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Abstract—Tins paper presents a unit decommit

ment method for power system scheduling. Given

a feasible unit commitment, our algorithm de
termines an optimal strategy for decommitting
overcommitted units based on dynamic program
ming. This method is being developed as a pos

sible post-processing tool to improve the solu

tion quality of the existing unit commitment al

gorithm used at PG&E. It can also be integrated
into any other unit commitment method or used

as a complete unit commitment algorithm in it

self. The decommitment method can also be used

as a tool to measure the solution quality of unit

commitment algorithms. The proposed method

maintains solution feasibility at all iterations. In

this paper we prove that the number of iterations

required by the method to terminate is bounded

by the number of units. Numerical tests indicate

that this decommitment method is computation

ally efficient and can improve scheduling signifi
cantly.

Keywords: Power system scheduling, Unit commit

ment, Unit decommitment.

I Introduction

The unit commitment problem at a power utility like

PG&E requires economically scheduling generating units
over a planning horizon so as to meet forecast demand

and system operating constraints. It has been an active

research subject due to potential cost saving and the dif

ficulty of the problem. The unit commitment problem is
a mixed integer programming problem, and is considered

to be among the class of the most intractable problems

(NP-hard.) Many optimization methods have been pro-
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posed to solve the unit commitment problem (e.g. [4]).
These methods include priority list methods [3], dynamic
programming methods [10, 11, 14] and Lagrangian relax
ation methods [2, 4, 5, 6], etc. Among them, Lagrangian
relaxation methods are now among the most widely used

approaches to solve unit commitment. At PG&E, the

Hydro-Thermal Optimization (HTO) program was de

veloped almost a decade ago based on the Lagrangian
relaxation approach [5]. In recent work, the Lagrangian
relaxation-based algorithm has been extended to sched
ule thermal units under ramp constraints ([12]).

The Lagrangian relaxation approach is a dual method.

The basic idea is to relax the system demand and spin

ning reserve constraints using Lagrange multipliers. The

resulting dual problem is then decomposed into unit sub-

problems, each of which can be easily solved. Despite
efficiency in solving the dual problem due to its separa

bility, the solution of the dual problem does not neces

sarily yield a feasible solution of the original problem.

Therefore the Lagrangian relaxation methods for solv

ing unit commitment have often been algorithms with
two phases: a dual optimization phase and a feasibility

phase (see [13,15] for a discussion and interpretation.) A
common phenomenon observed in the feasibility phase is

overcommitment of generating units. For the purpose of

improving cost savings, our attention has focused on how

to improve a feasible unit commitment while maintaining

feasibility, by developing decommitment algorithms.

In [8] a new unit commitment method was proposed.
The method in [8] resembles the Lagrangian relaxation
approach but only the system demand constraints are re

laxed with multipliers. However the multipliers are not

obtained and updated by the subgradient rule but from
economic dispatch. This method starts with a unit com

mitment with all available units on-line at all hours in

the planning horizon, and improves the commitment by



gradually decommitting units.

In this paper, we propose a general decommitment al
gorithm for power system scheduling. Given any feasible
unit commitment, the proposed algorithm determines an
optimal strategy for decommitting overcommitted units.
Without incorporating ramp constraints, the problem is
formulated as an integer programming problem and is
solved by dynamic programming. The method main
tains solution feasibility at all iterations. We shall show

in this paper that the number of iterations required by
our method to terminate is bounded by the number of

units. The computation involved is fast. Because prob
lem feasibility is always satisfied, the method provides
useful information at any iteration and can serve as a

good and efficient post-processing method for any ex
isting unit commitment algorithm. In this paper, we do

not directly address the intractability of the unit commit

ment problem, but we will discuss applying the proposed

decommitment method as a complete unit commitment
algorithm.

This paper is organized as follows. In Section 2, the

unit commitment problem is formulated. The unit de-

commitment algorithm and its convergence properties
are presented in Section 3. In Section 4, approximate

versions of the decommitment algorithm are discussed to

improve algorithm performance. An attempt to apply

the unit decommitment method presented in Section 3

as a complete unit commitment method is discussed in

Section 5. We provide some numerical test results and

the conclusions of this paper in Section 6 and Section 7.

