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1 Introduction

We begin by givingthe form of the nonlinear control problem that we intend
to study. It is expressed in terms of a pair, consisting of a vector field and a
distribution in a manifold. It is then possible to state the aim of this work,
namely to give an analysis of the global dynamics that arise as controlled
dynamics of nonlinear control systems.

A short section deals with the comparison between differential-geometric
approaches (using the Lie bracket as the main tool) and our more geomet-
ric/topological one. It is noted that, away from equilibria, the controllability
question is far from solved in the differential-geometric setting.

We close this introductory part with a brief description of the novel tools
we shall employ and an outline of the main results.

1.1 Preliminaries: Control Pairs and Controlled Dynamics

In control theory, we study control-affine systems of the form

m

* = f(x) + g{x)u = f(x) + ]T Ui9i(x) (1)
»=i

on an n-dimensional state space; this is usually Rn, but is often a manifold,
say Mn. The control actions Ui are assumed unconstrained, for the moment.
Let us also assume that the span of the control vector fields gi,... ,gm is m
throughout.

We can move to a more compact global, invariant form for the above
control system by making the following definition:

Definition 1 A control pair (X, D) consists of a smooth vectorfield X e
X(Mn), called the state dynamics, together with a constant rank sub-
bundle D C TMn called the control distribution.

(By 'smooth', we shall usually mean C2 -twice continuously differentiable.)
We recall next the definitions of some elementary objects from global

analysis; this will serve mainly the purpose of fixing notation.

1.2 Manifolds, Vector Fields and Flows

A manifold Mn is a Hausdorff topological space that is locally homeomor-
phic to Rn (via charts (£/», #»)) and is such that the composition of charts is
smooth. The tangent space TMn of Mn is defined in a number of ways,



all equivalent; in the simplest case, one imagines the manifold to be embed
ded in some KN, in which case the tangent space TxMn at every point is
easy to define. One then forms TMn set-theoretically as the disjoint union
of the point-wise tangent spaces and gives it a natural topology making it
a manifold of dimension 2n. In fact TMn is a vector bundle over Mn (a
sort of collection of vector spaces smoothly parametrised by the points of the
manifold.) We write it: TMn -• Mn for the natural projection: (x,v) ^ x.

A vector field X on Mn is a smooth section of TMn, in other words a
smooth assignment of an element of TxMn for everyx € Mn (the condition
for a section is that X maps Mn -> TMn such that ir oX(x) = x for all x.)
Onewrites X(Mn) for the set ofvector fields on Mn. The notationT(TMn)
is also common and is more general.

Vector fields correspond to systems of first-order ordinary differential
equations. In fact, one proves the existence of integral curves of vector
fields, i.e of curves c : [to, ti] —• Mn such that

c(t) = X(c(t))

for all t e [to,ti] by using local charts and appealing to the fundamental
existence theorem for odes.

If we assume that solution curves exist for all times (if X is complete),
we can then define the flow 0(t, x) as the solution curve at time t, starting
from the point x at time 0. It is convenient sometimes to write 4>t(x) for
this or even <px (t, x) if more than one flow is being considered and we want
to make clear the vector field that gives rise to the flow.

We have the fundamental group property

*«i(&i(aO) = <M<M*)) = 0ti+t2M

which implies, since <f>o = id, that the maps <j>t : Mn -+ Mn are diffeomor-
phisms.

Definition 2 A sub-bundle (or distribution^ D C TMn of constant
rank m<n is a collection of m-dimensional subspaces of the tangent spaces
Dx C TxMn that depends smoothly on x. (It is possible to choose, locally,
a smooth basis for D consisting of m pointwise linearly independent vector
fields.)

The distribution D is in fact another vector bundle over Mn. The set of all
(smooth) sections of D is denoted by T(D).



1.3 Formulation of the Main Aim of Global Control Design

In the context of a control pair, T(D) is the set of all smooth, global feed
back controls. We write

U : Mn -• D

for such a feedback control, so U maps x h* (x, U(x)), with U{x) € Dx.

Definition 3 For every choice ofU € T(D), the vector field X + U will be
called the controlled dynamics corresponding to U.

One should compare at this point the traditional viewpoint of choosing
smooth functions Ui{x) and forming the system

x = f(x) + Y,Ui(x)gi(x).
i

(Weimplicitly assume that U is completeas well, so that X + U is complete
and it defines a global flow.)

Now as we move in the space of sections T(D), weobtain dynamics whose
topological type (in the senseof definition23 below) varies, in general. If for
some U, the controlled dynamics is structurally stable (see definition 24),
then nearby controls will not change the topological type. However, 'large'
changes in the control will, typically, lead to global changes in the dynamics.

The most general question one can ask about control systems is then to
classify the equivalence classes ofdynamicsachievable through control and to
obtain partitions of the set of all controls T(D) according to the topological
type of the flow ofX+U. This is an evenmoredifficult problem, in principle,
than the fundamental problem of dynamical system theory, which seeks to
classify all classes of flows on any given manifold.

The problem in the generality just given is fortunately of little imme
diate relevance to control practitioners. In applications, one asks a simpler
question, namely: is it possible to achieve controlled dynamics that have
certain dynamical features? In the simplest case, we ask whether it is possi
ble to 'simplify' the dynamics so that there is a simgle asymptotically stable
equilibrium, at a fixed location, or neighborhood, in the state space.

We can summarise this discussion by stating what we take to be the
main object of the qualitative theory of control systems:
Main Aim of Geometric Control Theory: Study the controlled dynam
ics X+U as we vary the control U and, in particular, examine whether it is



possible to select a U so as to achieve dynamics that have certain desirable
features (such as global stability in the simplest case.)

In fact the specification of less trivial dynamics is an interesting problem
that we shall analyse in more detail later.
Warning: We are primarily interested in the case where the state dynamics
X is not identically zero! If indeed the control pair degenerates to just a
specification of a control distribution, then our subject has a very different
flavour.

In the smooth, or continuous case, this is essentially a problem in differ
ential geometry and the control theoretic dimension is not very noticeable.
Relevant aspects are:

1. Involutivity/Integrability: (lYobenius' Theorem and Folia
tions) Given vector fields (controls) X, Y e T(D), their Lie algebra
bracket [X, Y] is of relevance to control because even if [X, Y] £ T(D),
control laws can be found that push the state along the direction of
the bracket. Thus, as is well known, one is interested in forming the
smallest Lie algebra generated by T(D), call it C. This is then an in-
volutive distribution and, assuming its rank is constant, gives rise to a
foliation of state space. (The rank neeed not be constant, of course,
in which case we appeal to Sussmann's generalization of Chow's the
orem.)

The consequence for control is that starting from a point on some leaf
of the foliation, the state is contrained to lie on that leaf for all times.

2. Relaxing the notion of control: In much of classical control theory,
one finds that it is essential that we specify the space of our control
functions. In the case of the control distribution D, we find that we
must allow, say, piecewise smooth, or analytic controls.

Let us give an example at this point ilustrating the usefulness of the Lie
bracket in the context of zero state dynamics.

Example 1: (due to Brockett, see [3], p.182)

X\ = Hi

±2 = U2

£3 = X2U1 — X1U2

Claim 1 There is no continuous stabilizing feedback law near 0. However,
the local controllability condition is satisfied and every state can be driven
to the origin using a smooth control function.



The nonexistence of a continuous stabilizing feedback control follows
from the KrasnoseFskii-Brockett's necessary condition; this is because, by
continuity of the distribution D = spanfpi,^} and since at 0 there is no
£3-component, the Gauss map cannot be onto in a small neighborhood of
the origin (see Section 7 for an explanation of the terms used.)

To see that the local controllability condition is satisfied, rewrite the
system as

ui + 1 \U2 = giui +g2U2 (2)

and note that [51,52] =-2^.
It is not difficult to visualize how it is possible to choose smooth feedback

control in the open sets {X3 > 0} - (23 axis) and {X3 < 0} - (2:3 axis) to
drive a state towards the origin monotonically in X3. However, one sees
that then on the X3 = 0 plane (minus the origin, of course), we must have
chattering, since either g\ or 52 has a nonzero X3 component. If we give up
the requirement that the control be of feedback type, we can of course steer
a state on the X3-axis to 0 simply by first pushing it off this plane and then
proceeding as described above. Also note that, on the a?3-axis, to drive a
state to zero we must first drive it off the axis, then let the previous control
act. (Try to sketch a picture of this.) Finally, it is worth pointing out that
we made no real use of the extra direction provided by the bracket locally;
globally though, we used the fact that we can reduce the £3 component at
the same time as reducing some 'norm' in the (xi,iC2)-plane (distance from
the a;3-axis.)

1.4 Limitations of the Lie bracket in the case of nontrivial

state dynamics

In the presence of nontrivial state dynamics (X not identically zero), the
flavour of our subject changes considerably.

Definition 4 The affine subspace X(x) + Dx C TxMn will be called the
control indicatrix at x.

This is sometimes called the set of associated vector fields of the control pair
-see [22], p.74. (Note that Assumption 3.1(a) in [22], p.73 is not satisfied
if X(xq) j* 0 and X(xq) £ Dx. It is satisfied, though, at a zero of the



state dynamics, which is the case that is treated in most presentations of
the controllability problem using a differential geometric approach.)

The object we obtain by pasting together these spaces over all the points
of Mn is not a vector bundle. The fibre is either a vector subspace or an
affine one; we may choose to call such an object an affine bundle; however,
one does not have available a well-developed theory of affine bundles and
we can only usefully categorise it as a fibration. (A fibration is a map
p : E —• M of topological spaces that is onto and has the Homotopy Lifting
Property for all topological spaces Y that are mapped to the base through a

map f:Y-^M -see [26], p.29.) In Part II, we shall present another fibration
associated to that of the control indicatrix that is of crucial importance to
the solution of the general problem of control.

Now it is useful to have available explicit 'negative' results concerning
nonlinear controllability/accessibility. This is especially important since we
are trying to motivate an approach to nonlinear control theory that is not
dependent on the formation of Lie brackets. The theorems below will assert
that, if we are at a general nonzero point for the state dynamics, then
achieving Lie bracket directions is constrained by the fact that we cannot
go backwards along the state dynamics.

The first result points out a crucial difference between systems where
the state dynamics is zero and those with nontrivial state dynamics. It says
that a very large control action is necessary if we are to have a chance to
go backwards along the state vector field locally (assuming this is possible,
of course.) In other words —and this is the form the theorem takes, if the
control action is bounded (as is the case in practice), then we cannot locally
reach an open subset of some neighborhood of our starting point.

In the case of an integrable control distribution this subset can be given
explicitly: its boundary is a union of leaves of the foliation of D. This is our
second result. If D is of codimension one, then the boundary is exactly the
leaf of D through the starting point. If the codimension is greater than one,
then there is more freedom in choosing the boundary. (We assume Mn is
Riemannian, i.e. it has been provided with some Riemannian metric; thus
it makes sense to talk about norms and orthogonality.)

Theorem 1 Suppose that at a point x € Mn the state dynamics is nonzero,
X(x) ^ 0 and is such that X(x) £ Dx (thus also Dx ^ TxMn.) Suppose
given a compact subset U C Rm.

Then, if we constrain the controls u to lie in U for all x (equivalently, if
we take a subset Q ofT(D) such that U has sup norm bounded by some K for
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allU € Q), there is a neighborhood Nofx and an open subset N' c N such
that x € N7 and any trajectory of controlled dynamics X + U with u(x) e U
that is contained in the neighborhood N misses the open subset N'.

The second theorem does not impose a contraint on the control, but requires
D to be integrable.

Theorem 2 Suppose that at a point x € Mn the state dynamics is nonzero,
X(x) ^ 0 and is such that X(x) £ Dx. Also suppose D is integrable.

Then there is some neighborhood Nofx and a localhypersurface E c N
through x that is invariant under D and divides N into two open sets N+
and N- with common boundary E (so that N = N+UN-) and are such that
N+ is positively invariantfor all controlled trajectories contained in N.

Remark: The conclusions of these theorems hold irrespective of whether
any Lie algebraic rank condition holds, such as the condition that the span
of the {adxD}k>0 Is of rank n at x.
Proof of Theorem 1:

The first step is to set up a nonzero vector field and obtain a flow box
for it. Decompose TMn = D0D1; hence write X = X\ +X2, with Xx € D
and X2 € Dx. By assumption, X(x) £ Dx, so X2(x) ^ 0 and hence is
nonzero locally in some neighborhood No of x.

