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ABSTRACT

The dataflow model of computation has been used extensively in signal processing design, and is

particularly convenient for numeric-intensive computation of applications. Finite state machines

(FSMs) have been developed to solve a different class of problems, namely sequential control. In

this project, we propose to hierarchically nest thedataflow andFSM models of computation. With

the two models mixed, concurrency and hierarchy are naturally supported in a manner similar to

hierarchical FSMs, like Statecharts. This provides a clean and simple mechanism for describing

systems that combine sophisticated signal processing with sophisticated control. We implement

the ideas in the Ptolemy software environment, which has been under development at University

of California at Berkeley.
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1.0 Introduction

Real-time embedded systems frequently need both numerical computations and sophisticated

control. A digital telephone answering machine, for example, may contain asignal processing

part including speech compression and decompression. Moreover, to develop such amachine, a

sizable portion ofeffort isrequired to design the control flow that manages the initialization of the

connection and the interaction between the caller and the machine. Therefore, the design process

for such a system needs twodifferent design methodologies.

The dataflow model [7] isuseful for specifying the numeric-intensive systems, like most signal

processing systems. However, it is far less convenient for representing the control-dominated sys

tems, like real-time process controllers. On the other hand, the FSM model is well known for its

ability toeasily describe acontrol-oriented system. Mixing dataflow with FSMs is agood solution

for representing asystemwhich requires both signal processing and control. Our main objective is

to get the best of bothworlds whilepreserving the integrity and simplicityof each model. In other

words, instead of creating a new semantics combining bothmodels,we would like to develop a

mechanism that works the two models together, but allows eachmodel to retain its purity of

semantics. The advantageof this is that it does not compromise the ability to synthesize efficient

hardware and software implementations.

Ptolemy [3] is a software environmentthat supports heterogeneous system specification, design

and simulation. It allows diverse models of computationcoexisting and interacting. In Ptolemy,

different models of computation arehierarchically nested, with strict information hiding between

layers of the hierarchy. Therefore, Ptolemy serves as a good development environment to mix

these two different kinds of computational models, dataflow and FSMs.

We define a prototype implemented in Ptolemy where FSMs and dataflow are hierarchically

nested. Each model isolates its semantic properties from the other because of the information hid

ing in Ptolemy. With the two models nested, it becomes convenient to specify those applications

that consist of both dataflow and control flow.

Fusing Dataflow with Rnite State Machines 5 of 28
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Models of Computation

2.0 Models of Computation

A key principle to support heterogeneousdesign methodologies is the notion of models ofcom

putation. A model of computation is the semantics that defines the interaction between modules

and components. For example, dataflow and FSMs are two distinct models of computation.

2.1 Dataflow

Dataflow is a particular type of process network model [7]. In dataflow, a program is specified

by a directed graph. The nodes of the graph represent computational functions {actors) that map

input data into output data when they fire, and the arcs represent the exchanged data {streams of

tokens) from one node to another. The processes in a dataflow graph areexecuted by repeated

actor firings according tofiring rules. Variants of this modelare usedinmanyvisualprogramming

environments intended for signal processing, such as COSSAP from the Synopsys, the DSP Sta

tion from the Mentor Graphics, Khoros from the University of New Mexico [9], Ptolemy from the

University of California at Berkeley, and SPW from the Alta Group of Cadence.

2.2 Finite state machines (FSMs)

2.2.1 Basic FSMs

AnFSM model consists of aset ofstates, aset of transitions between states, and aset ofactions

associated with these states ortransitions. Each transition is a function that determines the next

state from the current state and the input, and each action is afunction that determines the output
from thecurrent state and/or theinput.

There are two distinct types of FSMs, where output isassociated with the state (a Moore

machine) and with the transition (a Mealy machine). A directed graph, called astate transition

diagram, can be used to describe an FSM. Figure 1shows state transition diagrams ofequivalent
Moore and Mealy machines. Each elliptic node represents astate and each arc from node tonode

represents atransition. In the Moore machine, the number adjacent to each arc represents the

input value that triggers the transition, and the number after the slash in each node represents the
output value in that state. Similarly, in the Mealy machine, the number before the slash adjacent to

6 of 28 Fusing Dataflow with Rnite State Machines



each arc represents the input value that triggers the transition, and the number after the slash rep

resents the output value associated with that transition.