II Problem formulation

In this paper the following standard notation will be

used. Additional symbols will be introduced when nec

essary.

i: index for the number of units (i = 1,• ••, 7)

t : index for time (/ = 0, •••, T)

uu : zero-one decision variable indicating whether unit i
is up or down in time period t

xu : state variable indicating the length of time that unit

i has been up or down in time period /

jon ^offj . tjje minimum number of periods unit i must
remain on (off) after it has been turned on (off)

Pit : state variable indicating the amount of power unit
i is generating in time period t

pmin (pjnax^ . minimum (maximum) rated capacity of
unit i

Ci(pa) • fuel cost for operating unit i at output level pn
in time period t

Si(xitt-i,UitiUitt-i) : startup cost associated with turn
ing on unit i at the beginning of time period t

Dt : forecast demand in time period t

Rt : spinning capacity requirement in time period t

The unit commitment problem is formulated as the fol

lowing mixed-integer programming problem: (note that
the underlined variables are vectors in this paper, e.g.
u= (uii,---,u/t).)

t I

min ^2^2[Ci(pit)uit +S,-(*,•,«_ i,«,-«, «i,t-i)] (1)
-,£ - t=i t=i

subject to the demand constraints,

/

]^P»<Wtt =A, t =i,---,r,

and the spinning capacity constraints,

/

£>rx"«>flt, *=i,---,r.
i=i

(2)

(3)

There are other unit constraints such as unit capacity

constraints,

pfn<Pit<P?*x,i=h--,I,t = h •••,T, (4)

the state transition equation for i = 1, • • •, I,

max(art-it_i,0)+l, ifuit = l,
xu •{

Uit = <

min(x,-,t_i, 0) - 1, if uit = 0,

the minimum up/down time constraints for i = 1, •• •, I,

1, if l<x,-,«_i<<?nl

0, if - 1 > xi,«_i > -tf, (6)
0 or 1, otherwise,

and the initial conditions on xl( at t = 0 for Vi.

(5)



II. 1 Model of cost function

The generating cost of a thermal unit includes fuel
costs and the startup costs. In this paper, the fuel cost

is modeled as a convex quadratic function of the power

output(MWh) of the unit:

Ci{pit) = ai0 + anpit + ai2Pit, i = 1, •••, /, (7)

where each of the a,j coefficients are taken to be nonneg-
ative [1].

The startup costs vary with the temperature of the

boiler and therefore depend on the length of time that
the unit has been off. The longer a unit is off, the greater

the cost will be to start up the unit. It is modeled as an

exponential function. To further simplify the notation,

we let Si(u,t) = Si(xitt-i,Uit,Uitt-i).

II. 2 Economic dispatch

Economic dispatch is a problem of allocating the sys

tem demand among all the on-line generating units at

any time in the planning horizon. In this paper, the the

ory is developed with respect to a given commitment u

satisfying (3), (5) and (6). All variables hatted with a

tilde are related to this commitment. Define the index

set of on-line units at time t with respect to this feasi

ble commitment J(t\u) = {i\uu = 1}- For simplicity,
Jt = J(t;u). The economic dispatch problem is to de

termine the generation levels of on-line units so as to

minimize fuel costs subject to (2) and (4).

edp(Jt,i) = . min {V C,(p,t)| Y]pu = A},Vt,P™<p.<<pr* £t &
(8)

and

pit = arg min {Y* Ci(pit)\ V* pit = Dt}, V<,
p?in<P,t<Pm*x . .

(9)
where edp(Jt,t) is the economic dispatch value at hour
t, and p is the economic dispatch solution. Note that the

economic dispatch is a quadratic programming problem.

Its necessary condition of optimality is generally stated

as the operation of all generators at equal marginal (in

cremental) cost (e.g. [14].) More precisely, there exist
Xt, t = 1, • • •, T, such that

C[{pit) = \u for pfn <pit<p?™
C'i(pit)>\t, for pu =pf"
C'i(Pit)<\u for pit=P?™,

(10)

for i = 1,- • •,/.

Note that to guarantee the existence of solution of

edp(Jt,t) in (8), the following minimum load condition
is implicitly assumed.

Epr^^Eprs^- (ii)
i€Jt ieJt

III Unit decommitment method

Given a feasible schedule (u;p) (satisfying (2) to (6)
and (10)), we consider the problem of decommitting unit
j in hour t. Before the decommitment, the total fuel cost

in hour t is edp(Jt,t). Decommitting unit j in hour i, its
generated power pjt will be distributed to other on-line
units in hour t in order to satisfy (2). The total fuel
generating cost after decommitment is edp(Jt\{j},t).
The increased fuel cost of all on-line units other than

unit j due to its decommitment in hour t is denoted by

ACj(u,p,t). The exact value of ACj(u,p,t) is

ACj&p.O = edp(Jt\{j},t) - {edp{Jt,t) - Cj{pjt)ujt).
(12)

Now we consider the following problem (Pj) to im
prove the commitment of unit j (with other units' com
mitments fixed.)

w
T

subject to

/ 0 if ujt = 0,
U" =\ 1 iffiif = l and £•

and the minimum up/down time constraints (5) and (6)
for i —j with initial conditions at i = 0. In the sequel,

the solution of (Pj) will be called the tentative commit
ment of unit j.

In solving (Pj) with respect to (u; p) it can be seen that
unit j remains off in off-line hours; and may be turned

off if its removal will not violate the system spinning

capacity requirement. The objective function shows that

in an on-line hour if unit j remains on, the generating

cost in that hour is the original fuel cost; while if unit

j is turned off, the generating cost in that hour will be

ACj(u,p,t). In both cases, the startup cost is imposed
when unit j is started up.

