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Abstract

As 3D lithography, etching, and deposition simulation tools such as SAMPLE-3D

(from Berkeley), SPEEDIE (from Stanford), and EVOLVE (from Arizona State) are used
to simulate more complicated device topologies, more specialized algorithms are needed
to maintain well-behaved evolving surface triangulations. In this thesis a number of 3D
geometric surface modeling utilities are developed. Some of the services include
Delaunay triangulation, triangle decimation, surface smoothing, solid surface extraction,
and thin triangle removal. Although intended for use in the TCAD community, these
utilities can provide 3D geometric services to most any 3D geometric modeling package
that reads and writes surfaces based on a winged-edge data structure.

Underlying the surface modeling utilities is a flexible query system that permits
the utility procedures to inquire about local surface topography and whether or not a
specified re-triangulation method will inadvertently alter the characteristic 3D shape of the
surface. This allows surface advancementand surface modeling proceduresto selectively

use meshmodification methods to accomplish adesired goal. A simple application of the
surface modeling utilities is the ability to extract solid geometries from a single
triangulated surface for interconnect analysis using FASTCAP (from M.I.T.).

Among Berkeley's suite of integrated circuit process simulation programs known
as SAMPLE-3D, the program NETCH houses the 3D surface advancement models for
etching and deposition. To avoid lag time caused by saving and loading surface geometry,
the supporting surface modeling utilities have been incorporated inthe same framework as
NETCH, and are available at the parser level of an instruction file.
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Chapter 1:

Introduction

1.1 A Brief Historical Perspective

In the late 1980's and early 1990's, Kenny Toh [21] and Edward Scheckler [18]

began the development of SAMPLE-3D, a suite of integrated circuit process modeling

tools for predicting topological profiles in three dimensions. Their approach was to extend

the 2D "string-based" [10] algorithmused in SAMPLE [14,15] to 3D. In 2D, the "string"

refers to a set of nodes and connecting segments representing the front of an advancing

surface during etching and deposition simulation. In 3D, the "string" paradigm translated

into a surface mesh of nodes and connecting segments to form triangles. For the most

part, they successfully achieved their objective of translating the manufacturing process

models into 3D solvers. During their development, unexpected topography challenges

related to the triangulated surface mesh were unveiled. One such problem was handling

the formation of "loops" during lithography simulation. "Looping" is a non-physical

phenomenon whereby nodes in the surface start tracing paths through the resist that have

already been etched; thereby creating topological loops. In 1992, an efficient "delooping"

solution using an octtree data structure for spatial sorting was developed by John Helmsen

[7].

Recognizing that additional geometric utilities are required to maintain a well-

behaved surface mesh and prevent the onset of irregular triangulations during surface

advancement, the work contained in this thesis began in late 1993.

1.2 The Development Framework for the Utilities

To aid in the prediction of more intricate topographies by integrated circuit process



modeling tools, a reliable system capable of providing geometry services that condition

the surface in a desirable way is necessary. This system must be able to correct surface

triangulations when irregularities arise as well as prevent the onset of irregularities.

Moreover, these utilities will operate on surfaces evolving in time, thus geometric

modifications must not destroy data encapsulatedin the elements of the mesh that relate to

the surface's advancement.

With theserequirements in mind,a geometrical query based system including local

re-triangulation operators was built. This system provides the foundation for all the

surface modeling utilities presented in this thesis and can be used to build additional

utilities as needed.

Because the algorithms have been implemented as utility services, they can be

used independently or in combinations to help correct problematic irregularities in a

mesh's triangulation. In addition to TCAD simulators, other scientific applications can

utilize these algorithms in one of two ways. Either the corresponding software modules

can be extracted from NETCH, the program in which these algorithms have beenbundled,

or NETCH can be used as a mini-server through the exchange of geometry files that are

loaded, operated on, and saved. .

1.3 Manuscript Overview

Some of the surface modeling utilities presented in this thesis include:

• Delaunay Triangulation (2 V2 D) - a method of re-triangulating the surface so
as to make the triangle facets as.equilateral as possible without moving
nodes.

• Decimation of Triangles - a method of reducing geometric nodal information
without altering the distinct features in the surface topology.

• Thin Triangle Removal - amethod of removing acute triangles without altering
the surface topology.

• Triangle Smoothing - away of reducing the surface roughness by flattening the



dihedral angle between adjacent triangles through re-triangulation of fixed
nodal points.

• Node Smoothing - a way of reducing the non-planarity of the surface by
repositioning nodes to geometric averages of their surrounding neighbors.

• SolidExtraction - a process whereby bounded enclosing surfaces are extracted
from a singletriangulated surface using "cutting planes".

Common to all the utilities, particular attention has been paid to preserving

important geometrical features such as edges, ridges, and corners. This is achieved by

building decision trees consisting of geometrical queries to decide correctly which local

mesh modification routines to use.

1.4 Thesis Organization

This thesis is organized in a "bottom up" manner. Beginning in Chapter 2, an

introductory background is given to the localized surface operations and geometrical

queries used to build the surface modeling utilities. Because of the reference-like nature

of the material covered in Chapter 2, the surfaceutility chapters beginning with Chapter 3

could be read first.

The algorithms governing each utility constitute the subject of Chapters 3 through

7. When relevant, references are made to the supporting query routines in Chapter 2. At

that time, the query material may be more relevant to the reader.

Following the "bottom up" organization, Chapter 8, presents results from a small

application employing the surface modeling utilities; the computation of capacitance

matrices from a rigorously simulated 3D device topology.

At the end of a few chapters, a brief discussion about improving the efficiency of

an algorithm has been included. Should the surface modeling utilities be enhanced in the

future, these sections provide guidelines for a better re-implementation or modification of

the software.



Finally, the Appendix contains a listing of additional simulator commands

recognized by NETCH, the SAMPLE-3D program housing the 3D surface advancement

routines and the supporting surface modeling utilities. Using an instructional file

containing the appropriate simulator commands, NETCH can be used as a mini-server for

the surface modeling utilities.



Chapter 2:

Local Surface Queries and Triangulation

2.1 Introduction

Following the "bottom up" organization of this thesis, this chapter begins with a

presentation of the fundamental data structures used to store a triangular surface mesh and

then leads into the assembly of many geometry based queries used to characterize the

regularity of a surface's triangulation. After identifying the different surface, triangle,

segment, and node classifications, local re-triangulation methods with accompanying

queries about their affect on characteristic topography destruction are presented. This

system provides the bottom layer upon which all of the utilities discussed in subsequent

chapters are built.

Each of the queries presented corresponds to a public function in the software. As

such, this chapter has a reference-like organization and is intended for use by subsequent

softwaredevelopers. For this reason, casual readers may skip this chapter.

2.2 Linked Lists and Winged-Edge Data Structures

All of the surface modeling utilities developed in this thesis are based on doubly

linked lists of winged-edge data structures in the C programming language. In the context

of SAMPLE-3D, these datastructures were first presented by Toh [22] and Scheckler [18].

For completeness, the essential contents of the data structures are also presented here.

To represent a single triangulated surface, three linked lists consisting of triangle

structures, segment structures, and node structures are used. The triangle structure

contains a minimum of three pointers each to a segment structure. The segment structure



contains a minimum of two pointers each to a node structure. And, the node structure

contains a minimum of three pointers to data structures containing the x, y, and z

coordinate positions of the surface nodes. Although this is more than the minimum

information needed to define the connectivity of a surface, redundant information is useful

for faster access to elemental data.. There are additional pointers within the segment

structures to the neighbor triangles, and lists of adjacent segments and adjacent triangles

within the node structures. Figure 1 shows a schematic of the doubly linked winged-edge

data structures, and Fig. 2 contains a small excerptof the C data structures. The triangles,

N

Surface

N = Node
S = Segment
T = Triangle

N

Figure 1 Graphical schematic of the winged-edge data structure and
doubly linked lists of triangles, segments, and nodes that comprise a
surface.

segments, andnodes individually comprise the elemental components of thesurface.



/* 3D data */

typedef struct data_strct {

double x; double y; double z;

} data;

/* used for linked-lists of adjacent

segments to nodes */

typedef struct adjsegm_strct {

struct segm_strct *adjacent_segm;

struct adjsegm *next_adjsegm;

} adjsegm, *adjsegmptr;

/* used for linked-lists of adjacent

triangles to nodes */

typedef struct adjtria_strct {

struct tria_strct *adjacent_tria;

struct adjtria *next_adjtria;

} adjtria, *adjtriaptr;

/* Node Data Structure */

typedef struct node_strct {

int ID;

struct node_strct *next;

struct node_strct *prev;

data coord;

adjsegmptr adjsegm_head;

adjtriaptr adjtria_head;

} node, *nodeptr;

/* Segment Data Structure */

typedef struct segm_strct {

int ID;

struct segm_strct *next;

struct segm_strct *prev;

nodeptr nl;

nodeptr n2;

struct tria_strct *nbrtri[2];

} segm, *segmptr;

/* Triangle Data Structure */

typedef struct tria_strct {

int ID;

struct tria_strct *next;

struct tria_strct *prev;

segmptr si;

segmptr s2;

segmptr s3;

} tria, *triaptr;

Figure 2 Representation of the winged-edge data structure in C.

