Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EVALUATION OF TRADE-OFFS IN THE DESIGN
OF EMBEDDED SYSTEMS VIA CO-SIMULATION

by

Claudio Passerone, Massimiliano Chiodo, Wilsin Gost,
Luciano Lavagno, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/12

8 April 1996

EVALUATION OF TRADE-OFFS IN THE DESIGN
OF EMBEDDED SYSTEMS VIA CO-SIMULATION

by

Claudio Passerone, Massimiliano Chiodo, Wilsin Gosti,
Luciano Lavagno, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/12

8 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Evaluation of trade-offs
in the design of embedded systems
via co-simulation

Claudio Passerone Massimiliano Chiodo Wilsin Gosti
Luciano Lavagno Alberto Sangiovanni-Vincentelli

Abstract

Current design methodologies for embedded systems often force the designer
to evaluate early in the design process architectural choices that will heavily impact
the cost and performance of the final product. Examples of these choices are
hardware/software partitioning, choice of the micro-controller, and choice of a
run-time scheduling method. This paper describes how to help the designer in this
task, by providing a flexible co-simulation environment in which these alternatives
can be interactively evaluated.

Our approach is based on the Ptolemy co-simulation framework, but it uses a
different modeling paradigm, well suited for control-dominated reactive systems
(asynchronous extended Finite State Machines called CFSMs). We build on previ-
ous research on software synthesis and cost estimation to provide the designer with
fast but reasonably accurate performance data. We demonstrate the effectiveness of
the approach by showing the result of the trade-off analysis on a dashboard control
system.

1 Introduction

One of the major problem facing an embedded system designer is the multitude of
different design options, that often lead to dramatically different cost/performance
results. In this paper we address the problem of trade-off evaluation via simulation,
rather than via mathematical analysis. We believe that by providing efficient tools,
supporting a variety of target implementation architectures and flexible mechanisms
for evaluating design choices, we will help the designer in this difficult task more
effectively than by providing relatively inflexible partitioning algorithms.
The probiems that we must solve include:

o fast co-simulation of mixed hardware/software implementations, with accurate
synchronization between the two components.

o evaluation of different processors and processor architectures, with different
speed, memory size and /O characteristics.

o co-simulation of heterogeneous systems, in which data processing is performed
simultaneously to reactive processing, i.e. in which regular streams of data can
be interrupted by urgent events. Even though our main focus is on reactive,
control-dominated systems, we would like to allow the designer to freely mix
the representation, validation and synthesis methods that best fit each particular
sub-task.

The approach that we have chosen relies on the following basic ideas:

1. Use of an existing co-simulation environment for heterogeneous systems, which
provides interfacing with a well-developed set of design aids for digital signal
processing ((BHLM90, KL93, Buc93)).

2. Use of synthesis from a formal specification, as a mechanism of restricting em-
bedded software syntactic structure, without restricting too much its expressive
power!. This allows us to use powerful synthesis and analysis mechanisms,
reducing the complexity and improving the quality of the results with respect to
optimizing and analyzing programs written in an unrestricted general-purpose
language. This also allows the designer to experiment with different implemen-
tation options for a given specification, e.g. as software or hardware, without
requiring to always change the specification. In some cases (e.g. sorting), the
choice of an algorithm is dictated by the envisaged implementation, but there arc
border cases for which the choice is not obvious a priori and an uncommitted
specification can be very useful.

Software and hardware modcls are thus executed in the same simulation environment.
Different implementation choices are reflected in different simulation times required
to execute each task (one clock cycle for hardware, a number of cycles depending
on the selected target processor for software) and in different execution constraints
(concurrency for hardware, mutual exclusion for software). Efficient synchronized
execution of each domain is a key element of any co-simulation methodology aimed at
evaluating potential bottlenecks associated with a given hardware/software partition.
Past work in the area of performance prediction and trade-off evaluation has fo-
cused mostly on elaborate cost models to guide automated partitioning algorithms
((KAJW93], [VG92], [HEHBY94], [HDMT94], [BRX93], [KL94], ...), or on co-
simulation methods in which a rather detailed model of the processor may be required.
Specifically, co-simulation requires to satisfy two conflicting requirements:

1. accurate modeling of the interaction between software and hardware, which
requires in the limit to use cycle-accurate execution of a stream of instructions
on a hardware model (emulator) or on a software one (simulator).

