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2D electromagnetics and PIC on a quadrilateral mesh
A. Bruce Langdon1

Electronics Research Laboratory, University of California, Berkeley, CA 94720, USA

Abstract

At least three schemes for evolving the electromagnetic fields on a nonorthogonal mesh have
turned out to be weakly unstable, as seen in long runs. In contrast, sufficient conditions forstability
will be shown for my formulation of Maxwell's equations on a nonorthogonal quadrilateral mesh.
Here, stability means for example that cavity oscillations have exactly zero growth (or decay) for
any time step up to a Courantlimit whose value iseasily calculated. For larger time steps, there is
an odd-even instability.

In this formulation, we considerseparately the cell fluxes of D,B and line integrals of E,H. For
the closureof Maxwell's equations we need linear transformations of D to E and B to H. Stability
and certain conservation laws are dependent on these linear transformations being symmetric and
non-negative. These properties can be regarded as constraints while one is choosing the linear
transformations to achieve accuracy. Boundary conditions can undermine such nice features.

There is some discussion of coupling of particles and fields.

Introduction

In my Annapolis talk [1], I showed how one can learn what is needed to build conservation lawsinto the
discrete representation of Maxwell's equations. Then the mesh was near-orthogonal. Now I want to separate
out the generic aspects from those which, for example, provide accuracy in a non-orthogonal quadrilateral
mesh.

Here the 2D mesh is quadrilateral and field locationsare staggered, in generalizationof the rectangular
Yee mesh. I separate aspects of the discretization that provide the equations of evolution and conservation
laws from the details of a particulardifference or finite-element representation.2 Later I outlinea straw-man.

A partial implementation is described in [3].

Field Variables and Maxwell's equations

In earlierwork[l], on how to ensure the existence ofconservation laws, etc., I found that certain products
of fields with lengths (line integrals) or areas (fluxes) arise repeatedly in the equations of evolution and in
the sums that define e.g. the field energy. Eastwood et al [4] use separate variables for these same fluxes and
line integrals, and generalize the constitutive relations to include mesh metric information. I use a different
notation, and introduce cell capacitances and inductances instead of speaking of constitutive relations, but
the benefits are the same in brevity and help clarify the issues of conservation laws and accuracy.

The Ampere-Maxwell and Faraday equations relate rate of change of fluxes of B and D to line integrals
of E and H.

J>drH =I+j /dSD (la)

/dr-E =-^ /dS-B (16)
/ dS •D=Q, / dS •B=0 (led)

1 Also at X division, Physics Department, Lawrence Livermore National Laboratory, Livermore, CA
94550, USA.

2 This work was inspired in part by my "circuit mesh interpretation of 2D orthogonal mesh EM", [1], and
by Eastwood's talk at GMU [2].
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Qo»d EM working drift

where current I = fs dS •J and enclosed charge Q = fvdrp satisfy a continuity equation dQ/dt + 7 = 0
when S is a closed surface enclosing V.

We consider 2D fields, in cartesian x,y, or cylindrical z, r coordinates. For now consider only Ex, Ey,Bz
or E^ErtBy, respectively. These are called the TM fields by some. Define line and surface integrals as
follows (noting also the simplest representation of each in z, r):

Si = line integral of E along side of cell; S\ = Ei(hiAx\)

Hv = line integral of H around hoop; 7iv = 2irrB9/fio

V\ - flux of D = e0E through sides of cell; Z>i = c0(2Trr/»2Ax2)^i

7i = flux of J through sides of cell; I\ = (2jrr/»2Ax2)J\

Bv = flux of B = noH through cell; B^ = (h\Axi/t2Ax2)Bv
In x, y, the factor 2irr is absent, and one could understand that the integrals are over unit z.

If the electric field is irrotational,

so £ is a potential difference in that case.

