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Abstract—This paper presents a method for

adaptively modeling spinning reserve require
ments based on prices in power system schedul

ing. The method is embedded in a Lagrangian
relaxation method for solving unit commitment.

The spinning reserve requirement responds to a

price signal according to a nonincreasing response

function at each iteration in the dual optimiza

tion. Game theory is used to interpret the pro

posed algorithms. Numerical test results are also

presented.

Keywords: Power system scheduling, Unit commit

ment, game theory.

I Introduction

The solution of the power system scheduling problem

is important to a power utility like PG&E to determine

major unit commitment and transaction decisions. Many

optimization methods have been proposed to solve this

problem [3]. Among them, Lagrangian relaxation meth

ods are now among the most widely used approaches to

solve unit commitment [2,4,7]. At PG&E, the Hydro-
Thermal Optimization (HTO) program was developed

almost a decade ago based on the Lagrangian relax

ation approach [4]. In our recent work, the Lagrangian
relaxation-based algorithm has been extended to sched

ule thermal units under ramp rate constraints [11].

The objective of the unit commitment is to minimize

the total generating costs of the power system over the

planning horizon subject to system constraints (e.g. load

balance constraints and spinning reserve constraints) and

unit constraints (e.g. minimum up/down time con

straints and ramp constraints.) Most of the unit con-
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straints describe the physical limits of units and should

not be violated. These constraints are considered to be

'hard constraints' in this sense. In contrast to the 'hard

constraints', the spinning reserve constraints are 'soft'.

In order to satisfy a reserve constraint, expensive units

must sometimes be turned on. A slight relaxation of

these 'soft constraints' might avoid such uneconomic op
eration without impacting system security too much. In

addition to avoiding some uneconomic operations, flexi

bly setting the reserve requirements can also improve the

algorithm's computational speed.

The softness of the reserve constraints has previously

been dealt with using fuzzy logic techniques [6]. In [6],
Guan et al. proposed an efficient fuzzy optimization-

based method to solve the unit commitment problem

with soft reserve requirements. They first convert the

problem to a 'crisp' one, then take advantage of sepa

rability of the problem and solve it by Lagrangian re

laxation. They also show the trade-off between cost-

minimization and system reserve satisfaction. However,

to avoid infeasibility, the aspiration level of the genera

tion cost is obtained by running the crisp problem with

the lowest acceptable reserve requirement. This requires

multiple runs of the unit commitment algorithm.

The (hourly) spinning reserve requirement (SRR) is

usually required to be the greater of a fixed percentage

(say 5%) of the total forecast demand and the largest on
line unit. However under certain conditions, a utility may

wish to increase the SRR to say 7% provided this higher

level of reliability does not increase costs too much. Our

HTO program can be used to handle this situation by

first running the program with SRR fixed at 7% of system

load. After running the program, if the marginal cost

of maintaining that reserve was too high, the operator



can run the program again and lower the requirement,

presumably to no lower than 5%. This trial and error

approach requires multiple runs of the program which is

time consuming.

In this paper, we propose a new approach embedded

in the Lagrangian relaxation approach. The SRR is de

fined as adaptive and adjustable between two levels of

reserve requirement in all hours. The SRR is adjusted

based on the corresponding Lagrange multiplier, which

is viewed as price information. Game theory (e.g. [5]) is
used to interpret our proposed algorithms. The proposed

method in this paper does not require the multiple runs

of unit commitment required by other approaches.

We present a formulation of the thermal unit commit

ment problem, review the Lagrangian relaxation method

and describe our adaptive price-based SRR method in

Sections II, III and IV respectively. Numerical test re

sults and conclusions are given in Sections V and VI.

II Problem formulation

In this paper the following standard notation will be
used. Additional symbols will be introduced when nec

essary.

i : index for the number of units (i = 1, •••, /)

t : index for time (t = 0, •••, T)

uu : zero-one decision variable indicating whether unit i
is up or down in time period t

Xit : state variable indicating the length of time that unit
i has been up or down in time period t

tfn : the minimum number of periods unit i must remain

on after it has been turned on

<°ff : the minimum number ofperiods unit i must remain
off after it has been turned off

pa : state variable indicating the amount of power unit
i is generating in time period t

p[",n : minimum rated capacity of unit i

pmax . maxjmum rated capacity of unit i

Ci(Pit) '• fuel cost for operating unit i at output level p,t
in time period t

Si(xi,t-i,Uit,Uiit-i) : startup cost associated with turn

ing on unit i at the beginning of time period t

Dt : forecast demand requirement in time period t

Rt : spinning capacity requirement in time period t

The unit commitment problem is formulated as the fol

lowing mixed-integer programming problem: (note that

the underlined variables are vectors in this paper, e.g.