In general, as shown in Figure 1, a Moore machine may require more states than an equivalent

Mealy machine. This is because in a Mealy machine there may be more than one arc pointing to a

single state, each arc with a different output value; however, in a Moore machine, each different

output value requires one state.

The FSM model of computation is suitable for modeling control-dominated systems. However,

the basic FSM model, which is flat andsequential, has a major weakness; nontrivial systems have

a very large number of states.

2.2.2 Hierarchical FSMs (HFSMs)

The hierarchical FSM (HFSM) model of computation adds support for hierarchy and concur

rency into the basicFSMmodel. Hierarchy permits each state to be further decomposed into a set

of substates, and thus the complexity of the state space is reduced. Concurrency peimits a further

reduction of complexity by allowing multiple FSMs to operate simultaneously and communicate

through signals.

Figure 2 shows an example of a simple three-bit counter represented by means of an HFSM. In

this figure, we can see that the state Counting is decomposed into three concurrent components,

Moore machine

^rg)

Figure 1. Equivalent Moore and Mealy machines.
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Models of Computation

A, B and C, each of them consisting of twostates. Compared to therepresentation in a flat FSM

model (see Figure 3), the HFSM model mayreduce the complexity of the state space because of

its hierarchy and concurrency.

start Counting

Figure 2. An HFSM representation of a 3-bit counter.

stop

Figure 3. A basic FSM representation of a 3-bit counter.
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Models of Computation

The Statecharts formalism [4] and at least 20 variants [10], including Argos [6], are typical

examples of HFSM models. Some programming environments use similar models, such as

Statemate from iLogix [5], SpeedChart from Speed Electronics Inc., StateVision from Vista Tech

nologies and VisualHDL from Summit Design Inc.

2.3 Mixing Dataflow with FSMs

We identify threeorthogonal semantic properties in Statecharts andrelated models of computa

tion: FSM, concurrency and hierarchy. After we suppresshierarchy-crossing transitions allowed

in Statecharts (see Figure 4), two important observations are as follow: First, we get a simpler

model in which the FSM semantics canbe cleanly separated from the concurrency semantics.

Second, the specification of concurrent FSMs in Statecharts can be considered as a syntactic

shorthand for an interconnectionof FSMs in a concurrency model (see Figure 5). In other words,

thebasic FSM modelcan behierarchically mixed withvarious concurrency models to getmany

models that are similar to Statecharts. Although this lacks hierarchy-crossing transitions of State-

charts, those transitions are considered by many to violate modularity in hierarchical design any

way.

The concurrency semantics in parallelFSMs is one of the main differences between variants of

Statecharts. Statecharts and most related formalisms use the notion of instantaneous broadcast to

model thecommunication between concurrent FSMs. This means that all concurrent FSMs may

contain transitions that are executed simultaneously in response to an input event, and these tran

sitions may produce internal events that trigger other transitions instantaneously.

O
Figure 4. An example of a hierarchy-crossing transition

allowed In Statecharts.

Fusing Dataflow with Rnite State Machines 9 of 28



Models of Computation

There are at least two interpretations of such "instantaneous broadcast", microsteps and &fixed

point. In the microsteps case, the transitions occurring at a given time instant have a naturalorder.

In the fixed point case, they are genuinely simultaneous, and the execution of transitions involves

finding a consistent value (called &fixedpoint) for all events at a given time instant. In the former

case, the concurrency semantics can be specified using the dataflow model, and in the latter case,

it can be specified using the synchronous/reactive communication model that is found in synchro

nous languages. In Figure 5, both interpretations lead the sameresult, so the concurrency property

can be specified by a block diagram with the three interconnected blocks in a dataflow model or a

synchronous/reactive communication model.

However, some concurrency models may not work in some situations. Forexample, a pairof

transitions that produce events triggering each other (an instantaneous dialog) will cause a zero-

delay loop in terms of block diagrams (see Figure 6), and synchronous dataflow (see Section 3.3),

a typical type of dataflow model, does not allow zero-delay loops. On the otherhand, the synchro-

10 of 28
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Figure 5. The specification of concurrent FSMs in Statecharts can be
considered as a syntactic shorthand for an interconnection of
FSMs In a concurrency model.
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nous/reactive communication model allows the specification ofzero-delay loops. We will focus
on the dataflow model in this paper.

