

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN INTERACTIVE FLOORPLANNER FOR

DESIGN SPACE EXPLORATION

by

Henrik Esbensen and Ernest S. Kuh

Memorandum No. UCB/ERL M96/4

1 February 1996

AN INTERACTIVE FLOORPLANNER FOR

DESIGN SPACE EXPLORATION

by

Henrik Esbensen and Ernest S. Kuh

Memorandum No. UCB/ERL M96/4

1 February 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

An interactive floorplanner based on the genetic algorithm is presented. Layout area,
aspect ratio, routing congestion and maximum path delay is optimized simultaneously. The
design requirements are refined interactively as knowledge of the obtainable cost tradeoffs is
gained and a set of feasible solutions representing alternative, good tradeoffs is generated.
Experimental results illustrates the special features of the approach.

1 Introduction

When determining the floorplan of an integrated circuit (IC) the objective is to find a solution
which is satisfactory with respect to a number of competing criteria. Most often specific con
straints has to be met for some criteria, while for others, a good tradeoff is wanted. The approach
taken by virtually all existing floorplanning and placement tools is to minimize a weighted sum
of some criteria subject to constraints on others. I.e., if k criteria are considered, the objective
is to minimize the single-valued cost function

3

c= J^ WiCi subject to Vi = j + l,...,fc: c,<Cj (1)
i=i

for some j, 1 < j < k. Here c, measures the cost of the solution with respect to the i'th criterion
and the wfs and C,'s are user-defined weights and bounds, respectively. A main reason for the
predominant use of the formulation (1) is its convenience from an algorithmic point of view.

However, at the floorplanning stage of the design process, the expected values of the cost cri
teria are based on relatively rough estimations only. Furthermore, the available information on
obtainable tradeoffs, e.g. the relationship between area and delay, is verylimited ornon-existent.
Since the notion of a "good" solution inherently depends on which tradeoffs are actually obtain
able, thedesigners notion of theoverall design objective is rarely clearly definable. Consequently,
it may in practice be very difficult for the designer to specify a set of weight and bound values
that makes a tool based on the formulation (1) find a satisfactory solution.

Even when assuming that the designer has a clear notion of the overall design objective, the
use of (1) causes serious difficulties : If the specified bounds are too loose, perhaps a better
solution could have been found, while if they are too tight, a solution may not be found at all.
Furthermore, the minimum ofaweighted sum can never correspond to a non-convex point ofthe
cost tradeoff surface, regardless of the weights [5]. In other words, if the designers notion of the
"best" solution corresponds to a non-convex point, it can never be found byminimizing cin (1),
even though the solution is non-dominated.

Our work is motivated by the need to overcome these fundamental problems. A floorplanning
tool called Explorer is presented, which performs explicit design space exploration in the sense
that 1) a set of alternative solutions rather than a single solution is generated and 2) solutions
are characterized explicitly by a cost value for each criterion instead of a single, aggregated
cost value. Explorer simultaneously minimizes layout area, deviation from a target aspect ratio,
routing congestion and the maximum path delay. Guided interactively by the user, Explorer
searches for a set of alternative, good solutions. The notion of a "good" solution is gradually
refined bythe user as the optimization process progresses and knowledge ofobtainable tradeoffs
is gained. Consequently, no apriori knowledge ofobtainable values is required. From the output
solution set, the user ultimately chooses a specific solution representing the preferred tradeoff.
Since the use of (1) is abandoned the above mentioned problems concerning weight and bound
specification are eliminated.

Explorer has three additional significant characteristics:

• The maximumrouting congestion is minimized, thereby improving the likelihood that the
generated floorplans are routable without further modification.

• Despite the fact that delay is inherently path oriented, most timing-driven floorplanning
and placement approaches are net-based and therefore usually over-constrains the prob
lem [7]. One of the few existing path-based placement approaches is [10], which, however,
relies on a very simple net model. Explorer obtains a more accurate path delay estimate
by approximating each net by an Elmore-optimized Steiner tree.