« = («n, ••,«/t))

t I

(P) mmy2y2[Ci(pit)uit + Si(xitt-i,Uit,Uiit-i)] (1)
-'--t=l «=1

subject to the demand constraints,

J^ Pit ii,-t =A. <=1,---,T, (2)

and the spinning capacity constraints,

£rfuu,tt«>rt«, *=1,-",T. (3)
i=i

There are other unit constraints such as unit capacity
constraints,

pfn<Pit<P™\ t=l, ••-,/; <= l,---,7\ (4)

the state transition equation for i = 1, • •, J,

J max(xiit_i,0)+1, ifu,t = l,
Xn = S

[ min(xI-,t..i10)-ll if uit = 0,

the minimum up/down time constraints for i = 1,

1, if l<Xi,t-i<t?nt
uit = < 0, if —1 > ar.-.t-i >-*f,

0 or 1, otherwise,

(5)

•,/,

(6)

and the initial conditions on xu at t = 0 for Vi.

Ill The Lagrangian relaxation

approach

The Lagrangian relaxation (LR) approach relaxes
the demand constraints and the spinning capacity con

straints by using Lagrange multipliers. The problem is

then decomposed into / subproblems. Let A< and //,
(t = 1,--,T) be the corresponding nonnegative La
grange multipliers to (2) and (3). We have the following
dual problem:

(D) max6{X,fi-R),
A,p>0 —

(7)



where

0(A,/£;£) =X>(A,/£) +J2(XtDt + ftRt), (8)
1=1 t=i

and

Oi(>L,V;R) = min V][Ci(pit)uit + 5f(xt-,t_i,«,t,ul>t_i)
u.x.p
---t=l

- ^tPitUit - fJLtP™*XUit]. (9)

It is well known that the dual objective function $ is con

cave and continuous but not necessarily differentiate at

all points. A subgradient algorithm is applied to solve
the dual problem (D). It can be shown that the vec
tor of the mismatches in the demand constraints and the

spinning capacity constraints is a subgradient of the dual
objective function 9 ([!].)

The subgradient algorithm

Step 0: k <— 0; A0 and //° are given.

Step 1: Given A and /£*, solve 0(X ,(ik\R) to obtain
(«*,£*)•

Step 2: A*+1 = Xk + sk(Dt - ELi P?t«fi).
rf+1 = max(0,/if + sk(Rt - Zl=1P?™ukt)),Vt.

Step 3: k *— k + 1, go to Step 1. •

In [8], it is shown that under some conditions on the step
size sk, the subgradient algorithm converges.

III.l Two-firm model

Each unit subproblem 0,- can be interpreted as a profit

maximization problem for unit i [9,10], where unit i is

an endogenously priced resource and Xt and fit are the

prices paid to the resource.

We interpret the dual optimization using the following

two-firm model: Firm P, a power utility, facing demand

Dt needs to purchase fuel from firm Q for generation.

Fuel for different generating units may vary and fuel cost

is described by C,(). Firm Q also sells power and spin

ning capacity. It offers firm P the prices Xt and fit for

power and spinning capacity at hour t respectively. Firm

P's objective is to minimize its total cost given two op

tions: buy fuel and self-generate or directly buy power

from firm Q. Firm Q's problem is to adjust the prices of

A< and \it so as to achieve its maximum revenue, consid
ering that customer firm P will minimize its cost.

(£<=i £i=i[C<(Pii)u,-t + Si(x,-,t_i, uitt
*i,t-i)] +ELiMA ~ ELi W««.-t)+

M^-£LiPrx«.o]

firm P's cost minimization problem

firm Q's revenue maximization problem

Figure 1: The two-firm model

Remarks:

1. In Figure 1 the dual objective function is divided

into two optimization problems of two firms. If firm

P decides to purchase fuel, its spending is captured
by the two terms in the first bracket in the objective

function. If firm P purchases either power or spin

ning capacity from firm Q, it pays the corresponding

amounts in the second bracket. No matter what op

tion firm P chooses, firm Q collects the money.

