle set. Note that at this stage,
all negative fair edges have been removed 1

We propose to take advantage of a graph induced by the fairness constraints (i.e. cycle sets),
known as the fairness graph. If this graph is acyclic, then we prove that there are no fair runs.
Hence, the main computation can be bypassed. If it contains cycles, then in some situations we
can combine sets of fairness constraints, and hence reduce the number of fairness constraints in
the main computation. The problem of minimizing the number of fairness constraints at this step
is equivalent to the partition into forest problem, which is NP-complete (GJ79]). So we use a
greedy heuristic for it. We have implemented our techniques in the formal verification system
HSIS using BDD’s. Based on limited experience, we observed that our techniques can reduce

the run-time of the main computation.

The chapter's flow is as follows. Section 6.2 defines the fairness graph and states its proper-

1. This formulation is equivalent to checking language emptiness for a graph with the product of Buchi condi-

tions as the fairness constraint. If ¢, C,, ..., ¢, are the cycle sets, E;, Cprvomr cTn are the Buchi constraints.

95

ties. Section 6.3 presents our BDD-based method for building the fairness graph. Section 6.4

formulates the optimization problem associated with clustering the cycle sets, states its NP-com-

pleteness, and describes our heuristic. Section 6.5 presents some experimental results.

6.2 The Fairness Graph and Its Properties

In what follows, we assume Q is the state graph of an automaton with cycle sets c,, ..., c,,

such that every state is contained in at least one cycle set (which is the case after early failure

detection). Recall that early failure detection (section 4.7) checks that there are no fair cycles

containing a state of []c;.

Definition The fairness graph Q. induced by the cycle sets is a graph on n nodes cy, ..., ¢

which has an edge from vertex c; to c; iff there exists an edge («,v) in Q such that ue ¢,

vec;,and vec;.

Examples In figure 6.1, three examples of graphs and their fairness graphs are given. The origi-
nal graphs are on top, and the fairness graphs are at the bottom. Each oval around the vertices
signifies a cycle set. Note that in example b, there is no edge from the first cycle set to the sec-

ond one, since there is no edge from c, to c, whose endpoint is not in ¢,. Also, note that in

example c, although there is no cycle in the original graph, there is a cycle in the fairness graph.

€
state graph
62
b

o

Jaimess graph

a C

Figure 6.1: Examples of fairness graphs

Definition Letapathin Q x,..., x, be given. Let c,, ..., <, be a sequence of cycle sets define

recursively from {x;} such that x, ec, for all i, x;ec;, and for {22 if x,ec then

i-1?

96

¢; = ¢;_,. We call this sequence a projection of a path. Let a shadow of a path be obtained

i~ G
from a projection by deleting consecutive duplicate copies of a cycle set.

Intuitively, as we follow a path we go through a sequence of cycle sets. A shadow of a path is
obtained by only counting those cycle sets which are different than the current one. Note that a
shadow of a path is a sequence of nodes in its fairness graph. Figure 6.2 gives an example of a
state graph and its faimess graph, which shows that the shadow of a path may not be unique,

since the projection of a path may not be unique.

Figure 6.2: Shadow of a path may not be unique

We have the following properties for Qf, the fairness graph, which follow directly from the def-
inition of the fairness graph.
Lemma 6.2.1 There are no self-loops in Qf.

Lemma 6.2.2 Let T = x, ..., x, x, be acycle of states, a shadow of which visits Cipr s Cipr €

)
in order. Then, there is a corresponding cycle E":’ s Z'i,; E,-l in Q.
To motivate the next central lemma, consider the example shown in figure 6.3. A state graph

Q is shown on the left with its fairness graph on the right. There is one fair cycle in Q, one of
its projections is (c, c,, ¢;) , which is not a cycle in the fairness graph. Another projection, how-
ever, is (cj, ¢y c43) which is a cycle in the fairness graph. The next lemma proves that for every

fair cycle in @, there is a cyclic projection, and hence a cycle in the fairness graph.

Figure 6.3: A motivating example for lemma 6.2.3

Lemma 6.2.3 Every fair cycle in Q has a projection which is a cycle containing more than one

97

node (recall that a fair cycle is a cycle not contained in any of the cycle sets).

Proof LetT = (x,, -+ X, X;) be a fair cycle in Q. Every projection of I' has more than one
node by the definition of a fair cycle, i.e. T' is not contained entirely in any cycle set. Now,

consider a projection of T', P, = (Z-,,...,E,,,Ep,,,), where ¢y#¢,,,. If x,ec,, then
€1, ..» Cp, €1 s also a projection, and we are done. Assume x, € ¢p, which implies ¢cp41 = Cp.
Since I is not contained in any cycle set, there exists 1</<p-1 such that x, , ¢ ¢, and
x;ecp for 1<i<i. Consider the projection P, obtained from P, by replacing the first /

elements by ¢, . Since P, is a cycle, the lemma follows (QED).

Lemma 6.2.4 Every fair cycle in 0 has a shadow which is a cycle containing more than one
node.

Proof Follows from lemma 6.2.3 (QED).
Lemma 6.2.5 There may be a cycle c; , ..., ¢;,, ¢ in Q;, but no corresponding cycle in @ that
visits Cippres Cipy € -
Proof Figure 6.1c is an example (QED).
Theorem 6.1 If Qf is acyclic, then there are no fair cycles in Q.
Proof Assume that there is a fair cycle I' in Q. By lemma 6.2.4, there exists a shadow of T

which is a cycle containing more than one node. By lemma 6.2.2, there exists a cycle in 9

(QED).

6.3 Building the Fairness Graph

Building the faimess graph is the most time-consuming part of our algorithm. Note that with-
out using BDD’s, building this graph would be very time-consuming, since possibly all edges in
the product L-process may need to be visited. There are many ways to build this graph using
BDD’s, some performing better than others. In section 6.3.1, we first present a naive algorithm,
and then present one which improves the performance of the first one. In section 6.3.2, we dis-

cuss ways of better reflecting the structure of Q in Qf, by deleting states which cannot contain

any fair cycles.

98

6.3.1 Algorithms

To build the fairness graph using BDD's, we introduce two new variables which take values
from 1 to n, where n is the number of cycle sets. The first variable, denoted by x', corresponds

to a present state of Oy the second one, denoted by y', corresponds to a next state. We eventu-

ally build a transition relation R (x',y') , which represents Qf. Let A (x) represent the active set

of states, which is originally the set of reachable states with the states in r)c':'j deleted (these
{

states are deleted after early failure detection). We assume the transition relation of Q, T(x,y) ,
is restricted to A (x) , and that the negative fair edges have been deleted from 7. The following

lemma provides a straight-forward way to build the fairness graph.

Lemma 6.3.1 R(x,y) = ZZBxay(T(x,y) re;(x) AN AN A(X =D A (Y= j))
ij

computes Qf. This computation does 2’ quantifications, 5n> Boolean AND’s, and n’ Boolean
OR’s.
Proof For every pair of cycle sets ¢; and ¢ the above computation checks whether there is an

edge (i,j) in Qf. Hence, R represents Qf. The number of operations follows by expanding the

above sums, which has exactly n’ terms (QED).

The improved version involves re-arranging the order of various operations.

Lemma 6.3.2 ZEIy(Z(':]x(T(x, VAc;x))) ac;() A(x= i))ch () A (¥ =j) computes
J

i
Q,. Moreover, it takes 2n quantifications, Sn Boolcan AND’s, and 2n Boolean OR’s.

Proof It suffices to show that the above equation is algebraically equal to the one in the
previous lemma. This follows by noticing that existential quantification and Boolean OR
commute. To count the number of operations, note that
2:: (x(T(x,y) Ac;(x))) AZ':.'G)_ A (x' =1i) is independent of j and has to computed only once.
It requires n quantifications, 3n Boolean AND’s, and n Boolean OR’s. The outer computation

takes n quantifications (once for each j), 2n Boolean AND’s, and n Boolean OR’s. The bounds
follow (QED).

Algorithmically, we can think of this expression as consisting of two passes over the cycle sets,

with the first pass computing S (x',y) = X (Ix(T(x,y) Ac;(0))) Ac;() A (x'=1).
1

99

I Let S(x,y) = 0.
For each cycle set ¢,
1L U;(») = Gx(T(x,y) Ac;(x))) Ac;(y).

2. 5(x,y) =8+ (U;(n) A (X' =10)).

The second pass takes S(x',y) and returns the fairness graph R (x',y') . The algorithm is as

follows.

II. Let R(x,y") = 0.
For each cycle set ¢ J
L Wj (x) = Iy (S(x,y) A ¢)

2 R(x,y) = R(x,y) + (W;(x) A (¥ =))) .

We remark that U,(y) is the set of states in ¢; which are reached by some states in c;, and

W;(x) is the set of cycle sets c, that have an edge to a state in ¢, N ¢ We use these observa-
tions in the next section. Note that the U;‘s can all be computed in parallel. Once § is

computed, all the W, ‘s can also be computed in parallel.

6.3.2 Improving the Structure of the Fairness Graph

As the fairncss graph is being built, sets of states where no fair behavior can exist are delcted.
This process will change the lairness graph. In this section, we study what states can be deleted,

and how inaccurate the fairness graph can become.

Definition A cycle set ¢, is said to be a sink cycle set, if there is no edge (u,v), where ue ¢;
but ve c;. Similarly, a cycle set c; is said to be a source cycle set if there is no incoming edge

(u,v) , where u¢ c; but ve c;. No states of a sink and source cycle sets can be involved in a
fair cycle.

Consider example a in figure 6.4, where s, s,,5,,5, are the states and ¢, c,, c;, ¢, are the
cycle sets. Assume in the first pass we process c,, ¢,, €5, ¢, in that order. When processing c,,

we find that U, (y) = 0, which means c, has no outgoing edges, i.e. it is a sink cycle set. No

100

state of a sink cycle set can be involved in any fair cycles. Hence, s, can be deleted from @, and
¢, from Q. Now, s, has no outgoing edges, and can be deleted by the forward stable set opera-

tor (recall this operator deletes any states which cannot reach a cycle). Let optimization 1 denote
the deletion of sink cycle sets as well as the application of forward and backward stable set opera-

tors in the first pass. Optimization 1 in this example deletes s,, s, and ¢, from Q.

Figure 6.4: Concept of fake edges

More precisely, with optimization one enabled, pass 1 becomes as follows.

I Let S(x,y) = 0,and A = R, where R is the set of reachable states..

For each cycle set c;
1L U;(0) = Gx(Txy) Aci()) Ac(3) .
2. fU;#0,8(x,y) =S,)+ (U, AX=0)).
3. fU;=0,A=A4 AE,., apply the forward and backward stable set operators to A , and let

T(x,y) =T(x,y) nA(x) AA(Y).

Now, consider example b in figure 6.4. Assume in the first pass c;, c,, ¢, are processed in
order. Since c, is a sink cycle set, states s, and s, are deleted. The stable set operators cannot
delete any more states in this case. When we processed ¢,, we added the pair (1,s,) to
S(x',y) , which means ¢, has an edge to s,. But since s, is deleted from the graph, this is no

longer true. The question is whether we will have an edge (1,2) in R(x,y). We call such
edges in R(x',y") which should not exist in the final fairness graph, fake edges. Assume we

modified our algorithm in step 1 of pass 2 to Wj(x') = Ay (Sx,y) A (y) AA(y)), where

101

A(y) is the current active set of states in 0. Note that in the first pass, we always restrict

T(x,y) to A(x). Also assume that the stable set operators are originally applied to Q, before
the building of the fairness graph is started. We have the following important theorem.

Theorem 6.2 1f optimization 1 is applied during the first pass, then R (x,y’) contains no fake
edges.

Proof Let (u,v) be an edge in Q such that ue C;» VE G, and ve c; (figure 6.5 a). Then,

(u,v) gives rise to a fake edge (i,j) in R(x',y") iff at least one of u or v is deleted by
optimization 1. We distinguish between three cases.

Case 1. v is deleted by optimization 1. Then v ¢ ¢ in the second pass, and the pair (i, v) gets

deleted from S (x', y) in pass 2, step 1, and does not gives rise to the edge (i,j) in R(x,y") .
Case 2. Only u is deleted in the first pass, and this occurs because 4 belongs to some sink cycle

set ¢,. We have that v ¢ ¢, otherwise it would have also been deleted. But, we have an edge

from ¢, to ¢; because ue ¢;, ve ¢;, and v ¢ c,. Therefore, c, is not a sink cycle set, which is a

contradiction.

Case 3. Only u is deleted in the first pass, and this occurs because of an application of one of the

stable set operators after some sink cycle set c, is deleted (figure 6.5 b). Since v is not deleted,
v can reach a cycle. Hence, u can reach a cycle, after ¢, was deleted. Thus, « is not deleted by

the forward stable set operator. So, u is deleted by the backward stable set operator. Since,

before deletion of c,, u could be reached by some cycle, there is a cycle in ¢, which can reach
u. But, since u ¢ ¢, there is a path from ¢, to some state not in ¢, . This implies that ¢, has an

out-going edge contradicting that ¢, is a sink cycle set (QED).

Figure 6.5: Different cases in proof of theorem 6.3

Now, consider example a in figure 6.7. Assume in the second pass, we process ¢, and c, in

102

that order. When processing c,, we find that W, (x) = 0. Note that we may have Wj (x) =0,
but ¢ is not a source cycle set, as example a in figure 6.7 shows where ¢, is not a source cycle
set but W, (x) = 0 (figure 6.3 and c, is another example). Similarly, we may have Wj (x) =0,
but c; is a source cycle set, as example b in figure 6.7 where ¢, is a source cycle set but

W, (x) #0. However, if W;(x) =0, we can conclude those states which are unique to ¢; can-

not be involved in any fair cycle.

Figure 6.6: Examples motivating optimization 2

Lemma 6.3.3 If Wj (x') = 0, then the states unique to ¢; are not fair.

Proof Assume to the contrary that x, is unique to < and is fair. Let C = (x,...,x,,x,) bea
fair cycle containing x,. Then, by lemma 6.2.3, there exists a projection of C,
P = (C"n’ s € c,.l) » which is a cycle and contains more than one node. Since x; is unique to

¢j» ¢; =¢;. Let 1<i<n be the largest such that ¢,#¢c;. Then, xec;, x, €c;, and

X141 € ¢; . Therefore, the edge (x,x,,,) gives rise to the edge (c,.’, X, 1) in §(x,y), and to
the node ¢ in Wj (x') . This is in contradiction to Wj (x) = 0 (QED).

Let optimization 2 be the deletion of states unique to ¢; where W,(x) = 0, and the application

of the stable set operators in the second pass. Hence, pass 2 with optimization 2 applied is as

follows.

II.Let R(x,y) = 0.
For each cycle set ¢ ;
L W;(x) = 3y(S(x,) Ac;(»)

2. W20, R(x,y) = R(x,)+ (W;(x) A (¥ =) .
3. If Wj =0,A= AAu_j where u;=c¢;N g are the unique state of Cjr apply the forward and
i%j

103

backward stable set operators 1o A , and let T (x,y) = T(x,y) AA(X) AA(Y).

Lemma 6.3.4 Applying optimization 2 can result in fake edges.
Proof Consider figure 6.7. In pass 2 of the algorithm, after c, is processed the edge (1,2) is

added to R(x',y) . Then, in processing ¢y, we find that W, (x') = 0, so we can delete state 1
which is unique to c,. State 2 cannot be reached by a cycle, and will be deleted by the stable set

operators, which makes the edge (1,2) a fake edge (QED).

W)

3
1

Figure 6.7: Fake edges after optimization 2

Consider figure 6.8. After the faimness graph is built, we notice that c, is not involved in any

cycles of the fairness graph. The unique states of such a cycle set cannot be involved in any fair

cycle, and can be deleted from the state graph (by the same reasoning as the proof of lemma

6.3.3). Let optimization 3 denote the deletion of unique states of such cycle sets and the applica-
tion of the stable set operators, after the fairness graph is built.

c 1 C3 c 4
Figure 6.8: Example motivating optimization 3
Lemma 6.3.5 Application of optimization 3 can result in fake cdges.

Proof Figure 6.9 gives an example, where the state graph Q is on the left and the fairness

graph Q; on the right. Optimization 3 deletes state 2. The stable set operators delete state 1,

which in turn makes the edge (c,,c,) in Q, fake (QED).
1’¢3 f

104

Figure 6.9: Fake edge after optimization 3

In summary, optimization 1 does not create fake edges, whereas optimizations 2 and 3 might.
If optimizations 2 and 3 are included when the fairness graph is being built, two algorithms can
be implemented to deal with fake edges. The first algorithm is as follows.

1. Do the first pass with optimization 1.

2. Do the second pass with optimization 2. If any states are deleted, go back to step 1, and restart with
those states deleted. Otherwise, go to step 3.

3. Perform optimization 3 on the fairness graph. If any states are deleted, go back to step 1, and restart

the computation with those states deleted.

Note that the first algorithm re-starts the computation as soon as any state is deleted by optimiza-

tion 2 and 3. The second algorithm is given below.

1. Do the first pass with optimization 1.
2. Do the second pass with optimization 2.
3. Perform optimization 3 on the fairness graph.

4. If any states are deleted in steps 2 or 3, go back to step 1 when all states deleted so far remain deleted.

This algorithm carries out the computation to the end, ignoring possible fake edges. At the end,
if there is a possibility of fake edges (because of deletion of states by optimizations 2 or 3), the

computation is re-started.

6.4 Clustering Cycle Sets

In this section, we formulate the problem of clustering the cycle sets to minimize the number of

faimess constraints. We show that the problem is NP-complete, and propose a heuristic solution.

105

6.4.1 The Clustering Problem

Definition An acyclic cluster is a set of vertices in Qf which does not contain a cycle.

Theorem 6.3 Let S,, S, be a partition of vertices of Q; such that every S, is an acyclic
Cluster. Let Q' have the same states as @, but with p cycle sets ¢',, ..., ¢, where ¢; is formed
by taking the union of all cycle sets in S;. Then, a cycle is fair in Q iff it is fair in Q.

Proof Let T be a fair cycle in Q. The only way I' is not a fair cycle in Q' is for ' to be
entirely contained in some ¢';. Assume this is the case. Let 0" = c';» and let the cycle sets in Q"
be the cycle sets in S;. T is still a fair cycle in 0", and by lemma 6.2.4, it has a shadow which is
acycle in Q. But this cycle is also a cycle in Qf, which is contradictory to the assumption that

each §; is an acyclic cluster. Conversely, assume T is a fair cycle in Q'. If ' is not a fair cycle
in @, then I is contained entirely in some ¢ Let’s say ¢ is in some partition §;. Since I' is

fair in @', it is not entirely contained in §;. Hence it cannot be contained in ¢ (QED).

Note that the above theorem can be used to reduce the number of fairness constraints. We call
this technique clustering. The associated optimization problem is to decompose a directed graph

(Qf) into a minimum set of acyclic clusters. This problem is NP-complete, since it is equivalent

to the Partition into Forest problem described in [GJ79]. We now show how this problem can be

reduced to the decomposition of each strongly connected component (SCC) of 0 -
Lemma 6.4.1 Let the SCC’s of 0, be given. Assume each is partitioned separately into a sct

of acyclic clusters. The union of a set of acyclic clusters each from different SCC'’s is again an

acyclic cluster,

Proof This follows from the definition of SCC’s (QED).

Theorem 6.4 Assume each SCC of Q, can be decomposed into a minimum of m; acyclic
clusters. Let M = max {m;} . Then, M is the solution of the clustering problem.

Proof Clearly by lemma 6.4.1, a solution with M clusters can be constructed by clusters with
at most one element from each SCC. Now assume M is not minimum, and let a set of M <M

acyclic clusters §,, ..., SM be given. We can build a clustering W,, ..., W, for each SCC W

with at most M’ clusters by taking W, = §;~n W. This contradicts that m; is a minimum solution

106

for each SCC (QED).
The above theorem gives us a way of clustering vertices of @, by processing each SCC sepa-
rately. Further, it tells us which SCC to work on the hardest.
Example Consider the example in figure 6.10, which shows a fairness graph with three SCC’s:
{1,2,3}, {4,5,6} ,and {7,8,9,10} . The first SCC can be decomposed into {1, (2,3)}, the
second into {4, (5,6)}, the third into {(7,8), (9,10)} . Thus, M = 2. The final decomposi-
tionis {(1,4,7,8), (2,3,5,6,9,10) } , and we have reduced the cycle sets from 10 to 2.

Figure 6.10: Clustering in fairness graphs

6.4.2 Heuristic Clustering

We use a simple recursive, greedy heuristic for the clustering of each SCC, which is described
below.

1. If wo vertices do not form a cycle, merge them into a hyper node.
2. If any merges were performed in step 1, call the routine recursively on the graph formed by taking

each cluster as a node.

This algorithm allows many clusters to grow concurrently, as opposed of starting with one and
continuously adding to it. Another heuristic is to maximally grow a cluster until no more nodes

can be added, and then continue with thc next one. We propose to process the SCC’s in decreas-
ing size. Since we do not need to decompose a small SCC into less than M = max {m;} seen so

far, we can use this as an early bounding step to speed up processing.

6.5 Experiments

We have implemented our algorithms in HSIS. To test our algorithms, we used an abstracted
description of SUN’s Sparc-8 memory model [SUN90], [DNP93]. The memory model is mod-

eled abstractly as a single port device that grants write access to the attached processors by

107

randomly selecting one.

For our experiments we mapped an assembly code sequence (from [SUN90]) that implements
spin locking to an automaton representing a processor. To model general computation, both the
automata for the processor and the memory have several states with self loops: the processor can
stay in an idle state indefinitely long before attempting to acquire the lock; it can also wait indefi-
nitely long returning to its computation loop, and stay in its critical section (after acquiring the
lock) for an unspecified period of time. Each of these states becomes a one-element cycle set,
since we want to exclude the behavior from the system where processors remain in one state for-
ever. Similarly, we require that the memory does not always choose to service the same
processor, i.e. the memory is “fair”,

We verified the liveness property that a processor will eventually be able to acquire the lock,
for systems with 3 and 4 processors. The results are summarized in table 1. All times are in sec-
onds and are measured on a DECsystem 5000/260 with 128 MB of memory.

Table 6.1

num of processors 3 4
reachable states num 10685 143228
reachability 535 116.7
main comp. w/o f.g. 5.47 61.45
total time w/o f.g. 15.10 221.98
building the f.g 1.45 14.81
main comp. with f.g 0.0 0.0
total time with 1.g. 11,11 175.1
improvement factor for main {3.77 4.15
computation

Note that in this example, we were able to decide the language containment check by only ana-
lyzing the faimess graph. Hence, the main computation time with the faimess graph analysis is
0. The last row is obtained by taking the time of main computation without our technique,
divided by the sum of building the fairness graph and the time for the main computation with our

technique.

Acknowledgment

This material presented in this chapter is based mainly on [HMB94].

108

Chapter 7
Computing Fair Simulation Relations

7.1 Introduction

Simulation relations, which are approximations to language containment, come up in several
places in verification.

1. Non-deterministic property checking. In property checking, simulation relations can be used
in place of language containment. If the property is deterministic, then a simulation relation
exists iff the language of the system is contained in the language of the property. In this case,
there seems to be no computational advantage in using simulation relations instead of language
containment. If the property is non-deterministic, then existence of a simulation relation implies
that the language of the system is contained in the language of the property, aithough the con-
verse does not hold. However, if the property is non-deterministic, and if determinization proves
to be costly, then simulation relations may be an economical alternative.

2. State Minimization. Practical systems have many regular structures. Therefore, many states
in the product machine of such systems are equivalent. Minimization reduces the size of a sys-
tem by deleting equivalent states. Minimization does not change the behavior of a system. In an
automaton A, if two states have exactly the same set of traces (i.e. are trace equivalent), they can
be merged. This process is known as statc minimization. However, checking whether two states
are trace equivalent is PSPACE-complete. As an approximation, simulation relations between an
automaton and itself can be computed. If two states simulate each other, we have that they are
trace equivalent, and can be merged.

