
 

 

 

 

 

 

 

 

 

Copyright © 1996, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



DESIGN REPLACEMENTS FOR SEQUENTIAL

CIRCUITS

by

Vigyan Singhal

Memorandum No. UCB/ERL M96/10

25 March 1996



DESIGN REPLACEMENTS FOR SEQUENTIAL

CIRCUITS

Copyright © 1996

by

Vigyan Singhal

Memorandum No. UCB/ERL M96/10

25 March 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Abstract

Design Replacements for Sequential Circuits

by

Vigyan Singhal

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Robert K. Brayton. Chair

In this dissertation we study the problem of design replacements for synchronous

sequential circuits. There have been previous efforts to characterize the criterion for re

placement for such circuits. However, all previous attempts either make implicit or explicit

assumptions about the design or the environment of the design (for example, all latches

have a hardware reset line and the design operation starts in a unique designated initial

state). We present a notion for replacement which works for any arbitrary environment, and

without making these assumptions. We also observe that if the design's output is not used

for a certain number of cycles after power-up then allows additional flexibility is available

for replacement. We have used these notions of design replacement for logic optimization

and we report encouraging results. We also prove the complexity of the verification problem

for these notions as well as heuristics for this this problem.

We study the effect of retiming transformations on circuit behavior in detail. We

show how such transformations produce acceptable replacements, both with respect to the

actual circuit behavior as well as the behavior of the circuit as seen through conservative

logic simulators. W7e also show that the problem of retiming the initial state of circuits can

always be solved simply by modeling reset circuitry explicitly.

Ks K* /rf^+fver^
Professor Robert K. Bfayton
Dissertation Committee Chair



Ill

Contents

List of Figures vi

List of Tables ix

1 Introduction 1

2 Preliminaries 5

2.1 Memory elements 5
2.1.1 Modeling Reset Latches 7

2.2 Levels of abstraction 8

2.3 Composition of designs 10
2.4 Notation 17

3 Notions of Design Replacement 19
3.1 Combinational Replacement 20
3.2 Identical Behavior from Initial State 20

3.3 Machine Equivalence 20
3.4 Sequential Hardware Equivalence 21
3.5 Redundancy Removal for Circuits with no Reset Lines 24

3.5.1 Cheng's notion of sequential redundancy 24
3.5.2 Pomeranz and Reddy's notion of sequential redundancy 27

3.6 Retiming and Resynthesis 28
3.7 Synchronous Recurrence Equations 28

4 Safe Replaceability 31
4.1 Notion of Safe Replaceability 32
4.2 Properties 34

5 Synthesis and Verification for Safe Replaceability 40
5.1 Logic Optimization 40

5.1.1 Sufficient Condition for a Safe Replacement 43
5.1.2 Flexibility for Resynthesis 44
5.1.3 Choice of Core 45

5.1.4 Multi-level Synthesis 50



IV

5.1.5 Experiments and Analysis 54
5.2 The Verification Problem 57

5.2.1 Complexity of checking safe replaceability 57
5.2.2 A Heuristic Algorithm 60

5.2.2.1 Algorithm - Finding a Discriminating Sequence 60
5.2.2.2 Optimizations to the algorithm 64
5.2.2.3 Complexity of the algorithm . . 64
5.2.2.4 Known initializing sequence set 66

6 Delay Replacements 67
6.1 Delay Replacements 69

6.1.1 Properties 71
6.1.2 Delay-Preserving Replacements 74
6.1.3 Resynthesis Methodology 77

6.2 Synthesis for Delay Replaceability 78
6.2.1 Combinational Resynthesis 79
6.2.2 Optimization by Removing State Bits 85

6.2.2.1 Removing redundant latches under the DIS assumption .. 86
6.2.2.2 Removing redundant latches without the DIS assumption . 88

6.2.3 Final Results 99
6.3 Verification for Delayed Replacements 101

7 Validity of Retiming Transformations 103
7.1 Retiming Violates Safe Replacement 104

7.1.1 Testing Example 106
7.2 Background 107

7.2.1 Leiserson-Saxe Retiming Model 107
7.2.2 Circuit Model 108
7.2.3 Notions of Replaceability 110

7.3 Safety of Retiming Moves Ill
7.4 Retiming Preserves Conservative Three-valued Simulation '. . 119

8 Retiming the Initial State 124
8.1 Modeling Reset Latches 124
8.2 Retiming Initial State Without Adding Logic 128

8.2.1 Local retiming of the initial state 129
8.2.2 Global retiming of the initial state 133

8.3 Retiming Initial State by Adding Logic 138
8.3.1 Touati-Brayton's approach of modifying STG 138
8.3.2 An alternative approach 139

8.4 Retiming with Both Reset and No-Reset Latches 144
8.5 Overall Strategy 147

9 Conclusions 148



Bibliography 154

?!:;.:,,•! •»:-.,,-, •; -or,

:| -Ui

.i''V

ir.fi'i'.-'

;!• Ji;

: : I . I !

I .••• •

'H:i; '.'. . ii'l. " >,,,*.

•-•) . ,,'



VI

List of Figures

2.1 Replacing reset-latches with no-reset-latches (a) synchronous reset latch, (b)
asynchronous reset latch 7

2.2 Example netlist C 9
2.3 (a) The canonical STG for netlist C. (b) the original state graph before

minimization 10

2.4 Composition of STGs and netlists 13
2.5 Simulation of a non-stabilizing combinational cycle 14
2.6 Cyclic composition of STGs: first example 15
2.7 Cyclic composition of STGs: second example 16

3.1 Sequential hardware equivalence assumes that environment can produce ar
bitrary initializing sequence 22

3.2 Examples of two designs which do not have any synchronizing sequences . . 23
3.3 An irredundant stuck-at-fault for a circuit is redundant for a sub-circuit . . 26

3.4 Retiming a latch across a fanout 28
3.5 A synchronous recurrence equation cannot express the behavior of this design. 29
3.6 A synchronous recurrence equation cannot capture the output behavior on

the first clock cycle after power-up 29

4.1 Replacement of a sequential design 31
4.2 Example of a safe replacement {D\ < Do) 33
4.3 Replacement design Di 34

5.1 Combinational Gates + Latches = Multi-level Sequential Network 41
5.2 Design D2 (a safe replacement for Do) 42
5.3 Design D3 (an unsafe replacement for Do) 42
5.4 Example of a safe replacement 44
5.5 The onion ring structure and the tSCCs of a design. Only some states and

transitions are shown 46

5.6 Procedure to obtain the n-th onion-ring An 47
5.7 Procedure to derive a tSCC 48

5.8 ODC's from the Observability Network yield flexibility under Observability
Relation for nodes in Implementation Network 52

5.9 Procedure to optimize a multi-level network maintaining safe replacement. . 53



Vll

5.10 Design D 59
5.11 Designs Do and D\ 63
5.12 Verification digraph for "Di < D0?" 63
5.13 The optimized verification digraph 64
5.14 Design D 65
5.15 Sub-design Ck and the three special states 65

6.1 Example design R 70
6.2 Making successive delay replacements on overlapping pieces 73
6.3 Delay-preserving replacement does not preserve compositionality 75
6.4 The safeness/flexibility tradeoff between the various replaceability notions. . 76
6.5 Delay replacements on non-overlapping sub-designs 78
6.6 Successive delay replacements on overlapping sub-designs 78
6.7 Procedure to optimize a multi-level network for rc-delay replacement .... 81
6.8 Replacing a latch with function / 87
6.9 Design A. The value of jz = x\ + ^2 is shown in the dotted box 88
6.10 Procedure to optimize S(x) 90
6.11 Design B. The value of fz = x\ <£ #2 is shown in the dotted box 92
6.12 Procedure to obtain a function-set 93

6.13 Design D6 94
6.14 Procedure to replaces latches with logic 97

7.1 Retimed circuit is not initialized with input sequence 0 105
7.2 Design where retiming breaks down an initializing sequence of length 1. . . 105

3 Retiming does not preserve test sequence 0-1 107
4 The edge-weighted digraph representing the circuits D and C from Figure 1. 108
5 A junction can be treated as a multi-output gate 109

7.6 Forward and backward retiming moves across a multi-output element. ... 110
7 Labeling for a backward retiming move 114
8 Labeling for a forward retiming move 115
9 Example of the labeling procedure 118
10 Backward retiming move across a multi-output logic element 121

8.1 Retiming reset latches and the initial state 125
8.2 Retiming after the reset transformation 126
8.3 Retiming the explicit reset circuitry along with the latches 127
8.4 Example of impossible retiming without adding logic 128
8.5 Forward retiming of the reset circuitry 131
8.6 Backward retiming of the reset circuitry 132
8.7 Local retiming of initial state can conflicts for future retimings 134
8.8 Retiming initial state by adding logic 140
8.9 Separating the reset circuitry from no-reset latches 142
8.10 Retiming initial state via forward retiming adds unnecessary logic 143
8.11 Retiming reset and no-reset latches 146



vm

List of Tables

5.1 Number of states in the possible choices for the core 49
5.2 Experimental results for safe replacements 55
5.3 Experimental results for collapsed nodes in the starting netlist 56

6.1 Experimental results for delay replacements 82
6.2 Power-up delay/flexibility tradeofffor s526; reduction is in number of literals 84
6.3 Experimental results with collapsed nodes in the starting netlist 84
6.4 Experimental results for latch replacement. For s344 and s349, compatible-

set returned FAIL when passed the tSCC 98
6.5 Latch replacement results after technology mapping 99
6.6 Delay replacement results after technology mapping 100

7.1 Simulation results for D and C on input sequence 0 • 1 • 1 • 1 106



IX

Acknowledgements

I would like to thank my research advisor, Professor Bob Brayton, for his unwa

vering support of my research and for suggesting many ideas. I have always been amazed

by how quickly he is able to tune in to and give directions on new or underdeveloped ideas.

The research direction for this dissertation was mostly due to Dr. Carl Pixley. He has been

a source of constant encouragement and many wonderful insights in this research. Most of

the ideas in this thesis have been developed jointly with Carl. About half-way into graduate

school, my good friend Adnan Aziz (now Prof. Aziz) did me a great favor by persuading

me to change my specialization from database systems to computer-aided design. We have

worked on many problems together, and his vigor and brilliance never ceases to impress me.

I would also like to thank Professors Alberto Sangiovanni, Alan Smith and Gary Hachtel

for their advice and encouragements during my stay here. I am also grateful to Professors

Sangiovanni and Dorit. Hochbaum for reading my thesis and approving my research.

I have been very lucky to spend the last few years in the CAD-group at Berkeley,

probably the most productive research environment anywhere. Different portions of this

thesis are joint research with Adnan Aziz, Bob Brayton, Carl Pixley, Rick Rudell, Shaz

Qadeer and Sriram Krishnan. I have also had extremely fruitful research collaborations

with many other CAD-group members- Alex Saldanha, Ellen Sentovich, Felice Balarin,

Gitanjali Swamy, Luciano Lavagno, Ramin Hojati, Tom Shiple and Yoshi Watanabe. I am

fortunate to have been in a position to research with so many brilliant people.

I am grateful to Flora Oviedo and Kathryn Crabtree for helping mc with all the

admistrativc problems I faced.

My stay in the Bay Area has been enriched by numerous friends- Adnan, Alex

and Avril, Amit Gupta, Amit Narayan, Anurag and Suneeta, Barathi and Rajeev, Bharat

and Manveen, Des, Edo and Tokiko, Ellen, Flora, Gambhir, Gitanjali and Sanjay, Inder,

Jacqueline, Jagesh and Alpa, Kumud, KJ, linuS, Luca, Luciano and Paola, Nari, Paolo and

Ana, Paolo Giusto, Rafael, Raghuram, Rajat and Vandana, Rajeev and Renu, Rajeev Mur-

gai. Ricki Blau, Sandy and Eric, Satyajit and Bratati, Shaz, Shing Kong. Sriram Krishnan,

S. Sriram, Tami, Tanvi, Tom and Suzanne, Vineet and Mudita, Zach and Sarah. I am sure

I forgot many other names in my hurry to file this dissertation. Thank you for making days

here so enjoyable.

I would like to thank my parents and Sangeeta and Ramesh for always believing



in me and supporting me throughout my education. I have very much enjoyed the love and

blessings of my other family- Barbara, Woody, Rani and Essi, Teri and Larry, Robin and

Laz, Tami, Jessica and Mike, Josh, Jasmine, Sally, Kaye and the rest of the Busse family.

Lastly, I am forever grateful to my sweetheart Sonali for her wonderful love and

patience during the last few months I tried to finish this thesis.

The work in this thesis has been supported by NSF/DARPA Grant MIP-8719546,

SRC Contracts and Grants 94-DC-324, 95-DC-324, 96-DC-324, a summer intership from

Motorolaand various other grants from BNR, California Micro Program, DEC, Intel, AT&T

and Motorola.



Chapter 1

Introduction

Over the last few years we have seen a tremendous growth in the complexity

of digital systems being designed. The top of the line microprocessor designs consist of

millions of transistors and hundreds of thousands of simple gates. To make the design

process more manageable, the role of design automation methods is becoming increasingly

more important. In this dissertation we will concentrate on two of these methods- logic

synthesis and verification.

Logic synthesis is the process of transforming the logic implementation of a circuit

so that the implementation achieves the desired behavior of the circuit. There are many

components of logic synthesis- transforming a register-transfer level (RTL) design into a

gate-level design, restructuring a gate-level design to achieve an optimum combination of

performance (timing), area, low-power and testability, mapping a gate-level design to a

library of technology-dependent components, restructuring a transistor-level design after

layout and placement for more optimal use of area, etc.

Verification is the process of verifying that a given design does "what it is supposed

to do". Verification too appears at many stages in the design flow- verifying that the high-

level architecture specification achieves the desired properties, verifying equivalence between

a pair of designs which are at the same or adjacent levels of abstraction (e.g. gate-level vs.

gate-level or RTL-level vs. transistor-level), etc. It should be the case that if one design

is obtained from another via logic synthesis, then, by the definition of logic synthesis, the

verification between this pair of designs should be unnecessary. However, in practice, this is

rarely the case. This is because of many reasons- commercial and academic logic synthesis

tools have bugs, designers who use these tools cannot afford or are unwilling to trust the



CHAPTER 1. INTRODUCTION 2

correctness of the tools, the tools may assume a different criterion for equivalence than what

the designer has in mind, etc. Many times small local design changes are made by hand,

and it difficult to keep track of these changes and thus the problem of design verification

between pairs of designs manifests itself very often.

It should be clear that a notion of design equivalence is crucial for logic synthesis

as well as for verification. For synthesis we would like to be able to take an arbitrary piece

of logic from a design and replace it with another, optimized, piece of logic. For verification,

we want to find if there is any environment which can distinguish two given designs. The

focus of this dissertation will be on notions of design equivalence as well as how to use

these notions for the problems of synthesis and verification. We will restrict ourselves to

synchronous sequential designs which can be modeled with a single clock. The sequential

nature of these designs is characterized by a state space which the design traverses. At

any clock cycle, for a given input and a given state of the design, the design produces an

output and moves to a new state. In a gate-level implementation of such a design, the

states are implemented by memory elements (like latches or flip-flops) which are driven by

the same global clock; the other gates in the design implement the combinational part which

determines the output and the next state for a given present state and an input.

Our primary focus will be to address the problem ofsequential design replacement1

Even though there has been much research in the areas of sequential synthesis and verifica

tion over the last few years, it is surprising to see little transfer of the technology to industry.

For example, when a gate-level netlist is passed on to a synthesis tool for optimization, such

a netlist is almost always2 combinational, i.e. without any memory elements; the design

is often cut at latch boundaries before passing to a synthesis tool [9]. For example, one

problem with some sequential synthesis methods in the literature is the assumption of a

designated initial state for a design; often it is not possible to live with such as assump

tion for the optimization of an arbitrary sequential netlist in an industrial setting. We will

discuss this further in Chapter 2.

For arbitrary sequential netlists, one notion that can used for replacement is the

'Actually there is much debate over the notion of design replacement for combinational design (see, for
example, [13, 52, 47, 77]). However, that controversy has its roots in designs which have cycles in the
combinational parts of the circuit. Almost all real synchronous designs require at least one memory element
in every cyclic path, and so we will restrict ourselves to this class of circuits. We will discuss this issue
further in Section 2.3.

2Retiming is probably the only exception to this. There are few other automatic sequential synthesis
techniques used by designers, or available in commercial CAD tools.



CHAPTER L INTRODUCTION 3

concept of FSM equivalence. However, this is often too strict, and it is often possible to

use weaker notions to get a safe replacement. We will discuss the other alternative notions,

proposed by others, in Chapter 3. We will discuss our objections to all these notions. Then

we present our notion of safe replacement in Chapter 4. We will argue that if we wish to

make a replacement in an arbitrary piece of logic, this is the exact notion which we want

to use, if we know nothing about the environment. Then, in Chapter 5, we will present

techniques to exploit this flexibility for synthesis. We will also discuss the verification

problem for safe replaceability by analyzing the complexity of this problem and giving a

heuristic solution.

Then, in Chapter 6 we will see that we can extract additional flexibility for resyn

thesis if we know additional information about the environment of the design, for example,

if we know that the behavior of a design during the first few clock cycles after the design is

powered up is not important. This will lead us to the more flexible notion of replacement,

delay replacement. We will investigate logic synthesis techniques so that we can optimize

gate-level circuits using this notion.

Retiming memory elements across combinational gates is often used as a logic syn

thesis step for optimizing either the area or the performance of circuits. However, retiming

may cause design changes which can be detected by some environments, and in this sense,

retiming may lead to design replacements which are not safe. However, these replacements

are delay replacements. Conservative three-valued simulators are often used to analyze the

behavior of designs. If such simulators are used, it can be shown that these simulators are

conservative enough so that the original design cannot be distinguished from the retimed

design as seen from the output of the simulator. We discuss all these issues in Chapter 7.

The output of a simulator that the designers use to analyze a design is important. Simula

tors usually have to be reasonably fast to be of practical use. Often this speed is achieved

at the cost of accuracy. Thus, a simulator may classify two different designs as exhibit

ing equivalent input-output behavior even though real implementations of the two designs

show different behavior (which a more accurate, but slower, simulator may detect). How

ever, since the simulator is used to craft the design, the design is maintained such that the

behavior of the design as seen through the simulator is consistent with the desired behavior

of the design. If it is not so. it is often the design that has to change, even if the inconsis

tency was due to the conservativeness of the simulator. For example, if an input sequence

initializes a design but this cannot be certified by a conservative three-valued simulator,



CHAPTER 1. INTRODUCTION 4

the designer may change the input sequence so that the initialization is certified by the

conservative simulator even though the original sequence also was correct.

For designs where some latches have initial state values, when these latches are

retimed, these initial state values have to be retimed also. We review the existing techniques

to achieve this retiming of the initial state in Chapter 8. We also show that an alternative

solution falls out of the way we model such latches in our designs, as described in Chapter 2.

Finally, in the last chapter we discuss where our work extends for the future and

the lessons we learned in this research.



Chapter 2

Preliminaries

In this chapter we are first going to discuss some design modelling issues which are

needed for the presentation that follows in this thesis. We will also describe the terminology

we will be using in the thesis.

2.1 Memory elements

For the most part in this thesis, we are dealing with synchronous, sequential gate-

level circuits. The sequential nature of such circuits is implemented by memory elements,

either latches or flip-flops. We will assume that the memory elements are edge-triggered

(for most of the work we present, it is possible but sometimes tedious to extend the work

to level-sensitive latches). We will simply use the term "latch" to denote such an element.

Latches come in two flavors- latches with a hardware reset line (we will call them

"reset latches")1 and latches without a hardware reset line ("no-reset latches"). It is easier

to reason the behavior of designs where all latches are reset latches. However, there are

many reasons why many industrial designs have many no-reset latches. No-reset latches

occupy less area and contribute less delay to the circuit. Also, having no-reset latches

allows much saving in area by avoiding the routing of the global reset line all over the

design. In this thesis, we will assume that all latches in the designs are no-reset latches

(later in this section we will show how reset latches can easily be modeled with no-reset

latches and some additional combinational gates). When a design consisting of t no-reset

1We will use the term "reset latches" to denote both kinds of latches- ones which get assigned to 0 when
the global reset line is pulled and the ones which get assigned to value 1, even though it might be more
appropriate to call the latter "set latches".



CHAPTER 2. PRELIMINARIES 6

latches is switched on, it randomly starts up in one of the 2' power-up states (a state

corresponds to an assignment of binary values to each of the latches).

Many sequential synthesis and verification studies (such as [21, 80, 17, 48, 5]) rely

on the supposition that all latches are reset latches by assuming that there is a designated

initial state for each design; such an initial state corresponds to a designated assignment

of binary values to each of the latches and it is assumed that when the global reset line is

pulled in the first clock cycle of operation, all latches assume their respective values. While

this assumption is applicable to some designs, it certainly does not apply to all designs.

Assuming a designated initial state simplifies the analysis of many problems. This thesis

does not assume a designated initial state, and in this it differs from many previous studies.

We will now argue why it is so important to analyze designs without assuming a

designated initial state. In our experience, many industrial design do have no-reset latches.

While most of the these latches lie in the so-called "data" part of the circuit, one can

certainly find many such latches in the "control" part also. Also, often it is not possible to

cleanly partition the data and the control part; in many cases it is not even known what

the data part is and what the control part is, especially for gate-level designs. Another

reason for not assuming a designated initial state, even if all latches are reset latches, is

that we cannot assume that whenever the circuit operates, the global reset line has been

pulled. Indeed, we have observed real designs where it was not the case that the global

reset was activated from the first clock cycle: in some modes of operation, the design was

being used even before activating the reset line. In such situations it would have been very

dangerous for a synthesis tool to make tho assumption that the design was us^d only after

pulling the reset line, and the behavior of the designs in the states unreachable from the

designated initial state does not matter. Another problem with the designated initial state

model is caused by circuits which have more than one class of latches, each class is wired

to a different reset line. It is not clear what the designated initial state is in this situation.

Also, we have observed some designs where some reset lines are outputs of combinational

logic and it is not clear if there is a meaningful initial state at all.

The bottom line is that (1) there is a large number of designs where some or

many latches do not have hardware reset lines, and (2) even for designs where all latches

are reset latches it may be incorrect to assume an initial state. In this thesis we aim

to address the problems of design equivalence, logic synthesis and verification of circuits

without assuming the existence of a designated initial state. In the rest of this thesis,



CHAPTER 2. PRELIMINARIES

y

T = =rDHr-» 'T =;_^M-4>
(a) ' (b)

Figure 2.1: Replacing reset-latches with no-reset-latches (a) synchronous reset latch, (b)
asynchronous reset latch

unless explicitly mentioned, we will simply use the term "latch" to denote a no-reset latch.

Next we show how we can model reset latches with no-reset latches plus some combinational

logic.

2.1.1 Modeling Reset Latches

There are two kinds of reset latches: synchronous, where the latch output is reset

in the clock cycle after the reset line is activated; asynchronous, where the latch output

is immediately reset. We will consider the case when pulling the reset line high (i.e., 1)

sets the output of the latch to be 0. The other three combinations of setting/resetting the

latch by pulling the reset line high/low can be modeled similarly. Figure 2.1 illustrates

the transformation for the case of both synchronous and asynchronous reset latches. It is

easily seen that for the synchronous case, pulling the reset line forces the output to be 0

in the next clock cycle; for the asynchronous case, pulling the reset line forces the output

to be 0 in the current clock cycle. In the remainder of this thesis we will call the above

transformation the reset transformation.

Once all reset latches have been modeled using the above transformation, we are

ready for address the problem of design equivalence, logic synthesis and verification with

the assumption that all latches are no-reset latches. For logic synthesis we just have to

be careful that usually we may not want to separate this additional combinational logic

we have added in the above transformation from the latch itself. This will enable us to

replace the no-reset latch back with a reset latch when we are done with our logic synthesis.

On the other hand, in many situations it may even be desirable to separate this extra

transformation logic away from the latch, an example of which we shall see in Chapter 8.

Thus, modeling reset latches with no-reset latches only gives us extra flexibility for synthesis

and does not take away anything from the scope of the designs we can handle.



CHAPTER 2. PRELIMINARIES 8

2.2 Levels of abstraction

The theory of sequential replacement that we present in this thesis is applicable

at many levels of abstraction. However, we will restrict ourselves to two different levels of

abstraction for representing digital designs: behavioral-level (represented by state transition

graphs, or STGs) and gate-level (represented by interconnection of gates and latches, or

netlists).

A state transition graph (STG) is a directed graph where the vertices represent

the states and the edges are transitions between states. The edges are labeled with the input

value which excites that transition and the output value that is produced; the destination

node of the edge represents the next state for that input value. STGs will represent the

behavior of digital designs we will analyze. We will assume that inputs and outputs are

encoded and of fixed length. Thus, if the design has, say, m input ports and n output ports,

each input value is one of 2m values and each output value is one of 2n values. Another term

used to describe behavioral-level designs is finite-state machine (FSM). Unless specified, we

will assume that a design has a deterministic and complete (under all inputs) FSM. This

means that for each state, each input value (in the space of 2m values) is associated with

exactly one transition in the STG. There is the well-known notion of state equivalence for

states in an FSM:

Definition 2.1 Two states s and t are equivalent if and only if starting from these states,

for every input sequence, they produce the same output sequence.

In this thesis we will treat FSMs modulo state equivalence; in other words, we will

consider two FSMs where one can be reduced to other by collapsing equivalent states into

a single state as the same FSM. The problem of state minimization is orthogonal to our

research; for its application in digital circuits, it has been studied in detail in [32, 65, 40].

For completely specified deterministic machines, the minimum state machine is unique and

hence can be thought of as the canonical representation of the FSM.

A netlist is an interconnection of elementary circuit elements connected by wires.

The basic circuit elements are either latches or combinational gates (an m-input n-output

gate maps each of 2m values to one of 2n values). An example of a netlist is the circuit

in Figure 2.2. The basic circuit elements are connected by wires, which are also allowed

to fan out to multiple wires at points called junctions. A netlist has some primary input



CHAPTER 2. PRELIMINARIES

Figure 2.2: Example netlist C

wires and some primary output wires. We require every cycle in a netlist to consist of at

least one latch (in other words, the netlist does not have a combinational cycle). Given a

netlist consisting of m input wires, n output wires and t latches it corresponds to an STG

which has 2m possible input values. 2" output values and 2' states. Because there are no

combinational cycles in the netlist, given a state (an assignment of values to the latches)

and an input value (an assignment of binary values to the input wires), the output value

and the next state are determined. Once we collapse the equivalent states into a single

state, we get the associated STG for the netlist. The number of states in the canonical

FSM is less than or equal to 2*. For example, consider the netlist in Figure 2.2. This circuit

corresponds to the STG in Figure 2.3(a): state t2 corresponds to circuit state 10 (the upper

latch is assigned to 1 and the lower latch is assigned to 0), tS corresponds to 00, and t\

corresponds to 01 and 11. The original state graph before collapsing equivalent states is in

Figure 2.3(b): sO corresponds to 01, si corresponds to 11, s2 corresponds to 10, and s3

corresponds to 00.

Given an STG, we have infinitely (and countably) many netlists which correspond

to this STG. The problem of obtaining an "optimal" netlist, with respect to some cost

function, is the state-encoding and FSM implementation problem. This is usually a provably

intractable problem and many heuristics have been suggested to attack many variants of



CHAPTER 2. PRELIMINARIES 10

(a) (b)

Figure 2.3: (a) The canonical STG for netlist C. (b) the original state graph before
minimization.

this problem [25, 26, 74, 67]. This problem is orthogonal to the issues of this thesis.

2.3 Composition of designs

Because we are interested in the problem of replacing designs without affecting

the interaction with the environment designs, the issue of composing designs is crucial to

this thesis. Therefore, it is important to define what we mean by "design composition" and

the subtleties involved in the composition of designs at both the levels of abstraction we

are interested in.

Composition of twodesign entails hiding ofsomesignals- eachsignal that is hidden

is an output ofone design and an input of the other. The remaining input or output signals,

respectively, become the input or output signals of the composed design. For example,

consider Netlist 2 in Figure 2.4. Design D has inputs x and y, and output z\ design D' has

input z' and outputs w and y'. The composition involves connecting z with z' and y with

y'; thus, x is the only input of the composed design and w is the only output.

Composition of netlists

Composition of two netlists simply comprises of placing the two netlists next to

each other and connecting the pairs of input-output signals which are required by the

composition.

However, such a composition may sometimes create combinational cycles (cyclical

paths in the netlist which do not contain any latches in the path). It should be clear that



CHAPTER 2. PRELIMINARIES 11

if a netlist has a combinational cycle, it is not easy to associate an STG for such a netlist

because the next state and output functions may not be determined from such a circuit.

A real implementation (i.e., the hardware realization in silicon) of such a circuit may or

many not oscillate for an indeterminate time. Issues regarding behavior of circuits with

combinational loops have been dealt elsewhere [85, 77]. As stated in the previous section,

in this thesis we assume that we never encounter a combinational loop. This means that we

talk about composition of designs only when the composition does not create combinational

loops. Few real gate-level designs have combinational cycles. Most of the exceptions have

cycles such that the entire cycle can never be excited, i.e. these cycles are false paths and

such circuits can effectively be implemented without cycles also. Our work can be extended

to this class of circuits also but we avoid this for ease of presentation and for an easier

reading.

Composition of STGs

Next we will give an STG composition procedure to define the semantics of

the composition of two STGs. Then we prove that for two design D and D\ if there exist

implementations of D and D' such that composing these two implementations does not

create a combinational loop, then the STG composition procedure returns a deterministic

and complete composed STG. Also, no matter what pair of gate-level implementations we

choose, as long as the composed netlist does not have a combinational cycle, the composed

netlist has the same behavior as the composed STG defined by the composition procedure.

The composition of two STGs is defined as follows. Suppose, we have two STGs

that we want to compose: design D (with states {s\, 52,..., sp), input wires (i\,..., im) and

output wires (oi,..., on)), and design D' (with states (s'l5...,sj,,), input wires (i'i,..., i'm,)
and output wires (o\,.. .,0^/)). Say we want to compose these two STGs such that, with

out loss of generality, the first k input wires of D are respectively connected to the first

k output wires of D', and the first k' input wires of D' are respectively connected to the

first k' output wires of D. Let the composed design be denoted by D <g> D\ which has

pp' states, each of the type (sj,s'v), where 1 < j < p and 1 < f < p'\ the input wires are

(ijt+i, ijt+2,.. •, im, i'k'+i» •••.*'m') and the output wires are (ok>+l, o*+2,...,on, o'k+l,..., o'n,),
while the other input and output wires of D and D' are now internal wires of D%D'. Given

state {sj,s'y) and an input vector [(e'*+i,..., im, *i#+1,. ••» C') = (a*+i> •••> am, afc'+i> •••> am')L



CHAPTER 2. PRELIMINARIES 12

the output vector is [(o*'+i,...,o„,ai+1,...,oJl,) = (&fc'+i, •• -,bn,bk+1,.. .,&'„/)] and the
next state is (tj,t'-r) if there exists a vector (ci,.. . ,cjt,c'1}.. .c'k,) such that in design D

state Sj on input [(»i, ...,iTO) = (ci,. •-,cfc> ajk+i, ••-,a>m) produces output [(oi,...,on) =
(cj,... <4/, 6jfc/+1,..., &„)] and goes tostate t,, and in design D'state s'-, on input [(i'j,..., i'm,) •

(c'1,...cj.„ajki+1,...,a,mi)] produces output [K,.. .,o'n,) = (ci,.. .,c/k, 6^+1,.. .,&'„')]• Next
we prove the following claim:

Claim: If there exists a netlist implementation for each STG such that the composed

implementation does not have a combinational loop, then (a) this composed STG is well-

defined, i.e. from each state and for each input vector there is a unique output vector and

a next state, and (b) for each netlist implementation of the STGs D and D1 such that the

composed netlist does not have a combinational cycle, the composed netlist has the same

behavior as the composed STG D ® D'.

Proof. The proof will rely on the fact that each of the two STGs has a netlist implementa

tion such that the composed netlist does not contain a combinational cycle. Let us assign

values to the latches of this composed netlist to reflect the state (sj,s'j,), and assign the in

puts to [(ifc+i,..., wi'+ii---,*'mr) = («k+i, - -lam-a'k'+v -•">am')]' Since the netlist has
no combinational cycle, the values to all the internal wires, specifically the output wires,

the wires which feed the latches and the wires which connect the two component netlists

representing D and D', are uniquely determined from this assignment; let the values of these

three sets of wires respectively be [pv+i,.••,Pn, p'k+\, •••iK')» (tfi»• ••»0** tf'n •••><l't>) and
(rf, , dt... d\ d'k,). Since the two netlist respectively implement the two STGs, we know

that the the first STG D from state sj on input [(t'i,..., im) = (di,..., dk, ak+\,..., am) pro

duces output [(oi,...,on) = (di,...,dJ.,,Pfc'+i,...,pn)] and goes to state [tj = (?i, ••-,&)];
a similar condition holds for design D'. It follows that we have obtanied the desired vector

[(ci,..., c*, Cj,...c'k,) = ((rfi,..., dk, d\,..., dk,)] to show that the STG composition from

this arbitrary composed state and the arbitrary input vector has a unique next state and

a unique output vector, thus proving (a). It should also be clear the next state and the

output vector for the composed STG is identical to that for the composed netlist.

To prove (b), it is sufficient to note that any implementation of D and D' will

produce the same assignment to the wire connections between D and D' as long as there is

no combinational loop in the composed implementation. •

We show an example [56] where the design composition of STGs where one netlist

implementation may cause a combinational cycle even though there exists another netlist



CHAPTER 2. PRELIMINARIES

State Transition Graphs

D®D>

x IV, z\zy w
1/ :

7 A"\l

Netlist 1

X

Vspv
D'\

I > 0

z' w\

r

Netlist 2

Figure 2.4: Composition of STGs and netlists

13

implementation where the composition does not yield a cycle. Consider the two STGs D

(with inputs x and y and output z) and D' (input z' and outputs w and y') in Figure 2.4.

