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An algorithm for coupling external circuit elements to bounded two dimensional

electrostatic plasma simulation codes is developed. In general, the external circuit

equations provide a mixture of Dirichlet and Neumann boundary conditions for the

Poisson equation, which is solved each time step for the internal plasma potential.

We rewrite the coupling between the plasma and the external circuit parameters as

an algebraic or ordinary differential equation for the potential on the boundary. This

scheme allows decomposition of the field solve into a Laplace solver with boundary

conditions (e.^., applied potentials) and a Poisson solver with zero boundary condi

tions. We present the details of the external circuit coupling to an explicit electrostatic

planar two-dimensional particle-in-cell code called PDP2, and discuss briefly how the

coupling can be done in an implicit electrostatic code. The decomposition replaces

the iterative coupling with a direct coupling and reduces the amount of computational

time spent in the field solver. We use PDP2 to simulate a dually excited capacitively

coupled RF discharge and show how such a system can be used as a plasma processing

tool with separate control over ion flux and ion bombarding energy.

PACS: 52.65.+Z, 52.75.-d



I. Introduction

Computer modeling and simulation of bounded plasma devices are now widely

used in the plasma processing community1-6 as well as in the microwave plasma

tube community.7 In most of these models, the domain of the computer experi

ment includes the entire plasma, dielectric and/or conducting walls, dielectric and/or

conducting internal structures, and boundary and internal electrodes coupled to ex

ternal circuits. The addition of external circuits usually places a mixed set of Dirich-

let/Neumann boundary conditions on the internal fields. A comprehensivereview of

the considerations involved in a bounded one dimensional electrostatic plasma sim

ulation code was presented by Lawson8 who also included external circuit elements

in his analysis. However, Lawson's scheme was first-order accurate, and and in some

cases the external circuit solution was no longer known at the same time as the in

ternal fields. Verboncoeur et a/.9 improved upon Lawson's method and showed how

the external circuits can be solved simultaneously with the internal fields. The ap

proach and equations we use in this work for coupling to the external circuits have

their roots in the work of Verboncoeur et a/.,9 and we extend their work to two-

dimensional simulations. Even in electromagnetic codes, one has to account for the

electrostatic fields resulting from the local charge density.7 Hence, this scheme may

also be used in electromagnetic simulations.

The model we discuss here is a two-dimensional (x,y) bounded electrostatic par

ticle simulation with external circuit elements and an applied uniform or non-uniform

magnetic field. Figure 1 shows the system being simulated. The left and right elec

trodes may be driven separately with voltage or current sources. In case of external

voltage sources, the external circuits may also include blocking capacitors to stop the

flow of DC currents which would would otherwise flow in the external circuit due

to the asymmetry. We show the details of the coupling for simple external circuits,

and discuss how one may extend the work to more general circuits. Thomas et al.10

have presented a general approach for including lumped circuit elements in a finite

difference time domain (FDTD) solution of Maxwell's equations. Their methodol-



Figure 1: The two-dimensional simulated system. Top and bottom boundaries are

grounded; the left and right electrodes may be the driven by external circuits. The

external circuits consists of either a voltage source and a blocking capacitor or a

current source.



ogy allows a direct access to SPICE for modeling the lumped circuits, while the full

3-dimensional solution to Maxwell's equations provides the plasma response. We

may also use the same approach for including more general external circuits in our

simulations.

We place a rectangular mesh over the system on which the particle charge densities

are accumulated in order to solve for the electrostatic field quantities at the mesh

points. The charge-gathering and particle-pushing algorithms used in this model

are standard particle-in-cell techniques which can be found in Birdsall and Langdon

(1991).11 Because the ions are typically much heavier than the electrons and hardly

move on the electron time-scale, they may be advanced with a much larger time step.

This scheme is the essence of subcycling in particle simulations,11"13 which improves

the efficiency of multiple-species particle simulation by making the cost of advancing

the ions negligible compared with that of the electrons.

In order to model collisional plasmas and self-sustained discharges, we have added

a Monte Carlo collision (MCC) package,14-16 including the null collision method,17,18

to the usual PIC charged particle scheme, as shown in Fig. 2. The full three-

dimensional character of a collision is modeled with three velocity components. For

our calculations, the neutral particles are assumed to have a Maxwellian velocity dis

tribution and a uniform density within the boundaries. The model remains valid if

the neutral density is a function of position and time.

