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Abstract

The goal of thisresearch is to investigate theissues involved in thedesign and implementation

of continuous-time IA modulators and to compare continuous-time to discrete-time EA imple

mentations.

The conditions necessary for single-loop and double-loop second-order continuous-time mod

ulators to have the same noise shaping function as second-order discrete-time modulators are dis

cussed. The noise shaping function and the dynamic range of generalized Lth-order continuous-

timemodulators are derived. The dynamic range of continuous-time modulators is shown to bethe

same as that of discrete-time modulators.

Nonidealities associated with the implementations of continuous-time modulators are investi

gated. Nonlinearity, leakage, gain error, and non-dominant poles of the integrators, thecomparator

delay time, and clock jitter are studied.

Compared to second-order discrete-time modulators, single-loop and double-loop second-

order continuous-time modulators canachieve higher sampling frequency by approximately a fac

tor of three and four, respectively. Continuous-time modulators, however, have to be carefully

designed because of the low clock jitter requirement and the nonlinearity associated with continu

ous-time integrators.
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CHAPTER 1

Introduction

1.1 Goal and motivation

By exchanging sampling speed with resolution in amplitude, oversampled or LA analog-to-

digital (A/D) converters can achieve high resolution compared to most Nyquist rate A/D convert

ers. Because of the oversampling, oversampled A/D converters, however, are limited only to low-

to medium-speed conversion rate. This is evidenced in Fig. 1.1, where the conversion rate and the

dynamic range of oversampled and Nyquist rate A/D converters published during recent years are

shown.

From Fig 1.1, a few observations are made as follows:

• MostNyquist rate converters have adynamic range limited to below70dB dueto compo

nent matching accuracy.

•Oversampled A/D converters are typically used for applications requiring more than

70dB dynamic range. Since these converters exchange resolution in time for that in

amplitude, the conversion rate of these converters is lowerthanthat of Nyquist rate con

verters.
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Figure 1.1 Conversion rate and dynamic range of oversampled and Nyquist-rate ADC

•In general, the tradeoff between the conversion rate and the dynamic range is approxi

mately 14dB reduction of dynamic range for adecade increase of conversion rate, regard

less of the architecture of the converter.

• Some of the converters in the lower left region do not reflect mediocre designs, but are

optimized for low-power applications.

With increasing applications of converters for communications, consumer electronics, instru

mentations, and medical imaging, the demand for high-speed high-accuracy A/D converters will
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escalate. An approach to satisfy this demand is to implement oversampled or 2A A/D converters

at higherspeed.The speed of discrete-time LA A/D converters is limited by the settling processof

switched-capacitor integrators. A potential solution to alleviate this speed limitation is the continu

ous-time IA A/D converters. The objective of this research is to investigate the design and imple

mentation of continuous-time ZA A/D converters andto comparecontinuous-time to discrete-time

converters.

1.2 Thesis organization

This thesis is organized into five chapters. In Chapter 2, the conditions which allow a double-

loop second-order continuous-time modulator to havethe same noise shaping function as single-

loop continuous-time and discrete-time modulators are derived. The noise shaping function and

the dynamic range of generalized Lth-order continuous-time modulators are derived. Chapter 3

describes how nonidealities in circuit implementations affect continuous-time modulators. The

clock jitter requirement and otherdesign criteria associated with integrators and comparators are

discussed. In Chapter 4, continuous-time modulators are compared to discrete-time modulators.

Advantages, disadvantages, and critical design issues are pointed out.The lastchapter, Chapter 5,

recapitulates the resultsof this study anddraws conclusions.



CHAPTER 2

Architectures and Systems

2.1 Overview

LA modulators havebeen widely implemented in the discrete-time domain using switched-

capacitor integrators. Continuous-time LA modulators, on the other hand, have not received the

same attention despite their potential of achieving higher sampling frequency in a given technol

ogy [17].

In this chapter, the conditions necessary for double-loop second-order continuous-time LA

modulators to have the same noise shaping function as single-loop second-order continuous-time

LA modulators will be derived. The integrator time constant and loop stabilization of single-loop

and double-loop continuous-time modulators will be discussed. The noise shaping function and

the dynamic range of generalized Lth-order continuous-time LA modulators will bederived and

shown that it is the same as discrete-time modulators.

2.2 Continuous-time LA Modulators

2.2.1 Topology

In [31], Candy proposes the single-loop second-order continuous-time modulator shown in

Fig. 2.2 and shows that it has the same noise shaping function as a second-order discrete-time



2.2 Continuous-time Modulators

modulator shown in Fig. 2.1. In this section, the derivation in [31] will be extended for a double-

loop second-order continuous-time modulator.

Figure 2.1 A double-loop second-order discrete-time LA modulator
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Figure 2.2 A single-loop continuous-time second-order modulator

The signal applied tothe quantizer of the second-order discrete-time modulator shown in Fig

2.1 is given in [31] as

N-\ A/-1

»N= I <*-«K- I (N~n + l)yn (2.1)

n =0 n = 0

provided all the signals are initially zero.

For the single-loop continuous-time modulator shown in Fig. 2.2, wN is given as

^-^(l^-^^nT+^-^^T-'^-nr))-! (*-« +(*c-i)).v„) (2.
\ B u « « o

2)
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where T = — and

(n + i)r

f«r =7 J *<') <// (2.3)

nT

The coefficients of yn, or the noise shaping functions, in Eq. 2.1 andEq. 2.2 are identical when

l

rC = /,

1 2 _ 2

KC ~ 3~7 ~~ 3 J

(2.4)

(2.5)

and the feedback signal is held constant throughout each sample interval. In this case, xnT terms in

Eq. 2.2 can be written as

RC l
= (x _. + ( ) (x - —x, ,\T)) = 2xmT —x, .n v nT v 7* 7' n7 l« — \)T nT (n — I

which has spectral equivalent

2 — e sinc(-)X(u))

)r
(2.6)

(2.7)

Since the sampling frequency is much higher than the frequency of the input signal, the spectra of

xn and x' are approximately identical, i.e.