2.3 Geometrical Query Approach

In this section, numerous geometric query procedures and heuristics are presented.

Fundamental to the success of the surface modeling utilities presented in the succeeding

chapters is the ability to make inquiries about the local topology of the surface



triangulation. Whether a triangle is small, thin, short-sided, or equilateral may affect the

decision taken by an algorithm whether or not to remove, merge, or retain the elemental

components of the surface.

2.3.1 Surface Queries

The following sections contain descriptions of queries used to detect various

surface topology conditions and calculations.

2.3.1.1 Is Surface Continuous?

A continuous surface containsa singlegroupof connected triangles. It is possible

however, to have a single surface represented by a linked-list of triangles containing

groupings that topologically are notconnected to eachother. This is called a disconnected

surface and is depicted in Fig. 3. To detect a discontinuous surface, every triangle in the

Figure3 A linked-list and topological representation of a single
discontinuous surface containing 3 groups.

linked-list is marked with a 0 flag. Then the head of the triangle list is marked with a 1.



Using abreadth-first search method, all of the list head's neighbors are also marked with a

1. At the end, if there are any triangles left witha0 flag, then the surface is topologically

disconnected. It is not continuous.

To identify the number of continuous groups within a discontinuous surface, one

of the remaining triangles marked with a 0 is now marked with a 2 and the breath-first

search is repeated by marking all adjacent triangles to it with a 2. As long as an unmarked

triangle remains in the linked-list, the breadth-first search is repeated incrementing the

marking flag by one each time. Once all triangles have been positively marked, the

number of continuous groupings in the discontinuous surface is equal to the largest

marking flag.

To treat each of the continuous groups as independent surfaces, a simple bin

sorting of the triangle, segment, and nodes is performed. First the nodes and segments are

marked with the same flag as their adjacent triangles. Then the elements whose markings

are greater than 1, are deleted from the original linked-list and added to its own linked-list

corresponding to the marking flags.

2.3.1.2 Is Surface Enclosing?

An enclosing surface is analogous to a balloon. It has an inside and outside. When

all of the segments in the surface have exactly two legitimate neighbor triangles (not

NULL), then the surface is enclosing.

2.3.1.3 Is Surface Self-Intersecting?

A self-intersecting surface is one that contains a subset of triangles that overlap in

three space. An example resulting from the advancement of a surface during resist

development using a ray-trace algorithm is depicted in Fig. 4. Self-intersection of a

surface was investigated by John Helmsen [7] who is responsible for the software
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development of loop detection and removal. For completeness, the self-intersection query

is included here.

Figure 4 A self-intersecting surface (one of the interior loop is outlined).

To detect if a surface is self-intersecting, each of the triangles in the surface are

inserted into an octtree where they are spatially sorted and checked for intersections with

nearby triangles that are not already directly connected by common segments. If any

intersections are detected, then the surface is self-intersecting.

2.3.1.4 Surface Area?

To calculate the total surface area, the -areas of all triangles in the surface are

calculated and summed.

2.3.2 Triangle Queries

The following sections contain descriptions of queries used to detect various

properties and geometric conditions related to the triangles in a surface. Fig. 5 contains a

schematic representation of many triangle classifications discussed in this section.

Some of the classifications are based on the notion of an ideal segment length

introduced by Toh [22] and Scheckler [18]. An ideal segment length is specified by the



Thin Triangle:

Point Triangle:

Linear Triangle:

Small Triangle:

Short-sided Triangle:

Long-sided Triangle:

Triangle in a Tetrahedron

Triangle on a Ridge:

Front view

Triangle adjacent to a Surface Edge:

Triangle on a Surface Edge:

11

Minimum segment length (20% of ideal)
Ideal segment length
Maximum segment length (120% of ideal)

Min

Side view

Surface Edge

Surface Edge

z"

Figure 5 Types and heuristics used in triangle classification. Note that
any given triangle may satisfy more than one classification.
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mesh density requested by the user. Corresponding to this length are a maximum and

minimum length whose values are respectively 120% and 20% of the ideal segment

length. Toh and Scheckler used these parameters for mesh refinement during surface

advancement. These parameters often yield a "good" mesh.

2.3.2.1 Is Triangle Equilateral?

An equilateral triangle is detected when all three of its segments haveequal length.

2.3.2.2 Is Triangle Isosceles?

An isosceles triangles is detected when only two of its segments haveequal length.

2.3.2.3 Is Triangle Thin?

To determineif a triangle is thin, a heuristic is neededto define what it means to be

thin. Granted many definitions are feasible, the heuristic used in this research incorporates

Toh and Sheckler's notion of minimum and maximum segment lengths discussed in Sec.

2.3.2. Creating a triangle with two segments equal in size to the maximum segmentlength

and one segment equal to the minimum segment length, the minimum interior angle is

measured and used as the interior angle threshold below which a triangle is regarded as

thin. Using the 120% and 20% measures for maximum and minimum segment lengths,

the interior angle threshold is calculated to be 9.56°. Therefore, a triangle having an

interiorangle less than or equal to 9.56° is a thin triangle. See Fig. 5.

2.3.2.4 Is Triangle a Point?

A triangle is classified as a point when all three of its nodes coincide in 3-space.

2.3.2.5 Is Triangle Linear?

A linear triangle has three nodes positioned along a line in 3-space. If it has zero
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area and is not a point triangle, then it is linear.

2.3.2.6 Is Triangle Small?

A small triangle is composed of three segments whose lengths are all less than the

minimum segment length.

2.3.2.7 Is Triangle Short-sided?

A triangle is classified as short-sided when the ratio between its longest segment

and shortest segment exceeds the ratio of the maximum segment length to minimum

segment length (i.e. 6:1).

2.3.2.8 Is Triangle Long-sided?

A long-sided triangle is one that does not satisfy the short-sided criteria. For

example, an equilateral triangle with a maximum to minimum segment length ratioof 1:1

is considered to be long-sided.

2.3.2.9 Is Triangle on a Ridge?

A triangle on a ridge has at leastone segment classified as a ridge segment. Refer

to Sec. 2.3.3.6 (Is Segment on a Ridge?).

2.3.2.10 Is Triangle on 3 Ridges?

When all three segments of a triangle are classified as ridge segments, then the

triangle is on three ridges.

2.3.2.11 Is Triangle in a Tetrahedron?

A triangle is classified as being in a tetrahedron when one of its nodes, called the

tetrahedron node, has three neighboring segments and three neighboring triangles. The
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tetrahedron description comes from the hypothetical volume mesh equivalent to the

surface mesh. When three triangles andthree segment exclusively share a common node,

then the three triangles would be three of the four faces of the solid tetrahedron. The

fourth face of the tetrahedron would be created by the three segments opposite the

tetrahedron node in the three triangles. As will be pointed out in Sec. 2.4.1.6 (Will

Tetrahedron Removal Alter Topography?), the three triangles sharing the "tetrahedron

node" can be replaced by the hypothetical fourth face of the tetrahedron to reduce the

granularity of the surface triangulation or to eliminate thin triangles provided the surface

topology is not significantly altered during the removal.

2.3.2.12 Is Triangle on a Surface Edge?

A triangle is on a surface edge when two of its segments are on a surface edge.

Refer to Sec. 2.3.3.4 (Is Segment on a Surface Edge?).

2.3.2.13 Is Triangle Adjacent to a Surface Edge?

A triangle is adjacent to a surface edge when only one of its segments is on a

surface edge.

2.3.2.14 Is Triangle in a Surface Corner?

A triangle in the corner of a surface has two segments positioned on a surface

edge, and these two segments are positioned in orthogonal planes coinciding with the

principle axes.

2.3.3 Segment Queries

The following sections contain descriptions of queries used to detect various

properties and geometric conditions related to the segments in a surface.
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2.33.1 Is Segment in an X-Plane?

When the difference between the x coordinate values of the two nodes of a

segment is zero, then the segment lies in an x-plane.

2.3.3.2 Is Segment in an Y-Plane?

When the difference between the y coordinate values of the two nodes of a

segment is zero, then the segment lies in a y-plane.

2.3.3.3 Is Segment in an Z-Plane?

When the difference between the z coordinate values of the two nodes of a

segment is zero, then the segment lies in a z-plane.

2.3.3.4 Is Segment on a Surface Edge?

A segment on a surface edge has only one valid neighbor triangle. The other is

NULL. This assumes that a segment can only have two neighboring triangles.

2.3.3.5 Is Segment on a Surface Fold?

A surface fold is analogous to a perfectly creased sheet of paper folded back onto

itself. When the dihedral angle between the adjacent triangles of a segment approaches

180°, the segment is considered to be on a surface fold.