• Explorer is based on the genetic algorithm (GA), since it is particularly well suited for
(interactive) design space exploration [6]. We are only aware of one previous GA-based
approach to floorplanning [2] which, however, does not consider delay or routing congestion
or explores the design space.

The work presented in this paper is based on several significant extensions and improvements
of the placement approach described in [3].

2 Problem Formulation

Section 2.1 presents our definition of the floorplanning problem while Section 2.2 describes the
specification of a "good" solution.

2.1 The Floorplanning Problem

The floorplanning problem is specified by the following input :

• A set of blocks, each of which has k > 1 alternative implementations. Each implementation
is rectangular and either fixed or flexible. For a fixed implementation, the dimensions, area
and exact pin locations are known. For a flexible implementation, the area is given but the
aspect ratio and exact pin locations are unknown. The capacitance of each sink pin and
the driver resistance and internal delay t(p) for each source pin p is given for all pins. t(p)
is the time it takes a signal to travel through m(p), the implementation to which p belongs,
and reach p.

• A specification of all nets and a set of paths V. A path is an alternating sequence of wires
passing through blocks and net segments. For a sink pin p, denote by s(p) the source pin
of the net to which p belongs. Each path P G V is then uniquely specified by an ordered
set of sink pins P = {po,Pi,-- >,Pi-i] of distinct nets, such that m(pt) = m(s(p,+i)) for
i = 0,l,...,/-2.

• Technology information : Number of metal layers available for routing on top of blocks and
betweenblocks, denoted by /woe* and lBPace, respectively. The routing wire resistance f and
capacitance c per unit wire length, and the wire pitch wpitch-

Each output solution is a specification of the following :

• A selected implementation for each block.

• For each selected flexible implementation i, its dimensions 10,- and hi such that Wihi = Ai
and U< hi/wi < u,-, where Ai is the given area of implementation i and /,- and u,- are given
bounds on the aspect ratio of », which is assumed to be continuous.

• An absolute position of each block so that no pair of blocks are closer than a specified
minimum distance A > 0. This parameter allow physical constraints (design rules) to be
met andis not intended for routing area allocation. Since multi-layer designs are considered,
it is assumed that a significant part of the routing is performed on top of the blocks.

• An orientation and reflection of each block. Throughout this paper, the term orientation
of a block refers to a possible 90 degree rotation, while reflection of a block refers to the
possibility of mirroring the block around a horizontal and/or a vertical axis. Each block
can be oriented and/or reflected in a total of eight distinct ways.

This problem formulation is quite general and also applies to multi-chip modules (MCMs).
IO-pins/pads are also handled by Explorer, but for brevity this aspect is not discussed.

2.2 What is a "Good" Tradeoff ?

Let n be the set of all floorplans and &+ = [0,00[. The cost of a solution is defined by the
vector-valued function c : II h-> &}., c(x) = (c(x)uc(x)2,c(x)3,c(x)4), which will be described in
Section 3.2. This Section describes how to specify what a "good" cost tradeoff is, and how to
compare the cost of two solutions without resorting to a single-valued cost measure.

Instead ofweights and/or bounds, theuser specifies preferences bydefining a goal and feasibility
vector pair (gj) GG, where G= {(gj) € &£«> x 8"^ |Vi: gt < /,} and 3£+00 = [0,oo]. For
the i'th criterion, p, is the maximum value wanted, if obtainable, while fi specifies a limit
beyond which solutions are of no interest. For example, the 3'rd criterion minimized by Explorer
is path delay. #3 = 5 and /3 = 18 states that a delay of5 or less is wanted, if it can beobtained,
while a delay exceeding 18 is unacceptable. A delay between 5 and 18 is acceptable, although
not as good as hoped for.

