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Abstract

In a previous study, a macroscopic analytic model was developed for a plasma

discharge with a three component (electronegative) core and an electropositive

edge region. Both regions were treated in the high pressure approximation of con

stant mobility for the positive ions. We extend the treatment to low pressures, for

which the ion thermal velocity within the electropositive region is much less than

the ion flow velocity, by using a variable mobility model with constant mean free

path for the positive ions. The density at the interface between the electropositive

region and the sheath is determined by generalizing a low pressure electropositive

solution to a finite flow boundary condition at the interface with the electroneg

ative plasma. The results are also extended to include an additional transition

region in which the flow within the electronegative region is not allowed to exceed

the local ion sound speed, which can result in an abrupt decrease in negative ion

density. The approximation of a parabolic negative ion profile results in algebraic

equations which are solved numerically over a range of parameters. Typical cases

are compared to particle-in-ceU (PIC) Monte Carlo simulations.



I. Introduction

Plasma processing involves electronegative gases and gas mixtures. The number of

equations governing the equilibriumis large and analysisbecomes complicated. At the same

time there is an increased need to understand the scaling of the plasma constituents with

control parameters, since the parameter space is much enlarged from that of electropositive

plasmas. In an early study of an electronegative positive column the continuity and force

equations for a three species plasma, consisting of electrons, one positive ion, and one

negative ion species, were solved numerically to obtain the equilibrium for a positive column

[1]. However, the numerical results give little insight into the importance of various terms

in the equations, and the scaling with parameters. Recent work has attempted to analyze

such plasmas, using various simplifications to make the studies tractable [2-5]. In [2], the

equilibrium equations were reduced to a coupled pair of nonlinear differential equations

that were solved numerically, with some simplifying assumptions. In that work, as in [1]

the positive column was treated as a single region, which therefore did not distinguish

between the central electronegative core and the electropositive edge region. A simplified

set of equations has also been used to solve qualitatively for the plasma parameters of a

negative ion source [3]. In an alternative approach the two region nature of the problem

was essentially recognized [4]. Various assumptions were used to uncouple the differential

equations and reduce them to solvable form. In particular, recombination was neglected in

favor of detachment which, together with other approximations, limit the applicability of

the model [4].

In a previous study we developed a theory to treat an electronegative plasma in a paral

lel plane discharge when only a single positive ion species is important [5]. This was applied

to a large aspect ratio cylindrical oxygen discharge (length < diameter) at relatively low
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density and relatively high pressure, in which dissociation of O2 is not important. We also

made the assumption that the Boltzmann relationholds forboth negative species,electrons

and 0*~, such that a single ambipolar diffusion equation can be constructed to describe

the equilibrium. The resulting ambipolar diffusion equation, including the recombination,

is nonlinear, so that analytic solutions can not be obtained. However, it was shown that

simpler approximate solutions are still possible if the plasma is divided into a core elec

tronegative region and an edge electropositive region, each with a constant (but different)

ambipolar diffusion coefficient. The resulting solutions were compared to particle-in-cell

(PIC) Monte Carlo simulations, investigating the various approximations involved in the

model development, and showing that they were generally justified. As in the various anal

yses of the positive column, the analysis was developed for a relatively high pressureregime

for which constant diffusion and mobility, for each species, is a reasonable approximation

[5].

In many electronegative plasmas morethan one positive or negativeion species may be

important. The work in [2] was generalized to include more species, but at the expense of

obtaining a large set of coupled differential equations that could only be solved numerically

[6]. A similar approach was used to obtain the equilibrium of a parallel plane discharge,

also obtaining a set of coupled differential equations [7]. In another approach to the multi-

species problem, we have developed a global, two-dimensional cylindrical model [8]. The

model is particularly useful in high plasmadensity (high power) low pressure discharges, as

in electron cyclotron resonance (ECR) and RF inductive sources, for which the electroneg

ativity tends to be weak. The global model does not describe the spatial distribution of

negativeions, but should preserve the essential scalings of plasma parameters with control

parameters. The model also allowed the investigation of various phenomena, such as the
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effects ofexcited species, by setting the correspondingreaction rates to zero, which gives us

the information required to obtain the most relevant reduced set of species and reactions.

The purpose of this paper is to extend our previous work on a three species spatially

varying plasma [5] to lowerpressures forwhicha constant ion mobility model is not adequate

to treat the electropositive edge region. Instead, a low pressure constant mean-free-path

model [9] is used and generalized to include ion flow from a coreelectronegativeregion. The

electronegative plasma core is also generalized to include an ion sound velocity limitation,

and the electropositiveregion is allowed to vanishin some parameterranges. Such a complex

model does not have completely analytic equilibrium solutions. However, the assumption of

a profile in the electronegative region, as in Ref. [5], reduces the problem to a set of coupled

algebraic equations from which rather straightforward analytical and numerical results can

be obtained. Examination of various limiting cases connects the results to our previous work

[5] and exposes some of the important scalings. For the specific case of oxygen feedstock

gas, the results of a global model [8] are used to guide the choice of the dominant reaction

rates.

