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Abstract

Compressed video traffic is expected to be a significant component of the traffic mix in integrated
services networks. This traffic is hard to manage, since it has strict delay and loss requirements,
but, at the same time, exhibits burstiness at multiple time-scales. We observe that slow time-scale
variations cause sustained peaks in the source rate that substantially degrade performance. We use
large deviation theory to study this problem and to motivate the design of Renegotiated Constant
Bit Rate Service (RCBR), that adds renegotiation and buffer monitoring to traditional CBR service.
We argue that the load placed on signalling by RCBR can be handled by current technology. We
present a) an algorithm to compute the optimal renegotiation schedule for stored (off-line) traffic,
and b) a heuristic to approximate the optimal schedule for online traffic. We also present several
measurement-based admission control schemes suitable for RCBR traffic. Simulation experiments
show that RCBR is able to extract almost all of the statistical multiplexing gain available by
exploiting slow time-scale variations in traffic. Moreover, simple admission control schemes are
sufficient to keep the renegotiation failure probability below a small threshold, while still offering
high link utilization. In more general terms, we believe that a clean system design must match
control time-scales to the time scales over which the workload varies. RCBR works well because
it makes intelligent use of this time-scale separation.

An earlier version of this paper appeared in ACM SIGCOMM '95 [17]. This version has a
substantially more detailed study of admission control.

Submitted to IEEE/ACM Transactions on Networking.
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1 Introduction

Compressed video traffic is expected to be a significant component of the traffic mix in inte-
grated services networks. A key characteristic of a compressed video source is its burstiness,
that is, the source exhibits peak rates which can be significantly larger than the long term
average rate. Recent research has pointed out another key characteristic: the presence of
burstiness over multiple time-scales [24, 25, 12, 13]. There is a variation in the source rate
not only over a period of milliseconds to seconds, corresponding to variations within a scene,
but also over a period of tens of seconds to minutes, corresponding to scenes with differing
information content. In this paper, we will argue that a renegotiated service best addresses the
presence of burstiness over multiple time-scales. This motivates the design of Renegotiated
Constant Bit Rate (RCBR) service, which is the simplest possible renegotiated service, for
carrying compressed video traffic.

Our results indicate that even this simple service allows a network operator to extract
almost all of the statistical multiplexing gain achievable by multiplexing large numbers of
compressed video sources. We describe analysis and simulations that indicate that RCBR is
efficient and has low overhead. For example, if an MPEG-1 compressed version of the “Star
Wars” movie is transferred through our service, and if the average drain rate over the lifetime
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of the connection is 5% above the average source rate of 374Kbps, then 300Kbits worth of
buffering at the end-system and an average renegotiation interval of about 12sec are sufficient
for RCBR. In contrast, a non-renegotiated service with the same drain rate would require
about 100Mbit of buffering at the end-system (cf. Fig. 5).

RCBR sources cannot be described by static traffic descriptors. Thus, a natural question is
how to admit such sources while still allowing network operators to stochastically bound per-
formance metrics such as the renegotiation failure probability and link utilization. We present
several simple measurement-based admission control schemes suitable for loosely-constrained
traffic sources in general, and RCBR sources in particular. Simulations suggest that these
schemes enable network operators to achieve high link utilizations while keeping the renego-
tiation failure probability acceptably small, even in the face of poorly-described sources, and
non-stationarity in the traffic load.

While our focus is on compressed video traffic, our results are applicable to multiple
time-scale traffic in general. We believe that our approach is successful because it correctly
models compressed video traffic in terms of multiple time-scales. Schemes which do not take
this into account perform relatively poorly [24, 25].

We will first discuss the effect of multiple time-scale burstiness on existing service designs
in Section 2. We motivate the design of RCBR from the analytic viewpoint of large deviation
theory in Section 3. The RCBR scheme is described in Section 4. In Section 5, we address
the problem of how to compute good renegotiation schedules, both for stored and interactive
applications. In Section 6, we study the statistical multiplexing gain (SMG) that can be
achieved with RCBR, and in Section 7, we present and evaluate measurement-based admission
control schemes suitable for RCBR. Section 8 presents related work. Finally, in Section 9,
we discuss the effectiveness of our approach and relate it to other proposals for carrying
compressed video traffic.

2 Performance Problems for Multiple Time-Scale Sources

It has been recently observed by several researchers [24, 25, 12, 13] that compressed video
traffic exhibits burstiness over multiple time-scales. While the short term burstiness of MPEG
sources due to the I, B, and P frame structure is well known, they have found fairly long du-
rations, as long as 30 seconds, when the data rate of the video source is continuously near its
peak rate. This is due to scenes with considerable motion or flashing lights, where, indepen-
dent of the coding algorithm, the coder generates traffic near its peak rate. Unfortunately,
these peak rates are much higher than the long term average rate. For example, we have
found that for an MPEG-1 compressed version of the “Star Wars” movie, there are episodes
where a sustained peak of five times the long term average rate lasts over 10 seconds.

In typical integrated services networks, variable bitrate traffic from a source is queued at
a buffer at the end-system, and the network drains the buffer at a given drain rate. The
drain rate is chosen based on a traffic descriptor supplied by the source. If sources exhibiting
sustained bursts are allowed only a single (static) traffic descriptor to describe their behavior,
they are faced with a series of poor choices. Assume, for the moment, that the drain rate is
chosen close to the long term average rate in order to maximize the statistical multiplexing
gain. Then, during sustained peaks, either the data buffer at the end-system has to be



very large, or there will be many losses. If the loss rate is to be small and data buffers are
made large, this leads to expensive buffering at the end-systems, and long delays for the
sources. One could deal with this by admitting some bursts into the network, but to do so,
intermediate switches and the receiver will need large data buffers to prevent cell loss during
coinciding bursts. This is expensive and can lead to excessive queueing delays. Further, even
a compliant source has considerable freedom to disrupt other sources by sending in data in
very large bursts (on the order of tens of megabytes). We call this loss of protection.

Thus, burstiness at slow time-scales leads either to a) loss of statistical multiplexing gain,
b) large data loss rate, c) large buffers in end systems or switches, leading to delays and
expensive regulators or d) loss of protection. Given the current framework, there is no way
to simultaneously avoid all four problems. This is a simple consequence of the fact that the
sustained peaks in workload are not adequately captured by static descriptors. As we will
argue later, these peaks are better captured by renegotiation of the drain rate at a slower
time-scale.

3 Statistical Multiplexing of Multiple Time-Scale Sources

Recent work provides the theoretical basis for understanding the gain achievable by multi-
plexing traffic sources exhibiting the behavior described in the previous section [30]. In this
work, each variable-rate stream is modeled as a process modulated by a multiple time-scale
Markov chain: a chain which consists of several sub-chains between which the transitions have
very small transition probability. The dynamics within each sub-chain model fast time-scale
behavior (such as correlations between adjacent frames) while the transitions between the
sub-chains model slow time-scale behavior (such as scene changes). The sustained peak ob-
served by several researchers corresponds to remaining in a high-rate sub-chain for a long
time in this multiple time-scale model.

There are several key results of this work. First, when one computes the equivalent band-
width of an individual multiple time-scale stream, it is found that one has to allocate the
maximum of the equivalent bandwidths of the fast-sub-chains. This essentially means that
one has to allocate a rate near the sustained peak, and it underscores the fact that the sta-
tistical multiplexing gain due to smoothing using buffers is of limited use for traffic such as
compressed video, because the slow time-scale of the correlation is significantly longer than
the delay requirement. On the other hand, when a large number of independent multiple
time-scale streams are multiplexed together, much more gain can be obtained looking beyond
the equivalent bandwidth of each stream in isolation. This gain is due to the fact that with
high probability, not too many sources are in a high-rate sub-chain at any one time. Thus,
the bulk of the gain is obtained through averaging between sources with respect to the slow
time-scale dynamics rather than through smoothing by the buffer.