2.3.3.6 Is Segment on a Ridge?

A segment is classified as a ridge segment when the dihedral angle between the

normal vectors of the triangle faces adjacent to the segment exceeds some threshold. The

threshold is called the ridge angle and can be changed to any default value (such as 45°).

The assumption made when a ridge segment is detected, is that the surface topology across

the segment is significantly non-planar and therefore the segments provides a significant



16

role in defining the characteristic shape of the surface at that point. As such, triangulation

algorithms should be wary of the topography across this segment. See Fig. 5 for a

schematic.

2.3.3.7 Is Segment at the End of a Ridge?

When a ridge segment has one or both of its nodes at the end of a ridge (Sec.

2.3.4.6), then the segment is at the end of a ridge.

2.3.4 Node Queries

The following sections contain descriptions of queries used to detect various

properties and geometric conditions related to the nodes in a surface.

2.3.4.1 Is Node on a Surface Edge?

If any of the segments connected to the node are on a surface edge, then the node is

also on a surface edge.

2.3.4.2 Is Node on a Surface Corner?

Within NETCH, the parametersxmin, xmax, ymin, and ymax.define the boundaries

of the rectangular simulation region. If a node coincides with one of the coordinate pairs

of the simulation boundaries, then the node is "on a surface corner".

2.3.4.3 Is Node on a Ridge?

A node is "on a ridge" when it is connected to a segment that is "on a ridge." Refer

to Sec. 2.3.3.6 (Is Segment on a Ridge?).

2.3.4.4 Is Node on a Ridge Corner?

A node formed by at least three merging ridges is "on a ridge corner." For
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example, a node on thecorner of abox would be considered to be "on aridge corner."

Note that this query attempts to discriminate between a node positioned on the

comer of macroscopic ridge and microscopic ridge. A microscopic ridge is defined in

Sec. 2.3.4.5 (Is Node on a Micro Ridge Comer?). This query views a ridge comer from a

macroscopic perspective; the ridge segments emanating from the node in question must

continue to follow a well defined sequence of additional ridge segments beyond one

segment length away from the node.

2.3.4.5 Is Node on a Micro Ridge Corner?

A node formed by at least three merging ridges is "on a micro ridge comer."

Unlike the query in Sec. 2.3.4.4 (Is Node on a Ridge Comer?), this query does not attempt

to identify how well behaved the ridges emanating from the node are.

2.3.4.6 Is Node at the End of a Ridge?

A node is at the end of a ridge when only one ridge segment is attached to the

node. Refer to Sec. 2.3.3.6 (Is Segment on a Ridge?).

2.3.4.7 Is Node on a Fold Back?

When a node is attached to exactly two different segments and two different

triangles, then this identifies a situation where the node is the peak of adjacent fold back

triangles. Refer to Sec. 2.4.2.2 (Is Triangle in a Fold-Back?).

2.4 Local Re-connectivity Procedures

Having established numerous geometrical queries, systematic removal methods

have been implemented for removing triangles. The decision as to which method to

employ in the local re-triangulation of a surface mesh is dependent on the objective of the

governing algorithm. This is the subject of the subsequent chapters. In the remainder of
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this chapter, the removal methods are presented as well as a few degenerate surface

triangulations that can and do occur.

2.4.1 Triangle Removal Queries and Methods

In this section, the most common methods for removing a targeted triangle are

presented. Accompanying each removal method are the necessary queries concerning

whether or not the chosen removal method will alter topological features in a surface.

Fig. 6 contains a collection of the removal methods.

2.4.1.1 Will Merging 1 Node Alter Topography?

As shown in Fig. 6, merging 1 node is the process of pushing the elemental

neighbors of one node into a second node of a common triangle. The removal method

actually removes two triangles - the triangle of interest and its adjacent triangle. Usually,

merging one node is used to remove a short-sided triangle. Before using this method, a

numberof geometric queries need to be answered. Referring to Fig. 7, responding "yes"

to any of the following pseudo-C-code questions means that merging a single node will

alter the surface topology and therefore should not be used.

• if ( is_node_on_a_surface_edge(Nl) &&

is_node_on_a_surface_edge(N3) &&

is_node_on_a_ridge(Nl) &&

is_node_on_a_ridge(N3)) return(YES);

• if ( is_node_on_a_ridge(Nl) &&

is_node_on_a_ridge(N3) &&

!is_segment_on_a_ridge(S2)) return(YES);

if ( is_node_on_a_surface_edge(Nl) &&

is_node_on_a_surface_edge(N3) &&

!is_segment_on_a_surface_edge(S2)) return(YES);

• if ( is_node_on_a_surface_edge(Nl) &&

is_node_on_a_ridge(N3) &&

!is_segment_on_a_surface_edge(S2) &&

!is_segment_on_a_ridge(S2)) return(YES);
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Merging 1 node:

Merging 2 nodes:

Merging 3 nodes:

Collapsing 1 node (into a ridge):

Ridge

Front view Side view

Flipping Triangles:

Tetrahedron Removal:

Surface Corner Triangle Removal:

Surface Edge

Figure 6 Triangle removal methods.
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if ( is_node_on_a_surface_edge(N3) &&

is_node_on_a_ridge(Nl) &&

!is_segment_on_a_surface_edge(S2) &&

!is_segment_on_a_ridge(S2) ) return(YES);

if ( is_node_on_a_ridge_corner(Nl) &&

is_node_on_a_ridge_corner(N3)) return(YES);

N3 S5 N4

Figure 7 Removing triangle by merging one node. (Annotations refer to
variables in the software.)

2.4.1.2 Will Merging 2 Nodes Alter Topography?

As shown in Fig. 6, merging two nodes is the process of pushing the elemental

neighbors of one node into a second node of a common triangle and repositioning the

second node to the geometric average of the original two nodes. Like the process of

merging one node, this procedure also removes two triangles, and is usually used to

remove a short-sided triangle. Before using this method, a number of geometric queries

need to be answered. Referring to Fig. 7, a "yes" response to any of the following pseudo-

C-code questions means that merging two nodes will alter the surface topology and

therefore should not be used.

if ( is_node_on_a_surface_edge(Nl) &&

!is_node_on_a_surface_edge(N3 )) return(YES);

if ( is_node_on_a_surface_edge(N3) &&

!is_node_on_a_surface_edge(Nl)) return(YES);

if ( is_node_on_a_surface_edge(Nl) &&

is_node_on_a_surface_edge(N3) &&

!is_segment_on_a_surface_edge(S2)) return(YES);

if ( is_node_on_a_surface_edge(Nl) &&



is_node_on_a_ridge(Nl))

if ( is_node_on_a_surface_edge(N3)

is_node_on_a_ridge(N3))

if ( is_node_on_a_ridge(Nl)

!is_node_on_a_ridge(N3))

if ( is_node_on_a_ridge(N3)

!is_node_on_a_ridge(Nl))

if ( is__node_on_a_ridge (Nl)

is_node_on_a_ridge(N3)

!is_segment_on_a_ridge(S2))

if ( is_node_on_a_ridge_corner(Nl))

if ( is_node_on_a_ridge_corner(N3))

if ( is_node_on_a_surface_corner(Nl

if ( is_node_on_a_surface_corner(N3

if ( is_segmenc_on_a_ridge(S2)

( num_ridge_segm_connected_to_node(Nl) !=

num_ridge_segm_connected_to_node(N3))) return(YES);

return(YES);

ScSc

return(YES);

return(YES);

return(YES);

ScSc

Sc&c

return(YES);

return(YES),-

return(YES);

return(YES);

return(YES);

Figure 8 Removing triangle by merging two nodes. (Annotations refer
to variables in the software.)
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2.4.1.3 Will Merging 3 Nodes Alter Topography?

As shown in Fig. 6, merging three nodes is the process of replacing the unwanted

triangle by a single node at its geometric center. This is the most greedy procedure as it
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removes a total of four triangles; itself and its three neighbors. This removal method is

used only in situations where the triangle does not border any significant deviations in

topology. Referring to Fig. 9, a "yes" response to any of the following pseudo-C-code

questions means that merging three nodes will alter the surface topology and therefore

should not be used.

if (is_node_on_a_surface_edge(Nl)) return (YES)

if (is_node_on_a_surface_edge(N2)) return(YES)

if (is_node_on_a_surface_edge(N3)) return(YES)

if (is_node_on_a_ridge(Nl)) return(YES)

if (is_node_on_a_ridge(N2) ) return(YES)

if (is_node_on_a_ridge(N3)) return(YES)

Figure9 Removing triangle by merging three nodes. (Annotations refer
to variables in the software.)

2.4.1.4 Will Collapsing 1 Node Alter Topography?

As shown in Fig. 6, collapsing one node is the process of pushing the node

opposite the longest segment of the triangle along its minimum altitude to a new position

along the longest segment. Then the triangle connectivity is altered so as to split the

longest segment into two smaller segments as well as splitting the neighbor triangle into

two coplanar triangles equal in area to the original. This procedure does not remove
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triangles; rather, provides a local re-triangulation. It is primarily used on unwanted

triangles that are long-sided. Referring to Fig. 9, a "yes" response to any of the following

pseudo-C-code questions means that collapsing one node will alter the surface topology

and therefore should not be used.

if (is_node_on_a_surface_edge(N2)) return(YES);

• if (is_node_on_a_ridge(N2)) return(YES);

Figure 10 Removing triangle by collapsing one node. (Annotations refer
to variables in the software.)