2. At iteration k, firm Q offers Xk and nk, and
firm P obtains pkt, ukt. If the subgradient (Dt —
Ei=i Pituit) > 0» ^t should be increased at the
next iteration. Since from firm Q's perspective if

(Dt —E,=1 Pituft) > 0 there is an excess demand
for power, and firm Q could raise the price.

3. Raising A( would stimulate the system to increase

total generation at hour t and vice versa. Increasing

fit would at some point make more units turn on.

This two-firm model can be treated as a 2-player game.

Consider a sequential bargaining game of complete and

perfect information in which firm Q (player 1) moves

first and decides prices Xt and fit (t —1, • • -,T); firm P

(player 2) observes Xt and fdt {t = 1,---,!T), and then
chooses its optimal generating policy, («tj,x,t,p,t), V?,/.

We have the following proposition.

Proposition 1 If (A",/i*;u*,p") is the solution to

(D), it is a Nash equilibrium of this game. •

The solution to (£>) is a Nash equilibrium ([5]) because
given the other player's strategy, each player has no in

centive to deviate. Note that the result of Proposition 1



holds if the game is a simultaneous-move game. However,

a sequential game with no need to assume that firm P,

a spinning capacity provider, has market power fits real

ity better than the model of a simultaneous-move game.

The subgradient algorithm therefore can be regarded as

an interpretation of how each firm adjusts its decision

in the face of the other firm's choice. The sequences,

{(A*,/j*)} and {(«*,£*)}, describe a process ofadjust
ment to equilibrium.

III. 2 Three-phase algorithm

Despite the efficiency of solving (D) due to its sep

arability, the solution of (D) does not necessarily yield

a feasible solution to (P), i.e. satisfying (2) and (3).
Lagrangian relaxation algorithms for solving unit com

mitment have often been implemented with two phases:

a dual optimization phase and a feasibility phase. In [13]
Zhuang and Galiana first proposed the following overall
structure for a unit commitment algorithm.

Phase 1: Dual optimization, i.e., solving (D).

Phase 2: Feasibility phase (continue dual optimization

and increase fit in hours with insufficient spin
ning capacity until a reserve feasible solution

(satisfying (3)) is found.

Phase 3: Economic dispatch to find a feasible solution

(satisfying (2)).

In the Phase 2 proposed in [13], the hour of the most-
violated SRR is determined, and the corresponding fit is
enhanced. A method is proposed to calculate the exact

amount of the increase in the value of the correspond

ing iit to make SRR satisfied at the corresponding hour.
However, this method seems to take a long time to lo

cate a feasible solution because only one fit is updated
at a time. In our Phase 2 of the algorithm below, at

each iteration the fit corresponding to the hours that

the SRR is violated are simultaneously updated. This
accelerates the speed of the feasibility phase, but could

cause overcommitment in the generating units. A unit

decommitment method has been developed to resolve the
overcommitment problem [12].

Phase 2 Algorithm

Step 0: k <— 0; A0 and fi° are from Phase 1.

Step 1: Given A* and £/*, solve 0(A*,£fc;.ft) to obtain

Step 2: If (uk,pk) is reserve feasible (satisfying (3)), stop.

Step 3: Af+1 = Af,
fik+l =fik + sk- min(0, Rt - £Li P?ax4)> V*.

Step 4: k <— k + 1, go to Step 1. •

IV Price-based adaptive SRR

As an example, we consider the case where the desired

SRR is 7%, i.e., in (3), Rt = 1.07A- We then assume
that, if the costs are too high, the SRR can be relaxed to

5%. Our problem is how to adaptively define the SRR

in a unit commitment problem such that the following

system operating phenomena can be avoided:

• Uneconomic solution: some expensive thermal units

would not have to be committed if the the SRR at

some hours had been slightly relaxed down to 5%;

and

• Near infeasibility: the original SRR at some hours

are either too restrictive or indeed unachievable.

This situation normally retards the computational
process.