The composition of these STGs is well-defined since there exist netlist implementations of

D and D' (Netlist 1 in Figure 2.4) such that the composition does not have a compositional

cycle. However, consider Netlist 2 in the figure, which causes a combinational cycle in

the composition. We will disallow such compositions in our work since the input-output

behavior of such a composed implementation may not be definable. For example, consider

the delay assignments on the gates as shown in Figure 2.5. If we simulate this circuit

with these delay assignments, assuming a standard event-driven simulator2, on the input

2This is similar to the delay model used in [52] where the output of a i-delay gate changes instantly t
time units after its input. It may be argued that a transistor-level implementation of this netlist may not
behave exactly this way since gate outputs do not change instantly but change continuously in an analog
manner. However, as we argued in Chapter 1, it is extremely important to the design methodology that the
input-output behavior of the design is analyzed, as seen using a simulator, even though a simulator may
be conservative. So, if the output of the simulator, which assumes fixed delays and instantaneous digital



CHAPTER 2. PRELIMINARIES

x

*/L^
• 0

y
b*~

A
1

°^l

Circuit

ii i i i i

*i S ! i i

P\ 11111

I ! j j 1
i • i i

: : : : o

mi:
g\\ \\ i

• I i i i i i i i i i

i i i i i i i i i i

• 111u

• 111

mi:
-t i i i-i

w; : : ; : iii i 1 0
• 1 1 1

1 1 1 1

irtr
10 IS

Time ->

Figure 2.5: Simulation of a non-stabilizing combinational cycle.

14

sequence shown in the figure, we get the non-stabilizing oscillatory behavior (which never

settles) on the output w, as shown in the figure. Thus, the functional behavior of this

composed netlist cannot be defined. In the sequel we assume that, whenever we compose

netlists and analyze the composed netlist, the composition does not contain a combinational

cycle.

We digress to note that for the case of STG composition of two designs, D and

D' where every possible gate-level implementation of D and D' creates a combinational

loop in the composed netlist, the above-described STG composition procedure may return

an STG which is non-deterministic or not complete or both. For example, consider the

composition in Figure 2.6. It can be seen that every netlist implementation of D and

D' create a combinational loop in the composed netlist. The STG composition procedure

return a 1-state STG for D® D\ which is non-deterministic (for input t = 1, output y can

be either 0 or 1) and not complete (for input t = 0, there is no value for output z). On the

other hand, it may be possible that the composed STG is determistic and complete even

though all possible netlist implementations of D and D' create a combinational loop in the

composed netlist. Consider the composition in Figure 2.7. However, as argued earlier in

this section, in this thesis when we compose STGs we define only those compositions where

there exist netlist implementations of D and D' which do not create a combinational loop

in the composed netlist.

changes on the wires, shows that the design is unacceptable, it is the design that has to change, rather than
the simulator.



CHAPTER 2. PRELIMINARIES

i X

00

-1 p
l- b

D Dy

State Transition Graphs

D®Di

\t

rviv-^ «' N V'

^
V v'

zTVb-^ W l\
1/

Dy\D
<

Netlist

Figure 2.6: Cyclic composition of STGs: first example

15



CHAPTER 2. PRELIMINARIES

r^ """N. '

D

State Transition Graphs

D®D

'V ~^^\~^.
w9 ~^\ z\\\ \ w

h
)) /

x>

n ) i

X

piv
D>\

y y'

\D

Netlist

Figure 2.7: Cyclic composition of STGs: second example

16



CHAPTER 2. PRELIMINARIES 17

2.4 Notation

In this section we describe some notation we will use later.

A Finite State Machine (FSM) M represents a quintuple, (Q,I,0, A,<5), where

Q is the set of states, I is the set of input values, O is the set of output values, Ais the output

function, and S is the next state function. The output function A is a completely-specified

function with domain (Q x I) and rangeO. The next state function is a completely-specified

function with domain (Q x I) and range Q.

A netlist D consists of a set of interconnected latches and gates. A design with n

input wires, m output wires and t latches is naturally associated with an FSM D. We will

use D to also denote the set of states of the associated FSM which occupy the state space

{0,1}' (it will be clear from the context if D refers to the design or to the set of states).

The input space Id = {0,1}P, and output space Od = {0, l}m, the next state function is

So : Dx Id -> D and output function Xd : Dx Id ->• Od are defined by the corresponding

logic. We are not assuming explicit set or reset pins to any latch; thus when the design

powers up it can non-deterministically power up in any one of the 2' states.

We will also use \d and 8d to denote the output and next state functions on

sequences of inputs. So, if tt = a\ • a-i • a.3 ••-aq € I'd ls a sequence of q inputs, these

functions are recursively defined as Xd{s, 7r) = Xd{s,gi) •Xd(5d(s,gi)?71"') and <$d(s,7t) =

&d{$d{s,<ii),k'), where tt' = a2 •a3---ap. Also, for any state s G Qd- &d{s,£) = s and

\d{s, e) = c, where c represents the length-0 sequence.

Two designs are said to be compatible with each other if they have the same

number of input and output wires. All notions of design replacement described in this

thesis are meaningful only for pairs of compatible designs. Henceforth, when talking about

two different designs we will implicitly assume compatibility of the two. In this paper

we will assume that designs D0 and D\ denote the quintuples (Qr>0,/,0, A£)0,(5£)0) anc*

{Qd{ , I, O, Ad,, 8dx ), respectively.

Definition 2.2 Given two states so G Qd0 and s\ € Qdx, state s0 is equivalent to state

Si (so ~ si) if for any sequence of inputs n € /", A£>0(so>fl") = A#,(si,?r). It can be easily

shown that if so ~ s\, thenfor any input sequence it £ /*, Sd0 (so» t) ~ &D\ (si»7r)- We say

that tt distinguishes sq and S\ if Xd0{so,tt) ^ A£>j(si,7r).

Definition 2.3 A set of states S C QD is a strongly connected component (SCC) if it



CHAPTER 2. PRELIMINARIES 18

is a maximal set of states such that for any two states so> si e S, there exist input sequences

7Tq and tt\ so thai 6d{so, kq) = si and ^Disii^i) = 5o-

Definition 2.4 A set of states S C QD is a terminal strongly connected component

(tSCC) if S is an SCC and if for any state s € S and any input a: #d(s, a) € S.



19

Chapter 3

Notions of Design Replacement

Before we present our notion of design replacement in the succeeding chapters,

in this chapter, we will study other notions of design replacement. A notion of design

replacement is a condition which, given an original design and a replacement design, answers

the question whether or not the second design is a "valid" replacement of the first. Most

such notions are symmetric, reflexive and transitive. Thus the term design equivalence

is often used to identify such a notion. However, later in this chapter and in the next, the

condition for replacing may not satisfy these three attributes and thus may not always yield

an equivalence relation; so we do not restrict these notions to be equivalence relations and

we will call them notions of design replacement.

We will discuss some techniques for sequential logic optimization in this chapter.

Often such techniques are presented without discussing the class of design replacements

they cause; when we discuss these sequential optimization methods in this chapter, we will

examine the class of design replacements caused by such methods.

In this thesis we will only characterize notions of replacement which compare only

the functionality of the two designs and not the timing equivalence of the two designs1. So

we assume that the clock period of the design is large enough to allow the combinational logic

to compute the next-state and output functions within a clock cycle, and that the actual

time taken to compute this function is undetectable by the environment of the design.

'The problem of characterizing the set of replacements for a combinational designs, where the design
specification includes the delay characterization of all gates, so that a replacement design has the same set
of timed input-output waveforms as the original design, has been tackled elsewhere [3].



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 20

3.1 Combinational Replacement

This notion characterizes combinational designs (i.e. no memory elements) which

are valid replacements of existing combinational designs. The notion of combinational

replacement used in most logic synthesis tools (such as SIS [72]) is that the Booleanfunction

(from {0, l}m to {0, l}n, if there are m input wires and n output wires) associated with the

replacement design is the same as the Boolean function associated with the original design.

The only exception to using the above condition for replacement is that the re

placement might create a combinational cycle, even through the original design did not have

one. For example, refer to design D in Netlists 1 and 2 in Figure 2.4. In both implemen

tations the combinational functionality of the design is identical, namely z = x. However,

Netlist 2 creates a combinational cycle because of the environment D'. In fact, after making

a design replacement, most logic synthesis tools [43, 72] either check that the replacement

has not caused a combinational cycle or have constraints which prevent a combinational

cycle during the synthesis procedure.

3.2 Identical Behavior from Initial State

Most of the previous work on equivalence and replacement of sequential circuits

assumes a designated initial state for the circuit. For such a new design, Di with designated

initial state Si is a valid replacement for the original design Do (with initial state s0) if

and only if states Si and so are equivalent, i.e. for every input sequence tt, Xd^Si^tt) =

^D0(5o>^)- For such designs, this is the notion ofdesign equivalence used for logic synthesis

[71], test pattern generation [31], redundancy removal [19] and sequential verification [21].

Of course, from our perspective, as we have discussed in Chapter 2, such an assumption of

a designated initial state is overly restrictive and unreasonable for many real circuits.

3.3 Machine Equivalence

For sequential designs with no designated initial state, there is the classical notion

of machine equivalence, for example in [34, page 23]:

Definition 3.1 Two FSMs Mi and M2 are equivalent (Mi = M2) if for each state s in

Mi there is a state t in M2 such that s ~ t, andfor each state t in M2 there is a state s in



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 21

Mi such that s ~ t.

3.4 Sequential Hardware Equivalence

Because the classical notion of FSM equivalence was thought to be too restrictive

in the class of replacement designs it allowed, Pixley introduced the notion of sequential

hardware equivalence [59, 60]. When a design with no-reset latches powers up, since the

state it powers up in cannot be predicted, the desired input/output behavior is achieved

from the design by driving a fixed initializing sequence of input vectors through the design

after power-up. The initializing sequence plays a crucial role in Pixley's notion of sequential

hardware equivalence.

Definition 3.2 Given a design Do, a sequence of inputs tt G I* is called an essential

reset sequence (or an initializing sequence^ for the design if for any pair of states

soySi € Qd0, <Sd0(so>7t) ~ 8d0{si,tt). A state s € Qd0 is called an essential reset state

if there exists a state so € Qd0 and arc initializing sequence tt such that ^(soi71") ~ s. A

design which has an essential reset state is called essentially resetable.

Definition 3.3 Given two designs Do and D\t a state pair («o>si) € Qd0 x Qd} is

alignable if there is a sequence of inputs tt € 7* such that <5rj>0(7r,so) ~ ^Dii^^si). The

sequence tt is called an aligning sequence.

The following definition defines the notion of sequential hardware equivalence:

Definition 3.4 Designs Do and Di are sequentially hardware equivalent (Do « Di)

if and only if all state pairs are alignable.

Theorem 3.1 Do ~ Di if and only if there exists an aligning sequence that aligns any

arbitrary state pair in Qdq x Qd{ •

From Theorem 3.1, two designs are considered equivalent if and only if there exists

the same aligning sequence for any arbitrary state pair. This sequence is an initializing

sequence for either design. Thus replacing a design by a sequentially hardware equivalent

design guarantees that there exists one initializing sequence which intializes each of these

designs to a state, and these two state are equivalent.



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 22

00/0 01/0

Do

Figure 3.1: Sequential hardware equivalence assumes that environment can produce arbi
trary initializing sequence

Now we argue why the notion of sequential hardware equivalence may be undesir

able as a notion for arbitrary design replacements.

The condition of sequential hardware equivalence requires the preservation of only

one initializing sequence. This may be problematic because it may not be possible for

the environment of the design to generate this particular sequence. Consider the designs

Do and Di in Figure 3.1. There is an initializing sequence, viz. the length-1 sequence

00 which initializes the two designs to 52 or £2, respectively. Thus, the two designs are

sequentially hardware equivalent; so by Pixley's criterion it would be fine to replace Do by

D\. However, suppose the inputs to D0 are coming from an environment which can only

produce the signals 01, 10 or 11, but can never produce 00. Thus, it will be necessary to

use the other initializing sequence, namely the length-3 sequence 11 • 11 • 11 to initialize

Do from a random power-up state. However, notice that this sequence cannot initialize

Di, because if Di powers up in state tO it cannot leave that state unless it observes the

input 00. So, in this sense, it would be wrong to replace D0 by Di if we know nothing

about the environment of the design. Replacing D0 by Dx may make the larger design

(Di composed with the environment) non-initializable even though the original design (Do

composed with the environment) was initializable. So, for a safe replacement we need to

preserve all initializing sequences, and not just one. In that case the one used being used

by the environment will be preserved, regardless of which that one is.

The notion of sequential hardware equivalence does not place any constraints on

the outputs of the designs during the initialization phase. However, we claim that this



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 23

Figure 3.2: Examples of two designs which do not have any synchronizing sequences

condition is too weak for a safe replacement. A priori, we cannot assume that the external

environment is not sensitive to the outputs during the initialization phase. This is especially

important because there may be another interacting design whose initializing sequence may

be driven by an output of design Do- Thus affecting the outputs of Do during initialization

may destroy that initializing sequence.

Finally, the notion of sequential hardware equivalence does not work for designs

which are not essentially resetable. Such a design is not even sequentially hardware equiv

alent to itself2 because it does not have an aligning sequence with itself. For example, the

design D' in Figure 3.2 is not sequentially hardware to itself because the state pair (10,11)

is not alignable. We think that it is hazardous to assume that such designs do not exist in

reality, and to present a theory which fails to replace such designs even by themselves. We

can imagine at least two classes of real designs which are not essentially resetable. First,

if the environment has some flexibility for the input/output behavior it can accept from

the design, the design may have multiple steady-state behaviors (for example, design D'

in Figure 3.2). In this example, the environment has a don't care condition such that the

design is acceptable to it as long as in its steady-state, the design either 1) always outputs

the complement of its input (state 11), or 2) always reproduces the input as the output

(state 10). after the synchronization phase. For the second class, consider the design D"
in Figure 3.2. It can be seen that there is no synchronizing sequence for this design, and

hence it is not essentially resetable. However, once the design powers up, its state can be

determined from its outputs, and based on the outputs the design can be driven to state 0.

Thus, the behavior of this design can be controlled. In the next section we will see another

example where a sub-circuit of a design may not be resetable but the entire design is still

2Thus, sequential hardware equivalence is not an equivalence notion for the class of all designs; only for
the class of essentially resetable designs is it an equiavalence relation.



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 24

resetable.

3.5 Redundancy Removal for Circuits with no Reset Lines

The physical processof manufacturing a digital gate-level may cause many different

kinds of faults in the manufactured circuit. It is important to be able to differentiate such

faulty chips from the good ones. Towards this goal, the area of test pattern generation

identifies tests for such circuits which, based on the output of the circuits under the test

inputs, distinguish good circuits from certain fault ones. Single stuck-at faults comprise

one such class of faults for which automatic test pattern generation tools are used. For a

given single stuck-at fault (some single wire at the gate-level design is assumed to be stuck

at a constant 0 or a constant 1 in the faulty circuit), the task of the test pattern generation

tool is to derive a test vector sequence which at some clock cycle produces different Boolean

outputs on some output wire in the good and the faulty design.

Test pattern generation is useful for logic optimization (i.e. design replacement)

because of the observation that if it can be shown that there exists no test for a single

stuck-at-1 (or stuck-at-0) fault then that net could be replaced with a constant 1 (or 0)

without affecting the overall functionality of the good circuit. This is indeed true for

combinational circuits [2]: a single stuck-at fault can be replaced by a constant (the fault

is redundant) if the fault is untestable. However, for sequential circuits the notions of

untestability and redundancy do not coincide: some faults that are untestable because they

prevent initialization are not redundant and cannot be replaced by a constant value [1].

Thus, in order to classify a fault as redundant in a sequential circuit, a notion

of design replacement is needed. A fault will be sequentially redundant if and only if the

faulty circuit and the good circuit are related by this notion of design replacement. In this

section, we present two notions of sequential redundancy (which defines a notion of design

replacement)— the first, defined by [15] and subsequently used for logic optimization in

[29], and the second, defined by [62] and later used for redundancy removal in [63].

3.5.1 Cheng's notion of sequential redundancy

Definition 3.5 A fault is sequentially redundant if for any input sequence, any output

line and any state of the faulty circuit D\, the circuit Di produces 1 (0) whenever the

original circuit Do produces 1 (0) from all states of Do. If Do produces an unknown output



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 25

U for some input sequence (i.e. 1 from at least one power-up state and 0 from at least

another) then D\ is allowed to produce either 0, 1 or U on that input sequence.

The intuition is that if the original design does not produce the same Boolean

output from all power-up states, the replacement design can choose to produce either a 0

or a 1. However, we will show that this notion of design replacement is not suitable for

use in hierarchical synthesis (optimizing a design which interacts with some environment)

because the notion of replacement is not compositional.

Consider the gate-level design shown in Figure 3.3. First consider the left sub-

circuit D. If we consider this circuit, the depicted stuck-at-1 fault is redundant by Cheng's

definition (Definition 3.5). This is because for any input sequence tt there are two power-up

states of D such that one produces 0 and the other produces 1 on the output wire u for this

input sequence tt-, so the wire w can be replaced by the constant 1. However, consider the

entire circuit D® D'. The fault is no longer redundant (even by Definition 3.5); on input

sequence 01 •00 the good design D <& D' produces 0 •0 from all power-up states, whereas

from the power-up state 01 the faulty design produces 0 •1 under the same input sequence.

In fact, the length-1 initializing sequence 01 initializes the good design D® D' to 00 or 10

(a pair of equivalent reset states) but 01 is not an initializing sequence for the faulty design.

The intuition why Definition 3.5 does not lead to a design replacement notion

which is valid under composition is that it treats the different output wires independently;

also, output wires at different clock cycles are treated independently. As a result if the

environment of the design is exploiting the correlation between the various output wires or

output wires at different clock cycles this replacement notion causes problems. For example,

in Figure 3.3, the environment design D' uses the fact whether u = w or not; thus, even

though for any input sequence the output u can be either be 0 or 1 it is always the same as

xv, and replacing u by a constant 1 loses this relationship.

In fact, the circuit in Figure 3.3 also illustrates a problem with the notion of se

quential hardware equivalence that we discussed in the previous section. The design D does

not have an initializing sequence, and thus the notion of sequential hardware equivalence is

not even applicable to this design (i.e., the theory considers such designs "unrealistic". How

ever, in composition with design D' the composed design does have an initializing sequence

01 and is kwell-behaved'.



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT

'x

u «' 1—-v

r—-v \-, :
V

t

V*

l> /
stuck-at-") —c

1 '

L [
1\JL L-c ^-JJJ^ w H \\ \— ^\)) r^ J

SjL^ VJ^

>y

y

\ zfTVn-H1—-v !) ) ) u Y ?'
1—y its y

\Dy

\ -^

:

0/000

0/101

D

0/100

1/111

0/101

D

01/0 00/1

\ 1/0

Olfl)— 00/1

State Transition Graphs for the good design

01/D

.HA>

"1)1/0 00/1

Z)<8> Dy

26

State Transition Graphs for the faulty design

Figure 3.3: An irredundant stuck-at-fault for a circuit is redundant for a sub-circuit



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 27

3.5.2 Pomeranz and Reddy's notion of sequential redundancy

In [62] and [63], Pomeranz and Reddy classify faults into three categories. Faults

are either detectable, partially detectable or redundant. They further sub-classify

partially detectable faults into Type I faults and Type II faults. Their optimization

procedure identifies Type II partially detectable and redundant faults and substitutes these

faults by constants. Thus, we need to look at their definition of these two kinds of faults to

understand their notion of sequential replacement. We will use Do to denote the original

fault-free circuit and Di to denote the faulty circuit. Also notice that Pomeranz and Reddy

restrict their analysis to designs which have single essential reset states; thus, while Pixley's

definition of initializing sequence allows the design to arrive to any one of an equivalent

set of essential reset states (Definition 3.2), Pomeranz and Reddy require the initializing

sequence to drive every state to the same reset state.

Definition 3.6 A fault is partially detectable if there exists an input sequence tt and

some state t € Di such that for any state s € Do, the output behavior from s and t are

different, i.e. 3n,3t £ Di,Vs 6 Do : Xd0{s,tt) ^ A^, (t. tt). A partially detectable fault is of

Type II if the faulty machine has an initializing sequence.

Definition 3.7 A fault is redundant if there exists no pair {TT,t), where tt is an input

sequence and t is a state in Di such that for any state s G Do, Xd0{s, tt) ^ Ac, (t, tt).

It can be seen that if replace good circuits by faulty circuits, where we allow Type

II partially detectable and redundant faults, the notion of replacement is exactly the same

as the one suggested by Pixley (the faulty circuit is sequentially hardware equivalent to the

fault-free circuit; see Section 3.4), except that Pomeranz and Reddy require exactly one

reset state. Thus, the same objections in Section 3.4 apply to this notion also. Our biggest

objection, again, is that for arbitrary design replacements in a larger design environment,

it may not be possible to control the initializing sequence for any arbitrary sub-design so

that we can arbitrarily change such a sequence. Our other objections in Section 3.4 also

apply here. We also note that if we replace only redundant faults (as per Definition 3.7),

and not the Type II partially detectable faults, the notion of replacement will be the same

as the notion of safe replacement, that we present in the next chapter.



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 28

t>I ^fek^
Figure 3.4: Retiming a latch across a fanout

3.6 Retiming and Resynthesis

Retiming and resynthesis [53] can be used to perform sequential optimization by

alternating steps of moving of latches across combinational logic (retiming) and performing

combinational resynthesis.

Retiming seems to be able to work if latches do not have reset lines. However,

consider once again the circuit in Figure 3.3. If we retime this circuit to the circuit in

Figure 3.4, we observe that a power-up state (/0 = 0,/0 = 1,h = 0, l2 = 0) produces a 0 on

input sequence 1-1, whereas no power-upstate in the original design exhibits this behavior.

So the reason given in Section 3.5.1, for searching for a new safe replacement condition,

applies here as well. We will return to a discussion about the validity of retiming moves in

Chapter 7.

3.7 Synchronous Recurrence Equations

Damiani and De Micheli [24] proposed using synchronous recurrence equations

(or synchronous relations as used by [79]) to capture don't care information in sequential

circuits. A synchronous recurrence equation expresses the flexibility for a sequential circuit

as a Boolean relation on finite sequences of inputs and outputs. Any implementation that

satisfies this synchronous recurrence equation is defined to be a valid replacement.

The reason why the flexibility provided by synchronous recurrence equations is

not satisfactory for general designs (or FSMs) is that because a synchronous recurrence

equation can only represent relationships between finite sequences of inputs and outputs, it

cannot possibly represent designs where it is impossible to represent such flexibility using

finite sequences. For example, consider the design D in Figure 3.5. The output at a time



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 29

Figure 3.5: A synchronous recurrence equation cannot express the behavior of this design.

D.

Figure 3.6: A synchronous recurrence equation cannot capture the output behavior on the
first clock cycle after power-up.

may not just depend on any finite input sequence seen so far; it also depends on the state

the design powered up in. For example, for an arbitrarily long sequence of inputs vectors

01, the output of the design at any cycle is not determined by the history of input and

output behavior. It is not possible to write a synchronous recurrence equation for this

design. Usually, synchronous recurrence equations are most useful to characterize pipelined

(or feedback-free) designs.

One property of synchronous recurrence equations is that if the equation is such

that the current output depends on the inputs over the last d clock cycles, it is not possible

to represent the output behavior over the first (d - 1) clock cycles after power-up. So,

consider an implementation of design Do in Figure 3.6. If x represents the input and y the

output, then the synchronous equation that represents this design is yn = xn •zn-i> where



CHAPTER 3. NOTIONS OF DESIGN REPLACEMENT 30

wt represents the signal w at clock cycle t. Design Di in Figure 3.6 is another solution

to the same recurrence equation. However, all power-up states of design Do output 0 on

input 0; this is not the case in design D\. Thus, if the environment of the design depends

on the fact that the design outputs 0 on input 0 (for example, for the initialization of the

environment) then we have made an "unsafe" replacement. Later, in Chapter 6 we will

argue that for many design situations, it is known that for a given value of n, the behavior

of the design in the first n clock cycles after power-up is not relevant. Thus, for such

situations, a replacement using synchronous recurrence equations is safe.



31

Chapter 4

Safe Replaceability

In this chapter we will develop a notion of sequential equivalence which can be

used to make design replacements on sequential circuits. We will first discuss the motivation

and the desirable properties of such a notion.

Because today's digital designs are so large and complex, we would like to take

an arbitrary piece of sequential logic (call this piece the original design) and be able to

replace that piece with another piece (the new design) so that it is not possible to detect,

this replacement no matter what the surrounding logic is outside the design (see Figure 4.1).

We want to make no assumptions about the behavior of the surrounding logic, which we

call the environment of the design. Specifically, we do not even want to assume that we

know the initializing sequence that the environment may use after power-up.

We saw in the previous chapter, in Section 3.1 that for combinational circuits,

1 I I I I I I I I I I I I

- M

I I I II I I I I I I I I

Figure 4.1: Replacement of a sequential design



CHAPTER 4. SAFE REPLACEABILITY 32

there is an accepted notion of replacement equivalence which is used in logic synthesis

tools such as SIS [72]. A circuit D is a valid replacement for circuit D, if for any input

vector in Bm, the output vector (in Bn) produced by D is identical to that produced by C.
This is an acceptable notion of replacement because for any reasonable composition with

any environment, the composition of the environment with design C is going to behave

identically as the composition of the environment with design D. Our motivation in this

chapter is to present an analogous notion of replacement for the sequential case— without

caring about the environment of the design, we want to present a condition for plug-out

plug-in replaceability.

4.1 Notion of Safe Replaceability

Definition 4.1 Design Di is a safe replacement for design Do (Di < Do) if given any

state si e Qdx and any finite input sequence tt € /*, there exists some state so e Qd0 such

that the output behavior A£>,(si,7r) = Xdq{so,k)>

We argue that the condition for safe replacement provides maximum flexibility

while guaranteeing that the replacement cannot be detected by the environment. First, if

we make the above condition any weaker, then there exists an input sequence tt and a state

in the new design Di so that if the Di powers up in this state and sees the sequence tt, it will

produce a behavior which could not have been seen from any state in Do- This violates our

requirement that no environment should be able to detect the replacement. Secondly, since

we have assumed that the power-up state of a design cannot be predicted, if Di < Do, then

for every input sequence any power-up state of Di behaves like some power-up state of Do.

This implies that any behavior from any state of Di is acceptable. Thus our condition in

Definition 4.1 guarantees that replacing Do by Di cannot be detected by any environment.

Any design which hasthe same state transition graph as the original design trivially

satisfies the safe replacement condition. As a non-trivial example consider designs Do and

Di in Figure4.2, where Dx < D0. States 00, 11 and 01 in Di behave like states 000, 011 and

101, respectively, in D0 for all input sequences. The remaining state 10 in Di behaves like

state 010 for all input sequences starting with 0, and like state 101 for all input sequences

starting with 1. Notice that state 10 in Di is not equivalent to any state in D0; conversely,

no state in Di is equivalent to state 001 in Do. Definition 4.1 guarantees that there is no



CHAPTER 4. SAFE REPLACEABILITY 33

Figure 4.2: Example of a safe replacement (Di •< Do)



CHAPTER 4. SAFE REPLACEABILITY 34

1/0

Figure 4.3: Replacement design D2

input/output behavior in Di which is not present in Do- On the other hand, state 001 in

Do outputs sequence 1•1•0 on the input sequence 1-1-1 whereas no state of Di can exhibit

this behavior. However, we had claimed that no environment can detect if Do is replaced

by D\. This apparent paradox can be explained by the observation that since it is not true

that every power-up state of Do exhibits this behavior, the environment of Do could not

possibly depend on this behavior ever happening, and hence it cannot always expect the

output sequence for 1 • 1 •0 on input 1-1-1 each time the design powers up.

4.2 Properties

Now, we present some interesting properties of the safe replacement condition:

Remark 1: If Di •< Do, then there may be states so € Qd0 and to G Qd} sucn

that for all states s € Qd0 and / € Qdi, s0 ^ t and tQ ^ s. For example, in Figure 4.2,

state 111 in Do is not equivalent to any state in D\\ also, state 10 in Di is not equivalent

to any state in Do- Thus classical machine equivalence, that requires that every state in

each design be equivalent to be somestate in the other design [34], is not necessary for safe

replacement, although it is sufficient.

Remark 2: Although the replacement design has to be compatible with the

original design (same number of inputs and outputs), it does not have to have the same

number of latches. Consider the design D2 in Figure 4.3, which has only 4 states (and,

thus, 2 latches) and is a safe replacement for the design Do in Figure 4.2.



CHAPTER 4. SAFE REPLACEABILITY 35

Remark 3: As is obvious from Definition 4.1, the relation < is reflexive and

transitive. However, the relation X is not symmetric. In Figure 4.2, although Di < Do, it

is not true that D0 < Di because the state 110 in design Do produces an output sequence

of 1 •0 on the input sequence 1 •1 and there is no state in Di which exhibits this behavior.

However, an equivalence relation can easily be defined from a transitive and reflexive one.

Definition 4.2 Designs Do and Di are replacement equivalent if Do < Di and Di <

D0.

Consider the equivalence classes of designs modulo replacement equivalence- a

design D belongs to an equivalence class [Do] if and only if it is replacement equivalent to

D0. We say that [Di] < [Do] if and only if Di < Do. Now, •< is a partial ordering on these

design equivalence classes (since it can be easily shown that it is reflexive, transitive and

anti-symmetric).

Remark 4: Compositionality of safe replaceability. The notion of safe re

placement was motivated by the need for making safe compositions with arbitrary environ

ments. Here we show that safe replacements are preserved under arbitrary compositions1:

Proposition 4.1 If D <C, then (R&D) •< (R®C), for any composed design R<g>C.

Proof. Consider any input sequence tt to the design R®C, and any state (r, d) € (R&C).

If we simulate the design (/?®C) starting from the state (r, d) and inputing the sequence tt,

we will observe a sequence p which is the input to the sub-design C, and an output sequence

a which is the output of C. Since D <C, there must be a state c € D such that the design

D outputs o on the input sequence p. Now, consider the state (r, c) € (R®D). Clearly, on

the input sequence tt, the composed design (R®D) will produce the same output sequence

from state (r,c) as the design (R<8>C) would from state (r, d). D

Remark 5: While the theory of sequential hardware equivalence in Section 3.4

cannot be applied to designs which are not essentially resetable, our safe replacement con

ditions work for any designs. For essentially resetable designs, sequential replaceability is a

stronger condition than SHE (sequential replaceability implies SHE, because as the following

Theorem 4.2 shows, if Di •< Do, any initializing sequence for Do can align all state pairs in

Qd0 x QDl -

'As stated in Chapter 2, we assume that the composition does not create a combinational loop.



CHAPTER 4. SAFE REPLACEABILITY 36

Theorem 4.2 If Di < Do and p is an initializing sequence for Do then p is also an

initializing sequence for Di and for any states sq € Qd0 and si € Qdi> 8d0{so,p) ~

^Di(si.p).

Proof. Pick a state s' € Qd0- For the proof, we just need to show that for any state

t G Qdi, fo^p) ~ Sd0(s',p). Suppose not. Then <$£>,(*, p) </< Sd0(s',p). There exists

a sequence tt such that Adj (Sdx{t,p),ir) ^ A£)0(<5£)0(s/,/>),7r). However, since Di •< Do,

there exists a state s 6 Qd0 sucn that Ad, (£,/o • tt) = Xdq{s,p • tt). This also means

that Ad,(<$£)j(£,/>),7t) = AD0(^D0(s»/))j7r)- However, since p is an initializing sequence for

Do, SDo(s,p) ~ 8Do{s',p). Thus, Ad,(^d,(*,p)it) = AjD0(fo0(s,p),7r) = 'W<5A>(5''P)'7r)*

which is a contradiction. •

Remark 6: The idea of safe replacement implicitly uses the fact that the original

design Do can power up in any state. Power-up states are generally beyond the control of

designers for physical reasons. It may be possible that, by design, Do cannot power up in

some states or that the likelihood of powering up in some states is so remote that Do is

never observed to do so. The notion of safe replacement still applies with replacing Qd0

and Qd, , in Definition 4.1, by the power-up states of Do and Di, respectively.

Remark 7: Relationship to language containment. It is possible to describe

the notion of safe replacement in terms of a containment relation between languages of

FSMs. Let Cd denote the language of design D. Then the alphabet of the language is

E = /xO. Cd consists of sets of strings of the alphabet. A string (ij, Oi)(i2, o2) •••(ip, op)

belongs to the language of D if and only if there exists some state s € Qd such that

X{s,ii - i2 ••-ip) = o, ••-op. Notice that, unlike the theory of finite automata (e.g. [35]),

we do not need the notion of an initial state or final states to describe the language of a

design. Now it is easy to see Di •< Do if and only if £d, C £Do. As an aside we note

that the language containment paradigm is also used to specify a relationship between the

abstraction and the implementation in the process of formal specification and verification

of digital systems [44]— an implementation satisfies the abstraction or the property if

the language of the implementation is contained in the language of the abstraction or the

property. One problem in this approach is that, although we are able to establish that

the implementation satisfies the abstraction or the property, we are unable to guarantee

that the implementation does anything useful at all; this is because, for example, the finite

automaton with the empty language is trivially contained in all languages and hence satisfies



CHAPTER 4. SAFE REPLACEABILITY 37

all properties. On the other hand, using language containment on the languages of FSMs

does not have this problem. This is because our FSMs, which are always deterministic, are

also complete and have an output sequence for every input sequence. Thus, unlike finite

automata, it is impossible to have a design with the empty language. As the following

remark shows, every design that is a safe replacement for an existing design must have the

same steady-state behavior as the existing design.

Remark 8: Necessary conditions for a safe replacement. Even though

there is some flexibility for the implementation of the replacement design, it cannot have

arbitrarily few states; in fact, as the following results show, each tSCC (see Definition 2.4)

in the replacement design must be equivalent (Definition 3.1) to some tSCC in the original

design.

Lemma 4.3 ((Lemma 2 in [20])) Suppose that DFSM's Mo and Mi have no equivalent

states then there is an input sequence tt such that for any states sq of Mq and si of Mi,

Aa/0 (s0, tt) ^ Am, (*'i , tt) •

Lemma 4.4 If Di •< Do, and t € Qd\ lies in a tSCC of Di, then there exists state s € Qd0

such that s ~ t.

Proof, (by contradiction). Assume that D\ < Dq. Let M be a tSCC of Di. Then M

is a DFSM. Suppose that no state of M is equivalent to any state of Do- By Lemma 4.3,

there is a sequence tt that differentiates every state of M from every state of Do. A fortiori,

tt differentiates a particular state, say s of M from every state of Do. Therefore, the

assumption that Di -£ Do is false. •

Theorem 4.5 // Di •< Dq, and Mi is a tSCC in design D\, then there must be a tSCC

Mo in design Do such that Mo = Mi.

Proof. Consider a state t in Mi. From Lemma 4.4, we know that there exists a state

s £ Qdq such that s ~ t. We will show that if Mq is any tSCC reachable from s then Mo

is equivalent to Mi.

Consider any state s' in Mo- Let tt be an input sequence such that Sd0{s,tt) = s'.

Since Mi is closed under all inputs, t' = $/),(£,7r) lies in M\. Also, since 5 ~ t, we have

s' ~ t'.