For (gj) GG, let Sg = {x Gn |Vz: c(x)i < p,} and Af = {x Gn |Vi: c(x)i < fi} be the set
of satisfactory and acceptable solutions, respectively, cf. Fig. 1. Sg C Af C n, i.e., a satisfactory
solution is also acceptable. The values specified by (#, /) are merely used to guide the search
process and in contrast to traditional, user-specified bounds, need not be obtainable. Further
more, as will be discussed in detail in Section 3.3, (#,/) are defined interactively at runtime.
Therefore, the specification of the (p, /) vectors do not cause any of the practical problems caused
by traditional weights and bounds, cf. Section 1.

In order for the algorithm to compare solutions, a notion of relative solution quality is needed,
which takes the goal and feasibility vectors intoaccount. Let x, y GII. The relation x dominates y,
written x <<j y, is defined by

x<dy & (Vi:c(x)i<c(y)i)A(3i:c(x)i<c(y)i) (2)

cs

infeasible solutions

Af: acceptable solutions

Sg: satisfactory
solutions

(0,0) criterion 1 S\ fi

Figure 1: The sets of satisfactory and acceptable solutions, illustrated in two dimensions.

For a given (g, f) GG the relation x is preferable to y, written x -< y, is then defined as follows,
;.pending on how c(x) compares to g : If £ satisfy all goals, i.e., x G Sg, then

xXy <3> (*<dy)v(y $Sg)

If x satisfies none of the goals, i.e., Vz : c(x)i > gi then

x -< y & (x <d y) V [(x G As) A {y <£ Af)]

(3)

(4)

Finally, x may satisfy some but not all goals. Assuming a convenientorderingof the optimization
criteria, 3 k G {2,3,4} : (Vi < fc : c(ar),- < gt) A(\/i>k: c(x), > g{). Then

z^y <3> [(Vi>fc:c(i)i<c(y).-)A(3i>i:c(i)i<c(y)i)] (5)
V

[(x GA,) A (y * X,)] (6)
V

[(Vz>Ar:c(ar)t = c(y)t)A (7)
{((Vt < k : c(x),- < c(y)t) A (3 i < * : cfa:),- < c(y),)) V (3 i < k :c(y)i > 9i)}) (8)

This definition of -< assures that a satisfactory solution is always preferable to a non-satisfactory
solution and an acceptable solution is always preferable to an unacceptable solution. Further
more, from (5) it follows that when two solutions satisfy the same subset of goals, they are
considered equal with respect to these goals, regardless of their specific values in these dimen
sions. Hence, when goals are satisfied, they are "factored out", focusing the search on the
remaining, unsatisfactory dimensions.

The abovedefinition of -< is introduced in [4] and extends the definition first introduced in [6]
by adding the feasibility vector / and the concept of acceptable solutions. The purpose of / is
described in Section 3.3.

Using -< the solutions of a given set $ can be ranked. Let r :n x 2n »-> N be defined by
r(<£,$) = |{7 G$|7 -< <t>}\. r(<j),$) is the rank of <£ with respect to $, i.e., the number of solu-

tions in $ which are preferable to <j>. Furthermore, let $0 = {$ € $|r(<£,$) = 0} C $, i.e., $0
is the subset of best solutions in $ with respect to X. Explorer outputs a set of distinct rank
zero solutions $0, i.e., the best found cost tradeoffs. As a special case, if g = (0,0,0,0) and
/ = (oo, oo, oo, oo) the algorithm searches for (a sample of) the Pareto-optimal set.

3 Description of Explorer

The concept of genetic algorithms is based on natural evolution [8]. In nature, the individuals
constituting a population adapt to the environment in which they five. The fittest individuals
have the highest probability of survival and tend to increase in numbers, while the less fit
individuals tend to die out. This survival-of-the-fittest Darwinian principle is the basic idea
behind the GA. The algorithm maintains a population of individuals, each of which corresponds
to a specific solution to the optimization problem. An evolution process is simulated, starting
from a set of random individuals. The main components of this process are crossover, which
mimics propagation, and mutation, which mimics the random changes occurring in nature. After
a number of generations, highly fit individuals will emerge corresponding to good solutions to
the optimization problem.

