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ABSTRACT

Recent developments in Hyper’s design space exploration and high-level
synthesis techniques have brought the realization of automated synthesis of
memory-intensive, low-power implementations closer. This work describes
the design path taken to synthesize the front end of a speech recognition
chip. It starts from the Hyper high-level synthesis tool by looking at possi-
ble alternatives at the algorithmic level, as well as using suitable transfor-
mations on the control flow data graph (CDFG) representation within
Hyper. The flowgraph is then mapped onto an architecture, and more power
analysis provides feedback for possible power improvements. Finally, with
the help of the LagerIV architectural-level tools, a silicon layout suitable
for fabrication is generated
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1.0  Introduction.

The objective of this work is to design the front end of a speech recognition system to

handle the acoustic signal processing. The algorithm adopts a proposal by Hermansky et. al. [6],

RASTA-PLP, which is a refinement over the standard linear prediction (LPC) model.

Speech-recognition systems comprise a wide collection of disciplines, including statisti-

cal pattern recognition, communication theory, signal processing, combinatorial mathematics,

and linguistics, amongst others. Typically speech recognition starts with the digital sampling of

speech. The next stage is the acoustic signal processing, which converts the speech waveform to

some type of parametric representation. Most techniques include spectral analysis; e.g. LPC anal-

ysis, MFCC, cochlea modeling and many, many more. The next stage is recognition of phonemes,

groups of phonemes and words. This stage can be achieved by many processes such as DTW

(Dynamic Time Warping) [2], HMM (hidden Markov modelling)[2], NNs (Neural Networks)[2],

expert systems [2] and combinations of techniques. HMM-based systems are currently the most

commonly used and most successful approach.

Following the current wave of interest in low-power portable applications such as Berke-

ley’s personal communications terminal, InfoPad, the power issues will be emphasized. A speech

recognition system is an excellent substitute for the keyboard on portable devices that require

human input.

 Hyper’s [1] hardware library of low-power cells are used in the design. The entire behav-

ioral input description is done in Silage[4]. Employing different flowgraph transformations, vari-

ous area, speed, and power optimization techniques were explored. The estimates provided by

Hyper gave a quick comparison of the relative effectiveness between various sets of transforma-

tions.

After the scheduling and hardware mapping steps, architectural power analysis was done

using SPA. It identifies the bottlenecks of power consumption. The information is used to suggest

further improvements to the architecture.
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As a final step, the architectural description is converted to silicon layout using the

LagerIV CAD tools. Running IRSIM on the extracted layouts provides some power figures that

can be compared with the SPA results.

1.1  Prediction Model Fundamentals

Some details of the algorithm are left out here, and described in more rigorous fashion in

Chapter 2. This section is intended to give an overall view of the RASTA-PLP algorithm, leading

to the block diagram in Figure 1.4. Chapter 2 will discuss the algorithm used to implement each of

the blocks, as well as the design space exploration.

1.1.1  Linear Prediction (LPC) Model

The greatest common denominator of all recognition systems is the acoustic signal pro-

cessing. A common front-end is the linear predictive coding (LPC) analysis [2]. The analysis

assumes that the speech synthesis consists of a digital filter, H(z), whose excitation source is cho-

sen from either an impulse train (voiced speech) or a white noise generator (unvoiced sounds)

depending on a voiced/unvoiced switch.  The switch is controlled by the voiced/unvoiced charac-

ter of the speech. The filter has an all-pole transfer function which is controlled by the vocal tract

parameters characteristic of the speech being produced. The aim is therefore to predict theak

coefficients of the filter H(z), also known as the LPC coefficients. Figure 1.1 shows apth order

autoregressive (AR) transfer function, withp poles.
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FIGURE 1.1 Speech synthesis model based on LPC Model

From the transfer function, a given speech sample at timen, x(n) can be represented as a

linear combination of the pastp speech samples,

(EQ 1.1)

Hence, the autocorrelation function can be related by

(EQ 1.2)
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A pth order AR model has therefore,p unknowns,a1 throughap. EQ1.3 showsp sets of

EQ1.2 with the value of k ranging from 1 throughp arranged in a matrix form. Since the speech

samples are real the autocorrelation function is symmetric, i.e.rx(k) = rx(-k). If there is a way to

estimate the firstp+1 entries (rx(0) throughrx(p)) of the short term autocorrelation function, the

LPC coefficients can then be predicted by solving EQ1.3 with Durbin’s algorithm[3] for Yule-

Walker equations, since thep x p matrix is Toeplitz symmetric:

(EQ 1.3)

The autocorrelation function is obtained by an inverse Fourier transformation of the power

spectrum. The short term (20ms~30ms window) spectrum is approximated by a periodogram esti-

mate[4], defined as

(EQ 1.4)

The Fourier transform of the speech samples is usually obtained with a 256-point or 512-

point FFT on a speech input sampled between 8kHz to 16kHz. The transfer function of the vocal

tract, H(z) is assumed to remain unchanged throughout the short time segment.

A very important LPC parameter set, which can be derived directly from the LPC coeffi-

cients, is the set of LPC cepstral coefficients,cm. These are the coefficients of the Fourier trans-

form representation of the log magnitude spectrum. Bogert et al. [17] observed that the logarithm

of the power spectrum of a signal containing an echo hasa n additive periodic component due to
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the echo, and thus its Fourier transform, the cepstrum, should exhibit a peak at the echo delay.

The cepstral coefficients are associated with homomorphic analysis, which have been shown to be

a more robust, reliable feature set for speech recognition than LPC [18].

The recursion used is given by the following equations, withA andam variables defined as

in EQ1.1 and EQ1.3.

(EQ 1.5)

1.1.2  Bank of Filter Analysis and Perceptual Linear Prediction (PLP)

LPC models all frequencies equally well. Unfortunately, this is not consistent with the

human auditory devices. It was shown by Hermansky [5] that recognizers equipped to utilize the

perceptually based spectra deliver recognition accuracy comparable to that of LPC, but with

smaller order autoregressive models, i.e. fewer LPC coefficients, thus gaining the advantage of a

reduced computational load.

The frequency analysis step in human speech processing is performed by the inner ear. It

is accomplished by waves travelling along the basilar membrane in the inner ear (cochlea).

Higher frequencies resonate near the input while lower frequencies resonate progressively nearer

the apex of the cochlea. The natural frequency scale of the ear, which corresponds to the total

length (~35mm) of the basilar membrane, has a resolution of about 1.5mm, giving rise to about

24 “critical bands” which span the audible range of approximately 20Hz~20000Hz.
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FIGURE 1.2 Physiological model of the human ear

The PLP model suggests that the human perception of frequencies can be mimicked by

passing the sampled speech through a bank of Q bandpass filters, giving the signals:

(EQ 1.6)

However, instead of using EQ1.6, the critical band filtering is done in the frequency

domain. The same effect could be achieved by weighting the FFT coefficients according to the

magnitude frequency response of a filter bank. The center frequencies of the filters are spaced

equally on a Bark scale from 0Hz through 8Hz. Each filter spans a common bandwidth on a Bark

si n( ) s n( )*h i n( ) for 1 i Q≤ ≤=

hi m( )s n m–( )
m 0=
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scale. The Bark scale is a non-linear transformation of the usual frequency scale, given below in

EQ 1.7. From Figure 1.3, it is clear that for the same bandwidth in Bark scale, band A, which is

centered at a higher frequency, spans a wider range of actual frequencies then band B. This mim-

ics the progressively coarser resolution of human perception at increasing frequencies.

(EQ 1.7)

FIGURE 1.3 Non-Linear Transformation to Bark frequency.

1.1.3  Relative Spectral, Perceptual Linear Predictive model (RASTA-PLP)

The PLP model, however still suffers from linear distortions in the communications chan-

nel. A simple muffling of speech could change the LPC coefficients sufficiently to fail a recog-

nizer trained on clean data. Hermansky et al. [6] proposed a refinement to LPC to make it more

tolerant to channel modulation effects (convolutional noise). The following were added in their

technique called RASTA-PLP (Relative Spectral, Perceptual Linear Predictive):

• Bandpass filtering estimates the temporal derivative of the Bark-scale-trans-

formed spectrum by drawing a regression line through spectral values obtained in

the last 5 consecutive windows.

Bark Frequency:Ω
Frequency:ω rad s-1

Usual Frequency,ω

Bark
Frequency,Ω

A

Α

Β

Β



Automated Low Power ASIC Design for Speech Processing 9

• Add the equal loudness curve and raise the coefficients by power of 0.33 to simu-

late the power law of hearing. The raise power function is simplified by using a

natural log, followed by a multiplication of factor 0.33, and an inverse logarithm

(exponential function). i.e. c0.33 = exp(0.33 * log(c)).

The complete block diagram is shown in Figure 1.4. The non shaded blocks make up the

most basic LPC analysis model. The critical band filtering block (medium shading) implements

the PLP improvement, while the most heavily shaded blocks complete the RASTA-PLP algo-

rithm.

FIGURE 1.4 Flowgraph of RASTA-PLP

1.2  The Hyper synthesis Environment

The Hyper system is an integrated synthesis environment for real time applications. It uses

the Silage[7] language for behavioral description input of the application. Silage is a signal-flow

language developed especially for DSP specifications. It is an applicative language whose funda-

mental operation is function application. The term Static Single Assignment (SSA) is used to

describe the computation method of Silage. SSA avoids any false dependencies between interme-

diate data, thus helping the exploitation of parallelism. Other advantages include built-in stream

and temporal operators for handling of continuous streams of discrete-time inputs, and built-in

data types that allow user specification of data bit widths.
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Hyper parses the Silage description and compiles a Control/Data flow graph (CDFG).

The CDFG represents the algorithm as a flow graph consisting of nodes, data edges, and control

edges.The nodes represent primitive data operators such as adders, comparators and memory

read/writes. The data edges represent data precedences between these nodes. Control edges are

introduced to enforce extra precedence rules between nodes (e.g. the execution time of operation

X has to trail the execution of operation Y by at least N clock cycles). Aside from the standard

arithmetic operations, the CDFG allows a number of macro control flow operations such as loops

and if-the-else blocks. The introduction of those control statements results in a hierarchical graph.

The body of a loop or a conditional is represented by a sub-graph, which is contracted into a sin-

gle node at the next higher hierarchy level. The hierarchical representation has the advantages of

compactness and descriptiveness. It also preserves any structural hints from the designers.

 The CDFG serves as a central database to which all other Hyper tools (Figure 1.5), such

as min-bound estimations, flow graph transformations, and assignment/scheduling, refer when

executed. The results of these operations are back annotated onto the database. The following is a

brief description of each class of operations

• .Memory Management:Performs memory moduleselection, memory merge

and address generation. Memory module selection assigns an appropriate memory

module from the hardware library for each array in the application. Memory

merge allows 2 or more different arrays to be merged onto a single memory mod-

ule. Address generation reads the memory address annotated on the array read/

write nodes in the CDFG and creates nodes that will be executed as any other data

operation to generate the address.

• Module Selection:Selects an appropriate hardware library module for each flow

graph operation.

• Estimation: Derives the minimum and maximum bounds on the required hard-

ware resources. This information will serve as an initial solution and will help

select the next synthesis operation to perform.
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FIGURE 1.5 The Hyper synthesis environment

• Transformation: Manipulates the signal flow graph of the algorithm to improve

the final implementation, without changing the input-output relation. Typical trans-

formations are retiming, loop unrolling and common-subexpression elimination

and pipelining.

• Allocation, Assignment and Scheduling:Selects the amount of hardware

resources (execution units, registers and interconnect), needed for the execution of

the algorithm. Bind each flow graph operation to a particular hardware unit and

time slot.

• Hardware Mapping: Maps the allocated, assigned and scheduled flow graph

(called the decorated flow graph) onto the available hardware blocks. The result of

this process is a structural description of the processor architecture in the SDL[8]

language, which serves as the input to the LagerIV silicon assembly tool suite.
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Furthermore, the Hyper simulator can be invoked after any of the synthesis steps (though

Hardware Mapping does not alter the CDFG) to verify the functionality of algorithm and the cor-

rectness of the transformations performed. Also, when run in the Bit-True mode, which simulates

with a fixed point representation of the data with bit-widths as specified by the user, the simulator

can optimize and check the value of a number of performance parameters, such as the signal to

noise ratio, or the effects of truncation on the transfer function.

Hyper allows the designer to play the area-time-power trade-off game. The effect of the

various built-in transformations are easily reflected by the Estimator results. Also, Hyper provides

comparisons between different algorithms pertaining to the same behavior.

1.3  SPA - Stochastic Power Analysis

SPA is a tool that allows a designer to obtain predictions of area and power consumption

at the architectural level. The input to SPA is a register-transfer level description of the architec-

ture to be analyzed and a set of input vectors. Both textual and graphical results are available,

with area and power estimates broken down by hardware class and type of component.

The primary RTL input describes the architecture under consideration. Conceptually, this

consists of the information displayed in Figure 1.6. In particular, it contains a (possibly hierarchi-

cal) description of datapath blocks used in the chip, as well as the interconnect network joining

these blocks. SPA uses a textual architectural description language (ADL) for this purpose. The

information about the interaction between the blocks is embodied in the control path of the chip.

Using a control description language (CDL), the control flow of the design can be described as a

set of state tables. These tables specify how the next state and outputs of the control module relate

to the present state and inputs. In order to maintain a relatively high level of abstraction, CDL

allows the user to specify control signals and states as enumerated (symbolic) types rather than bit

vectors. For example, the instructions to a memory can take the form of “READ” or “WRITE”

rather then obscure binary codes.
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FIGURE 1.6 Architecture of micro coded instruction set processor

SPA makes use of power and area models that are stored in a hardware library. Unlike the

high-level power estimator used in Hyper which uses a white noise input to the design, SPA

accounts for the effect of hardware activity on power consumption. It collects activity statistics for

each bus and module through a complete functional simulation of the architecture.

SPA performs three types of analysis, interconnect analysis, area analysis, and power anal-

ysis. Interconnect analysis estimates the physical capacitance associated with wires in the design.

The result of this is essential for analysis of both area and power.   Power estimation is performed

using the Dual Bit Type (DBT) [13] model for datapath and memory elements and the Activity-

Based Control (ABC) [13] model for control path elements.

1.4  LagerIV

LagerIV is a CAD tool suite to enable rapid prototyping of Integrated Circuits. Designs

can be described in high-level languages / descriptions and converted to layout for fabrication.

The conversion is enabled by the use of structure processors and layout generators.A structure

processor performs a description/netlist transformation on an Oct Structural Master View (SMV),

and generates an Oct Structural Instance View (SIV). Structural processors used includedpp for

datapath modules andbdsyn for control cells. A layout generator performs the physical place-
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ment and signal routing given an SIV netlist description and generates an Oct physical view and

Magic output. Layout generators used includeFlint  andStdcell.
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2.0  High Level Analysis

The design path begins with a description of the algorithm for the various blocks in Silage.

For each of the major blocks, several algorithms performing the same functionality are investi-

gated.  The Hyper simulator provides a functionality verification while the Hyper estimator gives

an initial profile of each algorithm by estimating power consumption, memory accesses,  area, etc.

Initial estimates of all the blocks (Figure 2.1) in the RASTA-PLP algorithm revealed  the

power consumption and critical path of the FFT block to be well above any other blocks. From a

power prospective, that is where most of the design effort will be directed towards. In addition,

other  then the  FFT and the Critical Band Filtering blocks, the remaining processes, such as the

Exponential, Equal Loudness and Power Law blocks, have fairly straightforward and short com-

putations, leaving less room for design space exploration. The main effort of the high level analy-

sis is therefore pointed at the FFT and Critical Band Filtering blocks, while similar work on the

remaining blocks will see less detailed. The emphasis on power continues down to the architec-

tural design level. The selected algorithms for the FFT and the Critical Band Filtering blocks will

be mapped onto a Register Transfer Level (RTL), and have their layouts generated eventually.

Further architectural analysis of the FFT block will be provided by a power and area breakdown

using SPA.

The use of Silage description has inherent advantages compared to more commonly

known procedural languages such as C. However Silage requires the use of manifest loops and

manifest array indices which, as will be seen, is an obstacle to the description of less structured,

and less regular algorithms. In such cases, the appropriateness of a C++ input description

approach will be explored.

The sampling rate of the speech input was chosen to be 16kHz. A 30ms window is applied

on the sampled speech to obtain 480 data points. This is zero-filled to make up the 512 data points

needed for a 512-point FFT. Consecutive 30ms-windows have an overlap of 20ms.   The through-

put of the RASTA front end must therefore be less than 10ms. In order to meet the time criteria, a
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2-staged pipe-lining is used. The 512-point FFT takes up most of the first stage while the rest of

the front-end is computed in the second stage.

FIGURE 2.1 Initial Estimates of Blocks in RASTA-PLP block showing a disproportionately large
amount of power consumed in the FFT block.

2.1  |FFT|2, Power Spectrum

The periodogram estimate of the power spectrum of a 30ms segment of speech consisting

of M samples is defined as

(EQ 2.1)
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(EQ 2.2)

The power spectrum can therefore be estimated by the magnitude square of the FFT of the

input samples. The constant factor1/M is ignored in the computations as doing so will simply mul-

tiply every autocorrelation coefficient by a factor ofM. Equation 1.3 remains unchanged, and

therefore, does not affect the final cepstral values.

The 480 speech samples contained in the 30ms window are added with 32 zeros in order

to make a Radix-2 FFT (512-point FFT) feasible. Since the inputs are all real, the power spectrum

is symmetrical about w=π, or about the 256th point of the FFT. Thus only the first 256 output-

coefficients are required, and they represent the power spectrum from 0 through 8kHz.

A number of FFT algorithms exists. It is found that algorithms that reduce the computa-

tion complexity in terms of number of additions and multiplications, will on the other hand, have

less regularity in their structures. Memory address generation and number of memory accesses

also proves to be a big issue since the memory size is massive (512 for each array). In particular,

the following choices were examined:

• Radix 2 algorithm

• Radix2-Winograd Algorithm

• Split Radix (2,4) Algorithm

2.1.1  Radix 2 algorithm

The 29=512 point radix-2 FFT can be realized as a cascade of 9 blocks. Each block con-

sists of repetitions of either a 2-input, 4-input,..., 256-input or 512-input butterfly respectively.

There are 2 x 256 complex twiddle factors accounting for distinct values of cos(kπ/256) and sin(kπ/

256), for 0<=k<256. These are stored in two 256-word ROMs.

X e
jω( ) x n( )e j– ωn

n 0=

M 1–

∑=
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In Silage, each block is realized as a nested loop of depth 2. The code within Figure 2.2

shows that of a typical block. The last four statements in the deepest nest implements the cross

additions (complex additions) in a butterfly. Later blocks have fewer butterflies with more inputs,

so thej variable iterates over fewer values, while the k variable iterates over more values.

FIGURE 2.2  Radix-2 FFT. 9 stages of butterflies and a  | . |2  operation.
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2-input
Butterflies

512-input
Butterflies

4-input
Butterflies

(j : 0 .. 15)::
   begin
    (k : 0 .. 15)::
     begin
      real_low = In_real[32*j + k];
      imag_low = In_imag[32*j + k];
      cosw = Wr[16*k];
      sinw = Wi[16*k];
      temp5r = word(cosw * real_low) - word(sinw * imag_low);
      temp5i = word(sinw * real_low) + word(cosw * imag_low);
      Out_real[32 * j + k] =  In_real[32*j + k + 16] + temp5r;
      Out_imag[32 * j + k] = In_imag[32*j + k + 16] + temp5i;
      Out_real[32 * j + k + 16] = In_real[32*j + k + 16] - temp5r;
      Out_imag[32 * j + k + 16] = In_imag[32*j + k + 16] - temp5i;

    end;
  end;

Block of 256 Block of 128 Block of 1

...

...
. . .

...

32-input
Butterflies

Block of 16

Butterfly

In[0]

In[511]

Out[0]

Out[511]

Cross
Additions of
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Note that the array address indices of inputs and outputs in the Silage statements differ

only by either a constant addition or a constant multiple. Common subexpression elimination for

the address generation of these array indices was therefore feasible. Instead of computing the

value of, say (32 *j + k + 16) and(32*j + k) every time those address are needed, (32*j + k) is

computed only once during each iteration of the innermost loop, and16 is added to this value also

only once.

It is observed that each butterfly produces outputs which occupy exactly the same

addresses as the inputs. The above example, for instance, obtains inputs from In[32*j + k] and

In[32*j + k + 16], and outputs to Out[32*j + k] and Out[32*j + k + 16]. Thus, using only one pair

of input memory hardware for the real and imaginary parts respectively, each iteration of the but-

terfly obtains a number of inputs from the memories and overwrites the inputs with its outputs.

However, the description of such overwriting of array values will violate the static single assign-

ment (SSA) checks in Silage. This problem is solved by using different array names in the Silage

description for the outputs of each block, and then implementing in-place storage of these differ-

ent arrays by manually altering the intermediate CDFG.

The simplicity of the radix-2 algorithm is attractive. However, at a clock period of 550 ns

(Section 2.6 describes the choice of clock frequency), the critical path was 23807 cycles. This

works out to ~10.3 ms which exceeds the required throughput of the RASTA front end. Although

more pipe-lining might solve the throughput constraint, this will invariably increase the power

consumption and area as additional hardware is required to handle the parallel computations of a

pipelined algorithm.