3. Hierarchical Verification. Hierarchical verification is the process of verifying properties at
a high-level of abstraction, then refining the abstract models according to some criteria, and
being ensured that the properties still hold at lower levels of abstraction. In hierarchical verifica-
tion, simulation relations can be used in two places. If ACTL properties are proved of the
abstract model, then the existence of a simulation relation between the detailed model and the
abstract one, guarantees that the properties continue to hold at lower levels of abstraction

(IGL91]). If automata are used for property specification, we only need to prove that the lan-

109

guage of the detailed model is contained in the abstract model to ensure that the properties
proved at the abstract levels continue to hold at detailed levels. If the abstract model is non-deter-
ministic, then checking this language containment can be very expensive. In such case, it may be
possible to prove the abstract model simulates the detailed model, which would imply the lan-
guage of the detailed model is contained in the abstract one.

Simulation relations were first introduced in [Mil71], and have been used in formal verification
in state minimization and property verification. Computing simulation relations in the presence
of fairness constraints, referred to as fair simulation relations (FSRs), is a difficult and challeng-

ing problem. In the eSeR-environment, there are two situations where we need to know whether

there is a FSR from A, to A,. The first comes up in property verification, where A, is an edge-
Streett automaton and 4, is an edge-Rabin automaton. The second comes up in state minimiza-
tion and hierarchical verification, where A, and A, are edge-Streett automata.

In this paper, we study a notion of equivalence for FSRs, called existential FSRs (EFSRs) intro-
duced in [GL91], and argue that it is a natural notion for FSRs. However, the existence problem
for EFSRs even for Buchi conditions is PSPACE-complete. We then define a weaker equiva-
lence, called UFSRs, which is a generalization of "dynamic-live-cycles Buchi simulation
relation” of [DHW91] to general fairness constraints. Using a result of [DHW91] we prove that

if A, is edge-Streett, and A, is edge-Streett or edge-Rabin, then the problem of existence of a
USFR from A, to A, is NP-complete. Finally, we give approximation algorithms, based on

BDDs and language containment algorithms, for computing UFSRs for the two problems which

come up in our environment.
The flow of the chapter is as follows. In scction 7.2, the classical thcory of simulation relations
is reviewed. In section 7.3, we define EFSRs and UFSRs, and prove or review some rcsults

about them. In section 7.4, algorithms for computing UFSRs are given. Section 7.5 gives some

comments on experiments.

7.2 Simulation Relations

In this section, we review the classical theory of simulation relations, known as safety simula-

tion relations. Assume FSMs A, and A, , with state spaces 0, and Q, are given.

Definition We say A, safely simulates A, or there is a safe simulation relation (SSR) from

110

A, to A, if there exists a relation R (sy55,) between A, and A, such that the following condi-
tions hold.
1. (Transition Relation Condition) Vs, e S,Vs'eS,VaeLVs,eS, if T)(s;,a,5,) and
R(s,,s,) hold, then 35', € §, such that T, (s,, 0, 5')) and R(s';,s;) hold.
2. (Initial State Condition) Vs, € I,3s, € I, such that R (s,,s,) holds.
Intuitively, condition 1 states that if A, can do a move, 4, is able to match it. Condition 2 states
that each initial state of A, is simulated by some initial state of A, .

Definition Let P = A; xA, denote the product machine of A; and A,. The product relation

Ry, is defined by the reachable states of P, i.e. Rp(s,, ;) iff (s;,5,) isreachablein P.

7.2.1 Safety Simulation Relations and Language Containment

In this section, the relationship between SSRs and language containment (LC) is studied. Most
of these results are known in the literature. Unless noted otherwise, the results apply to lan-
guages on both finite and infinite strings. There are no fairness constraints.

Definition Let A, safely simulate A, by the SSR R. Let string ¢ havearunr, inA,. r, isa
simulating run of r, on c in A, if:
a. r,(0) is an initial state of A,, where r (i) denotes the i -th state of r.
b. Forall i, (r,(i),r,(i)) € R, and there is a transition (ry (i), 0 (i), r,(i+1)) in A,.

Lemma 7.2.1 (easy)If A, safely simulates A, , then for every run in A, there is a simulating
runin A4,.

The following two lemmas show that although existence of SSRs implies language contain-

ment, the converse is not true.

Lemma7.2.2 (literature) If A, safely simulates A,L(A)cL(4)).
Proof Let r) be arun for ce L(A,) . Then, a simulating run of ¢ in A, is an accepting run
for ¢ in A,. Hence,c e L(A,) (QED).

Lemma 7.2.3 (literature) If A, is non-deterministic and L (A,) cL(4,), there may be no

simulation relation.

Proof The following is an example.

111

We have L(A)) c L(A,).

¢ but no simulation relation exists.

Figure 7.1: Simulation relation versus language containment

The following two lemmas will be uscd in constructing algorithms for computing SSRs.

Lemma 7.2.4 ([DHW91]) Let L(A,) cL(A,), A, be non-deadlocking (i.e. all states have
some outgoing edge), and A, be deterministic. Let P = A; xA,. Then, the product relation R,
isaSSR from A, to 4,.

Proof The initial state condition is trivially satisfied, since every initial state of A, is related
to the initial state of A,. Let (s,,s,) be reachable in P, and T, (s, &, s';) hold. To prove the
transition relation condition holds, we will show there exists s, such that (s, s,") is reachable
in P and T (s,, o, 5,)) holds. Let # be apath in P from some initial state to (s;,s,) . Let G be a
string corresponding to 7. Let 7, be the projection of # in A,. Since A, is non-deadlocking,
complete #; to an infinite run r, which coincides with 7, initially, goes through the edge

(s,,5',) , and does something arbitrary after that. Let ¢ coincide with & initially, take the value
o, and then take values consistent with the run r,. We have that r, is a run for 6. By

1

L(A|) cL(A,) and dcterminism of A,, there is a unique run in A, for 6. This run coincidcs

with the projection of # initially, and goes through some state s', such that T, (s,, &, 5',) . We
have that (s}, s',) isreachable in P, and T (s,, a, s,") holds, as was desired (QED).

Lemma 7.2.5 Let A, be non-deadlocking. A pair of states (x,y) cannot belong to any
simulation relation from A, to A, if there is some finite string ¢ which has a run starting at x in
A,,butnorunstarting at y in 4,.

Proof Assume to the contrary that there is a SSR R from A, to A, which relates x to y.

Form automata A’y and A',, with the same transition structures as A, and A,, but with initial

112

states x and y, respectively. Then R is also a SSR from A'; to A',. By lemma 7.2.2,

L(A')) cL(A';). But this is a contradiction to the assumption that there is some string which

has a run from x in A, but no run from y in A, (QED).

7.2.2 Computing Safety Simulation Relations

Lemma 7.2.6 (literature) Safety simulation relations are closed under union.
Proof Let R' and R" be SSRs. Let R = R UR". We need to show R is a SSR. Let x be an

initial state of A, . Then, since R' is a SSR, there exists y an initial state of A, such that R'(x, y)

holds. Since R'c R, we have that R(x,y) holds also. Hence, R satisfies the initial state

condition. To show the transition relation condition holds, let R (s}»8;) and T(s,, 0, 5') hold.
Since R = R"UR", we have (s,,5,) e R or (s,5,) € R". Without loss of generality, assume

(s;»5,) € R'. Then, there exists s', such that (s'},s',) € R', and T (s, a,5',) holds. Since
R cR,wehave R(s';,s';) and T(s,, 0,s'y) hold, as was desired (QED).

Definition Let E, be a relation on state spaces of A, and A,. The relation computed by the
fixpoint E; ,(x,y) = VaVz((E;(x,y) A T (x,0,2)) »3Iw(T,(y, 0, w) AE,(z,w))) is the
refinement of E by the transition relation condition.

- The following algorithm finds the largest SSR from A, to A, (existence of "the largest SSR" is

implied by lemma 7.2.6).

1. Let E(x,y) = 1, i.e. allstatesof A, are related 10 all states of A,.
2. Let E be the refinement of E by the transition relation condition .
3. Return E if it satisfies the initial state condition. Otherwise return the empty set.
The following two lemmas prove the correctness of the algorithm.
Lemma 7.2.7 (literature) Let A, and A, y denote A; and A, with x and y as initial states

respectively. Let E be the relation computed in step 2 of the above algorithm. Then, (x,y) € E

iff Ay, safely simulates A which implies the above algorithm computes a safety simulation

relation.

113

Proof If (x,y) € E, then both conditions of a SSR are satisfied. Hence, Az'y safely simulates

Alx

’

Conversely, assume (x,y) ¢ E, and let E, be the relation from which (x,y) is first
deleted. We prove by induction on m that if (x,y) is deleted from E, then there is no SSR
from A, yto A If m=1, (x,y) isdeleted from E, since there exists some symbol o such

that only one of x and y has a transition on o.. Hence, (x,y) cannot belong to any SSRs. Now,

assume the claim holds for all pairs deleted up to iteration m. (x,y) is deleted from E, since

there is x', next state of x on some symbol a, such that no next states of y on o is related to x'.

If some SSR relates x and y, then some next state of y on o can safely simulate x'. By
inductive assumption, this is not the case (QED).

Lemma 7.2.8 (literature) The above algorithm computes the largest SSR.

Proof By lemma 7.2.7, we know that the computed relation is a SSR. To show it is the largest
one, assume to the contrary that E' is a SSR, (x,y) € E, and (x,y) ¢ E. (x,y) € E implies
that Az'y safely simulates A, But (x,y) ¢ E is in contradiction with lemma 7.2.7 (QED).

Consider the example of figure 7.2. The above algorithm will take $ iterations to find the SSR
{(0,0), (1,¥)} . One can speed up the above algorithm on this example by letting E,, be the

product relation. The computed relation is called the product safety simulation relation

(PSSR). For this example, step 2 of the above algorithm when E, is the product relation takes

only one iteration. This speedup is achieved by not considering the un-reachable states in the

product graph which slow down the convergence of the original algorithm.

a a ,

1

a a
A A b a a a _a
110 2.0 22 % & 75

Figure 7.2: An inefficiency in computing SSRs

Definition Let R be a SSR from A, to A,. The product graph induced by R, G, is defined

to be the set of reachable states of the graph GR whose state space is R, whose initial states are

all (x,y) € R such that x is an initial state of A, and y is an initial state of A,, and there is a

114

transition ((s,s,),, (s',5%)) in Gy if (s,,0,5";) isanedgein A, and (s,, 0, 5';)) is an edge
ina,.
Lemma 7.2.9 Let R be a SSR from A, to A,. Then G, c R, i.e. the product graph induced

by R is a subset of the product relation.
Proof First, note that if (x,y) Gg and (x,y) € Rp, then all outgoing edges of (x,y) in G,

are contained in Rp. The lemma follows by induction since all initial states of G, are in R,

(QED).
Lemma 7.2.10 The PSSR exists iff there is a SSR from A,t04,.

Proof Since the PSSR is a SSR, we only need to show that if a SSR R exists, then the PSSR

§ also exists. By lemma 7.2.9, we have G, cRp. Since all pairs in G, satisfy the transition
relation condition, we have G, c S, i.e. they will not get deleted by step 2 of the algorithm. It

follows that the PSSR § exists (QED).

7.2.3 Complexity of Checking and Computing

In this subsection, we give some upper bounds on the complexity of checking and computing

SSRs. These bounds are not meant to be tight. In what follows, let n,, m,, n,, m, be the num-
ber of nodes and edges of A, and A,, respectively, and |Z} be the size of the alphabet. We
assume m; = O(n;) and m, = O(n,) (note that we are not ruling out that m, and m, can bc
8(n,) and 6(n,) respectively).

Lemma 7.2.11 Checking whether a given relation R is a SSR from A, to A; can be done in
O (m,|Zm,) .

Proof The following algorithm does the job.

1. For each edge (“1’ "1) inA, and symbol o,
2. For each node u, € A, suchthat R (u,, u,) holds,

Ensure that there is an edge (u,,v,) in A, on o suchthat R(v, v,) holds.

Note that given an edge (u,,v,) and symbol o, step 2 at most visits all edges of A,. Assum-

115

ing that checking whether R (u,v) holds can be done in constant time, the lemma follows (QED).

Lemma 7.2.12 Complexity of finding the largést SSR is 0(|Z|n1n2m 1"‘2)‘

Proof The algorithm for checking a SSR identifies all pairs which do not satisfy the transition
relation condition. The number of times this procedure is called is bounded by 0 (nyn,) , which
is the number of pairs in E,. The result follows by lemma 7.2.11. (QED)

Remark The algorithms of subsection 7.2.2 can be described by p-calculus formulas. For
example, p((X,X,), (I,1,)).F((X 1 X;)) computes the product transition relation, wherc
F((X,,X,)) is the monotone increasing predicate transformer (X, X;) +R, ((X,,X,),y) , and

R, ((X,,X,),y) represents the set of next states of (X, X,) in the product graph (see section 4.3

for notations of fixpoint operators). Similarly, one can define a fixpoint expression for the refine-
ment of a relation by the transition relation condition. BDDs can be used to compute a relation
described by a p-calculus formula on finite graphs. [HTKB92] introduced a complexity class for
such computations, which is roughly based on how many sets of state variables the relation being
computed in a fixpoint expression depends on, and how many nested levels of fixpoint opera-
tions the expressions contains. According to this classification, the BDD complexity of these

computations is BDD, , for A; xA,, which says the relations being computed in the fixpoint

expressions for these computations involve one set of state variables, and have one nested level

of fixpoints. This is the same BDD complexity as performing reachability on A, x4, .

7.2.4 Output Determinization

In this section, we describe a language preserving transformation which increascs the chance of
existence of a SSR, at a slight computation time increase.

Definition Let a safety automaton A = (X, Q,T,I) be given. Let A% - (Z, QOD, TOD, °?

)
the output determinization of A, be defined as follows. Let QOD c 0xZX, and be defined by
(g,a) QOD if ge Q and there is ¢'e Q such that (¢,a,9) € T. If (g,a) € QOD, and ge I,

then (q,a) € IOD. Let ((g,a),q, (q,b)) e TOD if (q,a)e QOD, (q,b) € QOD, and
(¢,a,q") e T. Note that all transitions from (g,a) are marked with a.

The following lemmas show that by output determinizing A, , and then looking for a simulation

116

relation from A, 0 A?D , one can answer the question of L(A,) ¢ L(A,) more accurately. How-

ever, the extra complexity may not justify the improved accuracy. Incidentally, [DHW91]

requires both A, and A, to be output deterministic.

Lemma7.2.13 L(A) =L (AOD) , hence output determinization is language preserving.

Proof The lemma follows by noticing string 6 = 6, 6,,... hasarunr=ry,r,... in A iff ¢
. 0D
hasarun (r,0,), (r;0)),...inA (QED).

Lemma 7.2.14 A, safely simulates A, implies A, safely simulates A?D. However, the

converse is not true.

Proof Let R be a SSR from A, to A,. If (q,,9,) € R, let ((g,,0),4,) € ROD for each
symbol a which is the label of some outgoing edge from g, . It is easy to check that R isa
SSR from 4, to A?D. The example in figure 7.3 shows that the converse is not true, i.e. if A2

safely simulates AIOD » we cannot deduce A, safely simulates A, (QED).

oD Although Ay does not safel
A a a a a gh A2 ly
1 la A A2 simulate A} but after
output determinizing Ap Ay
c c safely simulates A]OD.
c b c b C

Figure 7.3: Output determinization and finding SR’s

As figure 7.4 shows, it is easy to find examples of wherc L (A) €L(A,) butno SSR from 4,

to A?D exists. The following lemma shows that output determinizing A, does not increase the

chance of finding a SSR from A, to 4,.

Al oD A2 a a L(A}) is contained in L{A2), but
2 A 2 no SSR from Az to Ay or AP
exists.
d d c d

Figure 7.4: Language containment vs. SSRs in output determinized FSMs

117

Lemma 7.2.15 Ag b safely simulates A?D iff A, safely simulates A?D.
Proof Let R be a SSR from Af 1o A?D. Define R', a SSR from 4, to A?D, as follows. If
((4,4), (4,a)) € R, let ((g,0),q) e R. Conversely, let R be a SSR from 4, to A7,

Define R, a SSR from A" to A%, as follows. If ((g,a),q) € R, let ((q,a), (¢, a)) € R.
Note that if ((q,a),q) e R, then there is an outgoing edge from ¢' which is labeled by a
(QED).

Lemma 7.2.16 The complexity of checking a SSR from 4, to A?D is 0 (m,|Z]|m,) .
Proof Apply the algorithm of lemma 7.2.11. Every edge of AIOD will be visited once since

each such edge is labeled by exactly one symbol. There are O (m,|X]) edges in A?D. Since step

2 takes O (m,) time, the lemma follows (QED).
Lemma 7.2.17 The complexity of checking a SSR from 4, to A?D is O(IEIZn,nzmlmz) .

Proof Follows from lemma 7.2.12 by noting the number of nodes of AIOD is |Z|n, (QED).

7.3 Fair Simulation Relations

In this section, we introduce simulation relations in the presence of fairness constraints. Our
definitions are general and apply to any fairness condition. However, the complexity of the exist-
ence problem, which we also call the computation problem, depends on the type of the fairncss
constraint. Our first definition, called existential fair simulation relation (EFSR), makes the com-
putation problem even for Buchi conditions PSPACE-hard, whercas the second definition, called
universal fair simulation relations (UFSR), makes it NP-complete for edge-Streett conditions
(which include Buchi conditions as a subset). EFSRs first appeared in [GL91], whereas UFSRs
were defined originally in [DHW91] for Buchi automata, and were called dynamic-live-cycles

Buchi simulation relations.

Both definitions have the property that if A, is deterministic and L (A)) €L(A,), then a fair
simulation relation from A, to A, exists. In what follows, we assume that from all states of A, ,

there exists a fair path. We call such automata reduced. This assumption is needed to prove the

above property of our definitions. This is a minor restriction, since most systems are expected to

118

satisfy this condition, and if not, language containment algorithms of chapter 4 can be used to
easily find this set, and restrict the automata to this set. This operation does not change the lan-

guage (i.e. behavior) of the system.
7.3.1 Preliminary Definitions

Definition A Buchi automaton A is a FSM with one fairness constraint of the form F~ (S) .

The set § is called the set of final states of A. An w-automaton denotes an edge-Streett, edge-

Rabin or Buchi automaton.
Definition A fair constraint G is said to be the complement of fair constraint F iff whenever a
run is accepting according to G it is not accepting according to F.

Lemma 7.3.1 (easy) The complement of a set of positive edges is a set of negative edges. The
complement of F~(S) +G (T) is G~ (S) AF™(T). The complement of F~(S) AG™(T) is
G™(5) +F (D).

Lemma 7.3.2 Let A, be an edge-Streett automaton. Let A, be an edge-Rabin or edge-Streett
automaton. Let A have the transition structure of A, xA,, and the faimess constraint F| A F,.

Then, the sets Fair (Fair+, and Fairt) of A can be computed in poly-time.

Proof 1If A, is edge-Rabin, then A is just an edge-Streett automaton, and the lemma follows.

If A, is edge-Streett, then build B;’s which each have the same transition structure as A xA,,

and the fairness constraint F,A F'2 , where Iv"2 is the i-th fairncss constraint of A,. The Fair set

of A is the union of the Fair sct of B, ’s (similarly for Fair+ and Fairt) (QED).

Definition Let A’ be A without any fairness constraints, i.e. every run is accepting (a safety

automaton).

We will now prove that if A, is reduced and L(4,) < L(4,) , then L(Al’J gL(Az’). This

result will be used in later sections.
Lemma 7.3.3 (easy) Every run in a reduced automaton can be extended to a fair run.

Lemma 7.3.4 (easy) A reduced automaton is non-deadlocking.
Lemma 7.3.5 If an @-string 6 does not have a run in a safety automaton A, then there exists

an n such that 6, ...,0, doesnothave arunin A.

119

Proof Assume no such n exists i.e. for all n, 6, ..., 6, has arun. Consider the tree of runs of
¢ in A, denoted by T, where the root of the tree is the initial state of A, and there is an edge

between nodes «# and v at levels i and i+ 1 of the tree if there is a transition (u,v) in A on

o;. Then, T is unbounded, i.e. infinite. Since T is infinite and finite branching, by Konig’s
lemma, there is an infinite path in 7. This path is an infinite run for 6 in A. We have reached
a contradiction (QED).

Lemma 7.3.6 If A, is reduced and L(4,) cL(4,) , then L(A,’) gL(Az’).

Proof Assume there is a string ¢ which has a run r in Al’, but no run in Azs. By lemma
7.3.5, let n be such that 6, ...,6, hasno run in 4,”. Since ¢ has arun in A, , and since A is
reduced, o,,...,0, can be extended to an infinite string 6 which is accepted by A,. Since
L(A)cL(Ay, o has an accepting run in A,, and hence a run in Azs, contradicting that

6, ..., 6, hasnorunin A,” (QED).

7.3.2 Existential Fair Simulation Relations (EFSR's)

Definition Assume automata A, and A, having faimess constraints are given. A, is said to
existentially fair simulate A, (A, ESF A)) if there exists a SSR R from S, to S, which satis-

fies the following additional condition:

Existential fair condition: For every accepting (fair) run r = ry, 7, ... of string o in A, there
exists an accepling (fair) simulating run ' = FoTlp-. of rinA,, ie Vi((r,r) eR),and r,
and r' are initial states in A, and A, respectively.

EFSRs appear to be the natural extension of SSR’s to fairness constraints. One indication is

that there is a SSR from A, to A, iff for every run of every string in A, there exists some simu-
lating run in A,. Since for safety automata, every run is accepting (fair), then in the presence of
fairness constraints, we expect the result to be "there exists a fair simulation relation from A, to
A, iff for every accepting run of every string in A, there exists some accepting simulating run in

A,." This statement is true when EFSRs are used and A, is reduced. The following lemmas pro-

120

vide additional indications that EFSRs are the natural extension of SSR’s.
Lemma 7.3.7 ([GL91]) EFSRs are closed under union.

Proof Let R and R" be two EFSRs from A, to A,. Let R = R'UR". R is a SSR since SSRs
are closed under union, and we know R and R' are SSRs. Let r be an accepting run of A, on
c. Since R' is an EFSR, there is a fair simulating path r in A, with respectto R'. Since R'c R,

r is also a fair simulating path with respect to R (QED).

Remark Note that by the proof of lemma 7.3.7, the union of an EFSR and a SSR is still an
EFSR.

Lemma 7.3.8 If A, existentially fair simulates A, , then L(A,) cL(4,) .
Proof Clear from definitions (QED).

Lemma 7.3.9 If A, is reduced, L(A|) cL(A,), and A, is deterministic, then the product

relation R, defines an EFSR.
Proof By lemma 736, L{4,°)cL(4,’). By lemma 7.3.4 4" is non-deadlocking. By

lemma 7.2.4, R,, is a SSR from A,” to A,°, which implies it is a SSR from 4, to A,. To see R,
satisfies the existential fair condition, assume ¢ has an accepting run r, in A,. Since
L(A|) cL(A,) and A, is deterministic, 6 has a unique accepting run r, in A,. Since A,
safely simulates A, every run of a string in A, has a simulating run in A,. Since ¢ has a
unique accepting run r, in A4,, r, is a simulating run. We conclude r, is a fair simulating run,
as was desircd (QED).

Lemma 7.3.10 If L(A)) < L(A,), A, is deterministic, but A, is not reduced, then there may

be no EFSRs.

Proof Let A, be a one-state automaton, with a self-loop on some symbol ae Z, and no
faimess constraints (implying L(A,) = @). Let A, be a one-state automaton with no edges.

We have that L(A,) = L(A,) = @, but there are no SSRs, and hence no EFSRs from A, 10 A,

(QED).
Lemma 7.3.11 Checking an EFSR is PSPACE-hard for Buchi conditions.