These relations that follow from the field equations are exact, though not applicable by themselves:

dBu

dt
=(£i)j+*,*+i - (£i)j+*,* . . K_ , , n .. ,

Ji+i,*+i J = 0,^1-1, * = o,jv2-i

-(^2)i+l,fc+J + (^2);,Jb+i

f^M =(^)i+M+i-(^)i+*.*-i-JW+*.*. i=0,^-1, *=1,JV2-1

f^rl =-(^);+i)Hj +(^);.}li+r/wi- i=1,^-1, *=o,jv2-i

Oi.*=Pi)i+*.*-Pi)i-i.» i=liJVl_lt *=i,*2-l
+(^2)i,*+J " (^2)j,t-X

The Maxwell relations for the other half of the fields, called the TE fields by some, are:
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dVL

dt
3,k

=(^2);+*,* - (ft2)j-£,*
j= !,#!-!, *=l,Jv-2-l

[*]. =(^)i+i.*-(^)i.* i=O.JVx-1, *=0,JV2

f^.1 =-(^)i,*+i +W,)i.* i =0,iVi, *=0,^-1

0 =(^2)i+i,fc - (&2)j-},fc
J = 1,^-1, *=1,JV2-1

(3)

(4a)

(46)

(5)

(6)

(7)

(8)
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Closure

To use these equations to advance the fields in time using "leap-frog" time integration, we need only
add boundary conditions and methods for finding ri from B and € from V. Mathematically, we will see that
these methods should be symmetric, nonnegative linear transformations. In the OOPIC code, boundary
conditions and these methods should be easily replaced, as I believe this formalism concentrates volatility
into them.

Orthogonal mesh

In the simplest case, applicable to a locally orthogonal mesh, the linear transformations are diagonal:

I have introduced mesh inductances L and capacitances C, so called because the ratio of a flux V to
potential difference £ is a capacitance, and the ratio of flux B to current 7 is an inductance.* C is of the
form eo(area)/(length) and L is of the form /xo(area)/(length). For a cartesian x,y rectangular mesh,

Cj+xtk = e0Ay/Ax, Cjtk+i = coAx/Ay, £;+£,*+* = /*oAxAy (12)

where the 'unit length in zy has not been written in. This is just the Yee type of mesh, in 2-dimensions.

Non-orthogonal mesh

In a non-orthogonal mesh especially, accuracy requires non-diagonal linear transformations.

We can calculate the dispersion relation for a mesh of parallelograms. Without non-diagonal terms, this
shows that wave propagation has an error that does not go to zero as the mesh spacing goes to zero, just
as in the triangular mesh algorithm analyzed by Rambo [5]. This is demonstrated in a later section of this
paper.

What Eastwood et al [4] advocated is equivalent to

+Ci+Vfcy'.Jk+iX>2'J'fc+* +C7+V*5i+1.*+i2>2 J"+1'*+*

^2,i,fe+J =Cj~Jfe+iP2,;,i:+$

+C£*+iy+i,*T>1 J'+i.* +CM+ij+*,*+iI>1 .*+£.*+!
where the coefficients of the off-diagonal terms are, dimensionally, inverse capacitances. The most important
aspect of this is that P2 contributes to S\ and V\ to £2 in a nonorthogonal mesh. As Eastwood says, it's
like an anisotropic dielectric.

Below we will see nice consequences of keeping the transformation symmetric,

Cj+$,kj,k-$ = Q,*-$tf+i.* and Cj+i.ty.fc+i = Ci.fc+iu'+i,*' and for E<1- (!5) to be a non-negative
transformation.

* Eastwood et al [2,4] generalized the constitutive relations to include the geometric factors in c and /i.
There's no difference to code performance.
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Qu*d EM working draft

I have given a little thought toward accuracyimprovement possible with simpler non-diagonal couplings.
In this simplification, the cross-capacitances are nonzero only if the angle at the nearest cell corner is acute.
What is the motivation?

- It may suffice to make dispersion etc. accurate enough
- It may require lessstorage for capacitances (although one needs a list of non-zero couplings)
- It can make the inversetransformation (V in terms of €) very sparse, a help in expressing the Laplacian

if Poisson's equation is needed.

Magnetic Qux

From Faraday's law

Conservation laws

Ni-1N7-1 JVi-1

sEE <*W»*— E [<6W.-(ftWj
j=0 Jb=0 3-0

N7-l

fc=0

Poynting theorem (energy conservation)

First, keep time as a continuous variable.

In a continuous, linear medium the energy conservation theorem is

4- /<fri(E-D +B-H)+ / drJE+ /dSExH =0
dt Jv * Jv Js

Assuming the identities

j^W*+J2s21)v22) =E^W*+E^2M1} ^d Y^Bil)ni2)=EB(2)W(1)'
which follow from symmetry of the linear transformations ofV to S and B to H, we can derive
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Ni-\ N2

EE
3=0 fc=0

±(^1V1)-rS1I1
dt

Ni N3-l

+EE
j + $,k 3=0 k=0

+ EEW)
i=o k=o L Jj+$,i

Ni-i ( r rfD 1 1
=+£(*i);+i,o<-(W,)j+*.* + /1 +-3J2.