Obviously, the tentative commitmentobtained in (Pj)
with respect to (u;p) is no worse than {uj^J-i, because

<Rt,
(13)



{ujt)T=i itself is feasible to (Pj). Note that (Pj) is an
integer programming problem and can be solved using
either forward or backward dynamic programming. Fig
ure 1 shows the state transition diagram of dynamic pro

gramming. Equation (13) can be regarded as a unit avail

ability constraint, and is modeled in the transition cost

in the state transition diagram.

/on.lMiit uptime

/off:unit downtime

f^unitcoldtime

Figure 1: The state transition diagram

Based on a given unit commitment («;p), problem (Pj)
improves the commitment of unit j with the commit

ments of all other units fixed. If we include the total

generating cost of all the units other than j into the ob

jective of (Pj)> we have

T

u.™n1}EKc;(^

T

+£Dc<(ft«)fi«+s(fi,<)] (i4)

T

= "}Jf1,S3KCiCw«)+5i(!t,0)«ii+ACiafcO(l-tti«)]«it€io,i) *^

T

+SE[Ci(ftt)M«i« +l-«ii) +5i(fi,0] (15)
•Vj t=i

T

= min,, y\i(edp(Jt>t)+Sj(u,t))ujX«i«€{0,l}^

+edp(Jt\{j},t)(l - Ujt)) + ]££S,(fi,*). (16)

(Note: if j g Jt, let Jt\{j) = Ji.) Since the last term in
(14) (also the last term in (16)) is a constant, the inclu
sion of this term to (Pj) will not affect the minimization
solution of (Pj). It can be seen from (16) that solving
(Pj) with respect to («;p) will determine the optimal
strategy to improve (u; p) by only decommitting unit .;'

at some hours.

In the following algorithm, superscript k denotes the

fc-th iteration of the algorithm. Let Af, i = l,--,7
be the total generating cost (fuel cost and startup cost)
of unit t of the feasible schedule («*;£*); and A*, i —
1, •••,7, the optimal objective value of (Pf) solved with
respect to feasible solution («fc;pfc). We now state the
decommitment algorithm.

Generic unit decommitment algorithm

Data: Feasible solution (u°;p°) and the corresponding
A°, i = 1, •••, I are given.

Step 0: k «- 0.

Step 1: Solve (Pf*) with respect to (uk\pk) andobtain Af
for all i = 1,- • -,7.

Step 2: Select a unit m such that (Aj, - A^) > 0. If
there is no such a unit, stop; otherwise update

the commitment of unit m in uk by the com
mitment obtained in (P^). The resultant unit
commitment is assigned to be uk+1.

Step 3: Perform the economic dispatch on uk+1 to obtain
pk+1 andevaluate A*+1, the total generating cost
of unit i, i = 1, •••,7.

Step 4: k <— k + 1, go to Step 1. •

At each iteration, the tentative commitment problem

(Pi) of each unit i is obtained, and the potential savings

for running the tentative commitment A,- —A,- is also
calculated. The algorithm chooses the tentative com

mitment which can yield savings to replace the original

commitment. The rule for selecting a unit to improve

in Step 2, corresponding to choosing a descent direction
as in continuous optimization theory, is not unique. For

example,

• m = argmax{A* —A* \i = 1,•••, 7} —the steepest,
descent direction (e.g. [9]).



• m = argmax{(A? - A?)/0|i = 1, •,7} - the de
flected gradient direction (e.g. [9]), where 0 can be,
say, pj"11*. The rule used in [8] belongs to this cate
gory.

• Assuming Ci(p) = a;o + a,ip + auP2 and a\2 >
022 ••' > a/2, m is the smallest index i that has

not been selected in previous iterations such that

A* —A* > 0 —the coordinate descent method (e.g.
[9])-

Theoretically, different unit selection rules in Step 2 may

yield different convergence. However, our experience

shows that the performance of the algorithm is insen
sitive, at least, to the above three selection rules. Issues

about evaluation of Ad(u,p, t) will be discussed in Sec

tion IV.

III.l Convergence analysis

In this section, we discuss the convergence properties

of the decommitment algorithm. We will show that the

algorithm will terminate within a finite number of iter

ations, and the number of iterations is bounded by the

number of units.

Lemma 1 Given a feasible solution (w;p) and its as

sociated A, for unit j in time t the following statements

are true.

(i) Cj(pjt) < XtPjt, if A, > C'j(Pfn); Cj(pjt) =
Cj(pfn), if \t<C'j(p?n).

(ii) ACj(u,p,t)> \tpjt, for Vt.