2.4.1.5 Will Flipping Triangles of Segment Alter Topography?

As shown in Fig. 6, flipping triangles about their common segment is simply the

process of reconnecting the common segment to the nodesoriginally not in common. This

procedure is often called an "edge flip" and is extensively used in Delaunay triangulation.

See Chapter 3 for more information. Notice that no triangles are removed, rather a local

re-triangulation occurs. Referring to Fig. 11, a "yes" response to any of the following

pseudo-C-code questions means that flipping triangles will alter the surface topology and

therefore should not be used.

if (is_segment_on_a_surface_edge(longest_segm) ) return(YES);

if (is_segment_on_a_ridge(longest_segm)) return(YES);
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S3 y S2

SI (Longest Segment of Tl)

N4

Figure 11 Local re-triangulation by flipping adjacent triangles.
(Annotations refer to variables in the software.)

2.4.1.6 Will Tetrahedron Removal Alter Topography?

When three triangles and three segments exclusively share a node, called the

tetrahedron node, then the three triangles can be replaced by a hypothetical fourth face

whose segments consist of the three segments opposite the tetrahedron node. This is

depicted in Fig. 6. Listed below is the only query necessary before using the tetrahedron

removal procedure. If the query returns "yes", then the tetrahedron node forms the apex

of a ridge corner (Sec. 2.3.4.4), and its removal will alter the surface topography.

if (is_node_on_a_ridge_corner(tetra_node)) return(YES);

2.4.1.7 Will Surface Corner Triangle Removal Alter Topography?

When trying to remove a triangle that is in a surface corner (Sec. 2.3.2.14), the

following question must be answered before using the surface corner removal procedure.

Refer to Fig. 12 for the nodes.

if (is_node_on_a_ricge(N2) &&

is_node_on_a_ridge(N3)) return(YES);

If the query response is "no", then merging one node is used to remove the corner

triangle as shown in Fig. 12. However, since the topological corner must still be

preserved, either Nl or N2 is merged into N3. If one of them is on a ridge, then the other

node is chosen. If neither node is on a ridge, then the node connected to the shorter edge

segment, S2 or S3, is merged into N3.



N3 S2 Nl Surface Edge

Figure 12 Removal of a triangle in a surface corner. (Annotations refer to
variables in the software.)
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2.4.2 Degenerate Surface Conditions and their Correction

Due to various reasons during the advancement of a simulation mesh or due to

local mesh refinement algorithms, a strange surface connectivity often results. These

situations must be located and rectified when they occur. In this section, a few of these

irregular occurrences are presented. Figure 13 shows schematic of the degenerate surface

conditions.

2.4.2.1 Is Surface Pinched?

As depicted in Fig. 13, when two adjacent segments are connected to one another

at both of its nodes, a surface pinch has occurred. This is easily detected by checking the

segments attached to each node. For each segment attached to a node (Nl), if one of the

other segments attached to the same node has its second node (N2) in common, then a

surface pinch has been detected. This operation is 0(n-savg2) where n represents the

number of nodes in the surface and savg represents the average number of segments

attached to a node.

2.4.2.2 Is Triangle in a Fold-Back?

A fold back situation occurs when two of a triangles adjacent triangles happen to
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(A) Disconnecting surface at a pinch

Pinched

Nl

(B) Removal of a fold back triangle:

(C) Removal of a disconnected triangle:

Figure 13 Degenerate surface conditions and results after their correction
procedures.

be the same triangle. In other words, two triangles have been doubly connected to each

other so that they coincide with each other. This phenomenon is depicted in Fig. 13.

2.4.2.3 Is Triangle Disconnected?

If for some unlikely reason, a single triangle or back-to-back triangles have lost

their attachment to the surface through their segments, then the triangle(s) is(are)

identified as being disconnected. Realize that their nodes may still be connected to a valid

surface mesh. A disconnected triangle is identified by having all three of its neighboring

triangles equal (or NULL). This phenomenon is depicted in Fig. 13.
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Should a disconnected triangle be detected, its presence is likely due to a logical

errorin a surface utility's decision tree that improperly chooses a triangle removal method.

2.5 Improving Query Efficiency

Reviewing the sections under 2.4.1 (Triangle Removal Queries and Methods),

notice that some queries are answered by considering the response from multiple groups

of sub-queries. In many cases, queries are wastefullyrepeated.

One way to avoidthe computational inefficiency of redundant procedure calls is to

include boolean fields corresponding to the queries in the data structures of the surface

elements. Then an update procedure can be used to reset all of the fields to a consistent

value. This method has some advantages and disadvantages. The primary advantage is

computational efficiency due to readily accessible data. Two disadvantages include an

increase in memory consumption due to the size of the structures, and the need for a

consistency policy that updates the query values whenever the surface is advanced or re-

triangulated.

As the cost of memory decreases, its consumption becomes more tolerablethereby

making this disadvantage minimal. However, the consistency policy is more difficult to

police. To achieve faster simulation speeds, my software predecessors usedthis methodto

include many extra fields in the elemental data structures. Unfortunately, a software

engineering policy of maintaining valid data in the data structures was not upheld.

Consequently, a global update of the data structures to correct invalidated data fields is

often required betweenoperations written by different authors. Not wishing to contribute

to the current problem, I chose not to add additional fields to the data structures. The

following band-aid question then arrises, "Is it more expensive to make redundant

function calls? Or, is it more expensive to make global updates to the data structures

between operations?"
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Chapter 3:

Delaunay Triangulation in 2 V2 D

3.1 What is Delaunay triangulation?

For a given set of points in 2D, a Delaunay triangulation will produce triangles that

are as equilateral as possible. For this reason it is a popular 2D surface triangulation

scheme [2]. Formulation of a Delaunay triangulation can be thought of as the dual to a

Vomoi diagram. A Vomoi cell contains the set of all points in 2D whose distance from a

node is less than the distance from any other node. Mathematically this is expressed in

Equ. 1. The Voronoi diagram then consists of line segments separating the Voronoi cells

V(nf.) = O {p € *2\d(p, nt) <d(p, nj) } (Equ. 1)

while the Delaunay triangulation is composed of the line segments connecting the nodes

of adjacent Voronoi cells.

Vomoi Diagram Delaunay Triangulation

Figure 14 Schematic of the Vomoi diagram and its dual, the Delaunay
triangulation for a given set of nodes in 2D.
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3.1.1 Properties of Delaunay Triangulation in 2D

In 2D meshes, the Delaunay triangulation imposes the following properties:

• maximizes the minimum interior angle of all its triangles (this is equivalent to
the "empty-circle condition1"),

• minimizes the radius of the largest circumcircle, and

• minimizes the radius of the largest enclosing circle.

In general, these properties are recognizable in a mesh when the triangles are reasonably

equilateral. Figure 15 shows a depiction of these properties.

Empty-circle Condition

O Largest Circumcircle

0 Largest Enclosing Circle

Figure 15 The three properties of a Delaunay triangulation.

1. The empty-circle condition refers to the 2D Delaunay triangulation property that a circle passing
through the points of a triangle will not contain any other points in the mesh. A near exception
occurs when four points of a perfect square are triangulated; the fourth point will lie on a circle, but
not in a circle.
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3.1.2 Edge Flipping and the Reversed Quadrilateral

The most common algorithm used to compute a Delaunay triangulation

incrementally from a given triangulation is called "Edge Flipping". In this algorithm,

segments common to reversed quadrilaterals are flipped until all reversed quadrilaterals

have been removed. A reversed quadrilateral is identified by two neighboring triangles

whose two angles opposite the diagonal sum to more than 180°. Or, a reversed

quadrilateral can be identified when one of the vertices opposite the common edge lies

inside the circle through the other three vertices (In-Circle test). This algorithm guarantees

the three properties above and runs in 0(n2). Figure 16 shows ademonstration ofthe edge

flipping algorithm.

cc + p>180c oc + P<180£

Figure 16 Recursive edge flipping of reversed quadrilaterals is a simple
algorithm for computing a Delaunay triangulation.

3.2 Extending 2D Delaunay Triangulation to 2V2 D

Under the assumption that a three-dimensional mesh can be approximated locally

by a two-dimensional surface, the 2D Delaunay triangulation properties can be extended

to 2 V2 D. This assumption is justifiable provided adjacent triangles in a reversed

quadrilateral approach coplanarity. As such a threshold must be set to determine if
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adjacent triangles are approximately coplanar. Here is where the concept of a "ridge

segment" enters. Recall from Sec. 2.3.3.6 that the notion of a ridge is used to denote when

a segment defines a significant deviation in the surfacetopology, and that the "ridge angle"

can be redefined as the granularity of the surface triangulation changes.