!Coding standards for embedded systems often require a finite-state programming paradigm anyway, due
to the absence of virtual memory mechanisms.

2. fast execution of application code in a flexible analysis and debugging environ-
ment, which would require in the limit to compile and run the embedded software
on a host workstation, somehow simulating its interaction with the hardware and
with the environment.

A first class of co-simulation methods, proposed for example by Gupta et al.
in [GIM92], relies on a single custom simulator for hardware and software. This
simulator uses a single event queue, and a high-level, bus-cycle model of the target
CPU.

A second class, described by Wilson er al. in [Wil94], by Thomas ez al. in [TAS93],
and by Rowson in [Row94], loosely links a hardware simulator with a software process.
Synchronization is achieved by using the standard interprocess communication mecha-
nisms offered by the host Operating System. One of the problems with this approach is
that the relative clocks of software and hardware simulation are not synchronized, thus
requiring the use of handshaking protocols. This may impose an undue burden on the
implementation, e.g. if hardware and software do not need such handshaking since the
hardware part in reality runs much faster than in the simulation.

A third class, described in [tHM93], keeps track of time in software and hardware
independently, using various mechanisms to synchronize them periodically. If the
software is master, then it decides when to send a message, tagged with the current
software clock cycle, to the hardware simulator. If the hardware time is already
ahead, the simulator may need to back up, which is a capability that few hardware
simulators currently have. If the hardware is master, then the hardware simulator calls
communication procedures which in turn call user software code.

A similar approach is used by Kalavade et al. in [KL92] and by Lee et al. in [LR93).
In both cases, the simulation and design environment Ptolemy (described in Section 3)
is used to provide an interfacing mechanism between different domains. In [KL92]
co-simulation is done:

o at the specification level by using a data flow model,

o at theimplementation level by using a bus-cycle model of the target Digital Signal
Processor and a hardware simulator, both built within Ptolemy.

In [LR93] the specification is simulated by using concurrent processes, communicating
via queues. The same message exchanging mechanism is retained in the implementation
(using a mix of micro-processor-based boards, DSPs, and ASICs), thus allowing to
perform co-simulation of one part of the implementation with a simulation model of
the rest. For example, the software running on the micro-processor can also be run on
a host computer, while the DSP software runs on the DSP itself.

Our approach is different from those listed above, because:

1. it allows different components of the system to be scheduled independently,
without requiring to write a custom environment,

2. software and hardware are simulated together in a unified environment, with the
same debugging interface,

3. a bus-cycle model of the target processor is not required, yet a satisfactory level
of accuracy is achieved.

The main emphasis of our work is on speed, both during simulation (a speed
exceeding 1 million clock cycles per second can be easily achieved on a general-purpose
workstation) and when the user changes some architectural parameters (changing the
target processor or the hardware/software partition takes about 1 second).

The paper is organized as follows. Sections 2 and 3 (which are included just
to provide the reviewers with some background, and will not be included in the final
version) describe the POLIS co-synthesis system and the Ptolemy co-simulation and co-
synthesis systems respectively. Section 4 describes our co-simulation methodology in
detail. Section 5 shows with an example how co-simulation can be used to interactively
evaluate the performance of various partitions of a system under various operating
conditions. Section 6 concludes the paper and outlines opportunities for future research.

2 The POLIS co-design environment

Our co-simulation and trade-off evaluation method uses an existing co-design envi-
ronment for reactive embedded systems, described in [CGH*94], for synthesizing
softwarc and hardwarc, and for analyzing their performance. The POLIS system is
centered around a single Finite State Machine-like representation, which is well suited
to our target class of control-dominated systems.