Proof We reduce universality of ®-automata (i.e. that all strings are accepted), which was

121

proved PSPACE-complete in [SVW87] to our problem. Assume Buchi automaton A is given.

Complete A by having undefined transitions go to a dead state. Call this automaton A,. Let A,

be the following one-state automaton which accepts £°.

Figure 7.5: One state Buchi automaton accepting all strings

Let R be the relation where every state in A, is related to the single state of A,. R is a SSR, and

it satisfies the existential fair condition (i.e. it is an EFSR) iff L(A,) = £®. We have thus

reduced universality of Buchi automata to checking EFSRs (QED).
Lemma 7.3.12 Existence of an EFSR is PSPACE-hard for Buchi conditions
Proof The same reduction as the above lemma can be used here as well (QED).
The question of whether checking or finding EFSRs is in PSPACE depends on the type of the

fairness constraints. Since all relations between A, and A, can be generated in PSPACE, and

since checking whether a relation is a SSR can be done in polynomial time (and space), the exist-
ence of an EFSR can be decided in PSPACE if the existential fair condition can be checked in

PSPACE. Lemma 7.3.13 shows that checking this condition can be reduced to a language con-

tainment check.
Lemma 7.3.13 Letrelation R be a SSR from A, to A,. Then, there are automata A, and 4,,

with the same transition relation and fairness constraints as A, and A, but with polynomially
larger alphabet, such that R satisfies the existential fair condition iff L (A;) c L (A2) .

Proof Let 3= Q,xZ. If (q,0,¢) isanedge of A create the edge (g, (¢,a),q) in AL If
(p,a,p') is an edge of A, and R(q,p) holds (p simulates ¢), create the edge (p, (¢,a),p’) in
A,. Assume L(A;) ¢L(A2). We need to show that R does not satisfy the existential fair
condition. Let 6 = ((gq 4y, (4;,4,),...), §;€ A;, G L(A;) and e L(A2). Consider
C = (aga,...), with a fair run r = (g4, ¢,,...) in A;. If r has a fair simulating run in Ay,
then G e L (Az) , which is a contradiction. Conversely, assume R does not satisfy the existential
fair condition. Then, there exists ¢ = (ag a,,...) withafairun r = (g,,9,,...) in A, butno

122

simulating runs in A,. Let o= ((gp 4y, (gp,4)),...) . We have that ceL(A). If
o e L(A3), then there is a fair run (Pg:Py» ---) in 4, on 6. So (P Py» ---) is a fair run for ¢ in
A,, and it simulates (gq q,,...) , contradicting the assumption that (g, q,,...) has no fair

simulating runs in A,. We conclude o ¢ L(A2), and have L(A;) ¢ L(A2), as was desired

(QED).
Theorem 7.1 The existence and checking problems of EFSRs for Buchi conditions are
PSPACE-complete.

Proof Follows from lemmas 7.3.11, 7.3.12, and 7.3.13, and the fact that the language
containment problem for Buchi automata can be decided in PSPACE ([SVW87]).

7.3.3 Universal Fair Simulation Relations (UFSR's)

We define universal fair simulation relations, which are generalizations to general faimess con-
straints of the notion of “dynamic-live-cycles Buchi simulation relations” defined for Buchi
automata in [DHWO91].

Definition Assume automata A, and A, having faimess constraints are given. A, is said to

universally fair simulate A, (A, UFS A,) if there exists a SSR R from S, to §,, and satisfying

the following additional condition:

Universal fair condition: For every accepting (fair) run r of string ¢ in A, all simulating
runs of r in A, are accepting (fair).

Lemma 7.3.14 (easy) If A, UFS A, then L(A|) cL(A,) .

Lemma 7.3.15 If L(A,) < L(4,) , A, is deterministic, and A, is reduced, then a UFSR cxists .

Proof By lemma 7.3.9, an EFSR exists. Since A, is dcterministic, this EFSR is a UFSR

(QED).
Lemma 7.3.16 ([DHW91]) UFSRs are not closed under union. Hence there may be no
maximal UFSR.

Proof Figure 7.6 provides a counter-example, where A and A' are two Buchi automata (the

1. [DHW91] proved a similar theorem for their equivalence relation (dynamic-live-cycles Buchi simulation
relations). However, the requirement that Al be reduced, was not stated. If A, is not reduced, the theorem

is invalid, as shown by the counter-example of lemma 7.3.10.

123

shaded states are final states), having exactly the same transition graph. All edges have the same
label a, and the initial states are 0 and 0'. The language of both automata is the string a”. Let
R={(0,0),(1,1),(2,2),(319,(42)}, and R = {(0,0), (1,39, (2,4), (3,3), (4,4)}

be two UFSRs. RUR' is not a USFR, since the run (0, 1,4) (the cross bar denotes taking the

set of states infinitely often) is fair in A but one of its simulating runs (0, 1',4) is not fair in A’
(QED).

Figure 7.6: UFSR’s are not closed under union

Lemma 7.3.17 Let A| and A, with fairness constraints F, and F, be given. Let R be a SSR

from A, to Al. Let P be G, (the product graph induced by R) with fainess constraints

F, AF—’Z. Then, R satisfies the universal fair condition iff there are no fair (or fair reachable)

states in P.
Proof Assume there is some fair state in P. That means there is a string ¢ with arun r in P,

such that the projection of r to A,, r,, satisfies F,, and the projection of r to A,, r,, does not
satisfy F,. Since r, is a simulating run for r , the universal fair condition is violated.

Conversely, assume there are no fair states, and assume to the contrary that the universal fair

condition is violated. Then, there is a run r, in A, on some string ¢ and a corresponding
simulating run r, such that r, satisfies F, and r, does not satisfy F,. The run r in P whosc

projections are r, and r, is a fair run in P, contradicting that there are some fair states in P

(QED).
Lemma 7.3.18 1If A, is edge-Streett, and A, is edge-Streett or edge-Rabin, then checking

whether a relation R is a USFR from A, to A, can be done in polynomial time.

Proof We know that safe simulation conditions can be checked in polynomial time. Let P be

as in lemma 7.3.17. By lemma 7.3.2, the fair reachable states of P can be computed in

124

polynomial time in the size of P. But, the size of P is polynomial in the sizes of A, and A,.

Hence, by lemma 7.3.17, and the fact that computing the fair states of P is polynomial, the
universal fair condition can also be checked in polynomial time (QED).
Lemma 7.3.19 If A, is edge-Streett, and A, is edge-Streett or edge-Rabin, then the problem of

existence of a USFR is NP-complete.

Proof 1t is easy to see that the problem is in NP: just guess the relation, and check it (which
takes polynomial time by lemma 7.3.18). To show the problem is NP-complete, we reduce 3-

SAT to itl. Assume m clauses C,,...,C_, and n variables x,,...,x. are given. Assume each
1 m 1 n 8t

variable is used in some clause. Build Buchi automata A, and A, as follows (figure 7.7).

Figure 7.7: Reduction from SAT to finding UFSR’s

The alphabet is £ = {a,d \» ---»d,,} , which are all newly introduced constants. The edges of

A, are (s,d,C) and (C,a,1)) for 1<i<m, and the edge (r,,a,1,). The edges of A, are
(sp, d; C;) for 1<i<m, from each Ci to the corresponding literals in clause C; (so there are

three such edges for each C;), the edges (xp a, i',), (ff, a, x,.), (x»a,1,) and (F, a, ‘z) for
1<Sj<m, and the edge (1, a,t,) . The final (accepting) state of A, is ¢, and that of A, is 1,.
Several remarks are in order.

1. s, is matched to s, and C; is matched to C; in every UFSR. If x; and ¥, are matched to

anything, they are matched to ¢, , but they may be unmatched.

1. This reduction appeared in an un-published version of [DHW91].

125

2. x; and f, are not both matched with ¢,, because otherwise the cycle (s Cptys 1y, ...) can
be matched by s,, Ci Xp Xy X X,y .. , where the first is accepting but not the second.

3. From remark 2, it follows that ¢, is matched with ¢, .

Let a satisfying assignment /, ..., [, be given. Make the corresponding literal nodes in A, sim-
ulate (i.e. match) r,, which gives us a simulation relation R. Now any cycle in A, is of the form

(s, Cpty 8y, ...) , which is accepting. These cycles are simulated by (accepting) cycles of the

form ("v G Lty ty,) » where [; is a literal satisfied in C;. It follows that the R is a UFSR.

Now, let a UFSR R be given. We want to find a satisfying assignment. By remark 2, a variable

and its negation are not both matched to ¢,. Take the induced assignment, i.e. those literals

matched to r,. If a variable does not appear in this assignment, give it an arbitrary value. Now

for every clause C;, there is a cycle of the form (sl, Ci, bty 1y, .) to simulate the fair cycle
(53 Cpty 1ys -..) , where I is the assignment we have chosen. This means that the assignment
satisfies C,. Hence, every clause is satisfied as desired (QED).

Lemma 7.3.20 Existence of EFSRs does not imply existence of UFSRs (although the reverse
is easily seen to be true). Hence, EFSRs are better approximations to language containment than
UFSRs.

Proof Figure 7.8 gives an example of where there is an EFSR (o in A, is related to every
state of A,) but no UFSR. The reason there are no UFSRs is as follows. Every SSR must

contain (o, 0) to satisfy the initial statc condition. It must also contain cither (o, 1) or (o, 3) .

If it contains (o, 1) it will also contain (o, 2) ; if it contains (e, 3) it will also contain (c, 4) .

If it contains (o, 1) but not (¢, 3) , then the string aab” has no accepting simulating run in 4, .
If it contains (o, 3) butnot (o, 1), then the string a” has no accepting simulating run in 4,. If

it contains both (o, 1) and (o, 3), then a° and aab® have both accepting and non-accepting

simulating runs in A,. Hence, in every case, the relation is not a UFSR (QED).

126

In this figure two Buchi automata are
shown, where the highlighted states are
final. The language of these automata is

a,b
))
\) 2" = (a+b) . There is a EFSR
@ from the first to the second, but no UFSRs.

Figure 7.8: EFSR’s are more general than UFSR’s

7.4 Algorithms for Approximating UFSR's

In this section, we give heuristic approximation algorithms for UFSRs. These algorithms are
meant as initial starting points, which have to be refincd by experimentation. Our algorithms can
be applied to any type of faimess constraints, and only depend on the ability to compute the sets
Fair, Fair+, and Fairt, given some faimness constraint. The efficiency of computing these sets
depends on the notion of faimess used. For the problems which come up in the eSeR environ-

ment, the algorithms are polynomial.

7.4.1 A Fast Algorithm

Let reduced automata A; and A, with faimess constraints F, and F, be given. The following

algorithm computes a UFSR R.

1. Let Ry = Rp, the product relationof A, and A, .
2. Let Fair be the set of fair states of R, with the fairness constraint F| A F, .

3. Let Ry = Ry Fair, i.e. delete the states in Fuir from R,.

4. Let R be the refinement of R, by the transition relation condition.

The above algorithm first delctes all statcs which violate the universal fair condition in the prod-
uct relation. It then refines the relation by the transition relation condition.

Lemma 7.4.1 If R is non-empty, then R is a UFSR.

Proof We only need to check whether R satisfies the universal fair condition. This follows
from lemma 7.3.17, noting that every fair run of R is also a fair run of R, and the fact that the
product graph induced by the product relation is the product relation (QED).

Remark The above algorithm computes the extension of the equivalence relation "live-cycles

Buchi simulation relations" of [DHW91] to general fairness constraints.

127

We think of simulation relations as approximations to language containment. When fairness is
used, we need to trade expressiveness (how well we approximate language containment) with
complexity. One way to measure expressiveness ((DHW91]) is whether the approximation is
exact when A, is deterministic. This is the case for both EFSRs and UFSRs. The following
lemma shows that the above approximation algorithm to UFSRs preserves this property.

Lemma 7.4.2 If A, is deterministic, then the algorithm returns a UFSR if one exists.

Proof By lemma 7.3.14, if a UFSR exists, L(A) cL(A)) . By the fact that A, is
deterministic and L(A)) cL(A,), the set Fair in step 1 of the algorithm is empty, which

implies the set returned by the algorithm is the product relation Rp. By lemma 7.3.9, this
relation is an EFSR, and hence a UFSR (QED).

Lemma 7.4.3 If A, is non-deterministic, the above algorithm may not find a UFSR even if one
exists.

Proof Consider figure 7.6 in the proof of lemma 7.3.16 which shows UFSRs are not closed
under union. Since, the cycle ((0,0, (1, 1Y, (4,4')) violates the universal fair simulation con-
dition, states (0,0, (1,1, and (4,4 are deleted from the product graph. Since (0,0’ is

part of every simulation relation, we conclude no simulation relation can exist. However, as we
saw before, there are two UFSRs for this example (QED).

Lemma 7.4.4 (easy) If the set Fair can be computed in poly time, then the algorithm runs in
poly-time.

Lemma 7.4.5 If A, is edge-Streett, and A, is edge-Streett or edge-Rabin, then the algorithm
runs in poly-time.

Proof Follows from lemmas 7.3.2 and 7.4.4 (QED).

Lemma 7.4.6 If instead of Fair a set T where Fair c T is deleted from R,, then the relation

R computed by the above algorithm is still a UFSR.

Proof As before R is a SSR. It also satisfies the universal fair condition, since all fair states

of R, are deleted (QED).

Since, when BDDs are used Fair is hard to compute, one can use Fairt as an easily comput-
able approximation. In some cases, such as in non-deterministic property checking we may be
willing to try harder in finding a fair simulation relation, since the alternative (in this case, deter-

minization of the property automaton) may be very costly. In some cases, such as state

128

minimization, the extra effort may not be justified. Since Fair = @ implies Fairt = @, if

Fairt is used in the algorithm, lemma 7.4.2 still holds.

7.4.2 Better Approximations

In this section, we present improvements to the algorithm of section 7.4.1. Figure 7.9 shows

two automata A, and A,, with their product relation having fairness constraint Fia 1'3“; (denoted
by Ry). The states (2,4) and 1,3 in the product automata arc fair. Since (2,5) docs not sat-

isfy the initial condition property, the algorithm of section 7.4.1 won’t find a UFSR. However, if
we only delete (2,4), then all other states become unfair. As this example suggests, in general,

it may not be necessary to delete all fair states to restore the universal fairness condition.

This example shows two Buchi automata, with states 2 and
5 being final, and 1, and 3 being initial. State 3 can
simulate 1 in a relation which includes (1,3), (2,5).
However, in RO the cycle (1,3),(2,4) is a fair cycle.

Hence, (1,3) and (2,4) are deleted by the algorithm of the
previous section, and no UFSR is found (although one
exists).

Figure 7.9: Motivating examples for FSR algorithms

Ideally, we want to delete a minimum number of states whose deletion will cause the set of fair
states to become empty. We present methods to choose a heuristically good set. The modified
algorithm refines the current relation by the safe simulation condition, computes fair states, and
deletes a subset of the fair states. This process is repeated until convergence is achieved.

Definition Let an edge-Streett automaton A be given. Given a fairness constraint F of A, its

restriction set R (F) is defined as follows.

LIf F=F P+G Q,thenR.(F) = PUQ.

n
2. If F is a set of negative fair edges { (u,,v,), ..., (4,,v,)} ,then R (F) = kl'[l (4, UV,) .
n
3. If F is a set of positive fair edges { (u},v)), ..., (4, v,)},then R (F) = kl'[l (4, Uv,) .
The modified algorithm iterates over a two pass procedure until convergence is achieved. In
the first pass, a subset of the fair states is chosen and deleted, whereas in the second pass the rela-

tion is refined with respect to the transition relation condition. The algorithm is as follows.

129

1. Let R, be the product relation of A, and A,.
2. Until convergence is achieved,
2a. Compute the set of fair states of R;, Fair;, and let D; = Fair,.
2b, For each fairness constraint Fj. let D, = D;NRg (Fj) » i.e. restrict D; by the restriction set
of F;. If the result is empty, leave D; unchanged, and continue with the next fairness con-
straint,
2c. LetR; ,,, = R, D,, i.e. delete the states in D, from R;.

2d. Let R, | be the refinement of R, , 172 by the transition relation condition.

For the example in figure 7.9, the faimess constraint is F~ (2,-) G~ (-, {3,4}) . The modi-
fied algorithm will only delete (2,4). Hence, the UFSR will be found. We now present
modifications for the case of state minimization, which guarantees states of the form (x,x) will

not be deleted by the algorithm. It remains to be seen whether these changes improve the quality
of the results in practice.

Let A be an edge-Streett automaton being minimized, with a set of n faimess constraints

F,,...,F,. Let A’ be a copy of A, with fairness constraints F,, ..., F,,.

Lemma 7.4.7 The relation R = {(x,x"):}isaUFSR from A to A'.

Proof Since (x,x') e R for the initial states, the initial condition property holds. Let (x,a,y)
be an edge in A with (x,x') e R. Since (y,y) e R, the transition relation condition is also
satisfied. Let x,, x,,... bc a fair run in A. The only simulating run in A’ is X'y, X'y, ..., Which is

fair. Hence, the universal fair condition is also satisfied (QED).

In the case of state minimization, we modify the above algorithm as follows. The fairness con-

straints on A x A’ is (fl F‘)('}:'[?;) = f‘,l(p"j

i=z1] J=

M)

1. Since every state can simulate itself, we let D, = Fair;n (ps#ps') initially in step 2a, where

ps and ps' represent the present states of A and A’ respectively.

2. At every point in step 2a, we are dealing with a fairness constraint of the form
FyA...AF,AF; for some j. In this case, F; and F; are processed first in computing D,

Lemma 7.4.8 In state minimization, if Fair,# @, then D,# @ initially, i.e. if Fair,# @, some

130

state will be deleted.

Proof We need to show there is some fair state of R, which is not of the form (x,x).

Assume to the contrary that all fair states of R, are of the form (x,x’) . Then, there is a fair cycle
((*p) (xp¥D) . This implies that {x,,..,x} and {x,..,x,} satisfy F; and F},

which is a contradiction (QED) .

Lemma 7.4.9 In state minimization, refinement by the transition relation condition of a
relation R which includes all states of the form (x,x') , does not delete any such states.

Proof Such states are deleted only if for some edge (x,a,y) the state y is not related to y'.
This is not the case by the assumption (QED).

Lemma 7.4.10 Our modified algorithm does not delete any states of the form (x,x') when
used for state minimization.

Proof Initially all such nodes are present. By construction, in state minimization, D; does not

include any states of the form (x,x') . The result follows from lemma 7.4.9 (QED).

7.4.3 Static Fair Simulations

[DHW91] gave another type of fair simulations for Buchi automata, called "final-final Buchi
simulation relations." This equivalence is very crude, and appears to be only appropriate for
state minimization, or Buchi conditions. We generalize this notion to edge-Streett automata for

the case of state minimization.
Definition A relation R from edge-Strectt automaton A (0 A is a static fair simulation rela-
tion (SFSR) if R is a SSR, and if R(x,y) holds, then x and y are not distinguished by any

fairness set. Two states x and y are distinguished by a fairness set il

1. for some fairness constraint F~ P+ G Q, exactly one of x or y belongs to P (Q).
2. for some state z, only one of (x,z) or (y,2) isa positive (negative) fair edge.
3. for some state w, only one of (w,x) or (w,y) is a positive (negative) fair edge.

Let S(x,y) be the relation where all states, not distinguished by any faimess set, are related.
SFSRs are seen to be closed under union, and the largest SFSR can be built by starting from
S(x,y) and applying the safe simulation relation condition until convergence. Since computing

S(x,y) is simple, this equivalence relation is fast to compute. If A, and A, are two arbitrary
edge-Streett automata, there does not seem to be any natural way of defining SFSRs. However,

131

if they are Buchi, then one can define SFSRs by requiring the final states and non-final states to
be related. In this case, it seems that SFSRs do not give us very good approximations to lan-
guage containment. For example, if A, and A, consist of two cycles whose only difference is in
the position of final states, no SFSR exists. This example shows that SFSRs are not complete
with respect to deterministic right-hand sides, i.e. it may be that L (A) cL(A,),and A, is deter-

ministic, but no SFSR exists.

7.5 Comments on Experiments

We have presented three methods for approximating UFSRs: static fair simulation relations, the
algorithm of section 7.4.1, and the modified algorithm of section 7.4.2. Two parameters can
affect the performance of these algorithms The first, called fair approximation, determines to
what degree the set Fair is approximated. There are three choices: Fair, Fairt, and Fair+.
The second parameter called output determinization indicates whether A, should be output
determinized. Combining the three algorithms with the the two parameters, we get a total of 18

different algorithms. Experiments with these algorithm are needed to determine theirs run-time

versus quality trade-offs.

132

Chapter 8
Automatic Datapath Abstraction In Hardware Systems

8.1 Introduction

A hardware system can be divided into three major components: control, datapath, and memory

(figure 8.1). Thc control part consists of a set of interacting FSM’s which, depending on data
values and their internal states, produce a set of control signals for the datapath. The datapath
consists of functions, predicates, and registers, which based on the control signals, operate on
data. The data often consists of integers. The memory acts as a container for values, and commu-
nicates with the datapath.

A hardware system consists of

cation tavames

three major components:
memory datapath | control | control, da:&’paxh, m:npmwry.
—ontrol signal

Figure 8.1: Components of a hardware system

Properties can be classified as control, data, and data/control. Control properties are those
which involve only the control signals, and many times can be verified without considering the
datapath. An example is that no two control signals of a bus are asserted at the same time. Most
existing automatic verification techniques are suitable only for verifying such properties. There-
fore, a verification expert nceds to manually abstract the datapath. This proccss is timc-
consuming and often involves a third-party’s understanding of the design.

Data properties are those which the datapath must satisfy. For example, for a pipclined datap-
ath, one verifies that values appear on time where they are needed. The most successful
technique to attack such properties has been theorem-proving. The data properties, addressed so
far, fall into those for which automatic or almost automatic theorem-proving is possible. The the-
orem-prover PVS ([PVS93]) has been used to prove such properties almost automatically (the
proofs involve a few routine proof commands).

Data/Control properties involve both control signals and datapath variables. An example is “if

an add command is issued, and no exceptions occur, then in 3 time steps, location ¢ contains

133

a+b.” In general, such properties are the most difficult to verify, and only ad hoc techniques
have been used to verify them.

Abstraction is the process of reducing the proof of a property on an infinite or large state space
(concrete model) to a proof on a smaller state space (abstract model). Based on how well the
abstract model approximates the concrete one with respect to the property, abstractions can be
divided into three categories. Exact abstractions are those, where the property holds for the con-
crete model iff it holds for the abstract one. [MPS92] provides an example of exact abstractions,
where n-state counters whose data values are not used by other FSMs are reduced to 3-state
FSMs. Conservative abstractions are those where if the property holds in the abstract model it
holds in the concrete model. The homomorphism theory of [Kur92] is an example of (manual)
conservative approximations. Aggressive abstractions are those where if the property does not
hold in the abstract model then it does not hold in the concrete model. Aggressive abstraction are
often used to find bugs. If a conservative abstraction fails, an aggressive abstraction may con-
firm the property does not hold. Similarly, if an aggressive abstraction holds, conservative
abstractions may be used to possibly confirm the property holds.

Abstractions of hardware systems can also be classified by their level of granularity. Datapath
abstractions are those which eliminate portions of the datapath or reduce the number of bits in
the datapath. Control abstractions are those which reduce the number of output values or states
of a state machine based on equivalence with respect to a property. For example, some property
may only be sensitive to two values of a multi-valued variable. In such cases, other values may
be collapsed together. Control properties may not be behavior-preserving. For example,
[HKB94] presents a technique for reducing the states of a FSM which does not preserve the
behavior: if the original machine can produce an output in 7 steps, then the reduced machine can
also produce it in n steps.