We now state these results more precisely. Consider a discrete time-slotted model and
let X, be the amount of data (measured in bits, bytes, cells etc.) generated per time-slot
(duration of a frame,etc.). The process {X;} is modulated by a irreducible finite state Markov
chain {H,} such that the distribution of X, at time ¢ depends only on the state H, at time .
The state H; can be thought of as modeling the burstiness of the stream at time ¢; the Markov
structure models the correlation in the data generation rate over time. Let fi be the mean



data generation rate of the source. The state space S is decomposed into a union of disjoint
subsets S;,S,,...,Sk, Sk being the state space of the kth fast time-scale sub-chain. The kth
fast time-scale sub-chain has a mean data generation rate of ux when considered in isolation,
and the steady-state probability (long-term fraction of time) that the source is in sub-chain
k is m,. Let i = maxj<k<k px be the maximum of the mean rates. Transitions between
various fast time-scale sub-chains happen very rarely compared with the transitions inside
each sub-chain; the former model the slow time-scale dynamics of the traffic stream. Let
o1, 09, ..., 0y, be the probabilities of these rare transitions; these are very small parameters.
Thus, the stream would typically spend a long time in a sub-chain, and then occasionally
jump to a different sub-chain. This multiple time-scale Markov-modulated model has been
used in several video traffic studies [28, 23]. See Figure 1 for an example of a source with
three sub-chains.

Figure 1: A multiple time-scale source with 3 sub-chains.

Consider now the situation when a single variable-rate traffic stream is buffered before
entering a link of constant rate &, ¢ greater than the mean rate of the stream. Let the size of
the buffer be B. We first want to estimate the probability of data loss due to buffer overflow
and use the estimate to assign an equivalent bandwidth e(pges, B) to the stream for a given
quality-of-service loss probability requirement pg,,. For the asymptotic regime in which the
statistics of the traffic stream is fized and the buffer size B grows large, a large deviations
estimate of the loss probability has been derived in [14, 10] and [22]. The estimate can be
expressed in terms of a convex function A(r) (called the log spectral radius function), which
can be computed given the statistics of the traffic, such that for large buffer sizes B, the loss
probability p is approximately:

p = exp(—r*B)
where 7* is the unique positive root of the equation A(r) = r¢. For a given QOS requirement

Dgos, ODE can use the above formula to derive the equivalent bandwidth e(pgs, B) of the
stream. It is the minimum rate € of the link such that the loss probability requirement pg,, is



satisfied, and is given by the formula:

A('I"‘ ) * - logp 05
e(p';!os) B) = T;::'s—’ where Tgos = Tq (1)
Note that the equivalent bandwidth is between the mean and peak rates of the stream.

For multiple time-scale sources, one now has to look at the joint asymptotic regime when
simultaneously the rare transition probabilities a;’s are close to zero and the buffer size B is
large enough to absorb the fast time-scale fluctuations of the stream. It is shown in [30] that
the loss probability in this asymptotic regime is

p =~ exp(— lﬁ?x 1. - B)
where 7} is the unique positive root of the equation Ax(r) = rC and A is the log spectral
radius function of the kth fast time-scale sub-chain when considered in isolation (Theorem
4.2 of [30]). Hence the equivalent bandwidth e(pg.s, B) of the multiple time-scale stream is
given by
€(qus, B) = 19:?}{ €k (pqos’ B)» (2)

where ex(Pgos, B) is the equivalent bandwidth of the kth fast time-scale sub-chain when con-
sidered in isolation. The intuition is that buffer overflows are due mainly to the effects of
the most bursty sub-chain, and thus the bandwidth needed for the entire stream is just the
bandwidth of that particular sub-chain.

Consider now the case when a small number n of independent multiple time-scale streams
are multiplexed onto a constant rate link. It can be shown using the properties of the log
spectral radius function that the equivalent bandwidth of the aggregate stream is simply the
sum of the equivalent bandwidths of the individual streams, i.e.

easg (qus, B) = Z e(j) (pqo.n B)

2

Thus, the bandwidth needed for the aggregate stream is the sum of the bandwidths of the
most bursty sub-chains in the individual streams. For the particular case when the streams
have the same statistics and a common equivalent bandwidth e(pgos, B),

Cagg (Pgosy B) = ne(pqom B).

Here, the statistical multiplexing gain is reflected in a linear decrease in the buffering required
per source, since in the multiplexing scenario the buffer of size B is shared among the n sources.
This gain is due to the statistical multiplexing in the fast time-scale dynamics. On the other
hand, by (2), the capacity required per source is at least j, the maximum of the mean rates
of the fast time-scale sub-chains of each stream. This means that the multiplexing gain is
still limited by the slow time-scale dynamics. In the case when f is near the peak rate of the
source and far away from the overall mean rate i of the stream, we thus conclude that the
gain from multiplexing a small number of streams is rather limited.

To get significant multiplexing gain, the limitation imposed by the slow time-scale dynamics
can be overcome by multiplexing many independent and statistically similar streams. By
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a law of large number- effect, the probability that many streams are simultaneously in a
bursty sub-chain is small, so that a small loss probability can be guaranteed even if the
capacity allocated per stream is less than . Specifically, let n independent and statistically
identical multiple time-scale streams be multiplexed onto a link of rate n¢ and with a buffer
of size nB (i.e. the link capacity and buffer space per stream is fixed in this scaling.) An
estimate of the loss probability, in the regime of large n, can be obtained in terms of only
slow time-scale statistics of the individual stream (with the fast time-scale dynamics averaged
out.) Specifically, consider a random variable which takes on the value u; with probability my,
where 7 is the steady-state probability that the stream is in sub-chain k¥ and pu; is the mean
rate of sub-chain k. Let L be the log moment generating function of this random variable:

K
L(r) =log Z Tk exp(per).
k=1

and define L* by:
L*(u) = max(ur — L(7)),

the Legendre transform of L. Then the asymptotic estimate of the loss probability when there
are many sources is

p~exp(-L*(¢) - n) (3)

Note that (3) is simply the Chernoff’s estimate of the probability that the streams are
in a combination of sub-chains whose total mean rate exceeds the channel capacity 33, 19],
and does not depend on the fast time-scale statistics of the streams. The buffering essentially
absorbs the fast time-scale variations of the streams but has little effect on the slow time-scale.

There has been some recent work suggesting that compressed video traffic can have a
self-similar structure [13]. This model implies the presence of correlations in many different
time-scales. While this is an issue worthy of further research, we would like to point out that
the above results yield the key insight that, from the point of view of characterizing statistical
multiplexing gain, the crucial matter is to distinguishing the time scales that are faster and
those that are slower than that dictated by the buffering/delay requirements. For the former,
the gain is obtained by smoothing using the buffer. For the latter, the gain is obtained by
averaging between different sources, and moreover, the amount of such gain depends only on
the stationary distribution of the slow time-scale process, and is independent of how many
slow time-scales there are or how they are structured. (It can in fact be shown that even
the Markovian structure of the slow process is not crucial in reaching this conclusion.) Thus,
while the statistical studies of the “Star Wars” sequence in [13] indicate a self-similar structure
in a spectrum of time-scales starting from tens of seconds to minutes to hours, this will not
likely have a significant impact on the multiplexing gain since these time-scales are all slower
than the buffering time-scale.

It is possible to achieve fully the statistical multiplexing gain characterized by Eqn. (3)
when no restrictions are imposed on the traffic entering the network; however, such a scheme
lacks robustness as there is no protection against malicious users. Moreover, this ideal scheme
requires large buffering at each network node and also at each receiving node, the buffer size
scaling linearly with the number of streams. The proposal to be presented in the next section
is designed to extract the bulk of the statistical multiplexing gain while giving some protection
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to users and dispensing with buffering at the network node, at the expense of more signalling.
Our scheme essentially focuses on the gain in the averaging of the slow time-scale dynamics
rather than the averaging of the fast time-scale dynamics. The effect of a large number of
sources on the statistical multiplexing gain has also been analyzed recently in [11] and [2].