Pick a flow box tj) : Ni -> W C Rn (N\ C N0) so that ij>(x) = 0 and
Y = ip*(X2) = (0,...,0,l)r. Choose an orthogonal basis for Rn so that
bn = y(0) and i>*(Dx) = span {z\,...,Zm} (remember X2 € D-1.) Write
z\,...,Zn for the coordinates in thisbasis. Thus dZn(Y)(0) = 1. Then the
one-form dz*. pulls back to an exact forma = d0 in Ni and apk) (x) = 1
(/J = tp*(zn)') The level sets Zn constant pull back to leaves of the local
foliation of a.

We compute Cx+u0'

Cx+u0 = a(X + U) = a(X) + a(U). (3)

Now a(X){x) = a(X2)(x) = 1 and a(U)(x) = 0 since Dx C ker d/3 by
construction. Thus Cx+uP(x) = 1 > 0.

Claim 2 There is some neighborhood Nofx such that a(U)(x) > 0 for all
xeN.

This is because a(Dx) = 0 and the compact /f-ball in the fibres of D gives
a continuous non-negative function 7 : N\ —* R: y •-• sup{|a(v)| ; v €
Bk(0) C Dy}. One then takes N = 7_1[0,1) n N\.



For y G N we have a(U)(y) < 1 and so Cx+uP > 0. This completes the
proof of Theorem 1, since one easilychecks that the set N' in the statement
of the theorem is the set where /? < 0. •

Remark: As we take larged and larger controls, the neighborhood N will
shrink and it is possible that controls will exist driving us downwards with
respect to the local Lyapunov function (3. Let us look at Example 1 again,
this time introducing some nontrivial state dynamics.

Example 1(b): Suppose we have the system

u\ + 1 \u2 = f + giui + g2u2 (4)

so we have constant state dynamics pointing 'upwards.'
Following the procedure given in the above proof, we take the function

/? = £3. Then a = ( 0 0 1) and we compute Cx+uP = ±3 = 1+
X2U1 —x\U2. Taking our starting point to be x = f 0 0 1 J , we have
P(x) = 1 > 0, which stays positive for nearby points provided the control is
bounded.

Note that the 'unbounded' feedback control u\ = 0,112 = ^ gives p = 0
and so we can achieve /? < 0 by an even larger control. The reader should
compare this situation with that of Example 1 itself, where a 'small' control
action was enough to steer downwards with respect to the X3 direction.

Proof of Theorem 2:

The basic idea is the same. We decompose X = X\ + X2l with X\ € D
and X2 € D1- and use a local flow box ip : No -* W c Rn for X2 near x.
The m-dimensional foliation of the integrable distribution D pushes forward
to a foliation of W. Now the orthogonal complement D1- is a distribution
—not integrable in general, but which can give us local transverse sections
for the foliation of D.

Thus, consider Eo to be a local (n - m)-dimensional manifold transverse
to the distribution D and orthogonal to it at x, so that X2(x) 6 Eo- It
intersects the Zn = 0 plane along an (n - m —l)-dimensional manifold Ei
and the leaves through Ei give the desired D-invariant E.

Theorem 2 follows, since dZn(Y) > 0 in W. rj

Remarks: Theorems 1 and 2 say that, locally near a point where X j^O,
we cannot use the extra directions arising from the Lie brackets of X and
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the basis vector fields of D. The question is then: under what conditions
are these extra directions available?

One instance where this is possible is in the vicinity of an equlibrium
point (again we emphasize that then Theorems 1 and 2 do not apply.) The
reader should perhaps go back at this point to the instances where Lie
bracket conditions lead to local accessibility and notice that they either
apply in a neighborhood of an equilibrium point or to the case when X € D
(e.g Assumption 3.1(a) in [22], p.72.)

Given our geometric viewpoint, however, we can give an appreciation
of the global problem we shall be concerned with: even though locally we
are constrained by the geometry of the control pair, globally these objects
have nontrivial 'twisting'. In the case of an equilibrium, for example, the
state dynamics will be used to control in the complement of the control
distribution. This can be best seen, at this point, in the following linear
example.

Example 2:

Consider the two-dimensional linear system

X\ = —X\ + u

x2 = X\ + X2

It is controllable, since

However, let us pick a point, such as x —(0,1)T, where Ax ^ 0 and Ax £
D = span{6}. It should be clear that the 'extra direction' given by the Lie
bracket is not available at x. In fact, as we expected from theorem 2, in a
neighborhood of x, it is only possible to move 'upwards' -i.e. no trajectory
can enter the lower half of a local plane.

We know it should be possible to steer x to zero, but the question is
how? In this simple two-dimensional case, it is easy to see that what we
should do is steer to the left until the state dynamics starts pointing down
wards and then drive towards the origin. Thus any stabilized trajectory
through our chosen x must take a large 'detour' before heading towards
zero. An explanation of this, together with a re-interpretation of the linear
stabilizability/controllability conditions will be given in a later section.

We close this section by giving another example where the formation of
the accessibility Lie algebra C is not meaningful when the state dynamics is
nonzero.
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Example 3:

Consider the planar system

Xi = x\
x2 = u

The vector fields / and gare / =x2^ and g=^ and so forming brackets
we get

and

and so the system satisfies the local accessibility condition for any xo> How
ever, we can see easily that, since x\ > 0 everywhere, if we start at the
point, say (1,1), the reachable set is a half-plane and thus the system is not
stabilizable to the origin.

Finally, here is a simple exercise:

Exercise 1 Given two vector fields X and Y =constant, suppose that the
direction given by the vector field ^- is not in the span ofX and Y at a
point xq .

Give conditions on the components of the vector fields X and Y so that
their bracket [X,Y] has anonzero ^ component at xo. What can you say
about the germ of the vector field X at xq? (e.g. can X be zero in any
neighborhood of x ?)

2 The Relevance of Global Nonlinear Dynamical
Control

Despite the fact that so far there are few instances where nonlinear con
trol theorists are asked to design dynamics more complicated that a single
asymptotic attractor, global feedback control is potentially useful in several
areas, some of which are presented below.

1. Using control to build systems with multiple equilibria or limit cycles.

Given a nonlinear system in state space form such that certain compo
nents admit 'control action' (say a nonlinear circuit or a power system
with control), it may be desirable to design nontrivial dynamics such

12



as, for example, multiple equilibria or limit cycles. One may think of
the multiple equilibria as 'memory locations' and of stable limit cycles
as oscillators.

The theory we shall present is ideally suited to such problems since
it is based on a description of dynamics through functions and hence
can be used as a design method for achieving dynamics of a particular
qualitative type.

2. Control of complicated dynamics and the use of control to 'simplify*
them, eg to turn a chaotic attractor into a stable limit cycle.

The converse problem, in a sense, is that of altering given dynamics
because their behaviour is undesirable. In the case of a chaotic attrac

tor, for example, we may wish to use some 'control action' to get rid
of the chaotic behaviour altogether.

The well-known pioneering work of Grebogi, Ott and Yorke has led
to an explosion of interest in this area recently. However, most ap
proaches to date are not truly nonlinear and they certainly do not
take into account the full global geometry of the dynamics involved.
The approach we develop could hopefully lead to more elaborate non
linear, global control-of-chaos techniques.

3. Large deviation theory.

The context here is, I think, of great importance to control theory. Not
only does it offer the nonlinear control theorist a large area for novel
research, but it gives a solid reason for enlarging the scope of nonlinear
control beyond the familiar stabilization and tracking problems. The
connections and similarities with physical theories (as in the work of
B. Simon, Jona-Lasinio and others on quantum-mechanical tunnelling)
should not be overlooked.

Briefly, one considers the stochastic diffusion process with small noise

dx\ = b{x\)dt + eo(x\)dwt (5)

in the limit as € —• 0. For concreteness, let us consider the case where
the drift dynamics 6 is gradient-like (see next section for definition.)
Since the noise is small, starting from some state in the region of
attraction of a stable equilibrium, we flow down following closely a
trajectory of the drift vector field. The small noise can, however, lead

13



to large excursions away from attractors. Under uniform ellipticity of
the diffusion matrix a, the theory of stochastic stability will in fact tell
us that we shall leave the region of attraction for any nonzero noise
intensity (any nonzero e.)

What is interesting, however, is the paths we are likely to follow; these,
for small noise, turn out to be those of the minimal-energy steering of
the state of the associated control problem below, obtained by replac
ing the 'white noise' ft = ^ by acontrol action

xt = b(xt) + cr(xt)u, (6)

using the cost functional Jj^ \u\2dt and requiring that we start at an
attractor and control the state to some point in its region of attraction.
Note that e does not appear in the above equation.

Under certain conditions, we end up with an optimal feedback control
that in some sense inverts the gradient dynamics of b: the attractor
becomes a repeller and the saddles switch index from, say, kton —k.
This, by the way, was the context in which I first came up with the
idea that it is enough to be able to control through certain 'Lyapunov
functions' instead of requiring the 'reachable set' to be 'large' -thus
switching from an essentially local, strong form of controllability (in
volving derivatives) to a weaker,globalone which is more easily verified
and is enough for the purposes of control design (involving functions.)

3 Outline of the Main Methods and Results

In this subsection, we try to sketch answers to the questions:

1. What is the novelty of the tools we are about to develop?

2. What are the advantages in using them? In particular, what results do
we obtain that are not derivable by other, more classical/differential
methods?

3. 'Enrichment*: Are these tools useful in areas sharing features with
control theory?

14



3.1 New Methods, Tools and Concepts

• From Dynamical System Theory: Our understanding of global
dynamics has improved vastly in the past three decades. Little of this
understanding has trickled through to nonlinear systems theory.

We claim that, by being specific about the classes of dynamics we are
interested in, we can make our control task easier and benefit from the
special features of the chosen class (eg gradient-like systems.)

Concepts that will find application in our approach include: struc
tural stability, notions of equivalence (topological orbital equivalence)
of dynamics, qualitative classification of dynamics, bifurcation the
ory, decomposition of flows into gradient-like and chain-recurrent parts
(Conley's theorem), existence of Lyapunov global functions and con
sequences of their existence etc.

• From Geometry and Topology: Here, in addition to using modern
toplogical concepts to 'modernize' our approach to nonlinear control,
we shall specifically make use of basic notions such as: homotopy in-
variance of certain maps and objects (leading to degree/index theory
and more generally to algebraic topology), genericity/transversality,
enabling a powerful transition from local conditions (such as rank con
ditions of Jacobians and counting number of independent equations
defining a geometric object) to global objects (transverse manifolds).
Also, we shall find that many familiar control-theoretic aspects are
best understood using tools such as the Gauss map and the existence
of topological invariants. Finally, we must note that a proper geomet
ric setting makes it easier to formulate questions in a coordinate-free
way, as we have seen in the first section.

• From Other Areas (e.g. Singularity Theory, Algebra): There
will be instances where an awareness of the progress made in areas
such as the ones mentioned can lead to improved understanding of
some subtle aspects of nonlinear systems (this is so especially in the
case where vector fields etc are modules over a polynomial ring.)

Finally, we hope that useful applications can be found for Computa
tional Algebraic Geometry (which provides nice answers to problems
about parametrization of solutions, implicitization and elimination of
variables concerning systems of polynomial equations), even though
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this set of tools is not yet fully applicable to systems over the real
field.

3.2 Advantages of our Methods and Main Results

• We have already argued that simply narrowing attention to a specific
class of dynamics can go a long way towards making the task of the
control theorist easier. This is especially clear in the case of systems
with global Lyapunov functions which are almost everywhere strict.
In the next section, we shall present the main results from the genral
theory of global dynamics and try to make explicit the information
contained in a global Lyapunov function.

• Necessary Conditions: Our use of Lyapunov functions and the
Gauss map permits a streamlined presentation of necessary conditions
for achieving dynamics of a particular type (e.g stabilization); we see
that the Krasnosel'skii-Brockett-Coron conditions are simple conse
quences of the geometry of the flow near an asymtpotic attractor. We
give generalizations to other dynamics (saddles and global gradient
like dynamics for example) and to more complicated isolated invariant
sets.

The geometry of the Lyapunov level sets gives stronger conditions
that avoid the transition to algebraic-topological invariants. In the
particular case of a stable limit cycle, we give a condition that says
that the image of the Gauss map cannot be 'too small' in the sence
that it cannot be contained in a half-space.

• Objects of Interest to Control:

We start by giving a new interpretation of the linear stabilizability and
controllability conditions. Instead of using Lie brackets, we show that
these conditions simply mean that there exists a subspace (manifold
in the nonlinear case) complementary to D and on which the state
dynamics is 'stable' (see Part II for details.)