In this algorithm, we rewrite the coupling between the plasma and the exter

nal circuit parameters as an algebraic or ordinary differential equation for potential

on the boundary. This scheme allows us to decompose the field solve into a Laplace

solver with boundary conditions due to the external circuit, and a Poisson solver with

zero boundary condition. These boundary conditions may be given as Dirichlet (e.#.,

applied potentials), Neumann (e.g., applied surface charges) or a set of mixed Dirich-

let/Neumann (e.g., general external circuit). We present the details of the external

circuit coupling to an explicit electrostatic rectangular two-dimensional particle-in-

cell code. Note that in explicit electrostatic codes, the Laplace equation is solved only

once at the beginning of the simulation in order to determine a normalized internal
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Figure 2: The flow chart for an explicit PIC scheme with the addition of the Monte

Carlo collision package, called PIC-MCC.



vacuum field due to the applied boundary conditions. An algebraic equation or an

ordinary differential equation is then solved each time step in order to compute the

magnitude of the field to scale the vacuum field. The vacuum field is then added to

the field obtained from the zero boundary condition Poisson solver in order to obtain

the total field inside the plasma. We will also focus on Dirichlet boundary conditions

and later discuss the addition of Neumann boundary conditions.

This algorithm was implemented in PDP2,1'19 an explicit electrostatic rectangular

two-dimensional particle-in-cell code. As an example, we use PDP2 to simulate a

dually excited capacitively coupled RF discharge and show how such a system may

be used as a plasma processing tool with separate control over ion flux and ion

bombarding energy.

II. Elliptic Solver

In order to determine the electrostatic fields in the plasma, we solve the usual

explicit form of the Poisson equation for an inhomogeneous system

V-[<=(*, j,)V<£] = -/>, (1)

with the boundary conditions on all boundaries </> is the potential, p is the charge

density, and e(x, y) is the spatially dependent dielectric constant of the medium. If

the equations are solved implicitly (e.g., direct implicit particle-in-cell schemes20),

then we would solve a modified Poisson equation given by11

v-[(i + x(*,y)M*,s>)W] = -£, (2)

where x is the implicit numerical correction to </>, and p. is the charge density from

particle motion based only on fields known at the present time step. Inside the

plasma, e(x,y) = e0, and e(x,y) enters the problem only for internal dielectrics.

Methods to solve elliptic equations via finite differences are compared and con

trasted in Hockney and Eastwood.21 The methods fall into two general classes: iter

ative techniques and direct matrix inversions. Among the fastest methods is a direct



matrix inversion called cyclic reduction. Unlike Fourier transform methods, cyclic

reduction may easily be generalized to cylindrical and spherical coordinate systems.

Unfortunately, like Fourier transform methods, cyclic reduction requires that the po

tential equation to be separable. In general, Eqs. (1) and (2) axe not separable and

cyclic reduction cannot be used. Instead, we choose a more general, but somewhat

slower, method to solve Eq. (1) which also preserves the capability of solving Eq.

(2). In many models this computational inefficiency is ignorable because the particle

moving and weighting takes almost all of a time step.

The Dynamic Alternating Direction Implicit (DADI) method is an iterative tech

nique devised by Doss and Miller22 that converges rapidly for equations similar to

Eqs. (1) and (2) and is our method of choice. According to Doss and Miller, DADI

is only a factor of 4 slower than a fast direct matrix inversion method for solving

Eq. (1) and the directional splitting in the scheme makes DADI easily vectorized for

large simulations done on vector computers such as the CRAYs. Hewett, Larson, and

Doss23 applied a variation of the method to solve a coupled set of elliptic equations

arising from a reduced version of Maxwell's equations, and their solutions required

much less computer time than the biconjugate gradient method previously used.

DADI works as follows. An artificial time dependence is added to convert Eqs.

(1) or (2) into a parabolic equation,

Then non-iterative ADI is used to advance the "parabolic" equations in time t'. This

parabolic equation is then finite-differenced, and a pseudo time step At' is dynamically

adjusted to speed up convergence to the "time" asymptotic state which is the solution

of the original elliptic equation. Convergence occurs when the residual of the elliptic

equation is less than a chosen tolerance. More detailed explanations may be found in

the papers by Doss and Miller22 and by Hewett, Larson, and Doss.23 Finally, we add

that for parallel computers, the method of choice may be Successive Over Relaxation

(SOR) because although DADI takes fewer iterations to achieve a certain residual,

the local nature of SOR requires less communication than an ADI sweep.



