
 

 

 

 

 

 

 

 

 

Copyright © 1996, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



EVALUATION OF TRADE-OFFS IN THE DESIGN

OF EMBEDDED SYSTEMS VIA CO-SIMULATION

by

Claudio Passerone, Massimiliano Chiodo, Wilsin Gosti,
Luciano Lavagno, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/12

8 April 1996



EVALUATION OF TRADE-OFFS IN THE DESIGN

OF EMBEDDED SYSTEMS VIA CO-SIMULATION

by

Claudio Passerone, Massimiliano Chiodo,Wilsin Gosti,
Luciano Lavagno, andAlberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/12

8 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Evaluation of trade-offs

in the design of embedded systems
via co-simulation

Claudio Passerone Massimiliano Chiodo Wilsin Gosti
Luciano Lavagno Alberto Sangiovanni-Vincentelli

Abstract

Current designmethodologies forembeddedsystems often force the designer
to evaluate earlyin thedesignprocess architectural choicesthatwill heavilyimpact
the cost and performance of the final product Examples of these choices are
hardware/software partitioning, choice of the micro-controller, and choice of a
run-time schedulingmethod. This paperdescribeshow to help the designerin this
task, by providing a flexible co-simulation environment in which these alternatives
can be interactively evaluated.

Our approach is based on the Ptolemy co-simulation framework, but it uses a
different modeling paradigm, well suited for control-dominated reactive systems
(asynchronousextended Finite State MachinescalledCFSMs). We build on previ
ous research on software synthesis andcost estimation to provide the designerwith
fast but reasonablyaccurateperformancedata. We demonstrate the effectiveness of
the approachby showing the result of the trade-off analysis on a dashboardcontrol
system.

1 Introduction

One of the major problem facing an embedded system designer is the multitude of
different design options, that often lead to dramatically different cost/performance
results. In this paper we address the problem of trade-off evaluation via simulation,
rather than via mathematical analysis. We believe that by providing efficient tools,
supporting a variety of target implementation architectures and flexible mechanisms
for evaluating design choices, we will help the designer in this difficult task more
effectively than by providing relatively inflexible partitioningalgorithms.

The problems that we must solve include:

• fast co-simulation of mixed hardware/software implementations, with accurate
synchronization between the two components.



• evaluation of different processors and processor architectures, with different
speed, memory size and I/O characteristics.

• co-simulation of heterogeneous systems, in which data processing is performed
simultaneously to reactive processing, i.e. in which regular streams of datacan
be interrupted by urgent events. Even though our main focus is on reactive,
control-dominated systems, we would like to allow the designer to freely mix
the representation, validation and synthesis methods that best fit each particular
sub-task.

The approach thatwe havechosen relieson the following basicideas:

1. Use of anexistingco-simulation environment for heterogeneous systems,which
provides interfacing with a well-developed set of design aids for digital signal
processing ([BHLM90, KL93, Buc93]).

2. Use of synthesis from a formal specification, as a mechanism of restricting em
bedded software syntactic structure, withoutrestricting too much its expressive
power1. This allows us to use powerful synthesis and analysis mechanisms,
reducing the complexity and improving the quality of the results withrespect to
optimizing and analyzing programs written in an unrestricted general-purpose
language. This also allows thedesigner to experiment withdifferent implemen
tation options for a given specification, e.g. as software or hardware, without
requiring to always change the specification. In some cases (e.g. sorting), the
choiceof analgorithm is dictated by theenvisaged implementation, but there arc
border cases for which the choice is not obviousa priori and an uncommitted
specification can be very useful.

Software and hardware models are thus executed in the same simulation environment.
Different implementation choices are reflected in different simulation times required
to execute each task (one clock cycle for hardware, a number of cycles depending
on the selected target processor for software) and in different execution constraints
(concurrency for hardware, mutual exclusion for software). Efficient synchronized
execution of each domain is akeyelement of any co-simulation methodology aimed at
evaluating potential bottlenecks associated withagiven hardware/software partition.

Past work in the area of performance prediction and trade-offevaluation has fo
cused mostly on elaborate cost models to guide automated partitioning algorithms
([KAJW93], [VG92], [HEHB94], [HDMT94], [BRX93], [KL94], ...), or on co-
simulation methods in which arather detailed model of theprocessor may berequired.

