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Abstract

Traditional applications of queuing theory in the analysis and design of communica
tion networks often use the fact that quasi-reversible queues can be interconnected with
Bernoulli routing to form network models whose stationary distribution is of product
form. To construct such models it is necessary to assume that the external arrival pro
cess is a Poisson process (in continuous time) or an i.i.d. sequence of Poisson random
variables (in discrete time). Recently, however, several empirical studies have provided
strong evidence that the traffic to be carried by the next generation of communica
tion networks exhibits long-range dependence, implying that it cannot be satisfactorily
modeled as a Poisson process.

Our purpose in this paper is to exploit the features that make networks of quasi-
reversible queues product form so as to construct a self-contained class of queuing net
work models whose external arrival processes can be long-range dependent. Throughout
the paper, we restrict ourselves to discrete time. The long-range dependent arrival pro
cess models we consider can be described as follows : Sessions arrive according to a
sequence of i.i.d. Poisson random variables. Each session is active for an independent
duration that is positive integer valued with a regularly variying distribution having
finite mean and infinite second moment. While it is active, a session brings in work at
rate 1. The networks we consider are comprised of monotone quasi-reversible S-queues
with Bernoulli routing. The queues handle their arrivals at the session level, i.e., once
a session enters service at a queue it continues to receive service at rate 1 until all the
work it brings in is completed.

Our main observation is that all the internal traffic processes of such networks are
long-range dependent. This result provides a family of interesting new examples of
long-range dependent processes, in addition to its potential use in studying perfor
mance issues for communication networks,
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1 Introduction

In the past few years the telecommunication network arena has witnessed the evolution of
networks that can offer a wide variety of services, such as audio, video, data, etc. using
a common protocol suite. Such networks are called integrated services networks. Since
these networks are largely based on transmission over a fibre-optic medium and thus have a
bandwidth that is orders of magnitude higher than that of earlier generations of networks,
they are also generally called broad-band networks. Several recent empirical studies of traffic
to be carried by such broad-band networks have established the importance of studying
queuing behaviour with traffic models having long-range dependence. For instance, Leland
et al. [8] have demonstrated the self-similar nature of Ethernet traffic by a statistical
analysis of Ethernet traffic measurements at BellCore; Beran et al. [3] have demonstrated
long-range dependence in samples of variable bit rate video traffic generated by a number
of different codecs; and Paxson and Floyd [12] have concluded the presence of long-range
dependence in TELNET and other wide area network traffic.

Motivated by this empirical evidence a number of studies have recently appeared
that investigate single-server queues with long-range dependent arrival models. These in
clude the works of Norros [10] (discussed further by Duffield and O'Connell [5]) who uses
a fractional Brownian arrival model; Resnick and Samorodnitsky [13] who use an arrival
model derived from a stable integral; Likhanov et al. [9] who use an asymptotically self-
similar discrete time arrival model (which also appears in the survey of Cox [4, page 68]);
Anantharam [2] who studies extensions of the model of [9]; and Parulekar and Makowski
[11] who also study the model of [9].

In the analysis and design of telecommunication networks, the concept of a quasi-
reversible queue, see Kelly [7], Walrand [14], Walrand [15], and Section 3 of this paper,
has been a key in enabling the effective use of queuing models. Networks constructed from
quasi-reversible queues with Bernoulli routing and an external arrival process which is a
Poisson process (in continuous time) or a sequence of i.i.d. Poisson random variables (in
discrete time) offer considerable modeling flexibility and admit product form stationary
distributions, which makes the computation of stationary performance quantities easy.

Our purpose in this paper is to construct queuing network models with tractable
analytical features that allow the modeling of long-range dependent traffic processes. To this
end, we bring together the discrete time quasi-reversible S-queue network models of Walrand
[15] and the extension of the model of Likhanov et al. [9] studied in [2]. Our networks have
external arrival processes which are long-range dependent processes described as follows :
Sessions arrive according to a sequence of i.i.d. Poisson random variables. Each session lasts
for an independent duration having the distribution of a random variable r which is positive
integer valued with finite mean and infinite variance and having regularly varying tail, i. e.
P(t > t) ~ t~QL(t) where 1 < o- < 2 and L(-) is a slowly varying function (see appendix).
While it is active, a session brings in work at rate 1. Our networks consist of monotone
discrete time quasi-reversible S-queues with Bernoulli routing. The queues handle the work
at the session level, i.e., once a session enters service at a queue it continues to receive service
at rate 1 until all the work it brings in is completed. Under the usual stability conditions,



we prove that all the internal traffic processes of such networks are long-range dependent.