4 The RCBR Scheme

4.1 RCBR Service Description

In this section, we describe Renegotiated CBR (RCBR) service. This type of service has been
proposed before for data service - the novelty of our scheme is to use renegotiations to deal
with slow time-scale behavior in a compressed video workload. The basic idea for RCBR is
to augment standard (static) CBR service with a renegotiation mechanism. In static CBR
service, at the time of call setup, an end-system initiates a signalling message requesting a
certain constant bandwidth from the network. In the forward pass, each switch performs an
admission control test, and if it is successful, makes a tentative reservation and passes on the
call setup message to the next switch along the path. On the reverse pass, if all the switches
have admitted the call, the tentative reservation is confirmed, and the call is allocated a
VCI. Since the traffic is described by a single number, the admission control test is trivial.
Resources corresponding to the requested rate are reserved at each contention point. For CBR
service, this would mean a small amount of buffers in addition to billing or other housekeeping
information.

Users of RCBR service are given the option to renegotiate their service rate at any time.
Renegotiation consists of sending a signalling message along the path, requesting an increase
or decrease of the current service rate. If the request is feasible, the network allows the
renegotiation, and upon completion of the request, the source is free to send data at the new
CBR rate. During renegotiation, a switch controller does not need to recompute routing,
allocate a VCI or acquire housekeeping records. This reduces the renegotiation overhead.

We anticipate that a rate increase or decrease would happen once every ten seconds or
so (see Section 6.2). Thus, a renegotiation mechanism based on signalling, such as the one
proposed as an ITU standard [1] would be adequate. A hardware implementation of signalling
for this purpose is described in [3]; this is probably not necessary, given our time-scales of
control. Note that in order to limit the renegotiation rate, it is likely that a user will be
charged for each renegotiation, just as users are now charged per call setup.

Stored (off-line) and interactive (on-line) applications use RCBR services differently. Off-line
sources can compute the desired series of CBR rates (the renegotiation schedule) in advance,
and so renegotiation to increase the service rate can be carried out before actually increasing
the data rate. For example, if a renegotiation takes 50ms because of speed of light propagation
delays, a source could initiate renegotiation 50 ms before it needs the new rate. In practice,
to ensure that data losses do not happen, reservations could span a few milliseconds longer
than strictly necessary. If all systems in the network share a common time base, advance
reservations could be done for some or all of the data stream [34]. Renegotiated decreases
in the rate happen only after the source rate actually decreases. Otherwise, a switch might
decrease its service rate before the source starts sending at the new rate. However, in both



cases, the renegotiation and data transfer occur in parallel. For interactive applications, the
renegotiation schedule cannot be calculated in advance. Instead, we propose that an active
component monitor the user-network buffer and initiate renegotiations based on the buffer
occupancy level. This monitor could be part of the session layer in an ISO protocol stack,
or reside in the Network Interface Unit (NIU) for “dumb” endpoints. As before, renegotia-
tion and data transfer can happen in parallel. In Section 5, we will look at the problem of
computing schedules in more detail.

What happens if a renegotiation fails? A trivial solution is that the source that failed
renegotiation can try again. Of course, data will build up in the end-system data buffer
while the second request proceeds, and there is the possibility of data loss. This may not
be acceptable for some users. Such users might reserve resources at or close to the peak
rate, so that the frequency of renegotiation is highly reduced, and so is the possibility of
renegotiation failure. There is a clear tradeoff between buffer size, requested rate and the
frequency of renegotiation. In any case, note that even if the renegotiation fails, the source
can keep whatever bandwidth it already has.

Second, during admission control, a switch controller might reject an incoming call even if
there is available capacity, if the resources used by the new call will make future renegotiations
more likely to fail. This allows the network operator to trade off call blocking probability and
renegotiation failure probability. We consider admission control in more detail in Section 7.

Finally, the signalling system could ask the user or application (perhaps out of band) to
reduce its data rate. Since the network interface (i.e. the transport layer or NIU) is expected
to be no more than a few milliseconds away from the end point, the control loop between
the network interface and the user will be tight, so that responding to such signals should be
easy, particularly for adaptive codecs [21]. Recent work suggests that even stored video can
be dynamically requantized in order to respond to these signals [26, 9].

Thus, we believe that there are a number of techniques we can call upon to deal with
renegotiation failures. With an appropriate combination, some users can choose to get few or
no renegotiation failures. Other users might still see failures, but this may be quite acceptable,
particularly if it is reflected in the pricing structure.

4.2 System Overhead

In this section, we consider the system overheads incurred by renegotiation. We argue that
renegotiations impose only a small system overhead, and that an RCBR system scales well
with network size and traffic intensity. We will also consider how to implement RCBR within
existing ATM Forum traffic management proposals.

We first examine the overhead for renegotiation. Note that since renegotiations take place
at the slow time-scale of the source, the overhead for RCBR at each source is inherently small.

We now examine the overhead per renegotiation at an end-system and switch controller.
For concreteness, we assume that the end-system implements an ISO-like protocol stack with
an application layered above a session, transport and datalink layer. When an application
performs a write system call to a session layer interface, application data is copied or mapped
into a per-connection session layer buffer. To implement CBR service, this data would be
metered out to the network at a constant rate either by the transport layer or the host adaptor,
depending on the granularity with which the bitrate is defined. To add renegotiation to an
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existing CBR system, we add a buffer monitor routine that would be invoked every time data
enters or leaves the buffer. This would need changes to the write system call and the task
that drains the session layer buffer. The buffer monitor would initiate renegotiation (based
either on the current buffer state or long-term statistics) by invoking the signalling subsystem.
Thus, the overhead associated with the monitor is simply a procedure call plus whatever simple
actions the monitor needs to take in order to determine whether renegotiations are necessary.
In the common case, where no action is needed, the monitoring overhead is negligible.

Once the monitor determines that renegotiation is needed, composing and transmitting
a signalling message is straightforward, since the data path for the renegotiation message is
identical to that taken by the call setup message. If the signalling protocol is complex, the
renegotiation message can be treated as a special case, and overheads can be reduced by using
techniques such as pre-computed message headers and inlining of procedure calls. Thus, we
believe that with careful coding, a mean renegotiation frequency of around ten seconds will
not pose a significant overhead to the end-system.

When a renegotiation message arrives at a switch controller, the controller must check if
sufficient bandwidth is available, and then pass on the renegotiation message to the next hop
switch. Let us consider the overheads in performing this operation. For concreteness, we
will assume a switch controller that shares a bus with the switch (such as in the FORE ASX
200 switch), so that the transmission delay from the switch fabric to the switch controller
can be neglected. When a signalling message arrives at the switch controller, it must handle
an interrupt. If renegotiation is special cased, which would be a reasonable thing to do,
then bandwidth test can be done in the interrupt handler context, which does away with
context-switching overheads. Since the network is internally CBR, the test reduces to checking
if the rate asked for exceeds the available capacity, which only takes a few instructions. Next,
the renegotiation message must be put into a cell and forwarded on to the next switch by
introducing this cell into the switch fabric. Typical switch controllers have a special low
latency path for this, and so we ignore the overhead in this path. If the onward message is
pre-stored, with only the VCI and requested rate filled in on-line, this further reduces the
latency.

By counting instructions for the device driver’s interrupt routine, the bandwidth test,
filling in a pre-computed cell, and introducing this into the switch fabric, we estimate that
it is possible to reduce the CPU overhead per hop to about 200 instructions, or about 3
microseconds on a modern 60 MIPS processor. Even with a fairly conservative interrupt
latency time of 7 microseconds, this comes to about 10 microseconds of CPU overhead per
renegotiation per switch. If each renegotiation takes 10 microseconds at each switch controller,
and renegotiations take up 50% of the switch controller load, then each controller can support
50,000 renegotiations per second. Conservatively assuming a mean renegotiation interval of
1 sec, this translates to capacity for handling 50,000 calls. More capacity can be easily added
by using shared memory multiprocessors as switch controllers. We conclude that we can deal
with renegotiation overheads with existing technology, and in the context of existing signalling
systems.