X'(©)-X(©) ;for/«/v (2.8)

The forward path transfer function of thismodulator has two poles at the origin, anda finite zeroat

(-/%) rad/s that is neededto stabilize the feedback loop.

x(t) r

—Wr > J^V-h*

wr

>±^—i
r/K:

yn
DAC

Figure 2.3 A double-loop continuous-time second-order modulator
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The double-loop second-order continuous-time modulator in Fig. 2.3 uses the inner-feedback

loop to implement the finite zero instead of using the resistor R as in the single-loop continuous-

time modulator in Fig. 2.2. The input to thequantizer of thismodulator can be written as

(rC)2/'"' N'1 \
^ =-F-[X ("-")(V~Kr^,».i,r))-I ("-« +<*-j»y„J

n » 0 n b 0 '

(2.9)

The double-loop modulator has the same noise shaping function as the single-loop modulator

in Fig. 2.2and thediscrete-time modulator in Fig. 2.1 when

rC s

K = 1.5 (2.11)

andthe feedback signal is heldconstant throughout each sample interval.

1 0

The inner-feedback loop with the gain — = - results inazero at (-/,) rad/s as in the single-
K 5 3

loop modulator. Furthermore,

''.=°'5('.r+'(.-i)r) (2-12)
which has spectral equivalent

( -m
X'tCO) = 0.5

For/«/v,

x'(co)«x(co) (2.14)

In Eq. 2.4 and Eq. 2.10, the conditions require the integrators in both single-loop and double-

loop modulators to have the transfer function

H(s) = -L =— (2.15)
SrC (f)

The time constant ofthis integrator is equal to i and the unity-gain frequency is at /u =~.

Single-loop and double-loop modulators have different advantages when nonidealities are

taken into account. This will become obvious after the discussion of different types of nonideali

ties in Chapter 3.

( ->i*L\
1 +e

V J

X (co) (2.13)
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2.2.2 Performance Analysis

x(t)

Figure 2.4 A linearized model of an Lth-order continuous-time modulator

To predict the dynamic range of LA modulators, it is necessary to know the noise shaping

function of the modulators. The noise shaping function also gives us some insights into how the

modulators perform in the presence of circuitnonidealities. In this section, the noise shaping func

tion and the dynamic range of generalized Lth-order continuous-time modulators will be derived.

The analysis presented below is based on the assumption that the quantization error in the

feedback loop of the modulator is uncorrected. Thus, the quantizer error can be modeled as an

additive white-noise source. The sampling switch at the input of the quantizer can be neglected

because the bandwidth of interest is much lower than the sampling frequency. The issue of stabil

ity for modulators with order of two or higher is neglected. The linearized model of an Lth-order

continuous-time modulator is represented in Figure 2.4, where

1 1
H{s) =

(*rC)L
(2.16)

V

The time constants of the integrators are the same as in Eq. 2.15.

The expression for the dynamic range of continuous-time modulators can be obtained using the

same approach as for the discrete-time modulators in [14]. The noise shaping function of Lth-

order continuous-time modulators can be written as
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H <s) = -H- = -r^^-A-T = (-) ;forM«/ (2.17)£W E(s) \+H(s) His) V, *

The approximation can be made because the large magnitude response of the integrators in the

baseband. By substituting 5 = ;0) into Eq. 2.17,

»£<a»-= (^V (2.18)
The spectral distribution of the quantization noise is the product of the shaping function and the

spectral density of the quantization error

See(f) =|"£(f)|2-/ (2-19)

Substituting Eq. 2.18 into Eq. 2.19 yields

S„ W= (-/•) J- (2-20)
Js Js

Integration over the baseband gives the total power of the inband quantization noise

SB= \SeeWdf= T7TT'SQ* J " (2L +l)M2L +1 Q
(2.21)

2

where the oversampling ratio, M, is defined as the ratio of the sampling frequency to the Nyquist

rate,

M = - (2.22)

The quantization error power is given in [32] as

A2
Sn = TT (2.23)

Q 12

The forward path transfer function can be written as

Y(s) H{s)

Xis) \+His)
-l ;for|*|«/s (2.24)

A
and because the full scaleinput to the modulator is ±-,the maximum signalpower at the output is

A 2

*.i. - -T- = T (2-25)
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Figure 2.5 Dynamic range of second-order continuous-time LA modulators atdifferent oversampling ratio

with input 6dB below full-scale

The dynamic range can be obtained from Eq. 2.21, Eq. 2.23, and Eq. 2.25 as

DR =
_ sig _ 3 2L + 1 .,2L +i

2 n2L
•M (2.26)

which is identical to the expression fordiscrete-time modulators as shown in [14].