The precise definition of the class of external arrival models that we consider is in
Section 2. The basic facts about the discrete time quasi-reversible network models con
structed from S-queues in [15] are recalled in Section 3, together with the concept of mono-
tonicity for such queues, which was introduced in [1]. The class of network models that
we consider is described in Section 4. The main observations we make about such network

models are proved in Section 5. Finally, for convenience, elementary definitions and facts
about regularly varying functions are collected in an appendix.

We close the introduction by recalling some basic notation and terminology. As
usual N, Z, and R denote the set of natural numbers, the set of integers, and the set of real
numbers respectively. A discrete time stochastic process will be called wide sense stationary
if it has constant mean and stationary covariance structure, with finite second moment. For
a wide sense stationary stochastic process (Xi,l 6 Z), let r(k) = Cov(Xi,Xi+k) denote its
autocovariance function. The process will be called long-range dependent if Z)fclr(^)l =
oo. The process is called short-range dependent if it is not long-range dependent, i.e. if
Z)fc lrWI < °°- For more details about long-range dependence, see Cox [4].

2 Discrete time external arrival process model

In this section we describe a class of discrete time models for long-range dependent
arrivals to a network. The duration between time / and / + 1 is called slot I. At time / a

random number £/ of new sessions arrive. The (£/,/ € Z) are independent and identically
distributed (i.i.d.) Poisson random variables with mean A. Session i arriving at time / is
active for a random duration r/(?), i.e. it is active during the slots /, / + 1,..., / + r/(i) —1.
Here the (r/(i),/ £ Z, 1 < i < £/) are i.i.d. random variables taking values in N. Let
pm denote P{ri(i) = m) and qm = J2kLmPk- The session duration random variables are
assumed to be regularly varying with finite mean and infinite variance, i.e. there is a slowly
varying function L(-) and 1 < a < 2 such that

qk ~ k~QL(k) . (1)

(See the appendix for the basic definitions on regular variation.) Each session active during
a slot generates traffic at rate 1 during that slot. Note that, since there are many different
slowly varying functions, there is considerable flexibility in the choice of arrival model.

Let £/(ra) denote the number of sessions starting at time / that are active for exactly
m slots. We have £/ = ^=1^(m), with (£/(m),/ € Z,m > 1) being independent Poisson
random variables, having mean Xpm for each m.

Let X\ denote the total amount of work brought in by the external arrival process
during slot /. Then

0 oo

m=—oo j=l



Note that (A'/, / € Z) is a stationary stochastic process. A straightforward calculation gives

r(k) £ Cov(XhXl+k) =X^qt+j - —[W)
i=i

Since J2kr(k) 1S divergent when 1 < a < 2, the process (Xt,l € Z) is long-range
dependent.

3 Discrete time quasi-reversible queuing network model

In this section we describe a class of discrete time queuing network models first
introduced by Walrand [15]. We first define a kind of discrete time queue called an 5-
queue. An 5-queue admits batch arrivals and has batch service. Given an arbitrary arrival
sequence {£„,n > 0} of N valued random variables, the queue length process of an 5-queue
is given by

£n+l = Xn + tn- dn+l , (2)

where

P{dn+l =j | xm,dm,0< m < n;£k,k> 0,xn + £n = i) = S{i,j)

for 0 < j < i and n > 0. Here x0 is arbitrary and d0 = 0. Notice from the definition
that the operation of an 5-queue can be visualized as follows : there is a sequence of
independent and identically distributed random variables {dn(i),i > 1), -oo < n < oo,
with P{dn(i) = j) = 5(i,j), 0 < j < i, which is independent of the arrival process. This
sequence can be thought of as a virtual departure process. At time n + 1, if the the queue
size just prior to release of the departures is z, we release dn+i(i) customers.