Proof, (i) is from the convexity of Cj and (10). Assume
that solving edp(Jt\{j},t) yields generation level pu +
Apu for unit i € Jt\{j] such that Sig/^u} Apit = pjt.
Since all the fuel cost functions are assumed to be smooth

(7), we have

ACj(u,p,t) = J2 Ci(pit-r Apu) - Ci(pit)
•€/A{i}

> J2 C'i(Pit)^Pit
ieJtW)

> Xt J2 *Pit = *tPjt. (17)
ieJt\U)

(Note that for those i such that C'^pu) < At, Ap,-, = 0.)

Lemma 2 Given a feasible solution (u;p) and its as
sociated A, for unit j in time t the following statements
are true.

(i) Uujt = 0, ACj(u,p,t) = 0.

(ii) Uujt = l} ACj(u,p,t)> 0.

(Hi) If iijt = 0 at the k'-th iteration, i.e., ukt = 0, then
ukt = 0 and ACj(uk,pk,t) = 0 for V* > k''.

(iv) Both {Cj(pkt)} and {Xk} are nondecreasing se
quences in k, for all t.

(v) {AC,(u*,p*,<)} is a nondecreasing sequences in k
before unit j is decommitted in time t at some iter

ation.

Proof. Statements (i) to (iii) are obvious. Since the al

gorithm only involves unit decommitment and the load

balance equation is satisfied at all iterations, (iv) is true.

To prove statement (v), assume at iteration k, the gen

eration levels of an on-line unit i ^ j will increase Apu
due to the decommitment of unit,;. We have

ACj(uk,pk}t) = mm £ d(pkt + Apit) - d(pkt)
ieJ?\{j)

s-t- T,ieJ?\{j}AP«=Pjt
Q<*Pit<p?ax-tit,vieJtk\{J}

- min 5Z C'i(pkt)Apit -r 2al2Ap?t
itJ?\{J)

St" £<€/,k\{j} AP" = Pjt
0 < Ap,-, < Prx - fit, Vi 6 J?\{j).

Consider two iterations k' and k" such that k' < k" and

AC,(ji* ,pk ,<), ACj(uk ,pk ,t) are nonzero. Note that
J'tk" Qjtk\ Pki <Pkit and 0<CKpft) <C'M') for all
i GJk • Based on this information, it is straightforward
to show that ACj(uk\pk\t) < AC,-(u*",£*",<) under
these conditions. •

Note that the results in Lemma 2 can be generalized

to the case where the fuel cost functions for generating
units are convex, not limited to quadratic functions. An

intuitive interpretation of the final step in the proof is

stated as follows: AC,(u,p,<) is the economic dispatch
of pjt to other on-line units. Compare two distinct it

erations k' and k" (k" > k'). In the later iteration k",
one needs to dispatch more power (p!jt > pkt) to with



fewer units (jjr' C Jtfc') while the dispatching fee gets
higher asthe iteration proceeds (0 < C,'(pf/) < C^pf/')).
Therefore ACj(uk> ,pk\t) < AC,(«* ",pk',t).

Theorem 3 A unit, once it has been selected in Step 2
in the generic unit decommitment algorithm at some it
eration, will not be selected again in Step 2 at any future

iteration. So the decommitment algorithm terminates
within 7 iterations, where 7 is the number of the units.

Proof. Suppose unitj is selected at iteration k', and its

tentative commitment ofunit.;' is {ukt) (={u*t+1}), so

T

E[(ci( '̂)+5i(^^o)^;+AQ(ufc',pfc',o(i-u};)]<
«=i

T

EK^Pi*')+ Sj(lL,t))ujt + ACj(uk',pk\t)(l ~«*)],
t=i

(18)
for any {ujt} satisfying (13).

Now assume on the contrary that unit ,;' is se

lected again in Step 2 (for the first time) at iteration

k" > k', and assume that the tentative commitment is

<#H={<+1}).i.e..
T

E[(ci(^V5J(ifc\o)4'+A^(^,,pfc''.o(i-^')]>
<=i

T

Et(ci (pk/t')+Sj (**". m?t'+*Cj(uk", pk", t)( \-uk't')).
t=i

(19)
Let T= {t\uk't # «£',< = l,...,T}^i.e., «*' =1but
ukt = 0 for V< G T. With Ujt = uk" substituted into
(18), (18) is reduced to

Y^Cj($'t) + ASj < X^AQCfi*',£*',<), (20)
ter ter

where AS,- = ELi(^(m* ,t)uk't - Sj(uk ,t)u?t'). Simi
larly (19) is equivalent to

^Cj(pk't') +ASj >^2ACj(uk",pk\t). (21)
tgr ter

From Lemmas 1 and 2, we know that at any t either

ACj(uk,pk,t) > Cj(pkt)JoiVk > k',oiACj(uktpk,t) <
Cj(pkt) at k= k' butACj(uk, pfc, t) isgetting closer toor
even becomes greater than Cj(pkt) as k increases. This
implies that

J2Cj(p^t) +ASj < X>Q(u*,p\*) (22)
ter ter

should continue to hold for all k > k'. But this con

tradicts (21). So unit j should not be selected again to
improve after iteration k'. •

To summarize Theorem 3, note that Lemma 2 (v)
shows that it becomes less advantageous to decommit

the same unit in the same hour as iteration proceeds.