III. Finite Difference Equations on a Uniform Mesh

We choose to derive our finite differenced Poisson equation using a Gaussian pill

box on our rectangular mesh instead of finite differencing Eq. (1). The advantage

of starting from Gauss' law is that the same equation may then be used to derive

boundary conditions on internal and bounding conductive surfaces and internal di

electricstructures. Assuming a uniform orthogonal mesh in the (x, y) coordinates, as

shown in Fig. 3, Gauss' law at (i,j) may be written as

j> eE •dS =J pdV +j> adS =Q, (3)
or

AyAz(ei+hJEXi+hj - ^.yE^+AxAz(eiJ+iEy..+h- ^_^,_^) =««. (4)

where e,+i/2,j is the dielectric constant at (i + l/2,j), Ax and Ay are grid spacings
in the x and y directions, Az is a unit length in the z direction, and Qij is the total

charge at the grid point (i, j). In particle-in-cell codes, Qij is simply the sum of all

charged particles weighted11 to the grid point (i, j). At a conducting boundary where,

Eq. (4) is used to determine the normal electric flux, Qij can be written as

Qij = pijAVij +VijAAij, (5)

where AVij is the volume associated with the grid point (ij) where free charge exists,

and AAij is the area of a physical boundary at (i, j) where surface charge density can

accumulate. In Fig. 4, for example, because of the physical structure, the amount of

free space volume and physical surface area associated with the grid (i,j) becomes

3 Az
AVij = -AxAyAz and AAij = -^"(Aa: + Ay) .

At a conducting boundary Eqs. (4) and (5) are solved for cr^ which is equivalent to

the normal electric field. In vacuum, etj = e0, <?ij = 0, and AVij = AxAyAz. In

electrostatic codes, the electric field is defined as E = -V<j>, or in finite difference

form
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Figure 3: The Gaussian pillbox, centered at the (i,j) grid point in a system with a

uniform mesh, used for the Poisson solver.



*yi,,-i,2 ~ Ay » ^j+i/2 ~ Ay
Substituting the above expressions into Eq. (4), we obtain the finite differenced Pois

son equation which can be solved for the potential throughout the system. Note that

the above cell centered field expressions are only used to obtain the finite differenced

Poisson equation. We use differencesover two cells in order to obtain the electric field

components for advancing particles.11

A. Internal Dielectric Objects

Stair step internal dielectrics are included in our system by assigning a dielectric

constant to each cell center as shown in Fig. 4. In this case for example, e:_i/2,j in

Eq. (4) is defined by e,-i/2,j = (et-i/2,j+i/2 + et-i/2,j-i/2)/2. The inclusion of internal

dielectric structures does not change the size of the unknown <j> matrix, because the

potential inside and on the surface of dielectric structures is not known. If a grid point

(i,j) is inside a dielectric or on a free-space dielectric boundary, Eq. (4) is written as

an equation for the potential and is incorporated into the finite-differenced matrix.

For the grid points inside a dielectric, the source term Qij is zero, while for the grid

points on a free-space dielectric boundary Qij includes free charges as well as bound

charges on the dielectric surface, as shown in Fig. 4. Note that in particle-in-cell

codes once a charged particle crosses a boundary into a dielectric, its charge is simply

added to the (J's at the grid points terminating the segment crossed by the particle.

Hence in Fig. 4, particles p + 1 and p + 2 at time n contribute to Qij through the

charge density pij (bilinear weighting11), while particle p contributes to Qij through

the surface charge density erij (linear weighting11).

After the Poisson equation is solved for the potential using Eq. (4), then we need

to solve for the electric field on the mesh points. As noted earlier, the electric field

inside a dielectric or in free-space is solved using

Exi"= 2Ax" ' and ***- 2A^ * (6)
The fields on the dielectric free-space boundaries, shown in Figs. 5 and 6, are solved

using half-size Gaussian pill boxes. The x component of the electric field on the East



Figure 4: The Gaussian pillbox, centered at the (i,j) grid point in a system with a

uniform mesh. The cell centered at (i —1/2, j + 1/2) is inside a dielectric while all

the other three cells around the grid point (i,j) are vacuum, xj} is the position of

particle p at time n.



facing dielectric free-space boundary, as shown in Fig. 5 (a), is calculated using

AxAyAz(ei+yEXij - ^.yE^.) +—Az^.y^Ey^ - e^y.^Ey^) =Qtj.

to be

*i+ij**ij ' AyAz +c.-iJ ^ £x" )

\ Ay J ,-2J-2 ^ Ay y
Ax

2Ay ei-y+? (7)