The main problem with formal verification is capacity. Not counting the on-chip cache, current
microprocessors contain in the order of tens of thousands of latches. For example, UltraSparc
([Sparc95]) contains 20,000 clocked elements. However, the current BDD-based techniques for
verification can at best handle circuits with a few hundred latches. This verification gap can be
made smaller by using modular verification, in which different subsystems such as dispatch
units, memory subsystems, bus interfaces, and functional units are verified separately. When ver-
ifying a subsystem, other subsystems are replaced (manually) by simple modules which contain
the behavior of the detailed modules they replace. Our approach is to model the circuits using inte-

ger combinational/sequential (ICS) concurrency model, and use datapath abstraction to nullify

134

the effect of large datapaths and memory elements on the state explosion problem.

ICS is based on the combinational/sequential (C/S) semantics (chapter 2), and extends it by 1)
introducing integer variables, 2) interpreted and uninterpreted predicates and functions on inte-
gers, and 3) interpreted memory functions. ICS easily supports non-determinism and fairness

constraints, and if the extensions are not used, it reduces to C/S. One can extend the general the-

ory of verification using language containment ([Kur92] and chapter 4) to ICS models. Again if
the ICS extensions are not used, the theory reduces to the theory of language containment on C/S
models. Using ICS modcls, the datapath variables are modeled as integers, functional units as
uninterpreted functions, and memory as infinite memory. ICS models can easily and automati-
cally be extracted from descriptions in hardware description languages such as Verilog, with very
little work on the part of the designers.

Given a property, verification of ICS models proceeds using two techniques. For a subset of
circuits where certain structural properties hold, verification can be done using finite instantia-
tions, where the integer variables are replaced by variables a few bits wide, and the uninterpreted
functions are given appropriate interpretations (meanings). By performing this reduction, we
generally get a model which can be attacked using current verification techniques (e.g. SMV,
HSIS, etc.). If this reduction is not possible, a symbolic simulation algorithm can be used to ver-
ify the property directly. Symbolic simulation does not always terminate, but termination is
guaranteed in some cases, such as some correctness properties of pipelined circuits.

The first kind of circuits we study for abstraction using finite instantiations are data insensitive
controllers. Intuitively, these only move data around, and are not sensitive to the values of the
data. It appears that many communication protocols fall into this category. We prove that for
verifying certain types of safety properties, a single bit of data for each variable is sufficient.
Data sensitive controllers, on the other hand, interrogate data values, i.e. apply predicates to
them, as well as move them around. A typical memory controller with respect to operations on
memory addresses is an example. We show that, depending on the predicates applied (we allow
comparisons, equality, sign, and mod), a few bits can suffice to check the property. We also
prove a negative result which gives an example of where finite instantiations cannot be used.
Since we use ICS models and the language containment paradigm, all our results unless other-
wise stated, apply to liveness as well as safety properties. Algorithms for automatically
recognizing data sensitive and insensitive controllers are given. In chapter 9, we use these results
to verify a memory model by reducing integer data values to binary, and integer memory

addresses to a small number .

135

In modern microprocessors, there are two especially hard-to-design components. One is the
memory subsystem and its interfaces; the other is the fetch-issue-execution-writeback unit, which
we refer to as the pipeline control. Issues such as speculative execution, out-of-order comple-
tion, register re-naming, and interrupts make the design of pipeline controls difficult. Since
pipeline control communicates with functional units, these must be modeled also for proving

some correctness properties. For example, let v(r) denote the value of register r, and assume

we are interested in proving property P: when instruction r, = ADD(r,,r,) , is about to be

retired, the value which is written back is v(r)) +v (ry) . To prove P directly, we nced to modcl

the integer functional unit. However, the fact that the functional unit does "addition" is irrelevant
for the correctness of pipeline control: it can be modeled as an uninterpreted function. We
extend our results for finite instantiations to the case of uninterpreted functions, and present exact
and aggressive abstractions.

A symbolic simulation algorithm can also be used to verify data and control/data properties.
The set of reachable states of the composition of the model and the complement of the property
is then computed, and it is verified that no fair path exists. However, the set of reachable states
may be infinite, in which case language containment is undecidable. Verification can then be
approximated in the sense that it can be checked that no errors of a given length n exist. If all
reachable states are computed within n steps, this verification is exact. We present a BDD-based

algorithm for symbolic verification of ICS models.

The flow of the chapter is as follows. Section 8.2 presents the syntax of ICS, its operational
scmantics, its derivation from descriptions in hardware description languages (HDL’s), how fair-
ness constraints are specified, and how language containment is done. Data insensitive and
sensitive controllers, theorems about their exact abstractions, and algorithms for recognizing
them are described in sections 8.3 and 8.4. The extension of finite instantiations results to unin-

terpreted functions is presented in section 8.5. Section 8.6 gives a BDD-based algorithm for the
symbolic execution of ICS models.

8.2 Integer Combinatorial/Sequential (ICS) Concurrency Model

In this section, the integer combinational/sequential concurrency model is described. ICS is
designed to represent systems composed of control, datapath, and memory. Some machinery is

given to reason about integers, and how they affect state spaces.

136

8.2.1 Syntax

The primitives are: variables, tables, interpreted functions and predicates, uninterpreted func-
tions and predicates, constant creators, latches, and memory functions.

Variables. Variables are of two types: finite and integer. Finite variables take values from
some finite domain; integer variables take integer values (0, 1,2, ...).

Tables. A table is a rclation defined over a sct of finite variables, divided into inputs and out-
puts. A table is a Junction if for every possible input tuple there is at most one output tuple
(incompletely specified functions are allowed). Otherwise it is a relation. If a table has only one
binary output, and is a function, then it is a predicate.

Interpreted Functions and Predicates. A predefined sct of functions and relations over inte-
gers is built in. The interpreted functions are: y:=x, y:=if(b,x), z:=mux(b,x,y) , z:=x+y,
y:=x+c, where x, y, and z are integer variables, b a binary variable, and ¢ a numeral
(0,1,2,...). The interpreted predicates are y = x (equality), y<x, x = ¢, (xmod m) = r, and
(xmodm) <r,

Uninterpreted Functions and Predicates. These are a set of function and predicate symbols

with their arities and domain variables given. For example, f(x,,x,) may be the specification of
an uninterpreted integer function defined over binary variable x; and integer variable x,. Predi-

cates of the form x = term, where x is an integer variable, and rerm is an ICS term are also
allowed. An ICS term is built recursively from numerals, constants, interpreted and uninter-

preted functions. Therefore, numerals and constants are ICS tcrms, and if f is an n-ary function

and ¢, ...,¢, are ICS tcems, then f(¢, ...,1,) is also an ICS term. Note that ICS terms do not

n

involve any variables or predicates. Examples of ICS terms are ¢, f(cyc,) , 8 (15,/(¢p¢3))
and ¢, +c,.

Constant Creators. A constant creator is a special element with no input, and an integer out-
put. Intuitively, it is a higher-order function, which creates a new constant (i.e. a function with
no argument) each time called. Intuitively, a constant creator models an unconstrained integer
input.

Latches. A latch is defined on two variables over the same domain: input (or next state) and
output (or present state). Present and next state variables may overlap, e.g. when an output of a
latch is an input to another. Every latch has a set of initial values, which are a subset of the

domain of its variables. If the latch is integer-valued, then the initial value set can either be a

137

finite set of numerals, or a given constant. Predicates can be used in combination with constants
to create an infinite set of initial values. For example, to declare that the initial set of a latch is

all integers greater than 5, we let the initial value be some constant c,. In the first state, the out-

put of the latch is input to a predicate x> 5, and the machine continues only if the predicate
holds. Hence, only those behaviors are allowed where the initial value of the latch is an integer
greater than 5.

Memory Functions. Two functions read and write are providcd with their usual interpretation;
read is a binary function of a memory and a locatlion; write is a ternary function, whose argu-
ments are a memory, a location, and a value. Location and value are variables in the model.
Reading a location which has not been written, returns a new constant (like a constant creator).

Definition A generalized gate is a table, an interpreted or uninterpreted function or predicate,
or a constant creator.

Definition Data movement operations are x:=y, z :=mux(b,x,y) , and y := if (b, x) , where
x, y, z are integer variables, and b is binary.

Every model has only a finite number of variables, latches, and generalized gates. Every vari-
able is the output of exactly one generalized gate or latch. Hence, every input to a generalized
gate or latch is the output of some other generalized gate or latch; ICS models are closed. A vari-

able can be input to many generalized gates or latches.

Definition A state is atriple (latch, memories, predicates) , where,
a. latch is an assignment of values to the latches, For finite valued latches, the value comes
from the domain. For integer valued latches, the value is an ICS term.
b. memories is a sel of memory elements, where a memory is a set of pairs of ICS terms, where
the first denotes a location and the second a value.

C. predicates is a set of atomic formulas, where an atomic formula is any interpreted or uninter-

preted predicate applied to ICS terms. Examples are co<f(cy) and P(f(cy), 8(cy)) . Note

that (c,< fle))) A (P(f(cyc,),8(cy))) is not an atomic formula. Intuitively, predicates at a
state s, is the set of assumptions made to reach s.

Definition Given two ICS terms 1, and ¢,, and two sets of atomic formulas P = {P,,.... P}

and Q0 = {Q,,...,0,}, ¢, is equal to t, subject to P and Q, denoted as "Ip = tzlg iff the for-

mula (PyA AP AQ A..AQ)) = (1;=1) is valid For example, if 1, =1x,

138

P={x>7x<8}, 1,=8, and Q =@, then r, =1, subject to P and Q@ since

(x>7Ax<8) = (x=8) is valid. The equality of two ICS terms can be decided using the algo-
rithms of [Sho79] and [Sho82].

Notation If P = {P,,..., P} is aset of predicates, we will use P to denote P, A...AP,. For

example, P — (b =1) is the formula (PyA..AP) > (b=1).
Definition Let statcs s, = (Ll,(M:, ...,M;),PIJ and s, = (Lz,(Mf,...,Mi), Pz) be given.
§; = s, if the following hold.

a. Let I'l and I'.2 denote the values of the i-th latch in L, and L,, respectively. If the i-th latch

is finite, then I'l = l;;othcrwise, I'll = l’zl must hold.
Pl P2

b. Let M,lt [= (a,l‘ (i1, v: [i]) denote the i-th address/value pair in M,: , the k-th memory ele-

ment of s,. Then, for each M:[i] there exists M:Li] such that a,lc[i] IP = a: [l lp and
1 2

v," 3] IP v:]| IP. Similarly, for each M:[i] there must exist M; [i] such that
1 2

a, [i] !P! a [j] IP2 and v, [i] Ip, =2 [j] Ip,'

c. Pl sPZ, i.e. P1 ==oP2 and P2= Pl .

Definition An initial state is a state (latch. ., D, D), where larch,

ini¢ 1S a0 assignment of an

init
initial valuc to each latch.

Lemma 82.1 Ttis decidable whether two states are equal.

Proof The problem reduces to deciding whether two ICS terms are equal subject to predicate

constraints, which can be decided using the techniques of [Sho79] and [Sho82] (QED).

8.2.2 Operational Semantics of ICS

The operational semantics of ICS describes how a transition between two states of an ICS

model occurs.
Definition A gate graph G is a directed graph where each node is a generalized gate.
(u,v) € G if some output variable of the generalized gate « is an input to the generalized gate

v. A cyclic gate graph is said to contain a combinational loop (or cycle).

139

Remark For an acyclic gate graph G, a root node either has no inputs or is a latch.

Our operational semantics is restricted to acyclic graphs and is defined in terms of a configura-
tion (or state) graph and its transition relation. Every node in the configuration graph is a pair
(s,n) , where s is a state of the model, and n represents the number of constants created so far.

An initial state of the configuration graph is of the form (s,

mie k) » Where s, . is an initial state

of thc model, and k the number of constants in Siais+ AN edge (transition) is defined by the fol-
lowing algorithm which, given a state u = ((L,M, P), n) in the configuration graph, assigns a
new value (o all next state variables (creating L'), and creatcs a new memory M, a new sel of
predicates P', and a new counter n'. In this case, we say there is an edge (4, v) in the configura-
tion graph, where v = ((L', M, P"), n') . State transitions are computed as follows.

0. Le P =P, n =n.

1. Let a user-given total order on all memory operations be given. Choose a topological sort O of the
gate graph consistent with this memory order.

2. Assign the values given by L to the outputs of the latches.

3. Assign values to the outputs of each generalized gate consistent with its inputs, processing the gener-
alized gates in the topological order O. More precisely, let a generalized gate g (i,0) be given,
where i represents the inputs to the gate and o its outpu.

a. If g is a table representing the relation R (i, 0) , then (i,0) € R.

b. If g is an interpreted or uninterpreted function, then o = g (i) , where o and i are ICS terms.

¢. If g is an interpreted or uninterpreted predicate, if P'— (g=0) is valid, let g = 0, If
P > (g=1) isvalid let g = 1; otherwiselet o = 0 oro=1,and P = PPu {g=0).

d. If g is a constant creator, then 0 = ¢ > Where ¢, isafreshconstant. Letn' = n'+1.

Step 3 is referred to as value propagation. Note that the configuration graph is finite-branch-
ing, i.e. for every state, there are a finite number of next states. It is possible that a table is not
complete, i.e. there are inputs for which there are no outputs. Then, the set of values assigned to

an output of a table may be empty. The empty values propagate, i.e. if one of the inputs to a
table is empty, then the output is empty as well.

8.2.3 Creating ICS Models From the HDL Verilog

In the HSIS environment, Verilog descriptions are compiled into BLIF-MV. BLIF-MV has a

140

library of pre-defined functions and predicates on finite-sized integers. For example,
add4 (x,y,z) may mean that two 4-bit integers x and y are added to get the 5-bit integer z. To
extend this to be able to compile a Verilog description into an ICS model, we describe below
how the various new constructs in ICS can be obtained.

1. Tables, finite variables, and finite latches can be specified as usual.

2. To get integer variables, latches, functions, and predicates, identify a set of variables as inte-
gers, and instruct the compiler to use BLIF-MV’s library functions.

3. To get uninterpreted functions (predicates), use subcircuits returning integer (Boolean) values

whose definitions are not given. These will translate into undefined subcircuits in BLIF-MV.

8.2.4 Fairness Constraints and Language Containment

In this section, we describe how to construct an automaton from an ICS description, how to
define fairness constraints on this automaton, what its language is, how to specify properties, and

how language containment is performed by checking language emptiness.

8.2.4.1 Fairness Constraints in ICS Models

Definition Let an acyclic ICS model M be given. The symbolic automaton of M, A Mo is the
configuration graph defined by the operational semantics of ICS. The alphabet of A u is the Car-
tesian product of the alphabets of the non-state variable, and is denoted by Z, - The alphabet of

the integer variables is the set of the ICS terms of M (a countable set), whereas the alphabet of

the finite variables is their domains. Let an @-string x over the alphabet Z, begiven. risarun
of x in A, if r, is an initial state of A s> and for all i, therc is a transition from r; to il
assigning x; 10 non-state variables.

If the model has inputs, we close it by allowing the finite inputs to take any value in their
domains, while the integer inputs are driven by constant creators. Hence, the notion of symbolic

automaton carries to models with inputs. We allow edge-Streett fairness constraints! to be
placed only on finite valued latches. For example, one can restrict the acceptable runs to be such
that a finite-valued latch ! takes some value 4 in its domain infinitely often. Fairness constraints

are generally placed on the control part. Since control circuits are finite state, the restriction of

1. One can allow other types of fairness constraints as well. The language emptiness check for edge-Streett
faimess constraints is polynomial, while their next natural extension has an NP-complete languages contain-
ment check.

141

fairness constraints to finite latches is expected not to be severe in practice.

Definition A run r is fair if all fairness constraints are satisfied. More specifically, for each
finite latch /, the set of infinitely occurring values which I takes in the run r satisfies all faimess
constraints placed on I. The symbolic language (or just language) of symbolic automaton M,

Lg (M) , is the set of all strings which have a fair run in A M-
Definition The concrete language of a symbolic language L with respect (o an interpretation /
(an interpretation of all uninterpreted functions and predicates), denoted by L.(L, D), is obtained

by allowing the constants to take any possible integer value for all xe L. The concrete language

of M with respect to interpretation I is L (Lg(M), D).

Definition Let symbolic languages L, L', L" be given. L is contained in L', denoted as

Lc L, if for every interpretation I, Lo(L,D) cL(L,D) . L isthe complement of L', denoted as

L =L, if for all interpretations I, L. (L, 1) = LC(TI) . L' is the intersection of L and L',
denoted as L" = LN L', if for every interpretation I, L.(L"I) = Lo(L,)) nLo(L,D) . Simi-
larly union of symbolic languages is defined.

Definition Let models M and N be given. The composition M o N is defined as follows. If M
and N have no variables in common, or the common variables are not outputs in both models,
the composition of the two models is their syntactic composition. For each common variable
which is an output in both M and N, rename one of them, and add a one state automaton which
checks that the two outputs are equal.

Lemma 8.2.2 Let models M and N be given. Then, L(MeN) = L(M) NL(N), ie.
composition of models corresponds to taking the intersection of their languages.

Proof Let an interprctation [/ be given. We nced to show
Lo(MeN, D) =L-(M,)) nL(N,I). Let xe L.(MeN,I). x gives intcrpretations for all
constants of M and N. Also, the values assigned by x to the variables is consistent with the

transition structures of M and N. Hence, xe L.(M,]) nL.(N,I). Conversely, let
xe L.(M,I) nL (N, I). x gives interpretations for all constants of MeN. Note that since
xe Lo(M,I) nL-(N,I), the common variables of M and N are assigned the same value. Also,

the values assigned by x to the variables is consistent with the transition structures of MeN.

142

Hence, xe L.(M N, 1) (QED).

8.2.4.2 Property Checking

Lemma 8.2.2 implies that the classical results of verification using language containment are
valid. For example, to do property checking, the complement automaton of the property can be
composed with the system, and the language of the composed system can be checked for empti-
ness. We will define property automata so that complementing them is straight-forward.

Definition An (edgc-Rabin) property automaton is a complete (i.e. for eved symbol there is a
transition) edge-Rabin automaton with no outputs. Note that property automata can have integer
inputs. All latches of a property automaton are finite valued, i.e. a property automaton has a
finitc numbcr of statcs. The only allowed intcger operation arc integer predicates which arc
applied to integer inputs, but the alphabet of a property automaton can take an infinite number
due to integer inputs.

Definition Let A be a property automaton. The finite encapsulation of A, A F» is obtained by

replacing each integer predicate (applied to integer inputs) with a binary input variable. Note

that A is a regular edge-Rabin automaton with finite alphabet and finite number of states.

Lemma 8.2.3 Property automata can be complemented.

Proof Let R be a property automaton, and R its finite encapsulation. Since R is a regular
edge-Rabin automaton, it can be complemented into an edge-Streett automaton. Let the

complement be R.. Replace each binary variable introduced in E, with the predicate it replaced

in R. Call the resulting automaton R. We have that L(R) is the complement of L(R). To

make presenting the proof simpler, assume R has only onc integer input x, and one integer
predicatc . Lct ¢, c,, ... bc the symbolic inputs to R and R An intcrpretation / assigns

integer values i, iy, ... t0 ¢,,¢,, ..., and a mcaning to P. By construction, we have that R r and
R, each have one binary input, Ry accepts P(i)),P(iy), ..., and R rejects P (i), P(i,),....
Since i}, i, ... has the same runs in R as P(i)),P(i),... in R—F, it follows that R rejects
iy ip, ... Similarly, we one show that if R accepts i, i,, ..., R rejects it (QED).

8.2.4.3 Hierarchical Verification

Besides property checking, language containment appears in hierarchical verification. Hierar-

143

chical verification is the process of checking that the language of an abstract model contains the
language of a detailed model. Since we don’t know how to complement general symbolic autom-
ata, we restrict hierarchical verification to a subset of symbolic automata, called control
automata. Since control automata are where non-determinism (and hence refinement) occurs,
this may not be too restrictive in practice.

Definition A control automaton is a property automaton which is allowed to have only finite
outputs. The finite encapsulation of a control automaton can be defined similar to the case of
property automaton.

Lemma 8.2.4 Control automata can be complementcd.

Proof Since the outputs are finite-valued, the automaton can bc complemented. The same

procedure as in the proof of lemma 8.2.3 can now be applied to form the complement (QED).
8.2.4.4 Checking Emptiness of ICS Models

Verification using language containment involves complementing the property automaton, and
checking whether there is a fair path in the composition of the system and the complement of the
property. In order to do this, we need to compute the set of reachable states, and check whether
there are any fair paths. However, the set of reachable states may be infinite. Hence, we com-
pute the set of states reachable in at most n steps, for some given n. We then check that no fair
path in this subset of the reachable states exists. In practice, since many error traces are short (if
they exist), this technique should be quite effective.

Lemma 8.2.5 The language emptiness check of ICS model is undecidable.

Proof Theorem 8.2 in section 8.5 provides the proof (QED).

8.3 Data Insensitive Controllers

In this section, we formalize the notion of data insensitive controllers (DICs). We then prove a
theorem which can be used to verify the property that DICs correctly move data around on a sys-
tem where the integer variables are replaced by single bit binary variables. A practical
application of this result is then described, and an algorithm for automatically recognizing DICs

is given.

8.3.1 0-1 Theorem for Data Insensitive Controllers

Definition Let the data movement operations be x:=y, z:=mux(b,x,y) , and y:=if(b,x),

144

where x, y, z are integer variables, and b is binary.

Definition Let an ICS model M be given. M is a data insensitive controller (DIC) with
respect to a set of variables X, called data insensitive variables (DIV), if the following holds.

1. The only operations allowed on the variables in X are data movement operations and
x := constant-creator where all variables involved in these operations belong to X.

2. If le X is a state variable, then the initial value of / is a fresh constant.

3. If some constant creator C is input to some x e X, then C is not input to any other variable
zg X.

The (generalized) gates in a DIC are naturally divided into two disjoint parts. The first, called
the data sensitive part, contains the gates which drive the variables not in DIVs, whereas the sec-
ond called the data insensitive part, contains those gates which drive the DIVs. The binary

variables which appear in the data insensitive part are driven by gates in the data sensitive part.

No gate in the data sensitive part has a DIV as an input.

P The data sensitive part generates the control signals for the
| Data Sensitive Part | data insensitive part. Changing the values of variables in
* * *%é‘o‘l‘é’y control - the dasa insensitive part does not affect the values of the
data sensitive part.

| Data Insensitive Partl

Figure 8.2: Data sensitive controllers

Definition Let M be a DIC with respect to X. The binary instantiation of M, M, , is formed

by replacing all variables in X by binary ones, replacing each constant creator driving a DIV by a
gatc which produces 0 or 1 non-deterministically, and rcplacing the initial values ot all latches in

X by the set {0, 1} .
Theorem 8.1 (0-1 Theorem for Data-Insensitive Controllers) Let an ICS model M be data
insensitive with respect to a set of variables X. Let property P specify that when binary variable

b becomes 1, then x = y, where {x,y} ¢ X. Then, P holds for M iff P holds for M,.

Proof If P holds for M, then P holds for M,, since binary values are a subset of integer
values. Now assume P does not hold for M. Then, there exists a sequence of states s, ..., s,
and a sequence of assignments to non-state variables a,, ...,a,_,, such that s, is an initial state,

$;, is reached from s; in M on a;, a; for i<n-1 assigns 0 to b, a,_, assigns 1 to b and

145

different values to x and y. We will build Sy oS, and d, ..., a,_ 1, where all variables in X
are assigned binary values in 4; and §; for all i, 5;, is reached from s; in M, on a,, a; for

i<n-1 assign 0 to b, a,_, assigns 1 to b, and a,_, assigns 0 to x and 1 to0 y.
Let the data sensitive variables take the same values in @, and §; as in a; and s, ‘s. This is pos-

sible since the values of the data insensitive variables do not affect the values of the data

sensitive partition. It follows that the values of the binary control variables which are input to the
data insensitive part also remain the same in 4; and 5;'s.
Consider state s, _, and how x and y arc assigned at stage n. From the dcfinition of DICs and

the operational semantics of ICS models, it follows that either there exists a constant creator C
such that x = C(n-1), where C(n-1) denotes the value of the constant creator assigned by

a,_,, or there exists an integer latch ! such that x = I(n-1), where I(n-1) is the value of /
at state s, _,. If we trace this value to its source, we find the value of x assigned by S,_, and
a,_, is equal to the value of some integer latch 'at s, , or to the value of some constant creator
C assigned by some g, isn-1. Assign the value 0 to this source, i.e. the initial vaiue of I' or

the value of C. Similarly find I or C' for y and assign it the value 1. Arbitrarily choose val-
ues for the rest of the constant creators and initial states. Since the values of the binary control
variables is the same as before, the claim follows (QED).