TABLE 1. Comparison of counts before and after Common Subexpression Elimination

Module Count Before CSE Count After CSE

Add 38142 17150

Multiply 26624 12032

Twiddle Factor Memories 4096 4096

Estimated Energy Consumption 12.7µJ 8.3µJ
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FIGURE 2.3 In-place storage of Intermediate results

2.1.2  Radix-2-Winograd Algorithm

In the Radix-2-Winograd Algorithm, the first 3 blocks (2-input, 4-input, and 8-input) of

the Radix-2 algorithm are replaced with a single block consisting of 32 Winograd 8-point FFTs

[11]. The approach takes advantage of the fact that for the first 3 blocks of the Radix-2 algorithm,

more then half the number of complex twiddle factors are either+ 1 or+ j, while the rest of the

them correspond to exp(jπ/4) and exp(-jπ/4). These last 2 terms, which have equal real and imagi-

nary parts, constitute to the only non-trivial multiplication, a factor of 0.707106 (1/Sqrt(2)). Each

8-point Winograd FFT, uses only 2 multiplications, compared to an 8-point Radix-2 algorithm

which requires 8 multiplications. Also, instead of reading the twiddle-factors from memory, the

only non-trivial twiddle-factor,1/Sqrt(2)is stored in a constant register. This eliminates the need

for address generation of the twiddle factors as well as expensive memory accesses. Appendix B

shows the Silage description of the Radix2-Winograd algorithm. The Winograd FFT, is described

in Silage as the functionfft8. It is clean, has no iteration loops, and consists primarily of cheap

additions and subtractions.

As a result, the critical path is reduced to 17607, a reduction of 26%. This proves to be

critical, as it is possible to achieve a throughput below the 10ms criteria, without any further pipe-

...

MEMORY
HARDWARE

Butterfly Operation

Inputs:

Outputs:

In[a], In[b], In[c], ...

Out[a], Out[b], Out[c], ...

READ

WRITE
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lining. At the same time, the reduction in computational complexity also leads to a 20% reduction

in power consumption.

FIGURE 2.4 Radix-2-Winograd Algorithm. The FFT-8 is handled by a Winograd small-N FFT.

2.1.3  Split-Radix Algorithm

The split-radix (radix-2 and radix-4) algorithm combines the relatively small number of

addition terms in a radix-2 algorithm, and the smaller number of multiplications in a radix-4 algo-

TABLE 2. Comparison of EXU counts for a  512-point FFT using Radix-2 and Radix2-
Winograd

Module Radix-2
Radix2-
Winograd

Add 14590 12230

Subtract 5632 4928

Multiplie 12032 9472

Log Comparator 2558 1670

Transfer 9990 7756

Register Accesses 109064 87233

Memory Accesses 20224 16128

TOTAL EXU COUNT 174090 139417

CRITICAL PATH 23807 17607

ESTIMATED ENERGY CONSUMP-
TION

8.3µJ 6.6µJ

...

FFT-8

FFT-8

FFT-8

FFT-8

...

16-input
Butterflies

32-input
Butterflies

. . .

...

| . |2

25
6 

F
F

T
 c

oe
ffi

ci
en

ts

256 Power
Spectrum
Coefficients

512-input
Butterflies

...

...
...



Automated Low Power ASIC Design for Speech Processing 22

rithm. At any stage, a N-DFT is decomposed into aN/2-DFT using radix-2, and twoN/4 DFT

using radix-4.

(EQ 2.3)

(EQ 2.4)

(EQ 2.5)

Due to asymmetry in the decomposition, the structure of the algorithm is more involved

than either of the previous two algorithms. Appendix C shows the Silage description of the Split-

Radix Algorithm. It is highly unstructured, and difficult to understand. Unlike the previous meth-

ods where each stage can be described as a recursive decomposition and therefore, as manifest

loops, the split-radix algorithm distinguishes between the decomposition of X2k and X4k+1,

X4k+3. A Fortran description written by Sorenson[12] implements the split radix in loops that

have non-manifest, loop counters that have variable lower and upper bounds. A similar realization

in Hyper is difficult with Silage as the input description language because the current Silage

parser accepts only manifest loop counters. Therefore, a complete loop unroll of the Fortran code

is necessary, resulting in a long and irregular series of loops.

On the other hand, the problems associated with the Split Radix algorithm may be solved

if a C++ input description language to Hyper were available. Typical C++ syntax would allow

both non-manifest loops and multiple assignments of variables. This would also solve the prob-

lem of having excessive arrays, which was the side-effect of the loop unrolling, which in turn,

was needed to satisfy the manifest loops requirement in Silage.
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FIGURE 2.5 Loop Unrolling during translation from Fortran code to Silage code.

It was discovered that the split-radix algorithm enjoys more then a twofold reduction in

critical path to 8307. The power consumption saw an impressive improvement of about 30%.

Table 3 gives a comparison between Radix2-Winograd algorithm and the Split-Radix algorithm.

It shows significant improvement in terms of number of additions and multiplications.Similar

40 DO 30 I0 = IS, N-1, ID
I1 = I0 + N4
I2 = I1 + N4
I3 = I2 + N4

.

.

.
30 CONTINUE

 IS = 2*ID - N2 + J
 ID = 4*ID
 IF (IS.LT.N) GOTO 40

Loop Unroll

SUBSET OF FORTRAN CODE

(I0:0..0)::
begin

.

.

.
end;

(I0:0..3)::
begin

.

.

.
end;

(I0:0..15)::
begin

.

.
,

end;
.
.
.

SUBSET OF SILAGE CODE



Automated Low Power ASIC Design for Speech Processing 24

Common Subexpression Elimination transformations as that described earlier in Section 2.1.1

were also employed to achieve the following figures.

2.1.4  Choice of Algorithm for FFT

The Radix2-Winograd algorithm is chosen as the algorithm to implement the FFT due to

its ability to meet the target throughput, as well as it overall regularity which simplifies the imple-

mentation.and lowers amount of overhead.

The Radix2-Winograd algorithm is a swift and obvious improvement over the Radix-2

algorithm. With a little modification of the Silage description, a respectable amount of power sav-

ings is achieved. The extent of irregularity introduced by the Winograd-8-point FFT is also mini-

mal. Recall that the 8-point Winograd FFT is implemented as a efficient code with mostly

additions and subtractions which have a low cost of power consumption.

It is worth noting, however, that the the initial Radix-2 algorithm is extremely regular. The

Silage code basically implements each of the 9 blocks in the same way, differing only in the iter-

ation bounds and constants in the array indices. In terms of architecture, the Radix-2 can be

implemented easily with only one structural block that is repeated 9 times with the appropriate

modification of the iteration bounds and other constant values.

TABLE 3. Comparison of EXU counts for a 512-point FFT using Radix2-
Winograd and Split-Radix Algorithms

Module
Radix2-
Winograd Split-Radix

Add 12230 8818

Subtract 4928 4224

Multiplies 9472 6016

Log Comparator 1670 946

Transfer 7756 5277

Register Accesses 87233 62570

Memory Accesses 16128 12800

TOTAL EXU COUNT 139417 100651

CRITICAL PATH 17607 8307

ESTIMATED ENERGY CONSUMP-
TION

6.6µJ 4.6µJ
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The comparison between the Radix2-Winograd and the Split Radix algorithm, however, is

less clear cut. While the Split Radix algorithm described in the last section has obvious gains in

terms of both execution counts as well as power estimates, the description in Silage has been dif-

ficult, and even looks awkward when it finally works. Moreover, the less regular structure also

makes it less desirable then the radix-2-Winograd algorithm. Section 3.3, will describe how regu-

larity in the algorithm can translate to a more compact architecture with less interconnect over-

head, leading consequently to reduced power consumption. Regular algorithms also typically

require less control. Though there has been some effort to detect and quantify such useful proper-

ties of algorithms [15] and [16], transformations for enhancing these properties are largely unex-

plored. There is therefore reason to believe that the difference of power consumption between the

Radix2-Winograd algorithm and the Split-Radix algorithm may not be as pronounced as the num-

bers suggested in Table 3.

Currently, work is being done to allow C++ as the input behavioral language for Hyper.

This will allow a more concise description of the split radix algorithm, including provision for

non-manifest loop counters that will make the difference in both description and implementation.

Table 4: Summary of algorithms used for |FFT|2 block

Algorithm Power Reduction Technique
Incremental Power

Improvement
Benefits/Disadvantages

Radix -2

(Appendix A)

Common Subexpression
Elimination

36% Power
Reduction

Regularity of Structure

Radix2-Wino-
grad

(Appendix B)

Partly Different Algo-
rithm

Twiddle factors no
longer need to be stored
in arrays ==> Reduced
Memory Power

20% Power
Reduction

Fewer Twiddle Factors

Less Regularity
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2.2  Critical Band Filters

 Zwicker [10] proposed that the bandwidths of the critical bands are approximately con-

stant on the Bark scale,Ω, whose relation with the usual frequency scale,ω = 2πf, was given in

EQ 1.7. Schroeder’s [9] proposal of the asymmetric critical band filtering function F(Ω) (fre-

quency response) in EQ 2.3 for a filter centered atΩo, is approximated by piecewise linear func-

tion given in EQ2.4.

(EQ 2.6)

Critical band filtering is done in the frequency domain since both the frequency response

of the critical band filters as well as the FFT of the signal are known. The power spectrum con-

sists of 256 distinct samples that span 0 through 8kHz. The frequency response of the bank of fil-

ters is sampled at a resolution of   8kHz/256= 31.25Hz. The power spectrum coefficients are then

Split Radix

(Appendix C)

Wholly Different Algo-
rithm

Sizable reduction in addi-
tions and multiplications.
Also reduced number of
other EXU counts, e.g.
memory accesses, com-
parators, etc.

30% Power
Reduction over
Radix2-Winograd

Asymmetry of decom-
position leads to diffi-
cult behavioral
description in Silage.

Much less regularity

Table 4: Summary of algorithms used for |FFT|2 block

Algorithm Power Reduction Technique
Incremental Power

Improvement
Benefits/Disadvantages

10 F Ω Ω0–( )log 15.8 7.5Ω Ω0– 0.5+( ) 17.5 1 Ω Ω0 0.5+–( )2
+–+=



Automated Low Power ASIC Design for Speech Processing 27

weighted correspondingly by the magnitude of these samples. The 19 bandpass filters, are cen-

tered at equal Bark intervals,B, and span the frequency interval 0 through 8kHz.

(EQ 2.7)

FIGURE 2.6 Critical Band Filters. Filters are centered at equal Bark intervals,B.

In accord with the RASTA-PLP, the first sample (d.c.) is copied from sample atΩ=B, and

last samples (centered at 8kHz) is copied from sample atΩ=19B to make a total of 21 samples

spanning 0 to 8kHz.
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2.2.1  Direct Computation

The initial algorithm for computing the critical-band outputs consists of 19 loops. Each

loop essentially performs the critical-band masking. It uses an iterative multiply-add to sum the

multiplication of the power spectrum coefficients with the height of the masking curve. A typical

loop is shown in the inset of Figure 2.7.

FIGURE 2.7 Implementation of the Critical Band Filtering in Frequency Domain. Inset shows
description of a typical filter.cb3[i] is the height of the ith sample of the window centered atΩ=3B (Bark
frequency scale). The corresponding power spectrum coefficient, In[i],  is weighted by the constant stored in
cb3[i] , and the product is updated to the iterating sumOut3.

In this algorithm, each filter in the bank of filters works independently of one another, and

therefore appears to have a high degree of parallelism. In order to exploit any form of this concur-

rency property, there must be a way to simultaneously read more then one filter input, from the

array of |FFT|2 coefficients. The hardware used in Hyper does not allow multiple simultaneous

read/writes from the same memory. Hyper does however permit partitioning of an array such that

different ranges of elements of the array may reside in different memory hardware. Multiple

simultaneous read/writes from the same array is thus possible as the data access will be made

from different memories. Nevertheless, due to the overlap of frequencies between consecutive fil-

ter bands, some of the array elements of the power spectrum coefficients will have to be repeated

in more then one partitioned memory. The total size of the partitioned memories will be necessar-

F1(z)

F2(z)

F3(z)

F19(z)

.

.

.

Power
Spectrum
Coefficients

Array of

Out3##1 = word(0);
(i3:0..14)::
begin

Out3  = word(In[i3+1]*cb3[i3]) +Out3#1;
end;

Out1

Out2

Out19



Automated Low Power ASIC Design for Speech Processing 29

ily greater then 256, which is the number of distinct values in the array. In this case, increased

concurrency is traded off for additional memory size, which can lead to higher power cost of

memory accesses. The high level of concurrency is usually an important property, but here, where

the 10ms limit is ample even when the filter outputs are computed serially (not concurrently), it

would be a waste of power to operate the filter functions in parallel.

Besides requiring additional hardware, running the filters in parallel also required an

excessive 832 reads (per set of sample inputs) from the 256 power spectrum coefficients. This is

the result of the filters operating independently, and the extensive overlap between consecutive

bands. Each power spectrum coefficient usually falls within the bandwidth of 3 or 4 neighboring

filters. This undue number of reads is not power efficient as energy is required for additional

address generation and memory accesses.

2.2.2  Improved Algorithm

To overcome the problem with excessive read operations, the 19 loops are taken apart, and

replaced with 30 loops which represents the run-length of the overlapped power spectrum coeffi-

cients. For instance, if In[62] through In[72] fall within  the windows centered atΩ=11B, 12B,

13B, and 14B, the following loop covers part of the 11th, 12th, 13th and 14th critical bands:

 /*
 * In: 62..72::
 */
 Filt11_6##1 = Filt11_4;
 Filt12_5##1 = Filt12_3;
 Filt13_3##1 = Filt13_1;
 Filt14_1##1 = word(0);
 (i17:62..72)::
 begin
     a17 = In[i17];
     Filt116 = word(a17 * cb11[i17-36]) + Filt11_6#1;(1)
     Filt125 = word(a17 * cb12[i17-43]) + Filt12_5#1;(2)
     Filt133 = word(a17 * cb13[i17-52]) + Filt13_3#1;(3)
     Filt141 = word(a17 * cb14[i17-62]) + Filt14_1#1;(4)
 end;

where Filt11_X, Filt12_X, Filt13_X, and Filt14_X are the iterating sums for the 11th, 12th, 13th,

and 14th critical bands respectively. This maneuver resulted in exactly 256 reads for the 256

power spectrum coefficients. Despite the  increase from  19 loops to 30 loops, which would also

require more control power due to increased control activity, the reduced EXU counts, primarily
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due to reduced memory accesses, as well as address generation computations, overcomes this

negative effect.

 The improved algorithm reads a single input, and computes the partial sum of several

band coefficients. In the example above, each input read intoa17 is used to compute the four

instructions (1), (2), (3), and (4).  The partial sums can be done simultaneously. The assignments

have no data-dependencies, lending to a certain amount of parallelism in the algorithm.  In order

to exploit this advantage, the number of EXU’s will also need to be increased.  This increases the

switching capacitance of global signals such as CLK, and control signals, which are also routed to

other parts of the circuit such as the global controller, and the power spectrum module (FFT

block).  Nevertheless, if the global signals are gated and turned off between the  immediate com-

pletion of the critical-band filtering, and the next sample period (when the critical band would be

in waiting mode), the reduced critical path would require fewer clock switches, and therefore a

net power consumption of 27%!

TABLE 5. Comparisons of EXU counts between algorithm for Critical Band Filtering

Module
Original Direct
Computation Improved Algorithm

Add 2461 1903

Multiply 832 837

Log Comparator 832 255

Transfer 5 22

Register Accesses 10011 7584

Memory Accesses 1683 856

TOTAL EXU COUNT 15824 11715

CRITICAL PATH 3328

(Filter outputs are
computed serially,
not concurrently)

1042

ESTIMATED ENERGY CONSUMP-
TION

327nJ 238nJ
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2.3  Modeling of Critical Band Filter outputs

In order to improve the recognizer’s tolerance to a changing communication channel,

RASTA-PLP estimates the temporal derivative of the Bark-scale-transformed spectrum by draw-

ing a regression line through the spectral values obtained in the last 5 consecutive input sets.

Equal Loudness Preemphasis [19] and Intensity-loudness Power Law [21] both further simulate

human hearing conditions.

Due to the simplicity of computations involved during  Estimation of Temporal Derivative,

Equal Loudness Preemphasis and Intensity-loudness Power Law, the Silage code for these 3

blocks are combined into one description given in Appendix F. The  Natural Logarithm and Expo-

nential algorithms assists in  the implementation of the Power Law block, and allow the Equal

Loudness Preemphasis filtering to be done simultaneously. Sections 2.3.2 and 2.3.3 show why.

Appendix G and H list the Silage description for the Natural Logarithm and Exponential blocks

respectively.

2.3.1  Estimation of temporal derivative

Each of the 19 critical band coefficients is streamed into an averaging  filter as shown in

Figure 2.8. Since consecutive speech windows have a2/3 overlap in time (20ms overlap of the

30ms window), there is a high correlation between the current and previous critical band outputs.

The averaging removes some error due to possible changes in the channel. Silage description of

the filter is achieved by one simple sentence for each filter:

 Out = ((Out@1 * 0.94) + (0.2 * In) + (0.1 * In@1) - (0.1 * In@3)  - (0.2) * In@4));
(EQ 2.8)

As mentioned in Section 2.0, the remaining blocks will be analysed in a less detailed fashion
since they are computationally far less complexed then the first 2 blocks that have been analyzed
thus far. The remaining sections of the Chapter describes the Silage input for each of the blocks,
concluding by a short discussion on selection of clock period and  a table of  estimates of impor-
tant parameters such as critical path and power numbers, obtained at the chosen clock frequency.
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FIGURE 2.8 Filtering that implements Estimation of the temporal derivative.

2.3.2  Equal Loudness preemphasis

The RASTA-PLP algorithm preempahsizes the sampled power spectrum with the 40dB

simulated equal loudness curve. The transfer function of the filter [20] is given below in the nor-

mal frequency scale.

(EQ 2.9)

The functionE(ω) is an approximation to the nonequal sensitivity of human hearing at

different freqeuencies [19] and simulates the sensitivity of hearing near the 40-db level.

The E(ω) spectrum is similarly sampled at 19 equal Bark intervals,Ω=B, corresponding

to the middle frequency of each critical band. The Silage description for the equal loudness pre-

H z( )c0[2], c1[2], c2[2], c3[2], ...
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---------------------------------------------------------------------------=c0[1], c1[1], c2[1], c3[1], ...
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ci[n] is the nth critical band output at time i.
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emphasis is therefore, nothing more then weighting each critical-band coefficient with a constant,

E(ωi), for Ωi(ωi)=i* B in accord to the Bark scale transformation given in EQ1.7.

2.3.3  Intensity-loudness Power Law

A cubic-root amplitude compression approximates the power law of hearing [21] and sim-

ulates the nonlinear relation between the intensity of sound and its perceived loudness. Together

with the psychopathic equal-loudness preemphasis, this reduces the spectral-amplitude variation

of the critical-band spectrum so that the following all-pole modeling can be done by a relatively

low model order.

In order to simulate the power law of hearing, the critical band coefficients are raised to

the power of 0.33. The equal loudness preemphasis and intensity-loudness Power Law are real-

ized together by taking the natural log of the critical band coefficients, so that the constant multi-

plication in equal loudness preemphasis becomes a constant addition, which is cheaper

computationally, while the raise power operation is equivalently realized by a constant multiplica-

tion. An exponential operation completes the manipulation, shown below:-

(EQ 2.10)

2.3.4  Natural Log

The following describes how the natural log of a number, x is computed.

where p = Most Significant Bit==> 1 < y < 2. This reduces the computation to a multipli-

cation, p* ln(2), while ln(y) is evaluated by polynomial expansion. The value of p is obtained by a

E(Ωi) X
0.33(Ωi) Exp{ [0.33 * ln[X(Ωi)]] + ln[E(Ωi)]}

 ln(x) = ln (2p * y)
= p*ln(2) + ln(y)
= p*ln(2) + a1*y + a2*y2 + a3*y3 + a4*y4 + a5y5

a1 = 0.99949556
a2 = -0.49190896
a3 =  0.28947478
a4 = -0.13606275
a5 =  0.03215845
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MSB detector, while y ( =x/(2P)  ) is obtained by shifting the binary of x to the right p times. Two

implementations of the MSB detector were examined. A log detector and a linear detector.

The log detector, with order O(log n),  may speed up the computation for worst case

inputs (Speed of MSBα 1/P).  However, from the view of power consumption, the log comparator

is less efficient, as it will be comparing bits whose comparisons might have been omitted by the

linear comparator. For example, the figure below shows a 16 bit MSB log detector used to detect

the MSB of the bit string, 0000-0101-1011-0011.   The bypass registers a ‘1’ if a ‘1’ bit has been

detected in (a). The 8-bit MSB detector (b) will always perform its computations regardless of the

output of detector (a). While gaining speed, this set-up does not consider the redundancies

between (a) and (b).