Therefore it could never occur that a unit facing a lower

cost for decommitment is not decommitted in an hour at

some iteration, but is decommitted in the same hour at a

future iteration facing a higher cost. Also it is worthy to

note that the properties stated in Lemmas 1 and 2, and

Theorem 3 are independent of the unit selection rule in

Step 2 in the algorithm.

Remark Based on the result in Theorem 3, those units

which have been selected in Step 2 at some iteration can

be exempt from consideration in Step 1 and Step 2 of

future iterations. This can improve the computational

speed of the algorithm.

IV Approximate methods

In this section, we discuss methods to approximate

AC,(u,p,<) in the objective function of (Pj). As pre
viously mentioned, ACj(u,p,t) is an estimate of the in
creased generating costs of all on-line units other than

unit j due to its decommitment. The exact value of

AC;(m>P>0 is given in (12). To solve (12), equiva
lent^ an extra economic dispatch has to be solved, i.e.

edp(Jt\{j},t), for V<. Therefore at each iteration of the
decommitment algorithm 7 + 1 economic dispatches are

performed. By the Theorem, the algorithm will require

performing no more than 7 + 72 economic dispatches in
total. Based on the remark in the end of the previous

section, the upper bound on the number of economic

dispatches required can be reduced to 7 + 7(7 + l)/2.

Even though the economic dispatch can be efficiently

solved (e.g. [7, 14]), in a large-scale system it is desired
to approximate ACj(u,p, t) without performing an ex
tra economic dispatch. Next we discuss two methods to

approximate AC,-(w, p, t).

IV. 1 Guaranteed descent method

If ACj(u,p,t) is approximated, a sufficient condition

to guarantee that solving (Pj) with respect to (u;p) can



yield a commitment no worse than u is that AC,(u,p,/)
satisfies

ACj-ap,<) > edp(Jt\{j),t) - (edp(Jut) - Cj(pjt)ujt).
(23)

That is, AC,-(w,p, t) should be overestimated. Since the
last two terms (in parentheses) in (23) are fixed and
known when solving (Pj), the exact value of AC,- given
in (12) can be regarded as the value of the solution

of a minimization problem, i.e., the economic dispatch
edp(Jt\{j},t). To overestimate the solution value of a
minimization problem, any feasible solution of the mini

mization problem willdo. So any feasibledispatch among
the unit index set Jt\{j} can be applied to satisfy (23).
An easy way to create a feasible and reasonably good
dispatch is to apply a priority list. All the units are as

signed a priority order which is determined by the slope

of the incremental cost curve 2a,2 of the unit. At time*,

if unit i = j is to be decommitted, its generation amount

Pjt will be distributed to other on-line units. All the on
line units other than unit j consume pjt in the order of
the priority list subject to unit capacity constraint until

Pjt is totally consumed. The algorithm to overestimate

the exact value of AC,(u,p, t) by the priority list is given
below.

Guaranteed descent method: by priority

list

Step 0: d —pjt; J <- Jt\{j}\ AC «- 0.

Step 1: Let / = argmin,gj a,2. Obtain the following:

pit = min(p/t+d,pjnax), (24)

d <—d— (pu —pit), (25)

and

AC^AC + C,(pn)-C/(p„)

= AC+aii(ptt-pit) + ai2(pft-pft). (26)

Step 2: If d = 0, stop and AC is the estimation; other

wise J «— «7\{/} and go to Step 1. •

The priority list algorithm above is very efficient. It

obtains a good approximation of AC,(«,p,<) based on
our simulation experience.

IV.2 First order approximate method

Another method of approximating AC;- obtains a first
order approximation. Assume that solving edp(Jt\{j},t)
yields generation level pit + Ap,< for unit i € Jt\{j] such
that ]Ci€/,\{j} APtt = Pjt- Since all the fuel cost func
tions are assumed to be smooth (7), we have

AC,(u,p,<) = ]T C,(p,t + Ap,t)-Ct(pft)
»e/A{i}

* ]£ C[(pit)Apit
ieJt\<j)

« Xt Y, Apit = Xtpjt, (27)
*€/t\{i}

where Xt is the marginal cost at hour t obtained in solv

ing edp(Jt). Note that in (27) we apply the optimality
condition of economic dispatch, i.e. operating all units at
the same marginal cost. However, this is only an approx

imation (cf. (10)) of the incremental costs of generating
units when unit capacity constraints are present.

Also by Lemma 1 (ii) we know that the first order ap

proximate method always underestimates the exact value

of AC,(w,p,t). Therefore the selected tentative com
mitment does not necessarily guarantee improvement.