The x component of the electric field on the West facing dielectric free-space boundary,

as shown in Fig. 5 (b), is calculated using

AxAyAz(ei+hJEXi+hj - e^jE^) +—Az(ei+hj+iEyij+h - e^.L^. ._^) =QiS,

to be

€i-yE*i>> AyA* + *i+iA Ax

+
Ax

2A^

+
Ay

2Ax

e»+5,i+5
&,j+l - <t>i,j

— C,+I T_I
&j - &j-i

Ay 7 ~H"*J * \ Ay

The y component of the electric field on the North facing dielectric free-space bound

ary, as shown in Fig. 6 (a), is calculated using

AyAxAz{tiMEyiJ - eu.j^.j) +1-AZ(e1.+iii.i£Vij - e^y.^E^J =Qih

to be

ei,m*yi,3 - AxAz +ef,i-i ^ Ay J

e.j-i:f+^
(4>j+u-4>iA _ (fc£zJ!LLL\

j'-* ^ Ax ; t'-?'i-? ^ Ax y '

(8)

(9)

Finally, the y component of the electric field on the South facing dielectric free-space

boundary, as shown in Fig. 6 (b), is calculated using

AyAxAz(eijHEyij+h - t^_kEyiiJ) +—Az(ei+hJ_iEXi+hj - e^.i^^) =Qih
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Figure 5: The Gaussian pillbox, at the (i,j) grid point, a dielectric vacuum boundary.

The shaded region is a dielectric.
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Figure 6: The Gaussian pillbox, at the (i,j) grid point, a dielectricvacuum boundary.

The shaded region is a dielectric.



to be

p - Q" • - (^iJ+i - ^ijj
-e»,i-^v.,i - AxAz + ei,m i-

Ay
+ y

2Ax

Ay

^t+i,i ~ fc
2,J+2 \ Ax / ~*-j'J+2e*+^i+^ a^ " ei-hi+h

(<l>i,j - <l>i-hj\ (10)

At the inside or outside corner of a dielectric structure no normal can be defined,

hence we use Eq. (6) to obtain the electric field components at the corners. Note that

Eqs. (7-10) reduce to the electrostatic boundary jump condition, t\E\ —€2-^2 = °s

as A —» 0, where aa is the surface charge density.

B. Internal Conductors

Our system may also include stair step internal conductors with known DC or

time-varying Dirichlet boundary conditions. Unlike the internal dielectric struc

tures, the internal Dirichlet boundary conditions sporadically place known potentials

amongst the unknown potentials in the system which affects our field solver. How

ever, we use the same dynamic ADI field solver with binary masks of 0 or 1 at every

grid point for known and unknown potentials. Introducing the binary masks changes

some of the coefficients in the matrix solver, but does not increase the computational

cost of the dynamic ADI field solver. Once the potential is obtained, we use Eq. (4) to

calculate the normal electric field on the conductor vacuum (or conductor dielectric)

boundaries.

In order to simplify our discussion and equations in this Section and the following

Sections, we assume that the space immediately surrounding a perfect conductor has

the same dielectric constant (i.e., one cell around the conductor Cij = e). Figure 7

shows the different boundary surfaces which might arise in a stair step system. Note

that both components of the electric field are zero at points 1-4 in Fig. 7 which

implies that the surface charge density a is identically zero at points 1-4. For all the

other points in Fig. 7, either we have a well defined normal electric field which is

proportional to the surface charge density, or we define a normal. For example, the

normal to the conductor at point 8 in Fig. 7 is in the x-direction, in which case Eqs.



Figure 7: The shaded region is a perfect conductor bounded by 8 grid points.



(4) and (5) become

Axei+ijE^.AyAz =pij—AyAz +o^AzAy

because the fields along and inside a perfect conductor are zero. The above equation

is solved for <7t<7- and along with EXij = crij/e gives the normal electric field at point 8,

the surface of a perfect conductor. Rewriting Eq. (4) at each of the grid points 5-12

in Fig. 7 along with the appropriate assumptions about zero fields inside a perfect

conductor produces:

i(Ax +Ayf-f =-lAxAWi +A>,(^-^) +A*(*^*) (H)
^ =-lAWi +(^H±i) (12)

\(Ax +Ay)f =-iAsAj,,,, +̂ (^±hi)+Ax(^^+1) (13)
^ =-1a^+(^^) (14,

|(Ax +Ay)^ =-l-AXAyPij +Ay(*±^±lA) +A.(^i=L) (15)

i(Ax +A»)2i =-lAxAW +As,(fc~^) +Ax(^^-') (17)
^ =-lA^,+(^-M) (18)

Equations (11)-(18) are now used at grid points 5-12 respectively, as shown in

Fig. 7, on the boundaries and also (as will be shown later) at internal grid points on

structures. The electric fields normal to the surface at the grid points 6, 8, 10, and 12

in Fig. 7 are proportional to the charge density Oij at those grid points and equal to

the right hand expression of Eqs. (12), (14), (16), (18). However, strictly speaking, at

the grid points 5, 7, 9 and 11, in Fig. 7, the electric field is undefined because one can

not define a normal to the surface at those grid points. For those points, we assume

that the magnitude of the electric field is proportional to <rtj, while the direction can

be approximated by the difference of electric potentials at the adjacent grid points.