An 5-queue is called quasi-reversible if, when {f„,n > 0} is a sequence of i.i.d.
Poisson random variables such that the state admits an equilibrium distribution, then the
sequence of actual departures {dn, n > 0} is also a sequence of i.i.d. Poisson random
variables in equilibrium and for all n {dt,l < n] and xn are independent. Walrand [15] gave
a necessary and sufficient condition for an 5-queue to be quasi-reversible. An 5-queue is
quasi-reversible if and only if there is a sequence of numbers a(j),j > 0, where a(0) = 1,
a(j) > 0 for j > 0 and a sequence of normalizing constants c(i), t > 0 such that S(i,j) has
the following form :

5(0,0) = c(0) = l , (2.1a)

5(t\0) = c(t), t>0, (2.16)

S(iJ)=^a(i)a(i-l)...a(i-j +l), 0<j <i , (2.1c)
3-

J2S(iJ) =l. (2.1d)
j=o



Further, the queue admits an equilibrium distribution it for a Poisson arrival sequence of
mean A if and only if the normalizing constant k exists such that

v ' a{0)...a{i)

is a probability distribution.

A discrete time quasi-reversible network of queues can be constructed from J quasi-
reversible 5-queues (called nodes of the network) fed by an external arrival sequence of
i.i.d. Poisson random variables, with Bernoulli routing. In more detail, such a network of
queues operates as follows : An external arrival is routed to node p with probability r0p.
Such an arrival waits in queue at node p until it receives service; on receiving service it is
routed to node q with probability rpq and routed out of the network with probability rpo.
If routed to node q it joins the queue there. How many customers are served at each queue
at each time is decided according to each queue's individual 5-queue parameters, and is
independent from queue to queue. The routing decisions are independent from customer to
customer, and are also independent of the arrival process and the service decisions at the
queues.

Walrand [15] has shown that, as long as the usual rate conditions are met (see
below), such a network fed by an i.i.d sequence of Poisson random variables is stable and
has a product form stationary distribution, where each queue in the network has a marginal
stationary distribution as if it were being fed by an i.i.d. Poisson sequence of the appropriate
rate. Here, by the usual rate conditions we mean the following : Let 7 denote the rate of the
external arrival process, and let Ap, 1 < p < J, be the unique solutions of the flow balance
equations :

jr0p + ^V'gp = Ap 1 1<P< J •

We require that for each 1 < p < J, the 5-queue p be stable when fed by an i.i.d. Poisson
sequence of random variables of rate Ap, i.e. that the normalizing constant kp can be defined
such that

'orp(O)...£*p(i) '

is a probability distribution, where ctp(-) are the parameters of queue p. By product form
stationary distribution we mean that the stationary distribution of the number of backlogged
customers at the nodes of the network is given by

with 7Tp(-) as in (3).

M*) = *P_ ,nx \ ^ , »>o (3)

7T(tl,...ij) = IlM^) »
p=l

To prove our main results we need to impose an additional condition on the param
eters of the S-queues used to construct our network. An S-queue is called monotone if the
sequence o(«), i > 1 is nondecreasing [1, Section IV]. In Lemma 2 of [1] it is proved that for



a monotone S-queue one has

t+l i

J2S(i+ !>i) > J25(*'J) for all 0 < fr < t and i > 0 . (4)

In addition, in Lemma 1 of [1] it is proved that for any S-queue (monotone or not) one has

t'+i i

Y^S{i+l,i+l-j) > £S(t\t-j) for all 0< k< i and i > 0 . (5)
j=k j=k

Together, equations (4) and (5) imply that it is possible to construct the virtual departure
variables ((dn(i), i> 1), n € Z) of a monotone S-queue in such a way that one simultaneously
has

dn{i + 1) > dn{i) for alii > 0 and n G Z , (6)

and

i + 1 - dn{i+ 1) > i - dn{i) for all i > 0 and n € Z , (7)

see Lemma 2 of [1]. This means that it is possible to couple the evolution of a network
of monotone quasi-reversible S-queues from two different initial conditions, thereby using
pathwise techniques to compare the evolution from these different initial conditions. What
is meant by this last sentence will be made more clear in Section 5 where such a coupling
is used.

4 Network model with long-range dependent traffic

In this section we observe that it is possible to combine the long-range dependent
arrival models of the kind considered in Section 2 with the quasi-reversible queuing networks
of S-queues described in Section 3 to create a self-contained class of network models that
handle long-range dependent arrival processes. In the model we develop, we assume that
service decisions are made at the session level without reference to the duration of the

session. Further, once a session enters service at a node, we assume that it continues to
receive service at rate 1 until all the work that it brings in is completed.