3.2.1 Algorithm for 2 V2 DDelaunay Triangulation

Outlined below in pseudo-code is the popularedge flipping algorithm with a small

enhancement. Before flipping an edge of a reversed quadrilateral, the segment is first

check to see if it is on a ridge. If it is a ridge segment, then no flipping is performed. This

distinguishes the algorithm as a2 V2 Dtriangulator.

for each interior surface Edge of a given triangulation

{

add Edge to a Queue

}

while Queue is not empty

{

remove the first Edge from Queue

if (Quadrilateral Qe is reversed and Edge is not on a ridge)
then

{

flip Edge of Qe

add to Queue each side of Qe not already in the Queue and
not on the surface edge

}

}

In Fig. 17, results of the 2 V2 Delaunay triangulation algorithm are presented. The

ridge angle was set to a high value of 60° so that all interior surface edges in this example

would be viable candidates for flipping.

Note that Delaunay triangulation does not remove triangles, segments, or nodes. It

simply redefines the connectivity so as to guarantee the properties described above (Sec.

3.1.1).



(A) Before Delaunay Triangulation

Figure 17 A 3D surface mesh before (A) and after (B) Delaunay
triangulation with a high ridge angle threshold set to 60° so all interior
surfaceedges wouldbe considered viable candidates for flipping.
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3.2.2 Constrained Algorithm for 2V2 DDelaunay Triangulation

For reference in subsequent algorithms, the Delaunay triangulation algorithm

described above (Sec. 3.2.1) can be slightly modified and applied to the interior re-

triangulation of a general convexorconcave polygon. Outlined below in pseudo-code is

the modified algorithm. Figure 18 shows what edges are regarded as interior edges of an

enclosing polygon.

for each interior Edge of an enclosing polygon

{

add Edge to a Queue

}

while Queue is not empty

{

remove the first Edge from Queue

if (Quadrilateral Qe is reversed and Edge is not on a ridge)
then

{

flip Edge of Qe

add to Queue each side of Qe not already in the Queue and
not on the enclosed polygon

}

}

(A) Before Delaunay triangulation (B) Afterconstrained edge flipping

Enclosing polygon

Interior Edges

Figure 18 Delaunay triangulation constrained to flipping only edges
within an enclosing polygon.
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3.3 Suggestions for Future Development

In the current versions of the SAMPLE-3D programs (NETCH version 2.1 and

DEVELOP version 1.0), an ad-hoc polygon subdivision procedure was developed for

resolving the triangulation of a polygon created by the intersection of triangles in a

"delooping" process. Refer to John Helmsen's Ph.D. thesis Sec. 5.4.4 (Triangle

Subdivision) [8]. In his procedure, undesirable triangulations containing long narrow

triangles can result. His subdivision procedure can benefit from theconstrained Delaunay

triangulation as described in Sec. 3.2.2.
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Chapter 4:

Decimation of Triangles

4.1 What is Decimation of Triangles?

Decimation of triangles is a process whereby the number of triangles used to

represent a topographic feature is reduced without significantly altering whatis considered

to be the essential 3D shape.

Topography simulators like SAMPLE-3D [21,17,18] often begin with a flat

triangulated surface containing a fine tessellation so as to capture the intricate curvature

that results during surface advancement. Once the device's essential shapeemerges in the

evolving surface aftera few time steps, regions of low geometric curvature remain finely

tessellated. As simulation continues for minutes or hours, a considerable amount of

computer time and memory is wastefully consumed by advancing the finely tessellated

low curvature regions. In this situation, the decimation of triangles can be used to reduce

the degree of tessellation in areas of low curvature thereby reducing computer memory

usage and increasing simulation speeds without affecting the surface regions containing

interesting topography. For these reasons, decimation of triangles can be very useful in

TCAD simulators as larger surface areas are simulated.

In this chapter, two schemes for reducing the granularity of an advanced surface

mesh in regions of low geometric curvature are presented. The first scheme is a greedy

algorithm thatremoves as manytriangles as possible; the second scheme, derived fromthe

first, is an incremental algorithm that prevents too many triangles from being removed at

once. These variations on the same algorithm allow for flexibility depending on the

intended usage.
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It should also be noted that the notion of ideal segment lengths presented in Sec.

2.3.2 (Triangle Queries) is disregarded in the decimation algorithm.

4.2 Use of a Normalized Coplanarity Vector

As previously stated, the decimation algorithm identifies regions on the surface

where the geometric curvature is low. In these regions, triangles are removed. To identify

these regions the notion of a normalized coplanarity vector is introduced. Although

similar, It is not the same as a Gaussian radius of curvature vector consisting of a vector

originating at the center of a sphere that is tangent to the surface at a given point. The

normalized coplanarity vector used in this algorithm originates at a node on the surface

and points in the direction of the center of its Gaussian curvature sphere.

Because of the way the normalized coplanarity vector is computed at a node (Sec.

4.2.1 and Sec. 4.2.2), the magnitude of the vector approaches 1 when the surface is

perfectly planarand it approaches 0 when a cusp is present. The magnitude of the vector

is then compared to a user-definable threshold above which the surface is considered

planar, and decimation is applied about that node. This is how the normalized coplanarity

vector will be used.

What about a saddle point? Understand that the normalized vector is used to

measure the local planarity of surface at a node without concern for units or signs and is

therefore dependent on the tessellation granularity. If the surface is finely tessellated at a

given saddle point, the triangles surroundingthe saddle point approachcoplanarity and the

normalized surface vector would have a magnitude near 1. Conversely if the surface is

coarsely tessellated, the triangles would loose their degree of coplanarity and the

magnitude of the normalized coplanarity vector would approach 0. Therefore a true

saddle point can be targeted as an area of low geometric curvature if the tessellation is

very fine.
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4.2.1 Computing Normalized Coplanarity Vectors

Givenonly the geometric position of the surface triangles, a normalized estimation

of thesurface coplanarity canbe made. As depicted in Fig. 19andEqu. 2, the normalized

coplanarity vector is computed as a vector summation of the normal vectors of each

triangle surrounding thenode. However, each normal vector is weighted by the fraction of

the angle the triangle makes with the total angle of all the triangles common to the node.

In this manner, acute triangles bordering the node have less impact on the vector

calculation. Notice that the magnitude of the normal will be 1 when the surrounding

triangles arecoplanar, andit is less than 1when thetriangles are notcoplanar. Also notice

ai a2
n = n, H • n0 +

Formally:

-~4 a-i —

n: (Equ. 2)

where k = number of surrounding triangles
As Inl => 1, surface is perfectly flat at node
As Inl => 0, surface contains a cusp at node

Figure 19 Computing a normalizedcoplanarity vector.

that the vector addition method requires consistency in the orientation of the triangles'

normal direction. Refer to Sec. 7.2.5 (Orienting Triangles of an Enclosed Surface).
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4.2.2 Computing the Direction of the Coplanarity Vector

Having computed the normalized coplanarity vectors, it may also be important to

know the direction of curvature. Althoughnot required to decimate triangles, it could be

usedin surface modeling utilities forcrenulation reduction andis therefore included.

As depicted in Fig. 20 and Equ. 3, the direction of the normalized coplanarity

vector is computed by taking a weighted average of the angles between the coplanarity

vector and the corresponding vectors to the center of the surrounding triangles. If the

average angle is greater than 90°, thecoplanarity vector is reversed to point in theconcave

direction.

a a.

e = - e, + •—e, + ...av8 aj+a2+a3 +a4+a5 ' aj +a2+a3 +a4+a5 2

Formally:

* a.

avg jLa k

;= i

e, (Equ. 3)

where k = number of surrounding triangles
if6avg <90° already in the correct direction
if9avg >90° reverse coplanarity direction

Figure20 Computing the direction of thecoplanarity vector. Note that it
parallels the direction of surface curvature.

For inspection purposes, Fig. 21 shows an overlay of the normalized coplanarity

vectors on a real surface. Notice at the bottom portion of the final surface that the

direction of thecoplanarity vectors are sensitive to small crenulations in themesh.
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Result of computing the coplanarity vectors

Figure 21 Results of the normalized coplanarity vectorcomputations.
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4.3 Algorithm for Decimating Triangles

Outlined below in pseudo-code is a description of the algorithm for decimating

triangles across a surface.

for each Node of a surface not on a surface corner

{

compute the normalized Coplanarity at Node

if (Coplanarity > Threshold_Coplanarity) then

{

if (Node is on a surface edge) then

{

Add a segment whose nodes are the surface edge nodes
adjacent to the Node

Add a triangle whose segments are the new segment and
the surface edge segments adjacent to the Node

}

find the surrounding polygon

remove the Node and re-triangulate surrounding polygon

}

}

Notice that two portions of the algorithm are emphasized with an underline; what to do

when the targeted node is on a surface edge, and the node removal followed by re-

triangulation. These instructions are detailed in the following subsections.