In the original LR approach, both problems above may

be indicated by the value of fit. At the hours with ei

ther uneconomic solution or near infeasibility explained

above, the corresponding ftt tend to grow to encourage
commitment.

IV.l Two-firm model with adaptive SRR

We now modify the two-firm model defined in Sec

tion III.l. Let firm P now also select its SRR. Firm

Q, as in the original model offers prices A and fx. Af

ter observing the prices A and //, firm P defines its SRR

first, then solves the corresponding optimal generating

policy, {uit,pu} for Vi,<. This scenario defines map
pings that take Rt G [1.05A, 1.07A] into the solution of
firm P's cost-minimization problem, uu(Rt) and pa(Rt)-
We assume that Rt is selected based on a function of

fit in the form r(/xt)A, where r : ft+ -• [1.05,1.07]
is a monotone nonincreasing function. For simplicity,

we denote it as Rt(fit)- Rt{) is called the response
function of firm P. This means that when fit, the price

of spinning capacity offered by Q, is high, firm P not



only tends to commit more units (as in the original
model) but also wants to lower its SRR, and vice versa.
An example of Rt{fit) is depicted in Figure 2, where
Rt(fit) = [1.06 + 0.01 tanh(-{3(fit -a))]A, <* > 0, /? > 0.

1.07 D

1.05 D.

Vt

Figure 2: An example of Rt(pt)-

IV.2 Sequential bargaining game model

Consider a sequential bargaining game of complete and
perfect information in which firm Q moves first and firm

P moves second. The timing of the game is as fol

lows: (1) firm Q chooses the prices Xt and fit, V<; (2)

firm P observes At and fit, and then chooses its SRR

and the corresponding optimal generating policy, uu and

pa. Assume the scenario is common knowledge to both

firms P and Q, but firm Q does not know the response

function of firm P. In the sequel, we use the notation

R(fj) = (Ri(fii),---,RT(fiT)).

Proposition 2 If (A", ff; u*, p*) is a solution to the

following problem (D"), (A", p*; j?(£"), u*, p*) is a Nash
equilibrium of the sequential bargaining game.

(LT)

max

/ min„i£,p £ JllYli=i [C« {Pit)un+ \
5i(x,-,i_i, uu, Ui>t-i)]+

E?=i[Af(A-Ef=iP*««<«)+
mr;-nL pr*v»)}

\ subject to R^ = Rt (//*). /

(10)

To find a Nash equilibrium, we construct an algorithm

to simulate the process of adjustment toward equilib

rium. At each iteration, as in the subgradient algorithm,

firm Q adjusts prices based on the law of supply and

firm P minimizes its cost. Also firm P updates its SRR

in response to firm Q's price, i.e. Rk+l = Rt(fik). This
means that in order to achieve R^ = Rt(Pt) firm P aP~
proximates p\ by pk.

Nash Algorithm

Step 0: k <- 0; {A?} and {/x°} are given.

Step 1: Given A*, pk, solve 0(A*,£*;£(/£*)) to obtain
(«*,£*)•

Step 2: AJ+1 = A? +s*(A - £Lirf.«£),
/if+1 = max(0,/if + sk(Rt - £Li p?**ukt)), Vt.

Step 3: k <— k -f 1, go to Step 1. •

The convergence of Nash Algorithm has not yet been
established theoretically, but it converges in all observed
cases.

IV.3 Stackelberg game

As in the sequential bargaining game defined in Sec

tion IV.2 we now consider the case that firm Q knows the

response function of firm P so that firm Q expects firm

P's response in its revenue maximization problem. This

game is commonly known as a Stackelberg game [5].

Proposition 3 If (A,fi,u,p) is a solution to the

following problem (D), (X,p;R(u),u,p) is a Stackelberg
equilibrium of the Stackelberg game.

(D)

T I

max min V] Yl[Ci(pit)uit + S,-(xt-,i_i, t*,-«, Ui,r_i)]-f

T I I

t=l i=l »'=1

We assume that Rt{) is continuously differentiable for

all t. We can then apply the subgradient algorithm to

solve (£>) to obtain a Stackelberg equilibrium.

Stackelberg Algorithm

Step 0: k <— 0; A° and £° are given.

Step 1: Given Xk and /£*, solve 9(Xk,p}; R(pk)) to obtain
(Mfc,Pfc),forVi,<.