We now consider how well RCBR scales with latency in the path, number of sources, and
number of hops. As the propagation delay along a path increases, the performance of off-line
RCBR does not decrease, since the end-system can compensate for latency when asking for
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a new rate. However, the performance of online RCBR would decrease with increase with
latency, since prediction accuracy would decrease. This can be compensated for by increasing
the end-system buffer, or by asking for more bandwidth than needed, thus reducing the
statistical multiplexing gain.

As the number of RCBR sources in the network increases, the signalling load would also
increase. As discussed above, we believe that current technology can already handle up
to 50,000 RCBR sources, which seems adequate. Increases in CPU performance scale this
number exponentially with time.

As the mean number of hops in the network increases, the probability of renegotiation
failure would likely increase, since each hop is a possible point of failure. Moreover, the net
signalling load on the network also increases. However, if there is a simultaneous increase in
the number of alternate routes in the network, then load balancing at the call level might
compensate for this increase. This is still an open area for research.

Finally, we consider how one might implement renegotiation in the existing ATM Forum
traffic management framework. One way to do this would be to augment Q2931 signalling
with renegotiation messages, and implement renegotiation along the lines discussed above
[1]. Alternatively, Resource Management cells used for ABR service could be reinterpreted
as renegotiation requests. In effect, we could reuse the ABR mechanisms, but change the
direction of information flow to be from user to network, instead of network to user, as it
currently stands. This implementation is not without problems, since the signalling system
and the RM-cell manager need to maintain a consistent view of the system state. Given
that the renegotiations occur infrequently for each source, the added complexity may be
unwarranted.

5 Computation of Renegotiation Schedules

Previously, we used a multiple time-scale Markov model for the traffic to obtain insights
into the performance achievable by the RCBR scheme. This section presents algorithms
to compute a renegotiation schedule that can take advantage of the time-scale separation,
but without explicit knowledge of which sub-chain the source is in at any given time. We
present two algorithms that transform a given data rate function into a stepwise CBR data
rate function. The first algorithm determines an optimal schedule for a playback application
based on total knowledge of the user’s data rate function and a pricing model discussed below.
The second algorithm is a causal heuristic that could be used for interactive users, where the
rate function is not known in advance.

5.1 Optimal Renegotiation Schedule

We model the problem with a slotted time queue. For video, a time slot would typically be
the duration of a frame. Renegotiations occur on the boundary between slots. Let r;,¢ =
0,1,...,N — 1 denote the amount of data entering the queue during time slot ¢, and let s;
denote the service rate during time slot i. The session duration is N time slots. We assume
the service rate during any time slot is in a given set C = {cg,¢1,...,Ck-1}.

We have assumed a constant cost per renegotiation ¢ and a cost <y per allocated bandwidth
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and time unit. Therefore, the total cost is given by

Z

-1

o (1—5(31‘-1,51'))4-7‘2_:31' (4)

1 i=0

with il
11 & =
St = { y

0 otherwise

For a given 7;, the optimal allocation minimizing the total cost, has to be found, subject to
the buffer constraint

0= by < Biforid = 0l N =1 (5)
where b; is the queue size at the end of time slot ¢, with
e [ ifi <0 (6)
W el bl g o rE =tay, O =0y, 0. N=1

We solve this optimization problem with a Viterbi-like algorithm [32]. Let us first introduce
some notation (cf. Fig. 2). A node is a 4-tuple (i, k,b,w), where 7 denotes (discrete) time,
k € {0,...,K — 1} denotes a bandwidth allocation ¢ € C, b € {0,..., B} denotes a buffer
occupancy, and w denotes the weight, which equals the partial cost of the best path to
this node. A branch connects a node (i,k,b,w) to another node (i + 1,k',b',w') if b' =
max{b; + riy1 — cxr,0}. It has an associated weight of 7 - siy1 + @+ (1 — (84, 8i41)). A
branch represents one step in the evolution of the system state, given a choice of the new rate
allocation cp. A path is a sequence of branches. The cost of a path is the sum of the cost of
its branches. All possible paths form the trellis. A full path is a path connecting a node with
i = 0 with a node with ¢ = N — 1, and corresponds to a feasible renegotiation schedule.

bandwidth

buffer occupancy

Figure 2: An illustration of the trellis to be used for the Viterbi-like algorithm.
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Now we can formulate the optimization problem as follows: find the shortest path from
some node at time zero to some node at time N — 1. The algorithm to do this is presented
below.

1. Set i = 0. Create the initial set of nodes (0, k,0,0) for & € {0,...,K —1}.

2. Create all the branches between nodes of slot 7 and nodes of slot i + 1. Set the weight
according to (4) for the nodes of slot 7 + 1.

3. Prune paths according to Lemma 1 given below.
4. Increment ¢ and repeat steps 2 and 3 as long as 7 < N.

5. Choose one of the paths with the minimum weight as the solution.
We now present a lemma that governs the pruning of paths.

Lemma 1 A path X going through a node = (i, kg, by, w;) is not optimal if there ezists a
path Y through a node y = (i, ky, by, wy) such that !

¢ ifky F k.
by < bz and wy < wo + { 0 otherwise (7)

Proof: Assume the condition is true. First, if k; = k;, then path Y has smaller or equal
buffer occupancy and smaller or equal weight than path X. Due to the buffer constraint, for
all future time slots, the best full path containing X must have a bandwidth allocation that
is at least the bandwidth allocation of the best full path containing path Y. Therefore, it
cannot have a lower weight than the best full path containing Y. Second, if k, # k, then for
any k € {0,...,K — 1} such that a branch from z to a node z’ = (i + 1, k, by, wyr) exists,
there exists a branch from y to a node y' = (¢+1, k, by, wy) such that by < by, as the service
rate in interval ¢ + 1 is the same and by assumption, b, < b;. As the difference in cost of the
branch connecting y to ¥’ and the branch connecting z to z’ cannot be larger than ¢, the first
part of the proof applies to z’ and 3. O

Instead of the buffer bound (5), it is also possible to enforce a delay bound. This might
be desirable in real-time applications, if sufficient buffer space is available, but the Quality of
Service still requires to keep delays low. The condition for all data entering during time slot
1 — D to have left at the end of time slot 7 is

0
bi—DS z Sitj ?:=D,...,N—1 (8)

j=—D+1

The runtime complexity of the optimization algorithm very much depends on the cost ratio
&/, the buffer size B and above all the number of bandwidth levels K. Also, the user rate
function {r;} has has an impact on how many candidates remain valid at each time slot. We
have found that if we restrict K to about 20, optimizations can be done in reasonable time,

1Note that this allows us to do more than the “standard Viterbi” pruning, i.e. among paths terminating
in a common node, keep only the one with the lowest weight. We can also prune across nodes.
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even for long traces like the Star Wars movie (approx. 174000 samples) [12]. For larger K,
e.g. 100, it quickly becomes impracticable.

We call bandwidth efficiency the ratio of the original stream’s average rate to the average
of the piecewise constant service rate, i.e.

Tice i

iy i
It is clear from Fig. 3 that there exists a tradeoff between bandwidth efficiency and renegotia-
tion frequency. This tradeoff depends on the cost ratio ¢/+: raising the price for renegotiation
results in a lower renegotiation frequency and a lower bandwidth efficiency, and vice versa.
The network operator can announce these prices to the user, and the user optimizes his
network usage accordingly. Note how close the bandwidth efficiency gets to one with very
reasonable renegotiation frequencies; for example, with one renegotiation every 177 frames,
which corresponds to slightly more than 7 seconds, we achieve over 99% of bandwidth ef-
ficiency! This is a clear manifestation of the slow time-scale behavior of compressed video
streams.