CHAPTER 4. SAFE REPLACEABILITY 38

Similarly, consider any state t" in M\. Let p be an input sequence such that

<$Di Wip) —t"- Again, s" = $d0(s',p) lies in Mo, and s" ~ t".
Thus, DFSM's Mo and Mi are equivalent. •

As remarked previously, the equivalence classes modulo replacement equivalence

are partially ordered by safe replacement (<). Theorem 4.5shows that each tSCC of design

Do defines a minimal element that is < to the equivalence class [Do]. Designs with unique

minimal predecessors are therefore ones with unique tSCC's, or ones where all tSCC's are

equivalent to each other.

Most real designs havea single tSCC [61]. For such designs, any reasonable notion

of design replacement will probably preserve the behavior of the tSCC; in fact, all other

notions of design replacement that we discussed in Chapter 3 have this property; for ex

ample, for the problem of redundant fault removal, Pomeranz and Reddy have proved [62]

that single stuck-at faults which are Type II partially detectable (see Section 3.5.2) create

designs where the tSCC is equivalent to the tSCC of the original design. Safe replacement

differs from the other notions in the behavior of designs before it enters the tSCC; a design

may stay outside the tSCC for an arbitrary number of clock cycles. Also, safe replacement

works for designs which do have more than one tSCC.

Remark 9: Known Initializing Sequence Set. Sometimes, the designer

knows the initializing sequences for the design and does not need a replacement condition

as strong as in Definition 4.1. The designer knows that whenever the design powers up,

one of sequences from an initializing sequence set n is applied and the design is reset to

some desired behavior. The designer does not care about the outputs while an initializing

sequence is applied2, and knows that the design "works" as long as some sequence from n is

applied after power-up. As an example, consider a design with two input lines a and 6. The

designer knows that after power-up the input a will be set at 1 for the first 2 clock cycles to

initialize the design. Forthis example, the initializing set n = {(10-10,10-11,11-10,11-11},

where a represents the first input and 6 the second input. For an initializing sequence set

n we can modify our safe replacement condition from Definition 4.1 to the following:

Definition 4.3 Design D\ is a safe replacement for design Do under the initializing
n -,..... n

sequence set n (Di < Dq) if given any state si € Qd^ o« initializing sequence tti e 11,

2If the designer does care about the outputs during the initialization phase, it is easy to modify our safe
replacement condition for such a case also.



CHAPTER 4. SAFE REPLACEABILITY 39

and anyfinite input sequence p € /*, there exists some state sq € Qd0 and an initializing

sequence tto Gn such that the output behavior Ad, (^Di^Ij^iJjP) = ^Do($D0(sO}Xo),p)-

We can also derive the following result (the proof is similar to that of Theorem 4.5

and is omitted for brevity).

Theorem 4.6 //Di •< D0 and Mx is a tSCC in design D\, then there must be a tSCC Mq

in design Do such that Mo = Mi.

It should be noted that for a single design a designer may have more than one

set of initializing sequences. Each of these set might be used to initialize the design to a

different behavior. For such a situation the designer would like to verify that the replacing

design is a safe replacement under each initializing sequence set.



40

Chapter 5

Synthesis and Verification for Safe

Replaceability

In the previous chapter we presented the notion of safe replaceability and weargued

that this notion of design replacement allows the maximum flexibility for replacement while

guaranteeing that the environment of the design does not detect the replacement. In this

chapter we will first use the notion of safe replacement to optimize gate-level designs with

the goal of reducing the area of such designs. We will then address the question of verifying

whether one design is a safe replacement of the other- we will first prove the complexity of

this problem, then present a heuristic algorithm which is expected to be efficient for many

situations.

5.1 Logic Optimization

We want to exploit the flexibility provided by the safe replacement condition in

Definition 4.1 to optimize synchronous sequential circuits. Unfortunately, Definition 4.1

does not directly provide a closed form expression to express all the flexibility for safe

replacement.

A sequential gate-level design (like the one in Figure 2.2) can be viewed as a

connection between a purely combinational part and a set of latches (Figure 5.1). The

inputs to the combinational part are the real primary outputs of the design i plus the wires

from the latches, or the present state vector, denoted by x. The outputs of the combinational

part are the real primary outputs of the design o plus the wires to the latches, or the next



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 41

* ;o
./'""V-nodes o

?
Combinational Part

x

Latches^

Figure 5.1: Combinational Gates + Latches = Multi-level Sequential Network

state vector, denoted by y. We want to optimize this combinational part while maintaining

the safe replacement condition. If we could express the flexibility in Definition 4.1 by a

Boolean relation in (T,x,o,if), we could use known techniques [70] for minimizing multi

level networks, given a Boolean relation in terms of the inputs and outputs of the network,

by treating {i,x) as the inputs and (o,y) as the outputs of the combinational part of the

network.

Unfortunately, the flexibility allowed by the safe replacement condition cannot be

represented by a Boolean relation between the domain space (i,x) and the range space

(o, y). Consider the design D2 in Figure 5.2 which is a safe replacement of the design

Do of Figure 4.2 in the previous chapter. The two designs differ on their mappings of

the following 6 points in (i,x): (0, 111), (0,100), (1,100,1), (0,001), (1,001), (0,110). One

property of Boolean relations is that the flexibility for each point in the domain space is

independent of other points [73]. So, if the flexibility for safe replacement could be expressed

by a Boolean relation, then every design corresponding to a flexibility choice for each of these

6 domain points would be a valid replacement (there are 26 such designs). In particular,

design D3 in Figure 5.3, which behaves like D2 on point (0,110) and like Do on the other

points, would be a safe replacement. However, this is not so because if design D3 powers

up in state 111 and is given the input sequence 0 • 0 • 0 it produces the output sequence

1-1-1, whereas there is no state in Do which exhibits this behavior. Thus the flexibility for

safe replaceable designs with the same number of latches cannot be expressed as a Boolean



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 42

Figure 5.2: Design D2 (a safe replacement for Do)

Figure 5.3: Design D3 (an unsafe replacement for Do)



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 43

relation in (i,x) x (o,y). One way to represent such flexibility would be through Multiple

Boolean Relations [73], which are arbitrary sets of Boolean relations.

5.1.1 Sufficient Condition for a Safe Replacement

As we have just argued, the complete flexibility for safe replacement can be ex

pressed by a multiple Boolean relation. However, because of the particularly large solution

space of multiple Boolean relations, there are no known general techniques to use multiple

Boolean relations for logic synthesis. We now provide a sufficient (but not necessary) con

dition for safe replacement, from which we will obtain a Boolean relation in (i,x,6,y) to

express partial flexibility for safe replacement.

Proposition 5.1 Given designs D0 and Di such that for every state si € Qdx and input

a £ I, there exists a state sq € Qd0 such that Ad,{si,a) = Ad0(soiG) and SDY{si,a) ~

$D0{so,a)- Then Di X D0.

Proof. Choose any state «i £ Qdx » an(l anv input sequence tt = ao • ai • —ap £ I'.

Now, there exists a state so £ Qd0 such that AD,(si,ao) = Ad0(so5«o) and <$Dj(si,ao) ~

5D0{so,a0). Thus Ad,(si,7t) = AdJso,*"), and hence Dx •< D0. D

Informally, the above condition for safe replacement is a compromise between

machine equivalence (Definition 3.1) and the necessary condition for safe replacement: we

do not require that each state in the replacement design be equivalent to a state in the old

design, but we require that each state in the replacement design which is reachable in one

step be equivalent to some state in the old design. We will see in Section 5.1.3 that there is

strong evidence that even the above condition, which is not a necessary condition for safe

replacement, should provide us enough flexibility for resynthesis.

For an example of safe replacement using the condition in Proposition 5.1, consider

designs Do and Di of Figure 4.2 which satisfy the sufficient condition of Proposition 5.1,

and thus Di ^ Do- On the other hand, for designs D4 and D5 in Figure 5.4, it can be seen

that D5 < D4. However, in design D5 state 01, on input 00, goes to itself, and no state in

design D4 is state equivalent to state 01 of design D5 (as discussed in Remark 4.2 in the

previous chapter, there may be states in the replacement design which are not equivalent

to any state in the original design).



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 44

11/0

00/Q

00/Q

Figure 5.4: Example of a safe replacement

5.1.2 Flexibility for Resynthesis

We will use the sufficient condition in Proposition 5.1 to derive a method to extract

and use flexibility for sequential resynthesis.

First, note that a necessary condition for safe replacement is that every tSCC in

the new design must be equivalent to a tSCC in the old design (Theorem 4.5)— a tSCC can

be thought of as defining a steady state behavior of the design. So at the state-transition

level we cannot alter the behavior of the states in some tSCC of the original design. For our

synthesis method we will choose to preserve the behavior of a set of states which is closed

under all inputs, called the core:

Definition 5.1 Given a design D, a set of states S C Qd is called a core of the design if

it is a closed set under all inputs, i.e. for any input a and any state s £ S: Sd{s,o) £ S.

Note that since the core is closed under all inputs it contains a tSCC of the original

design and thus satisfies the necessary condition discussed above.

Proposition 5.1 indicates that each state reachable from some state in Di is equiv

alent to some state in Do- The set of these states will serve as the core of the old design,

which we will reproduce in the new design. We require that each of the remaining states in

the new design satisfy the following Boolean relation V{i,o,y). Let core{x) = 1 if and only

if state x lies in the chosen core.

V{lo,y) = 3x0[{XDo{xo,i) = o) A{SDo{x0,i) = y)] Acore{y)



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 45

Intuitively, a triple (i, 6,y) satisfies the relation V iff there is a state xo in the given

design which transitions to state y and outputs o on input i, and y lies inside the core. It

is easy to see that if the core of the old design is preserved and the relation V holds for the

remaining states of the new design, the sufficiency condition of Proposition 5.1 is satisfied.

Notice that Proposition 5.1 expresses the flexibility at the STG-level; on the other hand,

the above Boolean relation V uses the encoding of the states as well (in denoting the states

by the variables x and y). We are preserving the state encodings of the states in our design,

even though this is not required for safe replaceability. This is done to make our synthesis

procedure tractable; state encoding is, in general, a hard problem [25, 26, 74, 67] and we

do not attempt to solve it in this thesis.

We can now form a Boolean relation %(i,x, o,y) which expresses the flexibility for

the entire network including states inside the core:

n(i,x,o,y) = [ core(x) A(y = 8Do{x,i))A(o = XDo{x, i))] V

[-^{core(x))AV(i,o,y)] (5.1)

Intuitively, the relation TZ ensures that the states inside the core have the same

behavior (next state and output) as the original design, while the states outside the core

are free to choose any behavior which satisfies the relation V.

We recall from Section 5.1 that the total flexibility for the network cannot be

expressed by a Boolean relation; we are able to get a relation here because (a) our condition

in Proposition 5.1 is only a sufficient condition, and (b) we are preserving the encoding of

the states inside the core.

5.1.3 Choice of Core

For a given design D there may be many choices for the core which satisfy Defini

tion 5.1. Some natural choices are:

• The set of all states Qd-

• Any onion ring1 of the design. Onion rings Ai, A2,... are defined recursively:

Ai = Qd,

Ak+i = {y\3i £l,x£Ak : 6D{x, i) = y} (5.2)

'This notion was earlier defined in [59]; the term "onion ring" was first used in [37].



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 46

Set of all states Q^-

•At-

Figure 5.5: The onion ring structure and the tSCCs of a design. Only some states and
transitions are shown.

For design D4 in Figure 5.4, Ax = {00,01,10,11}, A2 = A3 = --•= Ac* = {01,10,11}.

Aqo is also called the outer envelope of a design.

• Any tSCC of the design. Design D4 has only one tSCC: {10,11}.

We depict the various choices for the core in Figure 5.5.

Any of the above choices satisfies Definition 5.1 and can be used in equation 5.1.

The ideal choice is a small core to give us a large number of states outside the core because

we have flexibility only in modifying the behavior of states outside the core. The smallest

tSCC is the smallest set which qualifies as a core.

Now we look at some example circuits to see the flexibility we have in choosing

the core. In this thesis, we are using a subset of the ISCAS89 benchmark circuits [12]

to demonstrate the synthesis techniques. We use binary decision diagrams (BDDs) and a

standard toolset (similar to the ones in [7, 51, 68]) to implement our algorithms. Because of

limitations imposed by the use of the BDD package we use the subset of ISCAS89 circuits2

2Weuse the benchmark circuits supplied with the SIS package, version 1.2. For some inexplicable reason,
at least two of the benchmark circuits, s208 and s420 seem to be slightly different from the ones used by
others [18, 50, 64].



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 47

procedure onion-ring (input: BDD for the transition relation T{x,i,y), n) {

C(£)<-1

loop (n - 1) times {

V(y) <- 3x3i: [C(x) -T(x, i, y)]

V(x) <- V{y)^s)

if {V(x)=C(x))

return (C(x))

C{x) <r-V{x)

}

return (C(x))

}

Figure 5.6: Procedure to obtain the n-th onion-ring An.

which have fewer than 30 latches (i.e. upto 230 states). All experiments in this thesis have

been conducted on a DEC Alpha server. The algorithm for computing the onion rings is very

simple, and appears in Figure 5.6. The outer envelope of the design is the fixed-point of the

onion ring computation, and and cabe obtained by computing onion-ring(T(af, i, y),oo). A

tSCC of a design can be computed using the algorithm in Figure 5.7. Both the algorithms

(for the outer-envelope, Aqq, and the tSCC computation) can, in the worst case require

an exponential number of iterations in the number of state bits; however, we do not see

this blow-up for almost all the circuits. The results for computing the various onion-rings

and the tSCC appear in Table 5.1. Each of these designs has only one tSCC. This is in

agreement with the thought that all useful designs have exactly one tSCC [61]; on the other

hand, other people have argued that if we pick an arbitrary piece of logic from a larger

design, this piece may have more than one tSCC even though the larger design has only one

tSCC representing the steady-state behavior [66]. In this thesis we are motivated by the

problem of replacing arbitrary pieces of logic and thus we allow designs to have multiple

tSCCs.



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 48

procedure tSCC (input: T(x,i,y)) {

A{x) <- onion-ring(T(z, i,y),oo)

forever do {

Pick an arbitrary state (a minterm) a £ A(x)

F{x) <r- a

j\f{x) <- 0

do {

T{x) <- T{x) + Af{x)

M(y)^373x:[T(x,i,y)-F(x)]

Af{£) <-ATtifiiin-g)
} while {M{x) C F(x))

/* T{x) is the set of states reachable from a */

B{x) <- a

j\f{x) <- 0

do {

B(x) <-?{x) + M{x)

B(y) <- M(x){^yl
Af(x)^3i3y:[T(x,i,y)-B(y)]

} while (M{x) C B{x))

/* B(x) is the set of states which can reach a */

if {f(x) C B(x)) return T{x)

else A(x) <- A{x) •B(x)

}

}

Figure 5.7: Procedure to derive a tSCC



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 49

Ckt. Inputs Outputs Latches Number of states

Qd = Ax A2 Aqq tSCC

s27 4 1 3 8 6 6 6

s208 10 1 8 256 256 256 256

s298 3 6 14 16384 5800 218 218

s344 9 11 15 32768 23232 5342 1487

s349 9 11 15 32768 23232 5342 1487

s382 3 6 21 2097152 23740 8864 8864

s386 7 7 6 64 13 13 13

s400 3 6 21 2097152 23740 8864 8864

s420 18 1 16 65536 65536 65536 65536

s444 3 6 21 2097152 23740 8864 8864

s510 19 7 6 64 61 57 47

s526 3 6 21 2097152 401460 8868 8868

s641 35 23 19 524288 6643 6461 1544

s713 35 23 19 524288 6643 6461 1544

s820 18 19 5 32 25 25 25

s832 18 19 5 32 25 25 25

s953 16 23 29 536870912 504 504 504

sll96 14 14 18 262144 2652 2615 2615

sl238 14 14 18 262144 2652 2615 2615

sl488 8 19 6 64 48 48 48

sl494 8 19 6 64 48 48 48

Table 5.1: Number of states in the possible choices for the core.

For the multi-level synthesis method that we describe in the next section (which

works incrementally starting from the original design), we are restricted by a requirement

that the starting design must itself satisfy the Boolean relation 1Z. The only known method

for minimizing multi-level networks under flexibility expressed by a Boolean relation [70]

requires this restriction, as we shall see later in Section 5.1.4.

For example, if we choose the tSCC of design D0 in Figure 4.2 (states 000, 011

and 101) as the core, the starting design Do does not satisfy relation 1Z in expression 5.1

because the state 111 (a non-core state) does not jump to a state inside the core on input 1

and hence does not satisfy V. Choices of core that guarantee that the given design satisfies

71 are Qd0 (the set of all states) and the second onion ring A2 (the set of states reachable

in one step from Qd0)- The former does not give any flexibility because all states in the

starting design are also present in the new design; so we make the latter choice. While it

might seem that we lose much flexibility by having to choose a much larger core than the



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 50

smallest possible, our experiments in Table 5.1 indicate that choosing A2 gives us most of

the flexibility for most examples; for most circuits, most of the states lie in the difference

of the sets Ai and A2. For two benchmark circuits, s208 and s420, the number of states

in the tSCC is exactly equal to 2L, where L is the number of latches. Thus for these two

circuits we are not going to see any flexibility since we preserve the behavior of all states

inside the core; so we have excluded these two circuits from our synthesis experiments in

the thesis.

5.1.4 Multi-level Synthesis

As we discussed in the beginning of this chapter, the combinational part of the

sequential logic network is an acyclic interconnection of nodes, which computes the output

functions {01,02,..., o„} and next state functions {yi,y2,..., yt) for any given input vector

{t'i, i2,..., im) and present state vector {xi, x2,..., xt}. Our optimizations are going to be

only on the combinational part of the circuit (even though the flexibility derived in the

previous section is from the sequential behavior of the network); thus, in this section, we

will use the term inputs to refer jointly to {?'i. i2,..., im, xi,x2,..., xt] and outputs to refer

to {oi,o2,...,on,yi,y2,...,yt}.

Intermediate nodes are those internal nodes which do not correspond to inputs

or outputs. The network computes a function from the input space Bm+t to the output

space Bn+t derived by composing the functions at the intermediate nodes.

Since hardware designs typically arise by composing small modules, it is very

natural for circuits to have a multi-level structure. The nodes of the corresponding Boolean

network represent the logical functionality of the modules. It has been observed that the

area of the hardware implementation of a design is strongly correlated to the total number

of literals in the factored form [11] representation of the functions at the logic nodes.

Thus minimizing the function (with respect to the literal count) at the node constitutes a

powerful synthesis technique.

At any intermediate node of a network there is a local function /, : Br —• B, where

r is the cardinality of the support. Node simplification is the process of optimizing a

Boolean network by using don't cares in conjunction with a two level minimizer [10] to

optimize the functions at the nodes. These don't cares arise in several ways:

• Because of the structure of the network, only a certain subset of Br may be generated



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 51

by assignments to the inputs. This gives rise to satisfiability don't care (SDC)

points for /,• [11].

• For certain input assignments, the values taken by the primary outputs of M may

be independent of the function computed by a node; these are observability don't

care points (ODC) for that node [71].

• For certain input assignments the functionality of the node can be changed without

destroying safe replaceability; this flexibility, that we have described in the preceding

sections, leads to the replaceability don't cares points (RDC).

The ODC at a node u can be computed by considering the output au of the node

to be another input; thus the primary outputs of M are expressed in terms of the primary

inputs and au. The ODC is the set of points in Br where no primary output of j\f depends

on au.

Let 1Z(T,x,o,y) be a Boolean relation expressing all the flexibility in the choice

of combinational logic for a sequential circuit. Cerny and Marin [14] demonstrate a close

relationship between optimizing a Boolean network with respect to a given Boolean relation,

and computing observability don't care sets. The starting network N must satisfy the

relation 11. The relation can be viewed as a single node with inputs i, x, o,y; this node is

referred to as the observability node. Composing this node with the network as shown in

Figure 5.8 yields an observability network M'. It is shown in [14, 70] that all the don't

cares that can be used to optimize the nodes in M using the relation 1Z are equal to the

ODC of the same node in the network M'.

In our scenario, the relation TZ(i,x,o,y) is given by equation 5.1 in Section 5.1.2,

with core{x) being the set A2 as defined in equation 5.2 in Section 5.1.3. As discussed in

section 5.1.3, for this choice of core, the combinational logic network associated with the

initial design is an implementation for H(i, x, o,y). Using V, as the observability node guar

antees that, for any other internal node, the ODC derived from the observability network

contains the RDC for the original network.

We use BDD's to represent the design, flexibility relation, and core. There is

a variable associated with each primary input and each primary output; for each latch

there is a present state variable and a next state variable. Let u be a node in the design

for which the ODC is to computed. We add a new BDD variable au corresponding to



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 52

Observability Network w

Observability Nod$

Outputs-|-
Next States

[jo o. y []•••[]
ii i2 in xi xt
Inputs + Present States

Figure 5.8: ODC's from the Observability Network yield flexibility under Observability
Relation for nodes in Implementation Network.

the output of u, and generate BDD's for the next state and output functions in terms

of the primary inputs, latch outputs, and qu. These are composed with the flexibility

relation to obtain the BDD for the function computed by the observability network. Let

f(I, x, au) be the output of the observability network; then the ODC for node u is given by

f{7,x,au = l)f(i,x,au = 0) + f(i,x,au = l)f(i,x,au = 0). This is in terms of primary

inputs; we then project this set into the space comprised of the fan-ins of the node (as in

[71]). These are used in conjunction with a subset of the satisfiability don't care set to

optimize the function at u. The complete procedure to do the multi-level logic optimization

is outlined is Figure 5.9. For our experiments we found that computing the BDD for the

relation 1Z required too much memory for our experiments; so instead, we just used the

relation V{i,o,y) (described in Section 5.1.2) in place of 11, and added the restriction for

the states inside the core when we compute the flexibility of each node (see the step of

computing V(I,x) in Figure 5.9). The image projection step in the algorithm in the figure

can de done using a variety of algorithms (see [22, 80], for example); we use the algorithm

presented in [80].



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 53

procedure safe-replacement (input: network in terms of (i,x,o,y)) {

/* let yj denote the BDD for the j-th next state variable */

/* let Ok denote the BDD for the A;-th output variable */

for (each node p in the network)

Compute a BDD Sp(i,x) representing node p in terms of (i,x)

T(i, x,y)<- nj=i(Vj = SVj (i, x))
C{x) <- onion-ring(T(i, x, y), 2)

C(y)<r-C(x){£^yl

V(T,o,y) <r- 3x:[C(y)'T(i,x,y)-Y[Ui(0k = S0fs(i,m
for (each node p in the network) {

Add BDD variable p to the BDD variable list

for (each node r in the network) {

if (r is not in the transitive fanout of p)

Sr(i,x,p) <r- Sr{i,x)

else

recompute 5r(i, x, p) representing node r in terms of (i, x, p)

}

F(l,x,p) =3o,y :[P{i,o,y) •U^iiVj = Syj(lx,P)) -Uk=i(°k = ^ok{l^P))]
/* T{i,x,p) represents the observability node */

Q{I, x) = T(i, x, p)p=0 •T{i, x, p)p=i + T{i, x, p)p=0 •T(i, x, p)p=i
/* G(i,x) represents input minterms where T{i, x,p) does not depend on p */

V{i,x) = G{i,x)-C{x)

/* V(i,x) represents inputs minterms which are don't care for node p */

Image project V(i, x) to the local input of p

Use the flexibility to simplify the local functionality of p

Remove BDD variable p from the BDD variable list

if (functionality of node p changed)

for (each fanout node r of node p)

recompute Sr(i, x) representing node r in terms of (i,x).

Figure 5.9: Procedure to optimize a multi-level network maintaining safe replacement.



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 54

We are computing all inputs under which the outputs are independent of the

function computed at the node. Thus we will detect cases where an internal line (which is

an input to a node) can be set to a constant while maintaining compatibility with relation

1Z. This means that we automatically remove redundant faults (which satisfy TZ) from the

circuit. Note that we are able to detect these redundancies because we are computing the

flexibility of each node just before minimizing it; if we had obtained compatible flexibility

(as in [70]) for all nodes before minimizing them simultaneously we would not be able to

claim this. The price we pay is in time: we need to simplify nodes on an individual basis,

and if the node is simplified, potentially all the BDDs for functions that the node fans out

to must be recomputed.

5.1.5 Experiments and Analysis

We have implemented the above method for sequential resynthesis in the SIS se

quential synthesis system [72]. We have performed experimentson the same set of ISCAS89

benchmark examples that we chose for the experiments in Table 5.1. We report our exper

iments in Table 5.2. Before running our algorithm, we executed the SIS commands sweep;

eliminate -1; this step propagates constants and also collapses those nodes into their

fanouts which do reduce the total literal count by this collapsing (for example, nodes which

have a single fanout increase the literal count unless they are collapsed into their fanouts).

Table 5.2 reports the reduction in the total number of literals of the network. In order to

compare the optimizations due to safe replaceability with the known techniques for combi

national synthesis, we report the optimizations (in reduction in number of literals) due to

satisfiability don't cares (SDC), observability don't cares (ODC) and replaceability don't

cares (RDC) separately. We minimized each internal nodes three times: using SDC, using

(SDC + ODC), using (SDC + ODC + RDC). The literal reductions under the ODC column

are reductions in addition due to both SDC and ODC; those under the RDC column are

reductions due to SDC + ODC + RDC. Thus, we get an idea of the additional effectiveness

of ODC over SDC and of RDC over (SDC + ODC). We could have reported the amount

of savings just exclusively due to the replaceability don't cares, but this would not have

been fair since SDC and ODC are existing techniques and they take less CPU time also;

we conducted some experiments which showed us that the literal savings due to only RDC

captured almost all of the savings due to SDC but since SDC is a cheaper computation step



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 55

Circuit Start

size

Final size Time (in seconds)
SDC ODC RDC SDC ODC RDC

s27 12 12 12 12 0.02 0.03 0.05

s298 150 130 130 130 0.30 0.56 1.91

s344 156 152 152 152 0.43 0.96 689.75

s349 160 155 154 154 0.43 2.87 114.19

s382 176 164 164 164 0.40 0.74 8.27

s386 204 197 187 173 0.40 0.66 1.16

s400 184 166 162 162 0.43 0.77 8.52

s444 184 167 163 163 0.44 0.77 9.09

s510 280 279 279 279 1.58 2.04 4.65

s526

s641

283

199

242 240 240 0.88 1.44 6.91

timeout after 10000 sec

s713

s820

204

504

timeout after 10000 sec

379 361 361 3.48 4.53 14.70

s832 521 389 364 364 3.77 5.00 14.75

s953 489 485 484 484 2.80 6.23 28.10

sll96 618 608 600 600 8.51 28.23 504.04

sl238 690 668 625 625 8.67 33.04 574.69

sl488 813 759 755 755 9.91 10.58 42.11

sl494 819 760 754 742 9.57 10.64 38.32

Table 5.2: Experimental results for safe replacements

it makes sense to preprocess the circuit with SDC reductions before applying our algorithm.

Disappointingly, Table 5.2 illustrates that for most of the circuits all the literal

reduction can be obtained just by using SDC and ODC. One hypothesis is that since we

are minimizing the network one node at a time, very small nodes are unlikely to yield

much optimizations. The node sizes of the benchmark circuits were very small; we executed

the SIS commands sweep; eliminate 10 to partially collapse the network. For some

benchmarks, a totally collapsed network had a smaller literal count than a partially collapsed

one; for these circuits, we started with the totally collapsed network (using command sweep;

collapse). The experiments with this preprocessing are reported in Table 5.3. The results,

which we analyze next, are a little more promising now, at least for some circuits.

From Table 5.3 we observe that for some examples, ODC gives no literal reduc

tions beyond SDC alone but RDC is able to obtain additional, though modest, reductions.

These reductions are of the order of 5% on these circuits. On other circuits RDC gives no



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 56

Circuit Preprocessing
command

Start

size

Final size Time (in seconds)
SDC ODC RDC SDC ODC RDC

s27 sweep; eliminate 10 12 12 12 12 0.02 0.02 0.04

s298 sweep; eliminate 10 156 137 137 137 0.26 0.49 1.82

s344 sweep; eliminate 10 168 160 156 156 0.45 0.84 807.36

s349 sweep; eliminate 10 173 160 156 156 0.45 1.85 72.91

s382 sweep; eliminate 10 204 168 166 166 0.49 0.80 7.62

s386 sweep; collapse 205 153 153 138 0.48 0.61 1.14

s400 sweep; eliminate 10 229 173 168 168 0.56 0.90 7.93

s444 sweep; eliminate 10 236 172 171 171 0.57 1.03 8.27

s510 sweep; collapse 307 256 256 255 1.18 1.38 1.89

s526

s641

sweep; collapse

sweep; eliminate 10

323

234

244 244 233 3.22 3.40 6.24

timeout after 10000 sec

s713

s820

sweep; eliminate 10

sweep; collapse

285

468

timeout after 10000 sec

361 361 353 1.67 2.41 7.85

s832 sweep; collapse 470 362 362 354 1.71 2.48 7.59

s953 sweep; eliminate 10 700 615 602 597 5.34 11.41 22.92

sll96 sweep; eliminate 10 788 693 626 626 16.90 31.25 265.46

sl238 sweep; eliminate 10 882 736 636 636 31.28 61.54 338.30

sl488 sweep; collapse 886 576 576 576 13.71 18.27 30.43

sl494 sweep; collapse 896 544 543 542 13.79 18.49 30.67

Table 5.3: Experimental results for collapsed nodes in the starting netlist.

additional improvements over SDC and ODC. The CPU time taken by RDC flexibility are,

on average, one order of magintude larger than the times taken to utilize the SDC and ODC

flexibility. Even though we do get some optimizations beyond SDC and ODC, the additional

optimizations are not very large. We observed that flexibility for resynthesis expressed in

the Boolean relation V{i,o,y) was too constrained for any significant optimization; in the

next chapter, where we use the same optimization techniques but with a greater degree of

flexibility we shall observe a more significant success with our experiments.

ISCAS89 benchmarks may not constitute a good source of examples to judge the

potential of our approach. This is because for many of the circuits, collapsing the logic

to two levels before applying our minimization yields a smaller circuit, thus negating the

whole basis of doing multi-level logic minimizations. Furthermore, the average node size is

too small to hope for any significant reduction over that given by the SDC. Hence the merit

of our approach may be better judged on the basis of real multi-level designs.

Memory explosion is a common problem with BDD's. For our experiments we



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 57

noted that the ability to finish the examples (and the time taken) was most influenced by

the number of input wires to the design. The number of latches and the number of output

wires are also a factor, though to a lesser degree. Since large designs routinely arise as set

of interacting components, it is natural to decompose the design into smaller components

and synthesize them independently. Intuitively, the components being smaller, will be less

complex, and hence easier to synthesize. We expect that our methods will be most useful

in resynthesizing an arbitrary portion of a design without worrying about any interaction

with its environment.

In the next chapter we will introduce a more flexible notion for design replacement

which will allow flexibility in the behavior of the replaced design for a small number of clock

cycles after power-up. There, we will observe much more impressive optimizations using

techniques similar to those described in this section, but exploiting a greater degree of

flexibility.

5.2 The Verification Problem

While logic synthesis is an important step in the design flow of digital circuits,

design equivalence checking is an equally (and often, more) important step. Design equiv

alence checking verifies that one design is a valid replacement of another. If we use the

safe replacement condition postulated in this chapter as a valid notion of replacement for

sequential circuits, then an important question is how does one verify if one design is a safe

replacement of another. In this section first we discuss the complexity of the verification

problem. Then we will present a heuristic algorithm to verify safe replacements.

5.2.1 Complexity of checking safe replaceability

In this section we show that checking if a design is a safe replacement of another is

a PSPACE-complete problem. First, we will need the following lemma to prove the theorem

following it.

Lemma 5.2 Suppose there exists a state do in design D such that for any state d £ Qd,

there exists an input sequence p such that 8D{do,p) = d. If for any input sequence tt £ I",

there exists some state c in design C such that the output behavior Ao(do57r) = Xc[c,tt),

then D -<C.



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 58

Proof. Consider any arbitrary state d £ Qd and an arbitrary input sequence a. We will

show that there is a state c £ Qc such that Xo(d,ff) = Ac(c, o). From the presupposition,

we know that there exists an input sequence p such that $D(do,p) = d. Now, consider the

input sequence p •a. We know that there exists a state c' £ Qc such that A£>(do,/> •o) =

Xc(c',p ' a). Thus it is clear that A£>(d,<r) = \D(&D{do,p),<r) = Ac(<5c(c;,/>),o-). This

simply means that the desired state c can be chosen to be the same as 6c(c',p). Q

Theorem 5.3 Given two designs D = (Qd,/,0,Xd,$d) and C = {Qc,I,0, Ac,$c), the

problem of determining if D <C (the safe replaceability problem) is PSPACE-complete.

Proof. First we show membership in PSPACE. Consider the complementary problem: is

D •£ C?. If D 2< C, then there must be a witness, a string tt and a state d £ D such

that for any state c £ C: Xc(c, tt) ^ Ajr>(d, tt). We can verify the validity of this witness in

polynomial space by simulating the witness on the string tt starting from state d and from

all states in C, at each step (after each input symbol in tt) keeping track of all the reachable

states such the output string is the same as seen from d. We have to store at most (1+ Qc)

states at each step. Since [tt,d) is a witness, all states in C must eventually die out proving

the validity of the witness. Thus the complementary problem is in NPSPACE. By Savitch's

theorem [69, 30], the complementary problem is in PSPACE (i.e. a deterministic Turing

machine can recognize it). Thus, safe replaceability is also in PSPACE.

The proof of PSPACE-hardness is by transformation from the FINITE STATE

AUTOMATA INTERSECTION problem, which is PSPACE-complete [42, 30].

FINITE STATE AUTOMATA INTERSECTION

INSTANCE: Set Di,D2,...,Dn of deterministic finite automata or DFAs (see [35] for the

definition of a DFA) having the same input alphabet E.

QUESTION: Is the intersection of the languages of the DFA empty, i.e. is f|?=i £(A) = 0?

Let DFA D{ = (Q,, E, £,, r,-, F,) where Qi is the set of states, E is the alphabet, <5, is

the deterministic transition function, r, is the initial state and F, is the set of final states. We

will construct two designs D = {Qd, I, O, XD, $d) and C = (Qc, I, O, Ac, 8c), polynomially-

large in the size of {£>i,...,Dn}, such that D < C \i and only if (T=i£(Dt) = 0- Let

E'=EU {a,b], where a,b£ S. Without loss of generality, assume that the elements in £'

can be encoded by m binary values, i.e. E; has exactly 2m elements; there m binary values

denote the input wires /. We will use the symbol s £ E' to denote the encoding of that



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 59

Figure 5.10: Design D

symbol also. O consists of a single output wire; so there are two possible output values, 0

and 1.