Wi_1 f r dD i 1
i=0 ^ L ut Jj+i,N3J

+E1(f2)o,i+i{(«,)i,t+1+[/J+^]ot+j}

!+*,*+*

jt(\s2v2) +e2h
->;,*+*

Jb=0

Na-1

g (f2)Nl,t+i|-(«v)Nl-i,l+i +[/.+irj„„t+J

(20)

(21)

(22)

(23)
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in which the energy density and J •E work are easily recognized on the left-hand side.* On the right-hand
side, the {...} factors are representations ofW, at the boundary, so we recognize these sums as the energy
flux through the boundaries.

Consider now leap-frog time differencing and spatial continuum.

Define the energy density at time tn

Tjn _ l£(En)2 +;^-(Bn-* •Bn+*) (24)
2 2/io

Then a Poynting theorem may be derived:

Tjn+l _rjn =_Af _Ly . h(En +jm+1) xgn+jl _AtJn+* . l^n+jm+1) (25)

As we know must be true, this result does not imply such useful properties as stability, because the magnetic
energy as defined here can be negative. For example, when the time step is so large as to produce a
Courant-type instability, the fields change sign from time step to step.

However, the existence of this theorem means that errors in the field energy balance, when the magnetic
energy is formed using an arithmetic instead of geometric mean, cannot accumulate to values large relative
to the magnetic energy; the difference between these magnetic energies density is —(Bn+i —Bn""£)2/2jx0-

Now rederive the last boundary flux term in the Poynting theorem (23), with space and time both
discrete:

Jb=0 K L JNi.*+iJ

We make use of this in our discussion of outgoing wave boundary conditions.

Positivity of Field Energy

Here we discuss the conditions under which the field energy is nonnegative,

E \e&*+E W>*+E h**** * °

This same inequality also arises in the discussion of stability, below.

This imposes conditions on the C~l matrix that are trivial except for the C\ and C/ terms.

Stability of electromagnetic cavity oscillations

Our discretization provides provably neutrally-stable electromagnetic oscillations, that is, neither damp
ing nor instability of vacuum oscillations in a perfectly-conducting cavity.

* It may be interesting to note the relation for the "electrostatic" field energy

§E«*>=§E^+5E^

which follows when the electric field is irrotational by summing (5) times <pjtk, using (2), and ignoring
boundary terms.
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For a closed system with diagonal L and C, we find the wave equation

d2 1

+ 7; [(^v>)i+i,fc+J - (Wv»)i+i,*+j]

+ n Kwv>)i+i,*+i - (?*¥>);-*,*+*]

+ 7; [(7*v)i+i.*+i ~ (wv>)i+f .*+*J
W+i,*+i

lb show the stability of vacuum cavity oscillations below the Courant limit, first note that the rhs
represents a symmetric operation on (7iv). Then multiply the right-hand-side by CWy,)j+£,jb+$ and sum,
obtaining

(30)

(31)

which is overtly non-negative. Therefore, when we replace the time derivatives by leap-frog differencing,

(— sin —5— ) is real and is positive for each eigenmode. We have neutral stability for any time step At
below the threshold for Courant instability as given by the largest eigenvalue.

Most generally, d2(Wv);-+j,t+j/<ft2 is a linear combination ofthe (Wv)j+j,t+j. We discuss symmetry
and positivity of this linear combination bystarting with the time derivative of the Faraday law for dB/dt,
multiply by -(W£>) and sum, then rearrange the sum, then use Ampere-Maxwell, through these steps:

d2
-E^yi+i-'+i^+i^+i^J^^+i-'+i

i.fc

=- EW;+*.*+i^ ((£i)i+*,*+i - (£);+*,* - (&)i+i,*+* +(£> )>.*+*)
it*

=E (<K)i+iMi -Wi+M-t) [^] t (32)
- E (Wi+*.*+i - Wj-*.*+*) hf I.