The structure of our model is illustrated in Fig. 1. The plasma is generally divided into

two regions, an electronegative coreand an electropositive edge, with a plane-parallel model

considering only half of the plasmaby symmetry. There is alsoa sheath between the plasma

and an external wall or electrode, but we do not consider the details of this region within

an equilibrium model. In Fig. la we sketch the density profile (solid lines) and a piecewise-

constant-parameter approximation to it (dashed lines) when the ion sound speed does not

limit the positive ion flow in the electronegative core. The core plasma consists primarily

of positive ions and negative ions, with a smaller component of electrons. The density

decreases from the center, with an approximate ambipolar diffusion equation governing
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the positive ion diffusion. Assuming that the electrons and negative ions are in Boltzmann

equilibrium with the electric fields, both negativespecies see containing fields, but the much

more energetic electrons are only weakly affected, maintaining a nearly constant density,

while the negative ion density follows the fall-offof the positive ion density. In a transition

region in which the negative ion density is comparable to the electron density, the electric

field increases, reducing the negativeion density to smallvalues, where the plasmabecomes

essentially electropositive. This transition region is generally thin such that it is reasonable

to approximate the transition as abrupt. In the electropositive region an ambipolar diffusion

solution applies in which the electric fields contain the energetic electrons. The density

decreases to avalue n, and the flux increases such that the Bohm velocity ubo = (eTe/M)1'2

is reached at the transition to the sheath. To obtain simple algebraic equations for the

equilibrium, we use approximate profiles in both the electronegative and electropositive

regions. As we shall show in the following sections, a parabolic negative ion profile is a good

approximation for the electronegative region. We obtain an exact solution for the positive

ion profile in the electropositive region at low pressures; however a uniform density which

drops abruptly to an edge density na at the sheath is usually an adequate approximation.

In Fig. lb we show similar profiles in a parameter regime in which the positive ion

diffusion velocity u+ reaches the local ion sound speed «b within the electronegative core.

Here ub is less than «bo due to the presence of the negative ions. In this case we expect a

space charge region to form [10] which, in some aspects, is similar to a sheath that forms at

a wall. An electric field that builds up in this region leads to the rapid fall of the negative

ion density, over a few electron Debye lengths, and the positive ion density approaches the

weakly varying electron density, until an electropositive plasma with «+ < ubo is formed.

The electropositive plasma has the same form as in Fig. la. An approximate solution for
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the negative ion density profile in the electronegative core is then a section of a parabola

with an abrupt density drop to the electropositive edge.

In Section II we obtain the generalized low pressure solution for the electropositive

edge plasmaincluding the flow from the electronegative core. In Section m we review the

electronegative assumptions and generalize the results to include an ion sound limitation.

The density and flux at the boundary between the two regions arematched to complete the

model. In Section IV various approximations are developed to expose the dominant scalings

and to obtain simpler solutions. In Section V we apply the approximate solutions to the

case of an oxygen plasma. For specific values we compare the results to PIC simulations

[11] as has also been done in [5]. We leave the extension of the analysis to more positive

ion species to a future paper.

II. Low Pressure Solution in the Electropositive Region

When the electron temperature is much larger than the ion temperature, a common

situation in discharges, the ion and the electron motion can be described by the ambipolar

diffusion equations, consisting of an approximate electric field driven flux equation for ions,

r+=/i+n+E, (2.1)

a Boltzmann equilibrium for electrons,

ne =neoexpf—J, (2.2)

and the positive ion conservation relation

V.r+ = i/<,n+. (2.3)

Here /*+ is the ion mobility, i/,*2 = K{Zno is the ionization rate, Jf,r is the ionization rate

constant, no is the neutral gas density, fieo is the electron concentration at the boundary
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with the electronegative region, and E = -V$ is the electric field. The charge neutrality

in the bulk requires ne = n+ = n.

At lower pressure,as compared to the high pressure case considered in the earlier study

[5], the ion-neutral mean free path A, due to resonant or near-resonant charge transfer, is

approximately a constant. The ion mobility in this case can be found as [12]

2eA ( v
"+ - 5#H' (2*4)

where e and M are the ion charge and mass. By setting the ion flux (2.1) equal to nu, we

can find the ion drift velocity

.(apf. ,,«u =

Following [9], we introduce nondimensional position and potential variables

<-Ji- •>=-£• (2-6)
The electropositive region extends from x = /_, the edge of the electronegative region, to

x = lp > Z_, the plasma sheath edge. From equation (2.2) it follows that

n=-In—. (2.7)

Substituting (2.1), (2.2), (2.4) and (2.5) into (2.3) leads to the following differentialequation

for one dimensional rectangular coordinates:

where
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and «bo = (eli/Af)1'2 is the Bohm speed. With the substitution

dr,

(X is a normalized electric field), (2.8) can be transformed to

= X, (2-10)

2x,/,(;*+X3/,)=^/3tt- (2-n)
A further integration yields

i"^**—*^ ""»♦«• (2.12)

Combining (2.10) and (2.11) and integrating, we find

|ln(l +x3/2) =n+C72. (2.13)

Equations (2.12) and (2.13)provide a solution to (2.8) in a parametric form (x serves as the

parameter) with two constants of integration C\ and Ci to be determined from boundary

conditions.