Specifically, co-simulation requires tosatisfy two conflicting requirements:

1. accurate modeling of the interaction between software and hardware, which
requires in the limit to use cycle-accurate execution of a stream of instructions
on a hardware model (emulator) or on a software one (simulator).

1Coding standards for embedded systems often require afinite-state programming paradigm anyway, due
to the absence of virtual memory mechanisms.



2. fast execution of application code in a flexible analysis and debugging environ
ment, which wouldrequire in the limit tocompileandruntheembeddedsoftware
on ahost workstation, somehowsimulating its interaction with the hardware and
with the environment.

A first class of co-simulation methods, proposed for example by Gupta et al.
in [GJM92], relies on a single custom simulator for hardware and software. This
simulator uses a single event queue, and a high-level, bus-cycle model of the target
CPU.

A secondclass, described by Wilsonet al. in [Wil94], by Thomaset al. in [TAS93],
and by Rowsonin [Row94], looselylinksahardware simulator withasoftware process.
Synchronization is achieved by usingthe standard interprocess communication mecha
nisms offeredby the host Operating System. Oneof the problems with this approach is
that the relativeclocks of softwareandhardware simulation arenot synchronized,thus
requiringthe use of handshaking protocols. This may impose an undue burden on the
implementation, e.g. ifhardware and softwaredo not need suchhandshaking since the
hardwarepart in reality runs much faster than in the simulation.

A third class, described in [tHM93], keeps track of time in software and hardware
independently, using various mechanisms to synchronize them periodically. If the
software is master, then it decides when to send a message, tagged with the current
software clock cycle, to the hardware simulator. If the hardware time is already
ahead, the simulator may need to back up, which is a capability that few hardware
simulators currently have. If the hardwareis master, then the hardware simulator calls
communication procedures which in turn call user software code.

A similarapproach is used by Kalavade et al. in [KL92] andby Lee et al. in [LR93].
In both cases, the simulation anddesign environmentPtolemy (described in Section 3)
is used to provide an interfacing mechanism between different domains. In [KL92]
co-simulation is done:

• at the specification level by using a data flow model,

• at the implementation level by using abus-cycle model ofthe targetDigital Signal
Processor and a hardware simulator, both built within Ptolemy.

In [LR93] the specification is simulated by using concurrentprocesses,communicating
via queues. The same message exchanging mechanism is retained in the implementation
(using a mix of micro-processor-based boards, DSPs, and ASICs), thus allowing to
perform co-simulation of one part of the implementation with a simulation model of
the rest. Forexample, the software running on the micro-processorcan also be run on
a host computer, while the DSP software runs on the DSP itself.

Our approach is different from those listed above, because:

1. it allows different components of the system to be scheduled independently,
without requiring to write a custom environment,

2. software and hardware are simulated together in a unified environment, with the
same debugging interface,



3. a bus-cycle model of the target processor is not required, yet a satisfactory level
of accuracy is achieved.

The main emphasis of our work is on speed, both during simulation (a speed
exceeding 1millionclockcycles persecond can beeasily achieved onageneral-purpose
workstation) and when the userchanges some architectural parameters (changing the
target processor or the hardware/software partitiontakes about 1 second).

The paper is organized as follows. Sections 2 and 3 (which are included just
to provide the reviewers with some background, and will not be included in the final
version) describe thePOLIS co-synthesis systemand thePtolemyco-simulation and co-
synthesis systems respectively. Section 4 describes our co-simulation methodology in
detail. Section 5shows with an example how co-simulation can beused tointeractively
evaluate the performance of various partitions of a system under various operating
conditions. Section 6 concludes thepaper and outlines opportunities for future research.

2 The POUS co-design environment

Our co-simulation and trade-off evaluation method uses an existing co-design envi
ronment for reactive embedded systems, described in [CGH+94], for synthesizing
software and hardware, and for analyzing their performance. The POUS system is
centered around asingleFiniteStateMachine-like representation, which is well suited
to our target classof control-dominated systems.

A Co-design Finite State Machine (CFSM), like a classical Finite State Machine,
transforms asetof inputs intoasetof outputs withonlya finite amount of internal state.
The difference between the twomodels is that thesynchronous communication model
of classical concurrent FSMs is replaced in the CFSM model by a finite, non-zero,
a priori unbounded reaction time. Each element of a network of CFSMs describes a
component of the system tobemodeled. A CFSM consists ofsets of inputs and outputs,
and atransition function. Each transition istriggered by asetof input events and emits,
after an unbounded non-zero time, asetof output events.