Historical Remark [Wol86] introduced the notion of data-independent controllers for simple
reactive programs, which are conceptually very similar to our data-insensitive controllers. How-
cver, the results of [Wol86], specifically theorem 5.4, scem to be essentially different than our 0-

1 theorcm. [Wol86]’s theorem 5.4 basically applies to properties which can be written as “for all

tuples iy, ..., i, with distinct values, P(i,,...,i,) should hold”, where P is a linear temporal
logic formula over the variables i, ...,i,. Such a property can also be expressed as an infinite
conjunction of linear temporal logic formulas of the form P(vy,..,v,), where v, ...,v, are
value assignments to i, ..., i,. However, our 0-1 theorem is equivalent to an infinite disjunction,

i.e. “when b occurs eitherx =y =0,orx =y =1,0rx =y = 2, etc.”
One in general may be interested in proving the property “repeatedly whenever binary variable

b becomes 1, then x = y.” To do so, create M from M by adding a two-state FSM, which out-

146

puts a variable »'. This FSM stays in its first state for an arbitrary amount of time, outputting
b = 0. It can non-deterministically make a transition to its second state, outputting ' = 1. It
then stays in its second state forever outputting 4' = 0. Let P’ be the property “when binary vari-

able ' becomes 1, then x = y.” It is easy to see that P holds of M iff P’ holds of M.
However, the 0-1 theorem applies to the latter case.
We also emphasize that this theorem also applies to finite state systems and can be used to

abstract datapaths from a large number of bits to a single bit.

8.3.2 An Application of the 0-1 Theorem

A memory controller in a multi-processor takes load and store operations from the processors,
and executes them. To gain more speed, it can do memory operations out of order. To make
sure the memory works correctly, a property known as the value axiom is proved about the mem-
ory system (chapter 9). The value axiom says if a load is issued to location a, the value returned
by the memory model when the load is serviced should be the value of the most recent pending
store to a, or if there are no pending stores, the value stored at a currently.

To check the value property, a temporary latch can be added to the model, which stores the cor-
rect value of the load when the load is issued. This can be done by checking the memory’s
buffers to see if there are any pending stores to location a. When the load is serviced (b = 1), it
is checked that the value returned by the memory is the same as the value stored in this tempo-
rary latch (x = y). The memory controller is a DIC with respect to the data variables giving the
values to be stored at locations. Hence, by the 0-1 theorem and the remark in the previous sec-

tion, it suffices to check the property only on binary values.

8.3.3 Recognizing Data Insensitive Controllers

DICs can be automatically recognized with a polynomial time algorithm (in the size of the inte-
ger partition) which finds the largest set of variables according to which a model is a DIC.

Lemma 8.3.1 If an ICS model M is a DIC with respect to X and a DIC with respect to Y, then
it is a DIC with respect to X U Y. Hence, there is a largest set of variables DIV (M) according to
which M is aDIC.

Proof Follows directly from the definition of DIC’s (QED).

The following algorithm finds DIV (M) . The algorithm proceeds by marking off any variable

which cannot be a DIV. The remaining variables are in DIV (M) .

147

0. Let X be the set of all integer variables.

1. Delete from X those variables involved in any operations other than data movement, i.e. violating
condition 1 of DICs.

2. Delete from X any variable violating condition 3 of DICs, i.e. fanning-out to an element not in X .

3. Delete from X those variables involved in some integer operation (including data movement) with
variables not in X. Go backto step 1.

4. ReturnX as DIV (M) .

8.4 Data Semi-Sensitive Controllers

In this section, we present results about a class of circuits, called data semi-sensitive circuits
(DSSC), which not only move data around, but also apply predicates to them. We identify sub-
classes of these circuits, where properties can be proved by replacing the ranges of integcr’
variables by a small finite range. Recognizing DSSCs and any of the subsets we present in this
section is straight-forward. In what follows, checking a property on a system M is done by
checking for the language emptiness of the composition of the complement of the property and
M.

Definition The predicates x<c,x = ¢, x<y,x =y, (xmodm) = d, and (x mod m) <d are
called integer predicates. Note that the predicates Even(x) and Odd(x) are special cases of
(xmodm) =d.

Definition An ICS model M is a data semi-sensitive controller (DSSC) if the only operations
on integer variables are data movement, x := constant-creator, and integer predicates. The initial
value of all integer latches is a fresh constant.

A DSSC can be pictured as shown in figure 8.3, where the model is divided into two parts: inte-
ger and finite. The integer part contains the gates which drive the integer variables, whereas the
finite part contains those which drive the finitc variables. The communication between the two
parts is restricted to a set of binary control variables. The control variables produced in the inte-
ger part are the outputs of the integer predicates. The gates in the finite part take only finite

variables as inputs.

148

The communication between the two
parts is restricted to a set of binary
control variables. The binary variables
output from the integer parts are the
outputs of the integer predicates.

Figure 8.3: Data semi-sensitive controllers

Definition Let M be a DSSC. The n-ary instantiation of M denoted by M, , is formed by

replacing all integers variables by finite variables taking valucs from 0,1, ...,n-1. The initial

value of an integeris theset 0,1, ...,n- 1.

8.4.1 Data Comparison Controllers

Data comparison controllers are a subclass of DSSCs which move data around, and compare
them. We prove finite instantiations can be used to verify language emptiness for these circuits.
A practical example of where data comparison controllers come up is given.

Definition A DSSC which only involves data movement operations, the predicate x = y, and
constant creators is called a data comparison controller.

Lemma 8.4.1 Let M be a data comparison controller with n integer variables, and M, its n-
ary instantiation. Then, L (M) = @ iff LM,) =0.

Proof If L(M) = @, it trivially follows that L(M,) = @. Now assume L(M) # . We want
to showL(M,) #@D. Let 5¢»ag» 51> @y, ... be a fair run in M, where s; and a; are assignment of
values to state and non-state variables respectively. Let x|, ...,x, be the integer variables. We
will build a fair run 5, d, 5, 4, ... in M, such that the following two conditions hold for all i.

1. The values assigned to the finite variables (including the binary variables) by 5, a; arc the
samc as those assigned by s, a;.

2. Letay ..., o, ; and o ...,&,,,,- be the values assigned by s, a; and s, a; to the integer
values. Then, &, ; = o, , iff &, = 0.

A string respecting the above two properties is accepting in M, since 1) the faimess constraints
of M and M, are the same, 2) the fairness constraints are placed only on finite latches, and 3) for

each such latch the set of infinitely occurring values in s,, s,, ... is the same as 5,55 The

149

existence of such a string follows from the following three claims.

Claim 1. There exists an initial state 5, in M, such that the above two properties are respected

for the latch variables. Let the finite latches in 5, have the same values as in s,. Let o, ..., o,

be the assignment given to the integer latches /,, ..., I, by sq.a,. Choose @, ..., d'p such that

a; = aj iff a; = ;.

Claim 2. Given a state §; where the latch variables satisfy the above two properties, there

exists an g; such that all variables satisfy the two properties. Consider a topological sort of the
gate graph, g, ..., g, , where m is the number of gates. By induction assume the two properties
hold for all latch variables and all variables which are outputs of gates 8, for k<l. If g, isa
finite table, by property 1, the output of g, can be assigned the same value it was given by a;. If
g, is an integer comparator or data movement element, by property 2, its output will have the
same value as in g;. If g, is a constant creator, and if it was assigned a value equal to one of the
integer variables processed so far by a;, let’s say x, then assign it the value given to x. If not,

assign it a value distinct from all integer variables which have been assigned value so far in step

i. Thus, the two properties also hold for g,. Note that no more than n distinct integer values are

needed.

Claim 3. If the two properties hold for §, a;, then they hold for §;, ;. This follows by the fact

the latch variables in s;,, have the samc values as the next statc variables assigned by s, q;

(QED lemma 8.4.1).
A result similar to lemma 8.4.1 appearcd in [ID93]. The main diffcrence is that lemma 8.4.1

applies to both liveness and safety properties. The fact that lemma 8.4.1 applies to liveness prop-
erties comes basically for free as a consequence of dealing with ICS models. As an example, the
property “if request and x = y, then eventually acknowledge and z = w* can be proved in our
framework, but is not dealt with in [ID93].

Remark Adrian Isles [Is195] has noticed that the bound for lemma 8.4.1 can be improved by let-

ting n be the number of integer latches plus constant creators.

Lemma 8.4.2 There is a data comparison controller M having n integer variables such that

150

L(M)#@ and L(M,) = @ fori<n-2.
Proof Let M have n integer variables x,,...,x,_, , ¥, ¥,, Where x,...,x, _, are integer

latches with their initial states being fresh constants, and y, and y, are the inputs to a

n
comparator. Let M also contain a binary latch ! whose initial state is 1, a ()-statc counter, and

2

enough gates to distinguish whether all initial values assigned to x, ..., x, _, are distinct. It does

so, by using the comparator and comparing two numbers at every cycle (note that thc valucs of

n
Xy .- X, _, are unchanged throughout the computation). Hence, it needs (2) cycles to do all
the comparisons. Initially / = 1, and it is set to 0 if at any cycle y, = y,. If I = 0, M falls into

a dead state and does not accept any strings. Hence, M has an accepting run, when all the initial

values of x, ..., x,_, are distinct. However, for i<n-2, at least two of the latches must have

the same initial values. Hence, M; does not have arun, i.e. L(M,) = @ (QED).

One application of data comparison controllers is in memory systems of multi-processors.
These memory controllers have a buffer for each processor where the memory instructions (load
and store) are placed. To perform verification, we assume the sizes of the buffers and the num-
ber of processors are finite (chapter 9). However, it is assumed that the number of memory
locations is infinite. If the memory controller only compares memory addresses to each other,
which is what one might expect, then it is a data comparison controller with respect to the
addresses. Hence, a small number of addresses suffice to prove the properties. This number is
proportional to the sizes of the buffcrs. Combining this result with the 0-1 thcorem for data
insensitive controllers, we get that once the sizes of the instruction buffers are fixed, then a mem-
ory controller can be verified using binary data bits, and a finite (and small) number of memory

locations without losing any accuracy in verification.

8.4.2 Other Types of Data Semi-Sensitive Controllers

We present results on circuits which use more sophisticated integer predicates (such as x<c,
(xmod m) = r, and x<y). Our results show that the only situation where finite instantiations
cannot be used is when both data movement and the predicate x <y are used.

Lemma 8.4.3 There exists a DSSC controller M involving data movement operations and

151

predicate x<y such that L(M) # @ but L(M,) = @ forall n.

Proof We will build an ICS model M whose only runs are on strictly increasing sequences of
integers. Let M consist of an integer latch x, an integer variable y, a binary variable b, three
gates and no fairness constraints (i.e. all runs are accepting). The first gate assigns y a fresh
constant. The second gate does the comparison x <y, producing the binary variable b. The last
gate is x = if(b,y) , which assigns x the value of y if b = 1. Let the initial value of x be a
fresh constant. Intuitively, the circuit assigns x an initial value, checks whether y has been
assigned a larger value, and if so sets x to the value of y. All runs of M assign strictly
increasing values to x. Hence no finite instantiation can have a run (QED).

Lemma 8.4.4 Let M be a DSSC with » integer variables, p predicates of the form x = s
using only data movement operations and the predicate x =y. Then, L(M) = @ iff
L(M,H ,,) = &, where My p is M, , , with the predicates of the form x = ¢, changed to x = 1.

Proof The proof parallels the proof of lemma 8.4.1. The second property in the proof of

lemma 8.4.1 is now modified to “a, ; = @, ;

iff 0x,i = 044, and o, ; = ¢; iff &, = 1.” The
only other difference arises when a constant creator g, which is assigned a value v different than

all variables assigned so far by (s a;) , is processed. If v = ¢, for some [, then g is assigned [

in 5, a;. Otherwise, a value v2p and not equal to any of the variables created so far is assigned

to g. Since there are n distinct variables, at most n+ p values are used (QED).

Remark In the proof of lemma 8.4.4, if there are no predicates of the form x = y, then p + 1
values suffice. This is the core of [Wol86])’s techniques, where the predicates x = c; represent
the atomic formulas of the temporal logic formula. Note that as [Wol86] argues, for such a cir-

cuit M (involving data movement and x = ¢, ‘s), if emptiness holds for a set of distinct constants

c then it holds for any circuit obtained from M by replacing c,, ..., <, by another set of

1?00 P'
distinct constants c, ..., Cp-
Lemma 84.5 Let M be a DSSC with n integer variables, using only data movement

operations, and the predicates x = y, x = ¢;, and x<dj. Let C = MAX(MAX(c,),MAX(dJ.)) .

Then, L(M) = @ iff L(M'.‘) =@,wheren = C+n+1.

152

Proof The proof parallels that of lemma 8.4.1. The second property in the proof of lemma

8.4.1 is now modified to “a, ; = o, ; iff ox,i = @i, and & ; = ¢; iff 04,i = ¢}, and 0y ;< d;

iff &k, i< dj .” The only other difference is when a constant creator g, which is assigned a value

v different than all variables assigned so far by (s,a,) , is processed. If v<C, then g is

assigned the same value as v in §, 4,. Otherwise, a value greater than C and not equal to any of

the variables created so far is assigned to g. Since at most »n valucs greater than C are used, the
bound follows (QED).

Onc can get a bound for lemma 8.4.5 which is independent of the values of the constants. Let

p and g predicates of the forms x = ¢, and x<dj respectively be given. Further assume

d;j<d;, . Let h; be the number of c; ‘s which occur between d; and d;

/R Intuitively, between

dj and a'j+ o BER values are needed. By re-assigning value to x<dj ‘sand x = c,‘s as in the

proof of lemma 8.4.4, the emptiness check can be done on a system where the integer variables

take on (g+1) (n+1) +p values (there are g+ 1 intervals between dj ‘s each requiring n+hj

values, and Zhj = p). We have the following result.

Lemma 84.6 Let M be a DSSC with n integer variables, using only data movement

operations, p predicates of the form x = ¢;, ¢ predicates of the form x <d;, and the predicate

x = y. There exists a system N derived from M such that the integer variables take on
(g+1)(n+1) +p values,and L(M) = D ift L(N) = D.
Proof Given above (QED).

Lemma 847 Let M be a DSSC with n integer variables, using only data movement
operations, and the predicates x = y, x = ¢;, x<d;, (xmod m;) = r,, Lx mod mk.')<rk.'. Let
C = MAX(MAX (c)), MAX (dj)) , and N be the common multiple of all the m, ‘s and m,' ‘s.
Then, L(M) = @ iff L(M'_') =@, where /i = C+Nn+1.

Proof The proof parallels that of lemma 8.4.1. The second property in the proof of lemma

8.4.1 is now modified to “oy ;= oy iff i = 04,i, and o ; = ¢ iff o ;= ¢/, and oy ;<d;

iff &k,,’<dj, and (a,',.mod m) =, iff (&Limodmk) =r,, and (a,,‘.mod m'k.)<r'k. iff

153

(&1,; mod m'k.)<fk,." The only other difference arises when a constant creator g, which is

assigned a value v different than all variables assigned so far by (s, a,) , is processed. If v<C,
then g is assigned the same value as v in s,a,. Otherwise, a value v greater than C and not
equal to any of the variables created so far such that (vmodm,) = (3 mod "‘k) and

(v mod ""le) = (5 mod m'k) for all k and k' is assigned to g by 5, a;. The bound follows by
noting that 1) at most » values greater than C and with given residues with respect to m, ‘s and
m', ‘s are needed, and 2) for a set of residues with respect to m, ‘s and m'}, ‘s, and for any o,

there is a number between o and o + N which has the same residues (QED).
The following lemma states that although the predicate x<y cannot be used with data move-

ment operations, but it can be used with all other predicates so long as there are no data

movement operations.

Lemma 8.4.8 Let M be a DSSC with n integer variables using no data movement operations.
Let m be,
a. n,if M involves only the predicates x = y and x<y.

b. C+n+l, if M involves the predicates x=y, x<y, x=¢, x<d;,, and
C = MAX (MAX (c)), MAX (dj)) .

c. C+Nn+1, if M involves the predicates x = y, x<y, x = s x<dj, (xmod my) =r,,
(% mod m”') <r,', where C = MAX (MAX (c),MAX(d)) , and N is the least common multiple
of the m, ‘s and m,,' ‘s.

Then, L(M) = @ iff L(M,) = @.

Proof a. The proof parallels the proof of lemma 8.4.1. The second property in the proof of
lemma 8.4.1 is now modified to “o, ; = o, ; iff o,i = 04, and &, ;< @, ; iff 0x,i< 04" Since
there are no data movement operations in M, at every state s,, the integer variables are assigned
fresh constants. Let the constants be. Cipp - Cige Now choose the constants ¢; y, ..., ¢;; such

that the second property holds of the constants. Assign the rest of the gates as before.

b. Similar to part a, except that given constant ¢; ,, ..., ¢; , if ¢; jSCletej=c j

154

¢. Similar to proof of part b and lemma 8.4.7 (QED).

8.5 Verification Using Uninterpreted Functions and Finite Instantiations

8.5.1 Overview

In this section, we first prove that if ICS models are allowed to contain uninterpreted functions
with predicates of the form x = y, where x and y are integers, then the reachability problem
(whether a specific state s is reachable) becomes undecidable. This provides a limit for the appli-
cability of finite instantiation techniques when uninterpreted functions are used. However, in
verifying many properties of pipeline controls, where the functional units are replaced by uninter-
preted functions, the predicates operating on data can be abstracted to be unconstrained inputs,
i.e. taking any value 0 or 1. Therefore, data predicates are not needed in the model, but just in
the property.

We prove that for ICS models with only uninterpreted functions, an important class of proper-

ties of the form “when binary variable » become true, (xy=a) A...A(x,=0,) " where x;8
are integer variables and o ‘s are ICS terms, can be verified using finite instantiations. This

result can be used, for example, to prove the following property Q, using two-bit integers, and

appropriate interpretations for the uninterpreted functions. The property @ is: “Assuming r, and
r, contain ¢, and c, initially, if the instruction ry = ADD(r,r,) (call it I) is issued after any
stream of instructions which do not modify r, and r, , the result which is written to ry when 1
is retired is ADD (¢, ¢,) .“ Note that ¢, and ¢, can be any arbitrary integcrs, and all instruc-
tions before / cannot modify r, and r,, but can read them. One can also prove that if any
instruction after I has as one of its sources ry (and no intervening instruction has written to r3) s
then it will receive the value ADD (cys ¢5) s i.e. the bypass circuitry works correctly in this case.

Let v(r) denote the value of register r, and assume we are interested in proving property P:

when instruction r, = ADD(r,r,) , is about to be retired, the value which is written back is
v(r,) +v(r,) . Property Q is only an approximation to property P since no instruction before /
is allowed to modify r, and r,. To verify P, our approach is to run the unpipelined machine N

in parallel with the implementation M. N halts after it executes I. After M retires I, it is

155

checked that the r, registers of M and N are equal. This property has the form “when b

becomes true, x = y*, where x and y are integer variables.

Although we do not have techniques for exact verification using finite instantiations for this
property (and there is some evidence that if such techniques exists, they may be expensive), we
provide techniques which prove the property for a class of possible bugs. For example, they can
catch any bug such that when & becomes true, the ICS terms stored at x and y differ in the num-
ber of times somc constant or uninterpreted function is used. For example, if x contains f(a, b)
and y contains f(g(a), b) , then this bug will be uncovered, since the function g does not occur
in f(a, b) . Verifying this bug requires only one bit for each integer variable. This approach pro-
vides a combination of testing and verification, and should be effective in exposing bugs where
little data variation is needed. [HYMD9S] technique combines verification and simulation by
building the graph of the “control part”, and then producing a set of test vectors which ensure
that all control arcs are traversed. This uncovered many subtle bugs, and confirms that, for
exposing bugs in microprocessors, little data variation is needed. Our third technique is related
to this in the sense that a very large set of test vectors is covered (specifically all control arcs will
be checked), although 100% coverage is not obtained as with formally proving the property.

There is an extensive literature on verifying microprocessors. In most of these approaches
([Cyr93], [BD94], [Sri95]), a pipelined machine is compared to an unpipelined machine by prov-
ing that one step of the unpipelined machine is “equivalent” to one step of the pipelined one.
These approaches require the user to provide a subset of the possible states of the implementation
machine in which the correspondence can be proved. This set has to be large enough to contain
all reachable states (otherwise verification is not complete), but it should not be too large to con-
tain unreachable statcs in which the machine may behave unpredictably. Providing such an
invariance, in theory, is equivalent to providing the set of reachable states, and therefore can be
very challenging for complicated machines. These techniques have not so far been applied to the
superscalar processors. [BaD94] also requires substantial user intervention, by asking the users
to provide f -relations, and restricting the circuits to be k-definite. On the other hand, symbolic
simulation algorithm of [Cor93] and [SS95]. However, [Cor93] does not give an algorithm for
pipelined machines, and [SS95] requires some user intervention, and their algorithm may not ter-
minate and can give false negative results. To our knowledge, there is no previous literature on

verification using uninterpreted functions and finite instantiations.

The paper is organized as follows. Subsection 8.5.2 contains the technical part, proving the

156

three main results: undecidability of ICS models with the predicate x = y, verification of proper-
ties involving x = term, and partial verification of properties involving the predicate x = y.
Section 8.5.3 gives an application to the correctness of superscalar microprocessors. Section

8.5.4 discusses future research directions.

8.5.2 Main Results

In section 8.4, we showed that language emptiness of ICS models with only constant creators,
data movement operations, and the predicate x = y can be decided using finite instantiations. In
this section, we prove the problem is undecidable if we allow, in addition, uninterpreted func-

tions (and even disallow constant creators).
8.5.2.1 Undecidability of ICS Models with Predicate x = y

Theorem 8.2 The reachability problem for ICS models involving data movement operations,
uninterpreted functions and the predicate x = y is undecidable (note no constant creators are
allowed).

Proof We reduce the halting problem for two-counter machines to our problem. A two-
counter machine is a FSM with two integer variables called counters [HU79]. The counters can

be incremented, decremented, and tested against zero. A transition can be represented as
(s, cond |, cond,, op |, op,, s') , where,
a. s and 5' are the current and next states respectively.
b. cond, and cond, are conditions on whether counters 1 and 2 are zero, not zero, or don’t
care. The transition is taken only if the conditions are satisfied in state s.
C. op, and op, are the operations performed on counters 1 and 2. Increment, decrement, and no-
op are the possible choices.

For a two-counter machine M, we create an ICS model N with one uninterpreted function f
representing increment, and a latch initialized to a constant ¢, and always holding that value.
1. For each counter, we define an increment circuit which operates as follows. Let 7 be the
input to the increment circuit. When the circuit is enabled, it sets temporary variables y and z to

f(I) and c,, respectively. The circuit continues only if y#z. This is accomplished by using an

incompletely specified function which has an output only if y#z. If z#1, the circuit then lets

157

z = f(2) , and repeats the process. If z = I, the circuit outputs f(/) . Note that we have ensured

that the only possible executions for N are those where no value between ¢, and I is equal to

AUR
2. To decrement a counter, we define a circuit which operates as follows. When enabled, it first

checks that its input 7 is not ¢o- If so, it returns ¢, Otherwise it sets a temporary variable y to
o, and compares f(y) to I. If the two are equal, it outputs y. If not, it lets y = f(y), and

repeats the process. It finally outputs a y for which I = f(y) .