5.2 Causal Renegotiation Schedule

For interactive sources, the optimization algorithm described above cannot be used to deter-
mine optimal renegotiation points. For such sources, causal heuristics have to be used to
make decisions about requesting new rates. Such heuristics predict the future bandwidth
requirement based on some statistics collected in the past. The goal of this section is to show
that heuristics resulting in satisfactory performance do indeed exist, although their derivation
is somewhat ad hoc.

The heuristic we present is based on a AR(1) bandwidth estimator and on buffer thresholds.
Three parameters have to be tuned: a high and a low buffer threshold By and B, respectively,
and a time constant T, which should reflect the long-term rate of change of the rate function.
The rate predictor we have used is

?i+l = (1 - T_l)'?i + T_l(’f‘,' + max{b, - Bh, 0}) (9)

where r; is the actual incoming rate during slot ¢, and b; is the buffer size at the end of slot <.
The additional term 7! - max{b; — By, 0} in the estimator adds the bandwidth necessary to
flush the current buffer content within 7. This is necessary to have a sufficiently fast reaction
to sudden large buffer buildups.

The algorithm is very simple. Let

Ti+1
new = |~ A 10
s [ A ] (10)
with A the bandwidth allocation granularity. A new bandwidth Sy, is then requested if

(b; > By, and Spew > 8) or (b; < B; and Spew < 5) (11)

It can be seen in Fig. 3 that using the heuristic, we need about one renegotiation a
second to achieve 80% of bandwidth efficiency. Although this is considerably less than what
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Figure 3: The tradeoff between bandwidth efficiency and renegotiation frequency for the
AR(1)-based heuristic, compared to the optimum, for the “Star Wars” trace.

can be achieved with the optimal allocation, it still represents a relatively small load on the
signalling system. However, this gap suggests that better heuristics can be found, and we
hope to address this problem in future research. For example, the prediction quality could be
improved by taking into account the inherent frame structure of MPEG encoded video.

6 Performance of RCBR

6.1 Stochastic Analysis using Multiple Time-Scale Model

Using a multiple time-scale Markov model for the traffic stream, we can characterize how much
of the multiplexing gain described in Section 3 our proposed scheme can capture. Assume
that the scheme does an ideal job in separating the slow and fast time-scales, such that it
renegotiates a new CBR rate whenever the source jumps from a fast time-scale sub-chain to
another. For a given endpoint buffer size B and a buffer overflow loss probability requirement
Pgos, the new CBR rate it should renegotiate for is the equivalent bandwidth ex(pgos, B) of
the sub-chain k the source enters (the equivalent bandwidth being computed as in Section
3). Since m is the steady-state probability that the stream is in sub-chain k, the stream will
demand a CBR rate of ex(pgos, B) for m; long-term fraction of time. When n independent and
statistically identical streams share a single link of capacity nc, the probability of renegotiation
failure is roughly the probability that the total CBR bandwidth demand exceeds the available
capacity; for large n, we can use Chernoff’s estimate to approximate this as

exp(—L;(c) - n), (12)
where

K
Le(r) = log Z Tk exp(ex (Pgos, B) * T)
k=1

Le(p)

maxlur — Le(r)]
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Comparing this to the loss probability (3) when there is a shared buffer of size nB, we see
that this renegotiation failure probability is larger since the equivalent bandwidth ex(pgos, B)
of every sub-chain is greater than its mean rate u,. Viewed in another way, the capacity per
stream needed for the same level of performance is greater in our scheme. This discrepancy
in bandwidth requirement is due to the fact that our scheme does not take advantage of
a large shared buffer to effectively absorb all fast time-scale variations through statistical
multiplexing. However, for sources with small fast time-scale fluctuations superimposed on
larger slow time-scale variations, the equivalent bandwidths of the sub-chains will be close to
the mean-rates for reasonably sized buffers, and the discrepancy will be small. This is further
substantiated by the experimental results presented in Section 6.2.

6.2 Experimental results

8) unrestricted, network buffer=n B b) fixed-rate CBR, smoothing buffer=B ¢) plecewise CBR, network buffer=0

Figure 4: The three experiments to assess statistical multiplexing gain (SMG) of our proposed
service.

We have compared the statistical multiplexing gain (SMG) achievable through our scheme
with two other scenarios (cf. Fig. 4), in order to see how much of the SMG inherent in video
traffic the RCBR service can extract.

The first scenario (a) multiplexes n streams without any restriction on a server with rate
¢ and buffer size nB. This is used to estimate the maximum achievable SMG for the given
sources. The second scenario (b) represents traditional CBR service, with a smoothing buffer
of size B at the network entry and a fixed CBR rate a for each source. The third scenario
(c) represents our approach. Each source is smoothed by a dedicated buffer of size B and
transformed into a stepwise CBR stream, which is then transported without further buffering
in the network (except some cell level buffering). The total service rate is ¢ and the total
amount of buffering is fixed at nB in all three scenarios?.

The streams we have used is the MPEG-1 encoded trace of the Star Wars movie [12]. The
n sources are randomly shifted versions of this trace. The buffer size B was chosen as 300Kbit,
slightly more than the maximum size of three consecutive frames in the trace. This approxi-

2Note that this comparison is pessimistic, because shared buffers in a switch are more costly than endpoint
buffers, due to more severe timing constraints. Therefore, given a total buffer size n.B, scenarios (b) and (c)
are actually preferable.
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mately corresponds to the buffering of current video codecs. The renegotiation schedule used
in the experiments is computed using the off-line optimization algorithm described in Section
5, with a bandwidth granularity of 1 Kbps and an average of 1 renegotiation every 12 seconds.

Sigma-Rho Curve of Star Wars tor 104-5) loss probability
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Figure 5: The (o, p)-curve of the video trace for 10~ loss.
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Figure 6: Statistical multiplexing gain (SMG) achievable for 10~° loss probability.

To assess the SMG for all three scenarios, we have determined the channel service rate
per stream c/n, as a function of n, needed to guarantee a desired bit loss probability. In
scenario (a) and (b), bits are lost due to buffer overflow. In scenario (c), bits are lost due
to failure in renegotiating for a higher CBR rate (in which case we assume the source has
to temporarily settle for whatever bandwidth remaining in the link until more bandwidth
becomes available). Determining c is straightforward for scenario (b). For scenarios (a) and
(c), we find for each n the minimum c that guarantees the desired loss probability: for each n,
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we do a binary search on c; for each step in the search, we do many simulations, where each
simulation has a randomized phasing of the sources, and compute the average fraction of bits
lost as an estimate of the loss probability. At each step, we repeat the simulations until the
sample standard deviation of the estimate is less than 20% of the estimate. Results for 10™°
loss probability requirement are depicted in Fig. 6.

We observe that case (a) represents a lower bound on the bandwidth per source for a
given loss probability, and therefore an upper bound on the SMG. This is because the buffer
is shared among all n streams. In the CBR case (b), the bandwidth per stream is a, of
course, regardless of the number of streams n. Note that a can be determined from the
corresponding (o, p)-curve of this trace in Fig. 5. (For any given service rate p, this curve
gives the minimum buffering o such that the fraction of bits lost is less than 107°.) As has
been previously observed in the literature, this is close to the peak rate [25, 13]. For the given
buffer size, a is 4.06 times the trace’s average rate of 374Kbps.