In other terms, each CFSM can be considered as composed of a "main" FSM,
that represents the desired reactive behavior, surrounded by aset of one-place buffers
modeling inputdetection and output reaction delays.

The design flow that iscurrently implemented in the POUS system is depicted in
Figure 1 and described more in detail below.

1. High Level Language Translation In the POUS environment designers write
their specifications in a high level language (e.g., ESTEREL [BCG91], State-
Charts [DH89], subsets ofVerilog or VHDL) that can bedirectly translated into
CFSMs.

2. Design Partitioning Design partitioning is the process of choosing a software
or hardware implementation for each CFSM in the system specification. A key



Scheduler
Template +
Timing
Constraints

S-graph

Ccode

FormalLanguages

Partitioned
Specification

Unoptimized
Hardware

Optimized
Hardware

Interface
->-V synthesis (5)

HW Interfaces

Figure 1: The POUS system

Verif. Interm. Format



point of this methodology is that the CFSM specification is implementation-
independent, thus allowing the designer to interactively explore a number of
implementation options.

3. Hardware SynthesisACFSM sub-networkchosen forhardware implementation
is directlymapped into an abstract hardware description format, namely BLIF
([SSL+92]).

4. Software Synthesis A CFSM sub-network chosen forsoftware implementation
is mapped into a software structure that includes a procedure for each CFSM,
together with a simple Real-time Operating System:

(a) CFSMs. Thereactive behavior is synthesized in a two-step process:
• Implement and optimize thedesired behavior inahigh-level, processor-

independent representation of the decision process similar to a con
trol/data flow graph.

• Translate thecontrol/data flow graph intoportable C codeanduseany
available compiler to implement and optimize it in a specific, micro
controller-dependent instruction set.

Thismethodology results inbetter optimization andtighter control of soft
ware size and timing than with a general-purpose compiler. A timing
estimator quickly analyzes the program and reports code size and speed
characteristics. The algorithm issimilar tothat used by[PS91J,butrequires
no user input. It uses a formula, withparameters obtainedfrom benchmark
programs, to compute thedelayof each nodein the control/dataflow graph
forvarious micro-controller architectures (currently MIPS R3000 and Mo
torola 68HC11 and 68332). The precision of theestimator with respect to
true cycle counting is currently on the order of ±20%.
The estimator is a key component of our co-simulation methodology, be
causeit allows to obtain accurate estimates of program execution times on
anycharacterized targetprocessor, by:

i. appending to each statement in the C code generated from the con
trol/data flow graph instructions that accumulate clock cycles,

ii. compiling and executing the software, as will be described more in
detail in Section 4, on the host workstation.

(b) Real-time Operating System. An application-specific OS, consisting ofa
scheduler and I/O drivers, is generated for each partitioned design. Cur
rently POUS allows the designer tochoose from aset ofclassical scheduling
algorithms (e.g. Rate-Monotonic andDeadline-Monotonic, [LL73]).

5. Interfacing Implementation Domains Interfaces between different implemen
tation domains (hardware-software) areautomatically synthesized within POUS.
These interfaces come inthe form ofcooperatingcircuits and software procedures
(I/Odrivers) embedded in thesynthesized implementation.



6. Formal Verification The formal specification and synthesis methodology em
bedded within POUS makes it possible tointerface directly with existing formal
verification algorithmsthat arebased on FSMs. POUS includes a translatorfrom
the CFSM tothe FSM formalism which can befed directly toverification systems
([BHJ+96]).

7. SystemCo-simulationThis step isused inaclosed loop with system partitioning
and depends on software synthesis for the generation of the executable models
and the clock cycle estimates. It is described more in detail in Section 4.

3 The Ptolemy co-design environment

Ptolemy ([BHLM90, KL93, Buc93]) is acomplete design environment for simulation
and synthesis of mixedhardware/softwaredata-dominated embedded systems. Here we
will concentrate on its simulation aspects.

Ptolemy treats the system to be designed as a hierarchical collection of objects,
described at different levels of abstraction and using different semantic models to
communicate with each other:

• Each abstraction level, with its own semantic model, is called a "domain" (e.g.,
data flow, logic,...).