4.3.1 Preconditioning Edge Nodes for Re-triangulation

As pointed out in the decimation algorithm, all nodes are potential candidates for

removal except those on a surface comer. The remaining nodes are either internal to the

surface mesh or on the edge of the surface. Realize that nodes on the edge of the surface

mesh are not enclosed by a surrounding polygon. When this type of node has been

targeted for removal, a preconditioning step is required. As depicted in Fig. 22 the

preconditioning step first adds a segment whose nodes are the surface edge nodes
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followed by the addition of a triangle whose segments include the newly added segment

and the surface edge segments adjacent to the targeted node. Then the surrounding

polygon is found. This step reduces the problem down to the re-triangulation of an

approximately planar convex or concave polygon.

Surface edge
targeted for removal

Adding segment
and triangle

Surrounding polygon

Figure 22 The preprocessing step of a surface edge node targeted for
removal in the decimation process.

4.3.2 Procedure for Removing Node and Re-triangulation

Having found the surrounding polygon of a targeted node, the node can be

removed and the surrounding polygon re-triangulated. This procedure makes use of two

operations for modifying the mesh: 1 node merging (Sec. 2.4.1.1) and a constrained

Delaunay triangulation (Sec. 3.2.2).

The procedure begins by finding the shortest segment surrounding the targeted

node and merges the targeted node along the shortest segment into the surrounding

polygon. Then the surrounding polygon is re-triangulated as described by the constrained

Delaunay triangulation algorithm. This procedure is outlined in the following pseudo

code and depicted in Fig. 23.

find the shortest segment surrounding the targeted Node
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merge the Node into the node opposite the shortest segment

create a segment queue with the remaining segments within the
surrounding polygon

perform a constrained Delaunay triangulation on the segment
queue

Find the shortest
surrounding segment

Perform a constrained
Delaunay triangulation

Merge node along
shortest segment into
surrounding polygon

k_,

Figure 23 Demonstration of the node removal and re-triangulation
procedure within the surrounding polygon.

4.3.3 A Greedy and Incremental Decimation Scheme

The greedy decimation scheme follows the decimation algorithm exactly as

outlined. It attempts to removal all nodes whose normalized coplanarity vector exceeds

the threshold value. The incremental algorithm attempts to achieve a more uniform

decimation by making several passes over the surface. In each pass, it retains selected

nodes. After the re-triangulation step, the nodes of the remaining triangle whose center

most closely overlaps the removal node are marked. This prevents their removal as the

decimation algorithm marches across the rest of the surface. Figure 23 shows an

illustration of this procedure beginning withthe re-triangulation result of Fig. 23.



Find the center of all
the remaining
triangles

Mark the nodes of the
closest triangle for
retaining

Find the center point
closest to the original _#
targeted removal node

45

closest triangle to
original node

_M i

Figure 24 How threeof the surrounding nodes are selected for "retaining'
during an incremental decimation scheme.

4.4 Progressive Examples of Triangle Decimation

To demonstrate results from the decimation algorithms, the following sections

contain figures of the surface triangulations before and after greedy and incremental

schemes are applied.

4.4.1 Decimation of a Simple Flat Mesh

One of the simplest examples to test the algorithms is toperform thedecimation on

a flat surface. Figure 25 contains results from this test case for both the greedy and

incremental algorithm. Realize that a complete decimation of a triangulated surface of

rectangular shape will result in two triangles.

4.4.2 Decimation of an Elbow Etched Surface

A more complicated example to demonstrate the progress of the greedy and

incremental decimation schemes is shown in Fig. 26 and Fig. 25 respectively. Here, a

finely tessellated elbow shaped surface resulting from an etching process in SAMPLE 3D
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(A) Decimation using the greedy algorithm:

Initial _. •«-—-^ —=-555^ Final

1^1 i^i

(B) Successive decimation using the incremental algorithm:

Initial ^=--<rt>^ — --*s After 1 decimation

i^i

After 2 decimations

After 4 decimations

»"^T

After 6 decimations

i^i

After 3 decimations

After 5 decimations

i^i

After 7 decimations
Final

Figure 25 Decimation of a flat surface using the greedy scheme (A), and
the incremental scheme repeatedly (B).



47

is decimated.

Using the greedy decimation scheme, the triangle count is reduced 45%.

After seven decimations using the incremental scheme, a steady state is reached

(Fig. 25 H), and the triangle count is also reduced by 45%. At this step, the surface will

likely contain thin triangles that require removal using the thin triangle removal algorithm

described in Chapter 5. This reduces the triangle count even further and is shown in Fig.

28.

No matter which decimation algorithm is used, notice that the characteristic

topology of the surface is unchanged despite the significant reduction in triangle count.

4.4.3 Decimation of an Etched and Sputter Deposited Surface

Similar to the previous example, Fig. 29 demonstrates results from the greedy

decimation scheme applied to an etched and sputter deposited surface. In total, the

triangle count is reduced by 75% through the processes of decimation and thin triangle

removal. Notice in the cutaway plot of Fig. 29 D that the non-planarity of the deposited

surface within the hole remains intact. Again, the characteristic topology of the surface is

unchanged despite the significant reduction in triangle count.
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(A) Initial Surface Triangulation
2483 Triangles

(B) After Greedy Decimation
1355 Triangles

0

2 ^2

Figure26 Decimation of anetched elbow shaped surface using the greedy
removal scheme. Units are in microns.



(A) Initial Surface Triangulation

2^2

(B) After 1 Incremental Decimation

Figure 27 Decimation of an etched elbow shaped surface using the
incremental removal scheme repeatedly.
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(C) After 2 Incremental Decimations

1659 Triangles

0

2 ^2

(D) After 3 Incremental Decimations

1487 Triangles

Figure 25 (continued)



(E) After 4 Incremental Decimation

1413 Triangles

2^2

(F) After 5 Incremental Decimation

1379 Triangles

Figure 25 (continued)
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(G) After 6 Incremental Decimations

1365 Triangles

0

(H) After 7 Incremental Decimations

1363 Triangles

Figure 25 (continued)

Steady State



(A) After reaching steady state
1363 Triangles

(B) After thin triangle removal

1321 Triangles

Figure 28 Upon reaching steady state using the incremental decimation
algorithm (A), the mesh likely requires removal of thin triangles (B).
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(A) Initial Surface Triangulation
1775 + 2221:

(B) After Greedy Decimation

408 + 844 = 1252 Triangles

l ^1

l^i

Figure 29 Decimation of an etched and sputterdepositedsurface using the
fast greedy algorithm. Units are in microns.



(C) After Thin Triangle Removal
292 + 702 = 994 Triangles

(D) Cutaway Close-up

Figure 29 (continued)
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Chapter 5:

Thin Triangle Removal

5.1 Thin Triangles

For engineering and mathematical applications that make use of triangulated

surface meshes, thin triangles as defined in Sec. 2.3.2.3 (Is Triangle Thin?) are

problematic. They often cause robustness and simulation difficulties especially when a

triangle is acute to the point that its area approaches zero. Aside from robustness and

simulation difficulties, thin triangles do little to aid in visualization of the surface

topography; rather they wastefully consume the memory space of the computer. Thus it is

advantageous to detect and remove thin triangles as needed.

5.2 Where do Thin Triangles come from?

Undoubtedly, there are many unique circumstances from which thin triangles can

result. In integrated circuit topography simulators such as SAMPLE-3D where surface

meshes are incrementally advanced in time based on pushing nodes (ray-tracing), the

shape of triangles can change significantly between time steps. When nodes come

together as in the case of deposition within a concave comer, triangles connected to the

nodes can significantly shrink uniformly or affinely. This is illustrated in the contracting

comer of Fig. 30. In this situation, removal of thin triangles in the comer can help avoid

eminent looping problems [7].

Thin triangles also result as a consequence of intersecting surfaces.

Photolithography simulators that move surfaces based on ray-tracemethods are subject to

loop formation. In order to remove the unwanted loops, the surface is intersected with

itself followed by loop detection and removal. Performing this capability was the subject
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Position at time step 1

Position at time step 2

Thin triangles

z

Figure 30 Formation of thin triangles along a contracting comer during a
simulated deposition process.

of Helmsen's master's thesis [7]. To demonstrate how thin triangles are consequently

formed duringthe surface intersection process, a briefillustration fromHelmsen's thesis is

helpful. Figure 31 contains a high level review of Helmsen's intersection procedure. The

first part of the illustration simply shows two triangulated portions of a surface

overlapping each other in three space. The second part shows a highlighted intersection

line found by linking all the intersection segments found during the triangle-to-triangle

intersection step. At this point in the procedure, each of the original triangles containing

part of the intersection line is subdivided. The result of the triangle subdivision is shown

in Fig. 31 C. Notice all the potential thin triangles that result.