Fig. 2.5 compares the dynamic range of second-order continuous-time modulators obtained

from Eq. 2.26 to the simulation results of both single-loop and double-loop second-order continu-



2.2 Continuous-time Modulators 11

ous-time modulators atdifferent oversampling ratio. Fig. 2.6 shows the simulated signal-to-noise

ratio (SNR) at different input level of both single-loop and double-loop second-order continuous-

time modulators. The simulation results in Fig. 2.5 and Fig. 2.6 are in good agreements with the

prediction based on Eq. 2.26.
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Figure 2.6 Signal-lo-noise ratio ofsecond-order conunuous-ume modulators as a function ofsinusoidal
input (M=128, fsignal/fNyquist=10-771)



2.3 Summary 12

2.3 Summary

Single-loop and double-loop second-order continuous-time LA modulators were discussed in

this chapter. The conditions necessary for double-loop continuous-time modulator to have the

same noise shaping function as single-loop continuous-time and discrete-time modulators were

derived. The integrator time constants of single-loop and the double-loop continuous-time modu

lators are equal. A finite zero, which is needed to stabilize the loop, is implemented in the forward

path in the single-loop modulator. In the double-loop modulator, the zero is implemented by the

inner-feedback loop. The noise shaping function and the dynamic range of generalized Lth-order

continuous-time modulators were derived. The dynamic range of continuous-time modulators is

the same as that of discrete-time modulators.
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CHAPTER 3

System Requirements

3.1 Overview

Circuit implementations of LA modulators do notachieve the performance of ideal modula

tors because of nonidealities present in analog circuit realizations. In this chapter, the design crite

ria for implementing continuous-time LA modulators will be discussed and compared to those of

discrete-time modulators, when applicable. Critical design criteria will be pointed out and possible

solutions will be suggested in Chapter 4.

The discussion will start from the clock jitter, asystem design issue. This will be followed by

nonidealities associated with specific building blocks. The discussion of integrator nonidealities

will include nonlinearity, leakage, gain error, and non-dominant poles. Delay time of comparators

will be examined. Lastly, the settling time of switched-capacitor integrators will be discussed

because itwill be referred toin the continuous-time and discrete-time modulator speed comparison

in Section 4.2.

3.2 Clock Jitter

In discrete-time LA modulators, sampling clock jitter results in nonuniform sampling of input

and increases the total error power in the quantizer output. This requirement, however, is relaxed
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compared to Nyquist rate converters because of the oversampling. The worst case for jitter occurs

when the input signal has the maximum rate ofchange. The inband jitter error power, assuming the

jitter is an uncorrelated Gaussian random process, is given in [14] as

h, <
K;J (27CABO,)2

8M- 8M
(3.1)

A 2 •where Bis the bandwidth of the input signal, ^ is the maximum input signal amplitude, and o( is
2

the jitter variance. This equation shows that for a fixed signal bandwidth and jitter error power, of

increases with the oversampling ratio.

In continuous-time LA modulators, the major source of jitter error is the feedback current

source. The duration of this current source is controlled by the clock as shown in the conceptual

diagram in Fig. 3.1. Therefore, the error in the duration is due to the jitter in the rise and fall edges

of the clock. Since the feedback current is subtracted from the input signal, the jitter error power

adds directly to the input signal.

Assuming the jitter is an uncorrelated Gaussian random process, the variance of charge due to

theclock jitter in the feedback current source can be written as

i=GmVi

V; o- Gm

vimax ~2

Ifb

<£ =&<2°?>

X

IV--r--4^>—j—^-
X

c a
i t

-HI*- -HK-

_/—\_
4-

Ts

I -• Df

r

Figure 3.1 Typical circuit block diagram ofcontinuous-time LA modulators

(2.2)
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Figure3.2Predictedandsimulationresultsshowtheeffectofjitteronsecond-orderLAmodulators

(M=128,A=-6dB)

Theinput-referrederrorvoltageis

vz=2A' error

lTs
wherethedutycycleofthefeedbackcurrentsourceisassumedtobe50%.

(3.3)

Sincethespectrumofuncorrelatedjitteriswhite,theinbanderrorpowercanbewrittenas

„_error

-**$-
8M(A£ar)(3.4)

Thepredictedandthesimulationresultsoftheeffectofjitterforbothdiscrete-timeandcontinu

ous-timemodulatorsareshowninFig.3.2.
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Figure 3.3 Clock jitter requirements of modulators with signal input bandwidth of 2.5MHz and inband

jitter error power limited to 96dB below full-scale input signal power

In contrast to discrete-time modulators, the jitter errorpower of continuous-time modulators is

constant regardless of the input frequency and amplitude, and the jitter variance is inversely pro

portional to the oversampling ratio for a fixed signalbandwidth and jitter errorpower.

To compare the jitter requirements of discrete-time and continuous-time modulators, Eq. 3.1

and Eq. 3.4 are set to be equal. The result yields

(of)

com _ . ft v
2^ {W}

disc

(3.5)

Consequently, for identical performance, the clock jitter in a continuous-time modulator must

be approximately M2 times smaller than in an equivalent discrete-time modulator. For example,
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for an oversampling ratio M=100, the jitter power in a continuous-time modulator must be 40dB

lower. For high speed or high accuracy converters, this represents a serious challenge. Fig. 3.3

shows the jitter requirement of continuous-time and discrete-time modulators with input band

width of 2.5 MHz and inbandjitter error powerlimited to 96dB below the power of full-scale input

signal. The continuous-time modulators in this figure require clock jitter in the range of 0.07-0.2

picosecond depending on the oversampling ratio.