When considering the boundary conditions, it is convenient to have an expression for

X in terms of the ion drift velocity u. Using the normalizations (2.6) and substituting x

from (2.10) into (2.5), we obtain

x=r2/3{^^}t»2.
where w = u(x)/ubo is the normalized flow velocity. Substituting /? from (2.9) into the

preceding expression gives

X= a-2'zw2, (2.14)

where

a = 2viz\/iruBo* (2.15)
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At the plasma sheath edge, the ions reach the Bohm speed, and their concentration is

n,. Using this boundary condition in (2.13) with x obtained from (2.14) at w = 1 and n

given by (2.7) determines

C2 =iln(l-|-a-1) +ln-^-.
6 neo

Substituting C% into (2.13) and using (2.7) and (2.14) we have

-2i- =/£+i^V/3, (2.16)n(x) \ o+l J * K '

which can be used to find the ratio of the density to the density at the sheath edge in terms

of the ratio of the ion drift velocity to the Bohm speed. In particular, for an electropositive

region with an entering velocity uin and a density n^ at z = l_, the ratio of n4/neo is then

i. =[t±<\1,Z (2.17)
neo la +lj V '

where w0 = uin/uBo- If «m and the electron temperature Te, and therefore viz and ubo*

are known, then (2.17) gives n«/neo.

At the edge of the electronegative region, the ionsenter the electropositive region with

the velocity «*«• With x obtained from (2.14) at id= too, we find from (2.12) that

C\ = - In ^— + —= arctan —,- wo .

Substituting C\ into (2.12) yields

1, {o^ + w}8 ,1 4 2^-^/3 I {aV3 +Wo}3
- In =*— + -7= arctan —,- ,,, In - •—§—
6 a+ w3 ^ y/% y/ZaV* 6 a+ wg

whichimplicitly gives the ratio t»of the ion velocity to the Bohm speed in terms of normal

ized position £. At the plasma sheath edge, x = /p, w = 1 and £ = 1, and equation (2.18)
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yields the important relation

6 a +1 y/d y/Za1/3 6 a + wg

.1 arctan ^-f3 =^-'->«* (2.19)
>/3 y/ZaW 2*

which can be solved simultaneously with global particle balance equations in the bulk of a

discharge for Te, tijn? and /_, as described in the following section.

III. Three Species Electronegative Core

In this model [5], we consider a subset of charged particle species in a parallel plane

geometry, and determine the spatially varying profiles of the species. As in electropositive

plasmas, for each charged species we write a flux equation

Ti = -DiVm ± nuaEi, (3.1)

where D{ = eTj/mjt/j, m = M/mM, with i/t- the total momentum transfer collision fre

quency, T{ is the species temperature in volts, and the ± corresponds to positive and negative

carriers, respectively. In equilibrium the sum of the currents must balance,

N

X>T,- =0. (3.2)
<=i

Assuming that both the negative ions and the electrons are in Boltzmann equilibrium, then

Vn_ Vne ,Q Qx
= 7——» (3-3)

n_ n

where 7 = Te/Ti (Ti is the common temperature of both ionic species). We assume 7 > 1.

Using charge neutrality and the Einstein relations,

?;-?; ' d;-1^ (3'4)
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together with (3.1)-(3.3), we obtain an ambipolar diffusion coefficient for the positive ions

[13]

(l +7+27a)(l +a^)
D+ =D* /—IT* ^TT' (35)

where a = n-/ne. Since M-//*e, M+//*e < 1* forall reasonable cases the second parentheses

in both the numerator and denominator areapproximately equal to one, yielding the simpler

form

l +7 + 27a ,« fix
Da+ D+ 1+7* * ( }

The structure of Da+ is easily seen from (3.6). For a > 1,7 cancels such that Da+ « 2X>+.

When a decreases below 1, but 7a > 1, Da+ « -D+/a such that Da+ increases inversely

with decreasing a. For7a < 1, Da+ « 7-D+, which is the usual ambipolar diffusion without

negative ions. For plasmas in which a > 1 at the plasma center, the entire transition region

takes place over a small range of 1/7 < a < 1, such that the simpler value of Da+ —2D+

holds over most of the plasma. The thinness of the transition region allows us to separate

the plasma into an electronegative core and an electropositive edge.