10



For example, at grid point 7, we use

where a^ is obtained from Eq. (13), while Ex and Ey are given by

p _ &j ~ <l>i+i,j , p <t>ij ~ fc+i
£jx — , and £jy = t .

Ax y Ay

IV. Coupling to a Simple External Circuit Without De

composition

In this Section we discuss the addition of external lumped circuit elements to

the field solver through a boundary condition for a perfectly conducting wall. The

boundary of the model is shown in Fig. 8. We assume that the top and bottom

boundaries at j = 0 and j = Ny are continuous perfectly conducting boundaries,

while the side boundaries at x = 0 and x = Nx are divided into five segments as

shown in Fig. 8. The first and last segments (i.e., 0 < j < Ni and N4 < j < Ny)

are assumed to be grounded perfect conductors, while the segment iV2 < j < N3

is assumed to be a perfect conductor attached to an external circuit. The potential

along the segments Ni < j < N2 and N3 < j < JV4 is assumed to drop linearly along y

which is a reasonable assumption if a dielectric spacer separates the driven electrode

from the grounded walls. Here we assume that the spacer is a vacuum gap with the

relative dielectric of 1 and no space charge. The linear drop assumption in the gap

gives:

<t>o,N2-i = ^o,iV2 = ^0 and #otN3+i = ^°»N3 = ^0 (19)
9 9 9 9

where g is the number of cells in the gap and is assumed to be at least one because

the grounded and driven electrodes should not touch each other. Note that since

the driven electrode is assumed to be a perfect conductor (an equipotential), we only

have one unknown on the boundary, i.e.,

<f>oj = <t>o N2<j<N3. (20)

11
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Figure 8: The two dimensional system is shown with a uniform mesh. We assume

that the boundaries at j = 0 and j —Ny are assumed to be continuous perfectly

conducting boundaries while the boundaries at x = 0 and x = Nx are divided into

five segments. The first and last segments (i.e., 0 < j' < N\ and N4 < j < Ny)

are assumed to be grounded perfect conductors, while the segment N2 < j < N$ is

assumed to be a perfect conductor attached to an external circuit. The potential

along the segments Ni < j < N2 and N3 < j < N4 is assumed to vary linearly

which is a reasonable assumption if a spacer separates the driven electrode from the

grounded walls.



Applying Eqs. (13)-(15) to the left hand side we obtain

a0j =A^Ax+Ay)^ ~M +Ay(A*+Ay) (fa " fai"1) ~ IA^h^°i j =^2
*oj = £(<fo - <£i;) - Po;^ AT2 < j < %

^Oi = A*(Ag+Ay) (fa ~~ fa) +Ay(A*+Ay) (fa ~ fa+0 ~ 2^+lyP°J •? ~ N*
(21)

We present the implementation of these equations for the left hand side only, but

it will become clear how one may add similar equations for the right hand side. We

may now couple the boundary conditions in Eq. (21) at the perfect conductor with

the external circuit equations at the left side.

Figure 9 shows a simpleexternalcircuit consisting of a voltagesource in series with

a capacitor coupled to the left electrode. The voltage drop Vc across the capacitor in

the external circuit is given by the Kirchhoff's voltage loop law:

Vc = V(t) - <t>0 (22)

where the signs are consistent with the voltage polarities shown in Fig. 9. V(t) is the

applied voltage source, and <t>o is the potential on the conductor, as defined in Eq.

(20). The time variation of or, the total charge density on the driven electrode, may

be obtained from the Kirchhoff's current loop law:

A^- =I(t) +AJconv (23)
where I(t) is the external circuit current, shown in Fig. 9, A is the area of the

electrode, and Jconv is the convective (conduction) current density arriving at the

driven electrode due to plasma charged particles. The discrete finite differenced form

of Eq. (23) can be expressed as:

A(4 - 4"1) = Q'c - QT1 + QL„ (24)

12
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Figure 9: The two-dimensional system to be simulated. All the boundaries are

grounded except for part of the left boundary, which is the driven electrode. The

external circuit consists of a voltage source and a blocking capacitor which stops the

flow of average (DC) current.