Design D is a 3-state design with the next-state and output function as shown in

Figure 5.10. Now we describe the state space, output function and next-state function of

design C. We introduce (n+1) new states: t, vu v2,..., vn. Qc = {<}UlJ?=i {vi}U|J"=i Qi-
Now we define the output function Ac- For any state q £ Qc and any c £ {{a} U E),

Xc{q, c) = 0. For any state q which is a non-final state of a DFA, i.e. if q £ \Ji=\{Qi \ F,),

Xc{q,b) = 1; if q is any other state, i.e. q £ {t} UU?=i(^f U{v{}), then Ac(<?,*>) = 0. Now

we define the next-state function S. For any q £ Qc, Sc(<j,b) = t. For any i £ {1, ••-,n]

and for any c £ {{a} U E), 8c{vi,c) = r,-. If q £ Qi, i £ {l,---,n} and c £ E, then

8c{q,c) = 8i{q,c). For any q £ (J?=i Qi, 8c{q,a) = t. For any c £ {{a} UE), Sc{t,c) = t.

Now suppose that D <C. Suppose we are given an arbitrary string a- £ E", which

is of length p. Consider the power-up state sO in design D: on input sequence a- x -b, this

state outputs the length-{p + 2) output sequence 0P+1 •1. Since, D < C, there must be a

power-up state s in design C which has the same input-output behavior. It should be clear

that in order to observe an output of 1 on any input sequence starting with a, the design

C must power-up in a state v,-, 1 < i < n; thus, let s = u,. Since the input sequence a-x -b

outputs 0P+1 •1, 8c(vi,a •x) is a non-final state (i.e. belongs to Qi \ Ft). Thus, the string

x £ £{Di). Since the choice of x was arbitrary, f]C(Di) = 0.

Next, suppose that f)£(Di) = 0. We will prove that D <C by showing that every

observable input-output behavior from state sO of D is observable from some state of C

(using the result of Lemma 5.2). For any input sequence a: of length p, the output sequence

from state sO is either 0P or 0 •09 • 1 •0r, where p = q + r + 2. If the output sequence is 0P,

this input-output behavior can be observed from state t in design C. If the output sequence



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 60

is 0 •09 •1 •0r, then the input sequence x must have been c •y •b•z, where c £ {a} U E,

length-g sequence y £ E* and length-r sequence x £ (Eu{a,6})*. Since f]C{D{) = 0, there

exists an t € {1,..., n} such that y £ £(£>,)• Now, consider the behavior of state u,- £ Qc

on the input sequence c-y -b- z. Since, y # £(A), fcfat, c-y) is a non-final state of the

DFA Di. Hence, it is clear that state u, on input sequence x outputs 0 •09 • 1 •0r. Thus,

D<C.

Thus, we have shown that fir=i AA) = 0 if and only if D < C. Q

5.2.2 A Heuristic Algorithm

In the previous section we proved that verifying safe replaceability is PSPACE-

hard. We know from Remark 4.2 (in Chapter 4) that safe replaceability can be reduced

to the language containment problem of NDFAs, which is also PSPACE-complete (since

language equivalence is PSPACE-hard [41,30]). Thus wecan verifysafe replaceability by the

standard exponential-time algorithm for checking NDFA containment (£(£>i) C C{D2)1)

which determinizes D2, then complements it and then looks for an accepting string in

the product of this automaton with D\. Since the transformation of a design to an NFA

yields an automaton with all states as initial states, we expect the determinization to be

exponential for most interesting designs. This motivates the need for an algorithm which is

expected to be fast for most interesting design examples.

Earlier we had argued verification of safe replaceability is an important problem

for real design situations. So, in this section we present a heuristic algorithm to verify safe

replaceability which is exponential in the worst case, but has special cases, described towards

the end of this section, which finish faster for many cases. In case the replacement design

is not a safe replacement, our algorithm will return a power-up state of the replacement

design and an input sequence (a counterexample) which will be a witness to the absence of

safe replaceability. We will also show an example where the smallest such counterexample

is exponential in the size of the two designs, showing that our algorithm is exponential in

the worst case.

5.2.2.1 Algorithm - Finding a Discriminating Sequence

The following procedure decides whether (new) design Di is a safe replacement

for (original) design Dq, i.e, if Di •< D0. If Di is not a safe replacement for Do then this



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 61

algorithm finds a state si of D\ and an input sequence tt that distinguishes si from every

state of Do.

We construct a multiple rooted, acyclic directed graph whose nodes are labeled by

pairs of the form (s, A) where s is a state of D\ and A is a subset of states of Do- Nodes

are either marked or unmarked; the markings may be FAIL, JUMP(N) or SUCCEED,

where N is another node. Edges of the graph are labeled by a single input a £ I. We

presume that the equivalent state pairs of Do and D\ have already been computed, see [59]

(this is a procedure which is polynomial in the number of states of the two designs).

The roots of the digraph are pairs of the form [sq,Qd0) where so is a state of D\,

Qdq is the set of all states of Do and sq is not equivalent to any state in Qd0- If the set of

roots is empty, then clearly Di < Do.

loop until some leaf is marked FAIL or all leaves are marked JUMP or SUC

CEED:

Choose a node N labeled (si, A) of the existing tree that has no JUMP

or SUCCEED mark and choose an input a such that no edge out of N has the label a.

Let si = <5d,{s\,a) and A' = {s'\ for some s in A, s' = 5D0{s,a) and

A£>i(si,a) = XD0{s,a)}. If a node labeled {s\,A') already exists, say node N', create an

edge labeled a from N to N'. and goto the beginning of the loop. Else, create a new edge

out of N labeled a and pointing to a new node N' labeled (s\, A').

Mark the new node Nl as follows:

1. If A' is empty, mark the new node N FAIL and exit the

program.

2. If s[ is state equivalent to any state in A', mark N SUC

CEED, and go to the beginning of the loop.

3. If there exists a node N" labeled (si, A") such that A" C A',

mark N' as JUMP(W'), and go to the beginning to the loop.

4. For each node N" labeled {s\,A") such that A" D A', mark

N" as JUMP(N*).

End loop

Proof. Termination: Each node must have a distinct label and there can only be finitely

many labels. Furthermore each node has an upper bound on the number of edges emanating

from it - the number of primary input combinations. Therefore the program must terminate.

If the program terminates because a FAIL node is created, any path from a root



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 62

{s,Qd0) to the FAIL node gives a sequence that distinguishes s from any state of Qd0- If

there is no FAIL node then all leaf nodes are marked SUCCEED or JUMP.

Claim: If all leaf nodes are marked SUCCEED or JUMP then no input se

quence will distinguish a state of Di from all the states of Do.

Observation: We first observe that there cannot be a loop of JUMP nodes—

Ni -JUMP(AT2)-> iV2-JUMP(iV3) -+ • Nk -JVMP{Ni)-> Ni because each JUMP

reduces the cardinality of the second coordinate of the label of a node.

The proof of the claim is by contradiction. Suppose there were a state s\ of Di

and an input sequence tt = ai -a2 - - -ak that distinguishes si from all states of Do. Let No =

{si,Qd0)- Notice that node iV0 cannot be marked SUCCEED, because then si would be

equivalent to a state in Do, a contradiction. Construct the sequence of nodes No, Ni, ••., Nk,

none of which is marked SUCCEED, by applying the following procedure recursively. If

node Ni is unmarked then node JV,+i is the node reached by traversing the edge labeled

ak+i from Ni. Otherwise, Ni is marked JUMP(N); jump to N and keep jumping nodes

until a node N' is reached which is not marked JUMP (see the observation above). This

node cannot be marked SUCCEED. [This is because nodes marked SUCCEED have

their left hand component equivalent to some state in their right hand component. But

then Ni would have the same property and would have been marked SUCCEED rather

than JUMP which is a contradiction.] Now, N,+i is the node reached by traversing the

edge labeled a/.+i from N'.

Node Nt+i labeled (s,+i, j41+i) cannot be marked SUCCEED, because s,+i can

not be equivalent to any state in Ai+\. [If it was so, by backtracking the edges traversed,

wecan find a state in Qd0 that cannot be distinguished from si.] Since there are no nodes

marked FAIL, the last node Nk labeled (sk,Ak) must have a non-empty set Ak- But then

by choosing a state in Ak, and backtracking the edges traversed in constructing the sequence

of nodes, one can find an element of Qd0 that is not distinguished from s\ by tt. D

We illustrate the working of the above algorithm by a simple example. Consider

the two designs D0 and Di shown in Figure 5.11. We would like to verify if it is true that

Di •< Do. So we construct a digraph as shown in Figure 5.12 (for illustration we show all

the edges in the graph even though we can terminate as soon as we reach a FAIL node).

Di is not a safe replacement for Do on input sequence 00 •00 it produces output sequence

0 • 0 from state t2; no state of D0 exhibits this input-output behavior. The verification

digraph in Figure 5.12 contains two states marked FAIL; the paths to these states provides



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 63

3) n

Figure 5.11: Designs Do and Dt

t2,{s2)

SUCCEED

Figure 5.12: Verification digraph for "Di ^ Do?"



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 64

SUCCEED

FAIL SUCCEED

Figure 5.13: The optimized verification digraph

a counter-example to the hypothesis that Di •< Do— the input sequence 00 •00 leads to a

FAIL node from state (tO, {sl,s2}).

5.2.2.2 Optimizations to the algorithm

Before we execute the verification algorithm we just described, we could check to

see if each closed SCC of Di has a state equivalent to some state of Do- If not, then by

Theorem 4.5, Di •£ Dq. Otherwise, if there is no state outside the closed SCC's of Di,

then Di •< Do and we are done. If there is state outside the closed SCC's of Di, we use

the method outlined above knowing that each root (sq,Qd0) of the digraph is such that

so is outside all closed SCC's of D\. Thus, if the number of states outside closed SCC's is

small compared to the number of states which lie in closed SCC's, we can probably expect

our algorithm to be efficient. For example, if we use the optimization, we get the smaller

verification digraph, shown in Figure 5.13 instead of the one in Figure 5.12.

Also, note that the verification algorithm would be correct if we did not mark any

states JUMP (remove substeps 3 and 4 in the marking step). Marking states as JUMP

is just a way to prune the search space, and make the algorithm more efficient.

5.2.2.3 Complexity of the algorithm

Suppose we are given designs C and D where we want to check if "D •< C?" such

that the number of states in C and D are m and n respectively. Since each node represents

{q.Q) where q £ Qd and Q C Qc, we may end up exploring n •2m possible nodes before

the algorithm terminates. In this section we prove that this exponential bound is possible,



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 65

Figure 5.14: Design D

Figure 5.15: Sub-design C'k and the three special states

in the worst case. Given any arbitrary n, we will construct two designs C and D such that

C has less that 15n3 states and D has 3 states and our verification algorithm will explore

greater than 2n nodes before it can decide that D £C. This proves that in the worst case,

the algorithm may take time exponential in the number of states of C.

Let D be the three-state design shown in Figure 5.14. Let the first n prime

numbers be {pi,P2, ••-,Pn} = {2,3,5,.. .,pn}- The design C consists of n subdesigns

{Ci,C2,..., Cn} and three additional special states {t, u, v}. The transitions from the states

in the subdesign Ck as well as from the three special states are also shown in Figure 5.15.

Informally, each sub-design Ck counts the number of consecutive O's starting from state

Cfc.i; if it sees a 1 after it has seen m -pk O's (for some non-zero integer m) it outputs a 0

(from state cjfc.i), or else if the 1 follows a non-multiple of pk the sub-design outputs a 1.



CHAPTER 5. SYNTHESIS AND VERIFICATION FOR SAFE REPLACEABILITY 66

The total number of states in C are N = 3 + E?=i(Pr + 1)- From number theory we know

that3 pr < 12rlogr. From this, we have N < 3+ 12n + 6nlog n+ 6n2 log n < 15n3. Now, it
can be seen that D -£C and the only witnesses are input stringsof the form 1•09 •1•y and

start state d0 such that the output string is 1 •09 •1 • lr and the state sequence in design

D is d0 -d\+1 -d2r + 1 (where r = \y\). Since {pi,P2, -•-,Pn] are all primes, the smallest
such witness input string is 1 •09 •1, where q = n?=iPf Since this is the shortest witness,

the path to the FAIL node will have no loops and will be of length (2 + q) which is clearly

greater than 2n.

5.2.2.4 Known initializing sequence set

First, based on Theorem 4.6, we check if each closed SCC of Di has a state

equivalent to some state of D0. If this check fails, we know that Di is not a safe replacement

for D0 under the initializing sequence set n. Otherwise, we compute sets Q0 = {s\ there

exists so £ Qd0 and tt £ U such that Sd0{so,tt) = s}, and Qi = {s\ there exists si £ Qdx

and tt £ II such that Sd0{si,tt) = s}. Now, we can use the same digraph-construction

method described above, except that the roots of the digraph are pairs of the form (s, Qo)

such that s £ Qi and s is not equivalent to any state in Qo. The proof of correctness is

similar to the one above, and is omitted for brevity.

'See [57, Chapter 8] for a proof, originally due to Tschebyschef, that pr < dr log r where d is j^-j.



67

Chapter 6

Delay Replacements

We presented the notion of safe replaceability in Chapter 4. We had argued that

for the condition for safe replacement (Definition 4.1) is the weakest possible condition which

allows a replacement to be made such that no environment can detect the replacement based

on the input-output behavior of the design. However, this may be too stringent to achieve

much optimization during resynthesis; indeed, we saw in the previous chapter that while

safe replacement allowed logic optimizations which were beyond the scope of combinational

resynthesis methods, the amount of extra optimizations was small. In any realistic use of a

design, we can expect that after a design is powered up, some clock cycles will be allowed

to run through the design before the design is used by its environment. We can use this

additional flexibility in the initial few clock cycles to justify an notion of replacement which

is weaker than "safe replacement" because the environment of the design agrees to let the

replacement design stabilize for a few extra clock cycles after power-up. In this chapter, we

investigate this notion of "delay replacement".

It is already the case that several effective optimization techniques, such as re

timing (as explained in Chapter 7), do not always result in safe replacements, but cause

delay replacements. To understand why, consider the state transition graph again. In every

design, there is a subset of states into which the design must eventually fall no matter

what sequence of inputs is given to the design. For example, suppose there is a state si

to which no state (including itself) transitions under any input. This state represents an

ephemeral state of the machine which cannot be visited beyond one clock cycle. Given that

the machine can power up in any state, Si might be the initial state of the machine. Any

such 1-cycle ephemeral state is irrelevant to the steady state operation of the design and so,



CHAPTER 6. DELAY REPLACEMENTS 68

by letting the design just "coast" for one cycle, it can be eliminated. To get to the "core"

behavior of a design, delete all such 1-cycle ephemeral states. However, notice that a new

ephemeral may appear, that is a state, say s2, to which only a 1-cycle ephemeral states can

transition. States such as s2 cannot re-appear after two clock cycles, no matter what inputs

are given during the two cycles. The n-cycle ephemeral state sets form an "onion ring"

structure in the STG [37]. The 1-cycle ephemeral states constitute onion ring 1, 2-cycle

ephemeral states constitute onion ring 2, and so on. Since designs are finite state machines,

for any design, there is a bound on the number of onion rings.

Elimination of all such ephemeral states for all clock cycles leaves a set of states,

called the outer-envelope (OE) [60] or D°° (Section 6.1 of this paper). Many well-crafted

designs have ephemeral states due to the fact that binary encoding often leaves some states

of the implementation without a corresponding state in the specified design. These states

should be ephemeral. Also one-hot encodings of machines with n states results in 2n - n

states which may also be ephemeral. In addition, as we shall see in Chapter 7, a forward re

timing move across a fanout junction will also create ephemeral states However, all retiming

moves preserve the outer-envelope.

Recall that the sequential method employed in the previous chapter uses an "alias

ing" technique. A core set of states is identified (all states except the 1-cycle ephemeral

states). Then any 1-cycle ephemeral state, say s, is allowed to act like an alias. That is,

for any input a, the state s is allowed to alias to any state so which transitions to a state

inside the core on input a, i.e. on input a state s is allowed to have the same next state

and output as its alias so- One degree of flexibility comes from the fact that s can alias one

state so for one input ao and to another state si for another input a\. This technique does

not seem to yield dramatic improvement in the design, however.

The method presented here is more flexible. We use the onion ring structure more

exactly so that any ephemeral state, say s in onion ring i, can alias to a state which, for

input a, transitions to a state inside an onion ring j where j > i or to the OE. But this

replacement is only delay-safe (i.e. we have to assume that the environment of the design

does not care about the behavior of the design till the i-th clock cycle after power-up).

The notion presented in this chapter relies on the assumption that any realistic

design will be used only after some cycles have elapsed after power-up; these cycles are

necessary for the voltages and currents to settle immediately after power-up. This initial

ization slack, often at least a few thousand clock cycles (usually milliseconds), is known in



CHAPTER 6. DELAY REPLACEMENTS 69

advance and is part of the design specification. Sequential optimization can use this initial

ization slack, say N cycles, in the following two ways. First, the design can be partitioned

into non-overlapping, manageable sized pieces. Then each piece can be optimized using

the N initialization slack cycles. Proposition 6.5 will show that this strategy will produce

an entire design that is iV-cycle delay-safe replacement. Second, designs can be optimized

using pieces that do overlap. Proposition 6.6 will show that in the worst case, the delay

needed accumulates for overlapping pieces. So the designer must take care not to exceed

a total allotment of N cycles. Of course hybrids of the two approaches can be used. It is

important to note that for any of the approaches, only the transient behavior of the design

is modified. Specifically, the outer-envelope is unchanged.

To summarize, optimization techniques for delay replacements can achieve signifi

cant logic optimizations while allowing the designer to specify the flexibility in the power-up

delay, N.

In Section 6.1 we present the notion of "delay replacement". In Section 6.1.1 we

then explore some properties of successive delay replacements on various pieces of a large

design, and then in Section 6.1.2 we study a related notion of replacement, delay-preserving

replacements. In Section 6.1.3 we suggest a synthesis methodology which can use our

notion of delay replacements to do iterative design by making successive delay replacements

on various sub-pieces of the design. In Section 6.2 we present our multi-level synthesis

strategy for making delay replacement, and we illustrate that significant sequential logic

optimizations can be obtained. We conclude by giving strategies for verifying that one

design is a delay replacement for another.

6.1 Delay Replacements

Definition 6.1 Given a design D, the n-cycle delayed design (denoted by Dn) is the

restriction of D to the set of states {s\3tt £ In,s' £ D : 5d(s',tt) = s}, i.e. a state s belongs

to Dn iff there exist a power-up state s' in D and an input sequence of length n which drives

s' to s. Define D°° to be the set of states {s|Vn : 3tt £ In,s' £ D : Sd{s',tt) = s}, i.e. a

state s belongs to D°° iff for each natural number n there exist a power-up state s' in D

and an input sequence of length n which drives s' to s.

Dn is the set of states into which any state must fall when clocked n times with



CHAPTER 6. DELAY REPLACEMENTS 70

Figure 6.1: Example design R

any sequence of inputs. It is easy to see that if m > n, the set of states in Dm is a subset

of the states in Dn. The design D°° can be obtained by a fixed-point operation starting

from D, because D°° = Dn, where n is the smallest number such that Dn_1 = Dn. Using

the terminology in [37], this number n is the number of onion rings of the design D. D°°

is also the same as the outer-envelope (OE) of [60].

We refer to states in D00 as the stable states of D, and the states in D \ D°° as

the transient states of D. After powering up a design, if a sufficiently long sequence of

arbitrary inputs is applied to the design, it will enter the stable set.

For example, consider the design shown in Figure 4.2. For this design R, the various

n-delayed designs are: R = {111, 100,001,110,010,000,101,011}, Rl = {111,110,010,000,

101,011}, R2 = {010,000,101,011}, R3 = R4 = •••= R°° = {000,101,011}.

We now present our condition for delay replacement. As we noted in the intro

duction of this chapter, as part of the system specification, an initialization slack of n clock

cycles is available. We can use the flexibility afforded by this slack by requiring a design to

be an acceptable replacement if it is allowed to clock n extra cycles with arbitrary inputs

before it is used:

Definition 6.2 Given a design D, a new design C is an n-delay replacement for D, if

Cn <D.

As an example of delay replacement, consider designs Do and R in Figures 4.2 and

6.1. It can be seen that R1 < D0; however, R •£ D0 (the state 100 £ R produces the output



CHAPTER 6. DELAY REPLACEMENTS 71

sequence 0 •0 •0 on input sequence 0 •1 •0; this input-output behavior cannot be seen from

any state in Do).

6.1.1 Properties

The following two properties of delay replacements follow:

Proposition 6.1 If Cn < D, and m > n, then Cm < D.

Proof. Clearly each state is Cm is also contained in Cn, and thus Cm <Cn. The result

follows from the transitivity of <. D

Proposition 6.2 If Cn < D and Bm < C, then Bm+n < D.

Proof. Consider any state 6 £ Bm+n and an input sequence tt. Now, there exist a state

b' £ Bm and an input sequence ttq of length n such that Ss^ib',tto) = 6. Since Bm < C,

there exists a state c' £ C such that Ac (c', 7r0 •tt) = Agm (6',ttq-tt). Let 6c (c\ tt0) = c. Thus

c £ Cn and Ac"(c,7r) = ABm+n(6, tt). Since Cn < D, there exists a state d £ D such that

Xo(d,tt) = Xc*(c,tt) = XBm+n(b,Tr). O

Thus, for example, a 2-delay replacement followed by a 3-delay replacement on the

same design results in a n-delay replacement for any n > 5 .

Another property of a design that is an n-delay replacement of the original design,

is that if an input sequence initializes the original design, then if we wait for 7i-clock cycles

after power-up, the same sequence initializes the replaced design too:

Theorem 6.3 If Dn < C and p is an initializing sequence for C then tt - p is also an

initializing sequence for D where tt is any arbitrary input sequence of length at least n.

Additionally, for any states sq £ Qc and Si £ Qd, 8c{so,p) ~ 8d{si,tt -p).

Proof. Consider any arbitrary input sequence tt of length at least n. From the definition of

delayed designs (Definition 6.1), 8d{si,tt) belongs to Dn. The proof follows from the result

that safe replaceability preserves all initializing sequences (Theorem 4.2). D

Compositionality of Delay Replacements

For the optimization of any design, we can select arbitrary sub-pieces of the de

sign and perform delay replacements on these. In this subsection, we examine the effect



CHAPTER 6. DELAY REPLACEMENTS 72

of making a delay replacement on the larger design. We will show that making n-delay

replacements on non-overlapping sub-pieces of a design will produce an entire design which

is n-delay safe. On the other hand, if two consecutive n-delay optimizations are made on

sub-pieces which are overlapping, we get an entire design which is 2n-delay safe (notice

that, as a special case of this, if the two sub-pieces are identical, we already know from

Proposition 6.2 that the entire design in 2n-delay safe).

Informally, two given hardware designs can be "wired" together by driving some

of the inputs of one by outputs of the other and vice versa. The remaining inputs and

outputs will be primary inputs and primary outputs of the composed design. Given designs

A and B, we will use A ® B to denote their composition. See Chapter 2 for a more precise

definition of design composition.

Proposition 6.4 IfQm X R andCn * D, then {Q®C)P < {R®D), where p = max(m,n).

Proof. Consider any state (q, c) in (Q <g> C)p. Thus there exists a sequence of length p

which drives some state in Q to q, and so q £ Qp. Similarly for C and c. Thus, (q,c) is also

in (QP®CP). This means that (Q©C)P < {QP®CP). Each state in Qp is in Qm and each

state in Cp is in Cn; thus, (QP®CP) < {Qm ®Cn). From Proposition 4.1 (in Chapter 4),

{Qm®Cn) < {R®Cn), and similarly {R®Cn) < {R®D). Thus, the required result by

the transitivity of <. D.

Proposition 6.5 If Qm < R and Cn < D, then (Q <g> C ® P)p < (R® D®P), where

p= max(m, n).

Proof. This is corollary of the above result (Proposition 6.4) after we observe that © is

associative and that P — P° •< P. •

This means that delay replacements can be made in different parts of the de

sign, and the resulting overall design is as safe as the weakest individual replacement (the

replacement with the greatest slack).

However, if consecutive delay replacements are made on overlapping sub-pieces on

a large design, the delays add up. This can be seen as a consequence of Propositions 6.2

and 6.4.

Proposition 6.6 Let design D = P&Q. Let Rm -< P, and let design C = R<g>Q also

be equal to S ®T (another partition of the same design C), and let Un •< S. Then, if

B = U ®T, it is true that Bm+n < D. (See Figure 6.2 for an illustration)



CHAPTER 6. DELAY REPLACEMENTS 73

Figure 6.2: Making successive delay replacements on overlapping pieces: (U ®T)m+n <
(P®Q). (a) denotes design D = P®Q; (b) denotes design C = R®Q; (c) denotes another
partition of the same design C = S <S> T; (d) denotes design B = U <8>T.



CHAPTER 6. DELAY REPLACEMENTS 74

Proof. Since Q° < Q, it follows from Proposition 6.4 that (R <g> Q)m < (P®Q), i.e.

Cm < D. Similarly, Bn < C. The result follows from Proposition 6.2. D

We will use these results to discuss the implications of making delay replacements

on various sub-designs of a larger design later in Section 6.1.3.

6.1.2 Delay-Preserving Replacements

This section discusses another interesting replacement notion relating power-up

delays to replacements.

We had originally formulated the following conditions for allowing a replacement

in the presence of the power-up slack:

Definition 6.3 Given a design D, a new design C is an n-delay-preserving replacement

forD, ifCn <Dn.

As examples of delay-preserving replacements consider designs P and R in Fig

ures 4.2 and 6.1. We already know that R is a 1-delay replacement of P (i.e. Rl < P).

However, R is not a 1-delay-preserving replacement of P; instead R is a 2-delay-preserving

replacement of P.

We present some properties of delay-preserving replacements. If m is greater than

n, then an n-delay-preserving replacement is also an m-delay-preserving replacement:

Proposition 6.7 If Cn < Dn, and m > n, then Cm <Dm.

Proof. By contradiction. Suppose Cn < Dn, and m > n, and Cm £ Dm. Without loss of

generality, m = n + 1. There exists a state s £ Cm and an input sequence tt such that for

every state t £ Dm: A(s,7r) / A(*,tt). Since s £ Cn+1, there must be a state s' £ Cn and

an input a such that 8(s',a) = s. Now, consider the state s' £ Cn, and the input sequence

a • tt. Since, for every state t' £ Dn: 8{t',a) £ Dm, it is true that for every state t' £ Dn:

X{s',a- tt) ^ X(t',a- tt). This contradicts the fact that Cn <Dn. •

Delay-preserving replacement is a useful notion because successive n-delay-preserving

replacements on the same design still result in an n-delay-preserving replacement (unlike

n-delay replacements, which add up, as shown in Proposition 6.2):

Proposition 6.8 (each delay-preserving replacement preserves power-up delay)

IfCn < Dn and Bm < Cm, and p = max(m,n), then Bp < Dp.



CHAPTER 6. DELAY REPLACEMENTS

DorCj
x3

!

R i
xl

x2

-1/11 (Jjfl)

-0/11

0-/01 oji)
1-/10 ^^-^

D

fl®C

75

/i
-©

Figure 6.3: Delay-preserving replacement does not preserve compositionality. The input
and output wires for the composition are shown at the top left. The labels on R denote
x2xz/xi, those on C or D denote /x3, and those on (R&D) or (R®C) denote x2/xi. Note
that designs D and C do not have any inputs.

Proof. Suppose m > n. Then Cm < Dm, from Proposition 6.7. Since < is transitive,

Bp •< Dp. The proof is similar if m < n. •

Unfortunately, the notion of delay-preserving replacement is not compositional; i.e.

it is not alwaystrue that if Cn < Dn, then for any environment R, {R®C)n •< {R®D)n. An

example which illustrates this, for n = 1,appears in in Figure 6.3. (RQC)1 consists ofstates

{{r0,ci),{ri,ci)} and (fl&D)1 is{(ri,d0)}. Clearly (R®C)1 £ (R&D)1. Thus, making a
delay-presrving replacement for a design does not givea delay-preserving replacement for the

design composed with its environment. This means that the iterative optimization strategy

that we proposed in the previous section will not work for delay-preserving replacements.

However, it is easily seen that every n-delay-preserving replacement is also an

n-delay replacement:

Proposition 6.9 If Cn < Dn, then Cn < D.

Proof. Since the set of states of Dn is a subset of the set of states in D, it follows that

Dn •< D. The proof follows from the transitivity of •<. D



CHAPTER 6. DELAY REPLACEMENTS

C<D

rii .j
C •< u~ C < u

\ , i ,

C2<DCl < D

76

Figure 6.4: The safeness/flexibility tradeoff between the various replaceability notions. The
arrows point towards a strictly safer notion which will afford strictly smaller flexibility for
resynthesis. The arrows are transitive. The C°° < D°° notion is the least safe among those
shown.

Thus if a synthesis technique that yields an n-delay-preserving replacement, it is

automatically an n-delay replacement also. It is also interesting to note that in the limit,

as n approaches oo, the two notions converge (see Figure 6.4 for the complete picture of the

safeness/flexibility tradeoffs):

Proposition 6.10 C°° ^ D°° if and only if C°° < D.

Proof. (Only if part) Assume that C°° < D°°. Since, D°° is a closed subset of states in

D, it follows that D°° •< D. From the transitivity of •< (Remark 4.2 on page 35), we have

C°° * D.

(If part) Assume that C°° •< D. but C°° £ D°°. Then there exists a state s £ C°° and an

input sequence tt such that for any state t £ D°°: X(s,tt) ^ X(t,Tr) (Claim 1). Suppose n is

the number of onion rings of D, (i.e. D°° = Dn). Then, since s £ C°°, there exists a state

s' £ C°° and an input sequence p such that |p| > n and 8(s',p) = s (Claim 2). Now consider

the input string p • tt applied to state s' £ C°°. For any state t £ D, 8(t,p) £ D°° since

\p\ > n. From Claims 1 and 2, it follows that for any state t £ D: X(s,,p- tt) ^ X(t,p-ir).

Since s' £ C°° and f is any state in D this contradicts that C°° ^ D. Thus by contradiction,

C°° < D°°. •

The above result is useful for verification if we need to answer the question "C°° •<

D?", it may be more efficient to check "C°° < D°°?" especially if the number of states in

D°° is much fewer than in D. The verification algorithm in Section 5.2 for checking P <Q



CHAPTER 6. DELAY REPLACEMENTS 77

had a worst case complexity of 0(n2m), where m is the number of states in Q and n is

the number of states in P. So, checking C°° •< D°° is likely to be much more efficient that

checking C°° * D.

We call such a replacement, a self-stabilizing replacement, i.e. if C°° < D°°

then C is a self-stabilizing replacement for D. Intuitively, C can replace D if the designer

has sufficient control over the environment so that it can wait for a sufficient number (finite

and bounded by a function of the design) of clock cycles after the power-up. So, we can

replace design D with design C if we can afford to run enough cycles through the design

after the power-up so that the transient behavior of the design disappears.

6.1.3 Resynthesis Methodology

We have introduced two notions (delay replacement and delay-preserving replace

ment) as two notions which make sense when we know that many clock cycles run through

the design after power-up and before the design is used. In this subsection, we elabo

rate on the need to use two different notions, and how these can be used in a resynthesis

methodology where successive design replacements are made.

We are interested in choosing arbitrary pieces of sequential logic from a design

and making delay replacements. To make successive delay replacements, the designer must

start with a number N, which is the allowable slack for his design; in other words, after

making all these successive replacements the designer wants the resulting design to be an

Af-delay replacement of the original design. There are multiple ways in which the results

discussed in the preceding subsections can be used to keep track of how much slack has

been used up so far. The first is we can partition the design into non-overlapping pieces of

design. If we do so and make successive delay replacements on non-overlapping designs, the

overall effect of such delay replacements is non-accumulative (Proposition 6.5); for example,

making the 2-delay replacement and 3-delay replacement in Figure 6.5 on non-overlapping

sub-designs results in an overall 3-delay replacement for the entire design. On the other

hand, if we have to (or choose to) make successive replacements on overlapping designs,

the amount of slack used adds up (Proposition 6.6), and we need of keep track of this; for

example, making the 2-delay replacement followed 3-delay replacement in Figure 6.6 on an

overlapping sub-design results in an overall 5-delay replacement for the entire design. The

utility of the delay-preserving replacement notion is in Proposition 6.8. If we want to make



CHAPTER 6. DELAY REPLACEMENTS

1 1 1 1 1 11 1111

_

1 1 1 1 nr 11 1111

3-delay
replacement

i i i 11 i i

W«!ty £

_$Wfflm-

I I I I I I I I I I I I I

Figure 6.5: Delay replacements on non-overlapping sub-designs

1 1 1 1 MM 1 1 1 1

1-
-

1 1 1 1 1 1 1 1 1 MM

5-delay
replacement

1 1 1 1 1 1 1 M MM

— 2-dstey 1-

&4D*
-

1 1 1 1 1 1 II 1 1 M 1

78

Figure 6.6: Successive delay replacements on overlapping sub-designs

successive design replacements on the same design, it is then useful to use the notion of

delay-preserving replacement (as opposed to delay replacement); making successive delay-

preserving replacements does not add up the delay used in each individual step; rather, the

total delay is the maximum delay used in any single step.

In the next section we will discuss how we achieve delay-preserving replacements

(as Proposition 6.9 says, each n-delay-preserving replacement is automatically an n-delay

replacement).

6.2 Synthesis for Delay Replaceability

We describe two methods for optimizing multi-level circuits such that the opti

mized circuit is an n-delay replacement of the original circuit, for a given n.



CHAPTER 6. DELAY REPLACEMENTS 79

6.2.1 Combinational Resynthesis

In this section we will use the flexibility due to the delay replacements to do

optimization on the combinational part of the circuit. We will extend the method described

in Section 5.1.4 so that we can optimize the given circuit with respect to delay replacement.

Let the original design D have (k + 1) different delayed designs, D°,Dl,.. . ,Dfc;
for any j > k : D-7 = Dk = D°°. These (k + 1) delayed designs form an "onion ring"

structure (see Section 5.1.3). Clearly, any state reachable from itself under some input

sequence belongs to each D' and to D°°. We will not alter the behavior of any such state (a

"stable1' state). All the flexibility for resynthesis comes from the set of "transient" states,

i.e. DXD™.