FIGURE 2.9 16-bit Log detector for MSB

A linear MSB detector, on the other hand, omits all further operations after the first ‘1’ has

been detected, thereby conserving energy. An improved linear MSB detector combines the MSB

detection and the division by 2P operation in a loop with n iterations (n= Bit length of x = 33) by

taking advantage of the fact that a division by 2P is equivalent to P binary right shifts. The algo-

8 bit MSB
detector (a)

8 bit MSB
Detector (b)

MUX

....

....

....

e.g of a 16 bit MSB
log detector.

Outputs all ‘0’s
if a ‘1’ has been
detected in (a)

MSB detected
flag
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rithm starts with P1=n and  maintains 2 copies of binary stream X1 and Y1, which are both set ini-

tially equal to x,

Eventually, at the end of n iterations, P1=p, and Y1 would have shifted left by p times such

that Y1=y.

The combined MSB detector and division by 2P, therefore has a data-independent delay.

This simplifies the design as the worst case input does not produce a delay that is any longer than

a best case input.  The critical path to compute the log for 19 critical band coefficients turned out

to be 1027, which when run at a clock rate of 537ns, is only 0.551ms. This is not of much conse-

quence considering the 10ms throughput time limit of the RASTA-PLP front end. It is chosen for

its design simplicity and power advantages.

2.3.5  Exponential

The following describes how the exponential of a number, x is computed.

f is the decimal portion of P, with 2f computed by polynomial approximation.i is therefore

the integer portion of P, and 2i is realized by binary shifts. If x is negative, i will be negative, and

if leading bit (MSB) of X1 is a ‘0’,

else

X1 << 1;

P1 = P1 - 1;       /* MSB of x not found yet. Continue shifting X1 to

                                       iterations, shift Y1 to the right by one step */

    the left by one step, and decrement P1 by 1 */

   Y1 >> 1;             /* MSB of x detected. For each of remaining P1

 Let ex = 2p

= 2i * 2f where i is an integer and 0< f < 1

Shift

Polynomial Approximation: 1 + b1f + b2f
2 + b3f

3 + b4f
4

ln(ex) = ln(2p)
        x = p * ln(2)

        p = x *1/ln(2) ; constant multiplication

And P is found by:
b1= 0.693147
b2= 0.240227
b3= 0.055504
b4= 0.009618
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2i corresponds to i left shifts.  Otherwise it is i right shifts.  The critical path for computing 19

exponentials is 685, which, at a clock period of 550ns, is only 0.377ms. Again, well under the

10ms limit.

2.4  Inverse Discrete Fourier Transform, Autocorrelation Coefficients

This far, the algorithm has only involved obtaining the power spectrum and reshaping it in

such a way to mimic the human perceptual  hearing.  From the modeled power spectrum, the

autocorrelation function is obtained through an inverse discrete Fourier Transform. Since the 21

critical band coefficients cover the frequencies 0< ω < π, the IDFT is given by,

The power spectrum is real and even, which implies that the autocorrelation function is

real. Ignoring all imaginary product terms,

However, only the first nine autocorrelation coefficients are needed for a 8th order LPC

analysis. Therefore, instead of attempting to use a general nth order FFT (in this case, n=21)

TABLE 6. Estimates obtained with Vdd=1.2V; Clock Period 550ns

Computation Block
Critical
Path

Delay
(ms)

Power
(µW)

Log 1027 0.55 21.2

Rasta Filtering, Equal Loudness &
Power Law

389 0.21 7.85

Exp 685 0.37 10.7

Total 2101 1.13 39.8

r n( ) Rp 0( ) Rp 20( )– Rp k( ) 2π
41
------kn 

 cos
2π
41
------ 40 k–( )n 

 cos+ 
 

k 1=

19

∑+=

Rp 0( ) Rp 20( )– R k( )wn k,
k 1=

19

∑+=

wn k,
2π
41
------kn 

 cos
2π
41
------ 40 k–( )n 

 cos+=
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which would compute all the 21 autocorrelation coefficients. It was decided that evaluating the

first 9 coefficients by direct summation would simplify the design. The algorithm, as described in

Silage, consists of a nested loop of depth 2 with the outer loop iterating from n=0 to n=8, and the

inner loop iterating from k=1 to k=19. Thewn,k values are stored in a 2-dimensional 9 by 19 array.

The result is a partial IDFT which uses 11.2µW, and takes 0.6ms to complete. The figures are

insignificant when compared with the overall power consumption or throughput of the entire

front-end. Even if the power consumption of the IDFT block could be improved by 30%, the net

effect in the global picture would still be negligible. The Silage description for this block can be

found in Appendix I.

2.5  Durbin Analysis[3]

Equation 1.3 is solved here to obtain 8 cepstral values.  The autocorrelation coefficients

are first normalized by1/r(0) . There is no loss of generality by doing so. The cepstral values are

solved iteratively by the Durbin algorithm. This solves the equation in O(n2) as compared to

O(n3) if a more general Gaussian elimination approach is taken.   The normalization of the coeffi-

cients requires an inverse  operation (x-1). In addition, each iteration of the algorithm also requires

the inverse of a variableβ. The front-end was simulated over a large pool of speech samples and it

was observed that the values of r(0) are always in excess of 15, while the values ofβ are always

between 0.7 to 1.0.  The inversions are done by non-restoring division. In order to simplify the

design of the divider, the operands of the inverse are adjusted so that the quotient x/y  observes the

rule x< y. In this way, the absolute value of the output of the divisor is strictly less than or equal to

1.  Therefore, there is no integer bit in the divider.

As r(0) > 1, 1/r(0)  automatically satisfies the x< y requirement. However,1/β is processed

in the following manner:
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Silage code for the Durbin’s algorithm is given in Appendix J.

2.6  Cepstral Conversion

In accord with EQ 1.5, the Silage description in Appendix K uses a loop to iterate the

summation. The gain is assumed, for simplicity, to be 1.  So the first cepstral coefficient c0 = ln(1)

= 0, a trivial solution. The1/m factor needed for computation of all other coefficients is obtained

from the arrayminverse, which can be implemented on an srom.

2.7  Clock Period

The single most delay comes from a 33-bit by 25-bit multiplier in the Natural Log block.

Operating at 1.2V, clock overhead is added and the minimum time estimated for completion of

the multiply is 1033ns. This aside, all the other multipliers have fewer bit lengths and usually

have a delay between 600ns to 750ns. The adders have even lower delays, with the largest 25-bit

adder having a delay of only 294ns.

Using a multi-cycle system, the execution of each EXU is scheduled over sufficient num-

ber of clock cycles to achieve a stable output. For instance, the operation of a 25-bit adder may

take 2 clock cycles, while that of a 32-bit multiplier may take 5 clock cycles. This allows better

utilization of a shorter clock period, reducing the amount of redundant time where certain EXUs

may idle while waiting for the next clock input, and the overall delay of the system. Also, a

shorter clock period results in more available cycles within the 10ms limit that the design

where is evaluated by the divider
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throughput must conform to. The additional cycles could allow more resource sharing, thereby

reducing the overall area.

Nevertheless, the increased clock frequency of a multi-cycle system also results in higher

clock power and control power due to the higher switching activity.  Such trends are visible in an

experiment where the properties of the FFT block with respect to different clock periods are

investigated using Hyper’s estimator. Result are shown in Table 7.

Table 7 shows that using a faster clock, the control power as well as clock power are

increased, as expected.  Critical path also goes up as a result of EXU’s which execute over multi-

ple cycles, and also due to the use of fewer hardware units, which was made possible by the

increased available cycles within the 10ms time margin.  The decrease in bus power with a faster

clock rate can be attributed to the reduced area, which meant shorter interconnects with less

capacitance.

In view of the drive for low power, the clock period was set near the maximum value that

would still meet the 10ms throughput criteria. The multi-cycle system was set up such that run-

TABLE 7. Variation of properties with clock rate for FFT block

Setup A Setup B Setup C

Trend of
Property as
Clock
Frequency
Increases

Clock Period 0.9µs 0.5µs 0.1µs Decrease

Available Cycles within
10ms

11111 20000 100000 Increase

Critical Path 15815
(Exceeds
10ms)

18951 49485 Increase

Area 155.53 mm2 137.76 mm2 33.11 mm2 Decrease

ENERGY (nJ)

Registers 427 431 504 Increase

Control 112 134 707 Increase

Bus 925 870 428 Decrease

Clock 450 508 967 Increase

Sub-Total of Register, Con-
trol, Bus and Clock Power

1914 1943 2606
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ning at a clock period of 537ns (~ 0.5*1033ns), most operations (which have execution delays

less then 537ns) are executed over one clock period, while others such as the wide betwixt multi-

plications use 2 clock cycles.

The amount of time and energy consumed by each block is tabulated in Table 8.

2.8  Behavioral Simulation of RASTA-PLP System

The functionality of algorithm for each block is verified by invoking the Hyper simulator

that translates the CDFG into C-code, which is then compiled and executed. The simulation data

also allows the system designer to make appropriate decisions with regard to the bit widths as

well as other observations such as those that allow the divider in the Durbin analysis block to be

simplified (Section 2.5).

The simulation results for one particular 30ms window of speech, consisting of 512 sam-

ples obtained at 16kHz is shown on the following page:-

TABLE 8. Estimates of individual blocks with Clock period 537ns, Vdd = 1.2V

Critical
Path Delay (ms)

No. of
Nodes

Active Area

(mm2) Power (µW)

|FFT|2 17607 9.45 52184 15.48 624.05

Critical Band Filter-
ing

1043 0.56 4131 12.36 24.32

Natural Log 1027 0.55 3098 13.23 21.18

Rasta Filtering,
Equal Loudness &
Power Law

389 0.21 1204  9.79  7.84

Exponential 685 0.37 1673  6.72 10.70

IDFT 1063 0.57 1603 7.18 11.24

Durbin 1820 0.98 4851 20.86 26.54

Cepstral Analysis 528 0.28 1105 17.19 9.53

Total 102.81 735.40
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FIGURE 2.10 Behavioral Simulation of System
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3.0  Architecture

For each of the two blocks, (FFT and critical band filters) the Hyper hardware mapper was

used to create a register transfer level (RTL) netlist described in part by  Structural  Description

Language (SDL), with the combinational logic of control signals described in Bdsyn. Mapping

transforms the decorated flow graph into three types of structural cells; the datapath-structure

cells, the controller state-machine cells, and the controller-interface cells. The datapath-structure

(dp) cells describe the use of hardware instances referenced from the a  low-power hardware

library.  The controller-interface cells work with the controller state-machine cells to determine

the relation between global control signals (clock and current state) and the local datapath con-

troller signals.

The architecture adopted makes extensive use of registers.  Each EXU (e.g. adder, multi-

plier, shifter, etc.) obtains its operands by reading from some set of registers, and outputs its result

to another set of registers.

FIGURE 3.1 Example of an addition operation in one clock cycle: C = A+B

(The complete sdl netlist generated by the Hyper hardware mapper for both the FFT and Critical

Band block can be retrieved via anonymous ftp from infopad.EECS.Berkeley.EDU/pub/yeo/sdl. )

+

Reg1: A Reg2: B

Reg3: C

RD ‘1’

WR ‘1’

At the positive rising edge
of the clock, bothRD
inputs of Reg1 and Reg2, and
theWR input of Reg3  are set
on high.
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Two essential steps in the hardware mapping are register-file recognition, and multiplexer

reduction. They will be described in detail in the sections 3.3 and 3.4. Register-file recognition

merges individual registers into register files. Since all registers in a register file share a common

input and output bus, merging registers within a datapath cell reduces the number of data wires

within the cell. Multiplexer reduction reduces the number of data bus multiplexers and number of

global buses.

The hardware mapping step produces the  SDL/Bdsyn description, which is input to the

LagerIV silicon assembly environment.  The LagerIV tool set is used to convert this architectural

description to silicon layout in Magic format.

3.1  Clock Timing

The immediate advantage of using such an architecture is that it allows usage of the

LagerIV hardware libraries without the need for investigating elaborate timing issues.  The timing

constraints are met by a multi-cycle system discussed in Section 2.7.

3.2  Merging of Hardware EXUs

The radix2-Winograd FFT algorithm uses 3 different fixed point representations for its

intermediate data:  fix<13,11>,  fix<22,12> and fix<32,17>; where fix<α,β> means a total ofα

bits with β decimal bits. The majority of the EXU executions operate with inputs and outputs rep-

resented by fix<22,12>. It would  be costly to allocate 3 different kinds of EXUs for each type of

operation (add, multiply, etc.) in order to handle the 3 different data types. Instead, resource shar-

ing is enhanced by an ‘operation merge’ option during module selection in Hyper. Each operation

is replaced by one with the same functionality, but with the largest number of bits as required by

the algorithm.  For instance, if an algorithm contains both 8-bit as well as 16-bit additions, ‘oper-

ation merge’ replaces the 8-bit addition with a 16-bit operation. Thus, only one 16-bit adder is

required to be allocated, as opposed to one 16-bit and another 8-bit adder required by the original

algorithm.
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Using ‘operation merge’ during module selection, operators with the same functionality

share the same bit widths. In the FFT block, all adders are 32-bits wide, all subtractors 22 bits,

and all multipliers, 22 bits.

3.3  Interconnect

By default, the original netlist has a flat structure. Each EXU, along with the necessary

input registers, multiplexers, and output buffers, are mapped into a single datapath cell. Each

block of memory, on the other hand, is mapped onto 3 separate datapath cells: input data selection

datapath, memory instance, and output buffer. This easily results in about twenty separate datap-

ath cells, and an equal number of Ctl cells, each controlling the operation of hardware units

within a datapath cell. Layout placement of these cells is difficult with such a large number. Since

there is extensive amount of resource sharing, almost every EXU has an output which is con-

nected to the input of every other EXU. Global routing becomes a significant task in the layout

generation.

The complexity of the interconnect, could be reduced by recognizing and taking full

advantage of the regularity of the algorithm. The Critical Band Filter block serves as a good

example to illustrate this.

In the critical band filters block, each set of the 19 nested-loops iterations has sentences

that look like:

FIGURE 3.2 Typical Sentences within Nested Loops found in Silage description of the  Critical Band
Filters

Filt105 = word(a15 * cb10[i15-30]) + Filt105#1;
Filt114 = word(a15 * cb11[i15-36]) + Filt114#1;
Filt123 = word(a15 * cb12[i15-43]) + Filt123#1;

multiplicationA additionC
additionB
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with not more then 4 sentences per iteration. The address generation (e.g.i15 - 36, for address of

data in thecb11 array to be read) is handed by an addition to a constant negative number (e.g.-

36). Thus, each of the above sentences requires 1 multiplication (operationmultiplicationA) and

2 additions (operationsadditionB andadditionC).

A total of 3 multipliers(M1, M2, and M3), and 3 adders (A1, A2, and A3) were allocated.

Note that  the multipliers and adders could have been assigned consistently and systematically

such that the output of A1 (handlingadditionB) always goes to input of M1 (handlingmultiplica-

tionA), whose output, in turn goes back to A1 (now handlingadditionC). Similarly, output of A2

goes to input of M2, whose output goes back to A2, etc. By allowing the output of one adder to be

consistently connected to only 1 multiplier, the interconnect between the adders and the multipli-

ers can be reduced. This however,  puts some restriction on the scheduling. Currently, the auto-

matic assignment generated by Hyper is inconsistent between different sets of nested loops,  and

therefore requires connections between inputs/outputs of all 3 multipliers with all 3 adders. Any

scheduling of the sort just mentioned would therefore have to be done manually by editing the

CDFG.

FIGURE 3.3 Improved Scheduling of regular Silage code.

+
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On the other hand, the Hyper hardware mapper does allow the user to partition the inter-

connect problem by merging separate datapath cells. Ideally, merging is done for datapath cells

with a strong data correlation. such that the hardware of cells A and B are located near one

another on the layout. It reduces both the total number of input/outputs seen at the top hierarchy

(global),  as well as the length of interconnect between A and B. However,  it was observed that

the SDL syntax was a limiting factor in the amount of merging that could be done.

The SDL syntax requires that merged datapath cells have modules that share a common

bit-width because one-dimensional placement strategy is employed in the datapath cells. Each

module consists of a number of bit slices stacked vertically, such that the datapath cell has a uni-

form height dependent upon the bit-width of its modules. Section 3.6 discusses more of this tiling

scheme.

Since hardware merging was done during module selection, the adders in the FFT block

are all 32-bit wide, the subtractors 22-bit wide, and the multipliers, 43-bit wide.  Likewise, the

adders in the critical-band block are 13-bit wide, and the multipliers,  25-bit wide. As a result,

merging can only be done, and is only done, to combine instances with the same functionality, i.e.

32-bit adders with 32-bit adders, or 25-bit multipliers with 25-bit multipliers).  Nevertheless, the

amount of global interconnect is reduced because some adder-to-adder connections are con-

tracted into one lower hierarchy.

3.4  Registers

Register file recognition merges individual registers into register files.Within a datapath

cell, the registers that are merged into a register file share common input and output terminals.

Merging registers therefore reduces the number of local terminals.  The registers are merged

according to the functionality of their output node. For instance, the input registers of an adder are

merged into 2 register files representing the left operand and the right operand of the addition

respectively. The input registers of a write array node, on the other hand, are merged into 2 regis-

ter files representing the address, and the data to be written respectively.
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Each register file allows only one READ or one WRITE (a simultaneous READ and

WRITE can be achieved by reading from a register and writing to a different register) over each

clock cycle. Therefore, the scheduler must avoid the production of multiple inputs to the same

register file at the same time step.

FIGURE 3.4 Read/Write conflicts and constraints of Register files. Note that there is only one instance
of an adder, A1, available at any time step.

However, within an iteration loop, the scheduler can sometimes mistakenly schedule the

production of a variable (e.g. the iteration counter) for the next iteration at the same time as the

consumption of the variable during the current iteration.  The situation causes simultaneous

READ and WRITE to thesame register, and a race condition ensues. An example in Figure 3.5

illustrates this:

+A1

+A1

X
Read

Y

32

24

step 1:

step 2:

step 3:

Read

+A1

+A1

X

Read
Y

32

24

Read

Scheduler Multiple write Error:   Outputs of both Read
Nodes,  X&Y are left operands of the adder A1, so the
outputs are stored in the same register file.  Both outputs
are produced concurrently in step 1. However the regis-
ter file would not be able to simultaneously write both
data at step 1.

Scheduler Simultaneous Read/Write Constraint: It
is necessary during step 2, to read the value of X from
the same register file as that in which the value of Y is
written to. Therefore, the registers used for storing val-
ues of X & Ymust be different.
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FIGURE 3.5 Race Conditions during simultaneous READ and WRITE to the same register Reg1 if
Loop Delay is not implemented as an additional register.

 Such a problem arises because the loop delay node in the CDFG is  mapped onto a trans-

fer EXU. In other words the hardware does not explicitly implement the delay.  The solution calls

for manual changes to store the valuei+1 temporarily in another register,Reg3 and then read the

data fromReg3 into Reg1 at a later time step. This is equivalent to mapping the loop delay node

onto a temporary storage. The additional transfer of data betweenReg3 andReg1 may increase

the critical path by 1.

3.5  Control Signals

Control signals in the design are described by the controller cells, which is the combina-

tion of controller state machine cells, and an interface cell.  Each datapath cell has a local control-

ler cell which provides the output control signals in relation to the inputs, which are namely, the

clock and current state.  The use of local control signals reduces the complexity of layout/ place-

ment by reducing the total number of global control signals.  Current state is generated by a glo-

bal finite state machine.

The relationship between the local control signals and global control signals is described

textually as a truth table. From this, Bdsyn produces a collection of logic functions which imple-

ment the described function. The logic functions were implemented by a combination of standard

cells1 from the low power library with the aid of misII, as part of the LagerIV synthesis process.

Consider an iteration  loop:
         for i=1 to 10 do ...

Then there is an iteration counter adder that does:
i = i+1

Since the value ofi+1 is going to be used during the execution
of the adder in the next iteration, it is stored back inReg1.

+
i+1

i 1

Loop Delay

Reg1 Reg2
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The generation of the control blocks’ layout from the state-machine description usually represent

about 70% of the total LagerIV synthesis process CPU time.

Within the each datapath cell, the control signals are required to:-

• Control multiplexers which select the appropriate inputs to register files, from a

number of input data buses

• Control the READ/WRITE operations of register files and memories, including

srams and sroms.

• Control activity of tristate buffers which write data onto global buses. Several dif-

ferent buffers may have their outputs connected to the same bus, but there can be

no more then one buffer, at any time, writing data onto the bus, while the others are

tristated.

The extensive use of registers (Table 9) in the architecture requires not only an equally

huge number of Read/Write control signals, but also average thrice as many multiplexer control

signals which select the input to the register files. Generation of these control signals result in both

additional area (control area), as well as power consumption (control power). It turns out from

SPA results that control power is a major source of power consumption for this design.  The result

is not surprising, considering the high number of registers used, which is a good indication of the

amount of control activity.

3.6  Example of a typical Datapath cell: 16-bit Adder

This section looks at the components of a typical datapath cells which performs the func-

tionality of a 16-bit adder.Besides the 16-bit adder itself, the datapath cell also describes the nec-

1. Standard cells here include a multitude of AND gates, AND-OR gates, NAND gates, buffers, flip-flops, multiplex-
ers, etc.