3.0 Ptolemy Implementation

3.1 Overview of Ptolemy

A system in Ptolemy is represented as a block diagram constructed by interconnecting both

user-created and existing library blocks. Two types of blocks can be used for interconnection: the

Star and the Galaxy. A Star is a fundamental block containing code segments for execution or

code generation. A Galaxy is a block that internally contains Stars and possibly other Galaxies.

By building a subsystem as a Galaxy, a largecomplicated systemcan be decomposed into many

subsystems which are hierarchically nested and interconnected. A Universe is a complete Ptolemy

application and describes a system.

The input and output interfaces in a block are called Portholes. Interconnection of blocks is

achieved by connecting the Portholes of blocks. Data objects passed between the blocks in

Ptolemy are called Particles.

A Domain encapsulates a type of model of computation in Ptolemy. Users can choose a Target

for a Universe or a Galaxy in a specific Domain to define the mechanism by which a system is

executed. Associated with a Target is a Scheduler which determines the operational order of each

block in the application.

/a7b\
V iL

b
v^———J*

Figure 6. A pair of transitions that produce events triggering each other
will cause a zero-delay loop in terms of block diagrams.
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Ptolemy Implementation

3.2 Wormholes

In Ptolemy, different domains are intermixed hierarchically to work together. In other words,

two domains do not interact as peers. Instead, a domain may appear as a block inside another

domain, as shown in Figure 7. Such a mechanism is a significant feature in Ptolemy and is called

Wormhole. It encapsulates a subsystem specified in one domain within a system specified in

another. The key idea of a Wormhole is that it must obey the semantics of outer domain at its

boundary and the semantics of the innerdomain internally.

We develop anFSM domain by generalizing thewormhole mechanism in Ptolemy. Each action,

specifying the numerical computation andsignal processing, of a module in the FSM domain can

bedefined by asubsystem in any domain, including FSM. Then, this subsystem is encapsulated as

a Wormhole in the FSM domain. This means that a module in the FSM domain can be associated

with any number of subsystems defined using different semantics in various domains. Moreover,

this FSM module can be placed inside any domain such that various domains are hierarchically

mixed. Figure 8 shows an example where the FSM anddataflow domains are nested.

Intuitively, when we put an FSM subsystem into another system in the FSM domain, the hierar

chy property of an HFSM is easily achieved, as shown inFigure 9.

Domain XXX

Figure 7. Mixing domains using hierarchy: a subsystem indomainYYY embedded
In domain XXX as a block.
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3.3 Dataflow Domains in Ptolemy

There are three existing dataflow domains in Ptolemy: Synchronous dataflow (SDF), Boolean

dataflow (BDF) and Dynamic dataflow (DDF). We will focus on SDF mixed with FSM in this

paper. Other domains can be explored in a similar way.

The SDF domain is one of the most mature domains in Ptolemy, and is an appropriate model for

signal processing algorithms. In this domain, the firing order of the blocks is determined once,

and may be repeated periodically during simulationruns. Each block consumes and produces a

fixed number of data tokens on each input and output of the block at each firing.

A dataflow block
invokes a FSM

Invoking dataflow graphs
from within a FSM

Dataflow FSM Dataflow

Figure 8. Hierarchical nesting of dataflow graphs with FSM controllers.

FSM

Invoking another FSM
from within a FSM

FSM

Figure9. The hierarchyproperty of an HFSM can be achieved by
nesting an FSMwithin another FSM.

Fusing Dataflow with Rnite State Machines 13 of 28



Ptolemy Implementation

There is no notion of time in the SDF domain. The unit of work is given in the unit of SDF iter

ation. At each iteration, each block in the SDF graph fires the minimum number of times to satisfy

the balance equations [7]. The balance equations for anSDFgraph are the set of equations relat

ing the number of tokens consumed to the number produced for each pair of blocks associated

with an arc. Consider a simple SDF graph andits balance equationdepicted in Figure 10. The

number adjacentto the connection between an arc anda block represents the number of tokens

consumed or produced in that block, and the unknowns rA and rB are the minimum firing times

that arerequired to maintain balanceon each arcfor blocks A and B respectively.We can see that

the solution for the balance equation is rA = 2 and rB = 3.