• Atomic objects (called "stars") arethe primitivesof the domain (e.g., data flow
operators, logic gates,...). They canbe usedeitherin simulation mode (reacting
to events by producingevents) or in synthesis mode (producing either software
code to be run on a target DSP, or an ASIC). Stars communicateby using point-
to-point queues called "portholes".

• "Galaxies" are collections of instances of stars or other galaxies. Instantiated
galaxiescan possibly belong to domains different than the instantiatingdomain.

Each domain includes a scheduler, which decides in which order stars areexecuted (both
in simulation and in synthesis). Whenever a galaxy instantiates a galaxy belonging
to another domain (which is a case typical of co-simulation), Ptolemy provides a
mechanism called a "wormhole" for the two schedulers to communicate. The simplest
form of communication is to pass time-stamped events across the interface between
domains, with the appropriate data-type conversion. A more complex form involves
de-scheduling in one domain as a result of events in another one.

In particular, we used the DiscreteEvent (DE)domainof Ptolemyto implement the
event-driven communication mechanism among CFSMs. This domain is event-driven,
rather than data-driven as most other domains in Ptolemy, and hence seems the most
appropriate forourpurposes. Eachstarofthe DE domainhas input andoutputportholes
(which correspond to CFSM inputs and outputs) carrying events. When a star receives
an input event, it fires and can emit output events. Events that are read from the input
portholes are deleted (consumed). Events arekept in a global queue, sorted according



to their time stamp, that is the instant in which they are emitted by the star. Scheduling
is computed at run time, since there is no way to decide a priori which star should fire
in a particular instant. The scheduler picks the set of (simultaneous) events with the
smallest time stamp from the queue and distributes them to the destination stars, firing
them in turn.

4 Simulation of CFSMs within the Ptolemy environment

4.1 Co-simulation methodology

The Ptolemyscheduler in the DE domain fires stars as if they were executed concur
rently. Thus it does not directly provide a way to simulate CFSMs implemented in
software and running on a limited amount of computational resources (in this paper
we assume that a single CPU is available). Our goal was to modify the DE scheduler
behavior without changing itscode, tomaintain compatibility withtheoriginal version.
Thuswe let the scheduler fire stars in its own preferred order, but every star may or
may not actuallyexecute the main part of its code, based on global information which
characterizes theshared resources. Allthisisaccomplished ina transparent way sothat
the Ptolemy scheduler sees a world of concurrent stars, while the software stars see the
POUS schedulingpolicy.

Having met thisgoal, it is now possible to simulate in Ptolemy a system designed
using POUS: thisis accomplished bygenerating proper descriptions of every CFSM
and loading them into Ptolemy together with the network of interconnections. It is
then possible, through the nice graphical interface provided by Ptolemy, to evaluate
trade-offs between hardware and software solutions, and tovisualize the overall system
behavior.

The detailed design flow for the co-simulation and trade-off analysis phases is as
follows:

1. The control/data flow graph ofevery CFSM in thesystem specification is built,
and the corresponding C code is generated (as described in [CGH+95]). The
C codealso includes run time estimations for each C codestatement, based on
information derived from benchmark analysis of thetarget processor.

2. The Ptolemy language source code for every CFSM is generated. This in turn
includes theC code generated bytheprevious step.

3. All CFSMs are loaded into Ptolemy. Each ofthem isasingle star, with input and
outputportholes corresponding toCFSM inputs andoutputs.

4. The network ofinterconnectionsbetween stars (CFSMs) iscreated inthe Ptolemy
environment.

5. Each star is assigned (by interactively modifying oneof itsproperties or one of
theproperties of a galaxy above it in thehierarchy):



an implementation, either software of hardware, and

a priority, used by the software scheduler.

Hardware stars runconcurrently and terminate ina single clock cycle. Software
stars are mutuallyexclusive (weassume a singleCPUhere), anduse the runtime
estimation todetermine how long it takes toemit outputs and complete firing of
a single transition of the CFSM.

6. A singlesystem-wide parameter (also modifiable interactively) describes which
one of the pre-characterized processors must be used for cycle counting. This
provides a mechanism to easily change the targetprocessor for a given set of
simulation stimuli,withouttheneedtore-analyze orre-compilethespecification.
In the same way it is possibleto specifythe scheduling policybest suited for the
given application. If the scheduler is priority-based, then it can use the priority
level assigned to each star.