3.3 Integrator Nonlinearity

It hasbeen known thatnonlinearity in analog circuits cancauseharmonic distortion that limits

the signal-to-noise ratio (SNR) at large signal levels. From the block diagram in Fig. 3.1, the inte

grator components which can generate harmonic distortion are the capacitors and the transconduc-

tors. Since monolithic capacitors are normally very linear, the concern is mainly on the

transconductors.

ideal modulators

HD2*(i>0dlB*-*d*WS9rVrmulalJon*'

HD2"»OdV- 6.05*.VmuUtibn"
fir?2'»5dB m5!p5*.prediction"
HD2*bdB ^"0.r«rsimulaUo'n —

ITD2^ddB~0.3«. prediction ~"

input (dB)

Figure 3.4 Influence of second-harmonic distortion from the first transconductor on second-order
continuous-time modulator performance as a function of sinusoidal inputs (M=128)
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By representing the transfer function of the transconductor as

i0it) =alV.(r) +a2v?(r) +a3v?(r) +...

the second and third harmonic distortion factors due to sinusoidal input signals are [35]

la2

la3 1HD, = ~VfA

where ViA is theamplitude of thesinusoidal input signal.

The first transconductor is the main source of nonlinearity because its harmonic distortion

adds directly to the input signal. This requires the linearity of the first transconductor, at the maxi

mum input level, to be as goodasthe overall accuracy of the modulator. Forexample, a modulator

with 85dB signal-to-noise ratio requires the first transconductor to have lower than 0.005% total

harmonic distortion at maximum input signal level. The simulation and analytical results of the

influence of second and third harmonic distortion of the first transconductor on the modulator per

formance are shown in Fig. 3.4 and Fig. 3.5, respectively.

ideal modulator*

ttb*i"»v>dT6"-o:«K)y*:ViroGi.uoV

WbV«5od"b-- o.r>J#."«rmuutSon"'
TtiSsVoSk - tTolsT. prediction- '
Ifo7 £bdB ~O.S*r»inTul»tio'n' "~
rTDi~®03B~O.53l-.prediction ~

18

(3.6)

(3.7)

(3.8)

laput (dB)

Figure 3.5 Influence of third-harmonic distortion from the first transconductor on second-order continuous-
time modulator performance as a function of sinusoidal inputs (M=128)
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In comparison to the harmonic distortion of the first transconductor, the harmonic distortion of

the second transconductoris attenuatedby the gain of the first integrator. Since the gain of integra

tors is inversely proportional to the frequency and the harmonics above the signal bandwidth are

suppressed by the decimation filter (assuming no aliasing), the harmonics of the second transcon-
*N

ductor are minimally attenuated at / = —.

From Eq. 2.15, the integrator transfer function is

H{s) =

In
therefore, the integrator gain at / = — is

4t£

JNHif=j) Js Js

JN Js2*(|) 2*(-L)
_ M

Quantization noise limited
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Figure 3.6 Influence of second-harmonic distortion from the second transconductor on the modulator

performance. The modulator input level is-6dB below full-scale. (M=128, fx = j^==)
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Consequently, the linearity requirement for the second transconductor can be approximated as

M.
-201og(THD2nd transconductor) < SNRmodulator - 201og (-) (3.11)

This equation shows that the linearity of the second transconductor can be approximately

(6 • log0M - 10)dB lower than the signal-to-noise ratio of the modulator. For example, for over-

sampling ratio M=l28, the linearity of the second transconductor can be 32dB lower than the sig

nal-to-noise ratio of the modulator. The prediction using this equation and the simulation results

are shown in Fig. 3.6. The predicted and the simulation resultsmatch to within 4dB when the input

to the second transconductor, which is not sinusoidal, is assumed to be sinusoidal with approxi

mately the same amplitude as shown in Fig. 3.7. This assumption allows Eq. 3.7 and Eq. 3.8 to be

used in calculating the harmonic distortion. The predicted and the simulation results in Fig. 3.6

shows that a modulator with oversampling ratio of 128 can achieve 85dB signal-to-noise ratio

when the second transconductor has lower than 0.2% THD. Further discussions of integrator

implementations are in Section 4.4.

Figure 3.7 The actual input to thesecond transconductor andtheapproximated input used forcalculation of

harmonic distortion of the second transconductor
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3.4 Integrator Leakage

The DC-gain of ideal integrators is infinite. In practice, the DC-gain is limited by circuit con

straints. The effect of limited gain at low frequency is the reduction in the attenuation of quantiza

tion noise in the baseband. In the time-domain, only a fraction of the previous output is added to

the new output.

/

Figure 3.8 Frequency response of ideal and finite-gain integrators

Fig. 3.8 shows the frequency response of an ideal integrator with the transfer function given in

Eq. 2.15 and a finite DC-gain integrator. Formodulatorsusing finite DC-gain integrators, the noise

shaping function in Eq. 2.17 is modified to

i /s + co \L
(3.12)

where co„ = 2nf and fs is the sampling frequency in the unit of Hertz. By substituting s = jto

into Eq. 3.12,

HEif) =
fj(0 +(Op\

I /,
(3.13)

s J
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Figure3.9 The effect of integrator leakage onthe performance of continuous-time second-order ZA

modulators (A=-6dB, M=128) (consdm.graph2.1)

For second-order modulators, the spectral distribution of quantization noise and the inband quanti

zation noise power are modified from Eq. 2.20 and Eq. 2.21 as

and

2 SQ _ 2tc 4 - - - - S.S«<fl=\HE(f)\2-f=iT) ifp+f +tffyf
Js Js Js

2 (2n)4
'••lw-!&[{&W)'M

fN
'2

*Q

(3.14)

(3.15)

From Eq. 3.15 and Eq. 2.21, the increase of the total inbandquantization noise can be given as
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SBi(np) 5 (2nfp \4 10 (2nfp5 (znh V 10 (lnJp V

nA\ fs ) 3tc2 I /, J•V<° = 0)

Substituting j4^c = -^—r- into Eq. 3.16 yields
'/>

(3.16)

S« -4(«.)4+"(«)a+l (3.17)
5B^c->~) 7C4 ^c 37C2 Adc

It is noted that Eq. 3.17 is identical to the expression for discrete-time modulators given in

[14]. The result of this equation andthe simulation results areplotted in Fig. 3.9.