An SDF graph is said to be inconsistent and is flagged as an error if the balance equations have

no non-zero solution, as shown in Figure 11. Another situation that an SDF graph is not valid is

when there are zero-delay loops in the graph, as shown in Figure 12.

14 of 28
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Figure 10. A simple SDF graph and its balance equation.
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Figure 11. An inconsistent SDF graph and its balance equations.
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4.0 FSM Domain

4.1 Kernel

4.1.1 State Star

There is a specific type of kernel class in the FSM domain: FSMStateStar. This is the base

classfor representing a statein thestatetransition diagram of theFSM. Important derived types of

this class are FSMMoore (see Section 4.2.1), representing a statefor theMoore-type FSM, and

FSMMealy (seeSection 4.2.2), representing a state for theMealy-type FSM.

For a module in this domain, theremay be manyactions associatedwith it, and each actioncan

be specified by a subsystem in anydomain. Therefore, one of thejobs for thisclass is to createthe

requiredFSM wormhole to encapsulate theaction subsystem.

Two key functions in this class are invoked from the scheduler. First, reacting toaninput, the

FSM needs todetermine a transition to the next state from the possible transitions outof the cur

rent state. Atransition is chosen if the condition associated with it is true. InFigure 13, for exam

ple, suppose that SO is the current state, then when the input is equal toone, the condition

associated with transition Tl becomes true, and theFSM makes a transition from SO to SI. More

over, werestrict ourFSM to bedeterministic; i.e. foreach input, there exists atmost one enabled

transition out ofeach state. Furthermore, when no condition is true, we define it as a reflexive tran

sition; i.e. the FSM makes a transition back to the current state.

Second, as mentioned earlier, there may be many actions associated with an FSM. Although an
action is associated with a transition in a Mealy machine, in a sense, someactions can also be

BBBBBBBBBBBBB38S

• A • R

Figure 12.An SDF graphwith a zero-delay loop.
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FSM Domain

viewed as attached to a state (see Section 4.2.2). Therefore, we can define a virtual function in this

class, and thus a redefined function in the derived class is invoked todothe action depending on

what type of machine it is.

4.1.2 Target and Scheduler

The machine type is specified as a parameter of the FSMTarget. This information will be

passed to FSMScheduler. There are two main reactions to an inputin FSMScheduler: changing

state and performing an action. Whenever there is an input triggering the FSM, the scheduler will

try to find the transition that matches the input and current state by invokinga function in the

FSMStateStar. Once the next state is found, for a Moore-type machine, it makes the transition

first, and then does the action in the state being entered; for a Mealy-type machine, it does the

action associated with the transition, and then makes the transition.

Since the FSM domain has no notion of time, the unit of work reacting to an input is one state

transition in an FSM. "One state transition" here means a transition from one state to another or

back to the same state plus an action.

Figure 13. When the input is equal to one, this FSM makes a
transition from SO to S1.
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4.2 Stars

4.2.1 Moore-type state (FSMMoore)

We generalize the basic Moore machine by allowing each state to be associated with an action.

Moreover, we define this action as an entry action that is carried out upon entering the state. Once

we decide to simulate the FSM as a Moore-type machine, FSMMoore stars are needed to repre

sent the states in the FSM. FSMMoore is a class derived from FSMStateStar.

4.2.2 Mealy-type state (FSMMealy)

An action is associated witha transition (arc) from onestateto another in a Mealy machine. In a

sense, those actions associatedwith transitions whichcome out of the same state may be viewed

as attached to that state, as shown in Figure 14. Thereasonto do this is that we can just define a

FSMMealy star which is derived from FSMStateStar. A FSMMealy statemay have more than

one action attached to it depending on the number of possible transitions. Nonetheless, each

action is still supposed to be considered as associated with the transition.

4.2.3 Data Input (FSMDataln)

Theinput data (orcontrols) are important for anFSM. Both actions and transitions rely on

them. We define a type of FSMDataln star to serve as an input interface. The scheduler uses its

input portholes to receive the input data (or controls).

Actions A1, A2 and A3 may be
viewed as attached to state SO

Figure 14.Actions may be viewedas attachedto a state in a Mealy machine.