-jtidt \^tk [^\JH,r^[ ^ \jtkH [dt jitJ,*+*

Theprimed fields W', 2>' arepossibly a different timeevolution than the unprimed fields. If the transformation
of V to S is symmetric, then the last line equals itselfwith the primes moved to the £'s. Therefore the first
line is equal to itself with the prime moved, and therefore the operator is symmetric. Setting W = H,
we see that the operator is non-negative if the transformation of V to € is non-negative. Given symmetry
and non-negativity of the capacitance transform in Eq. (15), we again find neutral stability of the vacuum
oscillations, for time steps below the Courant limit.

Madsen [6] describes how instability could take very long simulation times to appear, ~ 20,000 steps,
enough time for signals to transit the computational domain many times, in an earlier EM scheme he
calls MFV. He also reports that the DSI method [6] has not shown this slow instability, and that very
longsimulation times are needed to verify stability. However, Brandon and Rambo have since found slow
instability in DSI [7]. In contrast, the scheme presented here provides analytic assurance ofstabilityfor time

12/7/1995 6
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steps smaller than the Courant limit, and promises to provide a quicker check on stability, amounting to
determination of the Courant limit, as follows:

TheCourant limit can beaccurately estimated by an iteration that is relatively cheap, performed during
problem setup: Cycle the EM fields using a time step AtL that is many times larger than the light transit
time across the smallest cell, starting with random noise in the field arrays, and setting currents = 0. The
fields will begin to grow rapidly, perhaps in a region ofsmall ordistorted cells. Monitor the ratio Rofthe
largest S to the value at the preceding cycle. As the fields grow (but before numerical overflow occurs!), 72
provides an increasingly accurate measure of the highest frequency that the mesh can generate, ul, given
by (wiAfr)2 = R- The Courant limitfor the time step is then 2/u>l.

Keep in mind that boundary conditions can undermine these nice features.

Evaluation of the L's and C's

Nearly-orthogonal cells in r, z geometry

Here are initial suggestions for this important special case:

In the capacitance the distance is denoted (hiAxi)j+^ik and is evaluated as exactly the length between
mesh points (j, k) and (j + 1,k)

(fcjA*!)^,* = [(ri+li* - ri>Jb)2 +(zj+ltk - zjtk)2]1/2 , j=0, N2 - 1, k=0,Nr. (40)

The area, denoted (rhiAxi)jtk+i., is exactly the area of a section of cone connecting points in the middle
between the mesh points:

(rhi&*i)j,k+it =(2fH(ri+i.*+i+r;-i.*+i) [(»•;+*,*+* - r;-i,*+i)2 +(*;+*,*+* - *;-*,*+*)*] (41)
for j = 1, Nz —1, k = 0, JVr —1, where

4rj+i,*+i = ri.fc + ri+i,* + ri.*+i + ri+i,*+i (42)

(the definition chosen is somewhat arbitrary but plausible), and

(r/nAxi)0)fc+i = (27r)|(r0ijfc+j +r^fc+^) |(»V+i - *•(>,*+*) + (*£,*+* " zo,k+y) \ (43)

where 2^,^+1 = ro.t + »*o,Jfe+ii etc. Then the capacitances are, for example

n _ (rft2Ax2)j+$,fc
C'+*'fc " Co (/nAxO,^,* * (44)

For the inductance, the length is the circumference corresponding to radius r;+i.*+i- ^ne ce^ area'
denoted (ZiiAxi/i2Ax2)j+£)jk+$, is exactly the area ofthe quadrilateral cell, which can be written

(hx Axih2Ax2)i+iiJfc+i = \ [(zj+i.t+1 - Zj,k)(rj,k+i - *V+i,t) - (r/+i,*+i - rj,k)(zj)k+i - *;+i,*)] (45)

Then the inductance is
(/iiAxifc2Ax2)j+£,jfe+£

^i+J.fc+i = ^o 2—-• (46)

(In cylindrical coordinates with uniform spacing, the preceding reduces to what's in [8]).

12/7/1995
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Non-orthogonal cells in x, y geometry

For now consider a regular mesh of parallelogram cells whose mesh node j, k is located at position

Xjtk=jX1-rkX2 (50)

and edge centers located at Xj+±tk = (j+ |)Xi + &X2, etc. The results here are also a guide for an irregular
mesh whose cell shapes and orientations vary smoothly.