5.3 Removing Thin Triangles without Disturbing the Topography

Several methods for re-tiling [23] and optimizing triangulated surface meshes [9]

are available to remove thin triangles. However, these methods are often based on
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(A) Two overlapping surfaces meshes

(C) Result after triangle subdivision

Thin triangles

Figure 31 Illustration of how thin triangles are consequently formed
during triangulated surface intersections.

minimizing an energy function dependent upon the distance between vertices and will

either reposition the vertices of the original mesh or distribute a completely new set of

vertices across the surface. For our purposes in TCAD, nodes in an evolving triangulated

mesh cany more than positional information. They also carry simulation fields such as

etch rates, deposition rates, visibility attributes, direction vectors, and others. For this

reason, it is not desirable to significantly change the geometric position of nodes during a
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process step for the sake of thin triangle removal. In this light, the removal of thin

triangles could be considered a goal-specific implementation of the decimation of

triangulated meshes [19].

5.3.1 The Thin Triangle Removal Algorithm

In order to solve the problem of removing all thin triangles throughout a surface

without altering its major topographic features, a flexible, query-based algorithm was

implemented. This algorithmmarchesacross the surface querying the individual triangles

about their geometry and if their removal will alter the characteristic shapeof the surface.

When a thin triangle is encountered whose removal will not alter the macroscopic

topography, surrounding triangles are either merged or collapsed together using one of

several removal methods described in Chapter 2.

The algorithm is structured so as to remove the thin triangles as greedily as

possible without altering the surface. Forexample, a thin triangle positioned in the center

of a planar region could have all three of its vertices merged into one node thereby

eliminating a total of four triangles; the thin triangle and its three adjacent triangles. This

query and removal method is positionedat the top of the decision tree. Toward the middle

of the decision tree are one and two node merge operations that eliminate two triangles;

the thin triangle and its neighbor across the segment common to the merging nodes. At

the bottom of the decision tree is the least greedy removal method; a simple edge flip that

eliminates the occurrence of a thin triangle but doesn't reduce the surface's triangle count.

In the form of a large flow chart, anoutline of the algorithm is presented in Fig. 32.

5.3.2 Subtleties of the Removal Algorithm

When a thin triangle is encountered thatcannot be eliminated by using any of the

triangle removal methods of merging and collapsing, a simple edge flip is attempted.

Realize that a simple edge flip doesn't actually remove any triangles, it simply



For every potentially small thin triangle: « ^j\
Is triangle disconnected?

No Yes „Removedisconnected triangle.

__^Jstriangle in a fold back?

No Yes mRemove fold back triangle. _

Is triangle thin? or Is triangle small?

No Yes »Is triangle in a surface corner?

No Yes ^Will surface corner triangle removal altertopography?

f\\m Yes No - Remove surface corner triangle.

_^Is triangle on a surface edge?

No Yes ^Will surface edge triangle removal altertopography?

(^l\m Yes No „Remove surface edge triangle.

_^Is triangleon three ridges?

__No Yes ^Is triangleshort-sided?

No Yes mRemovetriangleby merging 2 nodes.

| ^Remove triangle by collapsing 1node.
_^Is triangleon a tetrahedron?

_No Yes „Will tetrahedron removal alter topography?

Yes No , Remove triangle by tetrahedron removal. _

_^Is triangle linear?

_No Yes pis triangle short-sided?

No Yes „Removetriangle by merging 1 node. _

I ^Remove triangle by collapsing 1node.
_^Is triangle small?

_No Yes pWill merging 3 nodes alter topography?

Yes No -Remove triangle by merging 3 nodes. _

lYa^ (b©0

Figure 32 The thin triangle removal algorithm in the form of a flow chart.
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©

0

_^Js triangleshort-sided?

_No Yes pWill merging 2 nodes alter topography?

Yes No -m Remove triangle by merging 2 nodes.

^ Willmerging 1node alter topography?

Yes No mRemove triangle by merging1 node.

_^Js triangle long-sided?

__No Yes pWillDelaunay flip alter topography?

Yes No Delaunay flip triangle.

^Will collapsing 1node altertopography?

Yes No „Remove triangle by collapsing 1 node. .

_^Will merging 2 node alter topography?

Yes No »Remove triangle by merging 2 nodes.

_^Will merging 1node alter topography?

Yes No „Remove triangle by merging 1 node.

_^Has thenumber ofconvergence loops isexceeded?

No Yes ^Delaunay flip triangle.

^Js surfacepinched?.

No Yes - Disconnect surface at pinch. |

Figure 32 (continued)
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reestablishes the connectivity between adjacent triangles. Consequently, the potential

situation of removing a thin triangle by edge flipping can push the problem from one

triangle to another. This problem is compounded by the fact that triangles are visited in

the order in which they appear in a linked list. The result of successive calls to the thin

triangle removal algorithm could be a continuous exchange of thin properties between

neighboring triangles. This problem is illustrated in Fig33.

To help conect the problem of no net change when flipping thin triangles, the

outermost loop in the thin triangles routine must process the triangles in both a forward

and a reverse order. However, alternating the direction between forward and reverse is not

sufficient; the direction of traversal must be randomly chosen. This will help avoid the

occurrence of flipping thin properties between two, three, four, or more adjacent triangles.

The remaining subtletywas alluded to in the lastparagraph; the need to process the

outer loop of the removal algorithm more than once. In many cases, the removal of one

thin triangle using any removal method can create a new thin triangle. Like the queue

method used in the Delaunay triangulation algorithm (Sec. 3.2.1), triangles neighboring a

thin triangle being removed are added to a queue. On succeeding traversals of the outer

loop, it is more efficient to visit only the potentiallythin triangles in the queue.

As noted in the flow chartof Fig. 32, a convergencelimit for the number traversals

of the outer loop is used. When a thin triangle is encountered after reaching the looping

convergence limit, a Delaunay flip is used to get rid of the thin triangle despite the

indication that it may alter the topography. This operation tends to work well since at the

topography being altered at the late stage in the removal process is likely the creation of a

ridgesegmentrather thanthe destruction of aridgeor comer. A looping convergence of7

has worked well.
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(A)

Linked list

A o

O

I-

(B)

Linked list

A

/T5v

it
m

th

Initial triangulation:

Initial triangulation

Surface

Edge

Figure 33 Traversing and flipping triangles T5 and T6 in a forward
direction, thin properties are exchanged with no net result (A). Traversing
and flipping triangles T5 and T6 in reverse order corrects this subtlety (B).
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5.3.3 Results of the Thin Triangle Removal Algorithm

To demonstrate the success of the thin triangle removal algorithm, Fig. 34 shows

close-ups of an intermediate stage of solidextraction from Chapter 7. before and after the

thin triangles are removed. The presence of thin triangles in this example are due to

surface intersections. Notice that the device topology is preserveddespite the removal of

thin triangles along ridges and comers. In this example, a surface of 1133 triangles was

reduced to 731 triangles in 19 secondson an IBM RISC 6000 workstation.

5.4 Improving the Efficiency of Thin Triangle Removal

Aside from the query-based efficiency improvements (Sec. 2.5) two additional

improvements can increase the algorithm's speed and efficiency. The first involves the

query about surface pinching after the removal of each and every thin triangle, and the

second involves the search for inadvertently created thin triangles on successive loops of

the removal algorithm.

As noted in the outline of the thin triangle removal algorithm (Sec. 5.3.1) a query

of the surface is made for the presence of a pinch caused by the recent triangle removal.

Because this query (Sec. 2.4.2.1) traverses the entire surface, most of the cpu time is

wastefully spent checking for pinches far from the location of the recent triangle removal.

A more efficient algorithm will only check for a surface pinch in the vicinity of the

recently removed triangle.

Along the same lines of thought, searching for thin triangles throughout the entire

surface following the first loop of the removal algorithm is also a waste of cpu time. On

successive loops of the removal algorithm, only triangles in the vicinity of a previously

removed triangle need to be checked for their acuity.
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(A) Before thin triangle removal

(B) After thin triangle removal

Figure 34 Close-ups showing darkened thin triangles resulting from
surface intersections (A) and the result after thin triangle removal (B).
(Due to the painters algorithm used for plotting, some back facing triangles
near horizon ridges are improperly rendered atop of visible triangles.)
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Chapter 6:

Surface Smoothing

6.1 What is a Rough Surface?

Smoothing surface data can have many different interpretations. In this chapter,

two different algorithms for smoothing a surface mesh, triangle smoothing and node

smoothing, are described and results are given. Butbefore the algorithms are presented, a

brief discussion of what constitutes a "rough" surface is necessary. This will establish a

perspective whereby the smoothing techniques can beobjectively reviewed.

One interpretation of arough surface, crenulation, was discussed by Helmsen's [8]

and will be reused here. The easiest wayto understand Helmsen's concept of acrenulated

surface is through the use of an analogy. Imagine crumpling a sheetof paper into a ball

and then unwrapping it. The crinkled sheet of paper is no longer perfectly planar. It

contains many non-planar facets. To reduce the surfaceroughness, two algorithms taking

different approaches are discussed below. An important distinction between the two

algorithms is that one permits repositioning of the nodes while maintaining the mesh

connectivity; the other maintains the mesh connectivity while reestablishing the node

positions.