where / dtl = Qc = CVC is the charge on the capacitor and Ql^v *s the charge de

posited on the electrode from the plasma during the time interval (t—1, t). Combining

Eqs. (22) and (24) we find

4 =4"1 +\(CV(t) - C& - q*-1 +Qlnv). (25)

The total charge density <jt may be expressed by

i=N2

where a0j is defined in Eq. (21) at each grid point j on the driven electrode. Summing

over all the equations in Eq. (21) we obtain

$0 =

where

and

{ e /Ar „Ay-Ax 4(Ax)'

e

Ax

N3

Ay + Ax (#N3 + #Afe)

Ax^v Ax(Ax-2Ay), N
7r2^ P°3 + n/A- . A.A 1/^3 + POAfe )„ Na 2(Ax + Ay)

where N = JV3 —N2+1, and all the <£ and p terms are obtained at time t. Equations

(25) and (26) can be combined and solved for $, to produce

4"1 + J (CV(t) - Qj-i + Q[onv) +a+ b<t>\N7 +c^, + ^ E% <t>\j
<<+*

Ay +Ax ' gAy(Ax^Ay))<t>0
Ay- Ax

Ax& Ax(Ax-2Ay). , .
"=T g "0i " 2(Ax +Aj,) {P0N* +"0%)'

Ax

6 = c =
e Ay —Ax

Ax Ay + Ax '

\T nAy - Ax
N + 2-T- r— +

4(Ax)'
Ay + Ax gAy(Ax + Ay)
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After the potential <j>o on the electrode is obtained from Eq. (27), the total charge

density <jt can be calculated from Eq. (26), and the external circuit parameters can

be computed as:

Q\ = A(<t't - 4'1) + (J'"1" QLv (28)

and

I(t) =VcA;c (29)
Note that Eq. (27) is the boundary condition for the Poisson equation. However,

because the right hand side of Eq. (27) also contains <f>\j terms, we must iterate the

Poisson equation and the boundary conditions for both to come to equilibrium. This

iterative process may be computationally expensive and we recommend the use of

superposition of Laplace and Poisson solutions to solve directly for the potential on

the boundary.

V. Coupling to a Simple External Circuit With Decompo

sition

An alternate approach to Section IV is to apply superposition and decompose the

field solver into the Poisson equation with zero boundary condition and the Laplace

equation with the external circuit and other boundary conditions. The Poisson equa

tion, V2<j>p = —p/e with zero boundary conditions is still solved every time step to

account for the space charge effects. Fortunately, the Laplace equation V2<j>nl = 0

need only be solved once to account for the vacuum field effects. Given the length of

the driven equipotential electrode, we solve the Laplace equation with <j> = 1 on the

driven electrode to obtain the boundary effects and the potential profile throughout

the system. The potential in the system is then

tij ~ tPij + $> <i>NLij , (30)
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where <j>NLij = <!>% /<$) is the time-independent (one volt) potential profile obtained

from solving the Normalized Laplace equation. The potential profiles </>p.. and <j>NLij

are known at time t without having <£0. The potential <j>q on the driven electrode can

now be obtained through the decomposition without any iterations. We solve the

Poisson equation at time t with zero boundary conditions to obtain <j>p. . Then using

Eq. (30) we obtain

for N2 < j < N3. Substituting the above form of^ into Eq. (27) and solving for $,

produces:

4'1 +* (CV(t) - Ql-1 +Qlonv) +a+&#>,», +C^,W3 +& Eg #>„
d+ f - b<t>NLltll ~ c4>nl,N3 ~ £ ZnI ^nl„0o = 7—c TTt ~Tt r-^NTTt ' \6L)

where a, b, c, and d aredefined below Eq. (27). Oncethe potential </>q on the electrode

is known, the external circuit parameters can be calculated from Eqs. (28) and (29).

VI. Other Types of External Circuits

A. Current Source

If the external circuit is a simple current source, then Eq. (23) can be finite

differenced as

4 =*Tl + jVmt +OLv) (32)
Using the superposition approach discussed in the previous Section, Eq. (31) may be

rewritten as:

At 4"1 +hW)At +Qlonv) +a+b&lN2 +cjfc^ +-t E% ^ m,
™ = 1 7Tt Tt e ^N3 >t > \66>d - b(f>NLlN2 - c<f>NLlN3 - -^ D^ 0NLlj.

where a, b, c, and d are defined below Eq. (27).