Consider now the positive ion diffusion equation, keeping only the dominant reaction

rate constants. In plane-parallel geometry, we have

~ \Da+(a)^j±) =Kitnone -KTecn+n-, (3.7)
where no is the neutral gas density, and K{x and KTec are the ionization and recombination

reaction rate constants. We can eliminate ne and n_ using the Boltzmann relation relating

electron and ion densities (ne/neo) = (n./n-o)1^ and the "plasma approximation" of

charge neutrality n+ = n- -\- ney to obtain

n+ = n~ + neo

12
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Substituting (3.8) into (3.7), we obtain the ion diffusion equation in terms of a, alone,

(3.9)
dx WHte)*)]

=K<"* fe)'*1 -K™n«a ((a+J) (5)*)
where Da+(a) is given by (3.6). Equation (3.9) is a function of three parameters: ao =

«-o/»eO, neo, and Te. Because 7 > 1 we see from (3.8) that ne cz n^ in the electronegative

core and that we can generally take (a/ao)^1 = 1in (3.9).

At lower pressures, for which the mobility is not constant in the electropositive portion

of the discharge, as treated in Section II, the diffusion equation (3.9) does not describe this

portion of the discharge. To make the problem tractable, we break up the discharge into a

core electronegative region and an edge electropositive region. The transition takes place

(nominally) at a position x = £_ where 0:7 ~ 1, which for most approximations can be

taken to be equivalent to a = 0. With this value I- we can write the conservation equation

for positive ions in the electronegative core as:

r+(£_) = / "Kiznonedx - / ~Jrrecn+n_.<fe. (3.10)
Jo Jo

The negative ion particle balance within the entire discharge is

I Kattnonedx - / Krecn+n-dx = 0, . (3.11)
Jo Jo

where Katt is the attachment reaction rate constant. The reaction rate constants are in

general functions of the electron temperature Te. The ion flux on the left handside of (3.10)

can be written as

r+=n+«+, (3.12)

where tx+ is the local ion velocity, which is subject to the condition [14,15]

u+(x) < uB(a) =
eTt (q +1) ]1/2 ( .
m;To7ttm\ • (3*13)
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i.e. that the local ion velocity u+ is less than the local sound velocity ub in an electronegative

plasma. If the equality is reached, sufficient electric field builds up to decrease the negative

ion density to a small value such that the sound velocity is not exceeded. For a large, l-

occurs at the plasma edge such that I- = tp.

Assuming no and n^ are known, and that the density in the electropositive region at

the border between the two regions is n+ ~Ueo (a~ 0), then (3.10), (3.11) and (2.19) can

be solved simultaneously with the diffusion equation (3.9),using the equality in (3.13) if it

applies, to obtain the three unknown constants, oro, Te, and l_. The power absorbed by

the electrons is then obtained from

Paba = 2£c / Kixnonedx +2ewn+(lp)uB. (3.14)
Jo

where £e is the collisional energylost per electron-positive ion pair created, a knownfunction

of Tc, and €w is the kinetic energy lost per electron-ion pair lost to the wall. If the electron

power is given, (3.14) becomes an additional equation to be solved simultaneously for the

additional constant n^.

Although we have derived a set of equations that are considerably simplified from

the coupled three-species equations, they involve a nonlinear differential equation (3.9)

in the electronegative core coupled to a set of equations involving both transcendental

functions and integrals. In the next section we describe some approximations that reduce

the equations to a simpler set which, in some instances, may be solved analytically by

iterating on weakly varying parameters.

IV. Approximate Solutions

We found in [5], that the negative ion profile in an electronegative region could be

reasonably approximated by a parabola, provided ao was neither too large or too small, as

described below. Since the conservation laws are expressed as integrals over the profiles,
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the macroscopic plasma parameters are relatively insensitive to exact shape of the profile.

Provided 04 > 1, only a narrow region at the edge of the electronegative plasma has a

diffusion coefficient that is varying. Since wematchthe flux r+ = —Da+dn+/dx leaving the

electronegative plasma, to that entering the electropositive plasma, we can see from (3.10)

that this depends only on integrals over the entire electronegative region, rather than the

rapidly varying Da+(ct) anddn+/dx, separately. This allows us to matchthe electronegative

solution to the electropositive solution with discontinuities in Da+ and dn+/dx.

A. Parabolic Models without Ion Sound Limitation

Consider, as in previous work [5], that an electronegative core region of the discharge

exists in which a is sufficiently large that Da+ « D0+, a constant, that ne « n«o, a constant,

and that the effect of positive-negative ion recombination can be neglected in determining

the spatial distribution. The diffusion equation (3.9) then takes the simple form

= d?a

a+dx^= "n°*

In this approximation n+(x) has a simple parabolic solution of the form

^ =̂ +l=oo(l-£)+l, (4.1)
n«o »eo \ *> J

where £ is the scale length of the parabola. We assume that I- = £ since there is no ion

sound limitation. The diffusion coefficient Da+ is obtained by averaging a in (3.6) over a

parabola

**-**iT5Sia (4-2)
where in rectangular coordinates d = |ao.

Substituting (4.1) and(4.2) in (3.10) and (3.11) and integrating, weobtain, respectively,