7. Thesimulation is startedwithappropriatestimuligenerators andoutputmonitors,
to check the behavior of the system. Multiple simulations can be compared to
evaluate timing constraint satisfaction,run time, processor occupation, and other
interesting pieces of information.

For example, in Section 5 we will describe how the CPU utilization can be
monitored, to detect and analyze potential overload conditions.

4.2 Scheduling policy implementation

Simulating POUS CFSMs in Ptolemy with the correct semantics required the solution
of two main problems:

• ensure that each star behaves correctly,

• ensure that scheduling of the software components guarantees mutual exclusion
and avoids deadlock or starvation.

The former problem was easy to solve. The C code generated by POUS is included
in the Ptolemy star description. The POUS RT-OScalls for event detection and emission
are translated into porthole-based communication procedures. These procedures also
flush the event queue in case multiple events are received at the same time and at
the same input (only one randomly chosen event is considered). Overwritten events
are discarded, thus implementing the one-place buffer communication method among
CFSMs (Section 2).

Scheduling the software components proved to be much more difficult. The Ptolemy
DE Scheduler assumes that a star can be firedeach time it receives an event at an input.
This is not exactly our case since:

• a CFSM may need a set of input events to fire in a given state, which means that
inputs at the current time may need to be "saved" until later, and



• the computationalresource(the processor) is shared among multiple stars, which
means that any star which may be fired, can do so only when the processor is
free.

The solution that we have chosen does not require to modify the DE scheduler.
From now on,we will callsoftware scheduler ourownscheduling policy, implemented
by an automatically generated procedure on top of the Ptolemy DE scheduler. Each
simulation cycle (identified by an integer number, and directly corresponding to a
simulatedsystem clock cycle) is divided into three phases:

1. Request phase, in which all stars receive events, and request from the software
scheduler access to the processor if it is ready to fire, re-scheduling themselves
at the grant phase.

2. Grant phase, in which only one star is granted access to the processor and
executes its user code, while all other enabled stars re-schedule themselves at the
update phase. The identifier of the star which currently runs on the processor
is kept in a shared variable called starjick. This star also computes the time at
whichthe processor will becomeavailable again, in ashared variable called next,
by accumulating estimated clock cycles during the execution of user code and
RT-OS calls.

3. Update phase, in which allenabledstars re-schedule themselves at the next time
the processor is available.

The request phase is characterized by an integer simulation time, while the grant and
updatephases arecharacterized by fractional simulation times. All events arereceived
and emitted at integer times.

Scheduling is thus performed in the following way. Whenever a software star
receives an event:

• If the current time isgreater than or equal tonext, then the processor isavailable:

- If the current time identifies arequest phase, then the star sends the request
tothesoftware scheduler, and re-schedules itselfatthenext grant phase.

- If the current time identifies a grant phase, then the star must check the
variable starjack toknowif ithas been chosen by thesoftware scheduler. In
this case, it executes the user-specified part of itsown code, accumulating
estimated clock cycles depending on the sequence of instructions that is
executed, and sets thevariable next according to theclockcycle estimate.
Otherwise itmust re-schedule itself again at the next update phase (to make
sure that theselected star has had time toexecute itscode and update the
variable next).

- If the current time identifies a grant phase, then the star reads the variable
next andre-schedule itself to try to get the processor at thattime.

10



• If the processor isnot available, butthe priority of the star is greater than that of
the currently executing star, and the chosen scheduling policy allows interrupts
(i.e. it is pre-emptive), thenan interrupt occurs. The variable next is incremented
by theestimated execution time of theinterrupting star, and theinterrupted one
is prevented from emitting output events until theend of theinterrupt. Interrupts
may be arbitrarily nested, and can only cause delays in the interrupted stars,
without changing their behaviour (input variables to stars are buffered in our
software implementation scheme, to improve the predictability of the system
behavior).

• If theprocessor is not available and the priority of thestar is less than orequal
to that of the currently executing star, or if the software scheduling policy is
non-pre-emptive, then the star must re-schedule itself at time next. Hence, stars
with the samepriority level do not interrupt each other.

The communication queues among stars are forced to hold at most one event, to
matchtheCFSMcommunication modelusingone-place buffers. This meansthatevents
may be overwritten, if they are emittedtwice withoutbeingdetected. This is legalin
theCFSM model of computation, but canoptionally be loggedto a file, because often
losingeventsmeans violating timingconstraints and is interesting for the designer.