This motivates a discussion of geometric objects of interest to control:
singular sets (for example, the set where the state dynamics is in D or
the set where D is in the kernel of dh, where h is a Morse-Lyapunov
function.) Here transversality is heavily used and generic dimensions
obtained.
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• Constant Control Distributions: Here we can give a more or less
complete theory. We can give explicit conditions for stabilization and
other types of dynamics; we can in fact give a description of all Lya
punov functions, at least in the convex case.

Several examples will be given to illustrate the procedure. In low
dimension, this is surprisingly easy to visualize. In higher dimension,
one still has a nontrivial problem to solve, yet the relation to the linear
systems case is very clear.

3.3 Applications to Other Areas

Let us make a historical comment: differential geometric tools such as the
ones that are used in control theory are a 19th century creation. Differential
geometry has seen much progress, of course, but much of nonlinear control
theory can be considered as a variation on rather classical material.

On the other hand, most of the work in the fields mentioned above has
been recent. Dynamical system theory, in particular, was essentially started
in the sixties. I hope that this belated but justified attempt to bring into
nonlinear control theory more modern methods and concepts will inspire
work in related fields, such as nonlinear circuit and device theory, power
system analysis and control etc.
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4 Dynamical Systems Fundamentals

In this section we shall present some fundamental, but not so well known
results on global stable aspects of dynamical systems. The main aim will
be to prove the Conley Flow Decomposition Theorem and to examine its
consequences for control design. The crucial role played by global Lyapunov
functions will be emphasized.

4.1 Basic definitions and Conley's theorem

Throughout this part, we shall take the state space to be a compact mani
fold; this will include the case of dissipative dynamics, in other words com
plete vector fields on a possibly non-compact manifold that admit a global,
compact attractor (a set that is not a manifold, in general.) In this case,
one considers the flow on the one-point compactification of the manifold
obtained by taking the point 'at infinity' to be a repeller.

Definition 5 Given points xo and xn in Mn and a number e > 0, an e-
chain from xq to x^ is a finite sequence of points x\,.. .,xn-\ and times
tk>0 (keN-1) such that

Nb+i - 0fe, xfc)| < € , Vfc € N. (7)

(<f> is the flow of X.)

Definition 6 A point x is chain-recurrent for the flow <f> if for any e > 0
and any T > 0, there is an e-chain from x to itself such that tk>T for all
k.

We denote by 1l(<f>) the chain-recurrent set, i.e. the set of all chain-
recurrent points of the flow (f>.

One should compare this concept with the more familiar concepts of a-
and w-limit sets and of the nonwandering set of a flow. In general, Q(X) c
Tl(X), but the chain recurrent set may be larger, as in the following example.

Example 1: Consider the vector field on the circle S1 = {et0 ; 9 G[0,27r]},
given by X(9) = (cos(0/2))2^. It has a single equilibrium point at 0 = it
and gives a flow that moves counter-clockwise around the circle, except at
the point x given by 6 = 7r. It is easy to see that the point x is the unique
a and uMimit point of every point on the circle. Thus Q(X) = {x}.

On the other hand, we claim that Tl(X) = S1, the whole of the circle.
This is because, for chain recurrence, we are allowing ourselves an 'error* of
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e at each stage. Thus, for any e > 0 and any T > 0, starting at any point y
in the circle, we move towards x, where the flow 'slows down' because of the
zero of the vector field; once we are near enough (this happens in a finite
number of steps), we can 'jump over' x using the € leeway. Finally, going
backwards in time, we can compute a similar sequence of points from y to
a point e-close to the other side of x. This gives a finite e-chain from y to
itself.

It turns out that the chain-recurrent set contains even complicated sets
such as strange attractors. Thus, from the dynamical viewpoint, it is a very
useful concept (and was used to great effect by, for example, R. Bowen, in the
study of so-called Axiom-A differomorphisms; the chain-recurrent set is then
assumed to have a hyperbolicity property generalizing the hyperbolicity of
equilibrium points.)

The chain-recurrent set is also the right concept for separating two parts
in every flow: the chain recurrent part, where there exists this approximate
'periodicity' or recurrence and the 'dissipative' or gradient-like part, where a
certain quantity strictly decreases along the flow. This quantity is of course
easily compared with the traditional view of a Lyapunov function; Conley's
theorem makes all this precise.

First, let us give a definition that will fix the relation between gradient-
like systems and Lyapunov functions

Definition 7 A flow<f> on the compactmanifold M is gradient-like if there
exists a continuous function V on M, called a global Lyapunov function
for<f>, that is strictly decreasing along the trajectories of<p everywhere except
at the set of equilibrium points of <f>.

The reader should spend a minute or two thinking about how a global Lya
punov function differs from the Lyapunov functions one sees in traditional
control theory. In particular, Lyapunov functions exist near saddles or even
repelling equilibrium points. The conventional way geometers think of Lya
punov functions is by visualizing them as 'height functions' in some land
scape, or on a manifold embedded in Euclidean space. The height function
on a torus lying at a small angle off the vertical on a table provides a con
ventional example (see Example 2 below.)

In the case of a gradient-like system, it is easy to see that H(X) is
precisely the set of equilibrium points, in other words the complement of
the set where the Lyapunov function decreases. This is true in general; we
have the fundamental result
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Theorem 3 (Conley's Flow Decomposition Theorem): For anyflow
4> on a compact manifold Mn, there exists a continuous function V that is
strictly decreasing along the trajectories of<j> outside the chain recurrent set
K(4>) and is such that the image V(Jl(<f>)) ofTl(4>) under V is a nowhere
dense subset of the compact interval V(Mn) C R.

The original proof of Theorem 3 appeared in the report [5], republished
in [6]. We follow the proof given in [23].

4.2 Outline of the proof of Conley's theorem

The main idea is to first prove the existence of Lyapunov functions for a
simpler object: an attractor-repeller pair. It then remains to connect the
chain-recurrent set with the set of all possible attractor-repeller pairs.

Definition 8 A subset A C Mn is an attracting set for the flow <j> if
there exists a positively invariant set U D A and a time T > 0 such that
<fr(U) C U° and A = nt>0<f>t(U).

The set U is called a trapping region for the attracting set A.
A subset A* is called a complementary repelling set of A for the flow

<f> if it is attracting for the negative of the flow with respect to the trapping
region Mn \ U.

The pair (A, A*) is called an attractor-repeller pair for cf> (abbreviated
to 'A-R pair* from now on.)

One sees easily that if a; £ A U A*, then u(x) C A and a(x) C A*. The
following properties of attracting and repelling sets are straightfoward to
prove.

Proposition 1 Attracting and repelling sets are compact invariant subsets
of the compact manifold Mn.

Let

A = {(A, A*) ; Aand A* are an A-R pair for <f>} (8)

be the set of all A-R pairs. The next proposition says that not only does
every A-R pair contain the chain-recurrent set of <f>, but 1t{(f>) is exactly the
common intersection of all the A-R pairs.

Proposition 2 Let <j> be a flow on a compact Riemannian manifold. Then

7> = fl (AuA*)=n(<fi). (9)
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Figure 1: Flow on a two-torus

Before giving the proof, let us give some examples to get a feeling for why
this is the case.

Example 2: Consider the gradient flow on the torus with respect to the
height function when the torus is positioned as in Figure 1.

There are four equilibrium points: an attractor, p1} two saddles, p2 arid
P3, and a repeller, p4.

One choice of an attractor-repeller pair is to take

A = {Pl}a.nd A* = {p2,P3,P4}UW3(p2)UWs(p3) (10)

(Wa stands for 'stable manifold.')
A different choice is

A = {pi,P2} U Ws(p2) and A' = {p3,pA} U Ws(p3) (11)

Can you think how many A-R pairs exist in this case? (Hint: Choose a
height h; if the /i-level set of the height function V does not pass through
an equilibrium point, then the set U = {V(x) < h] is a trapping region and
hence defines an A-R pair -the attractor A, for example, is the maximal
invariant set in U; if there are no equilibria between two levels, the A-R
pair does not change -all this is elementary Morse theory. The technique
of slicing using Lyapunov level sets is a useful one; we shall meet it again
when discussing Morse sets and Morse decompositions.)

The chain-recurrent set H = {pi,P2,P3,P4}, as we knew from Conley's
theorem and the fact that the flow is gradient-like -in fact gradient.

Example 1 (Contd.): In the case of the flow on the circle, there are no
nontrivial attracting or repelling sets, according to our definition. The circle
itself and the empty set are the trivial ones. Thus

A = {(S\<t),(®,S1)} (12)
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and we see that A UA* = S1 in both cases, confirming that %[X) = S1.

Proof of Proposition 2:
The proof will be that we have both K(<f>) D V and ft(</>) C V.

Lemma 1 If x £ fc(<f>), then there is an A-R pair (A, A*) such that x £
AUA*.

Clearly, the lemma implies the easier of the two inclusion of our proposition:
Tl(<l>) D V. The proof relies on the fact that, since x i fc((f>), there is an
6 > 0 such that there is no e-chain from x to itself; this then is used to
construct a trapping region U< We omit the details, which can be found
in [23].

Lemma 2 Existence of Lyapunov functions for A-R pairs: Let (A, A*) €
A. Then there exists a continuous function V : Mn —• R such that

1. V(A) = 0 and V(A*) = 1,

2. For x £ A U A*, 0 < V(x) < 1 and

3. V is strictly decreasing outside the set A U A*.

Proof: The proof follows lines similar to those used in proving the existence
of a local Lyapunov function near an attractor. One tries an obvious guess as
to what V should be and then modify the guess so that it satisfies properties
(1) to (3).
Step 1: Let

Vo{x) " d(x,A) +d(x,A*) (13)
where d(x, y) is the Riemannian distance function in the compact Mn and
we make use of the fact that An A* =0.

It is readily checked that Vb is continuous, Vo(A) = 0, V6(A*) = 1 and
V(Mn \ (A UA*)) = (0,1). However, Vb is not necesssarily decreasing along
(j>. Step 2: Let

Ki(aO=sup{K0(&(aO)}. (14)
t>o

Since A and A* are invariant, we still have V\{A) = 0 and V(A*) = 1.
Now if x £ A U A*, we want to make sure that Vi(x) is well defined. Since
d((j>t(x), A) —• 0 as t -> oo and Vq(x) e (0,1), we deduce that the supremum
isattained, inotherwords thereisa time t(x) such that V\(x) = Vo(<f>t(x)(x)).
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In fact the function t(x) is continuous and nonnegative and so V\ is contin
uous.

The function V\ is also decreasing, i.e. V\((j)t(x)) < V\(x), since the
supremum on the left is over a smaller set. In order to make it strictly
decreasing, we use a weighted average:

Step 3: Define

V(z)= r e-Vx(4>M(*))ds- (15)
Jo

It is obviously continuous.
Now for any t > 0 we have by the group property of the flow that

V(d>t(x)) = r e-sV^s^x))ds < r e-Vi(0.(aO)(k (16)
Jo Jo

using the monotonicity of Vi. Thus V is decreasing.
To show it is strictly decreasing, we use the fact that V(x) is the integral

of the product of the weight function e~s with a monotonically decreasing
nonegative function Vi(<f>s{x)). Thus, if for somex £ AliA* and some t > 0,
V(x) = V((f>t(x)), then we must have that Vi(<f>s+t(x)) = Vi(<f>s(x)) for all
s. But this is impossible, since u(x) C A and so picking, say s = nt for
n = 0,1,2,... we get

Vi(x) = Vi(fc(aO) = Vi(0at(*)) = ••• = Vi(<t>m(x)) (17)

and V\((j>nt{x)) —*• 0 as n —> oo, a contradiction. Thus the lemma is proved.

D

The next result proves the converse inclusion 7l{<f>) C V and thus com
pletes the proof of Proposition 2.

Lemma 3 //(A, A*) € A, then 1l(<f>) C A U A*.

Hence every attractor-repeller pair contains the chain-recurrent set of <f>.
This will be useful later on, when we are trying to extract the information
contained in a Lyapunov function, assuming we know nothing else about the
flow.

Proof: (Outline) Take x i A U A*; we must show x £ U(<j>).
Prom the above lemma, we know there exists a Lyapunov function V for

(A, A*). Use the fact that V is strictly decreasing at x to show that it is
not possible to find an e-chain from x to itself, for some e and some (large)
T > 0, since the function V must decrease at each step and thus it prevents
the return to x. •
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Finally, we prove Conley's Theorem using Proposition 2. We need a
technical lemma about the cardinality of the set A.