Eq. 3.16 and Eq. 3.17 demonstrate that in order to limit performance degradation due to inte

grator leakage to less than 1 dB,

^EB or A*<>M (3'18)

3.5 Integrator Gain Error

The factors that contribute to gain variation for discrete-time modulators, whichuse switched-

capacitor integrators, are the capacitor matching and linear settling of the integrators. Linear set

tling of the integrator reduces the gain of the integrator by the settling accuracy factor Nonlinear

settling givesrise to harmonic distortion and will be mentioned in Section 3.8.

For continuous-time modulators, gain error results from the variation in RC or GmC product

of the integrators. Since RC and GmC products are not as well-controlled as the capacitor match

ing, the performance degradation of continuous-time modulators dueto the gain error can be sub

stantial.

Gain variation of both integrators in single-loop continuous-time modulators and gain varia

tion of the second integrator in double-loop continuous-time and second-order discrete-time mod

ulators, do not directly affectthe performance. This is because the variation is compensated by the

one-bit quantizers. On the circuits level, gain variation, however, can affect the integrator output

signal level, full-scale input level, etc. In contrast, gain variation of the first integrator in double-

loop continuous-time and second-order discrete-time modulators affects the performance of the

modulators because the first integrator output levelschange relative to the inner feedback signals.
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Changing the integratorgain affects the quantization noise attenuation and the modulator sta

bility. The simulation results for both second-order discrete-time and double-loop continuous-time

modulators are shown in Fig. 3.10. For integrator gain less than the nominal gain, the performance

degradation is dominated by the reduction in quantization noise attenuation, and can be character

ized as

G,
SNR reduction= 201og(7^-) (3.19)

1

where G, is the nominal gain and Gl is the gain in actual circuit implementation. Eq. 3.19 is

invalid for gain largerthan the nominal gain because the loop stability starts degrading. The mod-

ulators become unstable when G]/Gl exceeds approximately 1.5.

In Fig. 3.10, it is shown that gain variationof ±30% results in performance degradation of less

than 3dB
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modulators performance



3.6 Integrator Non-dominant Poles 25

3.6 Integrator Non-dominant Poles

The function of the finite zeros in single-loop and double-loop second-order continuous-time

modulators is to improve the loop stability by moving the closed-loop poles from the imaginary

axis into the left-half plane. The non-dominant poles in the integrators degrade the loop stability

by pushing the closed-loop poles closer to the imaginary axis and contribute excess phase lag at

high frequencies. The root locusof the poles are shownin Fig. 3.11.

X open-loop pole

/• close-loop pole

O zero (f — f )
w v« 2k3Js)

a) root-locus of modulators using ideal integrators

Non-dominant poles

b) root-locus of modulators using integrators with non-dominant poles

Figure 3.11 Root-locus of linearizedcontinuous-time second-order modulators. The non-dominant poles

degrade stability by pushing the closed-loop pole closer to the imaginary axis.
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The effect of non-dominant poleson the modulator signal-to-noise ratio is determined by com

puter simulations as shown in Fig. 3.12. Each integrator is assumedto have one non-dominant

pole. For single-loop modulators, the simulation results show that thenon-dominant pole mustbe

at least three times larger than the sampling frequency in order to limit the performance degrada

tion to 3 dB. This requirement is equivalent to limiting the excess phase due to each integrator at

the sampling frequency to less than 20 degrees. For double-loop modulators, the non-dominant

pole can betwotimes larger than the sampling frequency inorder toachieve thesame level of per

formance.

The requirement of non-dominant pole frequency has a crucial implication because it limits

the maximum sampling frequency which the modulator can be implemented for given integrators.

The difference in non-dominant pole requirements also allows double-loop modulators to be oper

ated athigher speed than single-loop modulators. This will be further described in Section 4.2.
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Figure 3.12 Simulated influence of integrator non-dominant poles on continuous-time second-order LA
modulators (A=-6dB, M=128)
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3.7 Comparator Delay

For first-order continuous-time modulators, it has been shown in [33] that delay time in the

comparators can improve the performance of the modulators. This is due to the shift in the spec

trum of the quantization noise accordingto the loop delay such that there is less quantization noise

in the baseband. The result obtained from simulation is shown in Fig. 3.13 and Fig. 3.14. The

delay time which yields optimum performance is td = 0.25T. The performance gain is as high as

15dB at small input levels. At higher input levels, the improvement becomes negligible. For

td = 0.75, there is also performance gain at small input levels. However, at high input level, the

performance is poorer than that of comparatorwithout delay time.

SNR(dB)

A(dB)

-50.00 -40.00 -30.00 -20.00 10.00

Figure 3.13 Simulated influence of comparator delay time onperformance of first-order continuous-time

modulators

For second-order continuous-time modulators, the delay time adds to the integrator excess

phase; hence, the performance is degraded. The effect of delay time on single-loop and double-

loop modulators are similar; therefore, only the results of single-loop modulators are shown in Fig.
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3.14 in order not to clutter the graph. From the simulation results in Fig. 3.14, the comparator

delay timemust be less than td = 0.27 for the SNRdegradation tobeless than 3dB.
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Figure 3.14 Performance degradation due to comparator delay time in first and second-order continuous-

time modulators obtained from simulation (A=-6dB, M=128)

3.8 Integrator Settling Time

In switched-capacitor integrators, the settling process is dominated by two constraints: expo

nential decay output and finite slew rate. A one-polemodel of the settling characteristics is given

in [2] as

yiin + \)Ts) =yinTs)+gix) (3.20)
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where

Six) =
*2x

\-e

x-sgn(x)xt«p((^)-(^)-l)
Tssgn (*) Cy

29

;W<tC

;xC<W<(x+-^)C

;W>(t+y)C

where -=• is the a half clock period available for integration, x is the settling time constant of

the integrator, and £ is the maximum slew rate of the amplifier. For simplification, the slew rate is

normalized as

Vs
r = _
^ 2gA

where g is the gain of the integrator, and ±- is the quantizer feedback level.