Our scheme achieves slightly less SMG than the unrestricted case because buffers are not
shared and the fast time-scale multiplexing gain is not exploited, as explained in Section 6.1.
Nevertheless, we are able to extract most of the SMG, especially for high service rates. For
example, at at service rate of 100 times the average rate, we require about three times less
bandwidth than the static CBR approach. Asymptotically, the value for ¢/n for the stepwise
CBR function approaches the inverse of the bandwidth efficiency obtained in the optimization
algorithm. )

7 Admission Control

In this section we present some analytical and experimental results on admission control
schemes suitable for RCBR. Our techniques are applicable not only for admission control of
RCBR. sources, but also for admission control of sources whose behavior is constrained by
their traffic descriptor. With good measurement-based admission control schemes, such as
the ones described in this section, this class (also called predictive traffic) has the potential
to dominate traffic in future integrated networks [4].

Due to the inherent uncertainty in the bandwidth requirements of calls over their lifetime,
there is always a possibility that a renegotiation for a higher bandwidth can fail due to unavail-
able capacity. The role of call admission control is to maximize the utilization of the network
while keeping the probability of such renegotiation failure small at a desired level. Note that
there is a tradeoff between call blocking and renegotiation failure probabilities. The basis
for admission control is the ability to estimate the renegotiation failure probability. This is
possible in a large system because there is a lot of statistical regularity in the aggregate traffic,
due to the law of large numbers (particularly if there is peak rate constraint on each user).
Below, we shall propose admission control schemes for both the case when the renegotiation
schedules of the calls are known in advance and the case when they are not.

7.1 Known Renegotiation Schedule

For stored applications with renegotiation schedules known in advance, the renegotiation fail-
ure probability can be estimated in a straightforward manner. Given a renegotiation schedule,
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we compute the empirical distribution (histogram) of bandwidth requirements throughout the
lifetime of a call, i.e. the fraction of time m; that a bandwidth level ¢, is needed during the
call, k = 1... K. This distribution can be viewed as the traffic descriptor of the call. When
there are n such calls sharing a link of total capacity c, the renegotiation failure probability p;
can be estimated by Chernoff’s approximation (a similar approximation was used in Section
6.1). We use the following refinement due to Bahadur-Rao [7]:

N 1 «/C
Dy = UT\/—MWGXP(—L ('7;) ‘) (13)

where

K
log Z 7 exp(cer)
k=1

L'(w) = max[pr - L(r)]

L(r)

and 7 satisfies L'(n) = £. Note that this formula gives an 0(71-;) correction term to the basic
exponential estimate.

Number of Admissible Sources for 10(-5) Loss Probabitity

10 : :

maximum number of admissbie sources

10 100 1000
total service rate of channel [normalized to average ratc]

Figure 7: Performance of Chernoff’s Approximation

Using this formula, the maximum number of calls the system can carry for a given threshold
Pgos OD the renegotiation failure probability can be computed, and new calls will be rejected
when this number is exceeded. Note that the system will deny new calls even when there
is available capacity, so as to safeguard against fluctuations of bandwidth requirements of
the calls already admitted. Thus, Chernoff’s approximation quantifies the amount of slack
needed in the available capacity. In the presence of ABR traffic, this slack could be fairly
large without underutilizing the network.

We test the accuracy of this approximation by comparing it with the simulation results
for the Star Wars video trace in Section 6.2, assuming the same precomputed renegotiation
schedule used there. For a wide range of total link bandwidths and a desired renegotiation
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failure probability of 10~%, we compare the maximum number of Star Wars sources admissible
as predicted by formula (13) and the actual number obtained in the simulation results (Fig.
7). We see that the approximation is in general conservative and quite accurate when there
are more than about 15 sources. For example, with a total bandwidth 75 times the average
rate of the source, Chernoff’s approximation predicts 60 admissible sources, while the actual
number is 64.

7.2 Measurement-based Admission Control

For many applications, the bandwidth requirements of calls are not known in advance. The
application may be interactive and the traffic generated online, or the information cannot be
obtained reliably from the user. For such cases, we propose a measurement-based approach,
where the bandwidth reservation histories of the calls are used to estimate the renegotiation
failure probability for the purpose of admission control.

A fundamental issue in the design of such a measurement-based call admissions control
scheme is the amount of history to use. If call statistics are stationary, then the performance
of a measurement-based admission control scheme will always improve with the amount of
history it uses in the estimation of the renegotiation failure probability. In fact, as more statis-
tics are gathered, the performance of the scheme will approach one which knows the statistics
of the bandwidth requirements of the calls in advance. In reality, the system is not stationary
over an arbitrarily long time-scale. The nature of calls changes over time. On the other hand,
it is also clear that some amount of stationarity is needed for any measurement-based scheme
to work.

Our approach towards understanding this issue is to assume a stationary model and use
it to evaluate the performance of admission control schemes which have limited memory. We
will consider a sequence of schemes with increasing amount of memory, and investigate the
improvement of performance, and its dependence on the various parameters of the system.
The goal is to find a call admission scheme with sufficient memory to match the performance
target when the system is assumed stationary, but little enough memory to achieve good
reactivity to non-stationarities.

We first study a very simple scheme to focus on the essential issues. Motivated by the
recent work of Gibbens et al. [15] on measurement-based admission control, we consider the
class of schemes which are memoryless, i.e. every time a new call arrives, the scheme uses
only information about the current state of the network in making the decision of accepting
or rejecting the call. More specifically, the scheme determines the number of calls n(t) that
is currently reserving bandwidth level ¢, for each k¥ (k =1,..., K). This yields an empirical
distribution {#x} of bandwidth requirements for a typical call, where m = ':f(tt) and n(t) is
the number of calls currently in the system at time ¢. The idea is to use {#x} to estimate
the distribution {m;} of the bandwidth requirements throughout the entire lifetime of a call.
The admission criterion for the new call for a given threshold p,,s on the renegotiation failure
probability is taken to be:

exp(—L*(—7) - (n+1)) < Pyos (14)
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where

K

L(r) = logz'ir,c exp(piT) (15)
k=1

L) = maxlur - L(r) (16

Note that the left hand side of (14) is the Chernoff approximation of the failure probability
for a system with n + 1 calls each with bandwidth requirements distributed as {#;}. In
control theory, this controller is said to be certainty equivalent: the controller assumes that the
measured values are the true parameters and acts like the optimal controller which has perfect
knowledge of the values of those parameters. In general, certainty equivalent controllers are
sub-optimal because they do not take into consideration measurement errors. Here, we will
use a stochastic model for the dynamics at the call and renegotiation levels to get some insight
into the performance of our scheme. We will then present some experimental results with the
video trace.

In the model, calls arrive according to a Poisson process at rate A and stay for an exponen-
tial distributed time with mean T'. Each call has identical bandwidth requirement statistics,
described by a Markov fluid model. There are K states in the Markov chain, and a call
requests a bandwidth of y; in state k. We assume that when a call begins to transmit data,
the Markov process is at steady state. The admission control scheme decides whether to
accept a new call based on the states of the current calls in the system. Hence, the entire
system is a stationary Markov process. We are interested in two performance measures of the
scheme: the renegotiation failure probability and the average fraction of the total bandwidth
utilized. The success of the admission control scheme is evaluated by how well it meets the
QOS-requirement (in terms of renegotiation failure probability) and how close its bandwidth
utilization is to that of the optimal scheme which knows the bandwidth requirements statistics
a priori.

Our analytical evaluation of the performance of the memoryless scheme is in the asymp-
totic regime of large trunk bandwidth and a separation of time-scale between call-level and
renegotiation-level dynamics. Let the total capacity be scaled as nc. We consider the regime
where both n and T are large, while keeping %‘i fixed, which is the ratio of the offered load
to the total capacity of the system. (Recall that j is the average rate of a call. )

A large T means that the call holding time is much longer than the time-scale of the
renegotiation dynamics, and this is an assumption of separation of time-scales between calls
and renegotiation. In our applications, renegotiations occur every few seconds while calls last
for tens of minutes or even hours, so this is a valid assumption. Keeping the ratio of offered
load to system capacity fixed means that we are assuming that the trunk capacity is sized so
that it is of the same order of magnitude as the demand. We also set the quality-of-service
requirement pgos = exp(—ndyos), for a parameter d,,, which specifies the exponential decay
rate.