This sometimes causes the algorithm to terminate pre

maturely.

After substituting AC,- in (13) by Xtpjt and rearrang
ing terms, the objective of (Pj) is equal to the following.

T T

"?)?,, Y^C^Muit ~~xtPitUjt +Sj(u,t)] +Y ~xtPjt-
(28)

The last term in (28) is a constant and can be ignored

in the objective. Since Xt is the marginal cost obtained

from economic dispatch, we have the following proposi

tion.

Proposition 4 The following problem (Pj) yields the
same commitment solution as (Pj) with respect to (u\p).

T

(Pj) min Y2[Cj(pjt)ujt-XtPjtUjt + Sj(u,t))

subject to (3), (4), (5), (6) and (13), where {Xt} are as
sociated with (w;p) satisfying (10).

Proof. Since plt and Xt satisfy (10), when Ujt = 1, pjt
solves min[C,(pjt) —Xtpjt] subject to the unit capacity
constraint pfin <Pjt< pfax- •



(Pj) resembles a unit subproblem in the Lagrangianre
laxation approach for solving the unit commitment prob

lem, but in which only the system load equations are re

laxed, and the values of Lagrangian multipliers are taken

from economic dispatch. This was also the basic idea

behind the method in [8]. The method in [8] initially
turns on as many units as possible. It solves problem

(Pj) but only subject to (4), (5) and (6), and repeatedly
updates the problem in the manner of the decommitment

algorithm proposed in Section 3 of this paper. Sinceorig
inally all units were turned on, any improvement in the
commitment through (Pj) can only involve unit decom
mitment.

Finally, it is not difficult to show that the AC,- gener
ated by both approximate methods presented in this sec

tion satisfies the properties stated in Lemma 1 (ii) and
Lemma 2. Therefore a result similar to that of Theorem

3 holds even for the approximate methods. We state the

final theorem without a proof.

Theorem 5 The generic unit decommitment algorithm,
using either the guarantee descent method or the first

order approximate method to approximate AC,-, termi
nates within 7 iterations, where 7 is the number of the

units. •

V Discussion

V.l Optimal unit decommitment

The proposed unit decommitment algorithm at each
iteration determines an optimal strategy to improve by
a single unit at a time. Similarly, an optimal strategy to
improve two units at a time can be devised. In that case,
in each hour in the planning horizon, at most four combi

nations of the corresponding on-line units are considered
for decommitment. If solved by dynamic programming,
this requires extending the state space to include these
combinations of on-line units. Intuitively, an optimalunit
decommitment in an hour considers all possible combi

nations of all on-line units to be decommitted and deter

mines the optimal strategy, which itself is a constrained
unit commitment problem. Therefore, the optimal unit
decommitment problem is a difficult combinatorial prob
lem. In our design, the unit decommitment algorithm
is a post-processing method to aid the two-phase (dual

optimization phase and feasibility phase) Lagrangian re
laxation method in improving the solution quality. Given

a feasible solution obtained by the Lagrangian relaxation

method, it is believed that the possibility of decommit

ting more than one unit at a time without affecting fea
sibility is relatively rare.

V.2 Solving unit commitment by unit

decommitment

Applied to solve a complete unit commitment prob

lem with all the available units turned on at all hours

initially, our unit decommitment algorithm falls into the

class of methods as proposed in [8]. When the system
is thus overcommitted (in terms of surplus between the

system capacity and system demand to measure the pos

sible combinations of unit decommitment), it is not clear

whether improving one unit at a time with other units

fixed is a near-optimal strategy to improve the current
unit commitment. Recently we have conducted exten

sive testing on the unit decommitment method proposed

herein as a unit commitment algorithm, and compared

it with the Lagrangian relaxation method. The test re

sults suggest that this method could be an efficient way

to obtain a reasonably good solution of the unit com
mitment problem. We shall present further results of

research along this direction in a future paper.

VI Numerical results

The decommitment algorithms proposed in this pa
per have been implemented in FORTRAN on an HP 700

workstation. To compare the performance of the decom

mitment algorithm (DA) with its two approximate al

gorithms, the guaranteed descent method (DA-GD) and
the first order method (DA-FO) introduced in Section
4, we randomly generate unit commitment instances and

then apply these three algorithms to solve. All three

methods use the steepest descent type of selection rule
in Step 2 in the algorithm. Eight cases of systems with
different numbers of units and lengths of planning hori
zon are tested. Cases are denoted by (no. of units x no.
of hours in planning horizon): (10 x 24), (10 x 168), (20
x 24), (20 x 168), (30 x 24), (30 x 168), (40 x 24) and
(40 x 168). Unit commitment instances of each case are
randomly generated. Let rand(x,y) denote a random
number generator which generates numbers uniformly

8



between numbers x and y. The detailed configuration
of randomly generating the unit commitment instance is
shown in Table 1.