To make this precise, let us first consider what this means for a single quasi-reversible
5-queue fed by such an arrival process, cf. Eqn. (2). Immediately after the service decision
at time n, let there be xn backlogged sessions at the queue. Here a backlogged session
means one which has arrived at a time prior to time n but has not yet entered service. A
session that has already entered service by time n is not considered backlogged even though
it might still be currently being served, and indeed the work that it is to bring in might not
yet all have arrived. Now at time n, £n new sessions enter the queue as described by the
external arrival process model. Then the decision to let dn+\ new sessions enter service at
time n + 1 is made according to the conditional probabilities of the 5-queue. Finally this
leaves behind xn+\ —xn + £n - dn+i sessions still backlogged after the service decision at
time n + 1.



Once a session enters service it continues to receive service at rate 1 until all the

work that it brings in is exhausted. To clarify this further, note for instance that a session of
duration r that arrived at time m < n and is still backlogged immediately after the service
decision at time n will have brought in a total amount of work of r A (n —m) up to time
n, which will be sitting in queue throughout slot n. If r > n - m this backlogged session
will be bringing in further work at rate 1 during slot n, while if r < n —m no further work
will be brought in by this session during slot n. If this session now enters service at time
n + 1, and if r > n+l-m, a total of n + 1 - m units of work will remain in queue until
time m + t after which the work in queue contributed by this session will decrease at rate
one. If, on the other hand r < n -f 1 —m, the work in queue contributed by this session
will immediately begin to decrease at rate 1 starting from time n + 1.

The decision of which sessions to serve is not allowed to refer to the duration of the

session. In the case of a single quasi-reversible 5-queue fed by a long-range dependent arrival
process of the kind considered in Section 2 it is then seen that in equilibrium the departure
process is once again a process of the type considered in that section. This is nothing more
than the observation that the stationary departure process of a quasi-reversible 5-queue is
a sequence of i.i.d. Poisson random variables, which is a direct consequence of the definition
of quasi-reversibility.

To completely specify the model we also assume that sessions enter service in FCFS
order of their arrival at the node, with ties broken by uniform randomization. The particular
priority used to serve sessions will be seen to be irrelevant for the general results that
we derive, although it would be important in a more detailed analysis of the stationary
distribution of the performance quantities of interest.

In our general network model each 5-queue fuctions at the session level as above.
The Bernoulli routing between the quasi-reversible queues is also assumed to take place at
the session level, i.e. all the work in a session travels along the same route. Heuristically, one
can picture a session of duration r as consisting of a "train" of r units of work that extends
over r slots, with the work spread out uniformly over this duration. Immediately after the
service decisions at all the queues at time n the head of the train of work corresponding
to the session will either be at some queue p or will have left the network; in the former
case we say that the session is backlogged at node p. It may happen that only a portion of
the r units of work associated with the session may be present in the network. This could
happen for two reasons : If the head of the train of work left the network at time m < n
and t > n —m, then the initial n —m units of work associated with the session have left the
network forever; similarly, if the session first arrived at into the network at time m < n and
r > n-m, then the last T—(n—m) units of work associated with the session have not even
entered the network yet. Of the work associated with the session that is in the network,
portions may be sitting at various queues. Rather than introduce burdensome notation, we
illustrate the heuristic picture by means of the example of Figure 1.

This is a network of two 5-queues, with routing parameters given by

roi = 1 , r02 = 0 , no = rn = 0 , rn = 1 , r20 = r2\ = - , r22 = 0 .

The precise 5-queue parameters of the two queues are not relevant to the discussion. Assume



a session of duration 8 slots arrived in the network at time -6, was served by node 1 at
time —5, served next by node 2 at time —4, was routed back to node 1, served next by node
1 at time —2, served next by node 2 at time —1 and routed out of the network. In this case
we illustrate in Figure 2 where the work associated with this session is sitting immediately
after the service decisions at time 0.

We remark that our network model allows a session to visit several different nodes,
with the possibility of feedback. Further, of course, a session may visit several different
nodes. Such a session will have the same duration on each visit to each node. It is basi

cally this feature that makes the analysis of the general network model of this kind more
interesting than the analysis of a single S-queue that was carried out at the beginning of
this section.