TABLE 9. Use of Registers in FFT and Critical Band Filters blocks

Property FFT Critical Band Filters

Number of Registers 116 250

Percentage of active area the registers
occupy

20 40
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essary registers that are merged into register files, additional mutiplexers which select from a

multitude of 7 distinct inputs data buses, and 7 buffers which write the adder output onto as many

global buses. The latter consists of both tristate buffers as well as conventional buffers that simply

copy the inputs to the large output data buses.

The adders in the FFT block are all 32-bit wide.  For simplicity, all the adders, registers,

etc. in this example have been reduced to 16-bit wide. The hardware declarations are shown in

Figure 3.6.

FIGURE 3.6 Declaration of Modules in a Typical datapath cell of a 16-bit adder.

(subcells
        (add
            ( add160)
            ((N 16)(CS_TYPE “z”))

        )

        (regfile

            ( add160_reg1)
            ((N 16)(R 16)(NC 6)(REGPLANE ‘(“0000000000000011” “ 0000000000000100“

“ 0000000000000101” “ 0000000000000110” “ 0000000000000111” “ 0000000000001000“
“ 0000000000010000” “ 0000000000100000” “ 0000000001000000” “ 0000000010000000“)))

        )

        (regfile

            ( add160_reg0)

            ((N 16)(R 5)(NC 3)(REGPLANE ‘(“0000000000000001” “ 0000000100000000”)))

        )
        (mux
            ( mux_15 mux_16 mux_19 mux_20 )
            ((N 16)(NUM_IN 4))
        )
        (mux
            ( mux_18 mux_22)
            ((N 16)(NUM_IN 3))
        )
        (buf
            ( buf_14 buf_18 buf_20)
            ((N 16)(SIZE “l”))
        )
        (tribuf
            ( buf_15 buf_16 buf_17 buf_19)
            ((N 16)(SIZE “l”))
        )
)
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Each register file selects its write input data from 1 of 8 input buses. This is done with

(Figure 3.7) a combination of 2, 3, and 4-input multiplexers available from the hardware library.

The permutation of these depends on the number of inputs.

Out of the 7 output buffers, 4 of them are tristate buffers which allow the output global

buses to be multiplexed.  Multiplexing of global buses allows reduction of total interconnect area,

at the expense of additional area of tristate buffers.  In this case, each tristate buffer is about 25%

larger then the conventional buffers used to drive non-multiplexed buses.

FIGURE 3.7 Selection of input from 7 input data buses.

Table 10 shows a breakdown of the area. Although the task of the datapath cell is to per-

form a 16-bit addition, the actual area used by the 16-bit adder is only 8%. The overhead of all the

registers, multiplexers, etc. should therefore not be overlooked. More importantly, the intercon-

nect represents an alarming 28% of the area.

TABLE 10. Hardware Allocation for 16-bit Adder and related Control Signals and Registers

Type of Hardware
Number
of Units

Area

(mm2) Percentage Total Area

16-bits Multiplexers 6 0.37 20

16-bit Registers in 2 Regfiles 17 0.62 33

16-bit Tristate Buffers 4 0.15 8

16-bit Buffers 2 0.06 3

16-bit Adder116 1 0.15 8

Interconnect 0.53 28

Total 1.88 100

4 - input MUX 3 - input MUX

2 - input
MUX
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Since data often flows through a datapath in a fairly linear fashion, one-dimensional

placement strategy is employed in datapath cells.   Each module consists of 16 bit slices stacked

vertically as shown in Inset A of Figure 3.9. Figure 3.8 shows a bit-slice of a typical datapath

block. As the number of interconnect wires that need to transverse vertically in the routing chan-

nel increases, the width of the channel has to be increased. It therefore extends the layout horizon-

tally. Also all data inputs/outputs are located on the extreme right of the datapath cell (Figure

3.9). There is a necessity to be able to feedthrough data from the inputs on the far right to all the

hardware modules. Arguably, the interconnect area could have been optimized by less rigid place-

ment strategy of hardware units, and inputs/outputs connected to the nearest side of the datapath

cell. However, this only complicates the design space with little improvement in terms of global

results. It is also likely to make the global routing of buses more difficult. Instead of providing

just one routing channel from a side of the datapath cell, it would then require channels on all 4

sides.

FIGURE 3.8 Placement strategy for a representative bit-slice of a datapath complex

In1[i]

In2[i]

In1[i]

In2[i]
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FIGURE 3.9 A 16-bit adder with input multiplexers, output buffers and register files. INSETs:
Interconnect between adjacent multiplexers.
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3.7  Layout

The designs of the FFT block and the Critical Band Filters were taken through to the lay-

out level. Layout of each datapath cell was generated automatically bydpp, using also, the layout

cells of hardware modules from the low_power library. Control cells are put together byBdsyn

using the standard cells as described in Section 3.5. The top hierarchy placement and channel def-

inition was, however done manually, as the search space was much larger then that of individual

cells, and the output of an automatic placement by Flint at the top level was generally unaccept-

able.

In order to handle the large number of interconnects, a central column was devoted for

global interconnect routing. Local interface cells are placed next to the datapath cells that they

control. Since the local interface cells are usually only a fraction the area of the respective datap-

ath cells, they fit into the little spaces sandwiched between bigger, datapath cells.

Details of the layout are as follow:

TABLE 11. Hardware Allocation for |FFT| 2 block

Type of Hardware Number

9-bit Log Comparator 1

22-bit Multipliers (22bit x 22bit) 4

22-bit Subtractor 2

32-bit Adders 2

Muxes 104

Registers 116

TABLE 12. Hardware Allocation for critical band filters block

Type of Hardware Number

9-bit Log Comparator 2

25-bit Multipliers (13bit x 13bit) 3

13-bit Adders 3

Muxes 78

Registers 250
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FIGURE 3.10 Layout of FFT

TABLE 13. Layout Dimensions using 1.2µm SCMOS Design Rules (λ = 0.6µm)

Design
Height
(mm

Width
(mm) Area (mm2)

No. of
Transistors

| FFT |2 17.9 12.2 218 400,000

Critical Band Filters 11.0 8.08 89.02 180,000
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FIGURE 3.11 Layout of Critical Band Filters
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4.0  SPA Analysis of FFT Architecture

The stand-alone version of SPA is used for architectural power/area analysis. The primary

input to the system is a register-transfer level description of the design to be analyzed. The

description consists in part, a hierarchical structural netlist written in the Architectural Descrip-

tion Language (ADL) for description of the datapath. The datapath control signals in the structure

are specified in the Control Description Language (CDL).

Given the architectural description, SPA leads the user through four phases of analysis:

parsing, VHDL analysis, VHDL simulation, and power/area analysis. In order to accurately

account for the effect of hardware activity on power, the system performs functional simulation of

the architecture to gather activity statistics.   Therefore, the user must also provide a set of input

vectors to be used during simulation. These input vectors were chosen from a set of speech sam-

ples with both voiced and unvoiced data, normalized so that the maximum magnitude of the entire

set of data is 1, and quantized to 13 bits, with 11 decimal bits.

4.1  Input Description

Both ADL and CDL are Lisp-like languages. ADL is used for specifying the structural

view of an architecture, while CDL is used for specifying the control path components in terms of

high-level symbolic truth tables. Parsing of the ADL/CDL description translates the netlist into

VHDL description. Besides describing the primary functions of the EXU’s and their control sig-

nals, the VHDL description also includes the necessary SPA processes that monitor the hardware

switching activity during VHDL simulation.

TABLE 14. Comparison between input languages to LagerIV and SPA

Type of Cell Description

Language used:

LagerIV input SPA input

Datapath (e.g. Adders, Memories,
Registers)

SDL ADL

Controller State Machine Bdsyn CDL

Controller Interface SDL ADL
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The main tool used for the design, Hyper, only outputs a netlist in either VHDL or SDL/

Bdsyn description after its hardware mapping step. While the structure of ADL/CDL closely

resembles that of SDL/Bdsyn, a SPA-compatible VHDL description was the actual code that

would be simulated to obtain the switching statistics. The SPA-compatible VHDL is obtained by

parsing the ADL/CDL description, and consists of a description of the architecture, as well as

additional SPA processes (DBT and ABC [13] models) required to generate the simulation data

necessary for the SPA power analysis.

Thus, a designer could either choose to translate the SDL/Bdsyn output of the Hyper hard-

ware mapper to ADL/CDL description, or append the SPA processes to the VHDL output of the

hardware mapper. Either way has to be done manually as there is currently no parser that can

automatically handle the SDL/Bdsyn translation or the VHDL correction. It was decided finally

that the simplicity of the ADL/CDL language made it preferable over the VHDL description. In

addition, ADL was structurally a subset-like of SDL. Both describe a datapath in terms of hierar-

chical cells built from a hardware library. Both make use of a set of parameters to indicate vari-

ables such as the bit widths of the EXU, or word sizes of memories. But while ADL treats its

inputs/outputs as symbolic variables or integer variables quantized to the specified number of

bits, SDL treats all its inputs/outputs as nets made up of binary bits. It turns out that this abstrac-

tion actually makes description of the control tables easier then the bit stream method in Bdsyn.

The following sections 4.1.1 and 4.1.2 describes the translation process from SDL/Bdsyn

to ADL/CDL. The knowledge will be helpful towards any future development of an automated

translator.

4.1.1  SDL to ADL translation

The differences between ADL and SDL, using a 32-bit register file example with 4 regis-

ters, are highlighted in Figure 4.2.

The initial task during SDL to ADL translation is to consolidate all the control signals,

and rename them in terms of symbolic variables. These control signals include the register file

READ/WRITE controls described, as well as other control signals that determine the execution
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patterns of tristate buffers, multiplexers, and memories. Table 15 shows a comparison between the

symbols used in ADL and those used in SDL.

The other major task in the translation from SDL to ADL is the bit manipulation during

connection of some of the buses. For instance, the data on a 8-bit bus can be shifted 1-bit left/right

by simply hardwiring.

FIGURE 4.1 Hardwiring Connection between data bus and datapath cell, CELLA.

TABLE 15. List of Control Variable differences between library cells written in ADL and SDL

Type of Cell Type of ADL Control Type of SDL Control

Register File 1 RD Terminal & 1 WR Terminal;
Integer inputs which determine which
register to Read/Write

N RD terminals, and NC WR termi-
nals for N registers, with NC of them
storing non-constant values. At any
time, there can only be at most one
“1” bit on any of the N RD terminals,
and NC Write terminals respectively.

Tristate Buff-
ers

FN terminal. Input Symbols: {TRI
(tristate), OE (operation enable)}

EN (enable) bit control

Multiplexers SEL terminal. Input Symbols: {SEL1,
SEL2, etc.}

Binary number inputs. A 2-input mux
will be controlled by a bit. 3 or 4-
input muxes input a 2-bit binary num-
ber: ‘00’ selects data1, ‘01’ selects
data2, etc.

SRAM FN terminal. Input Symbols: {RD,
WR, NOP (No Operation)}

WRITEB bit which determines Read
or Write operations. If NOP is
desired, the Clock input is gated.

SROM FN terminal. Input Symbols: {RD,
NOP}

None. Operation is purely Read only.
If NOP is desired, the Clock input is
gated.

Datapath
Cell:BUS CELLABUS
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FIGURE 4.2 Example of a 32-bit register file with 4 registers in both ADL and SDL descriptions

This can be described in SDL by:-

instance cellA (
          (busdata CELLAinput (width 8) (term-base 1))

)

which would simply connectbusdata pins 0 through 6 toCELLAinput pins 1 through 7.

(instance add320_reg0 regfile (parameters 4 32) (nets mux_22_out
                        add320_reg0_out
                        add320_reg0_RD
                        add320_reg0_WR
                        CK1 ))

(regfile
         ( add320_reg0)
            ((N 32)(R 4)(NC 3)(REGPLANE ‘(“00000000000000000000000000000001”)))
)

(instance add320_reg0 (
     (IN mux_22_out)
     (OUT add320_reg0_out)
     (CLK CK1)
     (RD CtlSgl_46 (term-index 0))
     (RD CtlSgl_47 (term-index 1))
     (RD CtlSgl_48 (term-index 2))
     (RD CtlSgl_49 (term-index 3))
     (WR CtlSgl_43 (term-index 0))
     (WR CtlSgl_41 (term-index 1))
     (WR CtlSgl_66 (term-index 2))
))

ADL

SDL

Read and Write signals are described in terms of individual
bits.  A high bit sets the READ/WRITE  signal of a register

Read and Write signals are described in terms of integer  symbols.

on.

e.g. a ‘2’ on add320_reg0_WR would set the
of register 2 on.

mux_22_out and add320_reg0_out
are represented as integers within
range of 0 to 232 - 1.

mux_22_out and add320_reg0_out are
represented by a 32 bit. wide net.

Declares add320_reg0 as a register file (regfile) with 32 bits (N) and 4 registers (4)

Connects nets to instance of add320_reg0

Declares add320_reg0 as a register file with 4 registers and 32 bits (parameters 4 32) and make net connections.

WRITE signal

Describes a constant value to be stored in one of the 4 registers.
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In ADL, however, there is no such bit-wise representation of the data. If the bus is 8-bits

wide, its data is represented by an integer ranging from 0 through 255 (28-1). In order to achieve

the same result as a left-shift of one bit, the following behavior is added in the VHDL code:

CELLAinput = (busdata * 2) rem 256;

which basically shifts the busdata data by 1 bit to the left, and truncates to 8 bits wide with the

remainder function. Table 16 summarizes the methods used to manipulate bit connections.

4.1.2    Bdsyn to CDL translation

Since the control signals in the SDL description of the architecture are all binary bits, the

Bdsyn description of the control cells describe a bit stream output in relation to the 2 global con-

trol signals, the Current State, and the clock. A simple example would be a 12-bit wide output bit

stream:

TABLE 16. Operations used in VHDL to simulate bit operations

Type of Bit Manipulation Type of Operation

Left Shift by N bits * 2N

Right Shift by N bits * 2-N

Truncate to lower M bits rem 2M

Extract the  M MSB bits from a N-bit data.2-(M-N); Equivalent to Right Shift by M-N
bits

00 1000 001 011

Tristate Buffer Enables
3-input mux
Selection

Read Control
of a 4-register
Register File

Write Control
of the 3 non-
constant registers
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On the other hand, the CDL description describes these signals in terms of symbolic vari-

ables. Thus it would be necessary to decipher theBdsyn bit stream output and replace it with sev-

eral different control variables. For the 12-bit example, the equivalent CDL description would be:

The interface cell identifies the kind of functionality of each bit-position in the bit stream.

This information is compared with theBdsyn output bit stream to provide the symbolic CDL

control variables.Since the functionality of each bit-position varies from cell to cell, a separate

script was written for each control cell to analyze the bit stream output and translate it to a series

of control variables. The process could be automated in future by a fairly simple program which

builts a hash table that specifies the relationship between type of control and the position of the bit

in the bit stream, and then compares theBdsyn description with the table, to give the correct sym-

bolic CDL control variables.

4.2  Simulations

After parsing the ADL/CDL architecture description and analyzing the VHDL descrip-

tion, the Synopses VHDL simulator was used to gather data on the switching activity. An approx-

imately 3.2s segment of speech, sampled at 16kHz is shown in Figure 4.3. It is impractical to

simulate the entire segment becuase the full simnulation1 of each set of 512-point FFT takes

about 2 hours. Therefore, only 4 sets of data, each consisting of  512 samples which represent a

30ms window, were chosen for simulattion. They roughly represent inputs with both highest

power, lowest power.

1. Full simulation refers to the entire simulation of the 10ms required to obtain the FFT output from a set of data
consisting of 512 samples.

SEL0    4 1 TR I OE OE

Selects 0th input
of a 3-input mux

Read from
Register 4

Write to
Register 1

Buffer Tristated

Buffers Enabled
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FIGURE 4.3  Approximately 3.2s segment of speech sampled at 16kHz. Since simulation of entire
segment is impractical, 4 segments of 30ms window were selected for VHDL simulation in order to obtain the
switching statistics for power analysis.

4.3  Power Analysis

The SPA analysis charts for one particular 512-point FFT is shown in Figure 4.4, with the

numerical results consolidated in Table 17. They provide a breakdown of the power and area esti-

mates based on previously derived models [13] in the low power hardware library.

As will be seen later, the implementation overhead consisting of the control, interconnect

and implementation related memory/register take its toll on the power consumption. Reason for

this is that the algorithm lacks both spatial and temporal locality. Spatial locality refers to the

extent to which an algorithm can itself be partitioned into natural clusters based on connectivity

while temporaral locality refers to the average lifetimes of variables.

TABLE 17. Output of SPA Analysis for FFT block

CLASS

AREA

(mm2) % Area Cap (pF)
Energy
(nJ)

Power
(mW) % Power

DATA_WIRE 57.26 36.3 1016108 1463.2 0.1 12.7

CTRL_WIRE 1.91 1.2 222966 321.1 0.0 2.8

EXU 15.56 9.9 638197 919.0 0.1 8.0

MUX 2.53 1.6 727946 1048.2 0.1 9.1

MEMORY 18.08 11.4 1186234 1708.9 0.2 14.9

CLK_WIRE 0.81 0.5 632371 910.6 0.1 7.9
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FIGURE 4.4 Graphical Output of SPA Analysis for FFT block

4.3.1  Controllers and Registers

Clearly, the major source of power consumption comes from the controllers. At approxi-

mately 26% of the total power consumed, it should be the primary target for power reduction.

Recall from Section 3.5 that the controllers are responsible for the functionality of primarily 4

kinds of hardware: registers, memories, multiplexers and tristate buffers.The statistics (Table 9,

CONTROLLER 3.93 2.5 2059134 2965.2 0.3 25.8

REGISTER 4.45 2.8 1279922 1843.1 0.2 16.0

BUFFER 2.19 1.4 219490 316.1 0.0 2.8

OVERHEAD 51.02 32.4 0 0.0 0.0 0.0

TOTAL 157.65 100 7982368 11494.3 1.1 100

TABLE 17. Output of SPA Analysis for FFT block

CLASS

AREA

(mm2) % Area Cap (pF)
Energy
(nJ)

Power
(mW) % Power
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and Table 18) obtained earlier using Hyper also support this finding. In Table 18, a breakdown of

the register usage in terms of hardware class is given. Each count of register is responsible for 1

read and 1 write operation, though a small percentage of the registers may have constant values, in

which case, 1 count is equivalent to only 1 read operation. Therefore, there are 87233 register

reads and at least 65000 (~75% of 87233) register writes. Similarly, table 19 gives the breakdown

of Memory accesses by type of memory.

With the total number of read or writes (registers and memories combined) in excess of

168 000, these operations outnumber the EXU execution counts (52184 combined from all the

TABLE 18. Register Count obtained from Hyper Estimator based on CDFG

Type of EXU Count

subtract 9856

add 24662

multiply 19014

Memory (sramIn1; array of sampled
speech inputs)

512

Memory (sramBF3R, sramBF3i;
array of intermediate data between
blocks of butterflies)

18432

Memory (sromWr, sromWi; array of
Twiddle Factors)

3072

Memory (sramPower; array of output
Power Spectrum coefficients)

512

transfer 7756

log comparator 3417

TOTAL 87233

TABLE 19. Memory Accesses obtained from Hyper Estimator based on CDFG

Memory Access

sramIn1 512 Reads

sramBF3R 3072 Reads; 3072 Writes

sramBF3i 3072 Reads; 3072 Writes

sromWr 1536 Reads

sromWi 1536 Reads

sramPower 256 Writes

TOTAL 9728 Reads; 6400 Writes
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different EXUs) roughly 3:1. This is explained by the fact that most EXUs obtain their inputs by

reading from 2 registers, and write the output onto a 3rd register. In some cases, when the EXU

evaluates a common subexpression of  several different computations, the output may be written

to more then one register, thus further increasing the 3:1 ratio of read/write operations to EXU

executions. Furthermore, each register write is usually preceded by a selection of mux inputs,

while each EXU execution is usually followed by the enabling of at least one tristate buffer which

outputs the result onto a global data bus. Thus, the massive number of control signals required.

Besides using the switching statistics, SPA also uses a Min-Term1 parameter declared in

the ADL description of the controller to determine the size and capacitance of the controllers,

since the number of standard cells used to construct the controller depends on the number of min

terms. The min-term parameter could be obtained accurately by running the CDL truth table

through a minimization tool such as U.C. Berkeley’s espresso. However, a faster, more pessimis-

tic estimate is used here by counting the number of  rows in the CDL description, and excluding

those that cause the controller outputs to idle.

As a demonstration of the effect of the min-term parameter, one of the controllers which

magnages a datapath consisting of 1 adder, 2 register files, 6 multiplexers, and 6 output buffers

was analyzed using SPA.  The switching statistics used in all cases was the same:-

The results suggest that with a 10-20% optimization of the CDL truth tables, the control

power is likely to decrease by the same percentage.

1. The minimum equivalent boolean representation of the function of the controller. The controller matches its out-
puts with a CurrentState input through a series of boolean equation.