Rather than altering given solutions directly, the crossover and mutation operators process
internal representations of solutions. The solution corresponding to a given representation is
computed by a function known as the decoder. The key issue when developing a GA is the
design ofa suitable representation ofa solution. Section 3.1 outlines the GAused inExplorer, and
Section 3.2 present the floorplan representation and the decoder. Finally, Section 3.3 describes
how the user controls the optimization process interactively.

3.1 Overview of Algorithm

The specific GA used in Explorer isoutlined in Fig. 2. The population $ = {<t>o, <£i> •••><l>N-i} is
initially constructed by routine generate (line 1) from random individuals. One iteration of the
repeat loop (lines 2-12) corresponds to the simulation of one generation.

In each generation, two parent individuals <f>i and fa are selected for crossover (line 3). Each
parent is selected at random with a probability inversely proportional to its rank, thereby en
forcing the principle of survival-of-the-fittest. The crossover operator generates the offspring if)
(line 4), which is then subjected to random changes by routine mutate (line 5) and inserted into
$ by routine insert (line 6). An inserted individual ip replaces a maximum rank solution to which
it is preferable or, if vj is not preferable to any solution, it replaces a maximum rank solution,
which is not preferable to ip. The insertion scheme ensures that a solution ij) can never replace
<j> if $ -< ip. Hence, in the sense inferred by -< the set of best solutions $o is monotonically
improving as a function of time.

There is four types of interaction through the graphical user interface, gui (lines 7, 9, 11, 12).
By selecting an update operation (line 7) the user can alter the values of the goal and feasibility
vectors (g, f) (fine 8). If choosing an optimization operation (fine 9) a hillclimber will be
executed on a selected individual <j> (line 10). The current state of the optimization process is
continuously displayed to the user (line 11). The update, optimize and display operations are

the topic of Section 3.3. The optimization process continues until the user selects termination
(line 12), at which time $0 is the output set of solutions (line 13).

01 generate($);
02 repeat :

03 select <j>i,<t>2 € $;
04 crossover^!, ^2» V0>
05 mutate(V');
06 insert($,V0;
07 if gui(update) :
08 adjust (gj)\
09 if gui(optimize) :
10 hillclimber(<M-, (<7',/'))5
11 gui(display);
12 until gui(terminate);
13 output $0;

Figure 2: Outline of the algorithm.

3.2 Representation and Decoder

The representation of a floorplan having bblocks consist of five components a) through e) :

a) A string of b integers specifying the selected implementations of allblocks. The i'th integer
ki identifies the implementation selected for block i and satisfies 0 < fc,- < 6,-1 where
&i > 1 is the number of existing implementations of the i'th block.

b) A string of real values specifying aspect ratios of selected flexible implementations. The i'th
value r,- specifies the aspect ratio of the i'th selected flexible implementation and satisfies
U < ri < uii cf- Section 2.1.

c) An inverse Polish expression of length 26 —1 over the alphabet {0,1,..., b—1,+, *}. The
operands 0,1,...,6 —1 denotes block identities and +,* are operators. The expression
uniquely specifies a slicing-tree for the floorplan, as first introduced in [12], with + and *
denoting a horizontal and a vertical slice, respectively.

d) A bitstring of length 26 representing the reflection of all blocks. The reflection of the i'th
block is specified by bits 2i and 2i + 1•

e) A string of integers specifying a critical sink for eachnet, to be used when routing the nets.
The i'th integer c, identifies the critical sink of net i and satisfies 0 < c,- < s,- —1 where
Si > 1 is the number of sinks of net i.

Given a representation of the above form, the decoder computes the corresponding floorplan
and its cost c = {carea,crati0,c1ieiay,ccong) in eight steps as follows :

1. The implementation selected for each block is specified directly by component a) of the
representation. The dimensions of each selected flexible block is computed from its aspect
ratio, specified by component b), and its fixed area. The dimensions of all blocks are then
known.