Kigno£ =Krecne0 (±ag+fa0) £+̂ p-, (4.3)
Kattno£p =KreefleO (j^a0 +3^0) £, (4-4)
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where in (4.3) the integration is only over the stronglyelectronegative plasma, and in (4.4)

we approximate ne « n«o everywhere as discussed in the introduction (see also numerical

comparisons, which show that the profiles from Sec. II are relatively flat, such that results

obtained from integralsover those profiles arenot greatly different from the results obtained

by integrals over a constant profile). At x = £ this electronegative solutionis matched to an

electropositive edge solution. The electropositive solution could be a sinusoidal profile, at

higher pressures, the more nearly constant profile, obtained in Section II, at lower pressures,

or a profile intermediate between the two. In previous work [5] a parabolic profile was

assumed in the electropositive region also, and the fluxes matched at the interface between

the regions, to solve for the ratio £/£p. The analysis is simplified by assuming that n«o

is known. The absorbed electron power Paba is then obtained a posteriori from (3.14).

If Paba is specified rather than neo, then n& can be obtained iteratively, as is done for

Te, as described below. Assuming n«o is known, we then solve (4.3), (4.4), and (2.19)

simultaneously for Te, a0, and €, where in (2.19) ttf„ = 2Da+ato/£.

We can further approximate the equations to obtain a set that may be iteratively solved

analytically. First we note that (4.4) can be solved for ao, assuming that £/£p is known, to

obtain

For large ao this reduces to

~WG)'+Sfe3ft <->

1/2
~ ~ (1& Kan »0 £p\ (A cKx

Since £/£p is near unity for large ao, the weak dependence on £p/£ is not significant; once a

complete solution is found, the value of ao can be improved by iteration. Equation (4.5b)

exhibits the important scaling ao oc (no/n^o)1/2. Making the assumption that the density
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in the electropositive solution is relatively constant, except very near the sheath, such that

ne can be set equal to n«o in the ion flux balance equation, the positive ion particle balance

in the electropositive region is

^f^ +ffi.«o(/P - /) =htUBo, (4.6)

where ubo = (eTe/Af)1/2, and where ht = n,/neo can be obtained from (2.17). As in

previous work [5], the temperature sensitive term Ku can be eliminated by substituting

K^ from (4.3) into (4.6) to obtain

2Da+0C0^ +KrecUeO (j^a20 +|a0) (£P -£) =htUBO. (4.7)

We note that Da+, Kreei and ubo and ht are only weakly dependent on Te, such that the

temperature evaluation can be essentially decoupled from the evaluation of ao and I. In

this approximation, with an assumed Te, (4.5) and (4.7) can be solved for ao and I, with hi

given in some approximation from (2.17). For example, solving explicitly for £/£p in terms

of a, from (4.7), and using (4.4) to simplify, we have

Kattno +J(Ka»«o)* +S5ip (*2K +*„„„„)
— = 1 y- ^ . (4.8)

which is valid provided that £/£p < 1 and that the ion drift velocity is less than the ion

sound velocity. A simple hand calculation then allows an iterative solution using (4.5) and

(4.8). We also note the important limiting cases: (1) if the recombination flux is muchless

than the diffusion flux, i.e. Kattno < hiUBo/£P then

£ ^ (2Da+ao/£p)V2
£P " (htUBofl2
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or, substituting £ for £p on the right hand side,

/ _(2Da+ao/£)
£p " (htuB)

We see that £/£p is linearly related to the ratio of the ion diffusion out of the electronegative

region to the total ion diffusion. (2) In the opposite limit of Kattno > hiUBo/tp, l/lp - 1-

To solve for the temperature by iteration, we add (4.3) and (4.6), and substituting from

(4.4), as previously, we obtain

Kizno£p - Kattno£p = heuBo (4.10)

which can be solved explicitly for Kiz, if Katu hi and ubo are known. Since these are weak

functions of Te, while Kiz is a strong function of Te the procedure updates Te.

B. Parabolic Model with an Ion Sound Limitation

Depending on plasma parameters, it is possible to reach the local ion sound velocity in

the electronegative region. In this case, if we use the parabolic approximation for negative

ions the electronegative region terminates abruptly at a position I- < L It is shown in [10]

that an internal nonneutral transition region forms. The transition from an electronegative

core to an electropositive edge region takes place over a few electron Debye lengths, which

is the basis for our assumption of an abrupt transition. The positive ion flux is continuous,

but the positive and negative ion densities and the positive ion velocity change abruptly.

The electric fields that build up inside this nonneutral region are small. They are sufficient

to confine the negative ions, but not the electrons. Hence the electron density changes only

slowly within this region. The particle balance equation for positive ions is then

Kiznoneo£- ±Krecn\a |aj/- (1 - ~ +~J +ao/- f1- j-^J J

+»eo Uo f1-^-J +1Ub

18
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where ub(cc-) is given by (3.13), with

a. = ao(l-/i//2). (4.12)

The negative ion particle balance is

Kattnoneo£p =Kreenlo { • J, (4-13)

with the { • } repeated from (4.11). We note that the last term in (4.11)is n^Uni, defined in

(2.19) as wo = Vin/uBo- Therefore (2.19) must be solved simultaneously with (4.11)-(4.13)

and (3.13) to determine a0, a_, £_, I, and Te.