Step 2: Af+1 = A* + sk(Dt - ELi PiMt),
fik+1 = max(0, pk +sk(Rt(fik) - ZUi P™X«it +

fikR't(fik))),VL

Step 3: k *- k + 1, go to Step 1. •

(Note that the objective of (D) is not necessarily concave

because J2t=ifitRt(Plt) mav not he concave.)



IV.4 Phase 2 algorithm

Without much modification, the phase 2 algorithm for

the unit commitment with adaptive price-based SRR is

as follows.

Phase 2 Algorithm

Step 0: k *— 0; A0 and pf are from Phase 1.

Step 1: Given A* and /£*, solve 9(Xk, p}, R(p})) toobtain

Step 2: If (uk,pk) is reserve feasible, stop.

Step 3: Xk+1 = Af,
pk+1 = pk+sk min(0, Rt(pk)-Y:L PTS*). V*.

Step 4: k <— k 4- 1, go to Step 1. •

It can be shown that if there exists an e > 0 and the

step size sk > c for Vfc, the Phase 2 algorithm termi
nates within a finite number of steps. Also this phase

2 algorithm is of the sequential bargaining game model.

The Stackelberg-type phase 2 algorithm does not neces

sarily work because the extra term in the subgradient
PtR't(pt) < 0 may outweigh the mismatch of the corre

sponding SRR, Rt(pt) - 5Z/=iPraXu«<» and may either
cause the value of pt to be unchanged in the following
iteration or slow down the process.

The three-phase algorithm can be applied to solve the

unit commitment with price-based adaptive SRR. Nash
or Stackelberg Algorithms can be applied to solve the
phase 1 dual optimization. We shall compare the their
numerical results in a later section.

IV. 5 Discussion

Define L(x,u, p; X,p,R) =

T /

E ^fPi(Pit)uit + 5f(xt><_i, Uit, U.\t-l)]+
<=1 «=1

T I I

EMD* - ^PitUiA +MRt - E^""")]- (12)
*=1 1=1 t=l

L is the Lagrangian of the unit commitment problem (P).
Suppose 1.05A = R?in < Rt(pt) < R?*x = 1.07A for
all pt > 0, V*, and (X",p*) and {X,p) solve (£>*) and (D)
respectively. We have

max mm L(x,u,p;X,p,Rm,n) (13)
A,/j>0 x,u,p v-' -' £' -' *-' — ' v '

< (D*) max min L(i,u,p; A,p,R(p*)) (14)
*,f*>0z<!LP — — —

< (D) max minL(x,u,p; A, p,R(p)) (15)
A,/i>0£,u,p — — —

< max mmL(x,u,p;A,p,R(p)) (16)
AiP>°£'H..P _ _ _

< max minL(x,tx,p;A,/i,igmax). (17)
*,j*>0 2.>H»P ~ ~

To see the inequality between (14) and (15), note that

the optimal solution (A*,£*) of (D*) is feasible to (£)).
This shows that the revenue of the leader (firm Q) in

the Stackelberg game exceeds that in the sequential bar

gaining game defined in Section IV.2. This is because in

the Stackelberg game firm Q has more information about

firm P than in the Sequential bargaining game.

Both Algorithm 1 and 2 can be applied to obtain a

price-based adaptive SRR. For example, if we solve (D)
and obtain (X,p), we can use R(p) as SRR to define a
unit commitment (P) as below.

T I

(P) min^2^2[Ci(pit)uit + Si(xi<t-i,uit,uitt-i)]
-,£-<=i i=i

»•*• ELiW««« = A; T,LiP?axuit > Rt(pt),w.
The corresponding dual problem (£)) of (P) is as follows.

(D) max min L(x,u,p; A, p,R(p)) (18)
A./i^Or.u.p — — —

Without really solving (D), we approximate the du

ality gap between (P) and (D) by the 'duality' gap be
tween (P) and (D). Note that this approximation is more
restrictive (with a larger value) than the value of the

actual duality gap. In our experiments, the 'duality'
gap between (D) and (P) is achieved within 1.5% for

10-unit-168-hour cases, and within 0.3% for 30-unit-168-

hour cases. This means the actual duality gaps between

(P) and (D) for both cases are actually smaller.