Fusing Dataflow with Rnite State Machines 17 of 28
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FSM Domain

4.2.4 Data Output (FSMDataOut)

Sometimes, an FSM may need to send output to the outside world. Similar to FSMDataln star,

there is a type of FSMDataOut star in this domain to serve as an output interface for the FSM.

4.3 Interaction Semantics

From the point of view of implementation, a stand-alone FSM domain in Ptolemy is not very

interesting, because in most of applications, the signal processing part is not negligible. Moreover,

there are various dataflow models of Ptolemy domains. With the FSM domain mixed with them,

we can get a much more powerful FSM model. Therefore, one of the main issues we would like to

explore is how the FSM domain is combined with Ptolemy dataflow domains. We will focus on

how FSM interacts with SDF in this paper.

4.3.1 FSM inside Dataflow

The inner FSM subsystem must externally behave like a dataflow actor to obey dataflow seman

tics. SDF actors generally consume and produce a fixednumber of tokens on every input and

every output. In Ptolemy, due to the current software implementation, a subsystem inside the SDF

domain is constrained to behave like a homogeneous SDF actor,which consumes and produces a

single token on each input and each output at each firing. Nevertheless, this constraint can be

relaxed by modifying the wormhole mechanism in the SDF domain in Ptolemy.

We relate one firing of an SDF actor to one state transition of an FSM module. This means that

when the FSM subsystem inside the SDF actor fires once by the outside SDF system, it reacts

with exactly one state transition, as shown in Figure 15.

4.3.2 Dataflow inside FSM

Each action in an FSM can be specified by a subsystem in any domain. If the subsystem is an

SDF graph, how much work should the dataflowscheduler do before returning control to the FSM

scheduler? In one state transition of the FSM, there is exactly one action to be performed. Once

this action (an SDF subsystem) is invokedby the FSM, the SDF scheduler should run through one

iteration, consuming the input and producing the output.

18 of 28 Fusing Dataflow with Rnite State Machines
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If the SDF subsystem is a multirate system [2], which may consume and produce multiple

tokens on the input and the output at each firing, the behavior becomes more subtle. One possibil

ity is that when the input tokens are not sufficientto cycle through one SDF iteration, the SDF

subsystem will simply return and produce no output tokens. Onlywhen enough inputtokenshave

accumulated will oneSDFiteration beexecuted and the output tokens be produced. However, this

is not always the most efficient approach.

4.3.3 Dataflow inside FSM inside Dataflow

Figure 16 shows an SDF subsystem embedded in anFSM that is inside another SDF domain.

When the SDF subsystem needs to consume alarge number ofinput tokens, for example asub-

Figure 15.The FSM subsystem reactsto the firing withexactly
one state transition.

SDF

1024

FSM

SDF

1024

Figure 16. If an SDF subsystem is embedded inan FSM which is insideanother SDF
domain, the FSM will inform the outer SDF domain howmany tokens are
consumed at the Inputof the Inner SDF subsystem.

Fusing Dataflow with Finite State Machines 19 of 28
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Application example

system that computes a fast Fourier transform (FFT) consuming 1024 samples at its input, the

method mentioned in Section 4.3.2 would be time-consuming because the FSM and inner SDF

subsystems are invoked 1024 times before the inner SDF subsystem is actually ready to run

through one iteration. A more reasonable alternative for this case is that the FSM will inform the

outer SDF domain how many tokens are consumed at the input of the inner SDF subsystem, and

then the FSM will not be invoked until there are sufficient input tokens for the SDF subsystem to

cycle through one SDF iteration. Moreover, there may be more than one SDF subsystem associ

ated with the FSM, it is required that all SDF subsystems consume the same number of input

tokens to fire.

4.4 Graphical User Interface (GUI)

An FSM can be described by a visual syntax, such as the state transition diagram. The old and

outdated visual interface to Ptolemy, called VEM, is not suitable for drawing the familiar bubble-

and-arc diagrams for an FSM. A new visual editor (see Figure 17) is under development based on

Tycho, a hierarchical syntax manager, which is part of the Ptolemy project. In addition to drawing

the bubble-and-arc graph, users can click on a state or an arc to create or view a subsystem graph

that is associated with it. After drawing the state transition diagram, users can further make an

icon compatible with VEM and simulate it in Ptolemy.