As described in Sec. IV-A, the equations for the electronegative region can be connected

to the approximate electropositive equations. Equation (4.6) becomes

2D*+£°n*l_ +K^noneo^ - iL) =n^uso (4.14)

with hi given by (2.17). As previously, the temperature sensitive rate constant Ku can be

eliminated from (4.14) using (4.11) to obtain

2.D0+aoneO

»e0 Uo f1- -j?) +1 «B0 fj- - lj =neoMso. (4.15)
Using the negative ion particle balance (4.13), (4.15) can be more simply written as

2Da+aoneot, +j^,^ (ft -1) =htn^so (4.16)
The additional equation that is required to solve for the new variable £- is the condition

at which local sound speed is attained within the electronegative region. From the flux

condition this occurs when

2^n"£- =[*o (l -|) +1] »«o«B(a) (4-17)
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The left hand side is the flux, which depends only weakly on the local a(£-) while the

terms on the right hand side depend strongly on a(l_). Equations (4.13), (4.14), (4.16),

and (4.17) are solved simultaneously for ao, /, /-, and Te with no and neo as parameters.

Alternatively Te is assumed, then (4.13), (4.16), and (4.17) are solved for ao, I, and£p, and

Te is then obtained from (4.14) with the solution improved by iteration. We note that in

(4.14) and(4.16), uBo = (eTe/MJ1/2, the usual Bohm velocity when a = 0. As aoincreases,

there is a transition to a single region electronegative plasma when I- = £p. In this case

(4.11) and (4.13) still hold with £p replacing 1-. The third equation to complete the set is

flux balance at the sheath edge, which is given by (4.17) with £p replacing £-. This high ao

case is treated in a separate paper dealing with another set of issues, so we do not consider

it further here.

Returning to examination of condition (4.17) more closely, we set 2Da+ = 4Z?+, for

simplicity and approximating ub by

uB =vTi (^) . (4-18)

then (4.17) yields a cubic equation for £2_/£2:

(t)'-4(-*)-M-*)]'- <"•>
where we have substituted D+ = t>r;A. For small ao we find numerically that (4.19)

has no real solutions, while for larger ao (4.19) has two positive real solutions, with the

solution with the smaller value of l-jl giving the transition between the electronegative

and electropositive regions. If there are no solutions to (4.19), then we are back to the case

treated in Sec. IV-A with I- - I (the scale length of the parabola is equal to the size of

the electronegative region). In Fig. 2 we plot a_ vs ao with g = (4A/1)2 a parameter. We
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see the basic structure of the solution as described above. For a given electronegativity ao,

we see that there is an ion sound limitation for A// sufficiently large (low pressure).

If there is a solution to (4.19) we can drop the small terms linear in ao in (4.13) to

obtain the approximate scaling of ao:

^ =U^rJ (1_3F+5fJ • (420)
Since 1-/1 changes slowly with parameters, we find that the scaling of ao in (4.20) is

approximately the sameasthat in (4.5b),without the ion soundlimitation. In fact, l-/£ ~ 1

for most cases such that (4.5b) is recovered.

Although the ion sound limitation is a physical phenomenon, the detailed way in which

it manifests itself within the discharge cannot be obtained within diffusion theory. We

compare the results of the two parabolic approximations, with and without the ion sound

limitation, in the numerical calculations of Sec. V. We see there that both approximations

give similar values of ao and Te.

V. Numerical Results

For our numerical examples we consider an oxygen feedstock gas. We use oxygen

because the reaction rates are reasonably well known, and because PIC Monte-Carlo simu

lations have been done using these rates. However, because our theory has been developed

for a three species plasma, (as has the comparison PIC codes) we do not consider dissocia

tion of O2 to 0. This is reasonable for low electron density (low power) discharges that we

consider in the examples, but limits the applicability of the model in real oxygen discharges.

However, with other reaction rates, the model can be applied to other feedstock gases, such

as chlorine, which do have large parameter ranges with three plasma species.

For our analysis we use the following, somewhat simplified, reaction rates, that have

been constructed by integration of Maxwellian distributions over cross sections [16,11]
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Jf<, = 2.13-10-14exp(-14.5/Te) m3/s (5.1)
Katt = 7.89 •10~17 exp(~3.07/re) m3/s (5.2)
AVec = 1.4-10-13 m3/sec (5.3)
am, = 5.10-19 m2, (5.4)

where K{x, KaU, and Kree are rate constants and <rmt- is the cross section for the reactions

(5.5)

(5.6)

(5.7)

(5.8a)

(5.8b)

(5.8c)

The latter three reactions with momentum transfer cross section <7mt- lead to effective

diffusion coefficients for positive and negative ion species. The mean free path is then given

as

A=—?—. (5.9)
no<7mi

The rate constant for charge transfer of 0" on 02 is small because the threshold energy

required for this process is ~ 1.0 eV, which is much higher than the thermal energy of the

heavy particles; hence this process is unimportant. The simulations include many other

reactions, e.g. vibrational excitations, which mainly go into the calculation of the energy

loss per ionization, which we will take here as a known quantity.