We can find the capacitances and inductances by considering a magnetic field that varies linearly with
position:

K* j+i,fc+i = h' xi+i,*+i (51)

The magnetic flux through a cell is given by 7iz at the center times the cell area A = z • Xi x X2,
therefore

£;+*,*+* = PoA (52)

To find the capacitances, consider the time derivative of the electric field:

c0-z- = V x H = VHZ x z = h x z
at

from which

e0£i = Xi •E = h •z x Xi, e0£2 = h •z x X2 (53a6)

Assume Xi •X2 > 0 and that the only nonzero off-diagonal capacitances are those between nearest cellsides

C\ = Q+i.fcy.fc+i = Q.fc+iy+i-fc (54)
where the second equality arises naturally in the following derivation.

Using (4) and (15),

^i,i+*,* = c-1^>i,3+^,k +C\1 (i)2jik+$ +V2tj+ltk-i)
=CZ1 (W,,m,fc+i - ft<,i+i,*-i) (55a)
- c^1 [Hzj+u+t -nZtj-±)k+± +nZj+$,k-i -n2tj+$,k-±)

=-Cf1 ^2ii+iiik+i - Hzj-±ik+±) (556)

where C- = Cj+$ik, C\ = Cj>k+%

£1 = CZlh •X2 - C^h•Xi, £2 = -C^li •Xi +C^2h •X2
for all h, therefore, on comparing to (53) we have

zxX^^-^X, £XX2 =-^X1 +̂ 2X2
By applying the operations Xi •and z -Xi x to the first equation, and X2- and z -X2x to the second equation,
we then find

C_=e0^, q=co^2, C'\ =2c0x^x2- (56a6c)
Note that the coupling of V to £ in (55) reduces to the form of (11) when X2 -L Xi, as expected. (It

is CT1 that vanishes, not C\\) Note that the cross-coupling Cr1 is negative ifXi X2 < 0, i.e. if the angle
between Xi and X2 isobtuse rather than acute (so that we should have worked with CJ instead).

We return to this subject in the discussion of the dispersion relation.

12/7/1995 8
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Materials

In an isotropic dielectric, replace the vacuum Co by the dielectric's c. Some dispersive dielectrics can be
modeled by adding time derivative terms.

Inanisotropic resistive medium, you could create a current Ix *suitably proportional to 5 (£" + £" );
likewise I2 +*. Ifyou are using Q, e.g. for a divergence correction, then you will need toupdate Qusing Eq.
(5) including the resistive current. If the resistance is anisotropic, e.g. if one is faking a helically-conducting
layer, then 7i will need to be driven by a linear combination of£\ andsome spatial average of neighboring £2
values, since l\ is known at different positions than is £2. This linear combination could be combined with
the C transformation, so that the resistive 7 is given in terms of V. Inserted into Eqs. (4,6) with leap-frog
time differencing, one now has linearequations to solve for the time-advanced V. The linearequations can
be avoided if the time step issmall enough by expressing 7"+* in terms ofVn rather than the time-centered
I (Vn + Vn+1). Is all this perfectly transparent?

In a nonlinear magnetic material with hysteresis, you will have to provide an algorithm to find %from
the history of B.

Dispersion Relations

Let's derive a dispersion relation for sinusoidal waves on an infinite mesh of parallelograms, Eq. (50).
Let

nzJ^,kH = Wexp(ikXi+iiJb+i), £i,,+i,k = £iexp(tk-XmiJfc), £2j,*+* = £2exp(tk-Xiifc+i) (57)
in place of Eq. (51). From (3) and (55),

UH = £i2isin \\l •X2 - £22i sin |k •Xi
£i/n = CZl2isink •X2 - C^2i (sin §k •Xi) 2cos Jk•(X2 - X^ (58a6c)

£2/H = -Cj-^tsin |k Xi +C^2i (sin |k •X2) 2cos |k •(X2 - Xi)

The dispersion relation is then

-LH/n = CfM sin2 |k •Xi +CZ1* sin2 |k •X2 - Cf x8 (sin |k. Xx sin |k •X2) 2cos |k. (X2 - Xi) (59)

For small k,
-LTi/H =Cf^k•Xi)2 +CZ1^ •X2)2 - 4Cv-2(k •Xi)(k •X2)

Compare with the identity

,42*2 = X22(k •Xi)2 + X2(k•X2)2 - 2(Xi •X2)(k •Xi)(k •X2)

and (52), where A= z-Xi xX2 is the cell area. We find that we approach the correct result, -H/H = k2/n0c0
for small k if we use (56) for the capacitances. The dispersion relation therefore provides an alternate
derivation of (56).