Recall that an n-delay replacement allows the new design to have some flexibility

over the first n clock cycles after the power-up, and after these clock cycles it is indistin

guishable from the original design. As we said before, often it is known in advance that

the design will be allowed to settle for at least a fixed number of clock cycles before it is

used. We use this slack n for resynthesis— the higher n is, the greater the flexibility allowed

for resynthesis; however, the environment of the design cannot rely on the input/output

behavior of the design for the first n cycles.

For an n-delay replacement, we will express the flexibility to obtain a new design

C such that Cn is exactly the same as Dn. Note, that this is a conservative strategy since

only Cn < D is needed.

As described previously in Section 5.1.4, the primary inputs and outputs to the

design are denoted by ?and o, respectively (Figure 5.1). The outputs ofthe combinational
part which feed the memory elements are denotes by y, and the lines which feed the output

of the memory elements to the combinational part are denoted by x. To do resynthesis for

delay replaceability, weobtain a Boolean relation V(i, x, o,y) which describes the flexibility

for replacement. We will then use this relation to do multi-level resynthesis on our design.

First, we informally describe the flexibility which will be specified later using a

Boolean relation V. We note again that techniques for using a Boolean relation to do multi

level synthesis [70] require the relation to be such that the starting design satisfies the

relation. The Boolean relation is such that the behavior of the states in Dn (the "stable"

states) is preserved. For 0 < i < n, on any input, the relation allows a state in (Dl_1 \ Dl)
to transition to any state in D\ Clearly, the original design satisfies this flexibility relation.



CHAPTER 6. DELAY REPLACEMENTS 80

It can also be seen that for any design C that satisfies the relation it is true that Cn = Dn,

i.e. after the first n clock cycles every reachable state in C isequivalent to one in Dn. Also

note that since wedo not care about the outputs during the first n clock cycles, the outputs

of the states in D\Dn can be arbitrarily chosen.

Formally, the Boolean relation V(t,x,o,y) which characterizes this flexibility is:

V(i,x,o,y) = S?=-01[(x€D,'\Dt'+1)A(y€D,+1)] +

[(£ £ Dn) A(y = 8D(x, T)) A(o = XD(x, i))]

The intuition for the above relation V is that, given n, we choose to preserve the

behavior of all states in the set Dn, i.e. states in this set are forced to have the same output

and next-state functions as in the original design D. For states outside of Dn, if the state

lies in D1 \ Di+1, we allow the next state of such a state to be any state in D,+1; we do

not care about the output from this state. All this ensures that n cycles after power-up,

the new design would be in a state in Dn and thus the new design would be an n-delay

replacement for the original design (in fact, since Cn = Dn, it is also an n-delay-preserving

replacement).

Notice that for any integer m > k, the delayed design Dm is the same as D°°,

i.e. the set of stable states. Thus, the flexibility described by the relation V for m-delay

replacement is the same as that for fc-delay replacement. If we compute the number k for

a design in advance, we know that we will not get any additional flexibility by allowing a

slack greater than k.

Once we have the BDD for the Boolean relation V{i, x, o, y) we can use this relation

instead of the Boolean relation %(i,x,o,y) that we used in Section 5.1.4. Not surprisingly,

just like we found that the BDDs for 71 were getting too large to build, we encounter the

same problem in building the BDDs for V. So, instead we build a relation which is easier

to build, but correctly expresses the flexibility for only the states outside Dn:

U(x,y) = E?!T01[(* £ D''\Dl+1) A(y £ D,+1)] + [(££ Dn)]

Notice that the relation U(x, y) specifies the flexibility of the states inside Dn incorrectly

(actually, it says that the states inside Dn can choose their next-state and outputs totally

arbitrarily!). But we will take care of this problem by restricting the don't cares to only

states outside Dn when we compute the don't cares of internal nodes in the network. See

Figure 6.7 for the complete algorithm (notice that it is different from the algorithm in



CHAPTER 6. DELAY REPLACEMENTS 81

procedure delay-replacement (input: network in terms of (i,x,o,y), parameter n) {

for (each node p in the network)

Compute a BDD Sp(i,x) representing node p in terms of (i, x)

C(x) <r- 1

U(x,y)<r-0

loop n times {

C{y) «- 3x31: [C(x) -UUiVJ =^-ft*))]
C{x)<-C(y){^g)

U{x,y)^U(x,y)+C(£)-C(y)

}
U{x,y)<^U(x,y) + C{x)

for (each node p in the network) {

Add BDD variable p to the BDD variable list

for (each node r in the network) {

if (r is not in the transitive fanout of p)

Sr{i,x,p) <-Sr{i,x)

else

recompute Sr(i, x,p) representing node r in terms of (i, x,p)

}

T(t,x,p) = 3o,y: [U(x,y) •n}=i{Vj = Syj(lx,p))- nLiK =^(I ^P))]
Q(t, x) = TiJ, x, p)p=0 -7"(T, x, p)p=i +T{i,x, p)p=0 -T(i, x, p)p=i
V(i,x) = G(i,x)-C[S)

Image project V(i, x) to the local input of p

Use the flexibility to simplify the local functionality of p

Remove BDD variable p from the BDD variable list

if (functionality of node p changed)

for (each fanout node r of node p)

recompute Sr{i,x) representing node r in terms of (i, x) .

}

Figure 6.7: Procedure to optimize a multi-level network for n-delay replacement



CHAPTER 6. DELAY REPLACEMENTS 82

Ckt. Initial

size

Safe n-<delay replacements
replacement n = 1 n = 2 n = 5 n -= 00

final time final time final time final time final time

s27 12 12 0.05 12 0.04

s298 150 130 1.91 130 0.95 123 1.01 113 1.00 107 1.56

s344 156 152 689.75 153 1.90 147 3.21 147 5.83 144 10.31

s349 160 154 114.19 154 1.97 148 3138 148 5.95 145 10.63

s382 176 164 8.27 162 5.87 162 19.85 162 28.41 156 80.62

s386 204 173 1.16 127 1.19

s400 184 162 8.52 160 6.13 160 21.17 160 29.75 154 83.53

s444 184 163 9.09 161 6.42 161 23.05 161 36.21 156 101.80

s510 280 279 4.65 279 2.94 279 2.95 279 2.96

s526

s641

283

199

240 6.91 240

194

3.68

10.64

238 5.78 237 5.98 188 35.89

timeout

s713

s820

204

504

timeout 195

359

10.99

6.16371 14.70

s832 521 364 14.75 353 7.43

s953 489 484 28.10 484 24.03

sll96 618 600 504.04 600 95.95 600 103.82

sl238 690 625 574.69 625 115.57 625 120.16

sl488 813 755 42.11 697 12.33

sl494 819 742 38.32 697 12.35

Table 6.1: Experimental results for delay replacements. The initial size of the circuits and
the final size are in the number of literals. Since we know that for any integers m > k,
we would get the same results for both m-delay replacement and fc-delay replacement, the
redundant experiments (denoted by blanks in the above table) were not performed.

Figure 5.9 only in the computation of C(x) and in the use oiU(x,y) instead of V{i,o,y)).

Experiments

In this section we report experimental results using the algorithm described in

Section 6.2.1 on ISCAS85 sequential circuits. We used BDDs to manipulate the Boolean

relations and sets. We focused on the area reduction for n-delay replacements. We report

results for various values of n.

The experimental results are shown in Table 6.1. The starting circuits are the

same as in Table 5.2. We show the optimizations obtained by the safe replacement resyn

thesis method described in the previous chapter. Then, we show the results of the method

presented in this chapter for n-delay replacements for n = 1,2,5, oo. For the n = oo column,

the value of n was less than 668 for all the examples (because all circuits had fewer than



CHAPTER 6. DELAY REPLACEMENTS 83

668 onion rings). The table shows that for many examples, significant additional optimiza

tions are obtained by allowing power-up delay. Even for n = 1, we see good results for

some examples, e.g. s386, sl488, sl494. Also, in most cases the CPU times for n-delay

replacements are within an order of magnitude of the CPU time for combinational resynthe

sis. The much larger CPU times for pure safe replaceability can be attributed to the rigid

conditions for safe replacement, which require placing constraints on the outputs from the

"transient" states as well as correlating the next states of "transient" states with the inputs.

Both these constraints are avoided by the resynthesis method presented in Section 6.2.1.

This leads to a much smaller BDD to express the relation U(x,y) (instead of the relation

V(i,o,y) in the previous chapter), and hence, faster multi-level resynthesis.

We suspect that synchronous recurrence equations [23] also lead to delay replace

ments. However, the experimental results presented there indicate that using synchronous

recurrence equations is not very effective; our optimization method (using the SIS commands

sweep; eliminate -1 followed by the optimization procedure described in this paper) pro

duces smaller circuits using less CPU times than those reported in [23]. (Note that the CPU

times indicated in Table 6.1 do not include the time used by the SIS preprocessing com

mands; however, for all the examples, that time is orders of magnitude lower than than the

times reported for the sequential optimations in Table 6.1. On the other hand, the CPU

times reported in [23] are much greater than the CPU times reported in Table 6.1.)

We performed an experiment on oneof the benchmark circuits with a large number

of onion rings (s526) to explore the tradeoffs between flexibility and the power-up delay

allowed. The results are in Table 6.2. The table shows that by allowing more delay n we

do get additional flexibility. Also, the CPU times increase with higher values of n, partly

because the time taken to compute the Boolean relation U goes up with higher n.

In the experiments above, the initial nodes of the circuits have been collapsed

minimally. We see that safe replaceability gives very marginal improvements over pure

combinational reductions, and at a much larger CPU time cost. For this reason, we argued

in the previous chapter that we might get better use of the safe replaceability notion by

using larger node sizes in the circuits. There we increased the node sizes in these benchmark

circuits by using SIS commands eliminate 10or collapse. We ran our algorithm for delay

replacement on thesestarting points also. Results are reported in Table 6.3. Once again, we

see that using n-delay replacements instead ofsafe replacements allows us greater flexibility

for resynthesis and gives better optimizations. Also, the CPU times are once again much



CHAPTER 6. DELAY REPLACEMENTS

n-delay replacements
initial size = 283 literals

n reduction time

1 43 3.68

100 54 11.52

200 58 14.55

300 70 17.33

400 69 20.38

500 69 22.51

600 72 24.37

667 95 36.27

84

Table 6.2: Power-up delay/flexibility tradeoff for s526; reduction is in number of literals

Ckt. Initial

size

Safe n-delay replacements
replacement n = 1 n = 2 n = 5 n = oo

final time final time final time final time final time

s27 12 12 0.04 12 0.03

s298 156 137 1.82 137 0.93 127 0.96 116 0.96 109 1.54

s344 168 156 807.36 155 1.83 150 3.10 150 5.61 148 9.92

s349 173 156 72.91 156 1.97 151 3.14 151 5.83 149 10.02

s382 204 166 7.62 164 5.59 164 17.55 164 26.53 160 80.32

s386 205 138 1.14 99 0.97

s400 229 168 7.93 166 5.96 166 19.04 166 27.19 157 83.48

s444 236 171 8.27 169 5.99 169 19.99 169 31.96 166 91.49

s510 307 255 1.89 253 1.52 254 1.50 251 1.54

s526

s641

323

234

233 6.24 233

207

4.73

14.11

233 5.56 232 6.20 208 27.13

timeout

s713

s820

285

468

timeout 202

331

14.97

3.84353 7.85

s832 470 354 7.59 334 3.94

s953 700 597 22.92 590 21.50

sll96 788 626 265.46 626 109.14 626 112.92

sl238 882 636 338.30 636 170.87 636 178.53

sl488 886 576 30.43 541 19.20

sl494 896 542 30.67 524 20.08

Table 6.3: Experimental results with collapsed nodes in the starting netlist.



CHAPTER 6. DELAY REPLACEMENTS 85

better than those for safe replacements.

6.2.2 Optimization by Removing State Bits

In Section 5.1.4 and in the previous section, we described methods which optimize

the combinational part of multi-level circuits while exploiting the sequential flexibility (safe

replaceability or delay replaceability). In this section we present a method which makes

optimizations on the sequential part of the network (i.e the latches) also, so that the new

circuit is a delay replacement of the original circuit.

The method for optimization presented in this section is inspired by sequential

optimization techniques for circuits with a designated initial state (i.e. all latches have a

designated initial state) and since the circuit is always assumed to start in this designated

initial state (we call it the DIS assumption in this section), we can arbitrarily change

the behavior of the set of states which cannot be reached from this initial state without

affecting the functionality of the circuit. As discussed in Chapter 2, we do not make the

DIS assumption in this thesis. Nevertheless, we shall see how the synthesis technique with

the DIS assumption will inspire our solution. So we will briefly review this technique in

Section 6.2.2.1.

The synthesis methods presented in Sections 5.1.4 and 6.2.1 do not alter the num

ber of latches, and thus, do not change the number of states in the design. However, the

replacement criteria (Definitions 6.2 and 4.1) do not require the original design and the

replaced design to have identical number ofstates. In fact, if we just just select the smallest

subset of states in the original design which is a tSCC (which is much smaller than the total

number of states, as seen from Table 5.1) and reimplement it with the minimum number

of latches (an iV-state tSCC can be encoded and implemented using [log(N)] latches), we

can minimize the number of latches to obtain a safe replacement. So, a plausible strategy

for resynthesis for safe (or delay) replacement can be to extract the tSCC (or the outer

envelope) as we do in the previous chapter, throw away the original netlist, and encode

this tSCC with a minimal number of latches and re-implement the tSCC obtaining a safe

replacement. We decided not to use this strategy for the following reason. There is an

analogous strategy for removing latches for circuits under the DIS assumption. There we

compute the set of reachable states from the initial state, then reencode just this set of

states with the minimum number of latches and produce a replacement design (throwing



CHAPTER 6. DELAY REPLACEMENTS 86

away the original netlist structure in the process). Unfortunately, this strategy has been

observed [82] to produce much larger circuits (in the number of literals) than the original

circuit reinforcing the belief that the startingmulti-level netlists are precious and ifour syn

thesis procedure throws them away it becomes very hard to reconstruct as good a netlist

just from the input-output functionality of a design. Thus, for our synthesis methods we

decided to start with the original multi-level netlist and make iterative modifications on

it rather than extracting the functionality of the netlist and throwing away the original

multi-level structure. This leads us back to the strategy of replacing a subset of the original

latches with some combinational logic; we describe this in Section 6.2.2.2. First we review

the latch removal techniques under the DIS assumption.

6.2.2.1 Removing redundant latches under the DIS assumption

We briefly review the techniques in [6, 49, 5] for reducing the latches for circuits

assuming DIS.

Given the initial state s, we extract the set of states reachable from s (see [48]

for example). Let C(x) be the characteristic function of the set of reachable states, where

x = {xi,x2,..., xt} represent the t latches in the design. Since the states outside of C(x) are

not reachable we do not care about their behavior. This allows some latches to be replaced

with combinational logic. For example, suppose among all the states in C(x), the value of

the state bit Xj is a function of (xi,. ..,Xj-i,Xj+i,...,xt), Then we can replace latch Xj

by that combinational function. This replacement is guaranteed not to affect the behavior

of the states in C(x). Replacing a latch by combinational logic removes a latch as well as

some combinational logic which was only used to drive this latch (see Figure 6.8).

The following two conditions must be satisfied to allow latches {xt>+i,.. .,xt] to

be replaced by a function-set F = (ft'+i,---,ft) such that for any i £ {t' + 1» •••>*}>

/, :{0, l}'-> {0,1}.

1. Latch redundancy condition. This ensures that for any i £ {t' + 1,.. .,t}, for every

state in C(x), the value of latch x, is uniquely determined by the value of latches

{xi,...,xti}:

Vi €{*'+ 1, ...,*} : Vxi3xi+i3xi+2 ••-3xt: [C{x)) = 0] (6.1)

2. Function-set selection condition. This ensures that the function-set F is chosen so that



CHAPTER 6. DELAY REPLACEMENTS 87

latch removal

1—f—f—I—*—I—*—¥—*—f

rl)
B3-L

COMBINATIONAL LOGIC

Figure 6.8: Replacing a latch with function /.

for each state in C{x), the values of the replaced latches are correctly represented:

if (au ..., at) £ C{x) then Vi £ {f + 1,..., t} : fifa, ---,at.) = a,- (6.2)

For an example, consider a design D whose STG is identical to that of D0 as the

one shown in Figure 4.2 (on page 33). D is implemented by three latches {xi,x2,x3} whose

encodings are shown in the figure; D also has a designated state 000 (we emphasize that

D is a different design than D0 because it has an extra input line, the reset line, which,

when asserted, sends the design to state 000). The set of reachable states from 000 is

C(x) = {000,011,101}. Using conditions 6.1 and 6.2 above, we can replace latch z3 with
the function fa = xi + x2, and we get design C whose STG1 is identical to that of design

A shown in Figure 6.9; the new designated initial state ofdesign C is 00. States 00, 01 and

1In the next section we explain in a little more detail, how the selection ofx$and fz leads to this transition



CHAPTER 6. DELAY REPLACEMENTS

Figure 6.9: Design A. The value of fo = xi + x2 is shown in the dotted box.

10 are respectively equivalent to states 000, Oil and 101 in D. State 11 is not equivalent

to any state in Do but its behavior is immaterial because the new design always starts in

state 00, and can never reach state 11.

6.2.2.2 Removing redundant latches without the DIS assumption

We now look at the naive extension of the algorithm in the previous section, and see

why it does not work if the design can power up in any state. Without the DIS assumption,

the set of states in any core (see Section 5.1.2 for a discussion of choices for a core; a tSCC

is an example of a core) represents the desirable steady-state behavior of a design. So a

naive strategy for removing redundant latches will be to make any core set of states of a

design play the role of C(x) in the previous section and then use exactly the same strategy,

with conditions 6.1 and 6.2, for redundant latch identification and removal. Thus, we may

obtain design A (shown in Figure 6.9) as a safe replacement (a 0-delay replacement) for

design Do in Figure 4.2. However, A is not an n-delay replacement of Do for any n. This

is because An = A and A •£ Do. Also observe that Do can be reset from any state to state

000 under input sequence 0 • 0, but the same input sequence does to reset A even if we

wait for arbitrary number of clock cycles after power-up (because A can remain in state 11

arbitrary many cycles). Thus the behavior of the states outside the core must be controlled

structure.



CHAPTER 6. DELAY REPLACEMENTS 89

to make sure that the new design is an n-delay replacement.

Let C(x) be a core that we are going to use for delay replacement on the original

design D. There are two factors which determine the behavior of the new design A. First,

the selection of latches to be replaced, x = (zf+i,..., xt) partitions the 2* states in design

D into 2l equivalence classes, each with 2i~t states. Two states a = (ai,...,a*) and

6 = (&i,..., bt) lie in the sameequivalence class if and only if for all i £ {1,..., t'}: a, = &,-.

We denote the equivalence class of a by Q(a). Each state of A represents an equivalence

class D. original design, i.e. a = (ai,...,at>) represents Q(a). Second, the selection

of the function-set F = {ft'+i,---,ft) determines the representative state (of D) in each

equivalence class, and the representative state determines the behavior of this class in the

new design. Thus, if ft>+i(a) = Ci,fti+2(a) = c2,ft(a) = ct-t>, then {ax,.. .,ati,ci,. ..ct-v)
is the representative state of the class a (or Q{a)). Let <f>(a) denote the representative state

ofthe class a. Now, for input T, the next state of a in A is <$>i(d, i) —SI{8d{${o), *)) and the
output is XA[a,T) = Ajr>(0(d),i).

Notice that the set of replaced latches (xt'+i,.. -,xt) must satisfy the latch re

dundancy condition 6.1, where C{x) is the core. Also the selection of the function-set F

must, satisfy the function-set selection condition 6.2. Based on the derivation of the be

havior of the new design, discussed above, it can be seen that if we replace latch £3 in

design DQ ofFigure 4.2 with the function-set F = (/i) such that /i = zi + x2 we get the
new design shown in Figure 6.9 (for example, state 11 goes to state 11 on input 0 because
8A(U,0) = Q{8Do{(f>{ll),0)) = Q{8DQ{m,0)) = Q(110) = 11). For this example, the rep
resentative elements can be read off by using the number in the dotted box in Figure 6.9;

for example, <£(ft(100)) = <£(Q(101)) = </>(10) = 101.
However, as previously discussed, the function replacement F = (xi + 2:2) is not

an n-delay replacement for Dq. Thus we also need to regulate the behavior ofequivalence
classes which do not contain any state in the core of the original design. Notice that each

state in the core is the representative element of its class, and the behavior of this class in

the new design is equivalent to that ofthe core state in the original design.
As in Section 6.2.1 we will satisfy the requirement for n-delay replacement by

ensuring, if we wait for n clock cycles with arbitrary input vectors, we reach a state inside
the core. The procedure we describe next will guarantee this and thus we will obtain an

n-delayed replacement.



CHAPTER 6. DELAY REPLACEMENTS 9°

procedure compatible-set (input: C(x), {xti+i,..., xt], T(x, i, y), n) {

j<-0

S(x) «-C(5)

V(x) <- 3xt'+iBxt>+2 ••-Ixt : [S(x)]

while {(j < n) and (V(x) ± 1)) {

j <- j + 1

7>(y) <- (P(f))(iMo

ft(£) <- Vi3y : [T(z, ?, y) A7?(y)]
if {TZ(x) •V{x) = 0) goto end;

S(x) ^S{x)-r1l(x)-V(x)

V{x) <- 3xf+i3xt>+2 •--3xt : [S{x)]

}

end: if (P(£) = l)returnc>(x)

else return FAIL

}

Figure 6.10: Procedure to optimize S(x) (input C(x) is the core set of states, T{x,i,y) is
the transition relation of the design and n is the delay parameter for n-delay replacement)

Choices for the function-set F

Definition 6.4 Given a set of states S in{0,1}' (i.e. a set of states of the original design),

a function-set F = (/f+i ,...,ft) is compatible with S if for any vector a= (ai,..., at>),

{ai,.. .,at>,ft*+i(a),. ..,ft(a)) £ S.

First assume that we have chosen the core set of states and a set of latches

(xt'+i,.. .,xn) to be replaced (so that condition 6.1 is satisfied). Thus we already have

a partition of equivalence classes for states in {0,1}'. Now wewill select a set of states S in

{0,1}', and derive a function-set F compatible with S. We use the procedure in Figure6.10

to obtain 5 (which is denoted by its characteristic function S(x)). States in set 5 are can

didates for representative elements of their respective equivalence classes. Each equivalence

class has at least one state in 5; each equivalence class whose state is in the core has exactly



CHAPTER 6. DELAY REPLACEMENTS 91

one state in S.

Theorem 6.11 If the procedure "compatible-set" returns a set S(x), then there exists at

least one function-set F = {fv+i, -•-,/*) '• {0,1}* -» {0, l}'_t compatible with S. And if

we replace latches {xt>+i,..., xt) by F, then the new design is an n-delay replacement of the

original design.

Proof. First notice that the set V(x) is the set of all equivalence classes which have at

least one member in S(x). Since the procedure returns a set S(x) only when V(x) = 1 we

know that there exists at least one function-set which is compatible with S.

Now, observe that if a state from an equivalence class is added to S{x) in iteration

j = p, then for any iteration i > p, no state from this equivalence class is added to S(x).

If one or more states from some equivalence classes are added in iteration j = p, we say

that this equivalence class is covered in the p-th iteration. Suppose we obtain a new design

by choosing a function-set which is compatible with S{x). Now consider any state in the

new design. This state a represents an equivalence class in the old design and derives its

behavior from the representative state a of that equivalence class. Let this equivalence class

be covered in the </-th iteration: thus a was added to S(x) in iteration j —<j. Thus (7 £ 7?.(f)

in iteration j = q, and for any input, the next state of a lies in an equivalence class which

was covered in r-th iteration, for some r < q. Thus in the new design, for any input vector,

state a goes to some state which represents an equivalence class which was covered in an

earlier iteration. Since we have at most j = n iterations, it is clear that for any state d in

the new design, if we apply any arbitrary input vectors for n steps, we will reach a state

b representing an equivalence class which was covered in iteration j —0. Since iteration

j = 0 only covers the the equivalence classes for the corestates, 6 is equivalent to a state in

the core of the old design. Thus, the new design is an n-delay replacement of the old one.

•

As an example, start with design D0 in Figure 4.2 andchoose the set {000,011,101}

as the core and latch x3 to be replaced. The procedure compatible-set returns the set

S{x) = {000,011,101,110}. F = (/3) where /3 = xi®x2 is the only function-set compatible

with this. The resulting design B (shown in Figure 6.11) is a 1-delay replacement of design

D0.



CHAPTER 6. DELAY REPLACEMENTS 92

Figure 6.11: Design B. The value of /3 = xi ® x2 is shown in the dotted box.

Selecting an Optimal function-set F

If the procedure compatible-set returns a set 5, any function-set F compatible with

S is allowed. However, our overall goal is to optimize the area of the original circuit, so we

would like to choose an F which has the smallest area. In fact, if we cannot find F within a

certain bound, the savings gained by removing the redundant latches may actually be lost

(refer once again to Figure 6.8 for the tradeoff in area saving).

Selecting the function-set F is equivalent to determining a multi-level network

with t' inputs and (t -1') outputs so that the network is compatible with S(x, x) where x =

{zi,.. .,xti} and x = {xt>+i,.. .,xt}. Notice, that this is the problem of obtaining a multi

level network compatible with a Boolean relation in terms of its inputs and outputs. This

can be solved in two steps. First, we obtain any arbitrary multi-level network representing

some F compatible with 5. Then, one approach would be to use the techniques in [70] (like

we used in Sections 5.1.4 and 6.2.1) to optimize this network maintaining compatibility with

S.

However, our experiments (presented later in this section) show that the size of

F is relatively small compared to the given circuit sizes and that the approach described

by procedure greedy-function-set in Figure 6.12 worked well. We order the latches in an

arbitrary order. For each latch to be replaced, we find the on-set and don't care set for the

replacement function. Then we use a heuristic to find a function which is compatible with

this on-set and don't care set. Since all the Boolean quantities are represented as BDDs, we



CHAPTER 6. DELAY REPLACEMENTS 93

procedure greedy-function-set (input: S(x, x), {xi,..., xti], {xti+i,..., xt}) {

for j = t' to t do {

0(x) <- 3xf/+i3a:t'+2 ••-3xi : [S(x,x) • (xt- = 1)]

/* 0{x) is the on set for ft */

2?(x) <— Vxj3xt/+i3x^+2 ••-3xj-i3xj+\3xj+2 .. .x* : [«S(x,x)]

/* V(x) is the dont-care set for ft */

/j(x) <— bdd-minimize(C?(x),X>(x))

5(x, x) <— S(x, x) • (xj = ft (x))

}

return F

}

Figure 6.12: Procedure to obtain a function-set

use a BDD minimization procedure, which heuristically finds an implementation which has

the smallest support (we use a simpler version of the algorithm in [46]); alternately, wecould

have used bdd-generalized-cofactor (due to [22]) or any of many other BDD minimization

algorithms with respect to a don't care set (see [76]). Since we are dealing with very small

functions, in our application, the choice of the heuristic does not matter. The minimized

BDD is converted to a similar looking network whose nodes are multiplexors controlled by

the variable of the corresponding BDD node. Once we find a function replacement for a

latch we restrict the compatible set 5 by this function.

Choosing the core

Before selecting the function-set F, we need to choose a core to identify a set of

latches that satisfy condition 6.1 so that we can remove these latches. A core, by definition

(Definition 5.1), is closed under all inputs. Obviously, if a set of latches satisfies condition

6.1 for a choice of core, it also satisfies the condition for any subset of the core. As argued

earlier most real designs have a single tSCC, and for such designs each choice of the core



CHAPTER 6. DELAY REPLACEMENTS 94

Figure 6.13: Design Dq.

must be a superset of the tSCC. Thus, it should seem that choosing the tSCC as the

core should be the obvious choice since it allows us most flexibility in choosing the set of

redundant latches. However, this choice may not be the right one for the following reason.

Consider design Do in Figure 6.13. Suppose we choose the tSCC {000,010,100}

as the core and the third latch x3 as redundant. The procedure compatible-set identifies

candidates to be representatives for their equivalence classes (000, 010 and 100 are already

representatives for their respective equivalence classes 00, 01 and 10; we need to find can

didates to represent the equivalence class 11). We observe that for all inputs, neither of

the states 110 or 111 goes to equivalence class 00, 10 or 01 (the value of V(x) at iteration

j = 0). This means that (7£(x) •V(x) = 0) and the procedure returns FAIL. Thus, we are

unable to replace latch x3. On the other hand if we chose the outer envelope of the design

(Df°) {000,010,100,111} latch x3 could be replaced by the function /3 = xi •X2 since the

procedure compatible-set returns S(x) = {000,010,100, 111}. In fact, we can prove that if

we choose the outer-envelope of a design D as the core the procedure compatible-set never

returns FAIL for any n > m, where m is such that D°° = Dm.

Theorem 6.12 If we setC(x) to be the set ofstates in Dk, the k-cycle delayed design, and

set n to be equal to k, then the procedure "compatible-set" does not return FAIL.

Proof. We will prove the above by showing that after the while loop terminates, ^(x) = 1.

We show that by proving the following claim. In the following, we say that state a lies in



CHAPTER 6. DELAY REPLACEMENTS 95

the /-th onion ring if and only if a € QDk-i \QD*-i+i for / € {1,2,..., k}; ifa £ QDk, we say

that a lies in the 0-th onion ring. It should be obvious that for any / such that 0 < I < k,

for any arbitrary input vector, any state in the /-th onion ring goes to a state which lies in

the p-tb. onion ring for some p < I.

Claim: If state a(ax, ...,at) belongs to the /-th onion ring, then after iteration j = /, V(x)

contains d •= (a\,..., at>).

We prove this claim by induction.

Base case. (/ = 0): Since a belongs to Dk, it belongs to C(x) and hence a belongs to V(x)
when it is initialized at j = 0.

Induction step. Assume that the claim is true for any state which lies in the p-th onion-

ring for some p < I. We will show prove the induction step for a state a which belongs to

the /-th onion ring. Consider iteration j = 1. Either, V(x) already contains a before this

iteration, in which case we are done. Or else, V(x) does not contain d before this iteration.

However, we know that for any arbitrary input vector, a transitions to a state 6 which lies

in the p-th onion ring for some p < I. By our induction hypothesis, b belongs to ^(x) from

the previous iteration. Thus, a must belong to the set %{x) computed at j = /. Hence, d

belongs to ^(x) after iteration j = /. •

This theorem shows that if the core is chosed as the outer-envelope and there is

a non-empty set of candidate redundant latches, then those latches can be removed. On

the other hand, in the following example, choosing the tSCC as the core lets us to replace

a latch, whereas no latch can be removed if the outer-envelope is chosen. Consider the

design D5 in Figure 5.4. If we choose the tSCC {10,11} as the core, it can be seen that

we can replace latch xi by the function ft = 1. However, if we choose outer-envelope

{00,01,10,11}, no latch is redundant.

In our experiments, we first chose the tSCC as the core (we use the procedure in

Figure 5.7 to obtain the tSCC. If we are not able to replace the latches, choose the outer

envelope as the core (we use the algorithm from Figure 5.6 with n = oo). In fact, as we will

see in the experimental results, for all except two examples, we were able to successfully use

the tSCC as the core. For s344 and s349 (see Table 6.4), compatible-set returned FAIL in

case we used the tSCC as the core; however, when we used the outer-envelope as the core,

we were still unable to remove any latches, i.e. no set of latches satisfied Condition 6.1.



CHAPTER 6. DELAY REPLACEMENTS 96

Selecting the set of redundant latches

Given a set C(x), Lin [49] has given a heuristic of choosing an order of latches

to test if a latch is redundant to obtain the set of redundant latches to select the set of

latches x = {x*/+i,.. .,xj which satisfy the latch redundancy condition (Condition 6.1).

The heuristic, maximizes the number of latches chosen as redundant by ordering latches by

decreasing unateness. The unateness of a variable x,- is the absolute value of the difference

between the number of minterms in C(x)x.=o and C(x)X|=i. The intuition is that the more

unate a variable is, the less it contributes to distinguishing the states in C(x). We use

this heuristic and then select the set of redundant latches by going through this order and

adding a variable to the set if the current set still satisfies Condition 6.1.

Experiments

Our entire algorithm for replacing latches with combinational logic is shown in

Figure 6.14. We used oo as the value of n to pass to compatible-set because in all examples,

the while loop terminated in less than 1000 iterations. Thus we obtain n-delay replace

ments, where n < 1000. It is usually safe to assume that more than 1000 cycles are allowed

before circuit operation starts (for example, for a 20MHz design, 1000 clock cycles amounts

to 0.05ms).

We implemented this algorithm in SIS and experimented with the same ISCAS89

circuits that we have used earlier in Sections 5.1.4 and 6.2.1. The results appear in Table 6.4.

We preprocessed the circuits with the same commands as before: sweep; eliminate -1.

We choose the subset of circuits from Table 5.1 where the number of states in the tSCC

were at most half the total number of states. We see from table 6.4 that for most the

circuits we tried, we are able to remove some latches. Also, the size of the function-set F is

usually very small (except for s953), and the total final size (of the combinational part of

the circuit) is smaller than the original size because the addition of F was more than offset

by the removal of the fan-in logic of the latches (Figure 6.8).

So far we have removed latches and replaced them by a combinational function of

other latches. It seems very conceivable that such an operation would increase the delay of

the paths between the latches. This intuition is based on the observation that a sequential

path between two latches in the original design may become a purely combinational path

due to the replacement of the latch on the path; thus, there might be combinational paths



CHAPTER 6. DELAY REPLACEMENTS 97

procedure latch-replacement (input: network in terms of (i, x, o,y)) {

/* let yj denote the BDD for the j-th next state variable */

/* let Ok denote the BDD for the Ar-th output variable */

for (each node p in the network)

Compute a BDD Sp(i,x) representing node p in terms of (i, x)

T(lx,y)<r- (nj=1 (Vj s SVj(i,£))) •(UU(ok = S0k(i,£)))
C(x)f-tSCC(T(T,x,y))
x<-0;5(x)<-C(x)

foreach (latch x) do

if (Vx : [B{x)] = 0) {

ff-iU {x}

B(x) <r- 3x : [5(f)]

}

X <— X\ X

A(x) 4— compatible-set(C(x),x,T(i,x,y),oo)

Let n <— j, if the loop in compatible-set() terminates in the j-th iteration

F <r- greedy-function-set(^4(x), x, x)

Replace latches x by an implementation of F

Recursively sweep away dead logic which fans out to nowhere

return (optimized network, n)

}

Figure 6.14: Procedure to replaces latches with logic



CHAPTER 6. DELAY REPLACEMENTS

Ckt.