Hardware stars run concurrently, andtake only one unit of time to execute. They
simply check, upon receivinganevent, if they are still processing a previousevent. In
this case they re-fire at the next time unit.

The implementation (hardware or software) of each star can be dynamically and
independently changed during a Ptolemy session, by just updating a parameterof the
staror of a galaxy enclosing it in the hierarchy. Thus it is possible to experiment with
different solutions in a very straightforward manner and in a short period of time. In
fact, it is not necessary to rebuild the system, but it is sufficient to starta new simulation.

5 An application example

We consider an application from the automotive domain: a dashboard controller. We
will evaluate different implementation choices, under various possible operating con
ditions.

The system receives inputs from:

1. a magnetic sensor located near the wheel, producing a pulse every Ath of a
revolution,

2. a magnetic sensor located on the engine, producing a pulse every revolution,

3. a potentiometer measuring the fuel level,

4. a timing pulse generator, providing the time basis for the whole system.

It provides as outputs:

11



1. four Pulse Width-Modulated signals, directly driving a pair of gauges (vehicle
and engine speed),

2. a 16-bitnumbercontrolling the odometer display,

3. an 8-bitnumber controlling the fuel level display.

Its operation is divided into various components:

• an event-triggered front-end, which converts pulsesinto revolutioncounts,

• a time-triggered back-end which converts revolution counts into car and engine
speed, normalizes them, and presents them in the appropriate form required by
the displays,

• a background task which updates the fuel gauge.

Thetiming constraints, which inthis case are relatively soft, derive mainly from the
need notto miss any incoming pulse. For theengine this means upto 5000 pulses per
second, while for thewheel this means upto 16 pulses per second. Outputs had tobe
produced atarate of at least 100 Hz and with a maximum jitter of 100 microseconds
to drive the gauge coils. In this case, we first assumed to use a Motorola 68HC11,
because thetiming estimate available from synthesis (379 clock cycles atmost for the
most time critical task, the engine pulse recorder) showed that wecould hope tosatisfy
the requirements with a 1 MHz processor.

The system was modeled using 13 CFSMs, each specified in ESTEREL. Their
interconnection was described graphically with the Ptolemy user interface, as illustrated
inFigure 2. One CFSM isdevoted toinput conversion from level topulse, three CFSMs
derive Uming events from the base time reference, four CFSMs filter and normalize
the data, one CFSM converts potentiometer readings to fuel level (taking into account
the shape of the tank), and the remaining four CFSMs perform the PWM conversion.
Scheduling was performed by hand, due to the simplicity of the system, resulting in
an assignment of two priority levels to CFSMs. The highest level was assigned to
the CFSMs that had to handle input events, and corresponds, in practical terms, to
interrupt-driven I/O without interrupt nesting.

We first tried to implement everything in software, then moved part ofthe compo
nents toahardware implementation inorder tosatisfy thetiming constraints. The PWM
converters were an obviouschoice for hardware implementation, because their low jitter
constraints made asoftware implementation on a68HC11 infeasible. Figure 3 shows
the priority level of the star currently executed on the processor as a function of time2.
The processor utilization is still fairly high, especially considering that the simulated
car speed was about 50 Km/h. Hence we moved also the timing event generators to
hardware (a typical choice inembedded systems, inwhich timing functions are often
performed by special-purpose timers which are part of standard micro-controllers).

2A value of-1 means that the processor is idle, 1is the highest level, each vertical bar represents aConte
switch among CFSMs withthesame priority level.

12



Figure 2: The dashboard controller netlist

13



£onBnands .,-,,,,,,-.,,,..!• .:. -.. •. . ..•.. "nam' J iti'Kl -!i>: Vahie f " Q£&
Cwreflt_tasK_|>r»orttyjeveJ

"W! JL

.v..v,y.v.v.v.y.y.-.v.'..v. •.•••••••••••.•.•••.•••••.•.-.••••••••••.••••.•.•- •

Figure 3: Processorutilizationanalysis with few hardwarecomponents

Figure 4 shows the priority level in this second case. Figure 5 shows the user inter
face, thatuses thestandard constant specification mechanism provided by Ptolemy, and
allows the designer to change all the architectural parameters withoutre-compilation.
Currently supported parameters are:

• CPU type, clockspeed, scheduler typefor thewhole system,

• implementation (hardware orsoftware) andpriority (used onlyforsoftware stars)
for each star or hierarchical star group(galaxy).