A Co-design Finite State Machine (CFSM), like a classical Finite State Machine,
transforms a set of inputs into a set of outputs with only a finite amount of internal state.
The difference between the two models is that the synchronous comnunication model
of classical concurrent FSMs is replaced in the CFSM model by a finite, non-zero,
a priori unbounded reaction time. Each elecment of a network of CFSMs describes a
component of the system to be modeled. A CFSM consists of sets of inputsand outputs,
and a transition function. Each transition is triggered by a set of input events and emits,
after an unbounded non-zero time, a set of output events.

In other terms, each CFSM can be considered as composed of a “main” FSM,
that represents the desired reactive behavior, surrounded by a set of one-place buffers
modeling input detection and output reaction delays.

The design flow that is currently implemented in the POLIS system is depicted in
Figure 1 and described more in detail below.

1. High Level Language Translation In the POLIS environment designers write
their specifications in a high level language (e.g., ESTEREL [BCG91], State-
Charts [DH89], subsets of Verilog or VHDL) that can be directly translated into
CFSMs,

2. Design Partitioning Design partitioning is the process of choosing a software
or hardware implementation for each CFSM in the system specification. A key

Formal Languages

Scheduler
Template +
Timing
Constraints

e

SW synthesis (4A)

i\

Tmnsl@

System Behavior

hl

Paniﬁo@

Partitioned
Specification

HW symh@

l

Interface
—>_ synthesis (5)

S—-graph l

—
Qs 45>

AN

| HW Interfaces

A J
Verif. Interm. Format

ic Synthesis (3)

C code

Optimized
Hardware

Figure 1: The POLIS system

Formal
Verification (6)

point of this methodology is that the CFSM specification is implementation-
independent, thus allowing the designer to interactively explore a number of
implementation options.

3. Hardware Synthesis A CFSM sub-network chosen for hardware implementation
is directly mapped into an abstract hardware description format, namely BLIF
([SSL*92)).

4. Software Synthesis A CFSM sub-network chosen for software implementation
is mapped into a software structure that includes a procedure for each CFSM,
together with a simple Real-time Operating System:

(a) CFSMs. The reactive behavior is synthesized in a two-step process:

¢ Implement and optimize the desired behavior in a high-level, processor-
independent representation of the decision process similar to a con-
trol/data flow graph.

¢ Translate the control/data flow graph into portable C code and use any
available compiler to implement and optimize it in a specific, micro-
controller-dependent instruction set.

This methodology results in better optimization and tighter control of soft-
ware size and timing than with a general-purpose compiler. A timing
estimator quickly analyzes the program and reports code size and speed
characteristics. The algorithm is similar to that used by [PS91], but requires
no user input. It uses a formula, with parameters obtained from benchmark
programs, to compute the delay of each node in the control/data flow graph
for various micro-controller architectures (currently MIPS R3000 and Mo-
torola 68HC11 and 68332). The precision of the estimator with respect to
true cycle counting is currently on the order of £20%.

The estimator is a key component of our co-simulation methodology, be-
cause it allows to obtain accurate estimates of program execution times on
any characterized target processor, by:

i. appending to each statement in the C code generated from the con-
trol/data flow graph instructions that accumulate clock cycles,

ii. compiling and executing the software, as will be described more in
detail in Section 4, on the host workstation.

(b) Real-time Operating System. An application-specific OS, consisting of a
scheduler and I/O drivers, is generated for each partitioned design. Cur-
rently POLIS allows the designer to choose from a set of classical scheduling
algorithms (e.g. Rate-Monotonic and Deadline-Monotonic, [LL73]).

5. Interfacing Implementation Domains Interfaces between different implemen-
tation domains (hardware-software) are automatically synthesized within POLIS.
These interfaces come in the form of cooperating circuits and software procedures
(I/O drivers) embedded in the synthesized implementation.

6

6. Formal Verification The formal specification and synthesis methodology em-
bedded within POLIS makes it possible to interface directly with existing formal
verification algorithms that are based on FSMs. POLIS includes a translator from
the CFSM to the FSM formalism which can be fed directly to verification systems
((BHJ*96)).

7. System Co-simulation This step is used in a closed loop with system partitioning
and depends on software synthesis for the generation of the executable models
and the clock cycle estimates. It is described more in detail in Section 4.