To clarify the network model further, and to be able to state and prove the main
results, we introduce some notation. Let (an,n € Z) denote the external arrival process
of sessions into the network. This is a sequence of i.i.d. Poisson random variables of rate
7. As in Section 2 each session is active for an independent random duration having the
distribution of r, a positive integer valued random variable that is regularly varying with
finite mean and infinite variance. Let (a£, n € Z) denote the process of external arrivals
of sessions at node p\ this is a sequence of i.i.d. Poisson random variables of rate yrop.
Let (f£,n € Z) denote the overall arrival process of sessions to node p\ in stationarity
this is a stationary sequence of nonnegative integer valued random variables of rate Ap. Let
(d£, n € Z) denote the process of departures of sessions from node p and (d™, n € Z) denote
the process of departing sessions from node p that are routed to node q, 0 < q < J (with
q = 0 corresponding to the departing sessions that leave the network). Then we have

9=1

Further, with x? denoting the number of backlogged sessions at node p immediately after
the service decision at time n, we have

In the following, we will sometimes write d®p as an alternative notation for a?.

Some important comments are in order at this point. First of all, note that the
arrivals to a node at time n consist of the external arrivals to this node at time n and the

departures from all the nodes to this node at time n. Since the arrivals occur after the
departures, these sessions will only be available to be served at time n + 1. Thus at any
time the head of a session can progress at most one node. Secondly, the proof of Theorem
3.1 of [15] shows that in equilibrium for each n € Z it holds that

x\,...,xi,d™,...,d\\...,di°,...,di\{a]n,m>n),...,{ail,m>n)

is an independent family of random variables with all of them except perhaps the x? being
Poisson random variables of the appropriate means. (Note that this does not imply that



(d£9, n € Z) is an i.i.d. Poisson sequence.) Finally, the existence and uniqueness of a
stationary regime for the network model when the usual rate conditions are met can be
argued as follows : Because all service and routing decisions are carried out at the session
level, the results of Section 3 ensure that there is a unique stationary regime for the process
of the number of backlogged sessions at the nodes. Now, in this stationary regime, let V\
denote the set of sessions that leave the network at time / (or more precisely the set of
sessions whose head leaves the network at time /), and let X\ denote the set of backlogged
sessions in the network at time /. Further, for any session i let M{i) denote the number of
nodes the session visits (multiple visits to the same node are counted with their multiplicity).
Consider the total amount of work in the network at time n, i.e. the amount of work the
network would have to handle if all fresh arrivals from time n onwards were to be deleted.

This can be shown to be a.s. finite as follows : It is upper bounded by

£ M(i)r(i) + ^ E M(i)(r(i) -{n- /))+ . (9)
t€A'„ Kn ieV,

Since Xn is a.s. finite, the first term of equation (9) is a.s. finite. Quasi-reversibility ensures
that for each j > 1 (| V\ D {i : M(i) = j} |,/ < n) is a sequence of independent Poisson
random variables of mean y(3j, where fij is the probability that an individual session visits
j nodes during its sojourn in the network (this probability depends only on the routing
probabilities). Further, since the service decisions and routing do not refer to the session
durations, it follows that the number of terms of type jm > 1 that need to be summed in
the second summation on the right hand side of equation (9) is a Poisson random variable of
mean ~YpjJ2<jLoPm+j = 7/?j</m> and that these Poisson random variables are independent.
Thus the second summation the right hand side of equation (9) can be rewritten as

oo oo

j=l m=l

for appropriately defined independent Poisson random variables (Zjm,j,m > 1) of means
~YJ3jqm respectively. This sum is a.s. finite, as can be seen by noting that

P(Zjm = OVj > J and Vm > M) = ( ]} II e~7/?j9m)( II II e"^j9m)
m>Mj>l \<m<M j>J

> (fl e-""")C[[e-^)
m>M j>J

-» 1 as M —I oo and J -* oo .

The main results of this paper, derived in Section 5, refer to this stationary regime.

5 Main Results

For 0 < p, q < J, let X%q denote the total amount of work routed from node p to node q
during slot n. (By convention, A'JJ9 denotes the total amount of work arriving at node q



during slot n due to external arrivals and X%° denotes the total amount of work leaving the
network from node p during slot n.) Our main result is the following theorem.

Theorem 5.1 Suppose all the nodes in the quasi-reversible network of S-queues defined in
Section 4 are monotone. Fix any 0 < p, q < J. In stationarity the process (X*q,n 6 Z) is
long-range dependent.