Theperformance of thesimulator is very high, especially if there is nocomponent
which is active at every clockcycle, because in thatcase we can exploit the inactivity
of the system. The dashboard example is ideal in this respect, because the highest
frequency input events occur about once every 100clock cycles (assuming a 1 MHz
clock). The results for the dashboard simulation, using various types of architectural
choices, are reported in Table 1. In this case, we used estimated execution times
for a Motorola 68HC11 micro-controller (which was eventually chosen for the final
implementation, reported in[CCG+96]), with a 1MHzclockspeed, anda MIPS R3000,
with a 1 MHz and a 10 MHz clock speed. The partitionsshownin the column labeled
"Part." are respectively:

• SW: all modules are in software,

• HW/SW: the PWM drivers and timing generators are in hardware, and the rest is
in software,

• HW: all modules are in hardware.

The column labeled "Graph." shows when the graphical priority display (useful for
debugging the software scheduler) is used. All CPU and User times are in seconds,

14

J



gornmanrts

24> -

i-o —

Qja -

-1 -

^ppr

1 1 i-i 11 . .

current_iasKjMip«tyjevei

Figure 4: Processor utilization analysis with more hardware components

and were obtained on a SPARCSTATION 10with 16 Mbytes of RAM, simulating 20
million clock cycles (except for the 10 MHz MIPS, for which 200million cycles were
simulated). The user time required to restart a simulation when the partition or the
target processor are changed is about 1-2 seconds.

The execution time for the all-software partition on the 68HC11 is very high be
cause the processor does not meet the timing constraints, and hence the simulation is
interrupted very often to log the information about missed deadlines on a file.

The simulation performance (without graphics output, because die display time
drastically slows down the system) is around 1 million clock cycles per second. This
speed, which can be achieved thanks to the extremely low overhead imposed by our
cycle counting technique, is sufficient in many cases to run simulations almost at the
same speed as thereal target system (virtualprototyping).

6 Conclusions and future work

In this paper we have shown that fast co-simulation can be done at early stages ofa
design, for partition evaluation and functional verification purposes. The methodology
relies on the use ofconstrained software synthesis, that permits easy run time estimation
for atarget processor, and of apowerful co-simulation environment built in the Ptolemy
system.

We noticed, by profiling the simulator code, that over 90% of the time (when the
graphic outputis notused) is spentexecuting theDEscheduler code. This means that a
faster simulator could be obtained by re-writing the Ptolemy DE Scheduler to take into
account the required behavior ofCFSM stars, and eliminate the overhead introduced by
the re-firing method. On theother hand, this option may not bedesirable for reasons of
compatibility, both with future versions ofPtolemy, and with other simulation domains
within Ptolemy.

15



*V-

Edit Parameters |
CW [5ci7~ " ""^""^ :•;•••-•••;:•.••;• •;-.- ~ ~~ j'
Oocfcfteq: ft-? '; ~~ •'"•"'"""•;' "^ ~ ~~ ~Ti

SCHEDULER: jftHWS^.;'".; ^ ~~~"

On ,Vaty Owt i cared ; We jwcxre-.o-; Rcf<-8i-vfWci»<e'|

Figure 5: The user interface

16

E

•V'^T^j



Target
Proc.

MHz Part. Graph. Time

CPU User

HCll

HCll

HCll

1

1

1

SW

HW/SW

HW

No

No

No

>1000

30

25

>1000

38

27

MIPS

MIPS

MIPS

1

1

1

SW

HW/SW

HW

No

No

No

161

23

25

162

25

26

MIPS 10 HW/SW No 23 23

HCll

MIPS

1

1

HW/SW

HW/SW

Yes

Yes

202

258

205

270

Table 1: Simulation speed for varioustypes of system partitions

In the future, we would like to allow the designer to create more than one software
partition, thus simulating multiprocessor environments, and to specify hand-estimated
execution times for software modules that were not synthesized using POLIS (e.g.,
data-intensive modules designed using Ptolemy).

References

[BCG91] G. Berry, P. Couronne\ and G. Gonthier. The synchronous approach to
reactive and real-time systems. IEEE Proceedings, 79, September 1991.

[BHJ+96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli. Formal verification of embedded systems based on CFSM
networks. In Proceedingsofthe DesignAutomationConference, 1996.