3 The Ptolemy co-design environment

Ptolemy ([BHLM90, KL93, Buc93]) is a complete design environment for simulation
and synthesis of mixed hardware/software data-dominated embedded systems. Here we
will concentrate on its simulation aspects.

Ptolemy treats the system to be designed as a hierarchical collection of objects,
described at different levels of abstraction and using different semantic models to
communicate with each other:

¢ Each abstraction level, with its own semantic model, is called a “domain” (e.g.,
data flow, logic, ...).

¢ Atomic objects (called “stars”) are the primitives of the domain (e.g., data flow
operators, logic gates, . . .). They can be used either in simulation mode (reacting
to events by producing events) or in synthesis mode (producing either software
code to be run on a target DSP, or an ASIC). Stars communicate by using point-
to-point queues called “portholes”.

¢ “Galaxies” are collections of instances of stars or other galaxies. Instantiated
galaxies can possibly belong to domains different than the instantiating domain.

Each domain includes a scheduler, which decides in which order stars are executed (both
in simulation and in synthesis). Whenever a galaxy instantiates a galaxy belonging
to another domain (which is a case typical of co-simulation), Ptolemy provides a
mechanism called a “wormhole” for the two schedulers to communicate. The simplest
form of communication is to pass time-stamped events across the interface between
domains, with the appropriate data-type conversion. A more complex form involves
de-scheduling in one domain as a result of events in another one.

In particular, we used the Discrete Event (DE) domain of Ptolemy to implement the
event-driven communication mechanism among CFSMs. This domain is event-driven,
rather than data-driven as most other domains in Ptolemy, and hence seems the most
appropriate for our purposes. Each star of the DE domain has input and output portholes
(which correspond to CFSM inputs and outputs) carrying events. When a star receives
an input event, it fires and can emit output events. Events that are read from the input
portholes are deleted (consumed). Events are kept in a global queue, sorted according

7

to their time stamp, that is the instant in which they are emitted by the star. Scheduling
is computed at run time, since there is no way to decide a priori which star should fire
in a particular instant. The scheduler picks the set of (simultaneous) events with the
smallest time stamp from the queue and distributes them to the destination stars, firing
them in turn.

4 Simulation of CFSMs within the Ptolemy environment

41 Co-simulation methodology

The Ptolemy scheduler in the DE domain fires stars as if they were executed concur-
rently. Thus it does not directly provide a way to simulate CFSMs implemented in
software and running on a limited amount of computational resources (in this paper
we assume that a single CPU is available). Our goal was to modify the DE scheduler
behavior without changing its code, to maintain compatibility with the original version.
Thus we let the scheduler fire stars in its own preferred order, but every star may or
may not actually execute the main part of its code, based on global information which
characterizes the shared resources. All this is accomplished in a transparent way so that
the Ptolemy scheduler sees a world of concurrent stars, while the software stars sce the
POLIS scheduling policy.

Having met this goal, it is now possible to simulate in Ptolemy a system designed
using POLIS: this is accomplished by generating proper descriptions of every CFSM
and loading them into Ptolemy together with the network of interconnections. It is
then possible, through the nice graphical interface provided by Ptolemy, to evaluate
trade-offs between hardware and software solutions, and to visualize the overall system
behavior.

The detailed design flow for the co-simulation and trade-off analysis phases is as
follows:

1. The control/data flow graph of every CFSM in the system specification is built,
and the corresponding C code is generated (as described in [CGH*95]). The
C code also includes run time estimations for each C code statement, based on
information derived from benchmark analysis of the target processor.

2. The Ptolemy language source code for every CFSM is generated. This in turn
includes the C code generated by the previous step.

3. All CFSMs are loaded into Ptolemy. Each of them is a single star, with input and
output portholes corresponding to CFSM inputs and outputs.

4. The network of interconnections between stars (CFSMs) is created in the Ptolemy
environment.

5. Each star is assigned (by interactively modifying one of its properties or one of
the properties of a galaxy above it in the hierarchy):

¢ an implementation, either software of hardware, and
o apriority, used by the software scheduler.

Hardware stars run concurrently and terminate in a single clock cycle. Software
stars are mutually exclusive (we assume a single CPU here), and use the run time
estimation to determine how long it takes to emit outputs and complete firing of
a single transition of the CFSM.