Note that the right hand sides of Eqs. (31) and (33) are known at time t and no

iteration is needed.
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B. General Circuit

The two examples worked out here were for a simple current source and a simple

voltage source external circuits. Verboncoeur et al.9 showed how more general ex

pressions may be finite differenced and coupled as boundary conditions to a internal

field solver. In our scheme, we can replace Eqs. (22) and (23) with expressions for

more general circuits or simply incorporate Verboncoeur's general circuit expression

for Eq. (22). We can also use Thomas'10 more general approach of coupling to SPICE

for including lumped circuit elements in the external circuit.

So far we have discussed the left boundary condition only. It is clear that if both

left and right (or other) boundary conditions are applied, one may decompose the field

solve into two (or more) Laplace equations and a Poisson equation. If other internal

boundary conditions are also applied, then in general the same decomposition can be

carried out.

Our discussion above was mainly focused on driven and grounded electrodes and

external boundaries (Dirichlet boundary condition). Internal dielectrics may float to a

self-consistent potential. However, if we need to impose floating boundary conditions

on the external boundaries, then we need to apply a Neumann boundary condition

to that boundary. If both Neumann and Dirichlet boundary conditions are applied

to the system, the same boundary conditions must be used on each surface for the

Poisson equation as well as for the Laplace equations. For example, in the case

of a plasma in a bounded box with voltage or current sources applied to biased

electrodes, all the boundary conditions may be expressed as Dirichlet type, which

makes the decomposition very simple. However, if one were to model a semi-infinite

plasma over a biased electrode, Dirichlet boundary conditions would be applied on

three sides and a Neumann boundary condition on the remaining boundary in order

to represent a semi-infinite plasma.
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VII. Decomposition in an Implicit Code

An implicit Poisson equation may be written to avoid the wpeAt > 2.0 numerical

instability constraint of explicit codes.11,24"27 Although implicit methods have accu

racy constraints such as vteAt/Ax < 1,27>28 an order of magnitude increase in At is

possible for certain problems.

The implicit Poisson equation (ignoring internal dielectrics for simplicity) is given

by:

V-[(l + x(*,»))W] = -p. (34)

The numerical correction x is proportional to the pre-push charge density p.u>24-27

X is a numerical factor that is time dependent. If there are no external magnetic

fields (i.e., x is a scalar), then the elliptic solver described in Section II applies to

this equation. With slight modifications, the finite difference equations of Section III

also apply.

With the x term modifications to Eq. (4) and similar modifications to equations

in Section V, Eq. (27) becomes:

. vf1 + \ (CV(t) - Q«-> +QL„) +8+~H\N7 +cfl„3 +A S% (l +"W Hi
*0 = IT?

(35)

where

and

e

d = —
Ax

A

. Ax"^ Ax(Ax-2Ay),.
G=1"S**" 2(Ax +Ay) (** +*»*)'

~_ e Ay —Ax
~~ Ax Ay + Ax

1 , Xon2 + XiN:

•]•
__ e Ay —Ax

~~ Ax Ay + Ax
1 . X0N3 + X1W3

ST (i . Xoi + XiA , Ay-Ax / X0N2 + Xiiv2 , XoAkjvXiM
M1 +_2~J + a7TAx"12+ 2 + 2 JN2 v 2 /Ay + Ax

4-

gAy(Ax + Ay)
2(Ax)2 / XoN2 + Xojv2-i , X0N3 + X0N3+1

+ l2+ 2 + 2
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Because x and P axe pre-push quantities, the electric field El and hence </>q need

not be known to calculate the coefficients a, b, c, and d in Eq. (35). Furthermore, if

we derive Qconv from pre-pushed particles that hit the electrode, then <j>q depends only

on <f>\j (N2 < j < N3). Hence iteration may once again be avoided by superposition.

Using the same superposition as in Eq. (30), we can decompose Eq. (34), which is

linear in <j>, into an implicit Poisson equation V • [(1 + xC3^ s0)^<£p] = ~P with zero

boundary conditions and an implicit Laplace equation V • [(1 + xO^jOJ^^nl] = 0

with <j>nl = 1 on the givenboundary asbefore. In the explicit scheme,the normalized

Laplace equation needed to only be solved once, and scaled each time step. In the

implicit scheme however, because of the time-dependence of the x term, <j>tNL must be

solved each time step. Thus, the penalty charged for superposition is one additional

Poisson solve, which is a lesser burden than the several Poisson solves required for an

iterative </>o solution. Then using Eq. (30) we obtain

for N2 < j < N3, where </>Pl and </>NLl can again be found without knowing $.