2. From the slicing-tree specified by the Polish expression, component c), the orientation of
eachblock is determined such that layout areais minimized. The orientations are computed
using an exact algorithm by Stockmeyer [11] which guarantees a minimum area layout for
the given slicing-structure. The reflection of each block is as specified by component d) of
the representation.

3. Absolute coordinates are determined for all blocks by a top-down traversal of the slicing-
tree. At each operator node, if relative movement of the two subtrees along the slicing axis
is possible, the centerpoints of the subtrees are aligned.

4. The layout is compacted, first vertically and then horizontally, using a simple one-dimensi
onal compaction algorithm. Then the area and aspect ratio of the layout can be computed.
Carea is the area of the smallest rectangle enclosing all blocks and cratio = factual —̂ target \?
where ractuai is the actual aspect ratio of the layout and rtaTget is a user-defined target
aspect ratio. Fig. 3 illustrates the first four steps of the decoding process.

4

3 1

0

8
59

2
6

7

1

4

1 3

0

8
59

2
6

7

1

Figure 3: Given 10 blocks and the Polish expression 12+6*90+ + 84 + + 5* 7 8 + *,
the floorplan on the left is the result of step 8 of the decoding. Subtrees are recursively centered
and oriented optimally. Since the height of the layout is determined by the blocks 1,2,9,0,8,4, no
blocks are moved when attempting vertical compaction. Subsequent horizontal compaction moves
blocks 8,7,5,9 and 0 towards the left, so that blocks 2,6,7 now determines the width of the layout.
The floorplan to the right is the result of compaction (step 4), i-e-> ^e final floorplan.

Aglobal routing graph G= (V, E) is constructed which forms atwo-dimensional, uniformly
spaced lattice, exactly covering the entire layout. The pitch of the lattice is determined
by the user-defined parameter gpitch- Each pin is then assigned to the closest vertex in V.
When computing this assignment, the exact pin locations are used for pins of fixed imple
mentations, while for flexible implementations, all pins are assumed to be located at the
center of the block.

The topology of each net is approximated by a Steiner tree embedded in G. Each Steiner
tree is computed independently by the SERT-C algorithm ("Steiner Elmore Routing Tree
with identified Critical sink") introduced in [1]. SERT-C minimizes the Elmore delay from
the source to a designated critical sink, illustrated in Fig. 4. For each net the critical sink
is specified by component e) of the representation. Since all pins were mapped to V in the
previous step all trees are embedded in G.

.—I—i Us *

<i Ki j |

• .-! L-,

\F
Figure 4: The Elmore-optimized Steiner tree computed by SERT-C for a 44-pin net. s is the
source and ki the selected critical sink.

7. The delay D(P) of each path P = {po,pi, •••,P/-i} is estimated as

/-i

D(P) = £ (<MP.) +*(*(»))]
t=0

where ds(pi) isthe Elmore delay from s(pi) to p,- computed inthe Elmore-optimized Steiner
tree. The delay cost cjeiay is the maximum path delay, i.e., Cdeiay = maxp€?{I>(P)}.

8. Finally, the maximum routing congestion is estimated. For eachedge e G E, cap(e) denotes
the capacity of e and equals gpitch x /woc*/(2 x Wpitch) if (a part of) e is on top of a block,
and gpitch x /apace/(2 x Wpitch), otherwise. The division by 2 reflects the assumption that in
each layer the routing will mainly be either horizontal or vertical, usage(e) is the number
of nets using e. The congestion cost Camg is computed as

i.e., c? ^cong

"Cong
=100 xmax [max J^lfW^M} ,0]

[ee£ (cap(e) J J

is the maximum percentage by which an edge capacity has been exceeded.

Although the nets are routed independently in step 6, the resulting Steiner trees represents
a very accurate estimation of the net topologies compared to the estimations of previous ap
proaches, cf. Section 1, which in turn indicates that Cdeiay is an accurate estimate. The Steiner
trees also allow the computation ofc^g. The smaller c^g is, the fewer netsneeds to be rerouted
to obtain 100% global routing completion and, by assumption, the easier is the global routing
task.