Lemma 4 The set A is at most countable.

Proof: We use the fact that the compact manifold Mn is a metric space
and hence has a countable basis. We would like to assert that a trapping
region defines a unique A-R pair. Note that, in general, there is more than
one attracting set inside a trapping region U; however, by also inclusing the
complementary repeller, whose trapping region is Mn \ U we get a unique
object.

Thus it is appropriate to consider the product Mn x Mn and to map
each A-R pair to the set A x A* since then the correspondence with the
set U is well-defined, namely the A-R pair corresponds to the open set
U° x (Mn \ U)° C Mn x Mn. Now since the product has a countable basis,
we conclude that A too is at most countable. •

(Note that of course many open sets may give the same A-R pair -
remember the discussion in Example 2.)

To finish the proof of Conley's theorem, let us index the (at most) count-
ably many Lyapunov functions weobtain for the A-R pairs in A, say, writing
Vk for each such function (k e Z.) Now let

v(*)=eJ^*m- (18)
k=i6

The sum is absolutely convergent, so V is well defined and continuous; also
V(x) € [0,1]. It is decreasing since the functions V/t are decreasing.

To show it is strictly decreasing outside 71, we use the fact that if x £
7l{4>), then, by Lemma 3, there is some A-R pair (Ak, A*K) (remember the
indexing) such that x £ Ak UA*k and so at least one term Vj(<f>t(x)) < Vj(x)
gives strict inequality.

The final part of the Theorem involves a subtlety: since the chain-
recurrent set is contained in every attractor-repeller set, for x € *R>(<f>), Vj(x)
is either 0 or 1. Thus the expression for such x is

v(*) =E^ <19)
with 6k zero or one. This is the ternary expansion of some number between
zero and one and since only the digits 0 and 2 are used, it is only possible to
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get in this way a subset of a nowhere dense Cantor set in the unit interval.
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5 What do Lyapunov functions tell us about global
dynamics?

In this section we do not assume any knowledge of the chain recurrent set
of the flow <j>; however, we shall assume given a Lyapunov function on a
subset of the state space. The question we will try to answer in this section
is: what information about the global dynamics of <j> is contained in the
Lyapunov function and how do we extract it? The obvious simple case of
having a function in a neighborhood of a point such that the point is the
unique minimum of the function is precisely Lyapunov's stability theorem,
for asymptotic equilibria.

We suppose, as usual, that the flow 0 (and the corresponding complete
vector field X) is given on a compact manifold Mn.

Key IDEA: Use the gradient vector field of the Lyapunov function
and notions of equivalence of dynamics -including the Conley in
dex.

Definition 9 A continuous function V defined on an open subset U of Mn
is a Lyapunov function for the dynamics X on the set UifVis strictly
decreasing along the flow <f> restricted to the set U. We write (V,U) for the
pair consisting of the function and its domain.

If V isC1, we require dV(X)(x) < 0 for all xeU.

Note: We reserve the name global Lyapunov function for a function as in
the Conley Theorem, in other words a Lyapunov function in Mn \ K(X).

The following proposition is proved along the lines of Lemma 3 of Section
4.

Proposition 3 Suppose we are given a Lyapunov function (V,U) for <j>.
ThenTl{X\u)<zMn\U.

Remark: In general, of course, Tl(X\u) is a proper subset of Mn \ U, as
we saw before in the discussion of attractor-repeller pairs. The content of
the above proposition should therefore be taken to be that open sets can
be 'thrown away' from state space in a search for the asymptotic or chain
recurrent part of a flow. Caution should also be exercised since we are only
asserting that the flow restricted to the open set has these properties. It
can easily happen that, for dynamics more complex than gradient-like ones,
a Lyapunov function is found that is defined on an open set that contains a
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part of a periodic orbit, for example. Any global Lyapunov function should
of course be constant on any periodic orbit.

Now we may think that a lot of dynamical information can be extracted
from a Lyapunov function if the set U is all of Mn except for a finite number
of distinct points, say E = {ei,...,ep}. However, even in this case we
cannot conclude that 7l(X) = E.

Example 1: Suppose the e» are isolated points where X is in ker dV, but
both X and dV are everywhere nonzero. Then 71 = 0, but E £ 0.

As a concrete example, take V = x\ and X = (x\ + x\, 1) in a subset
of R2; then E —{(0,0)} and there is a unique trajectory of X through the
origin that is tangent to the level of V; however, X is trivial and V has no
critical points.

What went wrong in the above example was that the gradient vector
field of the Lyapunov function also had trivial dynamics: the points e» were
not equilibria of —VV. Let us see how things improve when, together with
the function V, we consider its gradient dynamics.

5.1 A generalized Lyapunov theorem

Definition 10 Provide Mn with a Riemannian metric, < , >. Then for
any C1 function V defined on an open set U C Mn, the gradient vector
field of V with respect to the given Riemannian metric, —VV is the vector
field satisfying

dV(Y)(x) =< Y(x), VV(x) > (20)

The equilibrium points of any gradient vector field of V so defined coincide
with the critical points of V. We write cp{V) = E(-W). In fact, even
though the gradient vector field seems to depend on the chosen metric for
its definition, the dynamics so obtained are all equivalent (in a sense to be
made precise later.) Moreover, the purpose of this section is to show the
equivalence with any other vector field for which V is a Lyapunov function.

We collect some obvious facts on the relation between a function and its

gradient vector field.
A critical point e of V is nondegenerate iff e is a nondegenerate equi

librium point of the gradient vectof field -VV. In local coordinates, this
amounts to having a nondegenerate Hessian at e; also note that nondegen
eracy implies the equilibria (critical points) are isolated. Finally, since the
Hessian is symmetric, in the case of a gradient vector field, nondegeneracy
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is equivalent to hyperbolicity (no eigenvalues on the imaginary axis since
they are all real and nonzero.)

A function on a compact manifold whose critical points are all nonde
generate is called a Morse function (it therefore has only a finite number
of them.) (One can formulate much of elementary algebraic topology in
terms of Morse functions: for example, a homology theory can be defined in
terms of the unstable manifolds of the gradient flow with a natural boundary
map which can be shown to be equivalent to singular homology; it is called
Witten-Floer homology. Also, Poincare* duality is easy to see by revers
ing the direction of the flow, i.e. letting the gradient push us up instead of
down.) Nice references for Morse theory are: [19], [7], [24] and the wonderful
article by Bott [2].

Let E = {ei,..., ep} be a finite set of points of Mn. The extent to which
the dynamics of a vector field possessing a Lyapunov function resembles the
dynamics of the gradient vector field of the function is made precise in the
following theorem:

Theorem 4 (Generalized Lyapunov Theorem): Suppose V is a C1
function on Mn such that (V,Mn \ \E\) is a Lyapunov function for the
dynamics X on Mn. Suppose E = cp(V). Then:

1. 7l(X) = E.

2. for alii = 1,... P, if the index of the equilibrium point e» of -VV is
ind ei = ki, 0 < ki <n, then

CIx(ei) = Zki=CI-vv(ei) (21)

where CI stands for the Conley index of the isolated invariant set ej
and E^ is a pointed ki-sphere.

The next section explains these terms and their use in the study of global
dynamics. We then proceed with the proof of the theorem.

5.2 The Conley index

Note: The material in this section is too brief to do justice to this important
topic. I recommend that you read first the introductory chapter of Conley's
monograph and then refer to the survey articles [12] and [13].

Definition 11 A (closed) invariant set S of the flow <f> is isolated if it is
the maximal invariant set in some neighborhood U D S.
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This is equivalent to requiring S = nt€R0t(W). Nondegenerate equilibria
are isolated as are limit cycles with nondegenerate Poincare maps. We write
S = I{U) and we say that S is an isolated invariant set (IIS for short.)

It will also be convenient to consider closed neighborhoods N of S (i.e.
closedsets such that S C N°); these we shallcall isolating neighborhoods
or isolating blocks. An isolating neighborhood is thus defined by the
requirements

1. N is a compact subset of the compact manifold Mn

2. the maximal invariant set in N is contained in the interior of N.

Thus, roughly, we are not allowing trajectories in N to have 'internal tan-
gencies* with the boundary of N.

Main idea of the conley index: For a given isolating neighborhood
iV, examine its boundary dN and try and deduce something about
the isolated invariant set «S(7V), the maximal IIS contained inside
N.

(The notations N = I(S) and S = S(N) will be used often and should
be clear to the reader from the above definitions.) Thus, the Conley index is
a Black-box approach, in the sense that the behaviour at the boundary is
telling us something about the internal dynamics, even if these are not known
explicitly. Of crucial importance in this black-box study is the concept of
an exit set.

Definition 12 The exit set N+ C N is the subset of N defined by the
conditions:

1. N+ is positively invariant for the flow <P\n; in other words, ifx€ N+,
then <f>(t,x) € N+ for allt>0 such that <f>([Q,t],x) C N.

2. if for some x G N, there is a time t\ > 0 such that (j>{t\,x) £ N, then
there is a time to < ii such that <f>([Q,to],x) C N and <t>{to,x) e iV+.

Definition 13 The pair (N, N+), where N is an isolating block and N+ is
an exit set for N is called an index pair for the IIS S(N), the maximal IIS
inN°.

In general, given an isolated invariant set and given an arbitrary isolating
block for it, it is possible to modify the isolating block and make a clever
choice of exit set so as to obtain an index pair. Let us give some examples.
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Examples:
1) An attracting equilibrium e: We can always choose a local Lyapunov
function V so that N = {x ; V(x) <c] is an isolating block for e and the
exit set N+ = 0.

If, however, we are not careful and we pick a block whose boundary is
not a Lyapunov level set, then we get a nonempty exit set; try to see how,
by throwing out any piece of trajectory <f>([—to, 0],x) C N with x a point of
internal tangency, we can modify N so that is has empty exit set.
2) A saddle equilibrium, of index k: Here we use disk-diffeomorphs (sets
diffeomorphic to disks) Dk and Dn~k for the unstable and stable manifolds
using local Lyapunov functions and then we get a cylinder Dk x Dn~k as
the isolating block, with exit set along the unstable directions, i.e. along a
set Sk~l x Dn~k.
3) The empty set: locally, by the flow box theorem, we can pick a disk
neighborhood N = Dn near a nonzero point for the vector field so that
N+ = SJ_1, a hemisphere.

The above examples seem to suggest that, in agreement with the ele
mentary notion of index of an equilibrium, an index pair will have an exit
set that has dimension equal to the intersection of the unstable manifold
with a surrounding disk.

This is good, but has not given us much that is new; to bring out the
full power of the Conley index approach, we must first realize that an index
pair can be defined for an arbitrary IIS -an object for which the usual index
is not defined. Furthemore, and this is the key, it is possible to construct a
topological object out of an index pair that does not depend on the specific
index pair, i.e. is the same for any choice of index pair for a fixed IIS. This
object is the Conley index.

We give its definition, which depends on a number of elementary concepts
from topology; a brief outline of these concepts then follows.

Definition 14 Suppose an index pair (N, N+) is given and let S = S(N)
be the maximal IIS in N. Then the Conley index of the IIS S is the
topological equivalence class of the pointed space

(N/N+,[N+]) (22)

where N/N+ is the quotient space formed by identifying all the points in
N+. This class does not depend on the index pair chosen, in other words, if
(N',N'+) is another index pair for S, then

(N/N+, [N+]) »(N'/N'+, \N'+)) (23)
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5.3 Some Concepts from Topology

To understand the above definition, we need the following concepts:

1. Quotient spaces

2. Pointed spaces

3. Topological equivalence of spaces

We explain each one of these terms briefly.

5.3.1 Quotient spaces

If a surjective map p: Q -> Q from a topological space Q to a set Q is given,
the quotient topology on the set Q is defined by requiring that a subset
A C Q is open iff p-1(j4) c H is open.

The main example we have in mind is the case where an equivalence
relation ~ is given in the space H; this leads to a partiton of Q into equiva
lence classes. Call Q the set of equivalence classes. Then the canonical map
p is defined by assigning each point of 0. to its equivalence class under ~.
By the above, Q is a topological space with the quotient topology and the
map p is continuous. One writes Q = fi/ **.
Collapsing a subset to a point: In the definition of the Conley index,
we had to form the quotient N/N+. This is the quotient space under the
equivalence relation: x ~ y & x, y € N+. Thus, the elements of N/N+ are
the points of N \ N+ and the 'point' [N+] which is the collapsed exit set.
Example: Take the pair (Dk,Sk~l), a A:-disk and its boundary sphere.
Then Dk/Sk~l = Sk (check this); the intuitivereason is that collapsing the
boundary sphere to a point means drawing a string wrapped around the
disk tight, thus forming a sphere of the same dimension as the disk.