3. To test a variable 7 against 0, N just checks whether 1 = Co-

N simulates M by checking for a transition (s, cond,, cond,, 0p,, 0p,, s') , that cond, and cond,
hold, and then performs op, and op, (using the subcircuits defined above), and moves to s'.
Let j’ n = f(f -1 (1)) . We note the following during the operation of N.

1. The increment subcircuit does not create an inconsistency, i.e. there are some interpretations
for which all the predicates of the form f' (co) # f (cg) (which this subcircuit creates) can be sat-

isfied. One such interpretation is having integers as the domain, with f replaced by the
increment operation on integers.

2. The decrement subcircuit always terminates. The reason is that the value at the input of a dec-

rement subcircuit is always some formula 5" (cy) » for some =, since these are the only values
created by N. Also, note that if the input to a decrement subcircuit is /" (co) » then the output of
the circuit is j" 'l(co) , since when N created j" (co) it cnsurcd that for all 0<i<n-1,

TCAETHCHE
3. During the execution of N, the test I = ¢, returns true iff / is actually the formula ¢,. To

prove this, assume for some value i, j' (cg) = c,. This is not possible since when f (cp) was

created, the increment circuitry ensured that f (c,) # ¢, .

It follows that if
a. M is at some state s, and N is at its corresponding state s, and

b. if the two counters of M take the values i and k respectively, and the two counters of N take

158

f (cy) and f (co) rtespectively, and

c. if M makes a transition (s, cond,, cond,, op,,0p,,s") , with counters taking on i and ¥
respectively,

then N will eventually end up in its state s' with counters taking f(co) and]k (cqy) respec-

tively. Since N merely simulates M, the reverse is also true. Hence, M falls into its halt state iff

N reaches a corresponding halt state (QED).

Note that the proof of theorem 8.2 shows that the reachability problem for ICS models becomes
undecidable when in addition to data movement operations and the predicate x = y, only one

uninterpreted function (f), and one constant (c,) are allowed.

8.5.2.2 Verification of Properties Involving Predicate x = term

Theorem 8.3 Let M be an ICS model with constant creators, data movement operations, and
uninterpreted functions. Assume,
a. the integer latches in M take only constants as their initial valuesl;
b. property P is “when b becomes true, (x,= o) A A (X, =0,)% where b and x; ‘s
are binary and integer variables of M respectively, o, ‘s are ICS terms, and the constants in the
a; ‘s refer to the initial values of integer latches;
C. n is the number of all subformulas in the o, ‘s;
d. M, , is afinite instantiation of M where the uninterpreted functions and the constants in the

a; ‘s are replaced by appropriate functions (constructed below) and constants on n+1 values

(i.e. [log (n+1)7 bits), and thc constant creators arc allowed to take valucs only from the set
0,..,n.

Let P, , be the property P which results from this interpretation. Then, P holds for M iff
P,,,holdsfor M, _,.

Proof Recall that a state s in an ICS model is a tuple (L, Mem, P) , where L is an assignment

of values of all latches, Mem is a set of memory elements, and P is a set of predicates. Hence,

1. Not allowing numerals as initial values of integer latches is not a severe restriction in this case, since numer-
als are useful when interpreted integer functions are allowed, which is not the case here.

159

J(a) may be equal to f(b) in s if a = b is a true predicate in s. Since there are no other
integer predicates in M, two ICS terms are equal in any state of M iff they are exactly the same
formula. The idea behind the proof is that if a formula B contains a subformula which does not

occur in some other formula v, then B and y are not equal in any state of M. Hence, the set of
all formulas can be divided into a finite set of equivalence classes: those which occur as a

subformula in some o, and all other formulas.

Let B, ..., B,_, denote the set of all subformulas of a; ‘s, where B, ..., B is oty ..., 0, .

m-1

To define M, _ ,, we need to give an interpretation f to each uninterpreted function f of M, and

the constants which occur in the o, ‘s. If a constant ¢, occurs as subformula B, , then let ¢, take
the value &k in M, . For each uninterpreted function f, let f(k) = I if f(B,) = B,. Otherwise

let f(k) = n. Similarly define other uninterpreted functions of different arities, where if one of
the argument is n, then the output is also n. Note that the value n propagates. Note that each

predicate x; = @; in M becomes x; = i in M, _,.

Assume P holds for M. Hence, by definition, P holds for all interpretations given to constants

and uninterpreted functions. A set of such interpretations are represented by M, ., and P, .

These interpretations are produced by defining the uninterpreted functions as we did above, and

allowing the constants to take values only from the domain 0, ..., n. Hence, it follows that P, ,
holds for M, , .
Conversely, assume P does not hold for M. Then, there exists a run

T = Spdg Sy ay e Uy, 5, in M such that b holds in 5, but for some i, x;# ;. We will build

arun 7 = 3, ag, §1,ay, ..., 81,5 in M, _, such that b holds in §; and x;#i, ie. P does

n+l

not hold for M, ,. We do so by ensuring the following two invariants hold of all variables in
any transitions (s,a,s;,,) and (3, 2.8;,1).

a. All finite (non-integer) latches take the same values in (spas;,,) and (3,3 a;,8;, ,) .

b. If some integer variable z takes an ICS term B, in(s;a,s;,,) , then z takes the value k in

(3;, a; i, 1)- Otherwise, z takes the value n.

160

We will show how s, a, s, can be constructed satisfying the above invariances; the other tran-

sitions are similar. Let O, be the topological ordering of the gates used in the transition

(spa,s;,,) in M. We will use the same ordering to generate the transition (3’,-, a;58;, 1) in

M, ,. The roots of O, are either latches (taking one of their initial values) or constant creators.

For finite latches, let them take the same initial value in s, as in §o. Since the constants in the
a; ‘s can only refer to the initial values of integer latches, if the initial value of a latch ! is a con-
stant and it occurs as a subformula B, in one of the o, ‘s, assign it k. Otherwise, assign it n.

Assign n to the constant creators. Now, by induction, assume the above two invariants hold,

before some generalized gate g in M, _, is processed. We show they hold for the output of g.

Case 1. If g is a finite table, then its inputs are the same as those in sy, a,, s, . Hence, its output

can be assigned the same value as in §g, @, §; .
Case 2. If g is a data movement element, since the invariants hold for its input, they will hold
for its output.
Case 3. If g is an uninterpreted function f, by the second invariant, and the definition of 7, the
second invariance will hold for the output of g.

It could be the case that processing gate g will affect whether the invariants hold for other vari-
ables besides the output of g. For example, if integer predicates were allowed, two formulas

which were not equal before the predicate was processed, could become equal afterwards. This

is not a problem in this case, sincc M does not have any integer predicates. Continuing by induc-

tion as above, the run # = §g, @g, $;, @y, ..., @ _ 1, S can be constructed (QED).
8.5.2.3 Partial Verification of Properties Involving Predicate x = y

In the following, let M be an ICS model with constant creators, data movement elements, unin-
terpreted functions. Restrict M so that the initial values of the latches are constants. Let

property P be “when the binary variable b becomes true, the two integer variables x and y are
equal”.

Definition Let o be an ICS term. Let f,, ...,f,, be the uninterpreted functions occurring in o.

Given numerals a, .-, @, the linear expansion of o with respect to a, o @y, lin(a) , is

161

obtained by adding all the symbols occurring in 0., with each f; having value a;. For example,

given uninterpreted function f and g with corresponding values (1, 0) , the linear expansion of
ICS term f((g(a,b)),f(a)) is 14+0+a+b+1+a whichis 2+2a+5b.

Lemma 8.5.1 Let o be an ICS term, involving uninterpreted functions fo -+ J,, and constants
Cop--Cp+ Lot @y ...,a, be a set of numerals. If each f; is given the interpretation, which

returns the sum of its arguments plus g, , then the value of o under this interpretation is lin (o) .

Proof Clear from the definitions (QED).
Lemma 8.5.2 Assume P does not hold for M, and let k be a given integer. Assume for some

TUR 7 = 50,80, .8, _ 15 S,
a. ins,, b becomes true, x = o,y = B, a=p,
b. for some constant ¢; occurring in o or B, the coefficients of ¢; in lin(a) and lin(B) with

respectto 0,0, ..., 0 (denoted by n;, and n"a) have different residues modulo k.

Let M, be a finite instantiation of M, obtained by letting the constant creators take values 0 and
1, and each uninterpreted function Jf; returning the sum of its arguments modulo &¥. Then, P
does not hold for M, either.

Proof Since there are no integer predicates, the values which the integer variables take have
no impact on the finite variables. Hence, there exists a run # = $¢,ag, ..., @y 1,8, in M, which

agrees with r on the values of finite variables. By the definition of £, ‘s and lemma 8.5.1, each

integer variable z in §;, ; can take the value lin(z) , where z denotes the value of z in 5pa;.

Let all constants be 0, except for c;, which is 1. It follows that x and y will take n, and M
x

respectively in §,. These values are not equal by assumption. Hence, P does not hold for M,
(QED).

An example of the application of lemma 8.5.2 is the following. Assume, for some run x = a,
y=PB, a=f(ab) and B =f(a,c). Then lin(a) = a+b, and lin(B) = a+c. Since the
coefficients of b and ¢ are not equal modulo 2, P will not hold of M,.

To answer the question of how many ‘s should be tried, note that if two integers a and b

have the same residues modulo three primes P,P,P,, a=b and b<a, then

162

a=>b+n(P xP,xP,) for some n. Itis expected that even one bit integers, for which kx = 2,
will expose many of the bugs, since most bugs are control bugs, and should occur under many
different data combinations.

Notation For an ICS term «, let 0., denote the number of times f occurs in a.
Notation For an uninterpreted function £, let Sf(a) denote a function which adds a to the sum

of the arguments of f. Hence, Sf(l) denotes a function which adds 1 to the sum of f's
arguments.

Lemma 853 Let P not hold for M. Let ¥ be an integer. Let there be a run
r=sgayp-.a,_p,5,,suchthatins,,b=1,x=a,y=8, a=f, and for some uninterpreted
function f of M, o # 5; modulo k. Let M, be a finite instantiation of M, obtained by letting the
constant creators take value 0, f returning S,(1) modulo k, and each other uninterpreted
function g #f returning S B (0) modulo k. Then, P does not hold for M, .

Proof The proof follows by noticing that in M,, one can create a run in which when b

becomes true x takes o, modulo k and y takes Bf modulo %, which are not the same by
assumption (QED).

Lemma 8.5.4 If techniques of lemmas 8.5.2 and 8.5.3 do not uncover any bugs in the
verification of P, assuming that sufficiently many % ‘s have been tried, the only possible bugs are
where when b = 1, x and y take unequal ICS terms, but the number of occurrences of every
symbol is exactly the same.

Proof Follows directly from lemmas 8.5.2 and 8.5.3 (QED).

An example of the situation in lemma 8.5.4 is x = f(g(a,b),a) and y = f(a,g(a,b)) . A sim-
ple technique which seems to produce good results is to have each uninterpreted functions return
a weighted sum modulo & of its arguments, where the i-th argument is multiplied by i. For
example, in this case, x = (a+2b) +2a = 3a+2b and y = a+2(a+2b) = 3a+4b, where the
coefficients of b are not the same. By creating finite instantiations where the constant creators

are allowed to take values (0, 1), and the uninterpreted functions are defined as above, such

bugs can be uncovered.

163

8.5.3 Applications to Superscalar Microprocessors

We present an application of the results of the previous section to some correctness problems of
superscalar microprocessors (see [Joh91] and [HP90] for background information). Superscalar
microprocessors take advantage of instruction parallelism by allowing multiple instructions to be
issued and completed in any cycle. Many commercial microprocessors designed in the past few
years are superscalar. Throughout this section, we consider an imaginary processor M, which
issues instructions out-of-order, allows out-of-order completion of instructions, does register
renaming, allows speculative execution, and retires (writes back) the instructions in order. In all
superscalar microprocessors we know off, results are retired in-order since precise interrupts and
speculative execution (where a branch’s outcome in predicted in advance) need to be supported.

When an instruction is issued, it enters a reorder buffer ([SP86]). The reorder buffer is a table
consisting of a set of rows corresponding to different instructions and a set of columns corre-
sponding to information about the instructions. The rows of the table are implemented as a
circular FIFO. Hence, there are two pointers: head and tail, pointing to the first and last entries.
The columns consist of an entry number (or tag), destination register, result, exception informa-
tion, valid bit saying whether the result is valid, and the program counter of the instruction.
When an instruction is issued, it is given the entry pointed to by the tail of the reorder buffer, and
the instruction is sent to the reservation stations of the functional units for execution.

A reservation station is a buffer which contains all instructions waiting to be executed in a
functional unit. Each entry in a reservation station contains the following fields: the instruction’s
tag, operation to be performed on the two sources, values of sources 1 and 2 or tags for the
instructions which will produce thcm, and 2 bits stating whethcer sources 1 and 2 arc valid. When
an instruction is issued, if one of its arguments, say registcr r, has not becn computcd, then the
tag for the last instruction in the reorder buffer which will write r is saved in the instruction’s
entry at its reservation station. When an instruction finishes, the result is written to any reserva-
tion station which is waiting for this result by comparing the tag of the instruction to the tags at
the reservation stations.

When the instruction at the head of the reorder buffer contains valid information, and there are
no exceptions, then the result is written to the destination register. If there is an exception associ-
ated with the instruction, then the writing of results is stopped, and the corresponding exception
handler is called. The program counter of the instruction is used to resume execution after the
exception handler returns. To implement speculative execution, if the wrong branch was taken

after a jump instruction, all entries after the jump instruction are deleted from the reorder buffer.

164

Consider an instruction I, ry = ADD(r,,r,) , where r, and r, are source registers, r, the des-
tination, and the values stored at r, and r, are constants a and b. A property P one may want

to verify is that if I is issued with tag number ¢, when 1 is at the top of the reorder buffer, then
the value stored under the result entry in the reorder buffer is ADD (a, b) , provided that there are
no exceptions associated with 7. To use the results of the previous section, several assumptions
are made.

1. The number of registers and the size of the memory is finite.

2. The predicates operating on data can take any value (0,1) at any point in time. This abstrac-
tion might prevent us from proving P by allowing too much behavior only if the correctness
proof somehow depends on always making the same choice for a predicate Q, i.e. if at some
point Q (x) = 1, then at a later point, Q (x) should be 1 as well. This would imply that the pipe-
line control remembers the value of Q (x) , which does not appear to be the case in general.

3. We assume that the instructions are generated non-deterministically, but no instruction before

1 is issued is allowed to modify r, or r,. The initial values for r; and r, are set to be the con-

stants a and b respectively. To catch errors associated with speculative execution, a program
buffer is provided. The program buffer is implemented as a circular FIFO, and has a tail and a
head pointer. The tail pointer marks the location where the next instruction is retired. The head
pointer points to where the current instruction is being read. As soon as an instruction is retired,
a new instruction is produced (non-deterministically) in its place. An instruction has four fields:
operation, sources 1 and 2, and destination.

4. Each functional unit is replaced by an uninterpreted function.

The verification of this property can then be done by replacing each integer variable by two bit
variables, since ADD (a, b) has three subformulas: a, b and ADD (a, b) . Each functional unit
should also be replaced by the function described in the proof of theorem 8.3.

The process of verification using a tool such as [HSIS94] would be as follows (we have not yet
implemented the techniques presented in this paper). The Verilog description of the reorder
buffer and its interface to the functional units are chosen for verification by the user. The descrip-
tion is compiled into the intermediate format BLIF-MV (chapter 2). The compiler is instructed
to use library functions for integer operations such as addition (as opposed to creating a circuit
implementing addition), and to leave the functional units undefined. For example, z:=x+y for

32 bit integers is compiled into HSIS - add - 32 (x,y,z) . For our Verilog compiler ([Che94)),

165

the user needs to identify the uninterpreted functions. The user then inputs the property as an
automaton or a CTL formula. The BLIF-MV file and the property are read, and are used to auto-
matically extract an ICS model. It is then checked whether the property can be verified using
finite instantiations. If so, the finite instantiation is created automatically and the standard verifi-

cation routines are called.

For example, if the property is “when the result of instruction ADD (ry,rp) is written back,

ADD (a, b) is saved”, then a finite instantiation with two bits is crcated. Formulas a, b and
ADD (a, b) are represented by 0,1, and 2 respectively. Value 3 is used to denote all other formu-
las. If there is an error, the result has to be changed to be readable by the user. Specifically, the
integer values need to be changed to formulas. One solution is to use formulas a, b and
ADD (a,b) for 0, 1, and 2 respectively, and use some special symbol such as other to denote
other formulas. The user can then use this error trace to correct the design.

To get an idea of how large (in terms of the number of latches) the reduced systems can get,
assume there are 4 registers, 4 memory locations, 4 instructions in the program buffer, 1 bit for
exception information, 2 bits for data, and the tags of the reorder buffer are the locations of each
entry in the buffer and therefore are not stored in the buffer, then the reorder buffer requires 8
bits per entry. If we further assume there is 1 bit for the operation in each functional unit and 2
bit tags, then each entry in the reservation stations requires 9 latches. Assuming that 8 different
instructions are modeled, the program buffer requires 9 latches per entry. If there are 4 entries in
the program and reorder buffers, and 2 reservation stations each holding 2 entries, we get a total
of 128 latches: 8 for registers, 8 for memory, 40 for the program buffer (36 for entries and 4 for

pointers), 36 for the reorder buffer (32 for entrics and 4 for pointers), and 36 for reservation sta-
tions. In general, let m denote the number of bits for memory locations, r the number of bits for
registers, d the number of bits for data, x the number of bits for exception information, f the
number of functional units, e the number of nurtures in each reservation station, o the number of
bits in the operations at each functional unit, i the number of bits required to represent an instruc-
tion type, p and b are the number of bits for the sizes of the program and reorder buffers. Then,
the total number of latches is given by
[d(2"+2™)] + [2° (i + 3max (r,m)) +2p] + [2°(r+d+x+1+p) +2b] +fe(logh+2d+2+0) .

Another property one might verify of M is that when the result of 7 is computed, any instruc-

tion in the reservation stations waiting for the result of 7, will receive ADD (a, b) . This property

166

tests the by-pass circuitry. Yet, a stronger property to verify is that for any stream of instruc-

tions, even those which modify r and r, before I is issued, when I is retired, the value written
back is ADD (v(r,),v(r,)) , where v(r,) and v(r,) denote the values of registers r, and r,

when I was issued. To verify this property, one solution is to run an instruction level interpreter
N in parallel with M. N merely executes the functional specification of each instruction. It
duplicates the memory and registers of M, and stops right after it executes /. After M writes

back 1, it is checked that the r, registers of M and N are equal. To verify this property, tech-

niques of section 8.5.2.3 are needed.

8.5.4 Conclusions and Future Directions

The finite instantiation techniques are a way of addressing state space explosion due to wide
datapaths, by reducing the size of the datapaths to a few bits, with no or little sacrifice in verifica-
tion’s accuracy. We extended the results of sections 8.3 and 8.4 to uninterpreted functions, and
applied the techniques to the correctness of pipeline controls of superscalar processors. We also
showed the limits of the finite instantiation methods by proving that the problem becomes unde-
cidable when uninterpreted functions and the predicate x = y are used simultaneously. An
important research area is studying the ramification of considering infinite memory. A simple

case where the memory is never read by the machine but only read once by the property is dealt

with in chapter 9. Also, in cases where finite instantiation cannot be applied, efficient symbolic

execution algorithms are needed. We present such an algorithm next.

8.6 Symbolic Execution of ICS Models

The idea for symbolic execution of ICS models (which can be infinite) is to compute the set of
states reachable in n steps, and check whether some infinite accepting path exists in this subset.

An overview of a symbolic algorithm using BDDs for an acyclic ICS model M is given below.

1. Compute the set of reachable states, or a subset of it reachable in n steps. Let this set be S, and rep-

resent it using BDDs

2. Let Tg be the transition relation of model M restrictedto S. Represent T using BDDs.

3. Using techniques of chapter 4, check whether there are any accepting runs in T.

167

Step 3 of the above algorithm is well-defined. In what follows, we explain steps 1 and 2 in detail.

8.6.1 Reachability Analysis of ICS Models

In this section, we present our algorithm for computing the set of reachable states of ICS mod-
els. To compute the set of reachable states, three continually expanding domains are used. The

term domain H, is a table of all ICS terms which have been stored in latches in states visited so
far. The predicate domain H, is a table of all predicatc tables enumerated so far, wherc a predi-
cate table contains a set of predicates. The memory domain H,, is a table of memories, where a

memory is a table from ICS terms to ICS terms. One can encode a variable ranging over a finite
domain, using a set of binary variables. We call a set of binary variables corresponding to a
finite-valued variable also a variable. The set of states reachable in i steps is represented by a
BDD, where there is a variable for each finite latch, a variable for each integer latch ranging over

all terms in H), a variable p ranging over all predicate combinations in H,, and a variable m

whose domain is all memories in H,,. Note that the number of variables as well as their ranges

are finite.

Finite
Xp = Yp

g v

Integer
X2y,

Figure 8.4: Finite and integer parts in ICS models

Let x, v;, x;, and y, represent the present and next states of the finite and integer parts respec-
tively, as shown in figure 8.4. Note that x ; and y, contain variables for integer latches, as well
as predicate and memory tables. Let T (x, yp b,w) and T,(xpypb,w) be the transition rela-
tions for the finite and integer parts. Although T can be computed easily by taking the
intersection of all the finite tables, 7, may be infinite, and hence cannot be fully computed. Let
R;(xp x)) be the set of states reached after i steps. We have
R 10pyp = 3b3wdx A (Tp (x5 ¥ by W) AR, (xpx)) AT (x,ypb,w)) . By re-arranging the

terms we get R; , (ypy) = 3b3w3x, (Fxp(Tp(xp ¥ b, W) AR, (x5 X)) A T,(xpypb,w)) .

168

Let U,(ypxpbw) = Ixp(Tp(xpyp byw) AR, (xpx))) . The algorithm first computes
U;(ypxpb,w), and then the portion of T,(x,y,b w) corresponding to all minterms in
U;(ypxpb,w). Note that this is exactly the part of T,(x,y,b,w) needed to compute
R, (Opyp . The algorithm maintains the invariance that in every state (I, I, p, m) the set of

predicates in p imply that the addresses of the memory m are distinct. The algorithm is sketched

first with more details given later.

I Let U;(ypxpbyw) = I (Tp(xpyp bW) AR, (X X)) .
2. For each (xp b,w) € EIyFU‘, pxpbw),
2a. Propagate values through the integer part, choosing the values given by b 1o integer predicates if
possible. If not, the tuple (x,, b, w) is inconsistent, so stop this value propagation.
2b. Add 1o H, the new ICS terms assigned to next state variables. Extend the range of all integer

latches to accommodate this.

2c. Add the new integer predicates to the predicate table. If the new predicate table is not in H p»add
it to it, and extend the range of p .
2d. If the new memory has not been encountered before, add it to H v and extend the range of m.

3. Let T:+ 1 (xpypbyw) = S{bAawa (xp,y) }, where y, are the new values assigned to integer
latches, predicate table and memory as the result of propagating (x p b, w) . Note that there may be
several such choices.

4. Lat R, (Ve y) = 3b3w3x,(U, (Y Xp byw) A T‘{,' 1 (xpyp bow))

The details of step 2 above are as follows.

1. In step 2a, given a predicate ¢ and a binary value (true or false) for it b, the validity of

both 0, n...AQ— (0=0,) and 0, A...AQ; (@ =T,) are checked, where (0, ..., 0))
are all the predicates in the predicate table of x;. If the former is valid, value propagation is con-

tinued. If the latter is valid, value propagation is stopped. If neither is valid, then Q is added to

the predicate table, and is setto Q, .

2. If the memory operation read (x) is encountered during value propagation, find an address

169

y in My, such that 9, A...AQ, = (x =) is valid, and return the value pointed to by y. If no
such address is found, for each address y in My, check whether 0, A... A Q, - (x#y) is valid.