[BHLM90] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt. Ptolemy: a frame
work for simulating and prototyping heterogeneous systems. Interntional
Journal of Computer Simulation, special issue on Simulation Software
Development, January 1990.

[BRX93] E. Barros, W. Rosenstiel, and X. Xiong. Hardware/software partitioning
with UNITY. In ProceedingsoftheInternational Workshop onHardware-
Software Codesign,October 1993.

[Buc93] J. T. Buck. Scheduling DynamicDataflowGraphs with BoundedMemory
Usingthe Token FlowModel. PhDthesis, U.C. Berkeley, 1993. UCB/ERL
Memo M93/69.

[CCG+96] S. Cardelli, M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Rapid-prototyping of embedded systems via

17



reprogrammabledevices. In 7th IEEE International Workshop on Rapid
System Prototyping, 1996.

[CGH+94] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Hardware/software codesign of embedded
systems. IEEE Micro, 14(4):26-36,August 1994.

[CGH+95] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Synthesis of software programs from CFSM
specifications. In Proceedings oftheDesign Automation Conference, June
1995.

[DH89] D. Drusinski and D. Har'el. Using statecharts for hardware description
and synthesis. IEEE Transactions on Computer-Aided Design, 8(7), July
1989.

[GJM92] R. K. Gupta, C. N. Coelho Jr., and G. De Micheli. Synthesis and sim
ulation of digital systems containing interacting hardware and software
components. In Proceedings of theDesign Automation Conference, June
1992.

[HDMT94] X. Hu, J.G. D'Ambrosio, B. T. Murray, and D-L Tang. Codesign of
architectures for powertrain modules. IEEE Micro. 14(4):48-58, August
1994.

[HEHB94] J. Henkel, R. Ernst, U. Holtmann, and T. Benner. Adaptation of par
titioning and high-level synthesis in hardware/software co-synthesis. In
Proceedings ofthe International Conference on Computer-Aided Design,
November 1994.

[KAJW93] S. Kumar, J. H. Aylor, B. Johnson, and W. Wulf. Exploring hard
ware/software abstractions and alternatives for codesign. In Proceedings
of the International Workshop on Hardware-Software Codesign, October
1993.

[KL92] A. Kalavade and E. A. Lee. Hardware/software co-design using Ptolemy -
acase study. InProceedings oftheInternational Workshop onHardware-
Software Codesign, September 1992.

[KL93] A. Kalavade and E.A. Lee. Ahardware-software codesign methodology
forDSPapplications. IEEE Design and Test of Computers, 10(3):16-28,
September 1993.

[KL94] A. Kalavade and E.A. Lee. A global criticality/local phase driven al
gorithm for the constrained hardware/software partitioning problem. In
Proceedings of the International Workshop on Hardware-Software Code-
sign, 1994.

18



(LL73] C.L. Liu and James W. Layland. Scheduling algorithms for multipro
gramming in ahard-real-timeenvironment. Journalofthe Association for
Computing Machinery, 20(1):46- 61, January 1973.

D-R93] S. Lee andJ.M. Rabaey. A hardware-software co-simulationenvironment.
In Proceedings of the International Workshop on Hardware-Software
Codesign, October 1993.

[PS91] C.Y. Park and A. C. Shaw. Experiments withaprogram timingtoolbased
on source-leveltiming schema. IEEE Computer, 24(5):48-57,1991.

[Row94] J. Rowson. Hardware/software co-simulation. In Proceedings of the De
signAutomation Conference, pages439-440,1994.

[SSL+92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit synthesis. Technical
ReportUCB/ERL M92/41, U.C. Berkeley, May 1992.

[TAS93] D.E. Thomas, J.K. Adams, and H. Schmit. A model and methodology
for hardware-software codesign. IEEE Design and Test of Computers,
10(3):6-15, September 1993.

[tHM93] K. ten Hagen and H. Meyr. Timed and untimedhardware/software cosim-
ulation: application and efficient implementation. In Proceedings of the
International Workshop onHardware-Software Codesign, October 1993.

[VG92] F. Vahid and D. G. Gajski. Specifcation partitioning for system design. In
Proceedings of theDesign Automation Conference, June 1992.

[Wil94] J. Wilson. Hardware/software selected cycle solution. In Proceedings of
the International Workshop on Hardware-Software Codesign, 1994.

19


	Copyright notice 1996
	ERL-96-12