Let ps(n,T) be the renegotiation failure probability under the memoryless admission con-
trol scheme defined by (14), and let u(n,T) be the average fraction of bandwidth utilized.
Let pj(n,T) and u*(n,T) be the corresponding quantities under the scheme with perfect
knowledge of the bandwidth requirement distribution {m}; it employs the actual distribution
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instead of the estimate in (14). Using large deviations techniques, we can show that for large
n and T,

N | .
dim lim ~logpj(n,T) < —dgos

lim lim %logp,(n, T) < —dgos

T— o0 n—o0
lim lim M =

T—00 n—00 u‘(n, T) =1

Thus, the memoryless scheme satisfies the QOS requirement in terms of the exponential
decay rate of the failure probability, and also performs asymptotically as well as the scheme
which have perfect prior knowledge. Thus, for large capacities and a separation of time-scales,
the memoryless scheme is asymptotically optimal. A proof of this result can be found in [29).
Here we will explain the basic intuition behind this result.

If the statistics of the bandwidth requirements of the call were known, then the maximum
number of calls allowed in the system, say n*, can be determined, such that the renegotiation
failure probability when there are n* calls in the system satisfy the QOS requirements. The
measurement-based scheme essentially tries to estimate n* based on observing the current
state of the network. Due to statistical fluctuations in the bandwidth requirements of the
calls, the estimate may be too high due to atypically large number of calls reserving low rates.
This may result in the control scheme making a mistake in accepting a new call which it
should have rejected. However, the key point is that for a large system, the renegotiation
failure probability will deteriorate significantly only if the number of calls in the system is
considerably larger than n*; thus, making an occasional mistake in admitting a call is not fatal.
Rather, making a succession of mistakes in accepting calls will lead to serious degradation
in performance. However, because of the separation of the time-scales of call arrivals and
fluctuations of bandwidth requirements, it is very unlikely for the state of the network to
remain atypical over the period of time for the arrivals of a succession of calls. In fact, it can
be shown that the probability of making a succession of mistakes is much smaller than that of
renegotiation failure due to having a typical number n* of calls in the system but atypically
large number of calls reserving high rates.

We evaluate the performance of the memoryless scheme through simulation. Each call is
again a randomly shifted version of an RCBR schedule. Calls arrive according to a Poisson
process of rate A. Note that as a by-product of using RCBR schedules instead of full per-frame
traces as input, the simulation efficiency is greatly improved, as we only need to simulate the
renegotiation events instead of each frame. We measure both the call blocking probability and
the renegotiation failure probability. Each interval of the length of the trace (approximately
two hours) provides us with one sample for these probabilities. We collect samples until the
95%-confidence interval for both probabilities is sufficiently small with respect to the estimated
value (within +/- 20% of the estimated value). For the renegotiation failure probability, we
also stop if the target failure probability of 1075 lies to the right of the confidence interval,
i.e., if we are confident that the actual failure probability is lower than the target. This
is necessary in order to terminate simulations within reasonable time when the observed
renegotiation failure is very low (e.g. 107%).
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Figure 8: Three ways to estimate the call’s marginal bandwidth distribution: a) memoryless;

b) discard past information upon call admission (scheme A); c) collect per-call history (scheme
B).

Fig. 9 and 10 show the renegotiation failure probability and the utilization for the memory-
less scheme, respectively. The link capacity is expressed as a multiple of the call average rate.
The offered utilization is the offered load normalized by the link capacity. The utilization is
normalized to the utilization that is achieved when call admission is performed based on the
Chernoff approximation (14) and perfect knowledge of the call’s marginal distribution.

It can be seen from Fig. 9 that the memoryless scheme performs very poorly for small link
capacities. The renegotiation failure probability is three to four orders of magnitude larger
than the target! From Fig. 10, it is clear that the memoryless scheme admits too many
calls for small link capacity. This overload becomes more pronounced with increasing offered
load. The explanation for this is that with higher arrival rates, the time between successive
call arrivals is shorter and the states of the network at those instants are highly correlated.
Thus, when the admission control scheme makes a mistake in accepting a call due to the
network being in an atypical state, it is likely that it will make a succession of mistakes. As
the link capacity gets larger (100 - 1000 times the call average rate), the renegotiation failure
probability approaches the target, and the utilization converges towards the one achieved
with perfect knowledge of the marginal bandwidth distribution. This is in agreement with
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Renegotiation failure as a function of number of calls and normalized offered load
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Figure 9: The memoryless scheme: renegotiation failure probability.

Utilization as a tunction of number of calls and normalized offered load
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Figure 10: The memoryless scheme: normalized utilization.

the theoretical considerations above.

We now propose two schemes that rely on more memory about the system’s past. We
evaluate these schemes in the same way as the memoryless scheme. In scheme A, we keep
track of how often each bandwidth level ¢, is reserved since the last time a call has been
admitted. In other words, we keep accumulating bandwidth level history and throw it away
every time we admit a call (cf. Fig. 8). In scheme B, we keep track of how often each
bandwidth level ¢, has been reserved by any of the calls currently in the system. In both
schemes, we use the information to construct an empirical distribution {m} of bandwidth
requirements for a typical call, and make admission decisions based on the test (14). Note
that scheme B uses more history than scheme A, which in turn uses more history than the
memoryless scheme.
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Renegotiation failure as a function of number of calls and normalized otfered load
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Figure 11: Scheme A: renegotiation failure probability.

Utilization as a function of number of calls and normalized offered load

utilization

normalized offered load

log10 (capacity/avg)

Figure 12: Scheme A: normalized utilization.

Scheme A is a considerable improvement over the memoryless scheme. Its renegotiation
failure probability is about an order of magnitude below that of the memoryless scheme over
the whole range of link capacities and offered loads we have simulated (cf. Fig. 11). Figure
12 shows that like the memoryless scheme, scheme A is too optimistic in admitting calls for
small link capacities. For larger link capacities, the utilization converges to the one obtained
with perfect a-priori knowledge of the call statistics. Scheme B (cf. Fig. 13 and 14), through
using yet more information about the past, achieves a similar advantage in performance over
scheme A.

In summary, we see that the memoryless scheme performs well only when the number
of calls in the system is quite high. The performance of call admission can be enhanced
by using more history about the past behavior of calls. In practice, however, this gain will
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Renegotiation failure as a function of number of calls and normalized offered load
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Figure 13: Scheme B: renegotiation failure probability.

Utilization as a function of number of calls and normalized offered load
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Figure 14: Scheme B: normalized utilization.

have to be traded off with the slower responsiveness to non-stationarities in the bandwidth
requirement statistics. A better understanding of this tradeoff from both a theoretical and an
experimental standpoint is needed. Also, both our theoretical and experimental results focus
on the homogeneous situation, where all calls have similar statistics. It is important to look
at the heterogeneous case more carefully.

Finally, we would like to point out that the above insights into admission control are quite
independent of the RCBR service model. Similar schemes could be used for a different type
of service where QOS guarantee is to be provided.
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8 Related Work

The key contributions of our paper are: (a) to note that compressed video traffic has signif-
icant burstiness in the slow time-scale, (b) showing that renegotiation allows us to extract
almost all the SMG available from exploiting this variation, and (c) admission control for
loosely-constrained traffic sources. Recently Chong et al [5] and Zhang and Knightly [35]
have independently published work that comes to the same conclusions. Zhang and Knightly
present a renegotiated VBR service. Chong et al have concentrated on the online prediction
problem using artificial neural networks. Our work differs from theirs in some important
aspects. First, our work is based on theoretical foundation of large deviation analysis of
multiple time-scale sources, which gives us deeper insight into the nature of the multiplexing
gain and allows us to formally study the renegotiation failure probability for ensembles of
renegotiating sources. Second, we have obtained an optimal off-line renegotiation algorithm.
Third, we have more closely considered admission control for renegotiating sources. Finally,
we have considered the system aspects of the problem in more detail. Nevertheless, we feel
that their work complements ours, in that it reinforces the importance of renegotiation for
multiple time-scale sources.