5.3.2 Space pairs and pointed spaces

A space pair (Q, A) consists of a space and a subset A of it. A map of pairs
is a map

f:(n,A)->(Cl',B) (24)

such that f(A) c B. In homotopy theory, one is interested in particular in
based spaces or pointed spaces (£l,xo). Maps between based spaces are
thus required to send basepoints to basepoints.
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In the case of the Conley index, the pair (N/N+, [N++]) is a pointed
(or based) space, since in the quotient, the exit set is considered as a single
point.
Note: By convention, if the exit set is empty, one takes the base point to
be a point disjoint from N.

5.3.3 Topological equivalence

Definition 15 Two continuous maps fo, f\ : Cl —* fi' are homotopic if
there is a continuous map

F:[0,l]xft->fi' (25)

such that F(0,x) —fo(x) and F(l,x) = /i(rr) for all x € Ct.

This says that we can continuously deform the one map to the other. We
write /o sj f\. In the case of maps 7 : Sl —• T2, the two torus, one checks
that any map wrapping once around the length of the torus is not homotopic
to a map going round it once. The classification of homotopy classes of maps
is one of the main aims of algebraic topology.

Definition 16 Two (topological) spaces Q,£1' are homotopically equiv
alent if there exist maps

f : fi->ft'
g : n'->n

such that the compositions g o / ~ idn and f o g ~ idjy.

We say that / and g are homotopy inverses of each other. It is often the
case that Q* is a subset of Q, the map g is the inclusion map and / is a
retraction, i.e a continuous map of the total space onto its subset (think of
the punctured Euclidean space Rn - {0} being retracted to the unit sphere
5n_1.) Anotherexample is the solid torus beinghomotopy equivalent to its
core, a circle.

There exist relative versions of the above definitions, in other words
applying to space pairs or to pointed spaces.

32



5.4 Examples of the Conley index

Recall that the Conley index of an IIS S is the topological type (i.e. the
homotopy equivalence class) of the pointed space

CI(S) = {(N/N+,[N+))} (26)

where (N, N+) is any index pair and we work with the convention of ap
pending a disjoint distinguished point * if the exit set is empty.

In applications, it is not always possible to compute the Conley index,
i.e. to establish the precise topological type of the quotient space N/N+.
One then uses a weaker form of the index, one that only takes into account
an algebraic-topological object associated to a homotopy equivalence class
of topological spaces. Information is lost in this process, but there is the
advantage of having available powerful methods of computation (excision,
Mayer-Vietoris sequene etc.)

Definition 17 The (co)homological Conley index h*(S) (resp. h*(S))
is the (co)homology H*(CI(S) (resp. H*(S)) of the homotopy equivalence
class of the pointed space (N/N+, [N+]).

(By i/* (resp H*) we mean the graded groups ®pHp (resp. ®PHV), where
Hp is the pth-singuiar homology group and Hp is the pth-cohomology ring
of the class CI(S).)

The use of algebraic topology can be avoided sometimes, especially if
only gradient-like systems are being considered, but is mandatory in many
other cases, as we shall see below (as soon as we allow limit cycle behavior,
for example.) The reader unfamiliar with these concepts can skip these
points -they are marked by the sign **. (I cannot resist referring you to,
for example, Fomenko [8], for a beautiful elementary treatment of algebraic
topology.)

5.4.1 Attractors

We saw that, for an attractor, it is always possible to choose an index pair
with empty exit set.

Thus in the case of an attracting equilibrium point e, the isolating block
is a disk Dn cz pt so that the Conley index is

C/(e) - E°.
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For more general attractors, the situation is very similar: an isolating
neighborhood with empty exit set exists, so that we can retract to the at
tractor itself. An example is a stabJe limit cycle 7. If 7 C Rn (thus 7 is
an embedded closed orbit in Rn), then an isolating block has the type of a
solid torus S1 x Dn~l, which is contractible to its core Sl x {0} and so the
Conley index is

C/(7) = [(7,*)l.

More generally, if K is a compact attractor that admits a 'tubular' iso
lating neighborhood, then

CI(K)*(K,*).

5.4.2 Saddles

A saddle equilibrium point s of index k has Conley index

CI(s) cz Ek.

This isbecause, as we saw, we canisolate using the pair Dk x Dn~k with exit
set 5fc_1 x Dn~k. Collapsing theexit setgives thesame space as Dk/Sk~1 ^
Sk, since the 'stable' directions do not play any role (we can make the disk
very thin by squeezing down along the Ws(s) before weform the quotient.)
** A hyperbolic limit cycle 7 of index k has locally the structure of a vector
bundle £^(7) -» 7 with fibre Rn that decomposes into the product W£c(7) x
1^,^,(7). By 'squeezing in' the stabledirections, we end up with a fc-bundle
Ek(j) -» 7 (i.e. only the unstable manifold matters); this may be twisted,
i.e. not a product. The exit set for this 'disk' bundle is the sphere bundle
sk~lh).

The quotient Ek(fy)/Sk~1{ty), by a remarkable coincidence, is precisely
what is called the Thorn space T(Ek(i)) of Ek(i) in algebraic topology
(a much studied object, of relevance to areas such as cobordism theory and
the Lefshetz fixed point formula -see [21], [11], [9].)

The Conley index is then the topological type of the Thorn space

C7(7)*Tfc(7)

This is not easy to compute -or even to visualize. Some nice algebraic-
topological machinery comes to our aid, in the form of the so-called Thorn
isomorphism. Suppose Ek -» B is a fc-vector bundle over the base space
B and suppose we have a Riemannian metric given on E. Then the disk
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bundie Dk(B) and sphere bundie Sk~1(B) over B can be defined (with fibre
the unit closed disk and its bounding sphere respectively.) The Thom space
T(Ek) isnow defined, asabove, to bethequotient Dk(B)/Sk~1(B). It is to
be considered as a pointed space, with distinguished point to = [Sk~1(B)].

Theorem 5 (The Thom Isomorphism): There exists a group homo-
morphism between the integral homology groups

t :Hp+k{{T(Ek), to); Z) -> HP(B, Z)

for all p, called the Thom morphism; this is in fact an isomorphism of
groups.

A similar statement holds forcohomology. Sowecan compute the (co)homology
of the Thom space from the (co)homology of the base.

In the case of a limit cycle 7, Hp(i) = Z for p - 0,1 and zero otherwise.
Thus Hk((T(y),to)) £ Z and tffc+i((T(7),to)) = Z and is zero for all p >
k + 1. In R3 for example, with k = 1, we get H\ and #2 equal to Z and
Hp —0 forp > 2. In fact in this special casewe can seethat the Thom space
is actually the wedge sum SlvS2, confirming the computation of homology
(can you visualize this?)

5.4.3 Normally hyperbolic invariant sets

For IISs more general than equilibrium points or limit cycles, a common
assumption is that in directions normal to the IIS, we have hyperbolicity
(and so roughlylocal stable and unstable manifolds.) Wethen proceed along
lines similar to the case of a limit cycle:

We 'ignore' the stable directions and consider the Thom space obtained
by collapsing the bounding sphere bundle of the unstable manifold to a
point. The homological Conley index can then be computed using the Thom
isomorphism. As wedo not have in mind applications where it is desirable to
design dynamics with IIS more complicated than equilibria and limit cycles,
we do not pursue this general case any further. **

5.5 Sums and products of Conley indices

Let ($l,xo), (£l',xi) be two pointed spaces. Sometimes we shall write Q for
a pointed space (the distinguished point being understood.)
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Definition 18 The wedge sum ft Vft' of the two pointed spaces is the
space

ftVfi' = (fiU ftVxo-z,, M) (27)
obtained by identifying the distinguished points in the disjoint union of the
spaces.

Thus, for example, E1 V E1 is a 'figure-eight' with the node point being
distinguished.

Let A = ft x {xi} U {xo} x ft'.

Definition 19 The wedge product of the pointed spaces ft and ft' is the
pointed space

ftAft' = (ftxft'/A,[/l]). (28)

Products of pointed spheres are particularly well behaved; we have

E^E^E2

and more generally
Efc A E' = E*+'.

5.5.1 Applications to the computation of the Conley index

Sums: Let Si and 52 be two disjoint isolated invariant sets. Suppose they
are isolated using blocks Ni and N2 respectively, with N\ n N2 = 0. Then
the Conley index of the maximal IIS S(NX U N2) = S\ U S2 is

C/(5i U52) = CI(SX) VCI(S2)

Caution: Great care should be taken with choosing isolating blocks: remem
ber that the Conley index takes into account the maximal IIS in N. Suppose
the IISs above are two equilibrium points, say e\ and e2, the first of which is
an attractorand the second a saddle of index 1. Then CI{e\ Ue2) = E°VE1.
However, suppose the unstable manifold of e2 intersects the stable manifold
of e2; then, if the isolating block encloses the intersection orbit, the result
ing index is easily seen to be trivial (a point). This is because the maximal
invariant set is ei Ue2 UC(ei,e2), where C(ei,e2) is the set of connecting
orbits for the two equilibria, and this is not just the union of e\ and e2-
Products: The main application here is to product Rows, i.e. those that
can be written as

x1 = /V)
x2 = f2(x2).
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For example, given a linear flow that can be written, in some coordinates as

X\ = X\

x2 — x2

Xk — %k

Xk+l = -Xk+l

Xn = ~%n

we conclude that, since along each of the coordinates, the index of the origin
is either E° or E1, the index of the origin in the product flow is

C7(0) = fcE1 V (n - fc)E°

which, by the properties of the product, is just E*, as we expected.

Algebraic structures Let V denote the set of pointed spaces. The wedge
sum and product are defined on V; we can ask: in what sense are they like
the usual algebraic sums and products?

It is obvious that the sum does not make V into a group: if either of the
two pointed spaces ft and ft' is nontrivial (not a single point, denoted *),
then ft V ft' 7^ *. Thus, with the one-point space playing the role of zero,
there are no inverses in (V, V).

On the other hand, the product A is more like the usual multiplication.
The reader should check that we have the properties

*Aft = * (29)

E°Aft = ft (30)

so that * is like multiplication by zero and the unit space is the zero-sphere
E°. These properties are important later on in the discussionof connections
between saddles. Also note that it confirms the computation of the index
in a product space with a hyperbolic saddle (the E°'s had no effect in the
final index); this in some sense establishes the contention that it is only the
unstable directions that are involved in the Conley index.

Finally, a remark about modifying the sum so that it is better behaved:
considering for the moment only hyperbolic equilibria, can you think of
a way to define a 'sum' of such equilibria, so that inverses exist? (Hint:
Consider including connecting orbits.) We return to this point later.
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5.6 Continuation

One of the most important properties of the Conley index is that it is a
'stabJe object', in the sense that it is invariant under small perturbations
of the flow. This constituted, in fact, the main motivation of Conley: he
wanted to develop a theory of the 'stable features' of dynamical systems
(should we also perhaps use the term 'robust'?)

Consider an equilibrium point at the precise moment when it is under
going a saddle-node bifurcation; it is obviously not (locally) stable, since
its topological type changes by small changes in the bifurcation parame
ter. However, the index of the equilibrium in the sense of Conley does not
change locally. This is because, in order to compute the index, we had to
isolate the IIS using a block and this block continues to isolate for nearby
Sows! (Check that in R2 this index is trivial for the saddle-node bifurcating
equilibrium.)

The continuation property can now be stated: suppose we consider a
dynamical system that depends on a number of parameters

* = /(*, A) (31)

where A € A, some set. One can define a natural 'product flow' in Mn x
A (the dynamics in A being trivial) and thus we can talk about isolated
invariant sets, isolating blocks etc. for the product flow.

Let N be an isolating block for the product flow; this means that it
isolates S(N), the maximal invariant set in N. If N is of the form Nqx Ao,
where No C Mn and Ao C A, then we call N a product neighborhood. Since
the dynamics in parameter space are trivial, we see that No x Amust be an
IIS for the flow f\ for all A € Ao- We say that N gives a continuation for
the IIS 5(A) of the flow, in the subset Ao of parameter space.