The crossover operator as well as the mutation operator (lines 4 and 5 of Fig. 2) operates on
each of the five components of the representation independently. While the Polish expressions are
handled by highly specialized operators introduced in [2], theremaining components are handled
by standard operators (uniform crossover and pointwise mutation) extensively studied in theGA
literature. For brevity, the reader is referred to e.g. [8] for a description of these operations. A
crucial property ofboththecrossover and the mutation operators isthat they preserve feasibility,
i.e., only feasible representations, which can be interpreted by the decoder, are ever generated.

3.3 Interactive Control of the Optimization Process

In order for the user to interactively control the design space exploration process, Explorer
provides continuously updated information on the current state of the optimization (line 11 of
Fig. 2). The information is visualized in the form of graphs showing the cost tradeoffs of the
solutions obtained so far. Up to four independent graphs can be shown simultaneously, and each
graph can be 2- or 3-dimensional with any of the four cost criteria on any axis. The solution
set displayed in each graph can beeither theentire current population $, the current acceptable
solutions $ n Aj, the current satisfactory solutions $ DSg or the current best solutions $0- An
example graph is shown in Fig. 5. Based on this information the user can alter the optimization
process at any time by either adjusting parameters (lines 7 and 8 of Fig. 2) or executing a
hillclimber (fines 9 and 10 of Fig. 2) as will be described in the following.

As the optimization progresses and knowledge of obtainable cost tradeoffs is gained, the user
can adjust the values of the goal and feasibility vectors (#,/), thereby re-defining the notion(s)
of satisfactory and/or acceptable solutions. When doing so, the ranking of all solutions will be
updated, which in turn affects the selection for crossover, i.e., the sampling of the search space,
cf. Section 3.1. Consequently, when re-defining (#,/), the focus of the exploration process will
change accordingly, allowing the user to "zoom in" on the desired region of the search space. At
any time, g specifies which solutions are considered ideal and Sg serves as an attractor towards

10

which the algorithm willtry to movethe solutions. On the otherhand, / specifies which solutions
are not wanted, andthe algorithm will try to move the solutions out of the infeasible region U\Af.
In this sense, g is a "carrot" and / is a "stick" by which the user steers the exploration of the
search space.

Delay (ns) 4.52 1.3
Area (mm2)

Figure 5: An example graph showing 8 dimensions of a set of current best solutions. All solutions
are non-dominated in the 4-dimensional cost space.

The user can also execute a hillclimber on a specified individual <j> (line 10 of Fig. 2). The
hillclimber simply tries a sequence of k mutations on <j>. Each mutation yielding <t>' from <j> is
performed if and only if <j>' -< <j>. The hillclimber also takes a goal and feasibility vector pair (g', /')
as argument, which defines the preference relation -< to use when deciding which mutations to
actually perform. This allows hillclimbing to be direction-oriented in the cost space. As an
example, (g(, f) can be defined so that <j> is optimized wrt. delay only, allowing e.g. a 10 %
increase in area while keeping <£'s cost values in the two remaining dimensions unchanged or
improved. Direction-oriented hillclimbing is another way of directing the focus of the exploration
process towards the region of interest.

4 Experimental Results

Evaluating performance by comparison to an existing approach is complicated by a number
of factors. Firstly, the assumption that routing is done mainly on top of the blocks is not
compatible to earlier channel-based floorplan models applied by previous approaches. Secondly,
there are no floorplanning benchmarks which includes appropriate timing information. Thirdly,
while Explorer is designed for interactive use, most existing approaches are non-interactive,
complicating the issue of runtime comparison. But the most significant obstacle is the inherent
difficulty of fairly comparing a 4-dimensional optimization approach generating a solution set

11

to existing 1-dimensional approaches generating a single solution. However, using the examples
described in Section 4.1, comparisons to simulated annealing and random search have been
established as described in Section 4.2. Results are presented in Sections 4.3 and 4.4.