We obtain plasma parameters for two values of the gas pressure p = 50 mTorr and p =

10mTorr. The former corresponds to a transition region between a pressuresufficiently high

that a constant mobility can be used in the electropositive edge region and the lower pressure

regime considered in this paper. It wasthe principal exampleusedin our previous study [5].
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02 + e -• Ot + 2e, (ionization)

02 + e —• O' + O, (dissociative attachment)

ot + o~ -• 02 + Ot (recombination)

ot+o2 —• ot+o2, (scattering)

ot+o2 -> o2+oi, (charge exchange)

0" + O2 —• 0" + 02. (scattering)



The latter pressure well satisfies the low pressure constant mean free path approximation in

the electropositive edge, asassumed here. For latercomparison with PIC simulations weuse

slightly different plasma half-widths at the twopressures £p —1.25 cm at p = 50mTorr and

£p = 1.8 cm at p = 10 mTorr, both in the large aspect ratio parallel plane approximation.

In all calculations we take n«o as the input control variable.

In Fig. 3 with p = 50 mTorr and n«o = 2.6 • 109 cm"3, we compare the profiles,

using our complete model, Eqs. (2.19), (4.3), and (4.4) without the ion sound limitation,

and Eqs. (2.19), (4.11), (4.13), and (4.17) with the ion sound limitation. As expected, we

see the truncation of the electronegative region when the ion sound limitation is applied.

However, the values of the parameters ao and Te are quite similar in the two cases, as

is the average electronegativity over the profiles, aave. In Fig. 4 the profiles in the two

approximations are again compared at the lower pressure of p = 10 mTorr and at a higher

density of n^ = 1.1 • 1010 cm"3, to significantly reduce the electronegativity. Again, the

profiles are quite distinct, but the plasma parameters are similar. As described in Sec.

IV, the profiles ignore the rapidly varying diffusion in the thin transition zones and ignore

processes in the narrow nonneutral region, which, if included would keep both the density

and slopes continuous. An integration of the diffusion equation (3.9), using a given value of

Te and ao shows this quite clearly in the case without the ion sound limitation, as shown

in our previous work [5].

In Fig. 5 we compare the two approximations for varying n^ at p = 50 mTorr. In

Fig. 5a we plot ao vs n«o; in Fig. 5b we plot Te vs a©, and in Fig. 5c we plot £/£p (no

sound speed limitation) and £-/£p (with a sound speed limitation) vs oq. We can see the

onset of the sound speed limitation with increasing ao (decreasing n^, at a given pressure,

as expected from Fig. 2). Again, the average plasma parameters are little changed by the
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inclusion of the ion sound speed limitation. In Fig. 6 we repeat the results of Fig. 5 for the

lower pressure p = 10 mTorr, obtaining similar results. The ion sound limitation appears

earlier, as can be shown by solving (4.19) for the critical case of a single solution (onset of

ion sound limitation) as a function of the pressure, which in the limit of 4A// < 1, is

°°"" ="T4A' (5*8)
In addition to the solution given above, we also have the moreapproximate solutions,

which can be solved analytically by iteration. To see how close the approximate solutions

based on(4.6) are to the more accurate solutions based on (2.19) given in Figs. 5 and 6, we

compare the two solutions for £/£p in Fig. 7 for the higher pressure case of p - 50 mTorr.

For definiteness, we do this for the solutions without an ion sound limitation, using Eqs.

(4.5a) and (4.8) together with (2.17) to solve iteratively for a0 and / with Te given, and

then using (4.10) to solve iteratively for Te. The comparison with results repeated from

Fig. 5 shows that the approximate equations give results reasonably close to those of the

more complete equations.

Finally, in Fig. 8 we give results for the two PIC Monte-Carlo simulations. The details

of the simulation are given in [11]. These simulations were also used in the comparison with

the constant mobility model [5]. Comparing the results in Fig. 8awith the higher pressure

case in Fig. 3 wesee that the model gives a somewhat larger £/£p and ana0larger by about

a factor of two than the simulation. The larger £/£p is due, in part, to the larger oo. In our

previous study [5], in which we also obtained a similarly larger value of ao in the modeling,

we found that part of the discrepancy was due to a two temperature electron distribution

in the PIC simulation. Introduction of a two temperature electron distribution into the

model (which is rather straightforward to do), significantly reduced ao, such that the ratio

betweenthe two values of ao wasapproximately 1.5. We discuss the discrepancies, further,
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in Section VI. In Fig. 8a we also compare the PIC simulation profile to the profile (dashed

curve) obtained by integration of (3.9) with the same ao. There is some indication of the

ion sound limitation, but it is mixed with the opposite effect of the changing Da+(oc) at

the edge of the electronegative region. In Fig. 8b the profiles obtained from the simulation

at the lower pressure p = 10 mTorr, higher electron density n«o = 1.1 *1010 cm"3 case

correspond to the model results in Fig. 4. In Fig. 8b we again compare the simulation to

the integration of (3.9) with the same ao (dashed curve). Comparing the profiles to the

profiles in Fig. 4, obtained from the models, we see the same qualitative features as found

for the higher pressure lower density case. The model ao is too large by about a factor

of two, and there is some hint of the ion sound limitation in the simulation. The value of

I-ftp in the simulation lies between the two model approximations. However, the region

of the electronegative core where a ~ 1 is a much larger fraction of the core, making the

approximations more difficult to interpret.