6. A single system-wide parameter (also modifiable interactively) describes which
one of the pre-characterized processors must be used for cycle counting. This
provides a mechanism to easily change the target processor for a given set of
simulation stimuli, without the need to re-analyze or re-compile the specification.
In the same way it is possible to specify the scheduling policy best suited for the
given application. If the scheduler is priority-based, then it can use the priority
level assigned to each star.

7. The simulation is started with appropriate stimuli generators and output monitors,
to check the behavior of the system. Multiple simulations can be compared to
evaluate timing constraint satisfaction, run time, processor cccupation, and other
interesting pieces of information.

For example, in Section 5 we will describe how the CPU utilization can be
monitored, to detect and analyze potential overload conditions.

4.2 Scheduling policy implementation

Simulating POLIS CFSMs in Ptolemy with the correct semantics required the solution
of two main problems:

o ensure that each star behaves correctly,

o ensure that scheduling of the software components guarantees mutual exclusion
and avoids deadlock or starvation.

The former problem was easy to solve. The C code generated by POLIS is included
in the Ptolemy star description. The POLIS RT-OS calls for event detection and emission
are translated into porthole-based communication procedures. These procedures also
flush the event queue in case multiple events are received at the same time and at
the same input (only one randomly chosen event is considered). Overwritten events
are discarded, thus implementing the one-place buffer communication method among
CFSMs (Section 2).

Scheduling the software components proved to be much more difficult. The Ptolemy
DE Scheduler assumes that a star can be fired each time it receives an event at an input.
This is not exactly our case since:

o a CFSM may need a ser of input events to fire in a given state, which means that
inputs at the current time may need to be “saved” until later, and

e the computational resource (the processor) is shared among multiple stars, which
means that any star which may be fired, can do so only when the processor is
free. - .

The solution that we have chosen does not require to modify the DE scheduler.
From now on, we will call software scheduler our own scheduling policy, implemented
by an automatically generated procedure on top of the Ptolemy DE scheduler. Each
simulation cycle (identified by an integer number, and directly corresponding to a
simulated system clock cycle) is divided into three phases:

1. Request phase, in which all stars receive events, and request from the software
scheduler access to the processor if it is ready to fire, re-scheduling themselves
at the grant phase.

2. Grant phase, in which only one star is granted access to the processor and
executes its user code, while all other enabled stars re-schedule themselves at the
update phase. The identifier of the star which currently runs on the processor
is kept in a shared variable called strar_ack. This star also computes the time at
which the processor will become available again, in a shared variable called nexz,
by accumulating estimated clock cycles during the execution of user code and
RT-OS calls.

3. Update phase, in which all enabled stars re-schedule themselves at the next time
the processor is available.

The request phase is characterized by an integer simulation time, while the grant and
update phases are characterized by fractional simulation times. All events are received
and emitted at integer times.

Scheduling is thus performed in the following way. Whenever a software star
receives an event:

o If the current time is greater than or equal to next, then the processor is available:

— Ifthe current time identifies a request phase, then the star sends the request
to the software scheduler, and re-schedules itself at the next grant phase.

— If the current time identifies a grant phase, then the star must check the
variable star_ack to know if it has been chosen by the software scheduler. In
this case, it executes the user-specified part of its own code, accumulating
estimated clock cycles depending on the sequence of instructions that is
executed, and sets the variable next according to the clock cycle estimate.
Otherwise it must re-schedule itself again at the next update phase (to make
sure that the selected star has had time to execute its code and update the
variable next).

— If the current time identifies a grant phase, then the star reads the variable
next and re-schedule itself to try to get the processor at that time.