Substituting the above form of 4\j into Eq. (35) produces

c'f* + fr (CV(t) - Q[-1 +QLnv) +5+U'Plfh +&#>,„, +&S% (* +**T*) #Hi
d+f - b?NLllh - cfi,^ - £ £$ (l +*?") ¥NLi,

(36)

where the coefficients a, b, c, and d are defined below Eq. (35).

VIII. Dually Driven RF Discharges

The algorithm above has been implemented in the code PDP21'19 and is used to

model a dually excited capacitively coupled RF system. The majority of conventional

RF plasma processing units are powered by 13.56 MHz RF generators. By treating the

excitation frequency as one of the process parameters, we may accomplish accurate

and independent control of ion flux and ion bombarding energy. This can be achieved

by driving the source and target electrodes with separate power sources. Goto et al.29

18



investigated the influence of the excitation frequency in a parallel cathode-coupling

dually excited system, and found that the self-bias voltage of the cathode became a

logarithmic function of the excitation frequency. In a previous study,1 we used PDP2

to investigate the frequency scalings of various discharge parameters including plasma

density n, discharge power P, and the driven sheath width sd- At a constant bias

voltage, the scalings were found to be roughly

P oc n oc cjg > (37)

and

sd oc — . (38)

These scalings suggest that an independent control of plasma production and ion

bombarding energy may be achieved by exciting the source electrode at frequencies

higher than 13.56 MHz to achieve higher densities, while the substrate electrode is

biased at frequencies lower than 13.56 MHz to obtain the desired bias voltage and

hence ion bombarding energy.

We used PDP21'19 to simulated a dually excited RF discharge as shown in Fig.

10. The right (source) electrode was biased at 200 V and 30 MHz, while the left

(substrate) electrode was biased at 100 V at various frequencies between 1 and 13.56

MHz. All the other boundaries were grounded. Simulations were made in an argon

plasma at the gas pressure of 10 mTorr. Figure 11 shows the time-averaged potential

profile in the system p = 10 mTorr. For the case shown in Fig. 11, the substrate was

biased at 100V and 6.78 MHz. Figure 11 shows self-biases of 45 V and 122 V at the

substrate and source electrodes respectively, and a plasma potential of 48 V. Figure

12 shows the time-averaged plasma density in the system under the same conditions.

The plasma density is seen to peak at 6 x 109 cm"3.

Figure 13 shows the substrate frequency dependence of plasma density and power

into the the system from the substrate and source generators at constant RF voltages.

As the substrate frequency is increased from 0 to 13.56, the substrate power increases

but stays substantially below the source power. The source power slightly decreases

as the substrate frequency is raised, but stays relatively insensitive to that frequency.
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Figure 10: Schematic of the dually excited capacitively coupled RF system. The

right (source) electrode was biased at 200 V and 30 MHz, while the left (substrate)

electrode was biased at 100 V at various frequencies between 1 and 13.56 MHz. All

the other boundaries were grounded.
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Figure 11: Time-averaged potential in an argon plasma at p = 10 mTorr. The source

electrode was biased at 200V and 30 MHz, and the substrate electrode was biased at

100V and 6.78 MHz.
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Figure 12: Time-averaged density in an argon plasma at-p = 10 mTorr. The source

electrode was biased at 200V and 30 MHz, and the substrate electrode was biased at

100V and 6.78 MHz.
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Hence most of the power deposited into the electrons (which results in plasma pro

duction) comes from the source electrode and is almost insensitive to the substrate

frequency. As the result, the plasma density shown in Fig. 13 stays relatively constant

as the substrate frequency is changed.

Figure 14 shows the substrate frequency dependence of source and substrate self-

biases and the average ion energy arriving at the substrate at constant RF voltages.

The substrate self-bias and the average ion energy arriving at the substrate both

increase as the substrate frequency is decreased which is consistent with Goto's mea

surements.29 Based on the data in Figs. 13 and 14 and in Goto's measurements, it is

clear that this plasma system is capable of generating a high density plasma reactor

with separate control over ion flux and ion bombarding energy.

IX. Conclusion

We have developed an algorithm which couples external lumped circuit elements to

bounded two dimensional electrostatic plasma simulation codes. This scheme allows

decomposition of the field solve into a Laplace solver with boundary conditions (e.g.,

applied potentials) and a Poisson solver with zeroboundary conditions. We presented

the details of using this algorithm in both explicit and implicit codes. An explicit

version of this scheme is implemented in a two dimensional particle-in-cell electrostatic

code called PDP2.19 We used PDP2 to simulate a dually excited capacitively coupled

RF discharge and showed how such a system may be used as a plasma processing

reactor with separate control over ion flux and ion bombarding energy.
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