In the case of our bifurcating equilibrium (say at 0), we can take Ao =
[-e, e]cR and No any (closed) neighborhood of the origin that misses the
other equilibria of f\, for all A € [-e,e]. We then obtain a continuation
between the empty IIS and the IIS consisting of two equilibria together with
their connecting orbit (which, as far as the outside is concerned, 'looks like'
the empty set, in other words as a Conley index it is the same space as that
for the empty set IIS.)

The notion of continuation, as we saw, is not sensitive to iocai bifur
cations, but it can be used to produce a classification of IIS according to
whether one IIS can bifurcate to the other. For example, to start with the
most elementary case, the empty set can continue to a saddle-node type
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equilibrium or to the IIS described above, consisting of two equilibria and
a connecting orbit. It cannot continue (i.e. there can be no sequence of
bifurcations not involving other IIS) to, for example, a hyperbolic equi
librium of arbitrary index or to an IIS consisting of a limit cycle of any
stability type etc. The reader shouldnotice how this concept compares with
the elementary theory of two-dimensional dynamics and in particular the
Poincare^Bendixson theory. (What is really special about planar systems is
that compact IISs can only be equilibria, limit cycles and unions of equilibria
with connecting orbits.)

The following nontriviaiity theorem is indicative:

Theorem 6 Suppose the Conley index of some index pair (N, N+) is not
trivial. Then there is a complete trajectory of the flow in N', i.e. S(N) ^ 0.

5.7 Morse decompositions, orbit diagrams and Lyapunov func
tions

Recall that the set of all attractor-repeller pairs A is at most countable
infinite. A finite object can be defined that captures interesting detail about
a flow; this object, called a Morse decomposition, is a generalization of the
more classical (ca 1960) one of the orbit diagram of a Morse-Smale flow.

In this section, we shall present the rudiments of Morse decompositions
and their uses and also make the crucial connections with global Lyapunov
functions.

We start with a compact isolated invariant set 5, which we may think
of as either the whole state space, if compact, or as the compact global
attractor of some dissipative dynamics.

Definition 20 A Morse decomposition M of the IIS 5 is a finite col
lection of IIS, {Mi,..., M/v}, Mi c S, such that for any x £ UiMi, the a-
and Lj-limit sets ofx, ct(x) and u(x), are subsets of distinct members of the
decomposition, say a(x) C Mi and u(x) C Mj, i ^ j.

The IIS Mi, i = 1,...,N of the decomposition are called Morse sets.
Roughly, each Morse set consists of components of the chain recurrent set,
together with sets of connectingorbits. It is a more general object than an
A-R pair, which consists of only two Morse sets. Also note that we have
that Tl(<f>) C UiMi and hence there exist Lyapunov functions that are strict
away from the set UiMi. In fact, it is not difficult to see that there are
Lyapunov functions that are constant on each M» and strict elsewhere (in
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Figure 2: Orbit diagram of planar flow

the construction of global Lyapunov functions take only those attractor-
repeller pair that do not break up any of the Morse sets in the given Morse
decomposition.)

Definition 21 Given an ordered pair of distinct Morse sets (Mi,Mj), the
set of connecting orbits C(Mi, Mj) is defined as the set of all orbits whose
a-limit set is in Mi and whose u-limit set is in Mj.

Morse decompositions are related to a simpler object, defined for Morse-
Smale flows; these are flows with a finite number of hyperbolic equilibria
and limit cycles which exactly coincide with the chain recurrent set of the
flow and whose stable and unstable manifolds intersect transversely.

Definition 22 The orbit or Smale diagram of a Morse-Smale flow is
the directed graph obtained as follows:

1. The vertices are the equilibria and limit cycles of the flow.

2. A directed arrow from a vertex h to a vertex Ij exists iff there is an
orbit whose a-limit set is exactly /» and its u-limit set is exactly Ij.

Note that it is possible, and convenient for drawing an orbit diagram, to
distinguish levels from 0 (bottom) to n (top), according to the index of the
hyperbolic limit set. One easily sees, from the transversality condition, that
all arrows then point 'downwards.' An example of an orbit diagram is given
in Figure 2.

Let us isolate three crucial features of orbit diagrams; these are:

1. Indexing: It is possible to classify limit sets according to their clas
sical (Morse) index -the dimension of the unstable manifold.
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2. Transversality: This, as wesaw, was equivalent to having the arrows
point down, from limit sets of high index to limit sets of lower index.

3. Lyapunov functions: It is possible to choose a Lyapunov function
V such that, for any limit set U, there are values of the Lyapunov
function V such that /» is the maximal invariant set in the set lying
between the two levels of V; in other words

S({x;Cl<V(x)<c2}) = Ii. (32)

This is a slightly more general statement than that in elementary
Morse theory referring to gradient flows (and it needs proof, which
the reader should look up in the standard references on Morse theory.)
Also note that the exit set for this neighborhood is exactly the lower
of the two levels, {x ; V(x) = ci}.

Finally, any Lyapunov function gives a total order of the IISs of the
Morse-Smale flow that is consistent with the partial order of Defini
tion 22.

We ask the question: how do these features generalize in the case of an
arbitrary flow?

We saw that it is always possible to find Morse decompositions -since
A-R pairs are (trivial) Morse decompositions. Morse decomposition are not
unique, though, in general.

Let us look at the above three attributes of orbit diagrams in turn and
see how we can go about building an 'orbit diagram' from a Morse decompo
sition. The obvious starting point is to take the Morse sets as vertices and
to connect them with arrows whenever there is a trajectory whose a-limit
set is in one Morse set and its aMimit set lies in the other.

Indexing: This is obviously generalized by the Conleyindex; note that we
have lost the simple indexing by levels, since the Conley index is a topological
space and there is in general no way of ordering these spaces by the integers
(can we use some other totally ordered set? If so, how?)

A related, important question we should be asking at this point is: what
stability information is contained in the Conley index?

Two things are clear: the correspondence between IISs and their Conley
index is not one-to-one, except by restriction to simple IISs, such as equi
librium points. Despite this non-uniqueness, however, we may choose to
classify IISs by their index and call an IIS an 'attractor,' for example, if it
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admits an isolating block with empty exit set. This is a crude classification,
but is useful in some cases (as in the discussion of bifurcations above.)

(In the case of isolated equilibrium points, it should be clear that each
Conley index E* corresponds to a unique topological type of equilibrium
point.)

Transversality: The condition that weimposedon points outside the sup
port of the Morse sets going to distinct Morse sets in negative and positive
time, together with the fact that Lyapunov functions exist there, implies the
no-cycle condition, i.e. that we cannot have a closed sequence of arrows
all pointing in the same direction along the loop.

However, this condition is not equivalent, in this case, to transversality
of stable and unstable manifolds (assuming they exist): consider the case
of a two planar saddles connected by a trajectory, i.e. such that Wu(si) n
Ws(s2) ^ 0, but Ws(si) n Wu(s2) = 0. In this case, one can make the
saddles si and s2 be Morse sets of a Morse decomposition and a global
Lyapunov function can be found; yet transversaility fails.

We conclude that Morse decompositions are clearly a generalization of
orbit diagrams, even if weconsider systems with only simple chain recurrent
set (equilibria and limit cycles); in particular, a Morse decomposition ex
ists for certain systems that fail the transversality condition of Morse-Smale
flows. Be careful, though: if the two saddles are connected by two nontrans-
verse orbits, then this saddle connection is part of the chain-recurrent set
and hence cannot be broken down into simpler IISs.

Lyapunov functions: This is an important aspect of the theory we are
about to develop, so we start with some preliminaries.

The Morse sets Mi,...,Mn of a Morse decomposition are partially
ordered by the relation

MiyMj^=>Bx: a(x) C M» ,u(x) C Mj. (33)

This relation is well defined by what we have said and it means that we can
assign 'arrows' between vertices in the 'orbit diagram' of a Morsedecompo
sition. (Wecontinue using the term 'orbit diagram' since it is clear what we
mean and it aids visualization.)

If a Lyapunov function V is given for the flow <f>, we have a total or
dering of the Morse sets by the relation

Mi h Mj «> 3/i, Ij € 1l(<f)), IiCMiJjC Mj :V(h) > V(Ij). (34)
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(Remember that V must be constant on each connected component of the
chain recurrent set.) The relation is well defined (check) and moreovermust
be consistent with the partial order of the Morse decomposition described
above!

5.8 Proof of the generalized Lyapunov theorem

Part (a) is easy: We know, since the Lyapunov function is strict away from
E, that 71{X) C E. Each point in E must be an equilibrium of X; this
may sound obvious (it was not part of the theorem's assumptions), but is
only true because the points of E are nondegenerate critical points of the
Lyapunov function.

Indeed, suppose X{a) ^ 0, e» € E. By a flow-box argument, there is
a neighborhood N of e» such that the image of the Gauss map restricted
to N is a contractible neighborhood of Gx(ei)> However, again locally, the
Lyapunov function V can be written, by the Morse lemma (see Milnor [19]),
as a 'sum of squares,' i.e. as

v(y) = 2/? +... + yl -yl+i -... -vl

Thus the Gauss map on a level set is onto, contradicting the fact that the
image of the Gauss map of X is contractible. (This is more or less the
argument one uses to provethe Krasnosel'skii-Brockett necessary condition,
of course.)

Part (b) now follows from the assertion that any equilibrium point of
a gradient-like flow can be isolated using Lyapunov function intervals and
level sets and, as a consequence, the index of the equilibrium is determined
by the Conley index of the index pair (V^dci,^]), V-1(ci))- In case the
value of V is the same for two equilibria, we must first perturb V to make
it generic, i.e. to ensure that V(e») ^ V(ej), for any distinct e»,ej in E.
Comment: Note that the theorem cannot assert that —VV and X have

the same orbit diagram; this is false, in general, as Example 1 showed.

Exercise 2 1. Show that ifei, ej are equilibrium pointsof a Morse Smale
flow such that C(e»,ej) ^ 0 and [mdei —indejl = 1, then

CI(C(ei,ej)) = * ? C/fe) vC7(e;)

2. Show that in the absence of the transversality condition, in other words
if two equilibrium points have a one-dimensional intersection of their
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stable and unstable manifolds, then

C/(C(ei,ei)) = C/(ei)VC/(ei)

It is thus possible for the Conley index to be 'blind'to the presence of con
necting orbits. A subtler tool, called a connected simple system, con dis
tinguish between the qualitatively different perturbations of this nongeneric
situation (see [12] for an example.)
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6 Global Control Design Through
Morse-Lyapunov Functions

The aim of these notes is to present a way of using global feedback controls
to design nontrivial global dynamics. The specification of the desirable dy
namics is for now only a qualitative one. Thus in the case of stabilization,
we specify a rather simple type of dynamical behaviour (one with a single
asymptotically stable equilibrium point) and we do not address issues such
as transient performance, robustness etc. In this section we define a way
of specifying global dynamics to be achieved through control. This method
uses what is in some sense the complement of the concept of a Morse decom
position, which we shall call a Morsespecification. The analysis of dynamics
presented in Section 4 will naturally play a crucial role.

Let us first make precise the notion of equivalence as used in the theory
of dynamical systems.

Definition 23 Suppose two flows, <j>1 and <j>2 are given on the compact man
ifold Mn. We say that <f>1 and <f>2 are topologically orbitally equivalent
(TOE) if there exists a continuous junction r : Mn xR-»R and a home-
omorphism h : Mn —» Mn such that

1. t(x, 0) = 0 for all x € Mn and r is strictly monotone increasing as a
function oft for all x.

2. For all x € Mn and all t € R,

/i(^(t,a;)) = 02(T(a;,t),/i(x)), (35)

in other words, the diagram

Mn
4>lM

Mn

hi ih

Mn
02(T(-,t),)

Mn

commutes for allt€K.

(36)

This definition is weak enough to get rid of so-called moduli, for example
the eigenvalues of the linearization at an equilibrium point would be in
variants if we insisted on h being a diffeomorphism, yet strong enough to
guarantee that oriented trajectories of one system are mapped one-to-one to
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trajectories of the second system (and so in particular TOE dynamics have
chain recurrent sets that are mapped componentwise to each other and also
have the same orbit diagram.) It is not true, however, that fixing the orbit
diagram of a flow fixes the TOE class even for Morse-Smale flows.

For the purposes of control, we have a choice as to what definition of
equivalence to use. If we specify that we want to achieve dynamics in a
given equivalence class, we come up against problems in order to guarantee
the desirable global behaviour. This is because we shall use functions and
as we saw the dynamics for which the given function is a Lyapunov function
does not have a fixed orbit diagram, in general. It is worth remembering
that a global Lyapunov function, according to our theorem, does not fix
the orbit diagram, but only the chain recurrent set components and their
Conley index.