TABLE 20. Effect of MIN-TERM parameter in ADL description

MIN-TERM
parameter
set to:

SPA Estimates

AREA (µm2)
Capacitance
(pF)

30 214239.60 100977.10

40 345268.80 130270.16

50 506106.00 159563.22
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The control power depends on both the regularity of the algorithm, as well as the number

of execution counts.  A regular structure such as the consistent looping of computations keeps the

number of min-terms down by repeatedly using the same set of controls. This results in a reduc-

tion of the  number of standard cells used,  thus achieving reduced control power as well as com-

plexity of controller structure. At the same time, the number of register read/write controls, mux

controls, and buffer controls are observed earlier to have a positive correlation with the number of

EXU execution counts. Therefore the control power is expected to decrease with reduced execu-

tion counts. However, most algorithms obtain a reduction in execution counts at the expense of

increased non-regularity. It is therefore, difficult to lower the control power by simply changing

the algorithm. As seen earlier in Section 2.1, the Radix2-Winograd FFT algorithm used was a

compromise between control complexity and number of execution counts.

4.3.2  Memories

Besides aiming the low power efforts at the registers, it might also be helpful to target the

memories. The intermediate memories sramBF3R and sramBF3i (for real and imaginary interme-

diate results respectively) were introduced to allow more hardware resource sharing. Recall that

the radix-2 part of the FFT algorithm basically consists of 6 cascaded blocks. Each block is fur-

ther divided into a series of butterflies whose computations could be carried out in parallel, but

were implemented in series since the hardware requirement for a parallel computation would be

too huge. The series application meant that memories are necessary to store the results of each

butterfly computation until the entire block has been processed. This is where the algorithm lacks

temporal locality in terms of memories. The results of each iteration of the butterfly is not used

until the next block

Memory power consumption is kept low by gating the clock input to the memory. Since

the memories are static, and precharges the bit lines at the beginning of each cycle, the load capac-

itance is relatively data independent. Due to the huge size of memories (e.g. sramBF3i and

sramBF3R each consists of 2 huge blocks of 22 bits by 256 words) the precharge is a major power

concern. By gating the clock (Figure 4.5) until a read or write is intended, the memory, which is

triggered by the positive edge of the clock, is turned off when not in use.
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FIGURE 4.5 Gating CLK input to memory

The sram/srom models used in SPA and HYPER were inappropriate as the memories have

been overhauled since the models were built. Instead, the power estimates were obtained from

IRSIM by simulating the read and write operations with the data obtained from the VHDL simu-

lation done prior to running SPA. As expected, the switch capacitance was relatively data inde-

pendent.   More work is currently being done to model the new srams/sroms used here and

incorporate them into the Hyper/Spa estimation model. The values shown in Figure 4.4 and Table

17 show the corrected power figures for the memories.

TABLE 21. Power Breakdown of Memories

Type of Memory

Average Capacitance
Switched
per Read Cycle

Average Capacitance
Switched
per Write Cycle

sramBF3r, sramBF3i

(22bits x 512 words)

65pF 100pF

sromWr, sromWi

(13bits x 256 words)

22pF N.A

sramIn1

(13bits x 512 words)

50pF N.A.

sramPower

(32bits x 256 words)

N.A. 82pF

Global Clock

WRITEBAR  input

CK  input

Memory

Memory
    Control

Read:           1 1
Write:          1 0

Bit A

Bit B

Otherwise:   0 0

A B
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4.3.3  Interconnect, Data/Control Buses

Data bus power consists of power dissipated in global data buses which connect different

datapath cells, as well as the data wire within each datapath cell. Since the local datapath control

cell is described separately from the datapath cell it controls, the control signal buses are also con-

sidered as part of the global interconnect. Bus power estimation is based on an estimated wire

capacitance, as well as switching activity of the bus accesses. The main factors determining the

physical capacitance associated with a wire are its width, its length and the thickness of oxide sep-

arating it from the substrate. In the two-level metal process used in this design, the oxide layer

thickness is estimated as the average of that found under metal 1 and metal 2 layers, with the

assumption that half the routing is expected to be in metal 1, while the rest is in metal 2. Width of

data wires/ data buses is the minimum allowed by the 1.2 micron process (3λ width) in order to

reduce wiring capacitance. Since the clock frequency is sufficiently low, the RC-delay effect of

these minimum-width wires does not affect the results.

The remaining parameter required to determine wire capacitance is the wire length. The

top-down wire length estimation process begins with the composite datapath at the top level of

hierarchy. Moving down, each datapath cell is invoked with the estimation process which gives an

average wire length that will be used for all nets (both data buses and control buses) within that

cell. In the actual implementation, wire lengths vary, with shorter, local wires, and longer, more

global wires. Datapath cells are placed such that high activity buses are shorter then low activity

buses. For instance, the control buses that connect the registers and buffers of an adder datapath

cell with the controller cell are switching constantly in order to handle the large number of addi-

tions. The controller is naturally placed near the datapath cell in order to take advantage of a

shorter wire length. However, SPA interprets any signal transfer between these cells as global bus

accesses, on a global wire with the estimated average wire length. Power estimates are therefore

pessimistic.
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A few comparisons were made between estimated wire length of the data wires and the

actual wire lengths in the implementation (Table 22).

Since there are fewer degrees of freedom compared to a 2-dimensional placement/routing,

the wire length estimates were generally more accurate for datapath cells where one dimensional

placement strategies have been used.

The lack of spatial locality in the algorithm causes a high bus power consumption. The

pseudo code in Figure 3.2 shows that the EXU operations such as multiply, add and subtract, as

well as memory accesses are intertwined with one another. Temporary results or data are trans-

ferred from the output of a EXU to the input registers of another EXU through these global buses,

thereby causing a high amount of bus activity.

4.3.4  EXU

The main source of EXU power consumption is the multipliers. Even so, the total power

consumed by all EXUs is only about 8% of the total power consumption (see Table 17).There-

fore, the overall gain of any improvement done to the EXU power is likely to be negligible (5%

improvement versus a power accuracy of about 20%?). Nevertheless, 2 suggestions will be made

to improve the multiplier power.

TABLE 22. Comparison of data wire area. All data wires are minimum width in order to
minimize capacitance, and since clock frequency is sufficiently low to allow slower data
transitions.

Description of Bus

SPA Estimate

(µm2)

Implemented

(µm2)

GLOBAL BUSES

Adder to Subtractor 4917 13810

Multiplier to Adder 4917 5000

Memory to memory buffers 4917 1309

Datapath Cell: dp2

Mux to Register 361 2133

Adder sum to output buffer 361 372

Mux to Mux 361 215
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Note that in the algorithm repeated below, the result of(64*j3) is used repeatedly for

address generation of every memory access. It is also repeated over each of the 32 iterations

wherek3 increases from 0 to 31, before the valuej3 is updated. Although common-subexpression

elimination prevents the computation of the product repeatedly for the addresses, each new itera-

tion of the inner loop still computes the product regardless of whether the value of j3 has changed.

The reason lies with the representation of nested loops in the Hyper CDFG. The Silage parser in

Hyper represents the array subscripts as coefficients of a basis spanned by the variables in the

loop. For the nested loops just presented, the variables would bej3 andk3, and a typical set of

coefficients would be (64, 1, 32) which represents (64*j3 + 1*k3 + 32).The parser does not allow

an array address index to be described as a data edge. It is thereforenot possible to describe the

algorithm as below, which would have forced the computation of the product outside the inner-

most loop.

(j3:0..70
begin

temp = 64*j3;                 /*temp becomes a data edge */
(k3:0..32)::
begin
     R5high = BF5R[temp + k3];      /* Usingtemp as an array index */
          .

 .
          .
          .

Instead, the parser produces a CDFG which ‘sees’ the64*j3 product only in the innermost loop.

Memory management, which follows the parser, then takes care of address generation by creating

nodes to compute the product, but only in the innermost loop. An obvious improvement would

(j3 : 0 .. 7)::
   begin
    (k3 : 0 .. 31)::
     begin
      R5high = BF5R[64 * j3 + k3];
      R5low = BF5R[64 * j3 + k3 + 32];
      I5high = BF5i[64 * j3 + k3];
      I5low = BF5i[64 * j3 + k3 + 32];
      v = Wr[8 * k3];
      w = Wi[8 * k3];
      temp6r = word(v * R5low) - word(w * I5low);
      temp6i = word(w * R5low) + word(v * I5low);
      BF6R[64 * j3 + k3] = R5high + temp6r;
      BF6i[64 * j3 + k3] = I5high + temp6i;
      BF6R[64 * j3 + k3 + 32] = R5high - temp6r;
      BF6i[64 * j3 + k3 + 32] = I5high - temp6i;
    end;

(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)

(i)
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have been to move the multiply node out of the innermost loop, thus saving 31 out of every 32

multiplications.
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5.0  Conclusion

This work describes the design path to realize a memory-intensive, low-power speech rec-

ognizer implementation. A high level analysis of the entire RASTA-PLP front end of a speech

recognition chip has been done. In particular, the FFT block and the Critical Band Filtering blocks

were each mapped onto a RTL description, and a layout has been generated for each of these two

blocks. An architectural power analysis was also performed on the FFT block using SPA.

The FFT block, which actually computes a periodogram estimate of the power spectrum

of the speech input, from a 512-point FFT, has an estimated core power of 1.1mW with a 1.2V

supply voltage. Much of this power comes from the generation of the massive number of control

signals, a consequence of the register-intensive architecture. Despite this, the registers allow the

designer to avoid detailed timing analysis, and allow automatic scheduling which basically dis-

cretizes the execution of all operations.

The most beneficial improvement to the Hyper framework may be the C++ parser that is

currently being developed. The Split-Radix FFT algorithm is certainly better then the Radix2-

Winograd which was implemented, in terms of number of execution counts.  It would be interest-

ing to see a way to describe the algorithm in a more structured manner, given the procedural style

of C++ that also doesn’t require manifest loops, or manifest array indices. Other suggested

improvements include a scheduler that recognizes and utilizes regularity of algorithms, and a pos-

sible automated translator that handles the SDL/Bdsyn to ADL/CDL process.
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/* Radix 2 algorith for 512-point FFT , 2^9 */

#define wordin fix<13,12>

#define word fix<22,12>

#define wordout fix<32,17>

func main(In1:wordin[512]; Wr, Wi:word[256])

    Power:wordout[] =

begin

   (j:0..255)::

   begin

a = In1[(2*j)];

b = In1[(2*j)+1];

BFr1[2*j] = a + b;

BFr1[(2*j)+1] = a - b;

   end;

    (j:0..127)::

    begin

     (k:0..1)::

     begin

 R1low = BFr1[(4*j)+2+k];

 R1high = BFr1[(4*j)+k];

 temp2r = word(Wr[128*k] * R1low);

 temp2i = word( Wi[128*k] * R1low);

 BF2R[(4*j)+k] = R1high + temp2r;

 BF2i[(4*j)+k] = temp2i;

 BF2R[(4*j)+k+2] = R1high - temp2r;

 BF2i[(4*j)+k+2] = - temp2i;

     end;

    end;

    (j:0..63)::

    begin

      (k:0..3)::

      begin

 c = Wr[64*k];

 d = Wi[64*k];

 R2high = BF2R[(8*j)+k];

 R2low = BF2R[(8*j)+k+4];

 I2high = BF2i[(8*j)+k];

 I2low = BF2i[(8*j)+k+4];

 temp3r =  word(c * R2low) - word(d * I2low);

 temp3i =  word(d * R2low) + word(c * I2low);

 BF3R[(8*j)+k] = R2high + temp3r;
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Radix-2 Algorithm
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 BF3i[(8*j)+k] = I2high + temp3i;

 BF3R[(8*j)+4+k] = R2high - temp3r;

 BF3i[(8*j)+4+k] = I2high - temp3i;

      end;

    end;

    (j:0..31)::

    begin

      (k:0..7)::

      begin

  e = Wr[32*k];

  f = Wi[32*k];

  R3high = BF3R[(16*j)+k];

  R3low = BF3R[(16*j)+8+k];

  I3high = BF3i[(16*j)+k];

  I3low = BF3i[(16*j)+8+k];

  temp4r = word(e * R3low) - word(f * I3low);

  temp4i = word(f * R3low) + word(e * I3low);

  BF4R[(16*j)+k]  = R3high + temp4r;

  BF4i[(16*j)+k]  = I3high + temp4i;

  BF4R[(16*j)+k+8] = R3high - temp4r;

  BF4i[(16*j)+k+8] = I3high - temp4i;

      end;

    end;

  (j : 0 .. 15)::

   begin

    (k : 0 .. 15)::

     begin

      R4low = BF4R[32 * j + k + 16];

      R4high = BF4R[32 * j + k];

      I4low = BF4i[32 * j + k + 16];

      I4high = BF4i[32 * j + k];

      g = Wr[16*k];

      h = Wi[16*k];

      temp5r = word(g * R4low) - word(h * I4low);

      temp5i = word(h * R4low) + word(g * I4low);

      BF5R[32 * j + k] = R4high + temp5r;

      BF5i[32 * j + k] = I4high + temp5i;

      BF5R[32 * j + k + 16] = R4high - temp5r;

      BF5i[32 * j + k + 16] = I4high - temp5i;

    end;
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  end;

  (j : 0 .. 7)::

   begin

    (k : 0 .. 31)::

     begin

      R5high = BF5R[64 * j + k];

      R5low = BF5R[64 * j + k + 32];

      I5high = BF5i[64 * j + k];

      I5low = BF5i[64 * j + k + 32];

      v = Wr[8 * k];

      w = Wi[8 * k];

      temp6r = word(v * R5low) - word(w * I5low);

      temp6i = word(w * R5low) + word(v * I5low);

      BF6R[64 * j + k] = R5high + temp6r;

      BF6i[64 * j + k] = I5high + temp6i;

      BF6R[64 * j + k + 32] = R5high - temp6r;

      BF6i[64 * j + k + 32] = I5high - temp6i;

    end;

  end;

  (j : 0 .. 3)::

   begin

    (k : 0 .. 63)::

     begin

      R6high = BF6R[128 * j + k];

      I6high = BF6i[128 * j + k];

      R6low = BF6R[128 * j + k + 64];

      I6low = BF6i[128 * j + k + 64];

      r = Wr[4 * k];

      p = Wi[4 * k];

      temp7r = word(r * R6low) - word(p * I6low);

      temp7i = word(p * R6low) + word(r * I6low);

      BF7R[128 * j + k] = R6high + temp7r;

      BF7i[128 * j + k] = I6high + temp7i;

      BF7R[128 * j + k + 64] = R6high - temp7r;

      BF7i[128 * j + k + 64] = I6high - temp7i;

    end;

  end;

  (j : 0 .. 1)::

   begin

    (k : 0 .. 127)::

     begin

      R7high = BF7R[256 * j + k];

      I7high = BF7i[256 * j + k];

      R7low = BF7R[256 * j + k + 128];

      I7low = BF7i[256 * j + k + 128];

      s = Wr[2*k];

      t = Wi[2*k];
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      temp8r = word(s * R7low) - word(t * I7low);

      temp8i = word(t * R7low) + word(s * I7low);

      BF8R[256 * j + k] = R7high + temp8r;

      BF8i[256 * j + k] = I7high + temp8i;

      BF8R[256 * j + k + 128] = R7high - temp8r;

      BF8i[256 * j + k + 128] = I7high - temp8i;

    end;

  end;

  (k : 0 .. 255)::

   begin

    R8low = BF8R[k + 256];

    I8low = BF8i[k + 256];

    x = Wr[k];

    y = Wi[k];

    temp9r = word(x * R8low) - word(y * I8low);

    temp9i = word(y * R8low) + word(x * I8low);

    BF9R[k] = BF8R[k] + temp9r;

    BF9i[k] = BF8i[k] + temp9i;

    Power[k] = wordout(BF9R[k] * BF9R[k]) + wordout(BF9i[k] * BF9i[k]);

  end;

end;
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#define wordin fix<13,11>

#define word fix<22,12>

#define wordout fix<32,17>

#define cosu word(0.707106781)

#define sinu (0.707106781)

func main(In1: wordin[512]; Wr, Wi: wordin[256]) Power :wordout[] =

begin

  (i:0..7)::

  begin

     (j:0..7)::

     begin

(m0, m1, m2, m5, s1, s2, s3, s4) =

   fft8(In1[64*i+8*j], In1[64*i+8*j+1], In1[64*i+8*j+2],

In1[64*i+8*j+3], In1[64*i+8*j+4], In1[64*i+8*j+5],

In1[64*i+8*j+6], In1[64*i+8*j+7]);

(BF3R[64*i+8*j],BF3R[64*i+8*j+1], BF3R[64*i+8*j+2],

 BF3R[64*i+8*j+3], BF3R[64*i+8*j+4], BF3R[64*i+8*j+5],

 BF3R[64*i+8*j+6], BF3R[64*i+8*j+7]) =

(m0, s1, m2, s2, m1, s2, m2, s1);

(BF3i[64*i+8*j],BF3i[64*i+8*j+1], BF3i[64*i+8*j+2],

 BF3i[64*i+8*j+3], BF3i[64*i+8*j+4], BF3i[64*i+8*j+5],

 BF3i[64*i+8*j+6], BF3i[64*i+8*j+7]) = (0, s4, m5, -s3, 0, s3, -m5, -s4);

     end;

  end;

    (j1:0..31)::

    begin

      (k1:0..7)::

      begin

  e = Wr[32*k1];

  f = Wi[32*k1];

  R3high = BF3R[(16*j1)+k1];

  R3low = BF3R[(16*j1)+8+k1];

  I3high = BF3i[(16*j1)+k1];

  I3low = BF3i[(16*j1)+8+k1];

  temp4r = word(e * R3low) - word(f * I3low);

  temp4i = word(f * R3low) + word(e * I3low);

  BF4R[(16*j1)+k1]  = R3high + temp4r;

  BF4i[(16*j1)+k1]  = I3high + temp4i;

  BF4R[(16*j1)+k1+8] = R3high - temp4r;

  BF4i[(16*j1)+k1+8] = I3high - temp4i;
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      end;

    end;

  (j2 : 0 .. 15)::

   begin

    (k2 : 0 .. 15)::

     begin

      R4low = BF4R[32 * j2 + k2 + 16];

      R4high = BF4R[32 * j2 + k2];

      I4low = BF4i[32 * j2 + k2 + 16];

      I4high = BF4i[32 * j2 + k2];

      g = Wr[16*k2];

      h = Wi[16*k2];

      temp5r = word(g * R4low) - word(h * I4low);

      temp5i = word(h * R4low) + word(g * I4low);

      BF5R[32 * j2 + k2] = R4high + temp5r;

      BF5i[32 * j2 + k2] = I4high + temp5i;

      BF5R[32 * j2 + k2 + 16] = R4high - temp5r;

      BF5i[32 * j2 + k2 + 16] = I4high - temp5i;

    end;

  end;

  (j3 : 0 .. 7)::

   begin

    (k3 : 0 .. 31)::

     begin

      R5high = BF5R[64 * j3 + k3];

      R5low = BF5R[64 * j3 + k3 + 32];

      I5high = BF5i[64 * j3 + k3];

      I5low = BF5i[64 * j3 + k3 + 32];

      v = Wr[8 * k3];

      w = Wi[8 * k3];

      temp6r = word(v * R5low) - word(w * I5low);

      temp6i = word(w * R5low) + word(v * I5low);

      BF6R[64 * j3 + k3] = R5high + temp6r;

      BF6i[64 * j3 + k3] = I5high + temp6i;

      BF6R[64 * j3 + k3 + 32] = R5high - temp6r;

      BF6i[64 * j3 + k3 + 32] = I5high - temp6i;

    end;

  end;

  (j4 : 0 .. 3)::

   begin

    (k4 : 0 .. 63)::

     begin

      R6high = BF6R[128 * j4 + k4];
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      I6high = BF6i[128 * j4 + k4];

      R6low = BF6R[128 * j4 + k4 + 64];

      I6low = BF6i[128 * j4 + k4 + 64];

      r = Wr[4 * k4];

      p = Wi[4 * k4];

      temp7r = word(r * R6low) - word(p * I6low);

      temp7i = word(p * R6low) + word(r * I6low);

      BF7R[128 * j4 + k4] = R6high + temp7r;

      BF7i[128 * j4 + k4] = I6high + temp7i;

      BF7R[128 * j4 + k4 + 64] = R6high - temp7r;

      BF7i[128 * j4 + k4 + 64] = I6high - temp7i;

    end;

  end;

  (j5 : 0 .. 1)::

   begin

    (k5 : 0 .. 127)::

     begin

      R7high = BF7R[256 * j5 + k5];

      I7high = BF7i[256 * j5 + k5];

      R7low = BF7R[256 * j5 + k5 + 128];

      I7low = BF7i[256 * j5 + k5 + 128];

      s = Wr[2*k5];

      t = Wi[2*k5];

      temp8r = word(s * R7low) - word(t * I7low);

      temp8i = word(t * R7low) + word(s * I7low);

      BF8R[256 * j5 + k5] = R7high + temp8r;

      BF8i[256 * j5 + k5] = I7high + temp8i;

      BF8R[256 * j5 + k5 + 128] = R7high - temp8r;

      BF8i[256 * j5 + k5 + 128] = I7high - temp8i;

    end;

  end;

  (k6 : 0 .. 255)::

   begin

    R8low = BF8R[k6 + 256];

    I8low = BF8i[k6 + 256];

    x = Wr[k6];

    y = Wi[k6];

    temp9r = word(x * R8low) - word(y * I8low);

    temp9i = word(y * R8low) + word(x * I8low);

    BF9R[k6] = BF8R[k6] + temp9r;

    BF9i[k6] = BF8i[k6] + temp9i;

    Power[k6] = wordout(BF9R[k6] * BF9R[k6]) + wordout(BF9i[k6] * BF9i[k6]);

  end;

end;
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func fft8 (x0,x1,x2,x3,x4,x5,x6,x7: wordin) m0,m1,m2,m5,s1,s2,s3,s4 : word =

begin

/*

  Source - Elliott, D., “Handbook of Digital Signal Processing

   Engineering Applications,” p. 597.