The dispersion relation now is

-c0vloA2H =m [Xl sin2 |k •Xi +X2 sin2 |k •X2 - 2XX •X2 (sin |k •Xi sin |k •X2) cos |k •(X2 - Xi)]
(591)

Contours of —e0noH/7i are shown in Figure 1for a case inwhich Xi = (1,0), X2 = (.5,.9). Thespacing
of the contour levels is quadratic, so that the desired result is concentric circles of linearly-increasing radius,
corresponding to contoursof k2.

In contrast, Figure 2shows the dispersion when the cross term with coefficient C^1 is omitted, for which
the dispersion relation becomes -c0n0A2ii = AH [X|sin2 |k •Xi + X2 sin2 |k •X2] Note that the contours
are ellipses rather than circles, even for small ib. This anisotropy is a zero-order error - it remains even when
the mesh is made indefinitely fine.

12/7/1995 9
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Figure 1. Contours of -eofioH/Ti as given by Eq. (591).

The cross term C\ is included. Only the principal Brillouin zone is shown; the contours
are periodic in k.

Boundary Conditions

C~l = 0 will enforce £ = 0 for a metal surface placed along the side of a cell. The surface current is
irrelevant. At a boundary that is a surface of reflection symmetry, (18) advances V as written except that
apparently-"exterior" %values are omitted. There is a difference in definition of C~l due to the control
volumeexisting only inside the region, and because no apparently-"exterior" V valuesare used in evaluating
£.

I have included in all 3 EM codes I've written a simple and stable boundary condition that I attribute to
Sinz (ref. (8), section 15-llc). It is based on the relation E = cB for normal incidence of waves in vacuum.
In terms of our variables this becomes

S2 Uo
h2Ax2 = C2^n* (60)

at the "right" boundary, or

f2 =377«^)ttvfh2Ax2

(fioc = 120tt ohms).

12/7/1995 10
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Figure 2. Contours of—cofioti/M as given by Eq. (59) with no cross terms C\ orC/.
Note that the dispersion is anisotropic even at long wavelengths. Only the principal
Brillouin zone is shown; the contours are periodic in k.

In the code we use a time average for £ and the Ampere-Maxwell equation to get 7i at the boundary:

1t(F xn , (F y»+l \_n (*2Ag2)N,,H-i ff .n+* r«+* P?+1-'P?
At Nltk+±}(61)

Comparing to the Poynting theorem, wesee that the boundary term in (26) is the negative of a quantity
squared, so this boundary condition guarantees that energy can flow only out! Perhaps this helps account
for its untempermental behavior as compared to more accurate boundary conditions such as Lindman's that
however sometimes fail.

Mesh Coordinates

There is a mapping of mesh coordinates x\,x2 to z, r. The mapping is continuous, and linear in each of
Xi, x2 (bilinear). Cell boundaries are quadrilaterals on whose sides the mapping functions x\ and x2 both
take on integer values; the 3D cell is formed by sweeping the quadrilateral a unit distance in z or rotating
in about the z axis. Here, the mapping has constant gradient inside each cell.

12/7/1995 11
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Let x or X be either the vector (z,r) or the vector (x, y). The mesh points are at Xj,k.

The weights (w\,w2) are the fractional parts of the particle mesh coordinate xi, X2 and lie in the interval
[0,1). Their meaning here is that the position in a cell is given by

x = (1 - tui)(l - w2)Xjtk + (1 - tui)u>2Xj-,jb+i + wi(l - «'2)XJ+iijb + tuiu>2Xi+lifc+i (70)

Solution for (wi, w2) given x is discussed by Seldner and Westermann [9,10]. The indicies j, k are the largest
integers < xi,x2.

Electric field interpolation

We need to find an electric field at the positions of the particles. Here we show the field as found from
a variational principle, then discuss a bilinear representation.