Let us make these issues more precise and give a description of the topo
logical way of specifying global dynamics through functions.

6.1 Morse specifications of desirable dynamics

A qualitative description of dynamics will be of little use if the dynamics we
specify are not structurally stable. The concept is a basic one in the theory
of dynamical systems.

A topology can be defined on the space of all vector fields of a fixed
differentiability, say the Ck vector fields on Mn (see Hirsch for details [10].).
We write the metric space thus obtained Xk(Mn) (for Mn compact.)

Definition 24 A flow <j> is called (Ck-) structurally stable if there is
some open neighborhood of it in the space Xk(Mn) consisting of topological^
orbitally equivalent flows.

A local definition is possible, leading to the conclusion that hyperbolic equi
libria and limit cycle are structurally stable. Globally, transverse intersec
tions of stable and unstable manifolds are structurally stable. More general
is the concept of a normally hyperbolic chain recurrent set.

The early hope that structurally stable systems are 'dense' in the set
of all vector fields proved false with the discovery by Smale of open sets
consisting of structurally unstable systems (in four dimensions; later, three
dimensional examples were found by Newhouse.)
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6.1.1 Gradient-like dynamics

Fix a number of distinct points in Mn, ei,...,ep and integers fc», 0 < fc» < n,
i = 1,..., P. The e» are the desirable equilibria and the ki are their indices.
We define the set

E = {(ei,ki);i = l,...,P}

and use the symbol \E\ (forthe 'support ofE') to denote the set {ei,..., ep}.
Naturally, there are topological limitations on the number and config

uration of these 'equilibria' (by the Morse inequalities, for example, which
require the number of equilibria at each index level to exceed the corre
sponding Betti number.) A simpler way to guarantee that the specification
makessense dynamically is to alsoassume given a Morse function ho, called
the validating function, having the property that its gradient vector field
has the set E as its chain recurrent set (with the stability type given by the
indices A:».)

Definition 25 A Morse specification M of gradient-like dynamics con
sists of a set E as above, together with a validating Morse function ho.

The validating function ho has an orbit diagram that implies a partial order
on the 'equilibrium points' in |E|.

Now consider Morse functions whose gradient dynamics are top. orb.
equivalent to those of ho and whose critical set is precicely \E\. We call
these the Morse-Lyapunov functions for the Morse specification M and
we denote the set by F(M). The name is chosen to indicate that these
'global' functions are the analogue of the more familiar 'local' Lyapunov
function candidates.

In this setting, we say the dynamics with Morse specification M has
been achieved if there is a section U in T(D) and an element h € F(M)
such that

dh(X + U)(x) < 0 (37)

for all x € Mn \ \E\.
We see that this is an existence problem that has two components:

1. Finding an 'appropriate' Morse-Lyapunov function h. 'Appropriate'
in this context means exactly one for which a suitable feedback control
exists.

2. Finding an explicit feedback control, U € T{D).
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It is reasonably well-understood by now that the first problem is the crucial
one; this is clear, for example, in the control Lyapunov function approach
of Artstein-Sontag (see Bacciotti [1].).

It is worthwhile to point out the main differences between this approach
and ours. To start with, the CLF approach is primarily local, in that it deals
only with stabilization. This is not too important. The main difference is
that the main purpose of the CLF approach is to give a controller in a nice
form (a universai controller) that can be applied once the Lie derivatives of
the Lyapunov function in the state and control directions are known. Thus,
one makes it a starting point that there exists a function V such that

for all £ in a neighborhood of the equilibrium point to be stabilized. (Here
the control system is x = f(x,u).)

The core of the theory we are developing is to solve the much harder
first part of the existence problem. This is indeed a difficult problem and
we shall bring a lot of machinery to bear on its solution. We also hope to
convince the reader that the topological methods we shall use are necessary
and well worth mastering.

Let us hasten to add that we do not have a complete solution at hand
(otherwise nonlinear control theory would have been 'solved,' to a large
extent!) We do have a reasonably complete theory in the case of constant
control distribution. We also have an obstruction theory that exploits the
various algebraic topological methods available and promises to be even
more profitable in the future.

6.1.2 More general invariant sets

Leaving the safe and well-understood world of equilibrium points behind,
we must proceed with caution.

Limit cycles present new problems, but these are essentially easy to
handle. They of course correspond to requiring the controlled dynamics
to have 'oscillatory' behaviour; for practical applications, stable limit cy
cles are the only types to consider, but doing the general case involves no
additional effort.

We must first decide the extent to which we want the limit cycles to be
localized in space and also the way the closed orbits are embedded in state
space: are we interested in knotted or unknotted orbits; is there a reason to
consider orbits that are period-doubled bifurcations of simpler orbits etc.
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The case of stabilizing a saddle periodic orbit of a chaotic attractor
illustrates these issues (the 'control of chaos' case.)

Now the definition of a Morse specification of Morse-Smale dynam
ics proceeds in a way similar to that of the previous subsection. Morse-
Lyapunov functions are still useful and orbit diagrams are obtained just as
in the case of gradient-like systems. Note that Morse-Lyapunov functions
are constant on limit cycles.

Finally, to deal with more general invariant sets or with the use of control
to alter given chain recurrent sets, we shall prefera more indirect path. Since
we have chosen an approach through Morse functions and the Conley index
-both objects that are meant for the study of the 'gradient-like' part of a
flow and not for the chain-recurrent part, we 'localize' by isolating a region
of state space with the right Conley index for the IIS under consideration;
this means that the invariant set isolated has the same Conley index as the
invariant set we aim to achieve and the two are related by continuation.

The approach we give is thus similar to the study of bifurcations (local
and global), except that control enters in the given affine way instead of
through the standard bifurcation normal form.

A simple example, that of 'doubling the period' of an oscillator through
small control action, has been considered in [14]. We leave this topic for
further study in a later section.

6.2 Global aspects and limitations

We defined the class of Morse-Lyapunov functions for a given Morse de
composition M to be the class of Morse functions giving TOE gradient
dynamics.

On the other hand, the condition for achieving the control objective of
equation 37 only requires that the Morse-Lyapunov function h is a global
Lyapunov function for the gradient-like dynamics X + U. We have seen
through examples that the Lyapunov function does not fix the orbit diagram
of the flow.

In this subsection, we ask the question:
WHAT ARE THE POSSIBLE ORBIT DIAGRAMS OF FLOWS WITH LYAPUNOV

FUNCTIONS IN THE CLASS F(M)7
[This section willbe completed later.]
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7 Necessary Conditions for Global Control
Design

Our approach to necessary conditions is again based on the dynamical sys
tems and topological ideas presented so far; more specifically, we shall use
the existence of (strict) global Lyapunov functions away from the chain
recurrent set. In this way, not only do we manage to recover the rather el
ementary results known for stabilization (KrasnosePskii-Brockett, Coron),
but we are able to give general necessary conditions of a global nature and
for arbitrary invariant sets (for example, new results on limit cycles are ob
tained.) We also strive to make clear the limitations of the set of necessary
conditions we derive and the difficulties in applying them to concrete control
systems. The treatment is still preliminary and these notes should be read
as a draft rather than as the final exposition.

We take the opportunity to give a capsule review of some methods of
algebraic topology. There is a good reason for doing this: in order to under
stand the various necessary conditions and the differences between them, we
need to make clear the relations between homotopy equivalence, index the
oretic results such as the Hopf theorems and the transition to the algebraic
groups of homology, homotopy etc.

7.1 Some background and methods of algebraic topology

A thumbnail sketch of a number of important concepts and methods of
computation of algebraic topology will be given. There is no effort to make
anything rigorous; we simply aim to give the basic keys to the user, so that
algebraic topological objects can be computed in applications.

Singular Homology The easiest algebraic object to handle is the graded
abelian group H*(X), the singular homology group of a topological space
X (with integer coefficients.) Powerful methods for its computation exist;
we outline the Mayer-Vietoris sequence and explain the concept of a long
exact sequence of a pair and its relation to excision.

The pth-homology group HP(X; Z) measures in some sense the 'holes'
of X that are like p-spheres. The Oth-group Ho(X) is always equal to Z, if
X is connected. There is a way of defining reduced homology groups Hk
so that ifo(X) = 0 for any connected space and all higher groups coincide.
Let us give some examples.
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Thegroup Hi(Sl) is isomorphic to Z (which is also the same as n^S1),
the fundamental group of the circle.) This group, therefore, contains the
degree information that says that maps from the circle to itself are classi
fied, up to homotopy, by the net number of times they wind around the
circumference.

For the sphere of arbitrary dimension, S™, m > 1, the only nontrivial
homology group is the mth one, //m(Sm) ^ Z. So far, we have restated
the results on the homotopy groups irk since, by the Hurewicz isomorphism
theorem, homotopy and homology groups are isomorphic at the first level
(greater than zero) where one, and hence both, are nontrivial (the abelian-
ization of the fundamental group is to be considered for the case m = 1.)

A difference between homotopy and homology groups arises first in the
case of the two-torus T2. We have that H^T2) = Z, even though 7r2(T2) =
0! (The reader may spend a minute or two pondering the difference.)

Mayer-Vietoris Sequence Suppose a space X is the union of two open
subsets, X = A U B, A, B open and A n B ^ 0. Then there is long exact
sequence

... - Hk(Af\B) -+ Hk(A)@Hk(B) -> Hk(X) - Hk-i(AnB) - ... (38)

This a surprisingly powerful tool of computation. A first application is to
spheres, whereone decomposes 5m into twohemispheresoverlapping a little,
so that A and B are disks and AnB is homotopically equivalent to a sphere
^m-i. The basis of an inductive argument then gives, using Mayer-Vietoris:

... -> Hk(Sm~l) - Hk(A) 0 Hk(B) -> Hk(Sm) -> Hk.i(Sm~l) - ...
(39)

yielding, for k = m,

... -» 0 ->000 -• Hm(Sm) -> Hm-itf™-1) - Z -^ 0... (40)

and hence //m(5m) ^ Z, by induction, since exactness means the map in
the middle is one-to-one and onto, i.e. is an isomorphism.

Long exact sequence of a pair and excision Another very useful
method of computation of homology is the one involving the pair (X, A),
where Ac X. One gets a long exact sequence

... - Hk(A) ^ Hk(X) -> Hk(X, A) -+Hk-i(A)->... (41)
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where the groups Hk(X, A) are the relative homology groups of X relative
to A. Without getting into the precisedefinition, we mention that in many
important cases these relative groups are isomorphic to the homology groups
of the quotient space X/A and thus the long exact sequence of a pair is
extremely useful for the computation of the Conley index.

As an example, let us show that Dn/Sn~1 hasthe homology of the sphere
Sn. For the pair (Dn, 5n_1) (the sphere 5n_1 is the boundary sphere of the
disk Dn), we have

... - Hk(Dn) - Hk(Dn,S""1) - i/ik-itS'1-1) - #*-i(£>n) - ••• (42)

and so, setting k = n, we get

... -> 0 -» Hn(Dn, S""1) -• Z -• 0 ->... (43)

and hence Hn(Dn,Sn-1) ^ Hn(Dn/Sn-1) ^ Z. Similarly, one finds that,
for k ^ n (and nonzero), Hk(Dn/Sn-1) = 0.

Maps and homomorphisms Given a continuous map / : X —*• Y, one
gets an inducedmap in homology, which wedenoteeither by /* or by //*(/)

H.U): H.(X) -+ H.(Y)

This is a homomorphism of groups. One understands this to mean that
there are maps at each level of homology, i.e. there are homomorphisms
Hk(f): Hk(X) - Hk(Y) for all A:.

The usefulness of homology groups derives from the following basic re
sults

Proposition 4 // the maps f andg are homotopic, then /* = p* (actually
equal as homomorphisms.)

Proposition 5 // the two spaces X and Y are homotopy equivalent and f
has a homotopy inverse, then /» is an isomorphism and so the homology
groups H*(X) and H*(Y) are isomorphic.

Corollary 1 If f is a homeomorphism of spaces, then /* is an isomorphism.