The two core mechanisms for RCBR are renegotiation and rate prediction. In-call renego-
tiation has been proposed for bursty data traffic by Hui [19], Turner [31}, Doshi and Dravida
[8], and Boyer and Tranchier [3]. In their work, a traffic source sets up a burst level reservation
before sending, or in some cases, during, a burst. However, since data traffic bursts can occur
every tens of milliseconds the reservation process has to be fast. This speed is not essential
for RCBR, where renegotiations happen once every tens of seconds. In addition, we believe
that renegotiation is effective mainly as a mechanism to extract SMG from slow time-scale
variations in source trafic. Data traffic exhibits burstiness in the fast time-scale, and thus
renegotiation for data traffic is not likely to be economical in practice. Nevertheless, the
mechanisms for renegotiation proposed in the literature can be used for RCBR with minor
changes.

De Veciana and Walrand have proposed a periodic averaging of rate scheme to smooth
traffic at the network edge [6]. Like RCBR, the output of their traffic shaper is also a piecewise
CBR stream. The basic difference, however, is that they do not model the multiple time-scale
nature of the traffic stream and their scheme is not designed to capture the statistical gain
from multiplexing many sources with slow time-scale dynamics.

In recent work, Salehi et al have proposed an optimal smoothing algorithm that transforms
an arbitrary data stream into a piecewise-CBR stream that has the least peak rate and the
least variance in the chosen rates [27]. Their work provides an alternative for computing
an optimal renegotiation schedule, where the optimization is conducted with respect to a
different cost function.

Current proposals in the ATM Forum for dealing with ABR traffic are similar in spirit to
RCBR in that a source obtains a stepwise-CBR rate allocation from the network. However,
in the ABR framework, there is an assumption that the source has an intrinsically infinite
data rate that is modulated by the fair share of the available network capacity. Thus, the
data rate from a source is dynamically adapted to the available capacity in the network. This
is the opposite of our situation, where the source has an intrinsic data rate that the network
tries to accommodate. In other words, in the ABR case the rate information flows from the
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network to user, but in the RCBR case, the information flows from the user to the network.

The rate prediction problem has been extensively studied from several different perspectives
in the past. The problem can be viewed in terms of linear (Kalman) prediction [16]. Other
promising methods are described in Reference [18]. Chong et al [5] have proposed a Artificial
Neural Network based approach for prediction, and have shown that it compares well with
more traditional alternatives.

Our work on admission control is related to that described in Gibbens at al [15]. They
advocate an approach based on using the current traffic load measurement in making admis-
sion control decisions. However, their focus is on how the measurement information can be
combined with a priori knowledge of the traffic sources, while we investigate the improvement
in performance through the use of more memory of the past network state. Moreover, our
schemes are evaluated on real traffic sources, while theirs are on synthetic on-off sources.
Recent work on measurement-based admission control has also been reported in Jamin et al
[20]. However, their schemes are ad-hoc in nature and cannot guarantee any performance
metrics (indeed, their service description explicitly disavows performance guarantees.)

9 Discussion

~<—— Stat. Mux Gain Protection ~——>

)
|
RCBR i : SDH

Figure 15: Design space for traffic management.

We believe that the performance tradeoff space for traffic management looks something like
Figure 15. Starting from the right and moving to the left, we have the Synchronous Digital
Hierarchy for telephony, Static CBR, Static VBR, Renegotiated CBR, Renegotiated VBR
(RVBR), ABR, and finally, datagram service. As we move from right to left, the statistical
multiplexing gain (SMG) achievable increases, but, if the network resources allocated to a
stream are kept the same, the protection between streams decreases, that is, one stream can
more adversely affect another’s performance. For example, as one moves from Static CBR
to Static VBR, more SMG is possible, but there is a loss of protection, since, given a fixed
amount of buffering, a VBR source could experience packet loss due to a coincident burst
from another source. Note that in moving from Static CBR to Static VBR similar protection
can be bought, but only at the cost of increased buffering. Similarly, as we move from Static
VBR to RCBR, we incur renegotiation overheads, but can potentially exploit slow time-scale
variations in the source rate to get increased SMG. RVBR allows more SMG, since both slow
and fast time-scale variations are exploited. However, there is more overhead for renegotiation,
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per-stream regulation, and larger buffers at each switch. The next step along the spectrum is
to ABR, where a certain bandwidth is guaranteed at every instant of time, but the network
informs the user dynamically as this allocation changes. With ABR service, there is much
less protection between streams, since each user’s bandwidth depends on the demand of the
others. Moreover, considerable effort is needed to share bandwidth fairly. However, even more
SMG is possible, since SMG is extracted at the burst level. Finally, with datagram service,
the most SMG is available, since call level, burst level and cell level statistical multiplexing is
possible. Unfortunately, datagram service also has the least protection - a single burst from
a malicious or ill-behaved source can affect all the others.

The point here is that RCBR is not a panacea. It is one choice in a spectrum of possible
network services, and is best suited to traffic whose variation is not confined to the fast
time-scale. This seems to match at least the subset of the compressed video traffic workload
that has been measured in the literature. Other services could also be used to carry compressed
video traffic: ABR, Static VBR, RVBR and Static CBR have all been proposed in the past.
Ultimately, a network provider and user must choose a service based on their relative costs,
efficiencies and afforded qualities of service.

Nevertheless, we feel that RCBR service has some clear benefits. First, it is easy to
implement, since we are merely adding a renegotiation component to the well-understood
Static CBR service. Neither compler scheduling disciplines nor large buffers are required in
the network switches. We can keep the network core fast, cheap and dumb, and put intelligence
in the edges to extract the SMG from slow time-scale variations.

Second, an RCBR network is always stable. Each admitted call or burst moves the system
from a stable configuration to another stable configuration. Thus, the network operator can
easily guarantee zero loss and small queueing delays within the network.

RCBR gives us an advantage over unrestricted sharing since a source retains its allocated
bandwidth even if a renegotiation to further increase this bandwidth fails. Besides, if a
renegotiation fails, this is explicitly known, so that the source can take corrective measures.
This makes it easier to integrate RCBR with techniques such as dynamic requantization of
stored video, adaptive coding and multilevel scalable coding.

We have already shown that RCBR gets more SMG than a static service. There is another
significant advantage. Users of a static service get only one chance to provide the network
with a traffic descriptor. If they guess wrong, they either get poor SMG, or suffer from large
delays, which might be unacceptable. With RCBR, a source has the option to modify its
traffic descriptor as this evolves in time. The danger is that the network might admit too
many ill-described users, so that at some future time, the renegotiation failure rate may be too
high. This is because there really is no free lunch. If a user is admitted into a network before
its traffic is characterized, then there is always the possibility that mistakes will be made by
admitting too many users. However, Section 7 indicates that we might be able exploit the
law of large numbers to make this risk acceptably small.

To conclude, we have shown that a source with slow time-scale variations would suffer
performance problems when carried over a static service. Large deviation analysis provides
theoretical insight into this problem and motivates the design of RCBR service. We have con-
sidered the system aspects of implementing RCBR and have carried out several experiments
to measure its performance. The results in Section 6.2 show that RCBR obtains most of the
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slow time-scale SMG with a fairly small load on the signalling system. Further, it is possible
to compute the optimal renegotiation schedule for a real traffic source in a reasonable amount
of time. Finally, we have studied the call admission problem and come up with admission
control tests based on a large deviation analysis. Thus, our analysis and experiments show
that RCBR service is simple, efficient, and well suited for multiple time-scale traffic.
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