V Numerical results

The algorithms are implemented in FORTRAN on an

HP 700 workstation. A 30-unit thermal model problem

over a one week planning horizon is tested. The total sys

tem capacity is 15,515 MW which is much higher than the

peak load. We apply the three-phase algorithm to solve

the unit commitment problem. The original fixed SRR
method is compared with the adaptive SRR method.

We also have tested both Nash and Stackelberg Algo
rithms in the Phase 1 in the adaptive SRR case. With



Rt(pt) = 1.06 -I- 0.01 ta.nh(-4(pt - 0.5)) for V<, the algo
rithm performances are summarized in Table 1.

Both adaptive SRR algorithms have lower total gen
erating cost due to the relaxation of SRR, and achieve

better solutions in terms of the duality gap. Also the
Stackelbergmodel outperforms the sequential bargaining
model (Nash Algorithm) in terms of cost saving because
of having more information as explained in Section IV.

The system spinning capacity profiles obtained by

fixed SRR and adaptive SRR (Stackelberg model) meth
ods are depicted in Figure 3, in which only one day is

shown. The corresponding data can be found in Tables 2

and 3. In Figure 3 it can be seen at hour 12, the SRR has

been relaxed down to 5% of the load and yield an actual

reserve of 5.8% of the load. Slight relaxation of the SRR

at hour 12 affects the commitment in the following hours

(due to minimum up/down time constraints). In Figure

3 it can be seen that during the period between hours 15

and 19, a commitment with adequate but more economic

spinning reserve is achieved with adaptive SRR.

Figure 3: System spinning capacities and SRR.

Table 1: Comparison of methods

methods

total

cost ($)

CPU time (sec.) Duality

Gap (%)Ph. 1 Ph. 2 Ph. 3

Fixed SRR* 9333747 11.53 10.1 0.13 0.70

Adp. SRRlt 9296353 10.17 7.64 0.29 0.40

Adp. SRR2* 9291727 11.56 7.22 0.12 0.35

• Fixed SRR: 7%xLoad.

|Adp. SRR 1: Nash Algorithm in Phase 1.

JAdp. SRR 2: Stackelberg Algorithm in Phase 1.

Table 2: pt of selected hours (fixed SRR)
hour 2 4 6 8 10 12

A»« 0 0 0 0.35 0.595 1.724

SRR(%) 7.0 7.0 7.0 7.0 7.0 7.0

Load(MW) 2530 2350 3400 6400 7850 8720

SSC(MW)t 5045 5045 5045 6855 9225 9825

reserve(%)* 99.4 114.6 48.4 7.1 17.5 12.6

hour 14 16 18 20 22 24

^t 0.437 0 0.892 0.523 0 0

SRR(%) 7.0 7.0 7.0 7.0 7.0 7.0

Load(MW) 7650 6550 8200 7700 4300 2400

SSC(MW) 9225 9225 9225 9225 5295 4920

reserve(%) 20.5 40.8 12.5 19.8 23.1 105

tSSC: System Spinning

treserve(%)=100x(SSC

Capacity

- Load)/Load

Table 3 : pt of selected hours (Adaptive SRR)
hour 2 4 6 8 10 12

t*t 0 0 0 0 0.469 1.281

SRR(%) 7.0 7.0 7.0 7.0 6.1 5.0

Load(MW) 2530 2350 3400 6400 7850 8720

SSC(MW) 4920 4920 4920 6855 9225 9225

reserve(%) 94.4 109.3 44.7 7.1 17.5 5.8

hour 14 16 18 20 22 24

Mt 0.317 0 0.788 0.375 0 0

SRR(%) 6.5 7.0 5.3 6.4 7.0 7.0

Load(MW) 7650 6550 8200 7700 4300 2400

SSC(MW) 9225 8225 8825 8225 5295 4920

reserve(%) 20.5 25.5 7.6 6.8 23.1 105

VI Conclusion

In this paper we have presented a price-based adap

tive spinning capacity requirements for power system

scheduling. A game theory interpretation is given to the

Lagrangian relaxation method for solving unit commit

ment. We show that this method uses the Lagrange mul

tipliers as price information. The numerical test results

show that our method can yield both cost savings and

improved algorithm performance^
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