For each address y where this is not valid, introduce a new predicate x = y, and make a case
split based on whether this predicate is true. If it is true, then return the value pointed to by y. In
the case where all such predicates are false, return a fresh new constant. This last situation corre-
sponds to reading a location whose value is unknown.

3. If during value propagation, the memory operation write (x,d) (write the value d to address

x) is encountered, check whether for any address y QA...AQp = (x=y) isvalid. Ifsuchay
is found, change the value of y to d. If not, check the validity of Q, A ... A Q,— (x#y) for

each address y. For each address y where this is not valid, introduce a new predicate x = y, and
make a case split based on whether this predicate is true. If it is true, change the value of y to d.
If all such predicates are false, add a new entry (x,d) to the memory. This last situation corre-
sponds to writing to a new address.

4. If we disallow arithmetic functions and predicates (addition, mod, etc.), only congruence clo-
sure ([NO80]) (which is fast) is needed for deciding validity of logical formulas which arise
during reachability analysis.

5. After value propagation, it is checked whether the created memory and predicate table has

been encountered before. If not, the ranges of H,, and H), are extended.

The complexity of the algorithm is based on the complexity of the finite partition, the number

of predicates in the datapath, the amount of communication from the finite partition into integer

partition (the set w), and the number of distinct pairs of (I, m) at every point in time.

Remark 1If only integer functions and predicates are used, there arc no constant creators, and
the integer latches are initialized to a finite set of values, then the ICS terms obtained during
valuc propagation are integers, and can be evaluated using the computer’s arithmetic functions.
This situation might for instance come up when handling a complete micro-processor. In this
case, the above algorithm can be used to generate all states reachable within n steps. If there is
no non-determinism, then the algorithm reduces to a simulation algorithm, which uses BDDs to
represent the control part, and uses the computer’s arithmetic functions to compute the values

encountered in the datapath.

170

8.6.2 Comparison With Previous Work

Three previous works are most relevant.

1. Functional Equality. [BD94] introduced techniques for checking equality of two functions:
one corresponding to flushing the pipeline first and then running one instruction on the specifica-
tion, and the other corresponding to running one instruction on the implementation and then
flushing the pipeline. This type of verification can be approximated (by comparing the reached
statcs along the two paths) using ICS models, and its verification is dccidable, since the pipeline
is executed only for a finite number of steps. The disadvantage of [BD94]’s method compared to
the ICS approach is that it is very specialized, i.e., general property checking cannot be done.
However, it might have a computational advantage on those problems where both techniques are
applicable.

2. Extended Temporal Logic. [CN94] introduced an extended temporal logic, called ground
temporal logic, with pretty much the same expressiveness as ICS models. They suggested that
transition diagrams be translated into this logic, and the validity of the formulas be checked.
This approach has the same drawbacks as when validity of linear temporal logics is used as the
computational means for verification; there are no known efficient procedures for model check-
ing a linear temporal formula by checking the validity of an LTL formula expressing both the
transition structure and the property. In particular, one can expect that systems with large control
circuitry cannot be efficiently model checked using this approach.

3. Multi-Way Decision Graphs (MDGs, [Cor93]). MDGs, which can represent finite and inte-
ger latches as one data structure, do not appear to be directly applicable since they do not provide

any means for representing memories or predicates.

Acknowledgments

The material presented in this chapter are based mainly on [HB95] and [HIKB96].

171

Chapter 9
Verification of Memory Systems With Out Of Order Execution

9.1 Introduction

In order to achieve higher performance, a memory module may service requests issued by a pro-
cessor out of order ([Dub88], [GLL90]). In general, the more relaxed the memory model, i.e. the
more out-of-order execution is allowed, the higher the performance. However, this extra perfor-
mance comes at the cost of more complicated programming ([AH90]). Recently, there have been
efforts to develop formal models for such memory systems ([SFC91], [Col92]). These models
concisely specify the memory system, and allow for manual or automatic verification. One such
formal model is the partial order model ([SFC91]), which consists of a set of mathematical prop-
erties that the memory model has to satisfy.

In this chapter, we express these mathematical properties using w-automata. Language contain-
ment can then be used to automatically verify that these properties hold for a hardware system.
We refer to this type of verification as hardware verification. In some cases, one may want to
verify the correctness of programs written for some architecture, where an architecture is a fam-
ily of memory systems satisfying a set of properties. We present a general framework based on
language containment to perform such software verifications. An approach used previously
([DPN93]) is to take an abstract implementation, and prove the properties of the programs run-
ning on this implementation. However, this technique cannot guarantee that the program will
have the desired property running on any implementation of the memory model unless it is
proven (possibly using a theorem-prover) that the abstract implementation is the most general
implementation of the architecture. In contrast, our technique provides such a guarantee.

The size of the state space is a key limiting factor in automatic verification using state space
exploration. The state space depends on the number of data values, lengths of the internal buff-

ers, number of processors, and number of memory locations. Ideally, we would like to verify

systems with all these parameters being unbounded. We use abstraction results from chapter 8 to
reduce the number of data values to jus;t two, and the number of memory locations to a small

number without losing any accuracy in our verification, once the number of processors and the

172

sizes of the buffers are fixed. As an example, we study SPARC’s V8 memory model ([Sun90]).
We describe the complete formal specification, and give some experimental results on a simple
model. The BDD-based verification tool SMV ([McM93]) was used for our experiments.

The chapter is organized as follows. In section 9.2, we formulate various verification problems

for memory models, and discuss some previous works on verifying memory systems. In section

9.3, the language containment paradigm is introduced, and formal specifications for total store
ordering (TSO) and partial store ordering (PSO) memory models of the SPARC architecture

([Sun90]) are given. Section 9.4 explains how to deal with the complexity of verification by
making simplifying assumptions and by developing a verification strategy. Section 9.5 applies
some data abstraction results and symmetry arguments to simplify the verification task without
losing accuracy. Section 9.6 gives our experimental results. Section 9.7 presents a verification

strategy for memory models.

9.2 Verification Problems for Memory Models

A memory model or memory architecture is a set of properties (also called rules or axioms)
- which determine what set of behaviors is allowed. These rules restrict the amount of out-of-

order execution the memory system can have. An example of a rule is: if a processor issues a
store to a location followed by a load from the same location, then the store is performed first
We recognize three general categories of verification problems when dealing with memory
models.

1. Hardware Verification amounts to verifying whether a given hardware system satisfies a set
of properties. This verification arises in two different ways.
a. As hardware designers attempt to increase the performance of memory models, they come up
with new designs. They might then try to formally specify their implementations by checking
whether a given implementation satisfies a set of properties. Hence, verification is used to define
the memory architecture.
b. Sometimes hardware designers are given an architectural specification, i.e. a set of properties,
and they would like to verify that their implementation satisfies the architectural specification.
In this case, verification is used to verify an implementation versus its formal specification.

2. Software Verification is the process of verifying that a program runs correctly on a given
architecture. For instance, one may verify that a correctly fuﬂctioning program on an old archi-
tecture behaves correctly on a new architecture. Given a program and an architecture, there are

173

two software verifications of interest:

a. Software Property Verification checks that a program running on a given architecture has a
certain property, such as mutual exclusion.

b. Software I/O (Input/Output) Verification checks that given a set of inputs the program can or
cannot produce some set of outputs ([Col92]). Usually, the user has some property in mind to
check for correctness. The designer specifies some initial values (similar to test vectors) and
some set of desirable final values. Software 1/O verification is similar to simulation, whereas
software property verification more closely follows the classical definition of formal verification.

3. Architectural Verification ([Col92]) investigates the relationship between different architec-
tures. In particular, one may ask whether two architectures
a. are distinguishable, i.e. there is some program and some input sequence for which the set of
outputs generated by the two programs is different;

b. have some implication relation, i.e. whether a set of properties imply another set of proper-
ties. This kind of verification is known as property implication.

From the above set of problems, hardware and software property verifications are the more
practically significant problems. It appears that software 1/0 verification is in general used to
check some property. Hence, by offering a solution for software property verification, software I/
O verification does not have much practical use. In theory, software I/O verification can be done

in our framework, however, we do not give any methods for doing so.

9.2.1 History of Verifying Memory Models

In this section, we describe some previous efforts in verifying memory systems.
9.2.1.1 Partial Order Approaches [SFC91]

Given a program, partial order methods describe the properties of memory systems by a set of
axioms. Assume we are given a finite multi-processor program. Two partial orders on pro-
grams’ instructions are defined: one on the set of requests (;), and one on the set of services (<).
These two orders correspond to the relative timing of events. The axioms relate the order of
requests to the order of services. For instance, one axiom might be of the form
(S,i,a,x,L, R);(S,i,b,x,1, R) = (S,i,a,x,1,4) < (S,i, b,x,1, 4) , which is interpreted as: if a pro-
cessor requests two memory stores to two different locations, then the first is serviced before the
second. [SFC91] describes the axioms needed for modeling TSO and PSO.

The partial order models have been used only for formal specification, i.e. no automatic verifi-

174

cation has been applied to them so far. The verifications performed using them have been
program verifications, where one proves (with paper and pencil) that a small program produces
the desired set of outputs, when run on a system satisfying the axioms of a given memory. For
example, [SFC91] gives the code and proof of correctness for achieving mutual exclusion of two

processes in their critical sections on a machine supporting PSO.
9.2.1.2 Graph Set Approaches [Col92]

In this approach, a graph is built where the nodes are the events in the system. The processors
are allowed to have local memory. Hence, for every read/write event a set of read/write events
(one for each processor) is generated. [Col92] describes two types of verification with this
approach: program and (limited form of) architectural verification. For program verification, one
proceeds as follows:

1. A set of rules defining the memory models is selected.

2. A program consisting of code, initial values of arguments for each memory location, and final
values of arguments is chosen.

3. Each rule imposes a finite set of constraints on the relative ordering of events. These con-
straints are represented by a set of graphs, called graph set, where the nodes are the set of events
of the program. A graph set represents all possible behaviors of the program, running on the
given memory model. If any of the graphs in the graph set is acyclic, then there is a possible exe-
cution of the program computing the final results from the initial ones. For architectural
verification, [Col92] deals with the fact that a set of rules does not imply another set by giving
counter-examples, and gives a few manual proofs for property implication problems ([Col92],
chapter 15).

The methodology presented in [Col92] is close to ours, in the sense that all possible behaviors
are represented. A major disadvantage is a lack of methods for dealing with H/W and property S/
W verifications. Also, no efficient algorithms for automating software 1/0 verification is pre-

sented, although it may be possible to automate [Col92]’s methods for it.
9.2.1.3 The Operational Model Approach

[DPNO93] describes an operational approach. A simple implementation of a given memory
model is developed, which is later proved ([PD95]) to be equivalent to its partial order specifica-
tion. What is meant by equivalence is that a memory system satisfies its partial order formal
specification if and only if the behavior of the memory system is included in the behavior of the

175

operational model. The form of verification reported is program verification, where the mutual
exclusion for a fragment of a synchronization code is automatically verified. [GMG91] describes

another operational approach to software verification using manual theorem-proving.

9.3 Automata Models for TSO and PSO

Assume we are given three memory operations load (L), store (S) and atomic load-store (4LS),
P processors, m memory locations, v values, / program labels, and a flag indicating whether the
operation is a request (R) or service (4 for acknowledged). An event is represented by a 6-tuple
(operation, processor, memory location, value, label, service/request). Note that we have
assumed that all processors see the effect of services at the same time; this property is known as
atomicity of operations ((GLL90]). This is in contrast to the models described in [C0192], where
each process has a local memory, and hence the effect of a load or store can be seen at different
times at different processes. The models described in [Col92] can easily be accommodated by
adding another field to the event tuple, specifying which processor is observing the effect of the
operation. We ensure atomicity of operations by having a single shared global memory. If the
processors have local caches, the equivalence of the machine with and without caches should be
verified independently.

Since the 6-tuple notation is not very readable, we adapt the notation used in [SFC91] with one
addition: for each operation, a flag is added to indicate whether the operation is a request (R) or a

service (S). Therefore, L:, denotes a load from location a by processor i, S’;n denotes a store to

location a by processor i of value n, [L'a ,S'a] denotes an atomic load-store (note the stored

value has been omitted, we will make such abbreviations when the meaning is clear), SO denotes
a store operation, O denotes any operation, O- R and O- S represent request and service for
operation O respectively, and (O, n) denotes operation O with label n.

The program labels are unique time stamps. Hence the same operations to the same location at
different times will have different labels. If a request for an operation with label ¥ occurs, we
are guaranteed that next service with label 1 corresponds to that operation. To get a finite state
system, one has to bound the number of labels of a program. These programs are called pro-
grams of finite character, and have a constant bound on the number of un-serviced instructions.

We re-cycle the labels so that we can verify infinite programs of finite character. However, we

never re-cycle a label, until its corresponding operation has been serviced. This fact will reduce

176

the number of automata we need, since sometimes we do not need to keep track of all the infor-
mation in an instruction, and just its label. For each type of property, we specify the number of
automata needed per processor. Note that for an atomic load-store, the services for the load and
store parts have the same label.

9.3.1 Automata Specifications of PSO and TSO

Most axioms of a partial order specification exclude some set of behaviors and accept others.
For example, in the model presented in [SFC91], all axioms, except for the order axiom, reject or
accept some set of behaviors. The order axiom seems to be included for technical reasons, aris-
ing from dealing with partial orders. We directly translate each axiom of [SFC91] into an w-
automaton such that if a hardware system satisfies an axioms, then the system’s language is con-
tained in the language of the corresponding property.

Atomicity asserts that an atomic load-store happen atomically, i.e. no other stores can occur
between the load and store parts of an atomic load-store. For each atomic load-store [Li;.S‘"], we
define the following w-automaton. We need p x / such automata, one per processor per label. In

the graphical representations of w-automata, dashed rectangles represent positive fair subsets,
dashed edges represent positive fair edges, and text inside nodes represent names of states.

else

Figure 9.1: The atomicity property

Termination asserts that all stores and atomic load-stores terminate. This is a liveness prop-
erty, i.e. a property of the form “something good will happen eventually.” Our specification of
atomicity guaranteed that all atomic load-stores terminate; the behavior where an atomic load-
store is requested and not serviced is not accepted. Hence, we only have to worry about stores

now. For each store §' , we define the following w-automaton. p x / such automata are needed.

Figure 9.2: The termination property

This automaton
specifies that every
store is eventually

177

Value asserts that the value returned by a load issued by processor i from location a is the
value written by the “last store” to location a. We will denote by v[sf,] and "[1'2] the values
of a store or a load service to location a by processor i. The automaton for this axiom stays in

its initial state until it receives the request SL -R or SL - § (servicing of a store by a different pro-
cessor). At this point, the automaton remembers the value to be stored. When L; — R occurs the

automaton sets a flag and waits for LZ - S, at which point it compares "[L:] with its remem-

bered value. If they are not equal, the automaton goes to a dead state. The automaton requires
2v +2 states, where v is the number of data values. p x /xm such automata are needed.

1. init: ifSi-R goto (V[S:], 0)
else ifSi -8 goto (v[S;], O)

else stay put
2. (%0) :ifSZ—R goto (v[‘;],O)
else if.S{,-S goto (v[SZ],O)

elseif(Li-—R, n) goto (k1)
else stay put
3. (k1): if(L:—S,n) andv[l.i] = k goto init

else if (Lz -8, n) and v[L:] = k goto dead .
else stay put
4. State dead : stay put.

Figure 9.3: The value property

LoadOp states that if a processor issues an operation after it has issued a load operation, the

load is serviced first, i.e. loads are “blocking.” For every load L’ and every operation o', we

define an w-automaton as follows. We need p x / such automata.

Figure 9.4: The LoadOp property

178

StoreStore (TSO) states that for every processor, SO’s are serviced in the same order as

requested. pxIx (/-1) such automata are needed.

Figure 9.5: The StoreStore property for TSO

To specify PSO, we leave the first four axioms unchanged. We add the following two axioms.
StoreStore (PSO) states two SO‘s of a processor separated by an stbar are serviced in the same
order as requested. px /x (/-1) such automata are needed.

Figure 9.6: The StoreStore property for PSO

StoreStoreEq states two SO’s of a processor to a location are serviced in the same order as

requested. Weneed p x /x (/-1) x m such automata.

Figure 9.7: The StoreStoreEq property

179

9.4 Hardware and Software Verification

In this section, we discuss how one proceeds to verify memory systems using the language con-

tainment paradigm.

9.4.1 Hardware Verification

In formal verification, one models the system as well as its environment. The environment in
our case is the set of all possible programs. To model the instructions, for each processor, we
add a process which non-deterministically chooses any instruction to any location with any
value. For each processor, there is a memory buffer which stores the store requests of the proces-
sor. If the memory buffer is full, the “noop” instruction is generated. The label of the generated
instruction is any available label, where an available label is one which is not the label of any

pending instruction.

9.4.2 Program Verification

Assume we are given a program, a memory model, and a property on the program to check. As
an example, assume we have a set of processes, running on a PSO memory model. To gain
exclusive access to its critical section, each process attempts to set a lock using a spin lock proce-
dure. If successful, it enters its critical section and after exiting it resets the lock. To implement
lock and unlock procedures, one can use the following algorithm ([Sun90] with some modifica-

tions). Note that 0 means lock is free.

iLock(lock)

retry: atomically load lock into a, and store 1 into lock.
ifa = 0 gotoout

loop: load a into lock

if a = 0 goto loop else goto retry
out:

{Untock(lock)
Stbar

store 0 in lock

Figure 9.8: Lock/Unlock algorithm

A safety property one might want to verify is that no two processes enter their critical sections
at the same time. A liveness property of interest is that all processes eventually enter their criti-

cal sections. To deal with non-memory related operations such as test or jump, one can either

180

model all operations ([DPN93]), or turn the programs into automata specifications using only
loads, stores, and atomic load-stores. Note that by using an automaton to model the program,

some details, such as the program counter, need not be modeled. Figure 9.9 presents an automa-
ton for the above algorithms.

L true
a, S
Iock lock]] Q [loaf-‘nd ,lock]

Figure 9.9: Automaton corresponding to Lock/Unlock algorithm

The following automaton checks for the mutual exclusion of the processes.

(CSIA€§;A5§;A ...AUS;)OI
(CSZAZ‘:S':AC'S‘-ZA...AC‘-S;)W

S (CSnACS;ACHSLZA...Am:)m

Figure 9.10: Automaton checking mutual exclusion

The following w-automaton checks that processor i finally enters its critical section.

Figure 9.11: Automaton checking critical section is reached

We now show how one can verify these properties for an architecture using language contain-
ment. Let 4 be an architecture, P a program, and T a property which should hold of P running
onA. L(P) and L(T) are well-defined. Let L(4) be the intersection of the languages of all

axioms which involve a memory request of P. For example, if [L;o cka;sf,l] - R is a memory

request generated by P, the atomicity axiom is intersected with L (4). The number of such

181

automata is finite and proportional to the number of memory requests of the program. We call
the intersection of all such automata the most general implementation (MGI) of architecture A
given program P .

Lemma 9.4.1 Program P has the property 7" for any implementation / of the architecture 4
iff L(A) NL(P)CL(T).

Proof Since L(I)CL(4) for any 7, if L(A)NL(P)CL(T), we have that
L(DH)NL(P)CL(T),ie. P hasthe property T running on /. Now assume P has the property
T for any implementation /. The set of all possible axioms constitutes an implementation.
However, the axioms not involving memory requests of P do not constrain L(4). It follows
that L(4) NL(P) CL(T) (QED).

Let O be an abstract operational model. It is easy to check that L(O) N L(P) CL(T) and
L(0) CL(4). However, it may be the case that L(4) ¢ L(O), in which case for some imple-
mentation /, L(]) NL(P) ¢ L(T) may be true although L(O) NL(P) CL(T). Hence, by
verifying the program runs correctly on an operational model, one cannot guarantee that the pro-
gram has the desired property for all implementations unless it is proved that the operational
model and the architectural specification are equivalent. The disadvantage of the MGI approach
is that L (4) ’s representation may be large (in terms of state space). A back of envelope compu-
tation is as follows. The current verification techniques are expected to handle about 20-100
automata, each having 4 states. If the architecture has 10 rules expressible by roughly 4 state
automata, and for each instruction on average 4 apply, then the program is allowed 5-25 different

memory request. This seems to cover a large number of small test programs.

9.5 Abstraction and Symmetry in Memory Models

A memory model has four parameters: processors, memory buffers (to queue up memory
requests), data values, and memory addresses. One would like to verify the rules of the architec-
ture for any system with any values assigned to these parameters. However, when using state
space exploration tools, one needs to give finite instantiation to all parameters. In this section,
by applying results of chapter 8, we show that once the number of processors and memory buff-
ers is fixed, one can verify all of the properties with binary data values, and a small number of
memory addresses without loss of accuracy in verification. Using the fact that our implementa-

tion of the memory system is symmetric, we then show that from each class of properties only

182

one representative needs to be verified. For example, if the termination property is proved for a

representative processor and label, then it holds for all processors and labels.

9.5.1 Reducing Memory Addresses and Data Values

Let p be the number of processors, m the number of variables holding memory addresses, and
T any property except for the value axiom. The data values get produced, move through the
memory buffers, but they are never looked at. Hence, the verification of T is independent of the
data values, i.e. they can be deleted. Moreover, since the memory is never read, although it is
written to, it can also be disregarded in proving 7. The memory addresses get produced non-
deterministically by the processes, and move through the buffers. The memory system may com-

pare them against one another, but does not perform any other operation on them. Chapter 8

shows that for such systems, called data semi-sensitive controllers, T can be proved using only

m+ 1 values for addresses.
Now let T be the value axiom for a load L; -~ R. When memory services the load, i.e. L: -Sis

set, either the value is retrieved from the buffer, or from location a. Note that the values written
_and read from memory do not affect the model, since the model ignores the values read from the
memory. But the property automaton is sensitive to the values written to location a. In this
case, the memory cannot be disregarded. We show a simple generalization of results of chapter 8

tells us that only m + 1 locations suffice. Assume there is an error trace e given unbounded
memory. We will show there is an efror trace e where there are only m + 1 memory addresses,
the control and data values are the same as in e, and the values written to a in e are the same as

those written in e. Hence, e is also an error trace. To obtain ¢ from e proceed as follows.
Every address in the system is produced non-deterministically by the processes. If any such
address is a, leave it unchanged. Otherwise, change it to one of the other m values so that two

memory addresses are equal in e iff they are equal in ¢. Note that since there are m buffers,
there can be at most m outstanding requests, hence m distinct addresses. The control signals are

left unchanged, and the values written to a are the same as e. We conclude e is also an error

trace. Since the number of memory locations is finite, the system is a data insensitive controller

with respect to data values. By the 0-1 theorem of chapter 8, we have that two data values suf-

fice to check the value axiom.

183

9.5.2 Reducing Number of Properties Using Symmetry

Consider a property such as termination. Given a processor, we have to check this property for
every label. Assume we have checked the property for label 0. We will show the property holds
for any other label i when the system is symmetric with respect to labels (the notion of symme-
try can be made precise as is done for example in [IP93]). Assume not, and consider an error
trace e. Replace every occurrence of label i with 0, and every occurrence of label 0 with label
i. By symmetry with respect to the labels, the error trace still remains an error trace. This is in
contradiction to the property passing for label 0. Hence, we conclude that the property holds for
all labels. By using similar arguments for symmetric systems with respect to memory locations
and processors , we conclude for every property, it suffices to check only one representative.

This is a substantial decrease in the number of properties which have to be checked.

9.6 Experimental Results

In this section, we describe our experimental results for hardware and software verifications.