VI. Conclusion and Discussion

We have developed the macroscopic equations that are required for determining the

equilibrium of an electronegative plasma, based on the Thompson [13] form of the elec

tronegative ambipolar diffusion coefficient which assumes that the negative ions are in

Boltzmann equilibrium with the fields. The model separates the plasma into an electroneg

ative core and an electropositive edge. The electropositive edge is treated by generalizing

a constant mean-free-path model to include the flux from the core. The model results in

an electron density in the core that is essentially clamped to a constant value. For this

situation, provided the recombination flux does not dominate the wall flux, a parabolic

approximation to the density profile can be made, leading to a simplified set of equations

that can be treated fully analytically.
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Over a rangeof parameters, the flux in the electronegative region is below the modified

Bohm flux (1+ < nttB), allowing the matching of the electronegative plasma to the elec

tropositive edge plasma at a = 0. For other parameters T+ = nuB within the electroneg

ative region, resulting in an ion sound limitation to the flow. In this case the matching

conditions are more complicated but can still be approximated with parabolic solutions.

The results of the matching both including and ignoring the ion sound limitation are com

pared, giving similar macroscopic values of ao and Te. The values of oo, Te, and £-/£p are

obtained at two pressures, and for a wide range of electron densities for the two approxi

mations.

The profiles obtained for the two model approximations werecompared to PIC Monte-

Carlo simulations, giving reasonable agreement but with values of ao which were a factor

of two larger in the models. One reason for the discrepancy between the simulation and

the theory is the tendency for low pressure capacitively coupled r.f. discharges, as used in

the PIC simulation, to develop non-Maxwellian temperature distributions. In particular,

efficient sheath heating tends to develop higher temperature tails to the distribution which

effectively control the ionization rate. These distributions have been observed experimen

tally, and in both electropositive and electronegative plasma simulations [17, 11]. In our

previous studies [5] we showed that about halfof the discrepancy in ao could be accounted

for by including a two-temperature distribution in the model. The remaining discrepancy

could be accounted for by the manner in which the reaction rate coefficients are employed

in the Monte-Carlo calculation. In this sense our analytic results are also a test of the

simulation, and a resolution requires that both be tested against experiments.

For a fully self-consistent analyticmodel, a method for calculating the non-Maxwellian

electron temperature will need to be devised. This is equally true for electropositive and
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electronegative plasmas. In other types ofdischarges in which ohmic heating is the dominant

heating mechanism, a single temperature MaxweUian may be a good approximation to the

electron energy distribution function. In thesesituations, the analyticmodel developed here

should describe the plasma equilibrium more adequately. Of course the ultimate tests of

both analytic models and simulations are comparisons with experiments; we plan to make

such comparisons in future work.
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Figure Captions

Figure 1. Sketches of the two region plasma having an electronegative core and an elec

tropositive edge: (a) without an ion sound speed limitation, (b) with an ion sound speed

limitation on the velocity of the ions.

Figure 2. Values of a_ vs ao with (4A/1)3 as a parameter, which satisfy (4.19) for

tt+ = uB.

Figure 3. Density profiles from the complete model of an oxygen discharge with three

species, for £p = 1.25 cm, p = 50 mTorr, and n^ = 2.6 •109 cm"3 (a) without and (b) with

an ion sound speed limitation.

Figure 4. Thesame asFig. 3 with £p = 1.8 cm, p = 10 mTorr, and n«o = 1.1 *1010 cm-3.

Figure 5. Plasma parameters variation with control parameter n^ (explicitly or implic

itly) for lv = 1.25 cm and p = 50 mTorr. Results are given without ion sound speed

limitation (solid line) and with limitation (dashed lines) for (a) oq vs n^; (b) Te vs ao; and

(c) £/£p vs a0.

Figure 6. The same as Fig. 5 with £p = 1.8 cm and p = 10 mTorr.

Figure 7. Comparison of results from complete model using (2.19) to describe the elec

tropositive edge region, with the approximate solution assuming that ne = n,- = n«o in the

electropositive edge except at the transition with the sheath where ne = ni = na.

Figure 8. PIC simulations of profiles (solid lines) for (a) £p = 1.25 cm, p = 50 mTorr,

n^ = 2.6•109 cm"3; and (b) £p = 1.8cm, p = 10 mTorr, n^ = 1.1 •1010 cm"3. The dashed

curves are integrations of (3.9) using the values of ao and Te obtained from the simulations.
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