Theorem 5.1 is a consequence of the following two lemmas. The first of these lemmas
needs some motivation, so we give it here before formally stating the lemma. Our idea to
prove theorem 5.1 is to first decompose the process d™ of customers moving from node
p to node q as a sum of processes. The individual processes in this decomposition are
parametrized by increasing sequences of positive integers starting at zero. Given such a
sequence r = {0 = ro < r\ < ... < rm} for some m > 0, the process, say d£9,r, that is
one of the constituents of this decomposition, consists of those customers who move from
node p to node q a total of m -f- 1 times of the first is time n, the next time n + 1*1, and so
on, the last being time n + rm. This decomposition of d?q also gives a convenient way of
decomposing the process X%q, enabling the proof of theorem 5.1.

Lemma 5.1 For m > 0, let

Cm = {0 = r0 < n < ... < rm} ,

where ro,..., rm € N be the set of all possible increasing sequences of positive integers of
length m + 1, starting at 0. Let C = Uj£=0£m- Suppose that for each r 6 C there is given
a wide sense stationary "N-valued sequence (C/V € Z) such that these sequences are also
jointly wide sense stationary.

Let ZJ denote a set of cardinality (J. We think of each i € Zf I € Z, r € C as a
session, distinct identical copies of which becomeactive for the first time atl+ro,...,l+rm.
By this we mean the following : Let r(i) be the duration of such a session i, which has
regularly varying distribution as in Section 2; the session duration variables are assumed
to be independent and independent of the processes {Cf,l € Z), r € C. Then one copy of
this session is active during the slots I + ro,...,/ + ro + r(i) —1, another during the slots
I+ t*i ,..., / + r\ + r (i) —1, and so on for a total ofm-\-l copies, the last of which is active
during the slots I -f- rm,..., / + rm + r (i) —1.

Let Yn denote the total number of copies of sessions that become active at time n.
Thus

m

y» = EE EOT l(' + r. = n). (10)
/eZm>0r€£m o=0

During each slot during which any copy of any session is active, it brings in one
unit of work. Let Xn denote the total amount of work brought in during slot n. Thus

m

*" = ££ E ££l(' + ra<n</ + r« + r(t)-l) (H)
/gZ m>0reCm i£2f a=o
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Assume that {Yn,n £ Z) and (Xn,n £ Z) are well defined (a.s. finite) processes.
Then, if (Yn,n £ Z) is short-range dependent, it holds that {Xn,n £ Z) is long-range de
pendent. Q

Lemma 5.2 Consider a discrete time quasi-reversible network of J monotone S-queues
with Bernoulli routing, in stationarity. For each 0 < p,q < J, the process (cf£9,ra £ Z) is
short-range dependent. rj

We first prove the main theorem using these lemmas, and then prove the lemmas.

Proof of Theorem 5.1 :

Since each (a£,n £ Z) and each (d£°, n £ Z), 1 < p < J is an i.i.d. sequence of
Poisson random variables, it is immediate that each (X®p, n £ Z) and each {X%°, n £ Z),
1 < p < «/ is a process of the kind considered in Section 2, and is therefore long-range
dependent. We therefore focus on the case 1 < p, q < J.

It suffices to identify the appropriate sequences (£/",/ £ Z), r £ C so as to apply
Lemma 5.1. Given fixed 1 < p,q < J, for m > 0 and r £ Cm, define QJ to be the number
of sessions that are routed from node p to node q at precisely the times /, / -f n,..., / -f rm.
When the network is in stationarity, the sequences (Q,l £ Z), r £ C are jointly stationary.
Further, for each r £ C and / £ Z we have £f < dpg, and dpq is a Poisson random variable of
mean \prpq. From this it follows that each Q has finite second moment. Since the processes
(Cf,/ £ Z), r £ C are jointly stationary and have finite second moment, they are jointly
wide sense stationary, so that Lemma 5.1 can be applied. Note that we also have, following
equations (10) and (11), that

Yn = dlq and Xn = X" .

By Lemma 5.2 we see that (Vn, n £ Z) is short-range dependent. By Lemma 5.1, the claim
of the theorem follows.

Proof of Lemma 5.1 :

Let r be a generic N-valued random variable having the distribution of the session
duration random variables, and let / £ Z. We write C(l, r) for the indicator of the event
that slot 0 is one of the slots /,...,/ + r —1. In other words,

C{1,t) = l(/<0</ + r-l) (12)

= l('<0)-l(/ + r<0)
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Note that

^(»,r)]=u ^ ;;;>j (i8)
For convenience, set qk = 0 if k < 0. With this notation, we may then write equation (13)
as E[C(l, t)] = ?i_/ for all / £ Z.