The number of settling time constants is defined as

« = —
1 2x

The settling characteristics can be explained for linear and non-linear settling cases as

Linear settling case (\x\ < x£)

(3.21)

(3.22)

In this case, the integrators settle without slew rate limiting from the amplifiers; hence, the

integrators settle to the same settling accuracy independent of the amplitude of the input signal.
TS

This is equivalent to reducing the integrator gain by a factor of (1 - exp (-—)). The effect of

this gain reduction is explained as gain error in Section 3.3. For second-order modulators, the

number of settling timeconstant, nT, canbeas low as threeor fourdue to their insensitivity to gain

variation.

Non-linear settling case (x£<|jc|̂ (x +-^)£)

From Eq. 3.20,



3.8 Integrator Settling Time 30

gix) =*-sgn(xK«p((Jj£)-(^)-l) (3.23)
Using Taylor series, this equation can be expanded into,

gix)=x-Asgnix)(\ +l4+ '*' ,+ Ix| -+...1 (3.24)
I T? 2!(xC)2 3!(xQ3 J

=sgn ix) (\x\ -A (l +{4 + '*' o+ Ul ,+-11 (3.25)
* l 'I I *C 2!(x02 3!(xQ3 ))

-1 75where A = x£e exp (-«-) •It is obvious that slewlimiting integrators create harmonic dis-

tortion. In contrast to analog feedback loops, the feedback loops in ZA modulators do not attenu

ate the harmonic distortion. This is because, in XA modulators, only the average of the feedback

signal, not the feedback signal itself, tracks the input signal. Therefore, the amplitude of the first

integrator input is not reduced as in analog feedback loops. Another interesting fact is that, due to

the alternating feedback level between positive and negative values, even-order harmonics as

shown in Eq. 3.24 and Eq. 3.25 are almostcompletelycancelled.

However, hand-calculating the amount of harmonic distortion usingEq. 3.24 provesto be very

tedious; therefore, the effect of settling process on the performance of the modulators was deter

mined by computer simulations. Fig. 3.15 shows results obtained from second-order modulators

with integrator gain of 0.5, quantizer feedback level equal to ±0.5, andthe settling model incorpo

rated in the first integrator. The harmonic distortion from the second integrator canbe obtained by

similar simulations, but the requirement is less stringent becausethe distortion is reduced by the

gain of the first integrator.

In Fig. 3.15, the upper left region of the graph where t9N> nx is the linear settling region. Due

to the absence in harmonic distortion, highperformance canbe achieved even for slow operational

amplifiers. The rest ofthe graph where C,N <nT is the nonlinear settling region. The harmonic dis

tortion from the integrators imposes themaximum performance which can be achieved from the

modulators. Itcan beseen that at large «t, the amplifier settling speed is sufficiently fast toreduce

the nonlinear effects of the slew limiting to negligible levels.
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Figure 3.15 SNR versus settling of second-order IA modulators. The results in this figure are similar
to that obtained in [2].

The model in Eq. 3.20 and the results in Fig. 3.15 are for integrators with one pole. To model

actual integrators more accurately, themodel should be extended for integrators with two poles or

complex poles.

3.9 Summary

In this chapter, several nonidealities of continuous-time modulators were studied, then com

pared to that of discrete-time modulators. The results are summarized below in the order of their

importance. The most two stringent requirements, clock jitter and transconductor linearity, will be

further discussed along with potential solutions in Chapter4.
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•Compared to discrete-time modulators, continuous-time modulators aremore susceptible

to clock jitterby approximately a factor of M, the oversampling ratio. The required clock

jitter level can be in the rangeof sub-picoseconds.

• The first transconductor of continuous-time modulators must be as linear as the overall

accuracy of the modulator. The harmonic distortion from the second transconductor, on

the other hand, is attenuatedby the gain of the first integrator. The attenuation depends on

the oversampling ratio and isgiven as (6 •log2M - 10)dB.

•The speed ofcontinuous-timemodulators is limited by non-dominant polesof the integra

tors. To limit the performancedegradation to within 3dB, non-dominant poles of the inte

grators in single-loop and double-loop modulators must be at least three times and twice

largerthan the sampling frequency, respectively.

• Comparator delay can improve the performance of first-order continuous-time modula

tors by as much as 15dB at small input levels. For second-order continuous-time modula

tors, the comparator delay time must be limited to less than 20% of the sampling period

for the performance degradation to be less than 3dB.

•The performance of single-loop continuous-time modulators is not affected by the inte

grator gain variation. This is because the variation is compensated by the one-bit quantiz

ers. For double-loop continuous-time modulators, only the gain variation in the second

integrators is compensated by the one-bit quantizers. Nevertheless, double-loop modula

tors are quite insensitive to gain variation of the first integrator. Gain variation in the first

integrator of ±30% reducesthe modulator performance by less than 3dB.

• Finite DC-gain integrators degrade the performance of continuous-time modulators.To

limit the performance reduction to within ldB, the DC-gain of the integrators has to be

larger than the oversampling ratio of the modulators.