Orig.
size

Final circuit

Latches Delay Size Total Time

removed n ofF size

s298 150 2 7 4 130 1.26

s344 156 0 - - 156 5.20

s349 160 0 - - 160 5.33

s382 176 3 101 6 160 35.08

s386 204 0 - - 204 0.21

s400 184 3 101 6 166 33.32

s444 184 3 101 6 166 33.09

s526 283 2 667 4 263 44.63

s641 199 5 2 9 172 3.81

s713 204 5 2 9 175 4.33

s953 489 9 1 96 522 12.77

sll96 618 0 - - 618 11.80

sl238 690 o
- - 690 9.14

98

Table 6.4: Experimental results for latch replacement. For s344 and s349, compatible-set
returned FAIL when passed the tSCC.

in the new designs which are longer than all combinational paths in the original design. To

test this hypothesis that our latch replacement algorithm achieves area optimization only at

the expense of performance, we performed the following experiment. We ran the SIS script

script.rugged2 (to do technology independent optimization) followed by a technology

mapping step using the MCNC91 library. The results appear in Table 6.5.

We see that, for this subset ofcircuits, we get an average of 10.4% (and a maximum

of 18.0%) improvement in mapped area and even an average of 3.7% (and a maximum of

23.6%) improvement in longest static delay, which goes against the intuition that latch

replacement will increase the delay of the circuit. The only circuit where latch replacement

seems to have caused longer delay in s526. Note that the CPU time with latch replacement

includes the time taken to remove redundant latches. It is worth noting that the total CPU

time with latch removal is actually lower than the total CPU time without this option!

This is probably because logic optimization becomes simpler once we have fewer latches

(and thus fewer state variables). In particular, reachability computations become much

faster.

2In the last step of script.rugged, we used the sequential optimization procedure described in Sec
tion 6.2.1 instead of full_simplify because we wanted to exploit the sequential flexibility in addition to the
combinational flexibility.



CHAPTER 6. DELAY REPLACEMENTS

Ckt.

With latch replacement No latch replacement Ratios

Mapped Delay CPU Mapped Delay CPU Area Delay

area time area time

s298 278 17.6 8.49 312 19.1 8.83 0.891 0.921

s382 428 21.6 55.62 472 21.6 168.30 0.907 1.000

s400 419 27.0 53.76 460 26.9 162.71 0.911 1.004

s444 419 27.0 57.10 458 27.0 178.67 0.915 1.000

s526 456 22.4 108.22 460 18.0 73.24 0.991 1.245

s641 378 28.1 30.29 460 36.5 34.91 0.822 0.770

s713 377 27.9 31.10 460 36.5 42.04 0.820 0.764

s953 940 22.8 70.68 1012 20.8 75.85 0.929 1.096

99

Table 6.5: Latch replacement results after technology mapping.

Overall, for this set of circuits, we have demonstrated that replacing redundant

latches reduces number of latches, the size of mapped circuits and even the delay for these

circuits.

6.2.3 Final Results

Here, we analyze the combined effect of the algorithms in the previous two sec

tions. We wish to compare technology mapped circuits after using our optimizations versus

mapped circuits obtained using existing combinational optimization techniques. For the

experiment wefirst remove redundant latches by using the algorithm in Section 6.2.2. Then

we run the SIS script script.rugged on this circuit followed by sequential optimization

described in Section 6.2.1. At this point we map the circuit to tin? MCNCOl library of

gates and latches. We compared this mapped circuit against the circuit we would get by

rjust running script.rugged followed by the technology mapping. The results appear in

Table 6.6.

Theseexperimentsshow that we get an average of 7.0%(and a maximum of 19.2%)

area optimization over all circuits. Moresuprisingly, we also see an an average improvement

of 4.5% (and a maximum of 23.6%) in the static delay of the the circuits, even though this

was not our targeted objective. The CPU times are reasonable compared to those for the

existing combinational optimization routines in SIS, and we can expect that the times can

be reduced further with a careful tuning of the code.



CHAPTER 6. DELAY REPLACEMENTS 100

Ckt.

With delay replacement Combinational optimization Ratios

Mapped Delay CPU Mapped Delay CPU Area Delay
area time area time

s27 48 10.9 1.3 48 10.9 1.1 1.000 1.000

s298 278 17.6 8.5 344 8.2 18.8 0.808 0.936

s344 355 28.8 31.2 373 33.4 9.2 0.952 0.862

s349 357 28.8 31.6 377 33.4 9.4 0.947 0.862

s382 428 21.6 55.9 472 20.8 10.9 0.907 1.038

s386 262 27.2 9.5 283 27.5 8.1 0.926 0.989

s400 419 27.0 53.8 461 26.9 10.4 0.909 1.004

s444 419 27.0 57.1 462 28.5 10.5 0.907 0.947

s510 513 28.5 42.1 493 30.7 23.2 1.041 0.928

s526 456 22.4 108.2 514 18.6 15.0 0.887 1.204

s641 378 28.1 30.3 460 36.5 12.9 0.822 0.770

s713 377 27.9 31.1 460 36.5 13.3 0.820 0.764

s820 581 19.9 79.7 573 20.8 38.5 1.014 0.957

s832 535 21.7 80.0 544 21.4 32.7 0.983 1.014

s953 940 22.8 70.7 1030 22.0 43.7 0.913 1.036

sll96 1152 29.3 403.7 1172 29.4 195.0 0.982 0.997

sl238 1131 29.4 342.6 1140 32.6 102.3 0.992 0.902

sl488 1173 18.9 299.1 1208 19.0 94.2 0.971 0.995

sl494 1139 20.1 209.4 1216 19.5 112.8 0.937 1.031

Table 6.6: Delay replacement results after technology mapping.



CHAPTER 6. DELAY REPLACEMENTS 101

6.3 Verification for Delayed Replacements

To verify than a design D is an n-delay replacement of design C, we need to verify

Dn <C. Wecould compute Dn and use the verification algorithm for safe replacement (<)

from Section 5.2.2 to decide this. Recall that using the algorithm there gives a complexityof

0(p-2q), where p is the number ofstates in Dn and qis the number ofstates in C. However,

for all designs we have encountered so far, D°° is identical to Dn for some n < 1000, and

since we have assumed before that if we require n-delay replacement, n would rarely be

this small. Thus, in practice, it should suffice to check D°° < C as long as we check

that D°° = Dn for some small n. However, using Proposition 6.10, we know that this

is equivalent to checking D°° < C°°. If the outer-envelopes of the two designs coincide

with their respective tSCCs, as is the case with many designs as evident from Table 5.1,

we just need to check for safe replacement between the two tSCCs. From Theorem 4.5 in

Chapter 4, this safe replacement is true if and only if every state in one tSCC is equivalent to

some state in the other tSCC and vice-versa. Thus, we have a verification procedure which

is polynomial in the number of states of the two designs, as opposed to an exponential

procedure for the problem of verification for safe replacement.

In general, it is easy to see that the problem of verification for delay replacement

(even for n = oo) is as hard as the problem for verification for safe replaceability (which

we showed was PSPACE-complete in Section 5.2.1). This is easily seen by the fact that if

we are given an instance of the safe replaceability problem (is D •< CI) we automatically

convert it to an equivalent oo-delay replaceability problem (is D^° ^ Ci?) by a simple

modification. We pick any arbitrary output vector a, introduce a new input vector 6, and

add a self loop for input 6 with output a for each state of D and C to get Di and Ci

respectively. Di and Ci have the same number of states as D and C, respectively. It should

be obvious that D <C \t and only if Di <C\. However, since every state in Di has a self

loop, Df* is the same as D\. Thus, if we could solve the delay replaceability problem, that

we would give us an answer to the safe replaceability problem too.

We argued earlier in this section that if D°° and C°° are tSCCs,Ve can verify

delay replaceability in polynomial time. An open question is the complexity of verification

if D°° and C°° are "almost11 tSCCs. In other words, if D°° has di states inside its tSCC and

d2 states outside, and C°° has ci states inside its tSCC and c2 states outside, is it possible

to construct an algorithm to verify the question "is D°° < C°° ?" in time polynomial in



CHAPTER 6. DELAY REPLACEMENTS 102

(di + d2 + 2Cl + c2). Such an algorithm would be very useful for the verification of delay

replacement where almost all of the states in the outer-envelope are also inside the tSCC,

i.e. there are at least exponentially more states inside the tSCC than those which lie inside

the outer envelope but not in the tSCC.



Chapter 7

Validity of Retiming

Transformations

103

Retiming was first formulated by Leiserson and Saxe [45] in the context of systolic

systems. When applied to digital circuits, retiming is an optimization step which moves the

latches across the logic gates and in doing so changes the number of latches and the longest

path delay between the latches. In this manner, the number of latches can be reduced,

and/or the cycle time of the circuit can be improved. Recent results by Shenoy and Rudell

[75] have improved the efficiency of retiming so that circuits up to 50,000 equivalent gates

can be retimed for minimum area under a delay constraint. This has sparked further interest

in exploring the application of retiming as a general optimization step during logic synthesis.

Prior literature has assumed that retiming can be directly applied to sequential

circuit optimization. However, we had earlier shown in Section 3.6 that retiming does not

satisfy the safe replacement condition (Definition 4.1). Note that the theorem of Leiserson

and Saxe on the validity of retiming is not in doubt. They simply made the assumption

that the environment of the circuit could be modified to wait a fixed number of cycles

(dependent upon the retiming) before applying its inputs. It is this requirement which

violates safe-replacement and casts a doubt on whether retiming is valid as par* of a synthesis

methodology for net-list level sequential circuits.

In this chapter, we study effect of retiming transformations with respect to a

simulator that a designer might use to analyze the designs. We first show in Section 7.1 how

a designer who applies retiming to a circuit could be surprised during simulation when the



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 104

retimed design replaces the original design. Specifically, it is possible that a logic simulator

could produce a different output sequence when simulating the retimed circuit. We also

show on the same example that an input sequence which tests a fault in a circuit cannot

test the same fault in the retimed circuit. In Section 7.2 we formalize our model of retiming

on sequential circuits, which is slightly different from that of Leiserson and Saxe in that we

distinguish the case where a latch moves from the output of one gate to the inputs of each

of its fanouts. Then in Section 7.3 weestablish a tighter bound in in the Leiserson and Saxe

result that retiming is a safe operation as long as one can wait long enough after power-up

before applying the input sequence. As a consequence of our proof, we identify that the

only incorrect retiming transformation is one which moves a latch forward across a multiple-

fanout junction; i.e., if we limit the retiming transformations, then retiming satisfies the

condition of safe-replacement. For Section 7.4, we define a conservative three-valued

logic simulator (CLS) as a three-valued simulator using the values '0', T, and 'X' which

performs only local propagation of the X values (i.e., OX = 0 but l-X = A').1 Further, the

CLS begins operation with all latches in the X state. We show that while a simulator could

distinguish a retimed circuit from the original, in fact, a conservative three-valued logic

simulator cannot. In other words, retiming retains an invariant on the output sequences

produced by conservative three-valued simulation.

As a final comment, note that our model of a synchronous circuit does not require

a latch to have a set or reset line and does not require any notion of the initial state of the

circuit. Hence, we avoid the problem pursued by Touati and Brayton [81] in retiming the

initial state.

7.1 Retiming Violates Safe Replacement

Here we show how a simple retiming move might change the behavior of a design

with respect to the output of a simulator. Consider the circuit D and the retimed version C

in Figure 7.1. The STGs for these circuits are shown in Figure 7.2. Design D has two states

and is initialized to state 0 on the length-1 input sequence 0, whereas C is not initialized

with this input sequence.

If we simulate the two design D and C with an input sequence, we may get

'in contrast, an exact three-valued simulator will output an X only in the case that some assignment of
values to A' on the input yield differing outputs; for a conservative simulator the local propagation of A"s
may cause an X on the output even though the output is a 0 (or a 1) for every input.



^l

CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS

4f
nro

i—o

E>-
Z)

Figure 7.1: Retimed circuit is not initialized with input sequence 0.

VI ( \/0

003
D

105

Figure 7.2: Design where retiming breaks down an initializing sequence of length 1.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS

power-up output power-up output

state of D sequence state of C sequence

0 0-0-1-0 00 0-0-1-0

1 0-0-1-0 11 0-0-1-0

01 0-010

10 0-1-0-1

106

Table 7.1: Simulation results for D and C on input sequence 0 • 1 •1 • 1.

different results. Consider the input sequence 0 •1 • 1 • 1. The simulation results for this

input sequence from all the power-up states of D and C are shown in Table 7.1. This input

sequence produces the same output sequence from every power-up state of D. However,

if design C powers up in state 10, it will output 0 10 1, resulting in an input/output

behavior which was not present in the original design.

Suppose we had a sufficiently powerful simulator which given any input sequence,

outputs

• a 1 at an output at some time step iff all power-up states output 1 at that time step

• a 0 at an output at some time step iff all power-up states output 0 at that time step

• an X otherwise, i.e. if there exist two power-up states, one of which outputs a 0 and

the outputs a 1.

For the input sequence 0 •1 •1 •1 this simulator would output 0 •0 •1 •0 for design D and

output 0 • X - X •X for the design C.

Note, however, that if we clock the circuit for one redundant cycle (with arbitrary

input) before applying our input sequence, even our imaginary powerful simulator will

produce the same output for both circuits. This is the sense of a delayed circuit which we

use in Section 7.3 and is the notion of equivalence used by Leiserson and Saxe when proving

that retiming was a valid transformation on a circuit.

7.1.1 Testing Example

The example in the previous subsection shows that retiming can change the be

havior of a design as measured by a simulator. Marchok et al. [55] were the first to study

the effect of retiming transformations on test sequences for single stuck-at faults. However,

we show next that retiming may cause test sets to also change, contradicting their result:



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 107

D

Figure 7.3: Retiming does not preserve test sequence 0 • 1.

(Theorem 1 in [55]) The retiming transformation preserves testability with re

spect to a single stuck-at-fault test set.

This theorem implies that if a test sequence uncovers a given stuck-at-fault in a

circuit, then the same sequence can detect the same faults in a retimed version of the circuit.

For a counterexample, consider circuits D and C in Figure 7.3. For the given stuck-at-1

fault shown, the test sequence 0 •1 detects the fault2 in the original circuit D. For the input

sequence 0-1, the fault-free version of D produces the output 0 •0 from all power-up states

whereas the faulty version of D produces the output sequence 0 • 1. Thus, input sequence

0 • 1 is a valid test sequence for the stuck-at-fault in D since it distinguishes the faulty

design from the fault-free design. However, for the fault-free version of circuit C, the input

sequence 0 •1 may produce output 0 •0 or 0 •1 depending on which state C powers up in (see

the STG for C in Figure 7.2); the faulty version of C still produces 0-1 from any power-up

state. Thus, 0 • 1 is no longer a test sequence for the retimed design D.

7.2 Background

7.2.1 Leiserson-Saxe Retiming Model

Leiserson and Saxe introduced retiming [45] through a graph-theoretic model. A

design is modeled as a finite edge-weighted directed graph G = (V,E). Each vertex in V

represents either a gate in the design, a primary input or output, or a special dummy node

called the host. There is an edge in E from one gate to another if an output of this gate

2We should note here that if wereusing a conservative three-valuedfault generator, wewouldnot generate
this 0 • 1 as a test sequence. However, as noted by [16], that is a shortcoming of such a test generator, and
in no way disqualifies 0-1 to be a test sequence.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 108

Figure 7.4: The edge-weighted digraph representing the circuits D and C from Figure 1.

fans out to the second gate; there is an edge from the host to each primary input node;

and, an edge from each primary output node to the host. The non-negative weight of an

edge represents the number of latches on the corresponding path in the design. A retiming

of a design is an assignment of each vertex v to an integer lag(v) such that for every edge

(u, v) with weight w, the value w + lag(v) - lag(u) is non-negative; additionally, the host

and primary input and primary output nodes are required to have a lag of 0. Informally,

the lag of a vertex denotes the number of backward retiming moves across this vertex, for

example a lag of -2 on a logic element means that 2 forward retiming moves are performed

across this element.

This model is not well suited for retiming on gate-level sequential circuits. The

problem is that if a single output of an element fans out to more than one element, this model

does not distinguish where the latches are placed with respect to the fanout junction. This

is best seen with respect to the retiming example discussed in Section 7.1. Both the circuits

in Figure 7.1 are represented by the same retiming graph, which is shown in Figure 7.4.

7.2.2 Circuit Model

Our model of a sequential circuit is the traditional net-list level model which

consists of elementary cells from a library interconnected with wire connections" (for example,

the circuits in Figure 7.1). The library cells consist of combinational gates and latches. As

discussed in Section 2.1, if some latches are reset latches, we model them with no-reset

latches and explicit reset circuitry using the reset transformation. Later, in Chapter 8, we

show that this tranformation does not restrict the possible set of retiming moves.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 109

Figure 7.5: A junction can be treated as a multi-output gate.

The reason retiming caused a problem in the example of Section 7.1 is that we

retimed a latch forward across a fanout junction and created a power-up state which could

not occur in the original circuit. If there are multiple-output gates in the cell library such

that there exist output vectors of the cell which cannot be produced by any input vector to

the cell, then retiming latches forward across such elements leads to the same problem as

retiming latches forward across fanout junctions.

This motivates the definition of justifiable and non-justifiable multiple-output

gates. Consider a multi-output gate F with m inputs and n outputs. The n output func

tions are denoted by ft,..., /„. F is justifiable if and only if for every output y £ {0, l}n,

there exists an input x £ {0, l}m such that y = F(x); if there exists y £ {0, l}n such that

for all x £ {0, l}m, y ^ F(x). then F is non-justifiable.

A &-way fanout junction (k > 1) is a special case of a multi-output gate (which

we call JUNC) with 1 input line x and k (k > 1) output lines yi,y2,.. .,yk, where yi =

. •• = yk = x (Figure 7.5). The element JUNC is clearly non-justifiable since only two of

the 2k output vectors (000 .. .0 and 111.. .1) are possible. For the remainder of this paper

we assume that all fanout junctions are replaced by JUNC elements. This implies that each

output of each gate (latch) fans out to exactly one other gate (latch).

For a gate-level network which replaces junctions with multi-output gates as de

scribed above, there are two kinds of atomic retiming moves: forward and backward. A

forward move removes one latch from each of the n inputs and places one latch at each of

the m outputs; a reverse move removes one latch from each of the m outputs and places

one latch at each of the n inputs (Figure 7.6). We view retiming as starting from an initial

circuit and applying a sequence of these atomic moves to result in the retimed circuit.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS

h
n
I)

•
•

•
•

•

F

fm
(1
y

backward

forward

110

Figure 7.6: Forward and backward retiming moves across a multi-output element.

7.2.3 Notions of Replaceability

Here we discuss the various notions of design replacement that are relevant to

study the effect of retiming transformations.

The notion of safe replaceability was presented in Chapter 4. A design C is a safe

replacement for a design D (denoted by C •< D) if for any state Si in design C and any

input sequence, there exists a state so in design D such that the output behavior from si

is the same as that from sq on that input sequence. We showed that the above condition

is necessary and sufficient so that the replacement cannot be detected by any environment

that can only control and observe only the primary inputs and outputs, respectively, of the

design.

A stronger notion of design replacement is the classical notion of state machine

implication usually defined in the context of state machine equivalence. A design C implies

design D (we denote that by C C D) if for any state Si in design C there exists a state «o in

design D such that .«?i is equivalent to .so O-0-- on any input sequence, the output behavior

from si is the same as that from so)-

The difference between < and C lies in the fact that for the former the state sq in

D depends not only on «i but also on the input sequence, whereas for C s0 only depends

on Si and is the same for any input sequence. Recall from Remark 4.2 (on page 34) that if

C < D, there may be a state in C which is not equivalent to any state in D. Thus, C is a

strictly stronger notion than •<.

In the following sections we prove results which characterize the conditions under

which the relation C holds between two designs. The following proposition shows that these

results automatically imply safe replaceability (:<) as well.

Proposition 7.1 If C C D, then C <D.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 111

Proof. Consider any state Si £ C. Since C C D, there exists a state so £ D which is

equivalent to s\. Thus, given si, for any input sequence tt, there is a state in D (namely

so) such that s\ and so output the same sequence on it. D

7.3 Safety of Retiming Moves

In this section we classify retiming moves into those which are strictly safe for

safe-replacement, and those which are safe only under the assumption of a delayed design.

There are four kinds of atomic retiming moves: {backward, forward} across a

{justifiable, non-justifiable} element.

Proposition 7.2 // design C can be obtained from design D by a single retiming move

which is either a backward move or across a justifiable element, then C C D.

Proof. There are two cases for retiming across the element F\

(i) (backward retiming moves). Assume that design D has latches li,l2,..., Ik-

Let the latches h,l2,...,ln be retimed to latches l\,l2, .--,l'm. Consider any state in design

C, say si = [(l'i,l2,...,l'm,ln+i,...,lk) = (Y{,Yl,...,Y,,n,Yn+i,...,Yk)}. Let Y' denote

(Y;,Y2\...,Y^)- We claim that state s0 = [(/i,/2,.. .,/*) = (ft(Y'),f2(Y'),---, fm(Yf),
Yn+i,.. .,Yk)] in design D has the same input-output behavior as S[. The proof of this

claim is by induction on the length of an input sequence. Outside of the retimed area,

the two circuits D and C are identical. On the first clock cycle, the local output of F

is (/i(V")« h{Y'),..., fn{Y')) in both designs D and C. Suppose the local outputs are

identical upto the fc-th input vector. Then the fc-th input vector W reaching the retimed

area will be identical for both designs. Now, the local outputs of the retimed area in both

designs is {ft{Y'), f2{Y'),..., fn{Y')). Since we have shown that the local outputs are equal

in both designs, and outside the retimed area the designs are identical, the two primary

outputs of the two designs are also equal. Thus, sq and «i are equivalent.

(ii) (forward retiming move across a non-justifiable elemejnt). Assume

that design D has latches li,l2,..., h- Let the latches lu l2,... ,lm be retimed to latches

l[, l2,..., l'n. Consider an arbitrary state in design C, say «i = [(l[, l2, ...,l'n, /m+i> ---,h) =
(Y{, Y{,..., Y^, Vm+i,..., Yk)\- Since the logic element is justifiable, there must exist an

input vector Z = {Zx,..., Zm) such that for each i £ {1,..., n}: ft{Z) = Y-. Now, consider

the state so = [{h,h,---,h) = {Zu .. .,Zm,Ym+i,.. .,Yk)] in design D. Using an induction



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 112

argument, similar to the last case, on the length of the input sequence, we can easily show

that the two states so and s\ are equivalent.

Thus, for both the cases, for every state in C there is a state in D which is

equivalent to it. •

Since C is clearly transitive, it follows that if we disallow forward retiming moves

across non-justifiable elements the retimed design isa safe replacement ofthe original design:

Corollary 7.3 IfC can be obtained from D using an arbitrary sequence of retiming moves,

none of which is a forward retiming move across a non-justifiable element, then C C D.

In the following, we will use the notion of delayed designs (from Definition 6.1) to

study the effect of forward retiming moves. The notion of delayed design is similar to the

notion of sufficiently old configuration used in [45] to show the validity of retiming moves.

Proposition 7.4 // design C can be obtained from design D by a single forward retiming

move across a non-justifiable element, then C1 C D.

Proof. Assume that the original design has latches li,l2,.. .,lk- Let the latchesh,l2,---,lm

be retimed to latches /}, V2,..., l'n. Let thelatches li,l2,...,ln be retimed to latches l\,l'2,.. .,l'n.

Consider any state in design C1, say si = [{l'i,l2,...,ln,lm+i,---,h) — {Y{,Y2,.. .,Yn,

}rm+i,..., Yk)]. Since the design C1 represents the design C afterit hasbeen clocked through

for 1 cycle, there must exist a vector Z = (Zi,..., Zm) such that for each i £ {1,..., n}:

fi(Z) = Y{. The rest of the proof is identical to that of case (ii) in Proposition 7.2. n

The Propositions 7.2 and 7.4 lead to the following corollary which is the primary

correctness result proven by Leiserson and Saxe [45]:

Corollary 7.5 (Lemma 1 in [45]) If C can be obtained from D using an arbitrary se

quence of retiming moves, then there exists a non-negative finite integerk such that C C D.

This result requires up to delay using the retimed design for a finite number of

cycles after power-up. Notice our short proof of the above lemma; in contrast, the proof

given in [45] is about 4 pages long. However, in the proof of Lemma 1 in [45], the integer

n was shown to be the equal to maxv^v{-lag(v)), i.e. the maximum number of forward

retiming moves across any combinational element in the circuit (since lag(host) is 0, n

is well-defined for a given retiming). We can obtain an improvement over that bound



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 113

by making it independent of the number of forward retiming moves across any justifiable

elements:

Theorem 7.6 // C can be obtained from D using a sequence of retiming moves such that

there are no more than k forward retiming moves across any non-justifiable element, then

CkCD.

The above theorem is a simple corollary of:

Lemma 7.7 If a design Dn can be obtained from design Dq after n successive atomic re

timing moves such thatfor any non-justifiable element there is at most one forward retiming

move, then Dn C Do.

Proof. Let Do be retimed n times successively to obtain Di,..., D„ (i.e. the i-th retiming

step transforms D,_i to D,). Of these n moves, the total number of forward retiming

moves across any non-justifiable logic element does not exceed 1. Choose an arbitrary state

tn £ Dn. We will show that for all i £ {0,..., n - 1}, there exists a state U £ D, such that

tn is equivalent to J,; thus Dn C D,, for all i £ {0,..., n —1}.

We will label each net of each D, (since each junction has been replaced by a

JUNC, each net has exactly one fanout) with a 0, 1 or /. The labeling procedure starts

by labeling Dn and proceeds inductively labeling D,_i after D, has been labeled. During

the labeling procedure we prove by induction that the following two labeling properties are

maintained:

(Labeling Property 1) A net in D, is labeled / if and only if it lies on a combinational

path from a latch output to an input of a non-justifiable logic element, such that of

the j-\\\ retiming moves (where iI < j < n), one is a forward move across this element,

and none are backward. We call such a path inconsistent (hence the label /). This

property also implies that the input net to any latch will never be labeled /.

(Labeling Property 2) In any design D,, if the labels on all inputs x of any combinational

element F are in {0,1}, then the labels on the outputs are y = F(x).

Labeling Dn: Let Do,..., Dn each have / primary inputs. Consider the arbitrarily

chosen state tn £ Dn. Since Dn consists of states reachable from D in one clock cycle, there

exists a state t'n £ Dn and an input vector i in the input space {0,1}' such that i drives



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS

flaj Pa ^4-

labelling fl\

V I
-*3

-£*

fl,_,

retiming

VI Q*1

«gn *q

Figure 7.7: Labeling for a backward retiming move.

114

t'n to state tn- Now. set the values of the latches in Dn to correspond to the state tn and

let the primary inputs of Dn be set to T. The label of any net in Dn is the value that wire

takes during the first clock cycle if i is applied to of D„ when it is in state t'n. No net is

labeled /. Clearly Labeling Properties 1 and 2 hold.

Labeling D,_i: The labeling procedure starts with D„ and proceeds towards

Do labeling D,_i relative to D,. Assume that D, has been labeled and that the Labeling

rroperties hold for il. Let the /-th retiming move be across an element with p inputs and <y

outputs implementing a function F = (ft,...,/,). Outside of the retimed area, the nets of

D,_i inherit the labels from D,; in the following we describe how to label the nets affected

by the retiming move, based on type of the i-th retiming move:

(a) Backward retiming across a logic element (Figure7.7). Since Labeling Property

1 holds in D,, then for each j: aj € {0,1}. For each j, label Xj = aj. For each k, label

yk = fk{a^a2,..., ap), and Zk = Ck- Thus, Labeling Property 2 holds for D,_i.

For D,_i, none of the y^s lies on an inconsistent path, and since the i-th retiming

move is a backward move across F, none of the Xj's lies of an inconsistent path.

Finally, z* lies on an inconsistent path if and only if Ck lies on one. So, Labeling

Property 1 also holds for D,_i-



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS

•

•

at

F*
b, g ci

»•* y »«i

«•

labelling /ft retiming

»2| y? h

F

Z1

•

0,-1

^M1 /<j

Figure 7.8: Labeling for a forward retiming move.

115

(b) Forward retiming across a justifiable logic element (Figure 7.8). For each j,

label xj = aj, and for each k, label Zk = Ck. If any Ck = I, then for each j, label

j/j = /. Otherwise, Ck £ {0,1} for all k and since the element is justifiable, there

exists (di,..., dp) such that for each k, fk(di, ...,dp) = c*. In this case, for each j,

label yj = (/j. Clearly, Labeling Property 2 holds for D,_i.

In D,, since F is justifiable and each output goes to a latch, F and any of its in

put/output nets cannot lie on an inconsistent path. Since Labeling Property 1 is true

in Di, then for each j: aj £ {0,1}. For D,_i, (a) no Xj = /, (b) each t/j = / if and

only if some Ck = /, (c) and Zk = I if and only if Ck = /. Clearly, since Labeling

Propery 1 holds in D,-, a net in D,_i is labeled / if and only if it lies on an inconsistent

path. So, Labeling Property 1 holds for D,_i.

(c) Forward retiming across a non-justifiable logic element (Figure 7.8). For each

j, label Xj —aj and yj = /. For each k, label Zk = Ck. Labeling Property 2 holds

trivially for D,_i.

Since the i-th retiming move is a forward move across this non-justifiable element, and

at most 1 forward move is allowed for each such element, then for each ,;' > i, none

of the j-th moves is forward across this element. Since Labeling Property 1 holds for



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 116

Di, then no aj = /, i.e. aj £ {0,1}. For JD,-i» (a) "° xj —h (b) each yj = /, (c) and

Zk = / if and only if <?* = /. Clearly, the labeling procedure for D,_i labels a net / if

and only if it lies on an inconsistent path. So, Labeling Property 1 holds of D,_i.

Thus, by induction, Labeling Properties 1 and 2 hold for all the designs Do,. ••, Dn.

It may be helpful to note that the labelings on D,- do not imply that nets can ever attain

these values during a simulation for this design; rather, the net labelings are just a way

of computing a set of equivalent states across Do, ••-,Dn. Let state U £ Di be the state

corresponding to the assignment of each latch in Di to the label of the input net to the

latch (we know from Labeling Property 1 that this label is always 0 or 1). The fact that the

net labelings may not be attainable for any simulation just means that state ti may not be

reachable from any state in D,, but D, can surely power up in any possible state, including

U-

Next, analyzing the labeling procedure for D,, we prove the following:

Claim: State /,-_i in D,_i is equivalent to state t, in D,.

We prove the claim by showing that any primary input sequence to D, starting from state /,

produces the same primary output sequence when applied to D,_i from state f,_i; also, the

local output sequences (of the retimed area shown in Figures 7.7 and 7.8) in D, and D,_i

are identical. The proof of the claim is by induction on the length of the output sequence.

In the following, we abbreviate (ai,...,ap) by a, (bi,...,bq) by b, (xi,...,xp) by x, and

(yi,....y7) by y.

Base case (output vector on first cycle): For case(a) (Figure 7.7), for the sub-

circuit in Di, the local output vector from state £, on the first cycle is {ft (a),f2(a),. . ., fq(a)),

and for D,_i the local output vector from state f,_i is (yi,..., yq). But we know from the

labeling procedure that yk = fk{d). For cases (b) and (c) (Figure 7.8), for the subcircuit in

D, the local output vector from ti on the first cycle is (6i,.. .,bq), and for D,_i the local

output vector from f,_i is [ft{x),. ..,/,(£)). But we know that x = a and from Labeling

Property 2, bk = /)t(a). Thus, for all three cases, both the subcircuits in D, and D,_i,

starting from states ti and £,_i respectively, locally output the same vector on the first

clock cycle. Since D, and D,_i are identical outside the retimed area, the primary output

vectors for D, and D,_i are equal on the first clock cycle.

Induction step: Suppose the local outputs are identical upto the m-th clock

cycle. Then the m-th local input vectors reaching the two subcircuits in D, and D,_i are



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 117

identical, say i = (ii,...,ip). For each of the three cases (a), (b) and (c), the local output

vector at the (m + l)-th cycle is (ft(i),...,ft(i)) for the sub-circuits in both D, and D,_i.
Again since the designs are identical outside the retimed area, the primary output vectors

for Di and D,_i are equal on the (m + l)-th clock cycle. •

As an example of the labeling procedure in the above proof, consider Do,..., Dq

in Figure 7.9, where D6 is obtained from Do after 6 atomic retiming moves. Starting with a

labeling of the nets of Dq we successively obtain the labelings for each of the other designs.

Note that because the 4-th retiming move D3 -» D4 is a forward move across a junction,

each of D0,..., D3 contain nets labeled /. For i £ {0,..., 6}, all states £,'s are equivalent to

each other where £, (in design D,) corresponds to the latch values set to the labels on the

input nets of the latches. Note that if we use the bound in the proof of the main theorem

in Leiserson and Saxe (the same result as Corollary 7.5), that will show that D\ C Do since

there are two forward retiming moves across the AND-gate (Do —>• Di and D.\ —> D5); on

the other hand, Lemma 7.7 gives us D| C D0 since there is at most one forward retiming

move across any fanout junction.

Tightening the Additional Power-up Delay

The decision to model only atomic retiming moves limits the tightness of the above

result. However, we can easily tighten the above result by observing that any collection

of interconnected combinational elements can be viewed as a single multi-output gate. It

might be possible to combine one or more non-justifiable elements into a single justifiable

element. Treating this larger element as a black box we can freely move latches back or

forward across (but not inside) this element without causing additional power-up delay.

Theorem 7.6 implies, for example, that if a design has only single-output gates,

then any number of retiming moves (forward or backward) across those gates is fine, but

we must restrict the number of forward retiming moves across any fanout junction to be at

most k for C'k C D to hold.

Note that the maximum number of forward retiming moves across* any gate can

be bounded by the maximum number of latches in any simple cycle in the circuit.3

3Recall that the primary outputs of the circuit are connected to the hostand the primary inputs are fed
by the host; hence, cycles may include paths from the primary outputs through the host to the primary
inputs.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS

Onln L

-<Mr

4D^-T P*1^-0 Onl0^-

inOOtOnl

SiOn 1
all Onl

5
n2>-

peni^oAji

P%±

5
±2> Pr&>V<° %i

£>^

Do

Di

£>2

D3

D4

Dh

£><>

Figure 7.9: Example of the labeling procedure.

118



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 119

Test Set Preservation

The example given in Section 7.1.1 showed that retiming may invalidate a single-

stuck-at-fault which was valid before retiming. We can use the results discussed above to

show the following result:

Theorem 7.8 If C is obtained from D using a sequence of retiming moves such that there

are no more than k forward retiming moves, then the test set for D is also a test set for

Ck.