10

o If the processor is not available, but the priority of the star is greater than that of
the currently executing star, and the chosen scheduling policy allows interrupts
(i.e. itis pre-emptive), then an interrupt occurs. The variable next is incremented
by the estimated execution time of the interrupting star, and the interrupted one
is prevented from emitting output events until the end of the interrupt. Interrupts
may be arbitrarily nested, and can only cause delays in the interrupted stars,
without changing their behaviour (input variables to stars are buffered in our
software implementation scheme, to improve the predictability of the system
behavior).

o If the processor is not available and the priority of the star is less than or equal
to that of the currently executing star, or if the software scheduling policy is
non-pre-emptive, then the star must re-schedule itself at time nexz. Hence, stars
with the same priority level do not interrupt each other,

The communication queues among stars are forced to hold at most one event, to
match the CFSM communication model using one-place buffers. This means that events
may be overwritten, if they are emitted twice without being detected. This is legal in
the CFSM model of computation, but can optionally be logged to a file, because often
losing events means violating timing constraints and is interesting for the designer.

Hardware stars run concurrently, and take only one unit of time to execute. They
simply check, upon receiving an event, if they are still processing a previous event. In
this case they re-fire at the next time unit.

The implementation (hardware or software) of cach star can be dynamically and
independently changed during a Ptolemy session, by just updating a parameter of the
star or of a galaxy enclosing it in the hierarchy. Thus it is possible to experiment with
different solutions in a very straightforward manner and in a short period of time. In
fact, it is not necessary to rebuild the system, but it is sufficient to start a new simulation.

S An application example

‘We consider an application from the automotive domain: a dashboard controller. We
will evaluate different implementation choices, under various possible operating con-
ditions.

The system receives inputs from:

1. a magnetic sensor located near the wheel, producing a pulse every 4t* of a
revolution,

2. a magnetic sensor located on the engine, producing a pulse every revolution,
3. apotentiometer measuring the fuel level,
4. atiming pulse generator, providing the time basis for the whole system.

It provides as outputs:

11

1. four Pulse Width-Modulated signals, directly driving a pair of gauges (vehicle
and engine speed),

2. a 16-bit number controlling the odometer display,
3. an 8-bit number controlling the fuel level display.
Its operation is divided into various components:
¢ an event-triggered front-end, which converts pulses into revolution counts,

e atime-triggered back-end which converts revolution counts into car and engine
speed, normalizes them, and presents them in the appropriate form required by
the displays,

o abackground task which updates the fuel gauge.

The timing constraints, which in this case are relatively soft, derive mainly from the
need not to miss any incoming pulse. For the engine this means up to 5000 pulses per
second, while for the wheel this means up to 16 pulses per second. Outputs had to be
produced at a rate of at least 100 Hz and with a maximum jitter of 100 microseconds
to drive the gauge coils. In this case, we first assumed to use a Motorola 68HC11,
because the timing estimate available from synthesis (379 clock cycles at most for the
most time critical task, the engine pulse recorder) showed that we could hope to satisfy
the requirements with a 1 MHz processor.

The system was modeled using 13 CFSMs, each specified in ESTEREL. Their
interconnection was described graphically with the Ptolemy user interface, as illustrated
in Figure 2. One CFSM is devoted to input conversion from level to pulse, three CFSMs
derive timing events from the base time reference, four CFSM:s filter and normalize
the data, one CFSM converts potentiometer readings to fuel level (taking into account
the shape of the tank), and the remaining four CFSMs perform the PWM conversion.
Scheduling was performed by hand, due to the simplicity of the system, resulting in
an assignment of two priority levels to CFSMs. The highest level was assigned to
the CFSMs that had to handle input events, and corresponds, in practical terms, to
interrupt-driven I/O without interrupt nesting.

We first tried to implement everything in software, then moved part of the compo-
nents to a hardware implementation in order to satisfy the timing constraints. The PWM
converters were an obvious choice for hardware implementation, because their low jitter
constraints made a software implementation on a 68HC11 infeasible. Figure 3 shows
the priority level of the star currently executed on the processor as a function of time?2.
The processor utilization is still fairly high, especially considering that the simulated
car speed was about 50 Km/h. Hence we moved also the timing event generators to
hardware (a typical choice in embedded systems, in which timing functions are often
performed by special-purpose timers which are part of standard micro-controllers).

2A value of -1 means that the processor is idle, 1 is the highest level, each vertical bar represents a Conte
switch among CFSMs with the same priority level.