Sometimes, no computation needs to be done in an action, and the outputs of the FSM are only

fixed values. In Figure 1, for example, both FSMs just send zero or one to their outputs. For this

case, the new editor also provides a way to specify the output values directly.

With the new visual editor, users can seamlessly traverse a hierarchical design that combines

FSMs with dataflow block diagrams.

5.0 Application example

As mentioned in Section 2.2.2, Figure 2 is an HFSM representation of a three-bit counter with

initialization and interruption mechanisms. In this section, we will detail it as a demonstration of

an application that mixes the FSM and SDF domains in Ptolemy.

20 of 28 Fusing Dataflow with Finite State Machines



5.1 System Description

At the top level of the HFSM, there are two states: Not Counting andCounting. The Counting

state is refined into three other automata, each of them a one-bit counter. The first one-bit counter,

reacting tosignal a, triggers the second one by emitting signal b for every two a's. Thesecond one

reacts to signal b and emits signal c in every two b's to trigger the third one. The third one outputs

end reacting toevery two c's. The three automata ofthe one-bit counters are reacting concurrently

to external signal a, i.e. the communication between them is considered as occurring in one state

transition in the global behavior.

File £dit Window

DISMISS

Figure 17.A new graphical editor developed inTycho. (The drawing mechanisms of
this editor have been mainly developed by Wan-teh Chang.)
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Application example

Once start occurs, the automaton enters the Counting state. Then, three one-bit counters,

which are initialized in states (AO, BO, CO), become active to react to external input a. After seven

occurrences of a, the refined automata are in states (Al, Bl, CI), and they output end reacting to

one more occurrence of a.

Whenever stop occurs, the automaton stops the counting and enters the Not Counting state.

Afterwards, three refined automata do not react to the input a. They will become active only when

start occurs again.

5.2 Simulation

By using the SDF and FSM domains, we can describe and simulate the previous system in

Ptolemy. In the SDF domain, a star must have tokens on all inputs and produce tokens on all out

puts whenever it fires. Therefore, we have to use 1/0 value of a token to denote whether a signal

event occurs or not. 1 means the signal is present, and 0 means it is not. This idea is important

throughout the example.

The topmost level of the system is a dataflow model in the SDF domain, as shown in Figure 18.

The built-in TkButton star, from SDF library, is used to generate three buttons labeled Start,

Stop and Count, and also three outputs start, stop and count, respectively. The output value is

0.0 unless the corresponding button is pushed. When the Start button is pressed, for example, the

output values are 1.0, 0.0 and 0.0, respectively. If no button is pushed, this star sends 0.0 on all

outputs. The 3bitCounter_FSM block is a subsystem in the FSM domain, and we will discuss it

below. Finally, another built-in TkBreakPt star is used to catch the output of the FSM. When its

EfciCccncr FSM

Figure 18. System diagram in SDF domain for simulating the 3-bit counter.
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input value becomes 1.0, i.e. there is a signal occurring, it issues message and pauses the simula

tion.

As mentioned earlier, the 3bitCounter_FSM block is an FSM subsystem. We use a Moore-type

machine as a demonstration to describe this subsystem (a Mealy-type machine can be used in a

similar way). It consists of two states, Not Counting and Counting, as shown in Figure 19. The

bold circle around the Not Counting state means that this state is the initial state of the FSM. In

the state Not Counting, no computation needs to be done, and the 3bitCounter_FSM subsystem

only sends zero to the output.

The SDF graph associated with the Counting state is more subtle, as shown in Figure 20. There

are three FSM subsystems (lbitCounter_FSM blocks) in the graph, each a one-bit counter.

Edit I/O Port Names of 3bitCounter_FSM

InPort names: start stop count

OutPort names: end

OK <Ret> Cancel <ESC>

start--J

8i0pu t

DISMISS

Figure 19. The FSM of the 3-bit counter.
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Application example

Everyone-bitcounter is connected with the external start signalwhich serves as an initialization

signal and starts every counter in its initial state.The external stop signal is not necessary in this

level, so we just discard it. The externalcount signalis connected to the firstone-bitcounter as its

input signal, and is like the a signal in Figure 2. The output signal end of the third one is sent to

the outer domain. The three one-bit counters are put in a sequential connection. However, they all

fire in one SDF iteration, so they are considered concurrent in that they all fire once per state tran

sition of the outer FSM.