Proof. (Sketch) Consider the fault-free circuit G and the faulty circuit F. Create a circuit

T = (G || F) which denotes the two circuits next to each other and each pair of outputs of

G and F fed to an XNOR gate. Any single stuck-at-fault test will produce a 0 at one of the

outputs of T. Consider any single forward retiming transformation which modifies the two

parts of T in the same way; the resulting circuit is T'. Now, for any single stuck-at-fault

outside the retimed area we can use the techniques in the proof of Theorem 7.6 to prove

the desired result. The forward retiming step creates m new nets between the logic element

and the m retimed latches. For any single stuck-at-fault on any such input net to a latch,

we use the observation that we can use the same test as for the output net of the latch but

we may have to delay the circuit by 1 clock cycle to let the stuck-at-value settle inside the

latch. D

For the example in Section 7.1.1 this theorem concludes that the test sequence

0 •1 is a test sequence for the same fault in design C (Figure 7.3). Thus, either of the two

sequences 0-0-1 or 1-0•1 would serve as a test sequence for C. It can be seen by simulating

the design that either of these test sequences produces X •0 •0 in the fault-free version of

C and the sequence X •0 • 1 in the faulty version, thus distinguishing the two versions on

the 3rd clock cycle.

7.4 Retiming Preserves Conservative Three-valued Simula

tion

Consider again circuit D in Figure 7.1. The output of AND gate-1 is 0 whether

the latch has value 0 or 1. For this reason, it is easy to deduce that a single cycle with

primary input 0 will reset the latch to value 0. However, notice that if the latch is assigned



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 120

the indeterminate value X, then a conservative three-valued simulator (CLS) will propagate

X values to both of the inputs of AND gate-1. Furthermore, the CLS will propagate an

X as output of the AND gate because the CLS has lost the information that the X's are

complements of each other. Hence a single cycle input of 0 that will actually reset design

D will not appear to reset design D in three-valued simulation. This should not surprise

us because the amount of information lost by three-valued simulation is precisely the same

information lost by moving a latch forward across an unjustifiable element. We show that

this is a general phenomena relating three valued simulation and retiming.

Simulation is an important component of the IC design verification process. The

most popularand fastest way ofsimulating gate-level designs is three-valued simulation [38].

It is assumed that all latches power up as X, meaning that the value is undetermined. Three-

valued logic is well-known for gate-level elements [27]. Three-valued simulation results give

the output sequences for a given input sequence. However, it is well-known that three-valued

simulation is more conservative than reality: if three-valued simulation shows a 0 (or a 1)

for an output, that output will be 0 (or 1) for all power-up states; however, the converse

is not true because three-valued simulation might show an X for an output even though

that output may be determined to be either 0 or 1 from all power-up states. Although

three-valued simulation is conservative, in the absence of other fast methods of verification

it is popular in the design process. In fact, if a three-valued simulation shows an X where

a designer expects a 0 or a 1, the designer often changes the design so that the output of

a CLS agrees with the desired output, even though the original design may also have been

correct.

This motivates the work presented in this section. Here, we show that if our

yardstick for correctness of a design is the output of a CLS, starting from the state in which

all latches are initialized to X, then retiming transformations do not change the observed

behavior of a design (as seen from the output of the CLS).

Given that a conservative three-valued simulation is used for the design, we can

assume that three-valued logic is already defined for all the combinational logjc elements in

the design, for example, for a 2-input NOR gate, the output is 1 if both inputs are 0, 0 if

either input is 1, and X otherwise. We have to show that if two designs Do and D„ start

off with each latch initialized to X, and D„ is obtained from Do by a sequence of retiming

moves, then any sequence of three-valued inputs will produce the same outputs from both

Dn and Dq. As in the last section, we model junctions as a special single-input multiple-



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 121

_j£_
•1 h ' °1
•2 : •

C

•fc F
h

n'fl
o,11

retiming

— :;=# a
•

•

°1

•

•

D

<*^ F
>« o,

—~~

Figure 7.10: Backward retiming move across a multi-output logic element.

output combinational element JUNC. Also, assume that if all inputs of any combinational

element are A"'s, then all outputs are A''s. We need this condition to guarantee that when

all of the latches are initialized to X's in both an initial and a retimed circuit, they will

generate the same outputs. For example, if a gate had a constant value of, say 0, then a

forward retiming move across this gate would assign the value of X in the initial state. If the

output of the gate were a primary output, they would obviously have different observable

behavior.

We prove the main result in this section by considering one retiming move at a

time, and then using induction on the number of retiming moves. Suppose that design D

is obtained from design C by a single retiming move (Figure 7.10). We define a relation

TZ between the states of C and the states of D. We will assume that the retiming move is

backward across F. The case for a forward retiming move is symmetric — just the roles

of C and D are interchanged in the definition of TI. Since D results from C by a single

retiming move, designs C and D are identical except for the retiming area around the logic

element F shown in the figure. Suppose that F implements the functions ft, f2, ...,fq- For

design C, let inputs to F be [ii,i2,..., ik), the latches of C be [li,l2, ...,lq) and the latch

outputs be (oi,o2,. --,oq). For design D, let the inputs be {i'i,i2,---,i'k), tne latches be

[lli,ll2,.. .,llk) and the outputs of F be (o'i,o2,.. .,o'q).
Now consider any state so of C and state Si of D. Without loss of generality

and to simplify the discussion, we assume that the primary inputs of C and D are latched

immediately outside the retiming area. We now define what it means for so and «i to be

related by TZ. First we require that (1) corresponding latches outside of the retiming area

have the same values for states so and s\. Second we require that (2) corresponding outputs

of the retiming area have equal values, that is for each i, o, = o\. We observe that conditions

(1) and (2) imply that the primary outputs of the two circuits have equal values.



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 122

We now show that that if soTZsi and if both designs are clocked one cycle with the

same primary inputs to get states s0 and s[, respectively, then s'qTZs'i. This implies that for

any sequence of the same three-valued inputs to the two designs, the primary outputs will

also be equal.

Theorem 7.9 Suppose circuit D is obtained from C by one retiming move. Suppose also

that so and si are three-valued states ofC and D respectively, and suppose that sqTZsi. Let

s'o and s[ be states of C and D respectively after introducing the same three-valued input

sequence. Then s0TZsfi.

Proof. Suppose circuit D is obtained from C by a backward retiming move. The forward

case is the same with C and D reversed. Suppose that sq and si are states of designs C and

D respectively, such that soTZsi. We aim to show that next states s0 and s\ are also related

by TZ. Conditions (1) and (2) of TZ and the assumption that primary inputs are the same

imply that outside the retiming area, the next state functions of corresponding latches have

the same value. Therefore condition (1) of TZ is satisfied for next states s0 and s[.

We observe that conditions (1) and (2) imply that (3) the corresponding inputs to

the retiming area are equal, that is, for all j, ij = ij. But (3) implies that the inputs (i.e.,

next state) to latches li,h,---Jq equal F{i\ ,i'2,..., i'k)- That is to say, the inputs to the /

latches equal F of the inputs of the // latches. This in turn implies that, in the next state,

corresponding outputs of the retiming area are equal, i.e., condition (2) holds in the next

state. We therefore conclude that s0TZs\.

By induction, we conclude that the relation R is preserved by any sequence of

inputs starting from states in which R holds and the theorem is established. •

By induction on the number of retiming moves, we have the following corollary:

Corollary 7.10 Suppose circuitDn is obtained from Do by a sequence ofn retiming moves.

Suppose also thai so and Si arc states of Do and Dn respectively and that SoTZs]. Then for

any sequence of three-valued input vectors, the output sequences of Do and Dn from the

states so and si, respectively, are the same.

When a CLS is used to verify the correctness of designs, all latches are initialized

to A"'s and input vector sequences are supplied to the CLS. If all latches are initialized to

A''s in both the original design D0 and the retimed design Dn, then clearly the two initial



CHAPTER 7. VALIDITY OF RETIMING TRANSFORMATIONS 123

three-valued states in the two designs are related by the relation TZ (it is here that we need

our assumption that for any combinational element in the design if all inputs are A's, then

all outputs are X's). The above results lead to the following result, which establishes the

validity of retiming moves, if three-valued simulation is used as a criterion for correctness

of the design:

Corollary 7.11 Suppose circuit Dn is obtained from Do byany sequence of retimingmoves.

Suppose that so andSi are the states of Do and Dn respectively obtained by initializing each

of the latches to the value X. Then for any sequence tt of three-valued inputs, the output

sequences from of Do and Dn are the same. If tt resets Do then it also resets Dn and

vice-versa.



124

Chapter 8

Retiming the Initial State

Even though we have modeled all latches using no-reset latchesin this thesis, many

latches in real designs do have reset latches. When retiming such latches, one problem that

arises is to obtain the new initial values for the retimed latches. This problem has been

raised peripherally in [4, 53] and in much more detail in [81]. It has been claimed that if reset

latches are modeled using no-reset latches, that restricts the class of possible retimings. In

this chapter, weshow that, this is not the case and using no-reset latches and reset circuitry

provides the most general model. This model even allows us to solve the problem for the

case when it is not possible to retime the initial state without altering combinational logic

(this solution had earlier been suggested by [54]). We prove the correctness of retiming the

initial state using no-reset latches and we suggest an overall retiming strategy for use by a

retiming tool.

8.1 Modeling Reset Latches

We will deal with the validity of retiming transformations with the assumption

that all latches are no-reset latches. For designs where some latches are reset latches we can

transform these latches to no-reset latches using the transformation described in Chapter 2.

However, it has been pointed out to us [66] that once we transform an origmal design to

a new design via such transformations we may no longer be able to retime the new design

to designs which were retimed versions of the original design. In [54, page54] Malik also

claims that making the reset circuitry explicit, as we suggest by our transformation, has

two problems: (i) this results in less flexibility for retiming algorithms, and (ii) since latches



CHAPTER 8. RETIMING THE INITIAL STATE 125

IN ~i>C^Jl>^i>0— OUT

IN OUT

Figure 8.1: Retiming reset latches and the initial state

migrate during retiming, the reset logic may no longer be associated with the latches. To

illustrate this "problem", we consider the following example.

Consider the top circuit C in Figure 8.1. The circuit C consists of a chain of 3

inverters. The delay of each of the inverters is 1. The latches are reset latches and when

the global reset line is pulled, both latches assume the value 0 (denoted in the figure by the

value on the latches). Now. the problem is to retime these latches to achieve a minimum

delay for the circuit. We can achieve this by retiming the original circuit to the bottom

circuit D in the figure. This circuit has a delay of 1, whereas the original circuit had delay

of 3. Also notice that the initial state of the circuit has been retimed so that the initial

value for the left latch is 1, and that of the right latch is 0. For a retiming move on a

circuit with only reset latches, an equivalent initial state can be obtained by taking the

forward (backward) image of the initial values for a forward (backward) retiming move [81].

The forward image is always deterministic but the backward image may be empty or may

contain several solutions. If it is empty the retimed initial state cannot be obtained in

straightforward say (see Section 8.3).

Now, let us see what happens if we model the reset latches with no-reset latches,

as advocated in Section 2.1.1. Using the reset transformation (replacing reset latches

with no-reset latches plus reset circuitry), the original circuit C transforms to circuit Ci in

Figure 8.2. Notice that this circuit has an extra input, the global reset line. Each of the

inverters has delay 1, as before. However, the additional combinational logic added (each

of the two AND gates) has delay 0. If we retime this circuit to achieve a minimum delay, it



CHAPTER 8. RETIMING THE INITIAL STATE

IN

RESET-r-c

IN—

RESET-j-^

OUT^>o_|>>-[>o_

c

1
OUTH> [>—

D,

Figure 8.2: Retiming after the reset transformation

126

seems that we can only retime the front latch forward across the inverters; we can no longer

retime the rear latch because the AND gate is in the way. Thus, it seems that we can no

longer achieve a minimum delay of 1, as before. So, it seems that the reset transformation

may prevent our synthesis tool to reach regions of design space which were reachable before

this transformation.

The solution of the above "problem" is to realize that the combinational logic

added to model reset latches using no-reset latches is actually part of the latch (like inside

of the reset latch). So if a reset latch in retimed in the original circuit, in the new circuit

the no-reset latch should be retimed along with the combinational logic which was added

in the reset transformation. Before giving the general result about how this combinational

logic can always be retimed along with the no-reset latch, we show how the problem in the

above example can be taken care of.

The solution is shown in Figure 8.3. The transformation logic is retimed along

with the latch, and the desired solution (of delay 1) is achieved.

Henceforth, we will use the term "retiming" to also denote retiming the no-reset

latches along with their reset circuitry, although in a strict sense, this would classically

be called retiming and resynthesis. Throughout this chapter, as we retime the latches, we

will try to keep the reset circuitry next to the no-reset latches. Once we are done with

retiming, we can efficiently transform such latches back to reset latches, if they are cheaper



CHAPTER 8. RETIMING THE INITIAL STATE

IN-

RESETS

IN-

RESET-r-o

RESET-jV

IN-

RESET-
H>-^

\ retime

OUT-|>H>^0—
C,

I retime

n^0"]) D>oM)>o—our

H>— OUT

0-t> H> OUT

ft

Figure 8.3: Retiming the explicit reset circuitry along with the latches

127



CHAPTER 8. RETIMING THE INITIAL STATE 128

Circuit STG

initial state

—OUT

no equivalent initial state

IN
H> OUT

Figure 8.4: Example of impossible retiming without adding logic

or consume less delay, or for any other reason.

8.2 Retiming Initial State Without Adding Logic

First, it should be pointed out that in some cases it is not possible to retime

reset latches without adding extra combinational and sequential logic to the circuit. This

is illustrated by the following example (from [81]):

Consider the upper circuit in Figure 8.4. Each of the reset latches has a hardware

initial value which is indicated on the latch. If we want to retime these latches backward

across the NOT gate, to obtain the circuit drawn below, we would like to determine the

equivalent initial state for this circuit. The goal is to determine a state such that the

designated initial state of the lower circuit is equivalent to the initial state of the upper

circuit (so that when the implicit reset line is pulled to 1, both circuits have equivalent

behavior). However, it is clear from the STG of the lower circuit that no such state exists.

The only way to achieve an equivalent design as the above design is by adding extra logic

to the circuit; the solution, from [81], is discussed in Section 8.3. There we will show we



CHAPTER 8. RETIMING THE INITIAL STATE 129

can simulate retiming for this class of circuits if we transform the design reset latches to a

design with only no-reset latches using the reset transformation. In this section, we show

that if we can retime a circuit with reset latches without adding extra logic, we can achieve

the same retiming on the transformed circuit.

We review two strategies for retiming initial states, and show that both can be

duplicated even when using the reset transformation. The first strategy is to remap the

initial state after each retiming move (as in [4]). We show how this can be achieved in our

model in Section 8.2.1. However, this strategy, by virtue of being local, may make local

decisions which may hinder a future retiming move down the line. For such situations it

may be possible to determine the final initial state by looking at the entire set of retiming

moves and analyzing their effect on the transition graph of the design [81]. In Section 8.2.2

we show how our model can simulate this.

8.2.1 Local retiming of the initial state

Suppose we are retiming across a multi-output gate F = (ft,..., /„), where each

ft is a function from input space {0, l}n to {0,1}, as in Section 7.2.2. Recall that we also

model junctions as single input multi-output gates. Bartlett et al. [4] describe the standard

method for obtaining the new initial state if we retime reset latches across the gate F.

Suppose the original design has one reset latch at each of the inputs of the gate,

the initial values of the latches are a = (ai,.. ,,am), and we want to retime the latches

forward across F. The initial values on the reset latches in the retimed design are given

by b = (&!,...,&„), where each 6, = /,-(o). Now, consider backward retiming across F.

Suppose the initial values of the latches on the outputs of F are 6 = (&i,.. .,6n). If there

is a set of values a = (ai,..., am) such that for each i £ {1,..., n}: 6, = ft{a), we set the

initial values on the retimed latches to a. If there is no such vector, we cannot achieve this

retiming; we discuss this scenario in Section 8.3. Notice that there may be multiple choices

for selection of initial values in case of backward retiming. Sometimes one choice is worse

because it prohibits future retimings while some of the other choices do not;*for such cases

we may need to branch and backtrack if we make an unwise local choice. We see an example

of this at the beginning of Section 8.2.2.

Now, we will give a procedure of retiming no-reset latches along with the reset

circuitry so that if circuit D is obtained from C (where all latches are reset latches) after



CHAPTER 8. RETIMING THE INITIAL STATE 130

one atomic retiming move, as described by the above remapping of the initial state, then

the transformed circuit C\ = $(C) can be retimed to D\ such that Di = $(D), where $

denotes the reset transformation (explicit modelling of the reset circuitry). We show that

the retimed circuit Di (or D) is a delay replacement of the original circuit Ci (or C).

Proposition 8.1 For each retiming of a circuit with reset latches, we can achieve the same

retiming on the transformed circuit (modeling reset latches with no-reset latches plus reset

circuitry) such that the retimed design is a delay replacement of the original design.

Proof. Suppose we are retiming across a multi-valued combinational logic function F =

(ft{xi,...,Xm),...,fn{Xl,---,Xm))-

There are two cases:

a) The move from C to D is a forward move. Refer to Figure 8.5. Circuit Ci

represents $(C). Thus if in circuit C the i-th latch has the initial value a,-, then in circuit

Ci the i-th latch is modeled with a no-reset latch and a MUX with inputs x, and a, (for

a given a,, the constant a, can be propagated inside the MUX, to get a simpler gate as

in Figure 2.1). The retiming from circuit Ci consists of two steps: in step 1, just the

latches are retimed. In step 2, the reset circuitry is retimed. The values 6,'s are such that

bi = fi(ax,.. .,am). Step 1 causes 1-delay replacement (Proposition 7.4). To argue that

step 2 is a safe replacement, we observe that in this step only the combinational portion has

been altered, and thus all we need to prove is that the combinational functionality of the

retimed area is identical. If we denote the Boolean value of the reset line by the variable

r, then functionality of the i-th output is r -/»'(ai>.. .,am) + r • ft(xi,.. .,xm) which is the

same as r • bi + r • /,-(ari,..., xm). Thus, step 2 results in a safe replacement (or a 0-delay

replacement), and by the transitivity of delay replacements (Proposition 6.2), D\ is a 1-

delay replacement of C\. And now we can replace the no-reset latches plus reset circuitry

in Di by reset latches with the appropriate initial values to get the desired retimed design

D.

b) The move from C to D is a backward move. Refer to Figure 8.6. Here, since

we know that the retiming can be achieved for reset latches, we can assume that there exist

values (ai,.. .,am) such that for each i £ {1, ...,n}: ft{ai,. ..,am) = 6j. We achieve the

same retiming on the transformed design Ci in two steps. In step 1, we just retime the

reset circuitry backward. By an argument similar to the one for the forward retiming case,

this gives us a safe replacement. In Step 2, we retime the no-reset latches backward. From



CHAPTER 8. RETIMING THE INITIAL STATE

Circuit C

ft,
•*1

•

•

•

ft.
y .

•^•m

Circuit D

7n

o

«•

An

*1—I

a—1

a^r—I

RESET

Circuit Cl

stepl

RESET

step2

RESET

ft>-

L^

Circuit Di

Figure 8.5: Forward retiming of the reset circuitry.

131

•y»

— V„



CHAPTER 8. RETIMING THE INITIAL STATE

fti
•

•

ft.
Y
•^m

Circuit C

Circuit D

-yn

O

fl,—

&

Circuit Ci

stepl

RESET

step2

RESET

Circuit Di

Figure 8.6: Backward retiming of the reset circuitry.

132

RESET

>»



CHAPTER 8. RETIMING THE INITIAL STATE 133

Proposition 7.2, step 2 leads to a safe replacement as well. Thus Di is a safe replacementof

C\. Then we can undo the retiming transformation to achieve the desired retimed circuit

D. D

Thus, when backward or forward retiming of reset latches across combinational

logic elements is possible by remapping the initial values of reset latches, this can always

be simulated by no-reset latches by modeling the reset circuitry explicitly.

8.2.2 Global retiming of the initial state

The procedure for obtaining the new initial values for each atomic retiming move

that we described at the beginning of the previous section can run into problems because it

uses only local knowledge when making decisions about which new initial value to choose

for a backward retiming move. This is easily seen by an example. Consider the top circuit

in Figure 8.7. We want to retime the latch at the output backwards to obtain one latch at

each of the two inputs. After the first backward retiming move across the OR gate (step 1),

we choose the new initial values of the two new latches to be (1,1) (the other choices were

(1,0) and (0,1)). However, if we continue with this choice we see that after step 2, we are

unable to retime the two latches backwards across the junction. On the other hand, if we

had chosen (1,0) as the retimed value after the retiming across the OR gate, we would not

have run into this problem. This problem arises because of reconvergence in the logic, and

we could solve this if our retiming algorithm would have the ability to backtrack. However,

a more elegant solution is provided in [81] where they analyze the global behavior of all

latches, and thus directly find the value of the initial state for the entire sequence of retiming

steps.

First we review the procedure in [81]. Their solution requires forward retiming

across the host node (recall, from Section 7.2.1, that the host node is the node in the

retiming graph that connects all outputs to all inputs). In the previous section we had

only shown the correctness of retiming the no-reset latches plus reset circuitry for retiming

across combinational elements. After we review the procedure in [81], we will prove that

we can retime the no-reset latches plus reset circuitry across the host node also, so that we

can simulate the results of [81]. Later, at the end of this section we will explain the caveats

of using this algorithm for obtaining a global retiming of the initial state.



CHAPTER 8. RETIMING THE INITIAL STATE 134

retime

^
t>
retime

stepl

step2

l _

-t>
Figure 8.7: Local retiming of initial state can conflicts for future retimings.



CHAPTER 8. RETIMING THE INITIAL STATE 135

Touati-Brayton's algorithm for determining new initial state for a retiming

Here we describe the algorithm in [81] to obtain a new initial state for a given

retiming for a circuit where all latches are reset latches.

Recall, from Section 7.2.1, that a retiming graph contains a vertex for every com

binational node plus an extra node, the host node. The weight of an edge is the number of

latches between the two nodes in the original design. A retiming TZ is an integer mapping

lag of each vertex such that for everyedge (u,v) with weight w, the value w-\-lag(v)-lag(u),

which denotes the number of latches on the path from u to v in the retimed design, is non-

negative. It can be easily seen that two different assignments to the lag function lagi and

lag2 yield exactly the same number of latches between any two nodes if lagi(v) -lag2(v) = k

for some constant. Touati and Brayton use this fact to add a smallest constant to each lag

so that lag(v) < 0 for each node v. Thus, they avoid backward retiming moves altogether,

which is a good idea, because a single backward retiming move may require choosing between

multiple possible retimed initial state values, and the right choice can only be determined

by a more global knowledge and computation of all other retiming moves. However, now

they have to retime the state for forward retiming moves across the host node also.

They give the following suflicient condition for a circuit Do vviih initial state «o

when they can obtain a retiming without adding extra logic:

3s £ Qd0,k - $D0{s,n) = «o and \tt\ = -lag(host) (8.1)

The above condition says that there must be a state s and a sequence tt of length

equal to the number of forward retiming moves across the host such that state s goes to

So under this sequence. If this condition is satisfied, they use the following procedure to

obtain the new designated initial state of the retimed circuit. We assume that we are given

initial design Do, state s, sequence tt and a lag assignment such that for all v: lag(v) < 0.

1. Change the initial state values in the given design to designate state s. Call this new

design D\.

2. For each vertex v, initialize r(v) = lag(v). If r(v) < 0 and each input of the vertex

has a latch, insert v in a set 5.

3. While set S is not empty do:



CHAPTER 8. RETIMING THE INITIAL STATE 136

(a) Remove any node u from the set S.

(b) Forward retime node u. If node u is a combinational node, get the new initial

state by taking the forward imageof the input values. If node u is the host, store

in the newly created latches on the input lines, the vector ttj, where j is such

that this is the j-th retiming of the host node.

(c) For each fanout v of u, if r(v) < 0 and each input of v has a latch now, insert v

in the set 5.

(d) Decrement r(u). If r(u) < 0 and each input of v still has a latch, insert u in the

set S.

Correctness of the algorithm for no-reset latches

Touati and Brayton proved for the above procedure that the designated initial

state obtained for the retimed circuit is equivalent to the designated initial state of the

original circuit. However, in our model, even though we can simulate reset latches (with

no-reset latches plus reset circuitry) and the retiming of reset latches (by retiming the reset

circuitry along with the no-reset latches) across combinational nodes, the reset input line

is just like any other input line and has no special status. In particular, we cannot assume

that the reset line is going to be pulled on the first cycle of operation. Thus, we still have

the obligation of proving the Touati-Brayton procedure can be simulated in our model to

obtain delay replacements; or else we would fall short of our claim that in our model we

can simulate every retiming that can be achieved in the traditional all-reset-latches model.

Theorem 8.2 The above procedure for obtaining the new initial state for a retiming can

be simulated4>y using no-reset latches, resulting in a delay replacement.

Proof. Let the resulting design from the above procedure be D2. In order to prove

that D2 is a delay replacement of the original design Du, first wc retime D2 further using

another lag assignment lag' to obtain D3. This new lag assignment is defined.as: lag'(v) =

mm {lag(host) - lag(v),0], where lag(v) was the lag assignment which was used to derive

D2 from D\ (recall that Di has the same circuit as Do but its initial state is s instead

of s0). Since Di to D2 is the given legal retiming, we know that for each edge (u,v),

w' = w + lag(v) - lag(u) > 0; w' denotes the number of latches on the edge in design D2.



CHAPTER 8. RETIMING THE INITIAL STATE 137

We have to show that lag' produces a legal retiming, i.e. w" = w' + lag'(v) - lag'(u) > 0.

This can be seen for each of the following four possible cases:

1. Suppose lag(host) < lag(v) and lag(host) < lag(u).

Then we have w" = w'+ lag'(v) - lag'(u) = w'+ (lag(host) - lag(v)) - (lag(host) -

lag(u)) = w'+ lag(u) - lag(v) = w > 0.

2. Suppose lag(host) < lag(v) and lag(host) > lag(u).

Then we have w" = w' + /ap'(u) - lag'(u) = w' + (lag(host) - lag(v)) - 0 = u> +

lag(host) —lag(u) > w > 0.

3. Suppose lag(host) > lag(v) and lag(host) < lag(u).

Then we have w" = w' + /a^(u) - /^'(u) = w' + 0 - (lag(host) - lag(u)) >w'>0.

4. Suppose lag(host) > lag(v) and lag(host) > lag(u).

Then we have w" = w' + /a^'fu) - /^(u) = w' + 0 - 0 > 0.

Thus, lag' is indeed a legal retiming. So, we have Di -^ D2 ^ D3. Notice that lag'(host) =
0; thus, the D-2 —* D3 retiming consists of only forward retiming moves across combinational

nodes. Now, we consider another retiming path from Di to D3: Di -4 D4 —> D3. To

get this alternate path, we just need to ensure that for each node v. lag(v) + lag'(v) =

lag"(v) + lag'"(v), and that lag" is a legal retiming (that lag"' ia also a legal retiming follows

from these two). For each node v, we define the first lag function to be lag"(v) = lag(host).

This clearly is a legal retiming. Thus, D4 has the same lag for each node and it has the same

circuit structure as Di, but a different initial state. Since the Touati-Brayton procedure

pumps in tti for the first retiming across host, tt2 for the second retiming across the host, and

so on, it should be clear that the initial state for design D4 is 8ryx (s,tt), which is so- Thus,

D4 is identical to Do. Now, the lag function for retiming from D4 (or Do) to D3 is defined to

be lag'"(v) = lay(v) + lag'(v) - lag"(v) = lag(v) + mm{lag(host) - lag(v),0} - lag(hosl) —

min{0,lag(v) - lag(host)}. This means that lag'"(host) = 0 and lag'"(v) < 0, that is, lag"'

consists of only forward retiming moves across combinational nodes. Thus,*D3 is a delay

replacement of D4 (or Do), by Proposition 8.1. We also know that D3 can be obtained

from D2 by just forward retiming moves across only combinational nodes; thus if we reverse

this sequence of retiming moves, D2 can be obtained from D3 by backward retiming moves

across combinational nodes. So, from Proposition 8.1 again, we know that D2 is a delay



CHAPTER 8. RETIMING THE INITIAL STATE 138

replacement of D3. Thus, from the transitivity of delay replaceability (Proposition 6.2), D2

is a delay replacement of Do- D

Caveat

While the global retiming solution has the ability to find a solution as long as

condition 8.1 is satisfied, the big drawback of this approach is that it needs to construct

the state transition graph of the design (explicitly or implicitly, using BDDs for example).

This limits the applicability of this approach to reasonably sized designs, say designs with

less than a hundred latches. For larger designs, the local retiming method discussed in

Section 8.2.1 is the only possible approach.

8.3 Retiming Initial State by Adding Logic

Sometimes it may be impossible to retime reset latches without adding extra logic

in the design. We discussed an example illustrating such a situation in the previous section

(Figure 8.4).

Condition 8.1 is a sufficient condition for retiming the initial state, as we saw

in Section 8.2.2. The second contribution of [81] is that for designs which do not satisfy

this sufficient condition, a method is given for retiming the design; this method adds extra

logic to achieve this. We review their method, consider an alternative approach, and then

argue why the second approach is more robust and for some designs more efficient than the

approach of [81].

8.3.1 Touati-Brayton's approach of modifying STG

Touati and Brayton achieve the desired retiming by adding extra logic to the

circuit. First, they modify the circuit by adding a new input line to the circuit such that

the modified circuit satisfies Condition 8.1 and thou obtain the retiming of the initial state,

as in Section 8.2.2. Let the new input line be called ZERO (we call it so because the

modified circuit has the same behavior as the original circuit if we guarantee that the input

to this line will always be 0). Now, we change the behavior of the circuit for caseswhen this

input is 1 (which we know will never happen), thus guaranteeing that the behavior of the

modified circuit has the same behavior as the original circuit. However, the modified circuit



CHAPTER 8. RETIMING THE INITIAL STATE 139

satisfies Condition 8.1. We achieve this by choosing states si and S2 to be such that Si is a

state reachable from the initial state so and s2 is a state such that for some input vector a,

Sr)(si,a) = s2. We modify the design to D' so that when the input on the ZERO line is 1,

the modified design goes from state si to the initial state so- This will guarantee that there

is a finite input sequence 7To which takes initial state so back to itself (i.e. 6d(so, tto) = so),

which in turn ensures that for any arbitrary n (and therefore for n = —lag(host)), there

is some state s and an input sequence tt so that 6d(s,tt = so)- Thus Condition 8.1 is

satisfied for the modified design and we can apply the algorithm shown in previous section.

To minimize the added logic, [81] chooses state s2 in such a way that, among all reachable

states from so, the binary encoding of s2 realizes the minimum Hamming distance from

the binary encoding of so. As as example, borrowed from [81], consider once again the

retiming which we were unable to achieve in Section 8.2 (Figure 8.4). With the method

just explained, this retiming can be achieved as shown in Figure 8.8. Here, sO is 01, si is

11 and s2 is 10. Notice that the desired retiming was achieved at the cost of one extra OR

gate, one extra reset latch and sonic new wiring associated with the 0 input.

8.3.2 An alternative approach

In this section we will show that the reset transformation provides an alternate

way of determining this extra logic. This approach is also feasible for large circuits where

STG-based analysis is not possible; the approach takes a structural view and is not limited

by the size of the state space of the entire design. Also, we will show that it is possible that

it some situations it adds less (or no) extra logic to achieve the retiming.

The use of the reset transformation for obtaining a retiming for designs which

cannot be retimed using local mapping of initial states was earlier suggested in [54, 53].

However, they thought that this restricts the space of retiming moves and adds unnecessary

extra logic. For designs where reset latches can be retimed without adding additional logic,

we showed in Section 8.2 that this false if we use the reset transformation. Here we show

that even for designs where we the combinational logic must chango, like in Figure 8.8, the

reset transformation is a more robust and sometimes yields more efficient solutions.

The basic idea is to do the reset transformation, and if we are unable to locally

retime the reset circuitry along with the no-reset latch (this happens for a backward retiming

move as we saw in Section 8.2.1), leave the reset circuitry in place and just retime the no-



CHAPTER 8. RETIMING THE INITIAL STATE

Circuit

IN opO^-h

add logic

ZERO

IN o

^D->h

ZERO

IN o

0

IN o

retime latch
and initial state

"t^H

replace constant

-t>H

STG

initial state

OUT

OUT

00/1

OUT

OUT

Figure 8.8: Retiming initial state by adding logic

140



CHAPTER 8. RETIMING THE INITIAL STATE 141

reset latch. So we use the fact that the initial value of the latch is modeled explicitly with

the reset circuitry to our advantage. As an example, consider the retiming we wanted to

achieve in Figure 8.8. The same retiming can be achieved using the reset transformation,

as seen in Figure 8.9. Comparing this solution with the one obtained in Figure 8.8, we

have extra AND gate but we have two no-reset latches instead of two reset latches; the

wiring from the RESET wire is not extra because that wiring is implicit in the reset latches

of Figure 8.8. Thus the two solutions are almost of identical cost. In the next section, in

Figure 8.11 we will see that if make an additional assumption about the design environment

we can attain a slightly better solution.

There are two advantages of this approach over the approach in [81]:

• The biggest advantage is that this approach is more robust to the size of the designs.

Since Touati-Brayton's algorithm requires the construction of the STG of the design,

it is limited to the designs where this is possible. The number of states in a design is

exponential in the number of latches; so their approach may quickly run out of steam.

Using the reset transformation, on the other hand, requires only local retimings. If

the reset circuitry can be retimed, we retime it; otherwise we leave it behind. Thus it

is not dependent on the size of the entire design and does not require an analysis on

the STG of the design.

• In some cases, Touati-Brayton's algorithm may add extra logic while retiming the

initial state, even though it may be unnecessary to do so. Recall that they add logic

whenever Condition 8.1 is not satisfied. For an example, see Figure 8.10. In this

example, we have to retime one latch backwards across the NOT gate. First we need

to normalize the lag of each node such that lag(v) < 0 for each combinational gate

v. This gives us lag(v) = -1 for each node, including the host node, except the NOT

gate. Now, there is no state in the original STG which transitions to the initial state

0000 on an input sequence of length 1; so Condition 8.1 is not satisfied, and we have

to add extra logic to get this retiming. Among reachable states from 0000, state 1100

is the state which has the least Hamming distance to the encoding of 0000. So we

add the extra input line ZERO and force the first two latches to go to 0 when input

ZERO is 1. This gives us the second design in the figure, with its STG shown on

the right. Now, we can apply Touati-Brayton's algorithm and we end up with the

bottom design in the figure. However, it is easy to see that if we just had to retime



CHAPTER 8. RETIMING THE INITIAL STATE 142

OUT

IN o t>

O

RESET 0L/T

IN o-r>^

retime latches

RESET- OUT

IN o-rm^D

Figure 8.9: Separating the reset circuitry from no-reset latches.