Let T denote the sigma-field generated by the variables Q, I £ Z, r £ C. Let
r(k) —Cov(Xi,Xi+k)- Then we may write

r(k) = E[X0Xk] - E[X0]E[Xk]

= E[E[X0Xk | T) - E[X0 | T]E[Xk \ ?})
+E[E[X0 | T}E[Xk | T] - E[X0]E[Xk]] (14)

= r^)(fc) + r(2)(fc) .

In the following we will handle each of the two terms on the right hand side of equation
(14) separately.

With the notation introduced in equation (12), we may rewrite equation (11) as

m

*" = E£ E EEC(/-n + ra,r(i)) (15)
leZ m>0 T€Cm {£2* a=0

Using equation (13), we see from equation (15) that

m

E[Xn i?\ = E E E $ E </«+!-'-•.. • (16>
/eZm>0r€£m o=0

We turn to the evaluation of the first term on the right hand side of equation (14).
Note that

E[XQXk I?] - E[X0 IT]E[Xk | T] = E[(X0 - E[X0 \ T))(Xk - E[Xk \ T]) \ T] ,

is the conditional covariance of Xq and Xk given T. We find that

Cov (C{1 + ra, r), C{1 - k + r6, r)) = 9i_/_ra Agit+i-/_r6 - qi-i-raqk+i-l-rb , (17)

which is nonnegative. From equation (15) and the conditional independence of the various
r(t) given T, we see that

E[X0Xk I^] - E[X0 I ^]^[Xfc I T] =

EE E EEECov(c('+r«-T(!'))-c'('-/;+r'»TW)).
/€Z m>0 r€£m ieZf a=0 6=0

because all the cross-covariances vanish.
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Let Ar denote E[£f], From the preceding equation and equations (13) and (17) we
have

ni m

rM{k) = J^ H J2 X* Y,Yl (9i-/-r. Aqk+i-i-rb - qi-i-raqk+i-i-rb) (18)
leZm>OreCm a=0 6=0

Pick some r £ C for which Ar = A > 0 (there must be at least one such, otherwise
the situation considered in the lemma is vacuous). Noting that every term on the right
hand side of equation(18) is nonnegative, we may write

r{1){k) > A£(?!_, Afc+i-z-gi-tfib+i-/) (19)
/sZ

Noting that q\-i = 0 if / > 0 and that qk+i-i < q\-i if k > 0, we have

E^'t*) * AEf1 -«i-i)E »*+>-'
/:>0 /<0 k>0

= OO ,

where we have used equation (1) for the tail probability asymptotics of the session duration
random variables.

We turn next to the evaluation of the second term on the right hand side of equation
(14). Note that

rW(k) = Cov (E[X0 | n E[Xk | T)) . (20)

Using the relation
Qj = J2qtl{t = j)

teZ

and the definition of Yn in equation (10) we may rewrite equation (16) to get

m

E[Xn\T] = EE E tfE?n+l-l-r.
/€Zm>0r€£ni o=o

m

= EE E<lrEE*1(( = "+1-'-r°)
ieZm>orecm a=o teZ

m

= E*EE EcfE1('+r« = n+1-t)
teZ ieZm>orecm a=o

= ]>>Yn+1_, . (21)
teZ

Now let

rj = cov(y0,yj). (22)



From equations (20), (21), and (22) we have

r<2>(*) = Cov{E[X0\7]tE[Xk\7])

= Cov E 9<yi-<» E ^Yk+i-i
\tez sez

= E E QtqsTk+t-s
teZseZ

= E rJ; E Qtik+t-j •
jez *ez

Thus

keZ keZ jeZ teZ

= EE ITJ IE Mk+t-j
fc€Zj'€Z <€Z

= Eir;iE*E^+<-;
jeZ teZ fceZ

< (^W)2Eirii
jeZ

< oo ,

where we have used the assumption that J2jeZ ITj |< oo.

This completes the proof of the lemma.
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Proof of Lemma 5.2 :

First note that for any 1 < p < J, each of the processes (d°p, n £ Z) and (d£°, n £ Z)
is an i.i.d. sequence of Poisson random variables, and is therefore short-range dependent.
Thus we focus on the case 1 < p, q < J.