Table 1: Configuration of unit commitment instances

jon the nearest integer of rand(l, 6)
joff

i the nearest integer of rand(l, 6)
tcold T

i t°ff + the nearest integer of ranef(5,25)
XiO the nearest nonzero integer of rand(l, 20) —10
-mm rand(50,300)
pmax p^in + rand(100,500)

Ci{pit) aio = ranrf(175,800); o,i = rand(7,9);
d2 = rontf(0.001,0.005)

Si{u,t)

Si(u,t) = 6,i(1 - exp(-xlt/p.) + bi2), xit < 0.
ha = rand(1200,2400); bi2 = rant/(2000,3500);
Pi = rand(2,5)

Dt randfc. p™»ult, 0.9 £. P;»«i2,r)
Rt 1.07D,

t : tJoW: unit cold time.

The given initial feasible commitment u is generated

uniformly among {0,1} in succession, starting from the
first hour, while the minimum uptime and downtime con

straints are satisfied. Note that the demand Dt is gener

ated after u to guarantee (11) is satisfied.

When testing each case, 100 instances are generated

based on the configuration in Table 1. For each instance,

the three algorithms are applied. Since each instance

is different, only relative performances of the three algo

rithms is recorded, including the relative total generating

costs (in Table 2) and the relative CPU time (in Table 3).
However, we also provide the average cost and CPU time

of the 100 instances of each case solved by DA in Table

2 and 3 respectively. Note that in the following tables,

the two numbers inside the parentheses under an aver

aged number indicate the range of all the corresponding

sample points obtained during testing of all instances.

Table 2 and Table 3 show that the DA-GD and the DA-

FO methods are both good approximate methods for the

DA. In terms of cost saving, DA-GD, on average, obtains

better solutions than DA and DA-FO. The differences

between the solutions obtained by these three methods

are generally within 2% based on our testing. It is clear

that both approximate methods, DA-GD and DA-FO,

require much less computational time than the DA, and

require lesser CPU time as the system gets larger. The

DA-GD requires a sorting procedure to determine the

priority list, and therefore always takes more time than

the DA-FO. Based on the comparison and our experi

ence, we recommend the DA-GD method because of its

guaranteed descent property; on the other hand without

this property DA-FO in very rare cases will terminate

in the first few iterations due to a poorer estimate of
AC;(u,P,0 in (12) as discussed in Section 3.1.

Table 2: Average relative costs

Case DA DA-GD DA-FO Avg Cost of

DA ($106)
10x24 0.999

(0.978-1.011)
1.011

(0.995-1.018)
0.492

10x168 0.999

(0.978-1.011)
1.001

(0.999-1.011)
3.338

20x24 0.999

(0.978-1.011)
1.001

(0.995-1.018)
0.953

20x168 0.999

(0.978-1.011)
1.001

(0.995-1.018)
6.662

30x24 0.998

(0.978-1.011)

1.001

(0.995-1.018)
1.404

30x168 0.999

(0.978-1.011)
1.001

(0.995-1.018)

9.915

40x24 0.999

(0.978-1.011)

1.001

(0.995-1.018)

1.876

40X168 0.998

(0.978-1.011)

1.001

(0.995-1.018)
13.313

Table 3: Average relative CPU time

Case DA DA-GD DA-FO Avg CPU time

of DA (sec.)

10x24 0.717

(0.500-0.727)

0.670

(0.416-0.882)

0.189

10x168 0.732

(0.995-1.018)
0.643

(0.978-1.011)

1.786

20x24 0.510

(0.416-0.540)

0.467

(0.349-0.637)
1.147

20x168 0.541

(0.426-0.513)

0.472

(0.344-0.585)

9.130

30x24 0.401

(0.319-0.370)
0.356

(0.223-0.444)
3.2783

30x168 0.419

(0.355-0.427)
0.359

(0.289-0.450)
31.305

40x24 0.340

(0.250-0.312)

0.298

(0.192-0.391)

5.858

40x168 0.348

(0.305-0.337)

0.298

(0.230-0.351)

56.001

Table 4 records the number of iterations required by

these three methods on the testing cases. The result

justifies the convergence analysis in Section 3.1.

As aforementioned, the unit decommitment method is



Table 4: Number of iterations

case DA DA-GD DA-FO

10x24 6.01

(4-9)

5.88

(3-9)
5.66

(3-9)
10x168 8.83

(6-10)
8.87

(6-10)
7.81

(5-10)

20x24 10.91

(7-15)
10.71

(7-14)

10.46

(7-14)

20X168 16.14

(12-19)
15.83

(13-19)
14.65

(10-18)

30x24 16.03

(11-21)
15.66

(10-20)
15.32

(9-19)

30x168 23.34

(19-28)
22.91

(19-27)
21.54

(16-26)
40x24 20.49

(15-26)

20.04

(15-25)
19.88

(12-25)
40x168 30.33

(26-36)
29.48

(25-35)
28.51

(22-35)

proposed as a post processing module for unit commit

ment algorithms. We integrate the three methods into
a Lagrangian relaxation (LR) algorithm, and examine
how the unit decommitment algorithm can improve the
solution of the LR approach. A 30-unit-168-hour unit

commitment instance is solved using the LR algorithm
with different stopping criteria. For purpose of illustra
tion, the stopping criterion adopted here is the number of

iterations. The test result is given in Table 5. In the test,
we operate the LR dual optimization and terminate it at

a given number of iterations. The dual objective value

is recorded in Table 5 in the first row in each section.