For the caseof rectangular cells, see [8] chapter 10, [11] section 5-5, and [12]. We want to get expressions
for the field in terms of the quantities used in these notes, such as £. It suffices to consider an irrotational
electric field. Take the potential to be bilinear in (u>i,io2) in each cell.

with

dx

8x d<p_d<p_ dx_ dip _ d(p
dwi dx ~~ dw\' dw2 dx dw2

(80)

= (1 - iy2)(XJ+i(jt - Xijk) + w2(Xj+iik+i - Xj>fc+i) (81a)

^- =(1 - wi)(Xjtk+1 - Xjtk) +^(Xj+i.jb+i - Xj+i,jb) (816)

In terms of its corner values,

^- =(1 - w2)(<pj+ltk - (pjtk) +w2(<pj+lM1 - <pjtk+i)
= -(1 - W2)£lJ+^,k - «>2£l,j+$(*+l

q£- =(1 - Wi)(ipjtk+i - <pJik) +UnfaV-fi.jfc+l - <Pj+hk) ,g26v
= -(1 - wi)£2jik+± - wi£2j+i>k+±

So we have the values of —E = Vy> = d<p/dx dotted with 2 vectors. The solution is

~ \ dwij dw2 \ dw2J dwi

=(** q^J [(1" wi)& j,*+J +"i& j+i,k+h] ~[ix o^) [(X "W2)£ij^,k +w2£1J+hk+1]
(836)

where

\dwi dw2J

In this second form, the result holds whether or not the field is irrotational.
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Current and charge collection

The contribution of charge <j, to grid charge Q can be chosen to be bilinear in its mesh coordinates
xi,x2:

Qj,k = 9i(l - «;i)(l - w2)
Qj+i,k = qiWi(l-w2)

Qj,k+i = 9»(1 - wi)w2

Qi+i,*+i = qi*>iu>2

where w\ is the fractional part of xi, and j is the integral part of xi.

Current Ilt I2 due to a particle is found from the change in its mesh coordinate xi, x2. This is explicitly
the case when a charge-conserving current collection is used. Consider the change AQ = Qn+1 —Qn due to
a change in xi,x2 when the particle remains in the same cell:

AQjtk = g,(-Au>i(l - W) - (1- W)Aw2)
AQj+i,* = qi(Awi(l - wi) - trrAiw2)
AQi(jb+i = ft(-At»i W2~+ (1- tZJT)Au;2)

AQj+i(fc+i = qi(Awi wi + wi Aw2)

where w\ = |(u>y+1 + tu") and Awi = (ty"+1 - tw"), et cetera.
Currents consistent with these changes of Q and the continuity equation are

Atlxj+^k = ?.-Atui(l - W2)
Atllij+^k+i = g,-Au;i 1U2

At/2,j,fc+i = 9iAty2(l - W)
A</2ii+1)t+i = qtAw2 uJT

(101)

(102)

Note these are not unique, but I suspect they are the simplest possibility. These are the sameas oneobtains
from Morse and Nielson [13,14] in a rectangular mesh, and arethesame as come out ofGalerkin derivations.

Enforcing Gauss' Law

If a non-conservative current collection is used, the updated 2>'s will not exactly correspond to Q in
Gauss' law (5). Here is how a Boris correction [8, chapter 15] could be done when there are only diagonal
capacitance couplings:

We update V using the leap-frog version of (4); the new V's do not satisfy (5). V and £ are related by
(11). We apply an irrotational correction to £ of the form

^j+i.* =*«+*.* " *i+i.» +^.fc' 3i.*+* =&j.*+* - *,*+i +*.* (1U)
Tofind V we say that the P's corresponding to the adjusted £' do satisfy (5). Using (111) and (11) in (5),
we derive the equation

= Q+i,*^ J+$,k ~ C3-$,k£lj-±,k + ^i.i+i^J.fc+J - Cjtk-l€2j,k-l - Qj,k

This corresponds to (16) in [15], but using the variables we advocate in this document. (112) is a Pois-
son equation with a symmetric, positive definite operator for which many solution methods appear in the
literature.

Approximate methods to satisfy (5) are compared in [15], but not for the non-diagonal capacitance
used here for non-orthogonal mesh. We have a simple transformation (15) of V to £ in terms of inverse
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capacitances. Depending on the sparsity pattern for (C-1)"1, the inverse transformation of £ to V may
not be at all simple. In that case, solution of a Poisson's equation for a correction potential is made more
difficult.

The use of a correction potential was to ensure that the solenoidal part of E, that participates in
electromagnetic waves, would not be changed. If this is not sacred, we can consider correcting V, which is
very simple.
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