9.6.1 Hardware Verification Results

In our hardware model, there are two types of processes: one modeling the processors, tjmd the
other modeling the memory. The system consists of one memory process and two or more pro-
cessors. Memory and processors communicate through store buffers: there is one store buffer
per processor. A processor enqueues its store instructions (both store and load-stores). We make
the assumption that only store instructions enter the store buffer. Hence, loads are modelled as
direct reads from memory or the store buffer. When the memory chooses to service a processor,
it dequeues the store instruction from the respective queue. The memory non-deterministically
chooses which processor to serve next. For liveness properties (such as the termination axiom)
this means that we need to introduce fairness constraints excluding the possibility of starvation
for a process.

For verifying the memory axioms, we let each processor execute a non-deterministic stream of
load and store instructions. All processes interact according to an interleaving model of computa-
tion: at each “"clock tick" at most one process is active and updates its state variables while all
state variables of the inactive processes hold their previous value. Again, to ensure progress of
the whole system, we need to introduce the fairness constraint that each process is active infi-

nitely often. Since the store buffer has limited depth, processors can only handle as many un-

184

serviced store instructions as there are slots in the store buffer. This reflects the limitation that
we can only verify infinite programs with finitely many open requests. In order to verify proper-
ties involving more than one un-serviced store in a row we need to attach labels to store
instructions. The number of possible labels is the total number of un-serviced store requests
allowed in the system. Each processor has the same number of possible labels; this number also
determines the depth of the store buffer.

Some bookkeeping is required to "recycle” the labels as they become available. Every label
has a one bit flag that keeps track of whether it is used or free. When a store request with a par-
ticular label is entered into the buffer, the label becomes used. When the memory services a
request, the corresponding label becomes free. In order to use the symmetry argument intro-
duced above, a processor needs to choose a free label arbitrarily instead of choosing it in a
particular order. Note that in some cases, it may actually be advantageous to use an asymmetric

model nitially in order to reduce the state space and possibly obtain answers faster.

Table 9.1 summarizes our experiments for hardware verification. For each experiment, we
combine the same model of a processor with either a TSO or PSO model of the memory to build
the complete system. We verified the following axioms: termination, order of stores is preserved
on the TSO model (StoreStore-TSO), order of stores to the same address is preserved on the PSO
model (StoreStoreEq) and the value axiom (value). term was verified on the TSO model for sim-
plicity. The number behind a property’s name stands for the two different system configurations
we examined to see how the verification scales with larger models: configuration 1 has two pro-
cessors and store buffers of depth two and configuration 2 has three processors and store buffers
of depth two. For our experiments, the number of addresses are the same as the depth of the
store buffer. All experiments were run on a Sun Sparc-10 machine with 128 MB of memory. No
optimizing options were used for SMV. The table lists the number of state variables in the sys-
tem, the number of reachable states, the time it took to compute the set of reachable states, the
time spent in property verification, the total time including compilation, and the amount of mem-
ory used. Compilation includes parsing, semantic analysis, and building the transition relation.
Note that the verification time is only the time spent for verifying one representative set of param-
eters, since we are using the symmetry argument. Configuration 2 of the value property took
much more space and time than all other configurations. The table shows that we can verify axi-
oms for systems of interesting sizes in reasonable time. It also demonstrates the state explosion

for larger systems.

185

In this experiment, we modeled the synchronization code from section 9.4.2, and verified the
mutual exclusion property: no two processors can be in their critical sections at the same time.
The model consists of one automaton per processor that models the synchronization code as well

as a number of automata representing the axioms needed to make the property pass (the most gen-

eral implementation of section 9.4.2). The two configurations we verified (critl, crit2) have two
and three processors respectively. The verification time is the time needed to verify that no two
processors can be in their critical sections at the same time. Compared to hardware verification

the size of the state space here is much smaller, leading to shorter run times and smaller memory

Table 9.1: Hardware verification results

Pro # of state 4 of reach states reach state verif. total time mem
P vars (sec.) (sec) (sec) MB)

—— — == —ee——— ——————— fe———
termination1 40 1.59 x 108 3.4 102 444 39
termination2 57 1.29x 1012 410 282.3 7229 25.8
StoreStore-TSO1 42 1.67 x 108 40.5 0.13 51.6 3.7
StoreStore-TSO2 59 1.35x 1012 671.8 1.0 704.4 34
StoreStoreEq] 43 6.04x 1010 312 0.03 449 36
StoreStoreEq2 60 6.04x 1015 557.1 0.03 588.9 34
valuel 46 3.36 x 10° 2294 0.28 255.9 14.76
value2 65 1.08 x 1014 19421.6 49 19451.8 201.8

9.6.2 Program verification results

requirements.
Table 9.2: Software property verification results
of state reach verif. total time
Prop vars # of reach states state (sec) (sec) (sec) mem (MB)
critl 2 337 5.1 25 186 4.67
cri2 32 1.16 x 10° 79.5 87.7 177.8 7.32

9.7 A Verification Strategy for Memory Models

We propose the following strategy to design and simultaneously verify memory systems with

out-of-order servicing of requests.

1.

186

Design a formal specification for the system. First develop a set of small programs, and

specify their correctness criteria. Come up with a set of properties of the system which is
believed to characterize the system, and write them as automata specifications. Verify, using the
most general implementation (MGI) concept, that these properties are sufficient to imply the cor-
rectness of the sample programs. Given a large and general enough set of programs, this
procedure may be used to derive the axiomatic specification of the system incrementally.

2. If needed, design an operational model. For example, for applications programmers, it may
be easier to work with an operational model. If so, design such a model and verify that it satis-
fies all of the properties. If the operational model is simple enough, it may be possible to verify
that it has exactly the same set of behaviors as the MGI using a theorem-prover.

3. Verify the hardware system satisfies its formal specification. Perform the verification hierar-
chically, i.e. verify the hardware system before irrelevant details are added. For example, if it
can be proved that the system with and without local processor caches has exactly the same
behavior, prove the correctness of the system with respect to out-of-order execution with no

caches.

187

Bibliography

[AH90] S. V. Adve, M. D. Hill, “Weak Ordering -- A New Definition”, Proceedings of the 17th
International Symposium on Computer Architecture, 1990.

[Agg83] S. Aggarwal, R. P. Kurshan, K. Sabnani, “A Calculus for Protocol Specification and
Validation”, in Protocol Specification, Testing and Verification III (193) North-Holland, pp. 19-
34.

[Alu92] R. Alur, A. Itai, R. P. Kurshan, “Timing Verification by Successive Approximation”,
Fourth Workshop On Computer-Aided Verification, 1992.

[Alu91] R. Alur, “Techniques for Automatic Timing Verification of Real Time Systems”, Ph.
D. Thesis, Department of Computer Science, Stanford University, Report No. STAN-CS-91-
1378, August 1991.

[ACP87] S. Amborg, D. G. Corneil, and A. Proskurowski, “Complexity of Finding Embed-
dings in a k-tree”, SIAM Journal of Algebraic and Discrete Methods, 8:277-284, 1987.

[AC94] P. Ashar, M. Cheong, “Efficient Breadth-First Manipulation of Binary Decision Dia-
grams”, In proceedings of International Conference on Computer-Aided Design, pages 622-627,
1994,

[Bal92] Felice Balarin, A. Sangiovanni-Vincentelli, “A Verification Strategy for Timing-Con-
strained Systems”, Fourth Workshop On Computer-Aided Verification, 1992.

[BRB90] K. S. Brace, R. L. Ruddell, and R. E. Bryant, “Efficient Implementation of a BDD
- Package”, in Proc. of the 27th ACM/IEEE Design Automation Conference, pp. 40-45, 1990.

[Bry86] R.E. Bryant, “Graph Based Algorithms for Boolean Function Manipulation”, IEEE
Trans. on Computers, C-35(8):677-691, August 1986.

[BD94] J. Burch, D. Dill, “Automated Verification of Pipelined Microprocessors”, Computer-
Aided Verification, 1994.

[BCL91] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic Model Checking with Parti-
tioned Transition Relations”, in Proc. of the 28th ACM/IEEE Design Automation Conference,
1991.

[BCMDH92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. Dill, L. J. Hwang “Symbolic
Model Checking: 10° states and beyond”, Information and Computation, June 1992,
[BLIF87] Intcrmediatc format used in MIS-II logic synthesis system of UC Berkelcy.

[BMV93] Unpublished manuscript prepared by R. Hojati, T. Shiple, and R. K. Brayton,
“Revisiting BLIF-MV, An Intermediate Format for Verification and Synthesis of Hierarchical
Nerworks of FSMs”, 1993,

[BMV91] Robert K. Brayton, Massimiliano Chiodo, Ramin Hojati, Timothy Kam, Kolar
Kodandapani, Robert P. Kurshan, Sharad Malik, Alberto L. Sangiovanni-Vincentelli, Ellen M.
Sentovich, Thomas R. Shiple, Kanwar J. Singh, Huey-Yih Wang, “BLIF-MV: An Interchange
Format for Design Verification and Synthesis”, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, UCB/ERL M91/97, Nov 1991.

[CCI93] G. Cabodi, P. Camurati, “Exploiting cofactoring for efficient FSM symbolic traversal
based on the transition relation”, in proc. IEEE ICCD’93, October 1993, pp. 299-303.

188

[Che94] S. T. Cheng, “Compiling Verilog into Automata”, M.S. Thesis, University of Califor-
nia, Berkeley, 1994.

[Cho74] Y. Choueka, “Theories of Automata on w-Tapes: A Simplified Approach”, Journal of
Computer and System Sciences 8, 117-141, 1974,

[CGMZ] E. M. Clarke, O. Grumberg, K. McMillan, X. Zhao, “Efficient Generation of Counter-
examples and Witnesses in Symbolic Model Checking*, in Proc. of the 32nd ACM/IEEE Design
Automation Conference, 1995.

[CDK93] E. M. Clarke, 1. A. Draghicescu, R. P. Kurshan, “A unified approach for showing
language inclusion and equivalence between various types of automata”, Information Processing
Letters 46 (1993) 301-308, Elsevier.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications”, ACM Transactions on Programming
Languages and Systems. 8(2), pp.244-263, 1986.

[Co192] William Collier, “Reasoning About Parallel Architectures”, Prentice-Hall, 1992.

[CN94] D. Cyrluk, P. Narendran, “Ground Temporal Logic: A Logic for Hardware Verifica-
tion”, Computer-Aided Verification, 1994.

{Cyr93] D. Cyrluk, “Microprocessor Verification in PVS: A Methodology and Simple Exam-
ple”, Technical report SRI-CSL-93-12, SRI Computer Science Laboratory, December 1993.

[PD95] S. Park, D. Dill, private communication, 1995.

[DPN93] D. L. Dill, S. Park, A. G. Nowatzyk, “Formal Specification of Abstract Memory Mod-
els”, Research on Integrated Systems: Proceedings of the 1993 Symposium, G. Borriello and C.
Ebeling, Eds., MIT Press, 1993,

[DDHY92] D. Dill, A. J. Drexler, A. J. Hu, C. H. Yang, “Protocol Verification as a Hardware
Design Aid”, ICCD 92.

[DNP93] D. L. Dill, A. G. Nowatzyk, S. Park, “Formal Specification and Verification of
Abstract Memory Models”, Conference on Hardware Description Languages and Their Applica-
tions, 1993.

(DHW91] D. L. Dill, A. J. Hu, H. Wong-Toi, “Checking for Language Inclusion Using Simu-
lation Relations”, Third Workshop On Computer-Aided Verification, 1991.

[DSB88] M. Dubois, C. Scheurich, and F. A. Briggs, “Synchronization, Coherence, and Event
Ordering in Multiprocessors”, IEEE Computer 21, 2 (February 1988), 9-21.

[ES95] E. A. Emerson, A. P. Sistla, “Utilizing Symmetry When Model Checking Under Fair-
ness Assumptions: an Automata-Theoretic Approach”, Computer-Aided Verification, pp. 309-
325, 1995.

[Eme90] E. A. Emerson, “Temporal and Modal Logic”, Handbook of Theoretical Computer
Science, editor J. van Leeuven, Elsevier Science Publishers B. V., pp. 995-1072, 1990.

[EL87] E. A. Emerson, C. L. Lei, “Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus”, Logic in Computer Science, 1987.

[EL85] E. A. Emerson, C. L. Lei, “Modalities for Model Checking: Branching Time Logic
Strikes Back”, 12th Annual Symp. on Principles of Programming Languages, 1985.

[EC81] E.A. Emerson and E. C. Clarke, “Characterizing Properties of Parallel Programs as
Fixpoints”, In Proceedings of the 7th Intemnational Colloquium on Automata, Languages, and
Programming, Lecture Notes in Computer Science, 85, Springer Verlag, New York, 1981.

[FOH93] H. Fujii, G. Ootomo, C. Hori, “Interleaving Based Variable Ordering Methods for
189

Ordered Binary Decision Diagrams”, pp. 38-41, Proc. of the IEEE International Conference on
Computer-Aided Design, 1993.

[GJ79] R. Garey, D. S. Johnson, “Computers and Intractability, A Guide to the Theory of NP-
Completeness”, W. H. Freeman and Company, 1979.

[GB94] D. Geist and 1. Beer, “Efficient Model Checking by Automated Ordering of Transition
Relation Partitions”, Computer-Aided Verification, 1994,

[GLLS0] K. Gharacharloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory Consistency and Event Ordering in Scalable Shared-Memory Multi-Processors”, Pro-
ceedings of the 17th International Symposium on Computer Architecture, 1990.

[GT93] D. Gifford, F. Turbak, “6.821 Course Notes”, MIT, 1993.

[God94] P. Godefroid, “Partial Order Method for the Verification of Concurrent Systems: An
Approach to the State Explosion Problem”, Ph. D. thesis, Universite de Liege, 1995.

[GMGY1] P. B. Gibbons, M. Merritt, K. Gharacharloo, “Proving Sequential Consistency of
High-Performance Shared Memories”, AT&T Technical Memorandum, May 1991.

IGL91] O. Grumberg, D. E. Long, "Model Checking and Modular Verification", In J. C. M.
Bacten and J. F. Groote, editors, Proceedings of CONCUR 91: 2nd International Confercnce on
Concurrency, volume 527 of Lecture Notes in Computer Science, August 1991,

[Har90) Z. Har'El and R. P. Kurshan, “Software for Analytical Development of Communica-
tion Protocols”, AT&T Journal, January 1990, 45-59.

[HIKB96] R. Hojati, A. Isles, D. Kirkpatrick, R. K. Brayton, “Verification Using Uninter-
preted Functions and Finite Instantiations”, Submitted to Formal Methods in Computer-Aided
Design, 1996.

[HB95a] R. Hojati and R. K. Brayton, “An Environment for Formal Verification Based on Sym-
bolic Computations”, Journal of Formal Methods in System Design, 6, 191-216, 1995.

[HB95b] R. Hojati, R. K. Brayton, “Automatic Datapath Abstraction In Hardware Systems”,
Computer-Aided Verification, 1995.

[HMLBY5] R. Hojati, R. Mueller-Thuns, P. Loewenstein, R. K. Brayton, “Automatic Verifica-
tion of Memory System Using Language Containment and Abstraction”, Conference on
Hardware Description Languages and Their Applications, 1995.

[HMB94] R. Hojati, R. Mueller-Thuns, R. K. Brayton, “Improving Language Containment
Using Fairness Graphs”, 6th International Conference on Computer-Aided Verification, Stan-
ford, June 1994,

[HSB94] R. Hojati, V. Singhal, R. K. Brayton, “Edge-Streett/Edge-Rabin Automata Environ-
ment for Formal Verification Using Language Containment”, Memorandum No. UCB/ERL M94/
12, UC Berkeley, 1994.

[HKB94] R. Hojati, S. Krishnan, R. K. Brayton, “Heuristic Algorithms for Early Quantifica-
tion and Partial Product Minimization”, ERL Memorandum M94/11, March 1994, UC Berkeley.

(HSIS94] A. Aziz, F. Balarin, S. T. Cheng, R. Hojati, T. Kam, S. C. Krishnan, R. K. Ranjan,
T. R. Shiple, V. Singhal, S. Tasiran, H.-Y. Wang, R. K. Brayton and A. L. Sangiovanni-Vincen-
telli, “HSIS: A BDD-Based Environment for Formal Verification”, in Proceedings of the 31st
ACMI/IEEE Design Automation Conference, pp. 299-310, 1994,

[HSBK93] R. Hojati, T. P. Shiple, R. K. Brayton, R. P. Kurshan, “A Unified Approach to Lan-
guage Containment and Fair CTL Model Checking”, in Proceedings of the 30th ACM/IEEE
Design Automation Conference, June 1993,

190

[HBK93] R. Hojati, R. K. Brayton, R. P. Kurshan, “BDD-Based Debugging of Design Using |
Language Containment and Fair CTL”, Proceedings of the Conference on Computer-Aided Veri-
fication, Elounda, Crete, Greece, June 1993.

[HTKB92] Ramin Hojati, Herve Touati, Robert P. Kurshan, Robert K. Brayton, “Efficient «-
Regular Language Containment”, Fourth Workshop On Computer-Aided Verification, 1992.

(Hol91] G. J. Holzmann, “Design and Validation of Computer Protocols”, Prentice Hall Soft-
ware Series, 1991.

(ID93] C. N. Ip, D. Dill, “Better Verification through Symmetry”, Symp. on Computer Hard-
ware Description Languages and Their Application, 1993.

[IHB96] A. Isles, R. Hojati, R. K. Brayton, “Reachability Analysis of ICS Models”, Submitted
to SRC Techcon, 1996.

[Is195] A. Isles, personal communication, summer 1995.

[KB91] T. Kam, R. K. Brayton. “Multi-valued Decision Diagrams”, Electronics Research
Laboratory, University of California, Berkeley, Memorandum No. UCB/ERL, M90/125, 1990.

[KVBS94] T. Kam, T. Villa, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “A Fully
Implicit Algorithm for Exact State Minimization”, in Proceedings of the 31st ACM/IEEE Design
Automation Conference, 1994,

[KR96] N. Klarlund, T. Rauhe, “BDD Algorithms and Cache Misses”, BRICS Report Series
RS-96-5, Department of Computer Science, University of Aarhus, 1996.

[Kur94] R. P. Kurshan, “Models Whose Checks Don't Explode”, 6th International Conference
on Computer-Aided Verification, Stanford, June 1994,

[Kur87a] R. P. Kurshan, “Complementing Deterministic Buchi Automata in Polynomial
Time”, Journal of Computer and System Sciences, volume 35, 1987, 59-71.

[Kur87b] R. P. Kurshan, “Reducibility in Analysis of Coordination”, In LNCIS, volume 103,
pages 19-39, Springer-Verlag, 1987.

[Kur92] R. P. Kurshan, “Automata-Theoretic Verification of Coordinating Processes”, UC Ber-
keley notes, 1992.

[MPS92] E. Macii, B. Plessier, F. Somenzi, “Verification of Systems Containing Counters”,
IEEE/ACM International Conference on Computer-Aided Design, 1992,

McM94] K. McMillan, “290H Course Notes, Week 6,”, University of California, Berkeley,
fall 1994,

[McM93] K. McMillan, “Symbolic Model Checking”, Prentice Hall, 1993.
[Mil89] R. Milner, “Communication and Concurrency”, Prentice Hall, New York, 1989.

[Mil71] Robin Milner, “An Algebraic Definition of Simulations Between Programs”, Proceed-
ings of the 2nd International Joint Conference on Artificial Intelligence, British Computer
Society, 1971, pp. 481-489.

[OYY93] H. Ochi, K. Yasouka, and S. Yajima, “Breadth-First Manipulation of Very Large
Binary-Decision Diagrams”, IEEE/ACM International Conference on Computer-Aided Design,
pages 48-55, November 1993.

[PSP94] S. Panda, F. Somenzi, B. F. Plessier, “Symmetry Detection and Dynamic Variable
Ordering of Decision Diagrams”, IEEE/ACM International Conference on Computer-Aided
Design, pages 628-631, November 1994,

[Pnu77] Amir Pnueli, “The Temporal Logic of Programs”, In Proceedings of the 18th IEEE

191

Symposium on Foundations of Computer Science”. pages 46-77, 1977.

[QS81] J. P. Quielle, J. Sifakis, “Specification and Verification of Concurrent Systems In
CESAR”, In proceedings of the Sth International Symposium on Programming. Lecture Notes in
Computer Science 137, Springer-Verlag, New York, 1981, 337-350.

[Rab72] M. O. Rabin, “Automata on Infinite Objects and Church's Problem”, Regional Confer-
ence Series in Mathematics, volume 13, 1972, American Mathematical Society, Providence,
Rhode Island, 19-39.

[RS86] N. Robertson and P. D. Seymour, “Graph Minors. II. Algorithmic Aspects of Tree-
Width”, Journal of Algorithms, 7:309-322, 1986.

(Rud93] R. L. Ruddell, “Dynamic Variable Ordering for Ordered Binary Decision Dia-

grams”, Proc. of the IEEE International Conference on Computer-Aided Design, pages 42-47,
1993.

[Saf89] Shmuel Safra, “Complexity of Automata on Infinite Objects”, The Weizmann Institute
of Science, March 1989.

[Saf92] S. Safra, “Exponential Determinization for w-Automata with Strong-Fairness Accep-
tance Condition”, Symposium on Theory of Computation, 1992,

[Sav94] H. Savoj, Personal Communication, 1994.

[PVS93] N. Shankar, S. Owre, J. M. Rushby, “The PVS Specification and Verification Sys-
tem”, SRI International, 1993,

[SSBS96] T.R. Shiple, V. Singhal, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Analy-
sis of Combinational Cycles in Sequential Circuits”, in Proceedings of International Symposium
in Systems and Circuits, 1996.

[SHBS94] T.R. Shiple, R. Hojati, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Heuris-

tic Minimization of BDDs Using Don’t Cares”, in Proceedings of the 31st IEEE/ACM Design
Automation Conference, pp. 225-331, San Diego, June 1994.

[Sho79] R. E. Shostak, “A Practical Decision Procedure for Arithmetic With Function Sym-
bols”, JACM Volume 26, No. 2, April 1979, pp. 351-360.

[SFC91] P. S. Sindhu, J. M. Frailong, M. Cekelov, “Formal Specification of Memory Models”,
Xerox Parc, Dec 1991.

[SVW87] A. P. Sistla, M. Y. Vardi, P. Wolper, “The Complementation Problem for Buchi
Automata with Applications to Temporal Logic”, Theoretical Computer Science 49, 1987, pp.
217-237.

[Str82] R. S. Streett, “Propositional Dynamic Logic of Looping and Converse is Elementary
Decidable”, mformation and Control, volume 54, 1982, 121-141.

[Sun90] “SPARC Architecture Reference Manual V8", Sun Microsystems, Dec 1990.

[THB95] S. Tasiran, R. Hojati, R. K. Brayton, “Language Containment of Non-Deterministic
@-Automata”, TFIP Conference on Corrcct Hardware Design and Verification Methods
(CHARME), Frankfurt, October 1995.

[Tho90] W. Thomas, "Automata on Infinite Objects", in Formal Models and Semantics, Hand-
book of Theoretical Computer Science, volume B, 1990, 133-191, editor J. van Leeuwen,
Elsevier Science.

[TSLBV90] H. J. Touati, H. Savoj, B. Lin, R, K. Brayton, A. S. Vincentelli, “Implicit State
Enumeration of Finite State Machines Using BDDs", Proc. of the IEEE International Conference
on Computer-Aided Design, pp. 130-133, Nov. 1990.

192

[TKB91] H. Touati, R. Kurshan, R. Brayton. “Testing Language Containment of w-Automata
Using BDDs”, International Workshop on Formal Methods in VLSI Design, 1991.

[VW86] M. Y. Vardi and P. L. Wolper, “An Automata-Theoretic Approach to Program Verifi-
cation”, Logic in Computer Science, 332-334, 1986.

[Wol86] P. Wolper, “Expressing Interesting Properties of Programs”, 13th Annual ACM
Symp. on Principles of Prog. Languages, 1986.

[Wol83] P. Wolper, “Temporal Logic Can be More Expressive”, Information and Control,
56:72-99, 1983.

193

	Copyright notice 1995
	ERL-96-44