A feasibility phase follows to obtain a feasible solution,
whose corresponding total generating cost is recorded in
the second row of each section in Table 5. Based on this

feasible solution, we apply the DA-GD algorithm to im
prove the feasible solution and obtain an improved gen
erating cost recorded in the third row. The duality gaps
corresponding to before and after applying the DA-GD
algorithm are also given in Table 5. In the column un

der CPU time, in each section, the upper number is the
CPU time required by a complete LR algorithm. The
lower number only indicates the CPU time required by
the DA-GD.

In Table 5, one can see that the dual optimum should
be approached between the 45th and the 50th iteration.

Because of the highly nonlinear behavior of the feasibil
ity phase, it is not clear when to terminate the dual op
timization followed by feasibility phase to yield the best

Table 5: Comparison of methods for unit commitment

No. of

iter.

Total cost ($) Duality

Gap (%)
CPU

time (sec)

20

Dual Obj. 9252032

0.53 17.56Feas. Ph. 9300814

DA-GD 9288790 0.39 8.40

25

Dual Obj. 9254664

0.44 18.36Feas. Ph. 9295743

DA-GD 9287256 0.35 5.2

30

Dual Obj. 9255323

0.43 22.11Feas. Ph. 9295024

DA-GD 9287479 0.35 8.84

35

Dual Obj. 9255988

0.39 23.57Feas. Ph. 9292481

DA-GD 9288322 0.35 7.90

40

Dual Obj. 9256526

0.43 23.27Feas. Ph. 9296280

DA-GD 9280256 0.26 6.54

45

Dual Obj. 9257763

0.68 25.78Feas. Ph. 9320547

DA-GD 9281954 0.26 7.24

50

Dual Obj. 9257659

0.37 26.46Feas. Ph. 9292240

DA-GD 9280092 0.24 7.42

DA 9395589 - 40.56

DA-GD 9382742 - 21.28

DA-FO 9433649
- 20.65

result. Of course the duality theory suggests fully solving
the dual optimization. Compare the two cases: terminat

ing the dual optimization at the 40th and the 45th iter

ation, the latter with higher dual objective value yields
a worse solution after the feasibility phase. The badness

of this solution implies overcommitment. After applying
DA-GD, the duality gap is reduced from 0.68% to 0.26%.

In Table 5, it can also be seen that the unit decommit

ment algorithm generally lessens the nonlinearity of the
feasibility phase, and make the solution less sensitive to

the number of iterations in the dual optimization as the
stopping criterion. Also note that with unit decommit

ment, it may be a good strategy to moderately overesti
mate generating units in the feasibility phase. In terms

of the CPU time required for obtaining a feasible solu
tion, Table 5 suggests a possibly advantageous strategy
of applying the (cheap) unit decommitment algorithm to
substitute the (expensive) dual optimization. Also, by
determining how much saving could be achieved by unit
decommittment, our method can be used as a tool to

measure the solution quality obtained by a unit commit-

10



ment algorithm.

In the bottom section of Table 5, the three algorithms
are applied as a complete unit commitment algorithm,
with initially all the units turned on to the most extent

without violating the minimum uptime and downtime
constraints. As discussed in Section 5, the approximate

method (DA-GD) efficiently obtains a reasonably good
solution compared with regular unit commitment algo
rithms like LR.

VII Conclusions

In this paper we present a unit decommitment method

for power system scheduling. Given a feasible unit com

mitment, our algorithm determines an optimal strategy

for decommitting overcommitted units based on dynamic

programming. The method was developed as a post pro

cessing tool to aid the existing unit commitment algo

rithm in improving solution quality. Two approximate

methods are proposed. In our numerical test, we show

that the two approximate methods are much faster than

the proposed decommitment algorithm, and the differ

ence between the solutions obtained by the proposed de-

commitment algorithm and the two approximate algo

rithms are within 2% on average. We also have integrated

one approximate algorithm into a Lagrangian relaxation

algorithm. The numerical results show that with unit de-

commitment, solution quality can be generally improved

efficiently. Unit decommitment also lessens the depen

dency on heuristics like stopping criteria in algorithm

operation. The method of unit decommitment presented

in this paper has been extended to a more complicated

case with ramp constraints. We shall present this exten

sion in a future paper.
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