CHAPTER 8. RETIMING THE INITIAL STATE

Circuit
ratlcna

'H>
TX>C

^

-CL U01

tdd logic

ZERO—T>o 1

IX) iX
O^

C

^fc2X -<*

ZERO-hx>

P̂^

rctlmo tatcha* and
Initial tut*

propagate constant 0

d-o-*

-a

-a.

143

STG

01/10

Figure 8.10: Retiming initial state via forward retiming adds unnecessary logic.



CHAPTER 8. RETIMING THE INITIAL STATE 144

the latch backward across the NOT gate, we could simply have retimed it to value

1, and we need not have added this extra logic. Thus, it is possible for backward

retiming moves, that the local retiming algorithm may not need to add any additional

logic whereas the Touati-Brayton algorithm may add logic because it simulates all

backward retiming moves by forward retiming moves across the host node. On the

other hand, one can construct examples where, because the Touati-Brayton algorithm

computes the global state transition graph, it is able to come up with a retiming of

the initial state at a lower cost than the local retiming algorithm of this section.

8.4 Retiming with Both Reset and No-Reset Latches

So far we have seen in some cases we are able to the retime the reset circuitry

along with the no-reset latches; in other cases we can retime only the no-reset latch and

have to leave the reset circuitry behind. In this section we address the question of how to

get the initial values of latches if, before retiming across a combinational gate, some latches

were no-reset while others were reset latches (which are modeled with no-reset latches plus

reset circuitry). We will extend the remapping algorithm described in Section 8.2.1.

Once again, assume that we are retiming across a multi-output gate F = (ft,..., fn),

where each /, is a function from input space {0,1}" to {0,1}. Suppose the original design

has one reset latch at each of the first m' inputs of the gate, one no-reset latch at each of

the other inputs, the initial values of the reset latches are a = (ai,.. . ,am»), and we want

to retime the latches forward across F. There are two cases: (i) there is a unique vector

b = (&i,...,6n) such that for all combinations of (xm'+i,..., xm), for any i £ {1,..., n):

ft(a\,..., am>, xm'+i,. ••, xm) = bi, and (ii) there is no such vector 6. In the first case, we

can retime the reset circuitry for the reset latches forward such that all the newly retimed

latches are reset latches and the new initial values for the retimed latches is (b\,.. .,bn).

For example, if the gate was an OR gate with a no-reset latch on one input and a reset latch

with initial value 1 on the other input, we could forward retime the latches so that there is

one reset latch with initial value 1 on the output of the OR gate. The proof of correctness

of this operation is similar to that of Proposition 8.1. For the second case, we are unable to

retime the reset circuitry forward; we can retime just the no-reset latches and leave the reset

circuitry behind. For example, consider an OR gate with a no-reset latch on one input and

a reset latch with initial value 0 on the other input; suppose the two inputs of the latches



CHAPTER 8. RETIMING THE INITIAL STATE 145

are denoted by xi and x2. Once we retime the no-reset latches, as in step 1 of Figure 8.5,

the functionality of the combinational part becomes r -x2+ r •(xi + x2) —x2 + r -x\. There

is no way to get the same functionality if we were to retime the reset circuitry forward, as

in step 2. For all backward retiming moves also, if some latches on the output are reset

latches and other are no-reset latches, we cannot retime the reset circuitry across the gate;

so if we want to retime the latch we have to separate its reset circuitry and leave it behind.

There is one assumption which is true in some design situations where we can

retime the reset circuitry more often. Suppose the reset line has a special status and the

designer can safely assume that on the clock cycle after the reset line is pulled to 1, the

environment of the design can assume that the values in each of the no-reset latches is totally

arbitrary (i.e. it is just like the power-up situation where each of the no-reset latches can

assume any arbitrary value). This is a reasonable assumption to make for many design

scenarios. If this is the case, in the second case of the forward retiming above, we can

also retime the reset circuitry forward. The new initial values of the reset latches on the

output lines is 6 = (&i,.. . ,6n) where 6 is such that there exists some vector (a:m/+1,.. .,xm)

such that for any i £{!,.. .,n}: ft(a\,.. -,ami,xmi+i,.. .,xm) = bi. Thus, for the OR gate

example, where we have one reset latch with initial value 0 and one non-reset latch we could

retime these forward to get a reset latch at the output with value either 0 or 1. Similarly,

with this new assumption, we are sometimes able to retime the reset circuitry backward

too. Suppose the original design has one reset latch at each of the first n' outputs of the

gate, one no-reset latch at each of the other outputs the initial values of the reset latches

are (&i,.. .,bn'), and we want to retime the latches backward across F. If there is a set

of values a = (ax,..., am) such that for each i £ {1,..., n'}\ &, = ft(a), we set the initial

values on the retimed latches to a. If there is no such vector, we cannot retime the reset

circuitry and we have to separate it from the latches.

As an example of retiming both kinds of latches in a design, consider once again

the example wc used in the previous section (the retiming we want to achieve in Figures 8.8

and 8.9). We have shown this retiming using the remapping algorithm proposed above in

Figure 8.11. In retiming step 2, we retime one no-reset latch and one reset latch (with

explicit initial value 0) backwards across the junction to get a reset latch with initial value

0. Then we retime this reset latch backwards across the NOT gate to obtain the new initial

value 1. It is interesting to note the similarity between this solution and the final one in

Figure 8.8.



CHAPTER 8. RETIMING THE INITIAL STATE 146

OUT
RESET OUT3>fl-

Ti>H>
<D

'H~>—t>M

retiming stepi

RESET m> OUT

'"jq^—^-i

retiming step2

RESET- J> OUT
RESET

oi/r

'"TDK* <p' /AT

Figure 8.11: Retiming reset and no-reset latches.



CHAPTER 8. RETIMING THE INITIAL STATE 147

For many designs it is not possible to make the above assumption. The reset line

may itself be derived from other logic, different latches may have different reset latches and

there may be other reasons, like the ones discussed in Section 2.1 that we are unable to

designate this special status to the reset line.

8.5 Overall Strategy

In this section, based on our analysis so far in this chapter, we recommend an

overall strategy for retiming the initial state for use in a synthesis tool.

We have shown that reset latches can be safely modeled using the reset transfor

mation. Claims that this restricts the space of retiming moves or adds unnecessary extra

logic or wiring are unfounded. Whenever possible the no-reset latch plus its associated

reset circuitry should be thought of as one unit (and an elementary tool can easily undo the

reset transformation to obtain reset latches from no-reset latches plus the reset circuitry).

If possible, we retime this whole unit together. We have shown that we can safely retime

this unit forward or backward across combinational gates and forward across the host node

whenever an equivalent retiming can be done for reset latches. If the design is small enough

so that STG analysis can be done on it, we can get the new initial values using the Touati-

Brayton algorithm in Section 8.2.2. If not, we can retime the initial values locally, as shown

in Section 8.2.1.

In case it is not possible to retime the initial state, the reset circuitry can be left

behind and just the no-reset retimed. We have argued in Section 8.3.2 that this approach

is more robust and sometimes produces more efficient solutions than given in [81] for this

class of retimings.

We have shown how to retime the initial state when only some of the latches

are reset latches and others are no-reset latches in Section 8.4. Also, if we can make an

assumption about the reset line being special such that whenever the environment pulls

the reset line each of the no-reset latches of the design can non-deterministically assume an

arbitrary Boolean value, then we can retime the reset circuitry in more cases.



148

Chapter 9

Conclusions

We have explored the issue of design replacement for sequential circuits. We now

point to possible extensions to this work. Then we describe some of the lessons that learned

while researching the issues in this thesis. We also point to some other work published

concurrently or since our work addressing some of the questions. We mention some other

issues which are relevant to our work but not discussed in this thesis because they were not

the focus of our work.

We started this dissertation by restricting ourselves to designs which have a well-

defined notion of next step. We assumed that the sequential aspect is implemented with

memory elements like latches or flip-flops and the combinational gates, implementing the

combinational aspect, do not have any cycles. Getting such an abstraction from transistor-

level designs to such nicely defined gate-level designs is an important area and a focus of

many current researchers [39, 58, 78]. The problem of combinational loops has also received

some attention. Some people have identified classes of such circuits where these circuits

can be replaced by "equivalent" circuits with no combinational loops [77]; others have

endeavored to define the semantics of all circuits, including the ones with combinational

loops [13, 85].

We presented our notion of safe replaceability in Chapter 4 and discussed design

replacement on any arbitrary design, in the absence of any knowledge of the environment

of a design. For redundancy identification in sequential circuits, Pomeranz and Reddy [63]

have identified an equivalent notion, but in their algorithm for redundancy identification,

they use a notion which allows them to classify more faults as redundant at the expense

of making some initialization assumptions about the environment of the design. Recently,



CHAPTER 9. CONCLUSIONS 149

Brand et al [8] used the term "safe replaceability" to denote replacement of designs in

presence of a given environment (as in [83]); interestingly, they use the term "universal

replacement" to mean precisely what we have defined as safe replacement.

In the first half of Chapter 5, we used our notion of safe replaceability to do

sequential optimizations on gate-level designs. Many comments are in order here. First,

we observe that our optimization algorithm (in Section 5.1.4) works on the state transition

graphs (even though it did so implicitly, using BDDs). This limits the size of circuits we

can handle; in our experiments, we limited ourselves to designs with less than 30 latches.

Certainly, we would not recommend even an optimized implementation of our algorithm on

designs with more than several hundred latches. However, the power of our approach is in

the condition of safe replacement. Since we make replacement without assuming anything

about the environment, we envision a more productive use of our optimization algorithm in

scenarios where reasonably sizes designs are cut out of larger designs and safe replacements

are made on this. This would work with manual as well as automatic partitioning. Our

algorithm combined with a powerful automatic partitioning method and applied to a set

of larger designs is a problem worth investigating. It would also be very useful to come

up with other optimization algorithms for safe replacement, especially ones which are more

structural (do not need state transition graph information) in nature. We have chosen to

optimize area of the circuits in our experiments: we would also like to have algorithms for

other optimization criteria like minimizing delay, minimizing switching activity (power) or

increasing testability.

One more area which needs investigation is state encoding and implementation of

designs which arespecified at the behavioral level (i.e., asSTGs). The traditional method of

obtaining such an implementation relies on the fact that the design has a designated initial

state and thus the behavior of encoded states which are unreachable from the designated

initial state is not important. However, without the designated initial state assumption, all

2' encodings of an implementation (which has t latches) must satisfy the safe replacement

condition with respect to the given behavioral-level specification. This will add additional

constraints to the traditional problem of state encoding and implementation (see [67] for

the traditional formulation).

In [83], Watanabe and Brayton characterized the set of permissible design replace

ments for a given design with respect to a given environment. However, they also made

the assumption of a designated initial state for both the environment as well as the design.



CHAPTER 9. CONCLUSIONS 150

In [84], they provided a solution to the problem of extracting an optimal implementation

from this characterization of the set of permissible behaviors. It whould be interesting to

extend these solutions, of characterization of permissible behaviors and of choosing an op

timal implementation from this characterization, to our model with no designated initial

state assumption (either for the design or for the environment).

In the second part of Chapter 5, we studied the verification problem for safe

replaceability. We showed that it is PSPACE-complete. Wegavean algorithm, which takes

exponential time in worst case but has many heuristics to try to finish faster for many

examples. We did not implement this since there are no synthesis algorithms which use

safe replaceability as the criterion for verification; the results of our synthesis procedure in

Section 5.1 can be verified in polynomial time since we use only a sufficient condition for

safe replaceability (see Section 5.1.1).

In Chapter 6, we introduced the notion of delay replacement, motivated by the fact

that designers often know that a design is not going to be used for a given number of clock

cycles after power-up. We found that this additional knowledge about the environment leads

to we can obtain much better optimization results, using two different methods. We also

showed that the notion of delay replacement is compositional and can be used in a synthesis

methodology using successive design replacements. Finally in Chapter 6, we argued that, in

practice, the verification problem for delay replaceability is simpler than the corresponding

problem for safe replaceability— if the outer envelopes of designs are tSCCs then we have

a polynomial time problem (and algorithm), instead of a PSPACE-hard one. Recently,

Iyer et al. [36] also used this notion of delay replacements for identifying redundancies in

sequential circuits.

In Chapter 7, we saw that retiming results in a delay replacement and not a safe

replacement. As we showed in this chapter, and as [45] showed earlier, if C is a retimed

circuit obtained from the original circuit D, Cn C D for some integer n which depends

on the sequence of retiming moves. For a given sequence of retiming moves, we found a

tighter bound for n than [45]. Designers often use conservative three-valued simulators

to validate their designs. We showed that if three-valued simulators are used, retiming

transformations do not affect the output of such simulators even though they may not be

safe replacements (in the sense of Chapter 4). In [55], Marchok et al. studied the effect of

retiming transformations on the test vector sequences for single stuck-at faults. We proved

in this chapter that new test sequences can be obtained from old ones just by appending



CHAPTER 9. CONCLUSIONS 151

an arbitrary prefix sequence of length n, where n is determined by the sequence of retiming

moves. Later, El-Maleh et al. [28] correct their result from [55] and show that test vector

sequences, which have been generated by conservative three-valued simulators, are preserved

from the original circuit to the retimed circuit. We note that this result follows from our

result in Chapter 7 that retiming transformations do not affect the output of such simulators

(Corollary 7.10). The preservation of test vector sequences is an important result because in

[28] it is demostrated by experiments that generating test sequences for the retimed circuits

may be much more expensive than generating them for the original circuits.

We were interested in proving the main result of Chapter 7 (that retiming does not

affect the behavior of conservative three-valued simulators) because designers frequently use

simulators to analyze their design and are comfortable with the semantics of the simulator

they use. Designers use the rule that if for two designs, their simulator produces identical

output sequence for each possible input sequence1, the two designs can replace each other.

This leads to a new paradigm for synthesis— optimize a design such that the optimized

design is indistinguishable from the original design using a given simulator, for example, a

conservative three-valued simulator. To come up with such optimization algorithms would

be a very useful thing to do.

In Chapter 8, we showed our method for modeling memory elements throughout

the thesis (namely, using no-reset latches plus reset circuitry to model reset latches) is

general enough for arbitrary retiming moves. It allows the exploration of all retiming

moves that would otherwise be possible, and it does not add more logic or wiring than

necessary. Previously doubts had been raised that such a modeling approach might restrict

the space of possible retiming and introduce unnecessary logic and wiring. We have shown

that this problem can be avoided by retiming reset circuitry along with latches. In many

design settings, latches are often combined with other combinational logic inside one library

element [33]. It should be interesting to explore if during retiming, these elements can also

be retimed as a whole, similar to how we retime a no-reset latch with its reset circuitry,

together as one unit. %

In Chapter 8, we also showed that modeling reset circuitry explicitly, suggested

earlier [54], provides an alternate strategy for retiming an initial state, for cases where such

a retiming could not be achieved without adding additional logic. This provides an alternate

'That it may not be possible to verify this by exhaustive simulation in any reasonable amount of time is
another issue altogether.



CHAPTER 9. CONCLUSIONS 152

strategy to the algorithm in [81]. We also discussed how to obtain the retimed initial state

in an environment with have a mixture of reset and no-reset latches. At the end of the

chapter, we presented with an overall strategy for retiming latches for use by a synthesis

tool.

Weconclude with some final thoughts on the notionsof design equivalence. There

have been, and will be, various notions of design equivalence and replacement. We have

shown that for a methodology where one needs a replacement notion for an arbitrary piece

of logic inside a larger design, and onecannot makeany assumptionsabout the environment,

the notion of safe replacement is precisely the right one— anything more conservative will

allow fewer replacements, and anything more liberal would allow replacements that can be

detected by some environment. If we also know that some time is going to elapse after

power-up before the circuit is used, we can use this extra information to obtain the concept

of delay replacements.

The above paragraph notwithstanding, the designer must know (1) what is the

"right" notion of replacement for his/her design process, (2) what is the notion of replace

ment used by his/her tools, and (3) if these notions indeed match. In many cases, one may

know more about the overall design so that more liberal replacement criteria can be used.

For example, delay replaceability is more liberal than safe replaceability, and it makes sense

to use the former if the design allows for these extra clocks after power-up. Another example

was discussed in Section 8.4, the design is robust enough so that whenever a RESET line

to some latches is pulled, the values in the no-reset latches can be totally arbitrary; this

assumption allows for more flexibility for retiming.

One important constraint in the design process is the importance of simulators

used to analyze the behavior of designs. In some of these situations, the semantics of the

simulator become so important as to affect the notion of design replacement one wants to

use. These semantics may allow a designer to make replacements which are more aggressive

(or more conservative in other cases) than replacements based just on the behavior of

the design. We have discussed the role of conservative three-valued simulators (CLS) in

Chapter 7. We showed that retiming preserves delay replaceability. Thus, if we wait long

enough (n clock cycles, where n is no more than the number of latches in any cycle in the

circuit) then retiming does not affect the circuit operation. When a circuit powers-up there

is always some delay before the circuit begins operation; it takes time, potentially many

clock cycles, for the voltages to settle, etc. Therefore, the requirement that the circuit settle



CHAPTER 9. CONCLUSIONS 153

for a slightly longer number of cycles before it begins computation may not, in actuality,

cause a problem. However, modern design methodologies rely heavily on logic simulation to

the point that if simulation says the circuit doesn't work, then the designer must assume the

circuit doesn't work. During simulation, unlike the real operation of the design, the design

is simulated from the first clock cycle. So, retiming, although not changing the resulting

design behavior, may change the behavior ofthe simulator, and this may be unacceptable2
Fortunately, for the case of retiming transformations, the semantics of the simulator allows

some slack because of another property of a CLS. Because of its conservative propagation

of X's, a CLS may not be able to distinguish two designs which may actually have different

behavior (which may be distinguishable by a more accurate simulator). This allowed us to

show that retiming transformation do not affect the output of a conservative three-valued

simulator.

Recently another example of the semantics of a simulator affecting the replacement

criterion was discussed by Brand et al. [8] who gave an example where for some input, a

design produces an X. In our situation, this can happen, for example, if there are two power-

up states such that for this input one state produces a 1 and the other state produces a 0.

For such a design they claim that it may be hazardous to replace this design with another

which produces a 0 (or a design which produces a 1) for this input from all power-up states.

This may happen because the simulator for the environment of the design may interpret

the X's in a non-monotonic way (in [8], they claim this happens with VHDL simulation,

where, for example, the simulator evaluates both "X = 0" and "X = 1" to 0, whereas a

monotonic simulator evaluates both of these to X). Thus, the simulator semantics force us

to be more conservative than we probably need to be since we are unable to replace an X

by either 0 or 1.

2It should be noted this problem can easily be rectified if the simulator is also allowed to settle down for
many clock cycles, i.e. many arbitrary input vectors are applied before applying the test vectors.



154

Bibliography

[1] M. Abramovici and M. A. Breuer. On Redundancy and Fault Detection in Sequential

Circuits. IEEE Transactions on Computers, 28(ll):864-865, November 1979.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital System Testing and Testable

Design. IEEE Press, New York, NY, 1990.

[3] A. Aziz, R. K. Brayton, F. Balarin, and V. Singhal. Timing-safe Replaceability for

Combinational Designs. In TAU '95: Intl. Workshop on Timing Issues in the Specifi

cation and Synthesis of Digital Systems, pages 121-127, Seattle, WA, November 1995.

[4] K. Bartlett, G. Borriello, and S. Raju. Timing Optimization of Multiphase Sequential

Logic. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 10(1):51-

62, January 1991.

[5] G. Berry and H. J. Touati. Optimized Controller Synthesis Using Esterel. In Workshop

Notes of Intl. Workshop on Logic Synthesis, Tahoe City, CA, May 1993.

[6] C. Berthet, O. Coudert, and J. C. Madre. New Ideas on Symbolic Manipulation

of Finite State Machines. In Proc. Intl. Conf. on Computer Design, pages 224-227,

Cambridge, MA, October 1990.

[7] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD

Package. In Proc. of the Design Automation Conf, pages 40-45, Orlando, FL, June

1990.

[8] D. Brand, R. A. Bergamaschi, and L. Stok. Be Careful with Don't Cares. In Proc.

Intl. Conf. on Computer-Aided Design, pages 83-86, San Jose, CA, November 1995.



BIBLIOGRAPHY 155

[9] Daniel Brand. IBM T. J. Watson Research Center, Yorktown Heights, NY, Personal

communication, 1995.

[10] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli.

Logic Minimization Algorithmsfor VLSISynthesis. Kluwer Academic Publishers, 1984.

[11] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel Logic

Synthesis. Proceedings of the IEEE, 78(2):264-300, February 1990.

[12] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequential Bench

mark Circuits. In Proc. Intl. Symposium on Circuits and Systems, pages 1929-1934,

Portland, OR, May 1989.

[13] J. R. Burch, D. Dill, E. Wolf, and G. De Micheli. Modelling Hierarchical Combinational

Circuits. In Proc. Intl. Conf. on Computer-Aided Design, pages 612-617, Santa Clara,

CA, November 1993.

[14] E. Cerny and M. A. Marin. An Approach to Unified Methodology of Combinational

Switching Circuits. IEEE Transactions on Computers, 27(8), 1977.

[15] K.-T. Cheng. Redundancy Removal forSequential Circuits Without Reset States. IEEE

Transactions on Computer-Aided Design of Integrated Circuits, 12(l):13-24, January

1993.

[16] K.-T. Cheng and H.-K. T. Ma. On the Over-Specification Problem in Sequential ATPG

Algorithms. In Proc. of the Design Automation Conf, pages 16-21, Anaheim, CA, June

1992.

[17] H. Cho, G. D. Hachtel, S.-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. ATPG

Aspects of FSM Verification. In Proc. Intl. Conf. on Computer-Aided Design, pages

134-137, Santa Clara, CA, November 1990.

[18] II. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for Approx-

imate FSM Traversal. In Proc. of the Design Automation Conf, pages 25-30, Dallas,

TX, June 1993.

[19] H. Cho, G. D. Hachtel, and F. Somenzi. Redundancy Identification and Removal Based

on Implicit State Enumeration. In Proc. Intl. Conf. on Computer Design, pages 77-80,

Cambridge, MA, October 1991.



BIBLIOGRAPHY 156

[20] H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley. Synchronizing Sequences and Sym
bolic Traversal Techniques in Test Generation. Journal of Electronic Testing: Theory

and Applications, 4(12):19-31,1993.

[21] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based
on Symbolic Execution. In J. Sifakis, editor, Proc. of the Workshop on Automatic Ver

ification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer

Science, pages 365-373, Grenoble, France, June 1989.

[22] O. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of

Sequential Circuits. In Proc. Intl. Conf. on Computer-Aided Design, pages 126-129,

Santa Clara, CA, November 1990.

[23] M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of Syn

chronous Logic Circuits. In Proc. of the Design Automation Conf, pages 556-561,

Anaheim, CA, June 1992.

[24] M. Damiani and G. De Micheli. Synthesis and Optimization of Synchronous Logic

Circuits from Recurrence Equations. In Proc. European Conf. on Design Automation,

pages 226-231, Brussels, Belgium, March 1992.

[25] G. De Micheli, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Optimal State

Assignment for Finite State Machines. IEEE Transactions on Computer-Aided Design

of Integrated Circuits, 4(7):269-285, July 1985.

[26] S. Devadas and A. R. Newton. Exact Algorithms for Output Encoding, State Assign

ment and Four-Level Boolean Minimization. IEEE Transactions on Computer-Aided

Design of Integrated Circuits, 10(1):13—27, January 1991.

[27] V.. B. Eichelberger. Hazard Detection in Combinational and Sequential Circuits. IBM

J. Res. and Devep., pages 90-99, March 1965.

[28] A. El-Maleh, T. E. Marchok, J. Rajski, and W. Maly. On Test Set Preservation

of Retimed Circuits. In Proc. of the Design Automation Conf, pages 176-182, San

Francisco, CA, June 1995.



BIBLIOGRAPHY 157

[29] L. Entrena and K.-T. Cheng. Sequential Logic Optimization by Redundancy Addition

and Removal. In Proc. Intl. Conf. on Computer-Aided Design, pages 310-315, Santa

Clara, CA, November 1993.

[30] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and

Co., 1979.

[31] A. Ghosh, S. Devadas, and A. R. Newton. Test Generation for Highly Sequential

Circuits. In Proc. Intl. Conf. on Computer-Aided Design, pages 362-365, Santa Clara,

CA, November 1989.

[32] A. Grasselli and F. Luccio. A Method for Minimizing the Number of Internal States

in Incompletely Specified Sequential Networks. IRE Transactions on Electronic Com

puters, EC-14(3):536-557, June 1965.

[33] J. Grodstein, E. Lehman, H. Harkness, H. Touati, and B. Grundmann. Optimal Latch

Mapping and Retiming within a Tree. In Proc. Intl. Conf. on Computer-Aided Design,

pages 242-245, San Jose, CA, November 1994.

[34] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.

Intl. Series in Applied Mathematics. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[35] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

[36] M. A. Iyer, D. E. Long, and M. Abramovici. Identifying Sequential Redundancies

Without Search. In Proc. of the Design Automation Conf, Las Vegas, NV, June 1996.

[37] Seh-Woong Jeong. Binary Decision Diagrams and their Applications to Implicit Enu

meration Techniques in Logic Synthesis. PhD thesis, Department of Electrical and

Computer Engineering. University of Colorado, Boulder, CO 80309, 1992.

[38] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg. A Three-Value Cofhputer Design

Verification System. IBM J. Res. and Devep., pages 178-188, 1969.

[39] T. Kam and P. A. Subramanyam. Comparing Layouts with HDL Models: A Formal

Verification Technique. IEEE Transactions on Computer-Aided Design of Integrated

Circuits, 14(4):503-509. April 1995.



BIBLIOGRAPHY 158

[40] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A Fully Implicit Algo

rithm for Exact State Minimization. In Proc. of the Design Automation Conf, pages

684-690, San Diego, CA, June 1994.

[41] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In C. E.

Shannon and M. McCarthy, editors, Automata Studies, number 34 in Annals of Math

ematics Studies, pages 3-41. Princeton University Press, Princeton, NJ, 1956.

[42] D. Kozen. Lower Bounds for Natural Proof Systems. In Proc. Symp. on Foundations

of Computer Science, pages 254-266, Providence, RI, October 1977.

[43] W. Kunz and P. R. Menon. Multi-Level Logic Optimization by Implication Analysis.

In Proc. Intl. Conf. on Computer-Aided Design, pages 6-13, San Jose, CA, November

1994.

[44] R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Princeton

University Press, 1995.

[45] C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems. Journal of VLSI

and Computer Systems, 1(1):41—67, Spring 1983.

[46] B. Lin. Efficient Symbolic Support Manipulation. In Proc. Intl. Conf. on Computer

Design, pages 513-516, Cambridge, MA, October 1993.

[47] B. Lin, G. de Jong, and T. Kolks. Modeling and Optimization of Hierarchical Syn

chronous Circuits. In Proc. European Design and Test Conf, pages 144-149, Paris,

France, March 1995.

[48] B. Lin, H. J. Touati, and A. R. Newton. Don't Care Minimization of Multi-level

Sequential Logic Networks. In Proc. Intl. Conf. on Computer-Aided Design, pages

414-417, Santa Clara, CA, November 1990.

[49] Bill Lin. Synthesis of VLSI Design with Symbolic Techniques. PhD thesis, Electronics

Research Laboratory, University of California, Berkeley, CA 94720, November 1991.

Memorandum No. UCB/ERL M91/105.

[50] D. E. Long, M. A. Iyer, and M. Abramovici. Identifying Sequentially Untestable Faults

Using Illegal States. In Proc. VLSI Test Symposium, pages 4-11, Princeton, NJ, April

1995.



BIBLIOGRAPHY 159

[51] David E. Long. BDD Manipulation Library. Public software. Carnegie Mellon Univer

sity, Pittsburgh, PA, June 1993. ftp://emc.cs.cmu.edU/pub/bdd/bddlib.tar.Z.

[52] S. Malik. Analysisof Cyclic Combinational Circuits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits, 13(7):950-956, July 1994.

[53] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Re

timing and Resynthesis: Optimization of Sequential Networks with Combinational

Techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits,

10(l):74-84, January 1991.

[54] Sharad Malik. Combinational Logic Optimization Techniques in Sequential Logic Syn

thesis. PhD thesis, Electronics Research Laboratory, University of California, Berkeley,

CA 94720, November 1990. Memorandum No. UCB/ERL M90/115.

[55] T. E. Marchok, A. El-Maleh, W. Maly, and J. Rajski. Test Set Preservation under

Retiming Transformation. Technical Report CMUCAD-94-23, Carnegie Mellon Uni

versity, May 1991. Presented at Intl. Test Synthesis Workshop, Santa Barbara, CA,

May 1994.

[56] Kenneth L. McMillan. Cadence Berkeley Labs, Berkeley, CA. Personal communication,

1995.

[57] I. M. Niven and H. S. Zuckerman. An Introduction to the Theory of Numbers. John

Wiley k Sons, New York, NY, 1972.

[58] M. Pandey, A. Jain, R. E. Bryant, D. Beatty, G. York, and S. Jain. Extraction of

Finite State Machines from Transistor Netlists by Symbolic Simulation. In Proc. Intl.

Conf. on Computer Design, pages 596-601, Austin, TX, October 1995.

[59] C. Pixley. A Computational Theory and Implementation of Sequential Hardware

Equivalence. In E. M. Clarke and R. P. Kurshan, editors, Proc. of 4he Workshop

on Computer-Aided Verification, volume 3 of DIMACSSeries in Discrete Mathematics

and Theoretical Computer Science, pages 293-320. American Mathematical Society,

June 1990.



BIBLIOGRAPHY 160

[60] C. Pixley. A Theory and Implementation ofSequential Hardware Equivalence. IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 11(12):1469-1494, De

cember 1992.

[61] Carl Pixley. Motorola, Inc., Austin, TX. Personal communication, 1993.

[62] I. Pomeranz and S. M. Reddy. Classification of Faults in Synchronous Sequential

Circuits. IEEE Transactions on Computers, 42(9):1066-1077, September 1993.

[63] I. Pomeranz and S. M. Reddy. On Removing Redundancies from Synchronous Sequen

tial Circuits with Synchronizing Sequences. Technical Report 12-20-1993, Electrical and

Computer Engineering Department, University of Iowa, Iowa City, IA 52242, 1993.

[64] Stefano Quer. Politecnico di Torino, Torino, Italy. Personal communication, 1995.

[65] J.-K. Rho, G. D. Hachtel, F. Somenzi, and R. M. Jacoby. Exact and Heuristic Algo

rithms for the Minimization of Incompletely Specified State Machines. IEEE Transac

tions on Computer-Aided Design of Integrated Circuits, 13(2):167-177, February 1994.

[66] Richard L. Rudell. Synopsys, Inc., Mountain View, CA. Personal communication, 1995.

[67] A. Saldanha, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Satisfaction

of Input and Output Encoding Constraints. IEEE Transactions on Computer-Aided

Design of Integrated Circuits, 13(5):589-602, May 1994.

[68] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. High

Performance BDD Package Based on Exploiting Memory Hierarchy. In Proc. of the

Design Automation Conf, Las Vegas, NV, June 1996.

[69] W. J. Savitch. Relationship between Nondeterministic and Deterministic Tape Com

plexities. Journal of Computer and System Sciences, pages 177-192, 1970.

[70] II. Savoj and R. K. Brayton. Observability Relations and Observability Don't Cares.

In Proc. Intl. Conf. on Computer-Aided Design, pages 518-521, Santa Clara, CA,

November 1991.

[71] H. Savoj, R. K. Brayton, and H. Touati. Extracting Local Don't Cares for Network

Optimization. In Proc. Intl. Conf. on Computer-Aided Design, pages 514-517, Santa

Clara, CA, November 1991.



BIBLIOGRAPHY 161

[72] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli. Sequential Circuit Design Using Synthesis and Optimization. In Proc. Intl.

Conf. on Computer Design, pages 328-333, Cambridge, MA, October 1992.

[73] E. M. Sentovich, V. Singhal, and R. K. Brayton. Multiple Boolean Relations. In

Workshop Notes of the Intl. Workshop on LogicSynthesis, Tahoe City, CA, May 1993.

[74] J.-J. Shen, Z. Hasan, and M. J. Ciesielski. State Assignment for General FSM Networks.

In Proc. Intl. Conf. on Computer Design, pages 245-249, Cambridge, MA, October

1992.

[75] N. Shenoy and R. Rudell. Efficient Implementation of Retiming. In Proc. Intl. Conf.

on Computer-Aided Design, pages 226-233, San Jose, CA, November 1994.

[76] T. R. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Heuristic

Minimization of BDDs Using Don't Cares. In Proc. Intl. Conf. on Computer-Aided

Design, pages 225-231, San Diego, CA, June 1994.

[77] T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Analysis

of Combinational Cycles in Sequential Circuits. In Proc. Intl. Symposium on Circuits

and Systems, Atlanta, GA, May 1996.

[78] K. J. Singh and P. A. Subramanyam. Extracting RTL Models from Transistor Netlists.

In Proc. Intl. Conf. on Computer-Aided Design, pages 11-17, San Jose, CA, November

1995.

[79] V. Singhal, Y. Watanabe, and R. K. Brayton. Heuristic Minimization of Synchronous

Relations. In Proc. Intl. Conf. on Computer Design, pages 428-433, Cambridge, MA,

October 1993.

[80] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Implicit

State Enumeration of Finite State Machines using BDD's. In Proc. Intl. Conf on

Computer-Aided Design, pages 130-133, Santa Clara, CA, November 1990.

[81] H. J. Touati and R. K. Brayton. Computing the Initial States of Retimed Circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits, 12(1):157-162,

January 1993.



BIBLIOGRAPHY 162

[82] Tiziano Villa. University of California at Berkeley, Berkeley, CA. Personal communi

cation, 1995.

[83] Y. Watanabe and R. K. Brayton. The Maximum Set ofPermissible Behaviors for FSM
Networks. In Proc. Intl. Conf. on Computer-Aided Design, pages 316-320, Santa Clara,

CA, November 1993.

[84] Y. Watanabe and R. K. Brayton. State Minimization of Pseudo Non-Deterministic

FSM's. In Proc. European Design and Test Conf, pages 184-191, Paris, France, 1994.

[85] Elizabeth S. Wolf. Hierarchical Models ofSynchronous Circuits for Formal Verification

and Substitution. PhD thesis, Stanford University, Computer Systems Laboratory,

Stanford, CA 94305-4055, 1995. Report No. CSL-TR-95-1557.


	Copyright notice 1996
	ERL-96-10