4.1 Test Examples

The characteristics of five of the circuits used for evaluation are given in Table 1. xeroxF, hpF,
ami33F and ami49F are constructed from the CBL/NCSU building-block benchmarks xerox, hp,
ami33 and ami49, respectively, aiming at minimal alterations of the original specifications. All
blocks are defined as flexible by fixing the area of each block to its original value but allowing
the aspect ratio to vary in [r —0.5; r -f 0.5], where r is the aspect ratio of the original block.
Furthermore, the required timing information is added. Paths are generated in a random fashion
and internal block delays, output driver resistances and input capacities are assigned randomly
assuming normal distributions and using mean values from [1, 10], representative of a 0.8 /zm
CMOS process.

Circuit Type Blocks Pins Nets Paths

xeroxF IC 10 698 203 86

hpF IC 11 309 83 88

ami33F IC 33 522 123 230

ami49F IC 49 953 408 116

spertF MCM 20 1,168 248 574

Table 1: Main characteristics of test examples.

spertF isan MCM consisting ofavector processor (ASIC), 16 SRAMs and 3buffer components.
It is the key component of a dedicated hardware system for speech recognition based on neural
networks, currently being designed at the International Computer Science Institute in Berkeley,
California. Again, all blocks are defined as flexible for the purpose of this evaluation.

4.2 Method

Explorer is implemented in C, except for the graphical user interface, which is implemented in
Matlab. The source code is approximately 11,000 lines of C and 1,000 lines of Matlab scripts.
All experiments are performed on a DEC 5000/125 workstation. Performance is compared to
that of a simulated annealing algorithm, denoted SA, and a random walk, denoted RW. Both
algorithms uses the same floorplan representation and decoder as Explorer. The RW simply
generates representations at random, decodes them and stores the best solutions ever found (in
the -< sense). The SA generates moves using the mutation operator of Explorer and the cooling
schedule is implemented following [9].

Theuse ofthe same representation and decoder by all three algorithms means that theeffects of
the representation and the decoder algorithms, e.g., Stockmeyers algorithm and the compactor,
does not a priori give an advantage to any of the algorithms. Furthermore, all algorithms

12

The results are shown in Table 2. The set quality values are obtained by evaluating the quality
of each output solution set using the set qualitymeasure introducedin [4]. A smaller valuemeans
a higher quality. This measure appropriately accounts for the {g, f) values specified. As can be
seen from the Table, there is no simple relation between the size of an output set and its quality.
A set consisting of a single solution only is better than any other set if the single solution is
preferable to all other solutions obtained.

Circuit

Output set size Set quality

interact non-interact RW interact non-interact RW

xeroxF

hpF
ami33F

ami49F

spertF

40

40

21

21

10

39.5 (1.6)
39.6 (1.0)
34.0 (11.1)
36.2 (4.2)
39.7 (0.7)

49.3 (10.1)
59.1 (14.5)
9.7 (3.9)

11.4 (4.5)
57.2 (17.0)

0.572

0.605

0.690

0.641

0.096

0.741 (0.073)
0.638 (0.033)
0.759 (0.058)
0.676 (0.093)
1.886 (0.640)

0.888 (0.045)
0.822 (0.029)
1.152 (0.048)
1.197 (0.052)
2.178 (0.010)

Table 2: Performance comparison of the interactive ('interact1) and non-interactive ('non-
interact') modes of Explorer and the RW. Each entry for RW and the non-interactive mode
of Explorer is the average value obtained for the 10 runs and the value in brackets is the cor
responding standard deviation. For Explorer, the output set size is limited to 40, which is the
population size used.

The output sets obtained by Explorer in 1 hour are always significantly better than those
obtained by RW in 5 hours. But more interestingly, all of the five sample executions of Explorer in
interactive mode yields better results than the average non-interactive execution. Furthermore,
the number of decodings performed in interactive mode averages only about 78 % of that of
the non-interactive mode because of the idling processor during user-interaction. Hence, using
Explorer interactively significantly improves the efficiency of the search process, yielding a better
result quality while performing less computational work.