Furtherdiscussions of the speed of the modulators, clock jitter,and integratorimplementations

are in Chapter 4.

As an example of realistic implementations, circuit requirements for continuous-time and dis

crete-time modulators with oversampling ratio of 128 are summarized in Table 3.1. It should be



3.9 Summary 33

noted that discrete-time modulators require higher frequency for the integrator non-dominant

poles. This is related to the lower achievable sampling frequency of discrete-time modulators com

pared to continuous-time modulators and is discussed in Section 4.2.

Table 3.1 A summary of circuit requirements and performance of continuous-time and
discrete-time second-order modulators. (M=128, A=-6dB)

single-loop
continuous-time

modulator

double-loop
continuous-time

modulator

discrete-time

modulator

Clock jitter (0\/7\) 10-4 10-4 10-2

First integrator HD2 and HD3 0.005% 0.005% 0.005%

Second integrator HD2 and HD3 0.2% 0.2% 0.2%

Integrator DC-gain 1000 1000 1000

Integrator non-dominant pole

Vn'V

3.5 2.5 10

Comparator delay itd/Ts) 0.15 0.15 0.5

First integrator gain 0.8 0.8 0.99

Peak signal-to-noise ratio 80 78 83

Ideal peak signal-to-noise ratio 86 85.5 87
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CHAPTER 4

Comparison Between

Continuous-time and

Discrete-time modulators

4.1 Overview

The motivation for investigating continuous-time modulators is to find a solution to integrator

settling time, the factor which limits the maximum speed of discrete-time modulators. In this chap

ter, it will be shown that continuous-time modulators can achieve higher speed compared to dis

crete-time modulators. Clock jitter and integrator nonlinearity, the two critical circuit requirements

of continuous-time modulators, will be discussed and possible solutions will be suggested. Cas

caded continuous-time modulators will be discussed as a means to increase the performance of

continuous-time modulators by reducing the oversampling ratio.

4.2 Sampling Frequency

The main factor which limits the maximum sampling frequency of continuous-time modula

tors is the non-dominant poles of the integrators. The results in Section 3.6 show that to limit per

formance degradation to less than 3dB, the integrator non-dominant pole must be at least three

times larger than the sampling frequency for single-loop modulators and two times fordouble-loop

modulators.
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For discrete-time modulators, the integrator settling time limits the maximum sampling fre

quency. The required slew rate and time constant for the integrators was shown in Fig. 3.15.

To illustrate the speed advantage of continuous-time modulators, an example is given here for

an amplifier with the unity-gain frequency of 200 MHz, and a non-dominant pole at 400 MHz. For

single-loop continuous-time modulators, choosing the non-dominant pole to be 3.5 times larger

than the sampling frequency, the modulators can achieve sampling frequency of 115MHz. And for

double-loop continuous-time modulators, choosing the non-dominant pole to be 2.5 times larger

than the sampling frequency yields sampling frequency of 160MHz.

For discrete-time modulators, using the number of settling time constant of 10 (see Fig. 3.15),

and only half of the cycle is available for integration. The integratortime constant is

cl

x = -x-r- = L2ns (4-1}

where -^r is the integrator gain and is assumed to be 0.5. Therefore,
c2

fs =2^—z =42MHz (4'2)

Compared to second-order discrete-time modulators, single-loop and double-loop second-

ordercontinuous-time modulators can achievehigher sampling frequency by approximately a fac

tor of three and four, respectively.

4.3 Clock Jitter

In Section 3.2, the effect of clock jitter on discrete-time and continuous-time modulators was

discussed. The ratioof the required clock jitter forboth modulators was given in Eq. 3.5 as

\on< K 0.8
ofJ AM M

ldisc

Depending onthe oversampling ratio, o; for continuous-time modulators can be one to two

orders of magnitude lower than that for discrete-time modulators. As shown in Fig. 3.3, a continu

ous-time modulator can require clock jitter in the range of sub-picoseconds. This level of jitter
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cannot beattained by ring-oscillator based phase-locked loops, which achieve jitter intherange of

tens of picoseconds. Theclock for continuous-time modulators mustbe generated by crystal oscil

lators or phase-locked loops withoff-chip tuned-LC tank circuits. Furthermore, clock distribution

circuits must be carefully designed to minimize electronic noiseand any interference from other

sections of the circuits.

4.4 Integrator Implementations

^/W

a) RC-integrator

Gm

b) one-stage Gm-C integrator

K

Gm

c) two-stage Gm-C integrator

Figure 4.1 RC and Gm-C integrators

Continuous-time integrators can be implemented as RC-integrators or Gm-C integrators

shown in Fig. 4.1. The advantagesand disadvantages of each configuration are summarized here.

The main concerns for RC-integratorsarethe resistor linearity and the high value of integrated

resistor and capacitor tolerances. The voltage coefficients of integrated resistors are normally an

order of magnitude higher than that of integrated capacitance [35]. These coefficients can be too

high for the integrated resistor to be used in the first integrator, which has to be as linear as the

overall accuracy of the modulator (see Section 3.3). The solutions are to either use a high quality

discrete resistor or eliminate the resistor by using current instead of voltage as the modulator input.
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Incontradict to switched-capacitor integrators inwhich the gain isdetermined by thecapacitor

matching, the time constant of RC-integrators is determined by the absolute value of integrated

resistors and capacitors, which can have combined tolerances as high as ±30%. According to Sec

tion 3.5, second-order continuous-time modulators are quite insensitive to integrator gain error.