  Description - S. Winograd small-N DFT for N = 8, u = 2/8*pi.

  Output -

    X(0) = m0;

    X(1) = s1 + j*s4;    Imaginary indices of X(1), X(2), X(5), X(6)

 checked, and adjusted.  -Engling 10/7/94

    X(2) = m2 + j*m5;

    X(3) = s2 - j*s3;

    X(4) = m1;

    X(5) = s2 + j*s3;

    X(6) = m2 - j*m5;

    X(7) = s1 - j*s4;

*/

   t1 = x0 + x4;

   t2 = x2 + x6;

   t3 = x1 + x5;

   t4 = x1 - x5;

   t5 = x3 + x7;

   t6 = x3 - x7;

   t7 = t1 + t2;

   t8 = t3 + t5;

   m0 = word(t7 + t8);

   m1 = word(t7 - t8);

   m2 = word(t1 - t2);

   m3 = word(x0 - x4);

   m4 = word(cosu * (t4 - t6));

   m5 = word(t5 - t3);

   m6 = word(x6 - x2);

   m7 = word(wordin(1.0 * sinu) * (t4 + t6));

   s1 = word(m3 + m4);

   s2 = word(m3 - m4);

   s3 = word(m6 + m7);

   s4 = word(m6 - m7);

end;
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#define twopi 6.283185307179586

#define wordin  fix<13,12>

#define word  fix<22,12>

#define wordout fix<45,24>

func main(x: word[512]; Wc, Ws: word[384]) Power: wordout[] =

begin

/* Length two transforms */

   (J:0..0)::

   begin

(k4:0..0)::

begin

r1five = x[510];

s1five = x[511];

x1[510] = r1five + s1five;

x1[511] = r1five - s1five;

end;

(k3:0..1)::

begin

r1four = x[126+256*k3];

s1four = x[127+256*k3];

x1[126 + 256*k3] = r1four + s1four;

x1[127 + 256*k3] = r1four - s1four;

end;

(k2:0..7)::

begin

r1three = x[30+64*k2];

s1three = x[31+64*k2];

x1[30+64*k2] = r1three + s1three;

x1[31+64*k2] = r1three - s1three;

end;

(k1:0..31)::

begin

r1two = x[6+16*k1];

s1two = x[7+16*k1];

x1[6+16*k1] = r1two + s1two;

x1[7+16*k1] = r1two - s1two;

end;

(k:0..127)::

begin

r1one = x[4*k];

s1one= x[4*k+1];

x1[4*k] = r1one + s1one;

x1[4*k+1] = r1one - s1one;

end;
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   end;

/* L Shaped Butterflies  */

/* k = 2  */

   (J:0..0)::

   begin

(io:0..0)::

begin

ya24 = 0;

yb24 = 0;

yc24 = 0;

yd24 = 0;

xa24 = x1[254];

xb24 = x1[255];

xc24 = x1[252];

xd24 = x1[253];

R12four = xa24;

S12four = ya24;

R22four = xb24;

S22four = yb24;

r32four = R12four + R22four;

r22four = R12four - R22four;

r12four = S12four + S22four;

s22four = S12four - S22four;

x2[254] = xc24 - r32four;

x2[252] = xc24 + r32four;

x2[255] = xd24 - s22four;

x2[253] = xd24 + s22four;

y2[254] = yc24 - r12four;

y2[252] = yc24 + r12four;

y2[255] = yd24 + r22four;

y2[253] = yd24 - r22four;

end;

(io:0..3)::

begin

ya23 = 0;

yb23 = 0;

yc23 = 0;

yd23 = 0;

xa23 = x1[128*io+62];

xb23 = x1[128*io+63];
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xc23 = x1[128*io+60];

xd23 = x1[128*io+61];

R12three = xa23;

S12three = ya23;

R22three = xb23;

S22three = yb23;

r32three = R12three + R22three;

r22three = R12three - R22three;

r12three = S12three + S22three;

s22three = S12three - S22three;

x2[128*io+62] = xc23 - r32three;

x2[128*io+60] = xc23 + r32three;

x2[128*io+63] = xd23 - s22three;

x2[128*io+61] = xd23 + s22three;

y2[128*io+62] = yc23 - r12three;

y2[128*io+60] = yc23 + r12three;

y2[128*io+63] = yd23 + r22three;

y2[128*io+61] = yd23 - r22three;

end;

(io:0..15)::

begin

ya22 = 0;

yb22 = 0;

yc22 = 0;

yd22 = 0;

xa22 = x1[32*io+14];

xb22 = x1[32*io+15];

xc22 = x1[32*io+12];

xd22 = x1[32*io+13];

R12two = xa22;

S12two = ya22;

R22two = xb22;

S22two = yb22;

r32two = R12two + R22two;

r22two = R12two - R22two;

r12two = S12two + S22two;

s22two = S12two - S22two;

x2[32*io+14] = xc22 - r32two;

x2[32*io+12] = xc22 + r32two;

x2[32*io+15] = xd22 - s22two;

x2[32*io+13] = xd22 + s22two;

y2[32*io+14] = yc22 - r12two;
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y2[32*io+12] = yc22 + r12two;

y2[32*io+15] = yd22 + r22two;

y2[32*io+13] = yd22 - r22two;

end;

(io:0..63)::

begin

ya21 = 0;

yb21 = 0;

yc21 = 0;

yd21 = 0;

xa21 = x1[8*io+2];

xb21 = x1[8*io+3];

xc21 = x1[8*io];

xd21 = x1[8*io+1];

R12one = xa21;

S12one = ya21;

R22one = xb21;

S22one = yb21;

r32one = R12one + R22one;

r22one = R12one - R22one;

r12one = S12one + S22one;

s22one = S12one - S22one;

x2[8*io+2] = xc21 - r32one;

x2[8*io] = xc21 + r32one;

x2[8*io+3] = xd21 - s22one;

x2[8*io+1] = xd21 + s22one;

y2[8*io+2] = yc21 - r12one;

y2[8*io] = yc21  + r12one;

y2[8*io+3] = yd21 + r22one;

y2[8*io+1] = yd21 - r22one;

end;

   end;

    /* k = 3 */

    (j:0..1)::

    begin

(io:0..0)::

begin

ya34 = y2[508+j];

yb34 = y2[510+j];

yc34 = y2[504+j];

yd34 = y2[506+j];

xa34 = x2[508+j];
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xb34 = x2[510+j];

xc34 = x2[504+j];

xd34 = x2[506+j];

R13four = word(xa34*Wc[64*j]) + word(ya34*Ws[64*j]);

S13four = word(ya34*Wc[64*j]) - word(xa34*Ws[64*j]);

R23four = word(xb34*Wc[192*j]) + word(yb34*Ws[192*j]);

S23four = word(yb34*Wc[192*j]) - word(xb34*Ws[192*j]);

r33four = R13four + R23four;

r23four = R13four - R23four;

r13four = S13four + S23four;

s23four = S13four - S23four;

x3[508+j] = xc34 - r33four;

x3[504+j] = xc34 + r33four;

x3[510+j] = xd34 - s23four;

x3[506+j] = xd34 + s23four;

y3[508+j] = yc34 - r13four;

y3[504+j] = yc34 + r13four;

y3[510+j] = yd34 + r23four;

y3[506+j] = yd34 - r23four;

end;

(io:0..1)::

begin

ya33 = y2[256*io+124+j];

yb33 = y2[256*io+126+j];

yc33 = y2[256*io+120+j];

yd33 = y2[256*io+122+j];

xa33 = x2[256*io+124+j];

xb33 = x2[256*io+126+j];

xc33 = x2[256*io+120+j];

xd33 = x2[256*io+122+j];

R13three = word(xa33*Wc[64*j]) + word(ya33*Ws[64*j]);

S13three = word(ya33*Wc[64*j]) - word(xa33*Ws[64*j]);

R23three = word(xb33*Wc[192*j]) + word(yb33*Ws[192*j]);

S23three = word(yb33*Wc[192*j]) - word(xb33*Ws[192*j]);

r33three = R13three + R23three;

r23three = R13three - R23three;

r13three = S13three + S23three;

s23three = S13three - S23three;

x3[256*io+124+j] = xc33 - r33three;

x3[256*io+120+j] = xc33 + r33three;

x3[256*io+126+j] = xd33 - s23three;

x3[256*io+122+j] = xd33 + s23three;

y3[256*io+124+j] = yc33 - r13three;
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y3[256*io+120+j] = yc33 + r13three;

y3[256*io+126+j] = yd33 + r23three;

y3[256*io+122+j] = yd33 - r23three;

end;

(io:0..7)::

begin

ya32 = y2[64*io+28+j];

yb32 = y2[64*io+30+j];

yc32 = y2[64*io+24+j];

yd32 = y2[64*io+26+j];

xa32 = x2[64*io+28+j];

xb32 = x2[64*io+30+j];

xc32 = x2[64*io+24+j];

xd32 = x2[64*io+26+j];

R13two = word(xa32*Wc[64*j]) + word(ya32*Ws[64*j]);

S13two = word(ya32*Wc[64*j]) - word(xa32*Ws[64*j]);

R23two = word(xb32*Wc[192*j]) + word(yb32*Ws[192*j]);

S23two = word(yb32*Wc[192*j]) - word(xb32*Ws[192*j]);

r33two = R13two + R23two;

r23two = R13two - R23two;

r13two = S13two + S23two;

s23two = S13two - S23two;

x3[64*io+28+j] = xc32 - r33two;

x3[64*io+24+j] = xc32 + r33two;

x3[64*io+30+j] = xd32 - s23two;

x3[64*io+26+j] = xd32 + s23two;

y3[64*io+28+j] = yc32 - r13two;

y3[64*io+24+j] = yc32 + r13two;

y3[64*io+30+j] = yd32 + r23two;

y3[64*io+26+j] = yd32 - r23two;

end;

(io:0..31)::

begin

ya31 = y2[16*io+4+j];

yb31 = y2[16*io+6+j];

yc31 = y2[16*io+j];

yd31 = y2[16*io+2+j] ;

xa31 = x2[16*io+4+j];

xb31 = x2[16*io+6+j];

xc31 = x2[16*io+j];

xd31 = x2[16*io+2+j];

R13one = word(xa31*Wc[64*j]) + word(ya31*Ws[64*j]);
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S13one = word(ya31*Wc[64*j]) - word(xa31*Ws[64*j]);

R23one = word(xb31*Wc[192*j]) + word(yb31*Ws[192*j]);

S23one = word(yb31*Wc[192*j]) - word(xb31*Ws[192*j]);

r33one = R13one + R23one;

r23one = R13one - R23one;

r13one = S13one + S23one;

s23one = S13one - S23one;

x3[16*io+4+j] = xc31 - r33one;

x3[16*io+j] = xc31 +  r33one;

x3[16*io+6+j] = xd31 - s23one;

x3[16*io+2+j] = xd31 + s23one;

y3[16*io+4+j] = yc31 - r13one;

y3[16*io+j] = yc31 + r13one;

y3[16*io+6+j] = yd31 + r23one;

y3[16*io+2+j] = yd31 - r23one;

end;

    end;

    /* k = 4 */

    (j:0..3)::

    begin

(io:0..0)::

begin

ya43 = y3[240+2*4+j];

yb43 = y3[240+3*4+j];

yc43 = y3[240+j];

yd43 = y3[240+4+j] ;

xa43 = x3[240+2*4+j];

xb43 = x3[240+3*4+j];

xc43 = x3[240+j];

xd43 = x3[240+4+j];

R14three = word(xa43*Wc[32*j]) + word(ya43*Ws[32*j]);

S14three = word(ya43*Wc[32*j]) - word(xa43*Ws[32*j]);

R24three = word(xb43*Wc[96*j]) + word(yb43*Ws[96*j]);

S24three = word(yb43*Wc[96*j]) - word(xb43*Ws[96*j]);

r34three = R14three + R24three;

r24three = R14three - R24three;

r14three = S14three + S24three;

s24three = S14three - S24three;

x4[240+j+2*4] = xc43 - r34three;

x4[240+j] = xc43 +  r34three;
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x4[240+j+3*4] = xd43 - s24three;

x4[240+j+4] = xd43 + s24three;

y4[240+j+2*4] = yc43 - r14three;

y4[240+j] = yc43 + r14three;

y4[240+j+3*4] = yd43 + r24three;

y4[240+j+4] = yd43 - r24three;

end;

(io:0..3)::

begin

ya42 = y3[128*io+48+2*4+j];

yb42 = y3[128*io+48+3*4+j];

yc42 = y3[128*io+48+j];

yd42 = y3[128*io+48+4+j] ;

xa42 = x3[128*io+48+2*4+j];

xb42 = x3[128*io+48+3*4+j];

xc42 = x3[128*io+48+j];

xd42 = x3[128*io+48+4+j];

R14two = word(xa42*Wc[32*j]) + word(ya42*Ws[32*j]);

S14two = word(ya42*Wc[32*j]) - word(xa42*Ws[32*j]);

R24two = word(xb42*Wc[96*j]) + word(yb42*Ws[96*j]);

S24two = word(yb42*Wc[96*j]) - word(xb42*Ws[96*j]);

r34two = R14two + R24two;

r24two = R14two - R24two;

r14two = S14two + S24two;

s24two = S14two - S24two;

x4[128*io+48+2*4+j] = xc42 - r34two;

x4[128*io+48+j] = xc42 + r34two;

x4[128*io+48+3*4+j] = xd42 - r24two;

x4[128*io+48+4+j] = xd42 + r24two;

y4[128*io+48+2*4+j] = yc42 - r14two;

y4[128*io+48+j] = yc42 +  r14two;

y4[128*io+48+3*4+j] = yd42 + r24two;

y4[128*io+48+4+j] = yd42 - r24two;

end;

(io:0..15)::

begin

ya41 = y3[32*io + 2*4+j];

yb41 = y3[32*io + 3*4+j];

yc41 = y3[32*io+j];

yd41 = y3[32*io+4+j] ;

xa41 = x3[32*io+2*4+j];

xb41 = x3[32*io+3*4+j];

xc41 = x3[32*io+j];
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xd41 = x3[32*io+4+j];

R14one = word(xa41*Wc[32*j]) + word(ya41*Ws[32*j]);

S14one = word(ya41*Wc[32*j]) - word(xa41*Ws[32*j]);

R24one = word(xb41*Wc[96*j]) + word(yb41*Ws[96*j]);

S24one = word(yb41*Wc[96*j]) - word(xb41*Ws[96*j]);

r34one = R14one + R24one;

r24one = R14one - R24one;

r14one = S14one + S24one;

s24one = S14one - S24one;

x4[32*io+2*4+j] = xc41 - r34one;

x4[32*io+j] = xc41 + r34one;

x4[32*io+3*4+j] = xd41 - s24one;

x4[32*io+4+j] = xd41 + s24one;

y4[32*io+2*4+j] = yc41 - r14one;

y4[32*io+j] = yc41 + r14one;

y4[32*io+3*4+j] = yd41 + r24one;

y4[32*io+4+j] = yd41 - r24one;

end;

     end;

     /* k = 5 */

    (j:0..7)::

    begin

(io:0..0)::

begin

ya53 = y4[480 + 2*8+j];

yb53 = y4[480 + 3*8+j];

yc53 = y4[480+j];

yd53 = y4[480+8+j] ;

xa53 = x4[480+2*8+j];

xb53 = x4[480+3*8+j];

xc53 = x4[480+j];

xd53 = x4[480+8+j];

R15three = word(xa53*Wc[16*j]) + word(ya53*Ws[16*j]);

S15three = word(ya53*Wc[16*j]) - word(xa53*Ws[16*j]);

R25three = word(xb53*Wc[48*j]) + word(yb53*Ws[48*j]);

S25three = word(yb53*Wc[48*j]) - word(xb53*Ws[48*j]);

r35three = R15three + R25three;

r25three = R15three - R25three;

r15three = S15three + S25three;

s25three = S15three - S25three;

x5[480+j+2*8] = xc53 - r35three;
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x5[480+j] = xc53  + r35three;

x5[480+j+3*8] = xd53 - s25three;

x5[480+j+8] = xd53 + s25three;

y5[480+j+2*8] = yc53 - r15three;

y5[480+j] = yc53 + r15three;

y5[480+j+3*8] = yd53 + r25three;

y5[480+j+8] = yd53 - r25three;

end;

(io:0..1)::

begin

ya52 = y4[256*io+96 + 2*8+j];

yb52 = y4[256*io+96 + 3*8+j];

yc52 = y4[256*io+96+j];

yd52 = y4[256*io+96+8+j] ;

xa52 = x4[256*io+96+2*8+j];

xb52 = x4[256*io+96+3*8+j];

xc52 = x4[256*io+96+j];

xd52 = x4[256*io+96+8+j];

R15two = word(xa52*Wc[16*j]) + word(ya52*Ws[16*j]);

S15two = word(ya52*Wc[16*j]) - word(xa52*Ws[16*j]);

R25two = word(xb52*Wc[48*j]) + word(yb52*Ws[48*j]);

S25two = word(yb52*Wc[48*j]) - word(xb52*Ws[48*j]);

r35two = R15two + R25two;

r25two = R15two - R25two;

r15two = S15two + S25two;

s25two = S15two - S25two;

x5[256*io+96+2*8+j] = xc52 - r35two;

x5[256*io+96+j] = xc52 + r35two;

x5[256*io+96+3*8+j] = xd52 - s25two;

x5[256*io+96+8+j] = xd52 + s25two;

y5[256*io+96+2*8+j] = yc52 - r15two;

y5[256*io+96+j] = yc52 + r15two;

y5[256*io+96+3*8+j] = yd52 + r25two;

y5[256*io+96+8+j] = yd52 - r25two;

end;

(io:0..7)::

begin

ya51 = y4[64*io + 2*8+j];

yb51 = y4[64*io +3*8+j];

yc51 = y4[64*io+j];

yd51 = y4[64*io+8+j] ;

xa51 = x4[64*io+2*8+j];

xb51 = x4[64*io+3*8+j];
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xc51 = x4[64*io+j];

xd51 = x4[64*io+8+j];

R15one = word(xa51*Wc[16*j]) + word(ya51*Ws[16*j]);

S15one = word(ya51*Wc[16*j]) - word(xa51*Ws[16*j]);

R25one = word(xb51*Wc[48*j]) + word(yb51*Ws[48*j]);

S25one = word(yb51*Wc[48*j]) - word(xb51*Ws[48*j]);

r35one = R15one + R25one;

r25one = R15one - R25one;

r15one = S15one + S25one;

s25one = S15one - S25one;

x5[64*io+2*8+j] = xc51 - r35one;

x5[64*io+j] = xc51 + r35one;

x5[64*io+3*8+j] = xd51- s25one;

x5[64*io+8+j] = xd51 + s25one;

y5[64*io+2*8+j] = yc51 - r15one;

y5[64*io+j] = yc51 + r15one;

y5[64*io+3*8+j] = yd51 + r25one;

y5[64*io+8+j] = yd51 - r25one;

end;

  end;

     /* k = 6 */

    (j:0..15)::

    begin

(io:0..0)::

begin

ya62 = y5[192 + 2*16+j];

yb62 = y5[192 + 3*16+j];

yc62 = y5[192+j];

yd62 = y5[192+16+j] ;

xa62 = x5[192+2*16+j];

xb62 = x5[192+3*16+j];

xc62 = x5[192+j];

xd62 = x5[192+16+j];

R16two = word(xa62*Wc[8*j]) + word(ya62*Ws[8*j]);

S16two = word(ya62*Wc[8*j]) - word(xa62*Ws[8*j]);

R26two = word(xb62*Wc[24*j]) + word(yb62*Ws[24*j]);

S26two = word(yb62*Wc[24*j]) - word(xb62*Ws[24*j]);

r36two = R16two + R26two;

r26two = R16two - R26two;

r16two = S16two + S26two;
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s26two = S16two - S26two;

x6[192+j+2*16] = xc62 - r36two;

x6[192+j] = xc62 + r36two;

x6[192+j+3*16] = xd62 - s26two;

x6[192+j+16] = xd62 + s26two;

y6[192+j+2*16] = yc62 - r16two;

y6[192+j] = yc62 + r16two;

y6[192+j+3*16] = yd62 + r26two;

y6[192+j+16] = yd62 - r26two;

end;