This performance gain is especially significant for the spertF layout. Feasible solutions (i.e.,
solutions in Af) were obtained interactively by executing direction-oriented hillclimbing on so
lutions outside but very close to Af, resulting in a very good solution set quality. In contrast,
only one of the 10 sets generated in non-interactive mode contained feasible solutions, which is
the reason for the very large difference in set quality values and the large standard deviation for
the non-interactive runs.

15

5 Conclusions

An interactive floorplanner based on the genetic algorithm has been presented, which minimizes
area, path delay and routing congestion while attempting to meet a target aspect ratio. The key
feature is the explicit design space exploration performed, which results in the generation of a
solution set representing good, alternative cost tradeoffs.

The inherent problem of existing approaches wrt. specificationof suitable weights and bounds is
solvedby eliminating these quantities, and another practical problem, the traditionally required
iterations of floorplanning/placement and global routing is significantly reduced by explicitly
minimizing routing congestion.

The experimental work includes results for a real-world design. It is shown that the efficiency
of the search process is comparable to that of simulated annealing when a comparison is possible.
The required runtime ranging from less than one minute to one CPU-hour is very reasonable
from a practical point of view. Furthermore, the mechanisms provided for user-interaction are
observed to improve the search efficiency significantly compared to non-interactive executions.
For these reasons it is concluded that the presented floorplannning tool is of significant practical
value.

References

[1] K. D. Boese, A. B. Kahng, G. Robins, "High-Performance Routing Trees With Identified
Critical Sinks," Proc. of the 80th Design Automation Conference, pp. 182-187, 1993.

[2] J. P. Cohoon, S. U. Hedge, W. N. Martin, D. Richards, "Distributed Genetic Algorithms
for the Floorplan Design Problem," IEEE Transactions on Computer-Aided Design, Vol. 10,
pp. 484-492, April 1991.

[3] H. Esbensen, E. S. Kuh, "An MCM/IC Timing-Driven Placement Algorithm Featuring
Explicit Design Space Exploration," Proc. of the IEEE Multi-Chip Module Conference, 1996
(to appear).

[4] H. Esbensen, E. S. Kuh, "Design Space Exploration Using the Genetic Algorithm," Proc.
of the IEEE International Symposium on Circuits and Systems, 1996 (to appear).

[5] P. J. Fleming, A. P. Pashkevich, "Computer Aided Control System Design Using a Multi-
objective Optimization Approach," Proc. of the IEE Control '85 Conference, pp. 174-179,
1985.

[6] C. M. Fonseca, P. J. Fleming, "Genetic Algorithms for Multiobjective Optimization: For
mulation, Discussion and Generalization," Proc. of the Fifth International Conference on
Genetic Algorithms, pp. 416-423, 1993.

[7] T. Gao, P. M. Vaidya, C. L. Liu, "A Performance Driven Macro-Cell Placement Algorithm,"
Proc. of the 29th Design Automation Conference, pp. 147-152, 1992.

16

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

[9] M. D. Huang, F. Romeo, A. Sangiovanni-Vincentelli, "An Efficient General Cooling Schedule
for Simulated Annealing," Proc. of the 1986 International Conference on Computer-Aided
Design, pp. 381-384, 1986.

[10] A. Srinivasan, K. Chaudhaxy, E. S. Kuh, "RITUAL : A Performance-Driven Placement
Algorithm," IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Pro
cessing, Vol. 39, pp. 825-840, Nov. 1992.

[11] L. Stockmeyer, "Optimal Orientations of Cells in SHcing Floorplan Designs," Information
and Control, Vol. 57, pp. 91-101, 1983.

[12] D. F. Wong, C. L. Liu, "A new algorithm for floorplan design," Proc. of the 23rd Design
Automation Conference, pp. 101-107, 1986.

17

	Copyright notice 1996
	ERL-96-4