12

Figure 2: The dashboard controller netlist

13

Figure 3: Processor utilization analysis with few hardware components

Figure 4 shows the priority level in this second case. Figure 5 shows the user inter-
face, that uses the standard constant specification mechanism provided by Ptolemy, and
allows the designer to change all the architectural parameters without re-compilation.
Currently supported parameters arc:

e CPU type, clock speed, scheduler type for the whole system,

¢ implementation (hardware or software) and priority (used only for software stars)
for each star or hierarchical star group (galaxy).

The performance of the simulator is very high, especially if there is no component
which is active at every clock cycle, because in that case we can exploit the inactivity
of the system. The dashboard example is ideal in this respect, because the highest
frequency input events occur about once every 100 clock cycles (assuming a 1 MHz
clock). The results for the dashboard simulation, using various types of architectural
choices, are reported in Table 1. In this case, we used estimated execution times
for a Motorola 68HC11 micro-controller (which was eventually chosen for the final
implementation, reported in [CCG*96]), with a 1 MHz clock speed, and a MIPS R3000,
with a 1 MHz and a 10 MHz clock speed. The partitions shown in the column labeled
“Part” are respectively:

e SW: all modules are in software,

e HW/SW: the PWM drivers and timing generators are in hardware, and the rest is
in software,

e HW: all modules are in hardware.

The column labeled “Graph.” shows when the graphical priority display (useful for
debugging the software scheduler) is used. All CPU and User times are in seconds,

14

Figure 4: Processor utilization analysis with more hardware components

and were obtained on a SPARCSTATION 10 with 16 Mbytes of RAM, simulating 20
million clock cycles (except for the 10 MHz MIPS, for which 200 million cycles were
simulated). The user time required to restart a simulation when the partition or the
target processor are changed is about 1-2 seconds.

The execution time for the all-software partition on the 68HC11 is very high be-
causc the processor does not meet the timing constraints, and hence the simulation is
interrupted very often to log the information about missed deadlines on a file.

The simulation performance (without graphics output, because the display time
drastically slows down the system) is around 1 million clock cycles per second. This
speed, which can be achieved thanks to the extremely low overhead imposed by our
cycle counting technique, is sufficient in many cases to run simulations almost at the
same speed as the real target system (virtual protoiyping).

6 Conclusions and future work

In this paper we have shown that fast co-simulation can be done at early stages of a
design, for partition evaluation and functional verification purposes. The methodology
relies on the use of constrained software synthesis, that permits easy run time estimation
for a target processor, and of a powerful co-simulation environment built in the Ptolemy
system.

We noticed, by profiling the simulator code, that over 90% of the time (when the
graphic output is not used) is spent executing the DE scheduler code. This means that a
faster simulator could be obtained by re-writing the Ptolemy DE Scheduler to take into
account the required behavior of CFSM stars, and eliminate the overhead introduced by
the re-firing method. On the other hand, this option may not be desirable for reasons of
compatibility, both with future versions of Ptolemy, and with other simulation domains
within Ptolemy.

15

Figure 5: The user interface

16

Target | MHz | Part. Graph. Time

Proc. CPU User
HC11 1 SwW No | >1000 | >1000
HC11 1| HW/SW | No 30 38
HC11 1 HW No 25 27
MIPS 1 Sw No 161 162
MIPS 1| HW/SW | No 23 25
MIPS 1 HW No 25 26
MIPS 10 | HW/SW | No 23 23
HC11 1] HW/SW | Yes 202 205
MIPS 1| HW/SW | Yes 258 270

Table 1: Simulation speed for various types of system partitions

In the future, we would like to allow the designer to create more than one software
partition, thus simulating multiprocessor environments, and to specify hand-estimated
execution times for software modules that were not synthesized using POLIS (e.g.,
data-intensive modules designed using Ptolemy).

References

[BCG91] G. Berry, P. Couronné, and G. Gonthier. The synchronous approach to
reactive and rcal-time systems. IEEE Proceedings, 79, September 1991.

[BHJ*96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli. Formal verification of embedded systems based on CFSM
networks. In Proceedings of the Design Automation Conference, 1996.