(io:0..3)::

begin

ya61 = y5[128*io + 2*16+j];

yb61 = y5[128*io +3*16+j];

yc61 = y5[128*io+j];

yd61 = y5[128*io+16+j] ;

xa61 = x5[128*io+2*16+j];

xb61 = x5[128*io+3*16+j];

xc61 = x5[128*io+j];

xd61 = x5[128*io+16+j];

R16one = word(xa61*Wc[8*j])  + word(ya61*Ws[8*j]);

S16one = word(ya61*Wc[8*j])  - word(xa61*Ws[8*j]);

R26one = word(xb61*Wc[24*j]) + word(yb61*Ws[24*j]);

S26one = word(yb61*Wc[24*j]) - word(xb61*Ws[24*j]);

r36one = R16one + R26one;

r26one = R16one - R26one;

r16one = S16one + S26one;

s26one = S16one - S26one;

x6[128*io+2*16+j] = xc61 - r36one;

x6[128*io+j] = xc61 + r36one;

x6[128*io+3*16+j] = xd61 - s26one;

x6[128*io+16+j] = xd61 + s26one;

y6[128*io+2*16+j] = yc61 - r16one;

y6[128*io+j] = yc61 + r16one;

y6[128*io+3*16+j] = yd61 + r26one;

y6[128*io+16+j] = yd61 - r26one;

end;

  end;

     /* k = 7 */

    (j:0..31)::

    begin

(io:0..0)::
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begin

ya72 = y6[384 + 2*32+j];

yb72 = y6[384 +3*32+j];

yc72 = y6[384+j];

yd72 = y6[384+32+j] ;

xa72 = x6[384+2*32+j];

xb72 = x6[384+3*32+j];

xc72 = x6[384+j];

xd72 = x6[384+32+j];

R17two = word(xa72*Wc[4*j]) + word(ya72*Ws[4*j]);

S17two = word(ya72*Wc[4*j]) - word(xa72*Ws[4*j]);

R27two = word(xb72*Wc[12*j]) + word(yb72*Ws[12*j]);

S27two = word(yb72*Wc[12*j]) - word(xb72*Ws[12*j]);

r37two = R17two + R27two;

r27two = R17two - R27two;

r17two = S17two + S27two;

s27two = S17two - S27two;

x7[384+j+2*32] = xc72 - r37two;

x7[384+j] = xc72 + r37two;

x7[384+j+3*32] = xd72 - s27two;

x7[384+j+32] = xd72 + s27two;

y7[384+j+2*32] = yc72 - r17two;

y7[384+j] = yc72 + r17two;

y7[384+j+3*32] = yd72 + r27two;

y7[384+j+32] = yd72 - r27two;

end;

(io:0..1)::

begin

ya71 = y6[256*io + 2*32+j];

yb71 = y6[256*io +3*32+j];

yc71 = y6[256*io+j];

yd71 = y6[256*io+32+j] ;

xa71 = x6[256*io+2*32+j];

xb71 = x6[256*io+3*32+j];

xc71 = x6[256*io+j];

xd71 = x6[256*io+32+j];

R17one = word(xa71*Wc[4*j]) + word(ya71*Ws[4*j]);

S17one = word(ya71*Wc[4*j]) - word(xa71*Ws[4*j]);

R27one = word(xb71*Wc[12*j]) + word(yb71*Ws[12*j]);

S27one = word(yb71*Wc[12*j]) - word(xb71*Ws[12*j]);

r37one = R17one + R27one;

r27one = R17one - R27one;

r17one = S17one + S27one;

s27one = S17one - S27one;

Appendix C
Split Radix Algorithm



Automated Low Power ASIC Design for Speech Processing 97

x7[256*io+2*32+j] = xc71 - r37one;

x7[256*io+j] = xc71 + r37one;

x7[256*io+3*32+j] = xd71 - s27one;

x7[256*io+32+j] = xd71 + s27one;

y7[256*io+64+j] = yc71 -  r17one;

y7[256*io+j] = yc71+ r17one;

y7[256*io+3*32+j] = yd71 + r27one;

y7[256*io+32+j] = yd71 - r27one;

end;

  end;

     /* k = 8 */

    (j:0..63)::

    begin

ya81 = y7[2*64+j];

yb81 = y7[3*64+j];

yc81 = y7[j];

yd81 = y7[64+j] ;

xa81 = x7[2*64+j];

xb81 = x7[3*64+j];

xc81 = x7[j];

xd81 = x7[64+j];

R18one = word(xa81*Wc[2*j]) + word(ya81*Ws[2*j]);

S18one = word(ya81*Wc[2*j]) - word(xa81*Ws[2*j]);

R28one = word(xb81*Wc[6*j]) + word(yb81*Ws[6*j]);

S28one = word(yb81*Wc[6*j]) - word(xb81*Ws[6*j]);

r38one = R18one + R28one;

r28one = R18one - R28one;

r18one = S18one + S28one;

s28one = S18one - S28one;

x8[j+2*64] = xc81 - r38one;

x8[j] = xc81 + r38one;

x8[j+3*64] = xd81 - s28one;

x8[j+64] = xd81 + s28one;

y8[j+2*64] = yc81 - r18one;

y8[j] = yc81 + r18one;

y8[j+3*64] = yd81 + r28one;

y8[j+64] = yd81 - r28one;

   end;

     /* k = 9 */
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    (j:0..127)::

    begin

ya91 = y8[2*128+j];

yb91 = y8[3*128+j];

yc91 = y8[j];

yd91 = y8[128+j] ;

xa91 = x8[2*128+j];

xb91 = x8[3*128+j];

xc91 = x8[j];

xd91 = x8[128+j];

R19 = word(xa91*Wc[j]) + word(ya91*Ws[j]);

S19 = word(ya91*Wc[j]) - word(xa91*Ws[j]);

R29 = word(xb91*Wc[3*j]) + word(yb91*Ws[3*j]);

S29 = word(yb91*Wc[3*j]) - word(xb91*Ws[3*j]);

r39 = R19 + R29;

r29 = R19 - R29;

r19 = S19 + S29;

s29 = S19 - S29;

                xa = xc91+ r39;

xb = xd91 + s29;

ya = yc91 + r19;

yb = yd91 - r29;

Power[j] = wordout(xa * xa) + wordout(ya * ya);

Power[j+128] = wordout(xb * xb) + wordout(yb * yb);

   end;

end;
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/*

 *Author - Engling Yeo

 * cbi.sil implements all cbweights as constants by putting the numbers

 * into an array.  Could be implemented on hardware as constants in ROMs

 *

*/

#define word fix<13,12>

func main(In:word[256]; cb1:word[8]; cb2:word[12];

cb3:word[15]; cb4:word[15]; cb5:word[17];

cb6:word[18]; cb7:word[21]; cb8:word[23];

cb9:word[27]; cb10:word[31]; cb11:word[36];

cb12:word[42]; cb13:word[49]; cb14:word[57];

cb15:word[67]; cb16:word[79]; cb17:word[93];

cb18:word[109]; cb19:word[113]) Out: word[] =

begin

   Out1##1 = word(0);

   (i1:0..7)::

   begin

     Out1 = word(In[i1] * cb1[i1]) + Out1#1;

   end;

   Out[0] = Out1;

   Out2##1 = word(0);

   (i2:0..11)::

   begin

     Out2 = word(In[i2] * cb2[i2]) + Out2#1;

   end;

   Out[1] = Out2;

   Out3##1 = word(0);

   (i3:0..14)::

   begin

      Out3  = word(In[i3+1] * cb3[i3]) + Out3#1;

   end;

   Out[2] = Out3;

   Out4##1 = word(0);

   (i4:0..14)::

   begin

      Out4 = word(In[i4+5] * cb4[i4]) + Out4#1;

   end;
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   Out[3] = Out4;

   Out5##1 = word(0);

   (i5:0..16)::

   begin

      Out5 = word(In[i5+8] * cb5[i5]) + Out5#1;

   end;

   Out[4] = Out5;

   Out6##1 = word(0);

   (i6:0..17)::

   begin

      Out6 = word(In[i6+12] * cb6[i6]) + Out6#1;

   end;

   Out[5] = Out6;

   Out7##1 = word(0);

   (i7:0..20)::

   begin

      Out7 = word(In[i7+15] * cb7[i7]) + Out7#1;

   end;

   Out[6] = Out7;

   Out8##1 = word(0);

   (i8:0..22)::

   begin

      Out8 = word(In[i8 + 20] * cb8[i8]) + Out8#1;

   end;

   Out[7] = Out8;

   Out9##1 = word(0);

   (i9:0..26)::

   begin

      Out9  = word(In[i9+24] * cb9[i9]) + Out9#1;

   end;

   Out[8] = Out9;

   Out10##1 = word(0);

   (i10:0..30)::

   begin

      Out10 = word(In[i10+30] * cb10[i10]) + Out10#1;
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   end;

   Out[9] = Out10;

   Out11##1 = word(0);

   (i11:0..35)::

   begin

      Out11 = word(In[i11+36] * cb11[i11]) + Out11#1;

   end;

   Out[10] = Out11;

   Out12##1 = word(0);

   (i12:0..41)::

   begin

      Out12 = word(In[i12+43] * cb12[i12]) + Out12#1;

   end;

   Out[11] = Out12;

   Out13##1 = word(0);

   (i13:0..48)::

   begin

      Out13 = word(In[i13+52] * cb13[i13]) + Out13#1;

   end;

   Out[12] = Out13;

   Out14##1 = word(0);

   (i14:0..56)::

   begin

      Out14 = word(In[i14+62] * cb14[i14]) + Out14#1;

   end;

   Out[13] = Out14;

   Out15##1 = word(0);

   (i15:0..66)::

   begin

      Out15 = word(In[i15+73] * cb15[i15]) + Out15#1;

   end;

   Out[14] = Out15;

   Out16##1 = word(0);

   (i16:0..78)::

   begin
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       Out16= word(In[i16+86] * cb16[i16]) + Out16#1;

   end;

   Out[15] = Out16;

   Out17##1 = word(0);

   (i17:0..92)::

   begin

      Out17 = word(In[i17+102] * cb17[i17]) + Out17#1;

   end;

   Out[16] = Out17;

   Out18##1 = word(0);

   (i18:0..108)::

   begin

      Out18 = word(In[i18+121] * cb18[i18]) + Out18#1;

   end;

   Out[17] = Out18;

   Out19##1 = word(0);

   (i19:0..112)::

   begin

      Out19 = word(In[i19+143] * cb19[i19]) + Out19#1;

   end;

   Out[18] = Out19;

end;
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/*

 *Author - Engling Yeo

 *  - Sean Huang

 * cbiNew.sil implements all cbweights as constants by putting the numbers

 * into an array.  Could be implemented on hardware as constants in ROMs

 *

*/

#define wordc fix<13,12>

#define wordin fix<43,24>

#define word fix<50,24>

#define cosu word(0.707106781)

#define sinu (0.707106781)

#define half_pi word(1.57079633)

#define pi word(3.14159265)

#define b1_0 word(0.987862135574673807)

#define b3_0 word(-0.155271410633428645)

#define b5_0 word(0.0056431179763468104)

#define WN word(0.012271846) /* = (2*pi)/512 */

#define barkstep word(1.09)

func main(In:wordin[256]; cb1:wordc[8];

cb2:wordc[12];

cb3:wordc[15];

cb4:wordc[15];

cb5:wordc[17];

cb6:wordc[18];

cb7:wordc[21];

cb8:wordc[23];

cb9:wordc[27];

cb10:wordc[31];

cb11:wordc[36];

cb12:wordc[42];

cb13:wordc[49];

cb14:wordc[57];

cb15:wordc[67];

cb16:wordc[79];

cb17:wordc[93];

cb18:wordc[109];

cb19:wordc[113])

Out: wordc[] =

begin

/*

 * In: 0

 */

   a1 = In[0];
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   Filt11 = word(a1 * cb1[0]);

   Filt21 = word(a1 * cb2[0]);

/*

 * In: 1..4

 */

   Filt12##1 = Filt11;

   Filt22##1 = Filt21;

   Filt31##1 = word(0);

   (i2:0..3)::

   begin

     a2 = In[i2+1];

     Filt12 = word(a2 * cb1[i2+1]) + Filt12#1;

     Filt22 = word(a2 * cb2[i2+1]) + Filt22#1;

     Filt31 = word(a2 * cb3[i2]) + Filt31#1;

   end;

/*

 * In: 5..7

 */

   Filt13##1 = Filt12;

   Filt23##1 = Filt22;

   Filt32##1 = Filt31;

   Filt41##1 = word(0);

   (i3:0..2)::

   begin

     a3 = In[i3+5];

     Filt13 = word(a3 * cb1[i3+5]) + Filt13#1;

     Filt23 = word(a3 * cb2[i3+5]) + Filt23#1;

     Filt32 = word(a3 * cb3[i3+4]) + Filt32#1;

     Filt41 = word(a3 * cb4[i3]) + Filt41#1;

   end;

/*

 * In: 8..11

 */

   Filt24##1 = Filt23;

   Filt33##1 = Filt32;

   Filt42##1 = Filt41;

   Filt51##1 = word(0);

   (i4:0..3)::

   begin

     a5 = In[i4+8];

     Filt24 = word(a5 * cb2[i4+8]) + Filt24#1;

     Filt33 = word(a5 * cb3[i4+7]) + Filt33#1;
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     Filt42 = word(a5 * cb4[i4+3]) + Filt42#1;

     Filt51 = word(a5 * cb5[i4]) + Filt51#1;

   end;

/*

 * In: 12..14

 */

   Filt34##1 = Filt33;

   Filt43##1 = Filt42;

   Filt52##1 = Filt51;

   Filt61##1 = word(0);

   (i6:0..2)::

   begin

     a6 = In[i6+12];

     Filt34 = word(a6 * cb3[i6+11]) + Filt34#1;

     Filt43 = word(a6 * cb4[i6+7]) + Filt43#1;

     Filt52 = word(a6 * cb5[i6+4]) + Filt52#1;

     Filt61 = word(a6 * cb6[i6]) + Filt61#1;

   end;

/*

 * In: 15

 */

  Filt35##1 = Filt34;

  Filt44##1 = Filt43;

  Filt53##1 = Filt52;

  Filt62##1 = Filt61;

  Filt71##1 = word(0);

 (i7:0..0)::

 begin

     a7 = In[15];

     Filt35 = word(a7 * cb3[i7+14]) + Filt35#1;

     Filt44 = word(a7 * cb4[i7+10]) + Filt44#1;

     Filt53 = word(a7 * cb5[i7+7]) + Filt53#1;

     Filt62 = word(a7 * cb6[i7+3]) + Filt62#1;

     Filt71 = word(a7 * cb7[i7+0]) + Filt71#1;

 end;

/*

 * In: 16..19

 */

   Filt45##1 = Filt44;

   Filt54##1 = Filt53;

   Filt63##1 = Filt62;

   Filt72##1 = Filt71;

   (i8:0..3)::

   begin

Appendix E
Improved Algorithm for Critical Band Filtering



Automated Low Power ASIC Design for Speech Processing 106

     a8 = In[i8+16];

     Filt45 = word(a8 * cb4[i8+11]) + Filt45#1;

     Filt54 = word(a8 * cb5[i8+8]) + Filt54#1;

     Filt63 = word(a8 * cb6[i8+4]) + Filt63#1;

     Filt72 = word(a8 * cb7[i8+1]) + Filt72#1;

   end;

/*

 * In: 20..24

 */

   Filt55##1 = Filt54;

   Filt64##1 = Filt63;

   Filt73##1 = Filt72;

   Filt81##1 = word(0);

   (i9:0..4)::

   begin

     a9 = In[i9+20];

     Filt55 = word(a9 * cb5[i9+12]) + Filt55#1;

     Filt64 = word(a9 * cb6[i9+8]) + Filt64#1;

     Filt73 = word(a9 * cb7[i9+5]) + Filt73#1;

     Filt81 = word(a9 * cb8[i9]) + Filt81#1;

   end;

/*

 * In: 25..29

 */

   Filt65##1 = Filt64;

   Filt74##1 = Filt73;

   Filt82##1 = Filt81;

   Filt91##1 = word(In[24] * cb9[0]);

   (i10:0..4)::

   begin

     a10 = In[i10+25];

     Filt65 = word(a10 * cb6[i10+13]) + Filt65#1;

     Filt74 = word(a10 * cb7[i10+10]) + Filt74#1;

     Filt82 = word(a10 * cb8[i10+5]) + Filt82#1;

     Filt91 = word(a10 * cb9[i10+1]) + Filt91#1;

   end;

/*

 * In: 30..35

 */

   Filt75##1 = Filt74;

   Filt83##1 = Filt82;

   Filt92##1 = Filt91;

   Filt101##1 = word(0);

   (i11:0..5)::
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   begin

     a11 = In[i11+30];

     Filt75 = word(a11 * cb7[i11+15]) + Filt75#1;

     Filt83 = word(a11 * cb8[i11+10]) + Filt83#1;

     Filt92 = word(a11 * cb9[i11+6]) + Filt92#1;

     Filt101 = word(a11 * cb10[i11]) + Filt101#1;

   end;

/*

 * In: 36..42

 */

   Filt84##1 = Filt83;

   Filt93##1 = Filt92;

   Filt102##1 = Filt101;

   Filt111##1 = word(0);

   (i12:0..6)::

   begin

     a12 = In[i12+36];

     Filt84 = word(a12 * cb8[i12+16]) + Filt84#1;

     Filt93 = word(a12 * cb9[i12+12]) + Filt93#1;

     Filt102 = word(a12 * cb10[i12+6]) + Filt102#1;

     Filt111 = word(a12 * cb11[i12]) + Filt111#1;

   end;

/*

 * In: 43..50

 */

   Filt94##1 = Filt93;

   Filt103##1 = Filt102;

   Filt112##1 = Filt111;

   Filt121##1 = word(0);

   (i13:0..7)::

   begin

     a13 = In[i13+43];

     Filt94 = word(a13 * cb9[i13+19]) + Filt94#1;

     Filt103 = word(a13 * cb10[i13+13]) + Filt103#1;

     Filt112 = word(a13 * cb11[i13+7]) + Filt112#1;

     Filt121 = word(a13 * cb12[i13]) + Filt121#1;

   end;

/*

 * In: 51

 */

   Filt104##1 = Filt103;

   Filt113##1 = Filt112;

   Filt122##1 = Filt121;
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   (i14:0..0)::

   begin

      a14 = In[51];

      Filt104 = word(a14 * cb10[21+i14]) + Filt104#1;

      Filt113 = word(a14 * cb11[15+i14]) + Filt113#1;

      Filt122 = word(a14 * cb12[8+i14]) + Filt122#1;

   end;

/*

 * In: 52..60

 */

   Filt105##1 = Filt104;

   Filt114##1 = Filt113;

   Filt123##1 = Filt122;

   Filt131##1 = word(0);

   (i15:0..8)::

   begin

     a15 = In[i15+52];

     Filt105 = word(a15 * cb10[i15+22]) + Filt105#1;

     Filt114 = word(a15 * cb11[i15+16]) + Filt114#1;

     Filt123 = word(a15 * cb12[i15+9]) + Filt123#1;

     Filt131 = word(a15 * cb13[i15]) + Filt131#1;

   end;

/*

 * In: 61

 */

   Filt115##1 = Filt114;

   Filt124##1 = Filt123;

   Filt132##1 = Filt131;

   (i16:0..0)::

   begin

     a16 = In[61];

     Filt115 = word(a16 * cb11[25+i16]) + Filt115#1;

     Filt124 = word(a16 * cb12[18+i16]) + Filt124#1;

     Filt132 = word(a16 * cb13[9+i16] ) + Filt132#1;

   end;

/*

 * In: 62..71::

 */

 Filt116##1 = Filt115;

 Filt125##1 = Filt124;

 Filt133##1 = Filt132;

 Filt141##1 = word(0);

 (i17:0..9)::
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 begin

     a17 = In[i17+62];

     Filt116 = word(a17 * cb11[i17+26]) + Filt116#1;

     Filt125 = word(a17 * cb12[i17+19]) + Filt125#1;

     Filt133 = word(a17 * cb13[i17+10]) + Filt133#1;

     Filt141 = word(a17 * cb14[i17]) + Filt141#1;

 end;

/*

 * In: 72

 */

 Filt126##1 = Filt125;

 Filt134##1 = Filt133;

 Filt142##1 = Filt141;

 (i18:0..0)::

 begin

     a18 = In[72];

     Filt126 = word(a18 * cb12[29+i18]) + Filt126#1;

     Filt134 = word(a18 * cb13[20+i18]) + Filt134#1;

     Filt142 = word(a18 * cb14[10+i18]) + Filt142#1;

 end;

/*

 * In: 73..84

 */

 Filt127##1 = Filt126;

 Filt135##1 = Filt134;

 Filt143##1 = Filt142;

 Filt151##1 = word(0);

 (i19:0..11)::

 begin

     a19 = In[i19+73];

     Filt127 = word(a19 * cb12[i19+30]) + Filt127#1;

     Filt135 = word(a19 * cb13[i19+21]) + Filt135#1;

     Filt143 = word(a19 * cb14[i19+11]) + Filt143#1;

     Filt151 = word(a19 * cb15[i19]) + Filt151#1;

 end;