Gain variation of ±30%in the first integrators of double-loop modulators results in performance

degradation of less than 3dB. This high level of gain error, however, can be aproblem in imple

menting cascaded continuous-time modulators, which require accurate gain tocancel quantization

noise (see the discussion in Section 4.5). Another drawback of RC-integrators is the loading effect

of the resistors presents to the previous stages.

Another approach to implementing continuous-time integrators is to use Gm-C integrators.

The benefits of MOS Gm-C integrators are the adjustable time constants and the infinite input

resistance. The main drawback is the limited linearity of Gm-stage of approximately 50dB [36].

This level of linearity, however, is usually high enough for the Gm-C integrator to be used asthe

second integrator as shown in Section 3.3. A discussion of one-stage and two-stage Gm-Cintegra

tors can be found in [37].

4.5 Higher-Order Modulators

It is shown in Section 4.2 that second-order continuous-time modulators can achieve sampling

frequency approximately three times higher than second-order discrete-time modulators. However,

there exist several methods to implement discrete-time modulators which can offset this speed

advantage, namely, higher-order modulators, multibit modulators, etc. In this section, higher-order

cascadedmodulatorswill be discussed as an approach which can increase the performanceof con

tinuous-time modulators beyond second-order modulators.

The principle of cascaded modulators is to use a following stage or stages to measure the

quantization error, then subtract it from the previous stage. Theoretically, there is no limit on the

performance of cascaded modulators. In practice, however, the uncancelled quantization noise

leakage from the first stage dueto integrator gain error and integrator leakage, limitsthe maximum

performance achievable from cascaded modulators.
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The gain error requirement of higher-order cascaded modulators is stringent compared to sec

ond-order modulators. This is because the performance of cascaded modulators relies on noise

cancellation. Hence, any gain mismatch both in the first and second integrators results in incom

plete noise cancellation.The performanceincreasedue to adding the cascaded stage is thus limited

by gain error as shown below

max SNR gain = -201og \-Gl°2
GYG2

(4.3)

where G}, Gj, G2, and G2 are the actual and nominal gain of the first and thesecond integrators

in the first stage, respectively. This equation presents the fundamental limit of the performance

which can be increased by addingcascaded stages. This equation also suggests that implementing

cascaded continuous-time modulators is difficult because of the inaccuracy of RC products in con

tinuous-time integrators. A possible solution to this problemis to use an LMS filter as a post-pro

cessor to correct the gain error.

When integrators have finite DC-gain, there is some leakage quantization noise from the first

stage which cannot be canceled by the following stage. Therefore, the integrator leakage require

ment of cascaded modulators is stricter compared to second-order modulators. The baseband

quantization error power of cascaded modulators using finite DC-gain integrators and second-

order modulators as the first stage is given in [12] as

8tc2 2
SB = SBQ +—r-^5- + T (4.4)
B B° 9M*Adc 3MAdc

where SB0 isthe baseband quantization error with infinite DC-gain.

Furthermore, there is a limit in performance increase for cascaded continuous-time modulators

which does not exist in cascaded discrete-time modulators. This is because the noise shaping func

tion and the delay of continuous-time modulators cannot be exactly realized in the digital domain

as in discrete-time modulators. Computer simulations show that the limitation depends on the

oversampling ratio and is different between single-loop and double-loop modulators.
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4.6 Summary

Compared to second-order discrete-time modulators, single-loop and double-loop second-

order continuous-time modulatorscan achievehighersampling frequency by approximately a fac

tor of three and four, respectively. The stringent linearity requirementof the first integrator in con

tinuous-time modulators can be alleviated by using, either an external resistor to implement the

first transconductor or current instead of voltage as the modulator inputs. The second-integrator,

which requires lower linearity, can be implemented as an Gm-C integrator. The requiredclock jit

ter, in the range of sub-picoseconds, can be achieved by using crystal oscillators.

The oversampling ratio of continuous-time modulators can be reduced by using higher-order

modulators such as cascaded modulators. The drawbacks, however, are stringent requirements on

the the leakage and gain error of the integrators.
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CHAPTER 5

Conclusion

5.1 Conclusion

In this research, second-order continuous-time modulators have been studied and compared to

discrete-time modulators. Single-loop and double-loop second-ordercontinuous-time modulators

were discussed. The noise shaping function and the dynamic range of generalized Lth-order con

tinuous-time modulators were derived. Nonidealities associated with the implementations of con

tinuous-time modulators were investigated. The advantage and disadvantage of continuous-time

modulators were shown.

Single-loop and double-loop continuous-time modulators require the same integrator time

constants. Finite zeros are required in both single-loop and double-loop continuous-time modula

tors in order to stabilize the loops. The zero in the single-loop modulator is added to one of the

integrators in the forward path, while the zero inthedouble-loop modulator is implemented by the

inner-feedback loop. The dynamic range of continuous-time modulators are similar to thatof dis

crete-time modulators.

Compared to second-order discrete-time modulators, single-loop and double-loop second-

order continuous-time modulators can achieve higher sampling frequency by approximately a fac-
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tor of three and four, respectively. The drawbacks of continuous-time modulators are in the imple

mentations. In order to alleviate the strict linearity requirement of the first transconductor, an

external resistor or acurrent inputmustbe used. The requirement which is moredifficult to meet is

the clock jitter. The required clock jitter in the range of sub-picoseconds can be achieved by using

crystal oscillators.

Even though second-order continuous-time modulators can achieve higher sampling speed

compared to second-order discrete-time modulators, there are several methods which can reduce

the oversampling ratio of discrete-time modulators, namely, higher-ordermodulators and multibit

modulators. These techniques must be applied to continuous-time modulators in order to reduce

the oversampling ratio of continuous-time modulators.
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