** It is worth pointing out the abstract homological algebra viewpoint
on these matters, since it, arguably, clarifies the topological approach. The
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notation Hm(f) was chosen because i/» is a functor between two cate
gories, the category hTop of homotopy equivalence classes of topological
spaces and the category Ab of abelian groups. (The objects of hTop are
equivalence classes of topological spaces and the morphisms are the ho
motopy equivalence classes of maps. The objects of the category Ab are
abelian groups and the morphisms are group homomorphisms.) The above
propositions are used to prove the functorial properties in this case (if you
know what they are, check them.) **

When the space X is a finite-dimensional manifold, the homology groups
Hk(X) are finitely generated; there is in this case the following basic struc
ture theorem for finitely generated abelian groups

Theorem 7 (Structure Theorem) Any finitely generated abelian group
G decomposes uniquely as

G = F@t,

where F is free and r is torsion.

In fact, one knows r in more detail (see for example, Lang [18].) The
dimension of the free part of the homology group Hk is called the fcth-Betti
number, bk = d\mHk(X). The Euler characteristic xPO Is defined as
the alternating sum of the Betti numbers

TAX) = £ (-i)*fc.
k

7.2 Collections of necessary conditions

We shall need the definition of a Gauss map. We assume that Mn = Rn or
is some open subset of it.

Definition 26 1. SupposeX is a vectorfield that is nowherezero in Mn.
The Gauss map Gx : Mn -» S"-1 is defined byx>-> X(x)/\X(x)\.

2. Suppose Nn~l C Mn is a submanifold such that the vector field X is
nowhere zero on N. Then the Gauss map Gx\n >Nn~x —> S71"1
is given by restricting Gx to iVn-1. The important thing about this
Gauss map is that it is a map between spaces of the same dimension,
one of which is a sphere.

3. If, as above, AT""1 c Mn is an oriented submanifold of M, we also
define the Gauss map Gn : Nn-1 —• 5""1 by: x i-» n{x), where n is
the vector field of 'outward' unit normal vectors to N. This is also a
map between manifolds of the same dimension.
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7.2.1 Index-theoretic results

We give an overview of results using the classical topological index of equi
librium points; the presentation is not for the most part novel, but an effort
is made to use a modern viewpoint.

If e € Mn is an isolated equilibrium point of the vector field X, take a
'ball neighborhood' U of e (an open set homeomorphic to a ball) such that e
is the only equilibrium of X in U and its boundary N = dU is a submanifold
homeomorphic to a sphere. Then the Gauss map Gx\n extends to a map
from S71"1 to itself

where h is the homeomorphism for the ball neighborhood U.
At the level of homology, we thus get a homomorphism ip = Gx\n ° h

from Hn-iiS"'1) to itself; since this group is isomorphic to Z, we get a
homomorphism from Z —* Z. Such maps are specified by the image of the
generator, say a of i/n-i(5n_1). If ^(a) = ka, then k is the (topological)
index of the equilibrium e. It does not depend on the precise U chosen.

The classical theorem of Hopf describes maps from the sphere to itself.

Theorem 8 (Hopf's Classification Theorem) Homotopy equivalence
classes of maps S71'1 —»S*1-1 are in a one-to-one correspondence with the
integers. For each integer k, the class of maps corresponding to it is called
the class of maps of degree k.

For a hyperbolic equilibrium point of (stability) index A;, the topological
index is equal to (—l)n~*. Degree k maps are relatively easy to visualize
(consider the equilibrium at the origin of the system written in complex
form as z = zk.)

It is, moreover, true that maps to the sphere are classified by degree even
when the domain is not a sphere; this is the following generalization of the
Hopf theorem (see Whitehead [26], p.244)

Theorem 9 (Hopf-Whitney) The homotopy classes of maps of an (n —
I)-dimensional manifold Nn~l to Sn~1 are in a one-to-one correspondence
with the elements of the cohomology group //"""^A7""1^).

Corollary 2 If N is orientable, then the maps from Nn~l to S*1'1 are
in one-to-one correspondence with the integers; they are thus classified by
'degree.'
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This is because for every orientable manifold, /fn~1(ATn~1) a Z. If N is
not orientable, then this group is Z2 and two maps are homotopic if and
only if they have the same mod-2 degree.

The global version of the index result is the Poincar4-Hopftheorem:

Theorem 10 (Poincare*-Hopf) 1) Suppose Wn C Rn is a compact subset
with nonempty interior such that its boundary is an (n — l)-dimensional
submanifold of Rn. Suppose X is a vector field on Rn that is nowhere
vanishing on dW. Then

deg Gx \aw = 53 ind ei• (44)

2) Suppose Mn is a compact manifold and X a vector field on Mn with
isolated equilibria. If the boundary ofMn is not empty, we require the vector
field to point inwards at all points. Then, we have

^indei = (-l)nX(Mn) (45)
ei€E

where x(Mn) is the Euler characteristic of the manifold Mn and E is the
(finite) set of equilibrium points of X.

In particular, the sum of the indices is a 'topological invariant' and does
not depend on the vector field chosen.
8) Suppose Wk is any submanifold ofRn(0<k<n —l.) Consider a
'tubular neighborhood' N€(Wk) so that dNc(Wk) is an (n —\)-dimensional
submanifold o/Rn. IfX is any vector field on Rn such that, on Wk, X has
nondegenerate equilibria, then

£ ind e» = deg Gx \dNtm (46)

We have given different versions of this important Theorem to help the
reader find the most convenient way of extracting information in any par
ticular example. Milnor [20] proves versions (2) and (3) and contains a nice
discussion.

Remarks: 1) The index already contains considerable topological infor
mation since, as we saw, maps to the sphere are classified by degree. For
the case of an attracting equilibrium, we know that the index is (—l)n,
which means that the generator of Hn-iiS*"1) is mapped to its negative.
As a result, the Gauss map gives an isomorphism in homology and we
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also conclude that the Gauss map must be onto. This is essentially all the
information in the Krasnosel'skii-Brockett-Coron necessary conditions.
2) It must be emphasized that the index is 'blind' to all other dynamical
features; only the equilibria affect it. Looking at it from the opposite side,
only the topological type of the enclosing surface affects the configuration
of equilibria inside (to the extent of fixing their index sum.)

A few examples to illustrate these points:

Examples:

1. In Rn, a ball with a vector field pointing inwards at the bounding
sphere must contain equilibria whose index sum is (-l)n. If these are
all hyperbolic, then the options are

• A single attracting equilibrium.

• Two attractors and a one-saddle.

• If n is even, a single repeller is not ruled out; we notice that the
two cases can be distinguished using the Conley index, since the
exit set is empty.

• Other configurations with the above net index sum.

2. In R3, an embedded torus T2 gives possible Gauss maps of arbitrary
degree. If we know that there are no equilibria enclosed, as for example
in the case where the torus isolates a limit cycle, then the degree is
zero, by part (1) of the Theorem, independently of the stability type
of the limit cycle. This means that the Gauss map is homotopic to the
constant map in this case. In the particular case of an attracting limit
cycle, we thus see that the index does not give any information. We
shall give alternative conditions for limit cycles in the next subsection.

3. On the torus T2, we have, by version (2), that any vector field must
have total index sum equal to zero, since x{T2) = 0. Thus, we allow
vector fields with no equilibria, or one attractor and one saddle, or one
attractor, one repeller and two saddles (are these all possible?)

Necessary conditions using the topological index: It should now be
clear how to derive necessary conditions for achieving global dynamics using
the topological index.

Suppose given a Morse specification of gradient-type ((E,ho),F(M)).
In the state space, any choice of oriented hypersurface that avoids \E\ gives

56



an index sum determined by the equilibria enclosed. This then determines
the degree of the Gauss map on the boundary. A necessary condition on the
control dynamics is then that there should exist sections that have a well
defined Gauss map on the boundary and whose degree is as required by the
Poincare-Hopf Theorem.

In particular, if the index sum is equal to plus or minus one, then the
Gauss map must be onto. Other values of the index sum, even zero, may
give nontrivial necessary conditions.

Let us remark that the conditions obtained can either be used locally to
check, for example, stabilizability by requiring the Gauss map to be onto
for an arbitrarily small ball surrounding the equilibrium, or globally, since
the only relevant information is that on the equilibria and any Morse spec
ification leads to index sum conditions that must be true for any compact
subset that avoids \E\.

These necessary conditions are not always easy to verify, since one needs
to check that sections with specified Gauss map degree exist. It is often eas
ier to translate them into algebraic terms (even then we must make explicit
methods of computation.) This is attempted in the following section.

7.2.2 Homotopy equivalence and homotopic results

The fundamental result that forms the key to our approach is given below; it
is an elemantary fact about some given dynamics and the gradient dynamics
of any of its Lyapunov function.

Theorem 11 LetV71-1 be a compact level set of some Lyapunov function V
for the dynamics X on Mn c R71. Then the Gauss maps Gx\v <m>dG_vv|v
are homotopy equivalent.

Proof: Let Xn be the projection of X onto the span of dV; on V, Xn is
never zero, by assumption, since V is a Lyapunov function.

Consider the isotopy of vector fields

Yt(x) = (1 - t){Xn(x)) + tX(x), 0 < t < 1 (47)

We have that Y0 = Xn and Yi = X.
Now notice that this gives an isotopy in terms of Gauss maps as well.

This is because Yt(x) ^ 0 for all t and all x € V. To see this, write Y% as

Yt = Xn + t(X-Xn)
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and notice that X - Xn is orthogonal to Xn, which is nonzero everywhere.
Now define the Gauss maps

^V^S-a-ill. (48)
Since Yt(x) is nowherezero, this is well defined, and gives an isotopy between
G° = l&I = FWI =G-ev and Gi = rfj =G*. D

For reference purposes, let us denote the set of homotopy equivalence
classes of maps between two spaces CI and ft' by

\n,n']

If / is a map / : ft -* ft', we write [/] for its equivalence class. We thus
have that [Gx] = [G-dv] in [V71"1,^"1].

Relations to the index Since the spaces involved are of the same di
mension (n —1) and the maps are into the sphere, we have, by the Hopf
theorems, that the homotopy equivalenceclasses are classified by degree.

[This section will be completed at a later draft.]

Limit cycles In the case of a limit cycle 7, we saw that the Gauss map
always has degree zero.

Additional necessary conditions are obtained by examining the Gauss
map in more detail.

Theorem 12 Suppose 7 is a limit cycle for the dynamics X on Rn. Then

1. For any e > 0, there is a neighborhood Ns(j) such that Gx{Nsft)) C
Ne(Gxh)).

2. Gx(l) cannot be contained in a half space of the sphere; equivalently,
for any hyperplane V C Rn, Gx{i) HP ^ 0. Moreover, for generic
V, |Gx(7)nP| is even.

Proof: The first part is by continuity and the long flow box.
The second part is by contradiction. Suppose there is a hyperplane

Va = {v € Rn ; o(v) = 0}, a € (R71)* such that Gx{l) n?a = 0.
Since Va separates S71"1 into two parts, we must have that a(Gx(%)) is

of uniform sign, say negative, for all a; € 7.
Choose a basis 61,... ,6n of Rn such that a(6i) = 1 and a(bk) = 0 for

k > 0. Write x\,..., xn for the coordinates in this basis.
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Claim 3 The function V(x) = \x\ is a Lyapunov function for X in some
open neighborhood of 7.

To see this, compute ^fcly We have

dV
— = (*i0-..0).1r

and, since Gx = r$T> this is just a(X) < 0.
The claim gives the desired contradiction, since Gx{l) is a closed curve.

The last part also follows from this fact. •

The Theorem thus says that, even though the image of the Gauss map
of a limit cycle is 'thin,' it still must curve sufficiently so that intersects all
possible hyperplanes.

As for the Lyapunov level sets near a limit cycle, we have

Theorem 13 Suppose 7 is a stable limit cycle for some controlled dynam
ics. Then on each level set of a Lyapunov function near 7 each direction
appears twice, in other words, for each v € Sn~l,

IGJ'OOI > 2.

Thus, even though the Gauss map of the gradient vector field of Lyapunov
functions is of degree zero, as it should be by Poincar^-Hopf, it covers the
unit sphere twice. In this case we see, therefore, that members of the same
homotopy equivalence class can have widely different Gauss images. The
proof is omitted.

7.3 The road forward

We have presented ways of deriving necessary conditions for achieving global
dynamics and we also pointed out some of their limitations. The basic aim
of our analysis, of course, has to be constructive. This will be done in the
Second Part of the Notes, where the existence problem of sections in the
appropriate homotopy equivalence class is addressed. The dynamical tools
of the First Part will still be useful. New tools will have to come into play,
however, and we hope to give a complete analysis of the obstructions to the
existence of sections.

The case of constant control distribution will occupy a large part of the
Notes, since the analysis is more satisfactory in this case.
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