/*

 * In: 85

 */

 Filt136##1 = Filt135;

 Filt144##1 = Filt143;

 Filt152##1 = Filt151;

 (i20:0..0)::

 begin

     a20 = In[85];
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     Filt136 = word(a20 * cb13[i20+33]) + Filt136#1;

     Filt144 = word(a20 * cb14[i20+23]) + Filt144#1;

     Filt152 = word(a20 * cb15[i20+12]) + Filt152#1;

 end;

/*

 * In: 86..100

 */

 Filt137##1 = Filt136;

 Filt145##1 = Filt144;

 Filt153##1 = Filt152;

 Filt161##1 = word(0);

 (i21:0..14)::

 begin

     a21 = In[i21+86];

     Filt137 = word(a21 * cb13[i21+34]) + Filt137#1;

     Filt145 = word(a21 * cb14[i21+24]) + Filt145#1;

     Filt153 = word(a21 * cb15[i21+13]) + Filt153#1;

     Filt161 = word(a21 * cb16[i21]) + Filt161#1;

 end;

/*

 * In:  101

 */

 Filt146##1 = Filt145;

 Filt154##1 = Filt153;

 Filt162##1 = Filt161;

 (i22:0..0)::

 begin

     a22 = In[101];

     Filt146 = word(a22 * cb14[39+i22]) + Filt146#1;

     Filt154 = word(a22 * cb15[28+i22]) + Filt154#1;

     Filt162 = word(a22 * cb16[15+i22]) + Filt162#1;

 end;

/*

 * In: 102..118

 */

 Filt147##1 = Filt146;

 Filt155##1 = Filt154;

 Filt163##1 = Filt162;

 Filt171##1 = word(0);

 (i23:0..16)::

 begin

     a23 = In[i23+102];

     Filt147 = word(a23 * cb14[i23+40]) + Filt147#1;
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     Filt155 = word(a23 * cb15[i23+29]) + Filt155#1;

     Filt163 = word(a23 * cb16[i23+16]) + Filt163#1;

     Filt171 = word(a23 * cb17[i23]) + Filt171#1;

 end;

/*

 * In: 119..120

 */

 Filt156##1 = Filt155;

 Filt164##1 = Filt163;

 Filt172##1 = Filt171;

 (i24:0..1)::

 begin

     a24 = In[i24+119];

     Filt156 = word(a24 * cb15[i24+46]) + Filt156#1;

     Filt164 = word(a24 * cb16[i24+33]) + Filt164#1;

     Filt172 = word(a24 * cb17[i24+17]) + Filt172#1;

 end;

/*

 * In: 121..139

 */

 Filt157##1 = Filt156;

 Filt165##1 = Filt164;

 Filt173##1 = Filt172;

 Filt181##1 = word(0);

 (i25:0..18)::

 begin

     a25 = In[i25+121];

     Filt157 = word(a25 * cb15[i25+48]) + Filt157#1;

     Filt165 = word(a25 * cb16[i25+35]) + Filt165#1;

     Filt173 = word(a25 * cb17[i25+19]) + Filt173#1;

     Filt181 = word(a25 * cb18[i25]) + Filt181#1;

 end;

/*

 * In: 140..142

 */

 Filt166##1 = Filt165;

 Filt174##1 = Filt173;

 Filt182##1 = Filt181;

 (i26:0..2)::

 begin

     a26 = In[i26+140];

     Filt166 = word(a26 * cb16[i26+54]) + Filt166#1;

     Filt174 = word(a26 * cb17[i26+38]) + Filt174#1;
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     Filt182 = word(a26 * cb18[i26+19]) + Filt182#1;

 end;

/*

/*

 * In:143..164

 */

 Filt167##1 = Filt166;

 Filt175##1 = Filt174;

 Filt183##1 = Filt182;

 Filt191##1 = word(0);

 (i27:0..21)::

 begin

     a27 = In[i27+143];

     Filt167 = word(a27 * cb16[i27+57]) + Filt167#1;

     Filt175 = word(a27 * cb17[i27+41]) + Filt175#1;

     Filt183 = word(a27 * cb18[i27+22]) + Filt183#1;

     Filt191 = word(a27 * cb19[i27]) + Filt191#1;

 end;

/*

 * In: 165..194

 */

 Filt176##1 = Filt175;

 Filt184##1 = Filt183;

 Filt192##1 = Filt191;

 (i28:0..29)::

 begin

     a28 = In[i28+165];

     Filt176 = word(a28 * cb17[i28+63]) + Filt176#1;

     Filt184 = word(a28 * cb18[i28+44]) + Filt184#1;

     Filt192 = word(a28 * cb19[i28+22]) + Filt192#1;

 end;

/*

 * In: 195..229

 */

 Filt185##1 = Filt184;

 Filt193##1 = Filt192;

 (i29:0..34)::

 begin

     a29 = In[i29+195];

     Filt185 = word(a29 * cb18[i29+74]) + Filt185#1;

     Filt193 = word(a29 * cb19[i29+52]) + Filt193#1;

 end;
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/*

 *In: 230..255

 */

 Filt194##1 = Filt193;

 (i30:0..25)::

 begin

     a30 = In[i30+230];

     Filt194 = word(a30 * cb19[i30+87]) + Filt194#1;

 end;

/****************************/

   Out[0] = Filt13;

   Out[1] = Filt24;

   Out[2] = Filt35;

   Out[3] = Filt45;

   Out[4] = Filt55;

   Out[5] = Filt65;

   Out[6] = Filt75;

   Out[7] = Filt84;

   Out[8] = Filt94;

   Out[9] = Filt105;

   Out[10] = Filt116;

   Out[11] = Filt127;

   Out[12] = Filt137;

   Out[13] = Filt147;

   Out[14] = Filt157;

   Out[15] = Filt167;

   Out[16] = Filt176;

   Out[17] = Filt185;

   Out[18] = Filt194;

 end;
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/*

 *Author - Engling Yeo

 *

*/

#define word fix<25,20>

#define cosu word(0.707106781)

#define sinu (0.707106781)

#define half_pi word(1.57079633)

#define pi word(3.14159265)

#define b1_0 word(0.987862135574673807)

#define b3_0 word(-0.155271410633428645)

#define b5_0 word(0.0056431179763468104)

#define WN word(0.012271846) /* = (2*pi)/512 */

func main(In:word[19]) RastaOut: word[] =

begin

  (n:0..18)::

  begin

     Out[n]@@1 = word(0);

     In1[n]@@1 = word(0);

     In1[n]@@2 = word(0);

     In1[n]@@3 = word(0);

     In1[n]@@4 = word(0);

  end;

  (i:0..18)::   /* Rasta Filtering */

  begin

     In1[i] = In[i];

     Out[i] = word(word(Out[i]@1 * word(0.94))

  + word(word(0.2) * In1[i])

  + word(word(0.1) * In1[i]@1)

  - word(word(0.1) * In1[i]@3)

  - word(word(0.2) * In1[i]@4));

  end;

/* Power Law and Equal Loudness Preemphasis */

   RastaOut[0] = word(word(0.33) * (word(-7.598859) + Out[0]));

   RastaOut[1] = word(word(0.33) * (word(-5.084743) + Out[1]));

   RastaOut[2] = word(word(0.33) * (word(-3.824229) + Out[2]));

   RastaOut[3] = word(word(0.33) * (word(-3.077419) + Out[3]));

   RastaOut[4] = word(word(0.33) * (word(-2.588522) + Out[4]));

   RastaOut[5] = word(word(0.33) * (word(-2.237648) + Out[5]));

   RastaOut[6] = word(word(0.33) * (word(-1.96175) + Out[6]));

Appendix F
Modeling of CriticalBand Filter Outputs



Automated Low Power ASIC Design for Speech Processing 115

   RastaOut[7] = word(word(0.33) * (word(-1.726257) + Out[7]));

   RastaOut[8] = word(word(0.33) * (word(-1.512501) + Out[8]));

   RastaOut[9] = word(word(0.33) * (word(-1.311570) + Out[9]));

   RastaOut[10] = word(word(0.33) * (word(-1.12068) + Out[10]));

   RastaOut[11] = word(word(0.33) * (word(-0.940791) + Out[11]));

   RastaOut[12] = word(word(0.33) * (word(-0.774623) + Out[12]));

   RastaOut[13] = word(word(0.33) * (word(-0.625262) + Out[13]));

   RastaOut[14] = word(word(0.33) * (word(-0.495046) + Out[14]));

   RastaOut[15] = word(word(0.33) * (word(-0.384992) + Out[15]));

   RastaOut[16] = word(word(0.33) * (word(-0.294683) + Out[16]));

   RastaOut[17] = word(word(0.33) * (word(-0.222522) + Out[17]));

   RastaOut[18] = word(word(0.33) * (word(-0.166165) + Out[18]));

end;
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/*

 * File:

 *    ln.sil by Steve Stoiber & Engling Yeo

 *    Latest, best working ln operation 3/24/95

 *

 * Purpose:

 *    return ln(x) if x > 0

 *    else return EXCEPTION

 *

 *

 * How it works:

 *    ln(x) = ln(2^p * y)      1 <= y < 2

 *          = p*ln(2) + ln(y)

 *          = p*ln(2) + a1*y + a2*y^2 + a3*y^3 + a4*y^4 + a5*y^5

*/

#define word fix<33,17>

#define wordout fix<25,17>

#define N14

#define MIN_NUMword(6.103515e-05)

#define MSB_POW14 /* mag msb has weight 2^MSB_POW */

#define MSB_WGHT16384 /* mag msb has weight MSB_WGHT */

#define a1 wordout( 0.99949556)

#define a2 wordout(-0.49190896)

#define a3 wordout( 0.28947478)

#define a4 wordout(-0.13606275)

#define a5 wordout( 0.03215845)

#define ln2 wordout( 0.69314718)

#define One wordout(1)

func main (x : word[19]) y: wordout[]  =

begin

   (i:0..18)::

   begin

      y[i] = log_gtz(x[i]);

   end;

end;

func log_gtz(x : word) y : wordout =

begin

   x_tmp[0] = x;

   y_tmp[0] = x;
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   lead_one_pow[0] = word(MSB_POW);

   (i : 1 .. N) ::

      begin

         (x_tmp[i], y_tmp[i], lead_one_pow[i]) =

            if ((x_tmp[i - 1] & MSB_WGHT) ==0) ->

       (x_tmp[i-1] << 1, y_tmp[i-1], lead_one_pow[i-1] - 1)

            ||

       (x_tmp[i-1], y_tmp[i-1] >> 1, lead_one_pow[i-1])

            fi;

      end;

   ln_mantissa = log_restricted(wordout(y_tmp[N]));

   ln_power = wordout(ln2 * lead_one_pow[N]);

   y = ln_power + ln_mantissa;

end;

func log_restricted (in : wordout) out : wordout =

begin

   out = wordout(a1*(in-One)) +

         wordout(a2*wordout((in-One)*(in-One))) +

         wordout(wordout(a3*(in-One))*wordout((in-One)*(in-One))) +

         wordout(wordout(wordout(a4*(in-One))*(in-One))*wordout((in-One)*(in-One))) +

         wordout(wordout(wordout(a5*(in-One))*wordout((in-One)*(in-One)))*word-
out((in-One)*(in-One))) ;

end;
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/*

 * File:

 *    exp.sil by Steve Stoiber

 *

 *

 * Purpose:

 *    return exp(x)

 *

 *

 * How it works:

 *    first notice that the convergence rate of the geometric series

 *    is awful (consider x < 0), so we need to do something else

 *

 *    e^x = 2^p

 *        = 2^i * 2^f where i is an integer and 0 <= f < 1

 *        = (shift) * (polynomial approximation)

 *

 *    how to find p?

 *       e^x = 2^p

 *       ln(e^x) = ln(2^p)

 *       x = p*ln(2)

 *       p = x / ln(2)

 *         = x * log2(e)

*/

#define word fix<25,20>

#define LOG_2_eword(1.442695)

#define INT_MASK15

#define FRAC_MASK0.999999046

#define W_BITS4 /* No. of integer bits */

#define a1 word(0.693147) /* log_e_2 */

#define a2 word(0.240227) /* 1/2 * log_e_2^2 */

#define a3 word(0.055504) /* 1/6 * log_e_2^3 */

#define a4 word(0.009618) /* 1/24 * log_e_2^4 */

func main (x : word[19]) y : word[19] =

begin

  (b:0..18)::

  begin

     y[b] = exp_generic(x[b]);

  end;

end;
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func exp_generic (x : word) y : word =

begin

   p = word(LOG_2_e * x);

   z =

      if (p >= 0.0) ->

 get_integer(p)

      ||

 word(1.0 + get_integer(-p))

      fi;

   f =

      if (p >= 0.0) ->

 get_frac(p)

      ||

 word(1.0 - get_frac(-p))

      fi;

   a = pow2(f);

   y =

      if (p >= 0.0) ->

 word(a * mult_by_two(z))

      ||

 word(a * div_by_two(z))

      fi;

end;

func mult_by_two(miter : word) y : word =

begin

   y_tmp[0] = word(1.0);

   count[0] = miter;

   (i : 1 .. W_BITS) ::

      begin

         y_tmp[i] =

    if (count[i-1] == 0) ->

       y_tmp[i-1]

            ||

       word(y_tmp[i-1]<< 1)

            fi;

         count[i] =

    if (count[i-1] == 0) ->

       0

            ||

       count[i-1] - 1

            fi;

      end;

   y = y_tmp[W_BITS];

end;
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func div_by_two(diter : word) y : word =

begin

   y_tmp[0] = 1.0;

   count[0] = diter;

   (i : 1 .. W_BITS) ::

      begin

         y_tmp[i] =

    if (count[i-1] == 0) ->

       y_tmp[i-1]

            ||

       word(y_tmp[i-1]>>1)

            fi;

         count[i] =

    if (count[i-1] == 0) ->

       0

            ||

       count[i-1] - 1

            fi;

      end;

   y = y_tmp[W_BITS];

end;

func pow2(f : word) y : word =

begin

   t0 = word(1.0);

   t1 = word(a1 * f);

   t2 = word(word(a2 * f) * f);

   t3 = word(word(a3*f) * word(f*f));

   t4 = word(word(a4 * word(f*f)) * word(f*f));

   y = word(t0 + t1 + t2 + t3 + t4);

end;

func get_integer (x : word) y : word =

begin

   y = x & INT_MASK;

end;

func get_frac (x : word) y : word =

begin

   y = x & FRAC_MASK;

end;
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#define wordfix<25,20>

#define NFREQ   21

#define NAUTO9

/*  IDFT computes the first 9 autocorrelation coefficients from power

    spectrum coefficients.  freq[1 throough 19] are obtained directly

    from previous computations, while the first and last values ( freq[0]

    and freq[20] ) are copied from their neighbors.   i.e. freq[0] = freq[1],

    and freq[20] = freq[19]

*/

func main (freq : word[NFREQ]; wcos: word[NAUTO][NFREQ-2]) autoid : word[] =

begin

   (i : 0 .. NAUTO - 1) ::

      begin

 tmp[i][0] = freq[0]-freq[20];

 (j : 1 .. NFREQ-2) ::

    begin

       tmp[i][j] = tmp[i][j-1] + word(freq[j] * wcos[i][j-1]);

            end;

         autoid[i] = tmp[i][NFREQ-2];

      end;

end;
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/* Ingrid Verbauwhede */

/* Durbin algorithm */

/* see Golub, “Matrix Computations”, p. 127

 * 13 aug 1990

 * works for the example of pp. 127 !!

 *  Solves the problem

 *

 *  T x y = r,

 *

 * where:  r = -(r1, r2, ..., rN)

 *         T : a persymmetric NxN matrix

 *         y = (y1, y2, ..., yN)

 */

#define N         8 /* for an NxN matrix */

#define NDIV      24

#define real   fix<25,20>

#define NDIV1   25

#define numDIVfix<NDIV+1,0>

#define num1DIVfix<NDIV+2,0>

#define num2DIVfix<NDIV+1,NDIV>

#define num3DIVfix<NDIV+2,NDIV>

#define num4DIV fix<(2*NDIV)+1,NDIV>

func main (In : real[N+1] )

           out : real[] =

begin

  norm = ReciprocalnonFraction(In[0]);

  (j:1 .. N)::

  begin

     r[j-1] = real(norm*In[j]);

  end;

  y[0][0] = - r[0];

  beta##1 = real(1);

  alpha##1 = - r[0];

 (k : 1 .. N-1) ::

  begin

    lastalpha = alpha#1;

    beta = real(( 1 - real(lastalpha*lastalpha)) * beta#1);

    sum[0][k] = r[k] ;

   (i : 0 .. k-1) ::

    begin

      sum[i+1][k] = sum[i][k]   + real(r[k-i-1]*y[i][k-1]) ;

    end;
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    B = ReciprocalFraction(beta);

/* Since 1< beta < 0.5 for all samples tested */

    alpha = - real(sum[k][k] * B);

   (i : 0 .. k-1) ::

    begin

      y[i][k]     = y[i][k-1]     + real(alpha*y[k-i-1][k-1]);

    end;

    y[k][k] = alpha;

  end;

  (i : 0 .. N-1 ) ::

  begin

    out[i+1] = y[i][N-1] ;

  end;

end;

func divfix2(a,b: num2DIV) quo: num2DIV =

begin

R[0] = a;

P[0] = num2DIV(0);

(m: 1 .. NDIV) ::

begin

(R[m], P[m]) =

  if ((R[m-1]>=0 & b>=0) | (R[m-1]<0 &  b<0))

    -> (num2DIV(num3DIV(R[m-1])<<1 - num3DIV(b)),

num2DIV(P[m-1]<<1 + num2DIV(6.08e-8)))

  || ((R[m-1]>=0 &  b<0) | (R[m-1]<0 & b>=0))

    -> (num2DIV(num3DIV(R[m-1])<<1 + num3DIV(b)),

num2DIV(P[m-1]<<1))

  fi;

end;

quo = num2DIV(num3DIV(P[NDIV])<<1 - num3DIV(1) +

 num3DIV(6.08e-8)) ;

end;

func divfix(a,b: num2DIV) quo: num2DIV =

begin

R[0] = a;

P[0] = num2DIV(0);

(m: 1 .. NDIV) ::

begin

(R[m], P[m]) =

  if ((R[m-1]>=0 & b>=0) | (R[m-1]<0 &  b<0))

    -> (num2DIV(num3DIV(R[m-1])<<1 - num3DIV(b)),

num2DIV(P[m-1]<<1 + num2DIV(6.08e-8)))
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  || ((R[m-1]>=0 &  b<0) | (R[m-1]<0 & b>=0))

    -> (num2DIV(num3DIV(R[m-1])<<1 + num3DIV(b)),

num2DIV(P[m-1]<<1))

  fi;

end;

quo = num2DIV(num3DIV(P[NDIV])<<1 - num3DIV(1) +

num3DIV(6.08e-8)) ;

end;

func ReciprocalnonFraction(x: real) q: num4DIV =

/* |x| > 1 */

begin

x1 = if (x<0) -> -x

     || x

     fi;

        xtemp =num2DIV(fix<(2*NDIV)+1,NDIV>(x1)>>10);

q1 = num4DIV(divfix(num2DIV(0.000976563),xtemp));

    /* 2^-10 */

        q = if (x<0) -> -q1

    || q1

    fi;

end;

func ReciprocalFraction(x: real) qf: num4DIV =

/* 1 <= |x| <= 0.5   */

begin

x1 = if (x<0) -> -x

     || x

     fi;

        xtemp =num2DIV(fix<(2*NDIV)+1,NDIV>(x1)>>10);

q1 = num4DIV (divfix2( (num2DIV(0.000976563) - xtemp),xtemp));

        qf = if (x<0) -> -q1-1

    || q1+1

    fi;

end;
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#define word fix<25,14>

#define AR_ORDER8

func main (lpc,minverse : word[AR_ORDER + 1] ) cep : word[] =

begin

   /* The LPC coefficients are stored in lpc[1] through lpc[AR_ORDER].  */

   /* The constant gain, A,  of the AR model is assumed for simplicity */

   /* to be 1, so that c[0] = ln(1) = 0. */

   /* minverse[ ] is the array of 1/m values for m = 1 through 8,      */

   /* i.e. 0,0, 0.5, 0.333333333, 0.25, 0.2, 0.166666666, 0.142857142, 0.125 */

   cep[0] = 0;

   cep[1] = -lpc[1];

   l1##1 = word(2);

   (l : 2 .. AR_ORDER) ::

      begin

 s[l][0] = word(0);

 /*

  * loop variable cannot be used as a signal right now

  * so j1 is needed simply to replicate j

  * and i1 is needed simply to replicate l

  * This needs duplicates multiplications unneccesarily

  * and may increase the power consumed.

  */

 j1##1 = word(1);

 (j : 1 .. l - 1) ::

    begin

       s[l][j] = s[l][j-1] + word(lpc[j]*cep[l-j]*word(l1#1-j1#1));

       j1 = j1#1 + word(1);

            end;

         s[l][l] = word(word(s[l][l-1]) * word(minverse[l-1]));

 cep[l] = -(lpc[l]+ s[l][l]);

 l1 = l1#1 + 1;

      end;

end;
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