It is in the proof of this lemma that we exploit the assumption that each of the
quasi-reversible S-queues used to construct our network is monotone. Fix 1 < p, q < J.
Our goal is to demonstrate that

£ ICov(dgVH l< °o . (23)
k>0

Note that



of
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= E aP(do = «) tf*W Ido = «] - £[<*?]) .
a€N

so that

531 cov(<c, <jj») | < ^ ap(di- =«) x) i*k* i<c =«] - ^K'l i •
*>0 a€N fc>0

We now proceed to estimate £jfc>o | 2?[dJ9 Id?9 = a]~^K9] I* By tne independence

a;j1...1^tdj^...,dj^...1^...,^(ajl,m>0),...l(oi>m>0)

in stationarity, conditioning on d^ = a is equivalent to setting up an initial condition at
the queues just prior to the service decisions at time 1 that differs from the equilibrium
situation only in that node q was fed a customers from node p instead of the Poisson mean
Aprpg customers that would have been fed in stationarity. But now we may couple the two
initial conditions (the stationary situation and the situation where we have conditioned on
dg9 = a) by the following simple expedient : If there are more customers than a fed back
from node p to node q in the stationary situation, we color the extra customers in the
stationary situation red, while if there are less customers than a fed back from node p to
node q in the stationary situation we color the extra customers in the conditioned situation
yellow. We then run the network (which consists entirely of either colorless customers and
red customers or of colorless customers and yellow customers), with the convention that
colorless customers have priority over colored customers.

The virtual departure variables d£(i), i> 0,n £ Z,l < p < J obey the conditions (6)
and (7). Consider first the case where there are lesscustomers than a fed from node p to node
q in the stationary situation. Then the evolution of colorless customers will be precisely as
in the stationary situation, and the evolution of the sum of colored and colorless customers
will be exactly as in the situation where we condition on d™ = a. To understand why this
follows from the properties (6) and (7), consider a node r during slot m, and suppose there
are k colorless customers and / colored customers in queue just prior to time m + 1, and
the decision needs to be made as to how many customers to release at time m+ 1, in both
the stationary and the conditioned situation. One needs to refer to the virtual departure
variables drm+1(k) and dtm+1(k + /) in order to make these decisions. Property (6) of the
virtual departure variables ensures that drm+1(k +1) > drm+1(k), and property (7) ensures
that drm+1(k + /) - drm+1(k) < /, so that, giving priority to colorless customers over colored
customers, we can release drm+1(k) colorless customers and drm+1(k + /) —d^+iik) colored
customers, and simultaneously meet the requirements of both the stationary situation and
the conditioned situation.

Similarly, in the case where there are less customers than a fed from node p to node
q in the stationary situation, the evolution of the sum of colored and colorless customers
will be precisely as in the stationary situation, while the evolution of colorless customers
will be precisely as in the situation where we condition on d^9 = a.

In either case, one sees that Ylk>o I ^W I ^o' = a] ~ E[dpkq] \ equals the mean
number of times colored customers move from node p to node q at times k > 0. This is
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upper bounded by

kE[\ Z-a\] (24)

for a constant n related to the routing variables and where Z is a Poisson random variable
of mean AprP7. To see this, note that the number of movements made from node p to node q
by the individual customers that start in nodep are independent random variables, because
routing decisions are independent from customer to customer. The mean number of such
movements can be taken to be the constant k, which is finite.

The expression in (24) can be further upper bounded by

ftAprPq -f- Ka

so that we get

E ICov^oVD l< E a("VP9 + ™)P(dp0q = a) .
k>0 a€N

But d™ is itself a Poisson random variable of mean Aprpg. This gives the desired equation
(23).

•
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Appendix

Regular Variation

For convenience we reproduce the basic definitions on nonnegative random variables
with regularly varying tails. For more information, consult Feller [6, pp. 275-284].

Definition 1 A positive (not necessarily monotone) function L(-) defined on an interval
[a,oo) is said to be slowly varying if for every x > 0 it holds that

lim^ =l. .
t->oo L{t)

Note that there are many slowly varying functions. For instance, any power of any
iterated logarithm is slowly varying; any positive function that approaches a strictly positive
limit at oo is slowly varying.

Definition 2 A positive function G(-) defined on an interval [a, oo) is said to be regularly
varying with exponent —a if it is of the form

G{x) = x~QL{x)

where L(-) is a slowly varying function.
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In this paper we are only interested in the case 1 < a < 2.

Definition 3 A nonnegative random variable X having cumulative distribution function
F(x) = P(X < x) is said to have a regularly varying tail if 1 —F(x) is regularly varying.
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Figure 1: An example network.
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Figure 2: An example illustrating where the work associated with a session might be located.
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