The FSM subsystems of the three one-bit counters are all the same, as shown in Figure 21, and

each of them simply consists of two states, StateO and Statel. The bold circle around the StateO

state means that this state is the initial state. A simpleSDF galaxy (seeFigure 22) associatedwith

theStateO state will do thedesired job. This galaxy discards the reset signal and reacts to the

input signal. Only when the input value is one will the outputvalue be one torepresent that a

signal occurs in this state. In the Statel state, the FSM justsends zero to output, i.e. nooutput

signal occurs in this state.

>
>
>

Fork"

i

IffUt;

ftbiCeuitar PSM

! irnit:

• >< s

1 C
i input-

CouTtai^PSM i
j

1 hbiCourtor PSM

Figure 20.The SDF galaxyassociated withthe Counting state In the 3-bitcounter.
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Edit I/O Port Names of lbitCounter„FSM

InPort names: input reset

OutPort names: output

OK <Ret> Cancel <ESC>

input - -1

Input — 1 or reset rr 1

f.

i
§

I

DISMISS

118

Figure 21. The FSM of the 1-bit counter.

input = 0, output = 0;
input = 1, output =1.

Gain

Help

Item to

create:

State

Arc

Figure 22. The SDF galaxy associated with the StateO state in the 1-bit counter.
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Conclusion

5.3 Discussion

This example demonstrates how FSM and SDFdomains are hierarchically nested to specify and

simulate a system in Ptolemy. The FSM models mainly focus on describing the control flow of the

system, and the SDF graphs are for the numeric-computation of the system.

As shown in Figure 20, the SDF galaxy, in which three one-bit counters are interconnected,

encapsulates the semantic property of concurrency.

Look at the FSM of the one-bit counter as shown in Figure 21. When the current state is StateO

and the input value is zero, i.e. no input signal is present, the FSM remains in StateO. Then, the

SDFgalaxy associated with StateO, as shown in Figure 22, sends zero as its output. In anothersit

uation, when the current state is Statel and the input value is one, the FSM makes a transition to

StateO, and the galaxy sends one as its output. In the stateStateO, the output values may be differ

ent based on different transitions. This is because we generalize the Moore machine by associat

ing an action with each state, and the action may output different values in different situations.

Therefore, our Moore-typemachinedoes not have the constraint that each different output value

requires a different state, and this can reduce the complexity of the state space.

In addition to the example illustrated above, othercomplicated applications can be developed by

similar steps. For example, the answering machine mentioned in Section 1.0contains both signal

processing and sophisticated control. The keyprinciple is to use the dataflow model to specify the

signal processingpart and the FSM model to specify the control flow part. Furthermore, the data

flow model can be used to describe the concurrency semantics of the system.

6.0 Conclusion

In this paper, we introduce an FSM domain into Ptolemy. By hierarchically nesting two distinct

domains, FSM and dataflow, we can describe HFSMs with desired semantic properties: FSM,

concurrency and hierarchy. Most importantly, we do not need a new complicated semantics for a

complex HFSM, we can use basic FSM models mixed with dataflow graphs to achieve the goal.
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Furthermore, FSM semantics is useful for control-oriented systems, and dataflow semantics for

numeric-intensive systems. With the two models brought together, a system doing both sophisti

cated control and signal processing can be specified and simulated in Ptolemy.

The interaction semantics defines the interaction between different semantic models. We define

one state transition in the FSM domain, and relate it to a firing in the SDF domain.

Although we mainly discuss mixingFSM withSDF in this paper, there are many other (even

non-dataflow, such as discrete-event) domains in Ptolemy which can interact with FSM domain

by similar mechanisms.

7.0 Future Work

The current implementation of the FSMdomain is a simulation domain in Ptolemy. We may

extend its capabilities with the code generation in C, C++, Tel, and VHDL.

A visual syntax using a graphical editor describes the FSM applications in this paper. A lan

guage with textual syntax may also describe the FSM automata, such as Esterel [1]. We may

extend the FSM domain to allow using the textual syntax as the FSM description.

Forfurther implementation, we may consider FSM optimization in this domain using some

FSM minimization tool, like SIS [8].
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