[BHLM90] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt. Ptolemy: a frame-
work for simulating and prototyping heterogeneous systems. Interntional
Journal of Computer Simulation, special issue on Simulation Software
Development, January 1990.

[BRX93] E. Barros, W. Rosenstiel, and X. Xiong. Hardware/software partitioning
with UNITY. In Proceedings of the International Workshop on Hardware-
Software Codesign, October 1993,

{Buc93) I.T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model. PhD thesis, U.C. Berkeley, 1993. UCB/ERL
Memo M93/69.

[CCG*96] S. Cardelli, M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Rapid-prototyping of embedded systems via

17

[CGH*94]

[CGH*95)

[DH89]

[GIM92]

reprogrammable devices. In 7th IEEE International Workshop on Rapid
System Prototyping, 1996.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Hardware/software codesign of embedded
systems. IEEE Micro, 14(4):26-36, August 1994,

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Synthesis of software programs from CFSM
specifications. In Proceedings of the Design Automation Conference, June
1995.

D. Drusinski and D. Har’el. Using statecharts for hardware description
and synthesis. IEEE Transactions on Computer-Aided Design, 8(7), July
1989.

R. K. Gupta, C. N. Coelho Jr., and G. De Micheli. Synthesis and sim-
ulation of digital systems containing interacting hardware and software
components. In Proceedings of the Design Automation Conference, June
1992,

(HDMT94] X. Hu, J.G. D’ Ambrosio, B. T. Murray, and D-L Tang. Codesign of

(HEHB94]

[KATW93]

[KL92]

[KL93]

[KL94)]

architectures for powertrain modules. IEEE Micro, 14(4):48-58, August
1994,

J. Henkel, R. Ernst, U. Holtmann, and T. Benner. Adaptation of par-
titioning and high-level synthesis in hardware/software co-synthesis. In
Proceedings of the International Conference on Computer-Aided Design,
November 1994,

S. Kumar, J. H. Aylor, B. Johnson, and W. Wulf. Exploring hard-
ware/software abstractions and alternatives for codesign. In Proceedings
of the International Workshop on Hardware-Software Codesign, October
1993.

A.Kalavade and E. A. Lee. Hardware/software co-design using Ptolemy -
a case study. In Proceedings of the International Workshop on Hardware-
Software Codesign, September 1992.

A. Kalavade and E.A. Lee. A hardware-software codesign methodology
for DSP applications. IEEE Design and Test of Computers, 10(3):16-28,
September 1993.

A. Kalavade and E.A. Lee. A global criticality/local phase driven al-
gorithm for the constrained hardware/software partitioning problem. In
Proceedings of the International Workshop on Hardware-Software Code-
sign, 1994,

18

(LL73]

[LR93]

[PS91)]

[Row94]

[SSL*92]

[TAS93]

[tHM93]

[VG92]

[Wil94]

C.L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the Association for
Computing Machinery, 20(1):46 — 61, January 1973.

S.Lee and J.M. Rabaey. A hardware-software co-simulation environment.
In Proceedings of the International Workshop on Hardware-Software
Codesign, October 1993,

C. Y. Park and A. C. Shaw. Experiments with a program timing tool based
on source-level timing schema. IEEE Computer, 24(5):48-57, 1991.

J. Rowson. Hardware/software co-simulation. In Proceedings of the De-
sign Automation Conference, pages 439-440, 1994,

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit synthesis. Technical
Report UCB/ERL M92/41, U.C. Berkeley, May 1992,

D.E. Thomas, J.K. Adams, and H. Schmit. A model and methodology
for hardware-software codesign. IEEE Design and Test of Computers,
10(3):6-15, September 1993.

K. ten Hagen and H. Meyr. Timed and untimed hardware/software cosim-
ulation: application and efficient implementation. In Proceedings of the
International Workshop on Hardware-Software Codesign, October 1993.

F. Vahid and D. G. Gajski. Specifcation partitioning for system design. In
Proceedings of the Design Automation Conference, Junc 1992,

J. Wilson. Hardware/software selected cycle solution. In Proceedings of
the International Workshop on Hardware-Sofiware Codesign, 1994.

19

	Copyright notice 1996
	ERL-96-12