6.2 Smoothing Triangles

In the triangle smoothing algorithm, the position of surface nodes remain fixed.

Nodes arenot removed or repositioned. Therefore, the only freedom given to smoothing a

surface is to manipulate the connectivity of the surfaceelements. By measuring the angle

between normal vectors of all pairs of adjacent triangles and averaging, we have a way to

quantify the surface roughness. This is the measure that triangle smoothing minimizes.
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6.2.1 The Triangle Smoothing Algorithm

The triangle smoothing algorithm minimizes the average angle between normal

vectors of adjacent triangles across a surface. Toaccomplishthis goal, a procedure similar

to the Delaunay edge flipping algorithm is employed. For all interior edges across a

surface, a summation of the angles between the normal vectors of triangles adjacent to the

two triangles connected to the edge in question is made. If the total measure for the angle

is lower once the edge has been flipped, then the local roughness has been reduced,

otherwise the edge is flipped back. Figure 35 shows a schematic of how the angles are

measured and the result after an edge has been flipped.

(A) Measuring angles, 65,
before flip

(B) Possible reduction in angles,
93) after flip

/= 1

(Equ. 4)

Note: If an adjacent triangle is NULL, theangle between normals is taken as zero.

Figure 35 A measure of the local roughness (non-planarity) can be made
by summing the angles between triangle normals. Using an algorithm
basedon theedgeflipping algorithm, theroughness can be reduced.

With reference to the nomenclature of Fig. 35 andEqu. 4 for calculating the local

roughness of a surface, the triangle smoothing algorithm is outlined in the following
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pseudo-code:

for each interior surface Edge

{

add Edge to a Queue

}

while Queue is not empty

{

remove the first Edge from Queue

calculate the summation of the local angles 6b of
Quadrilateral Qe before flipping Edge

flip Edge

calculate the summation of the local angles 6a of
Quadrilateral Qe after flipping Edge

if (9a<9b) then
{

add to Queue each side of Qe not already in the Queue and
not on the surface edge

}

else

{

flip Edge back to its original state

}

6.2.2 Example of Smoothing Triangles

To demonstrate how well the triangle smoothing utility works, a surface with

adjacent T-shaped etchings was simulated using SAMPLE-3D. At the top of the etchings

shown in Fig. 36 A, the triangles appearrough. In fact, many of the segments sunounding

the triangles along the top satisfy the ridge segment criteria. Recall Sec. 2.3.3.6 (Is

Segment on a Ridge?). Because many of the triangles are sunounded by ridge segments,

the triangle smoothing algorithm is a good way to redefine the ridge. Having smoothed

the triangles as shown in Fig. 36 B, the ridge segments are consequently redefined, and a

Delaunay triangulation, presented in Chapter 3, can be performed.
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(A)Original surface withrough (crenulated) triangles along the top. 9a= 14.39°

(B) After smoothing triangles, the crenulation is gone. 8b = 6.37e

Is

rHlm/iHML' '^fSffinO
(C) Having reestablished the ridge line, a Delaunay operation improves the triangulation.

"ST

Figure 36 The triangle smoothing algorithm is used to remove the rough
crenulated edges along the top of the T-shaped etchings. The average angle
between triangle normals of adjacent triangles is reduced 56%.
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6.3 Smoothing Nodes

In the node smoothing algorithm, surface nodes are free toberepositioned. This is

a precautionary point for TCAD simulation tools. Recall that these tools often keep

auxiliary information within the structure of anode that is likely dependent onthe current

geometric coordinates of the node. This is true for lithography simulators that use "ray-

trace" algorithms for advancement. Therefore a smoothing algorithm that repositions

nodes can be dangerous. On the other hand, an advancement algorithm based on pushing

facets (triangles) for various etching processes [18] will tolerate noderelocation.

6.3.1 The Node Smoothing Algorithm

The node smoothing algorithm is very simple and is outlined in pseudo-code

below. The primary idea is to relocate the nodes to the geometric center of its sunounding

nodes while paying particular attention to nodes located on comers, ridges, and surface

edges whose topology must be preserved.

do

{

for each Node NOT connected to a ridge or an edge segment

{

relocate Node to the geometric center of its surrounding
nodes

}

for each Node on a surface edge

{

relocate Node to an interpolated location between the
Node's two neighbor nodes on the same surface edge

}

for each Node on a surface ridge

{

relocate Node to an interpolated location between the
Node' s two neighbor nodes on the same ridge

}

} while (the maximum node relocation distance > a tolerance)
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6.3.2 Choice of Interpolation Methods

Of interest in the node smoothing algorithm is the choice of interpolation methods

for smoothing nodes on a ridge or surface edge. Two methods were investigated: circular

arc interpolation, and a convex hull interpolation method. The second method is an ad-

hoc technique designed to overcome the flaws that occur in the circular arc method. After

reviewing the two methods of interpolation that follow, inspect Fig. 41 which compares

results from both interpolation methods on a surfacecontaining a well defined ridge line.

6.3.2.1Circular Arc Interpolation

The circular arc interpolation methodwas first chosen as the interpolation method

for smoothing nodes along surface ridges and edges. In the plane created by three

consecutive nodes along a surface ridge oredge, thismethod fits acircle to nodes and then

bisects the subtended arc by relocating the center node to the bisecting location. Figure 37

demonstrates how the interpolated node is found. When the three nodes are colinear, the

center node is relocated to the midpoint.

This method works satisfactorily when theradius of the circle is somewhat larger

than the distances between the interpolating nodes. However, when this condition is not

satisfied and the radius of the circle is comparable to the distances between the

interpolating nodes, then the circular arc method can backfire. The ridge or edge line can

roughen. See Fig. 38 for aschematic description ofthe circular arc interpolation method

andhow it can roughen rather than smooth the nodes.

6.3.2.2Convex Hull Interpolation

If the interpolated node lies within the convex hull ofthe three interpolating nodes,

the flawed results depicted in Fig 38 Ccan be overcome. Making this observation leads

one to believe that using aquadratic b-spline for interpolation would be agood idea. The



i - interpolation node

Figure 37 Demonstration of how to find an interpolation node on the
interpolating circle of three successive ridge or edge segments that is
equidistant from the end nodes.

(A) Original ridge or surface edge

(B) Circular arc interpolation method (bisection)

(C) Result after one iteration

Figure 38 Schematic of the circular arc interpolation method used on
nodes along a ridge or surface edge. Notice that this interpolation method
can actually roughen rather than smooth the line.
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only difficulty of using b-splines in this circumstance is that we would like the interpolated

node to lie on the interpolating arc an equaldistance away from the end nodes. This is not

a trivial task using b-splines. Therefore, an ad-hoc interpolation method that finds an

interpolation node on theconvex hull has been implemented. This method is much faster

to compute than the circular arc method and any b-spline method. Figure 39 shows how

the interpolated node is found, and Fig. 40is aschematic description conesponding to Fig.

37 using the convex hull interpolation instead of the circular arc method. Notice that the

convex hull methods does not backfire, the ridge line is successfully smoothed. Although

not demonstrated in a figure, the convex hull and circular arc interpolation method will

produce nearly equivalent results when the radius of the interpolating circle is sufficiently

large.

6.3.3 Example of Smoothing Nodes

To demonstrate how well the node smoothing utility works, the elbow surfaces

created from the solid extraction utility in Chapter 7 have been smoothed in Figs. 41,42,

and 43.

Notice in Fig. 42, that the smoothed elbows appear to possess the Delaunay

triangulation properties from Chapter 3. Understand that this is not necessarily true, and

to insure that it is true, the Delaunay triangulation utility can be invoked after smoothing

nodes.



75

i - interpolation node

r12|cos0 + |r2-|cos8 = s|r13| (Equ. 5)

Figure 39 Demonstration of how to find an interpolation node on the
convex hull of three successive ridge or edge segments that is equidistant
from the end nodes.

(A) Original ridge or surface edge

(B) Circular arc interpolation method (bisection)

(C) Result after one iteration

Figure 40 Schematic of the convex hull interpolation method used on
nodes along a ridge or surface edge. Notice that this interpolation method
is an improvement from the circular arc method in Fig. 38.
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(A) Original surface before smoothing nodes

(B) After smoothing nodes using circular arc interpolation along ridges

This ridge line is
than the original

(C) After smoothing nodes using convexhull interpolation alongridges

This ridge line is much
smoother than the original

Figure 41 Close-ups of a surface with a well defined ridge line showing a
comparison of the interpolation methods for smoothing nodes. Notice the
circular arcinterpolation method can roughen rather than smooth.



(A) Before smoothing nodes

0 "o

(B) After Smoothing Nodes

0 "o

Figure 42 Before (A) and after (B) node smoothing. Notice that the
smoothed surfaces appear to posses the Delaunay triangulation properties.
Units are in microns.
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(A) Before smoothing nodes

Figure 43 An aerial view of the elbow shaped surfaces before (A) and
after (B) node smoothing. Notice that bumps along the outer ride of the
largerelbow havebeensmoothed out.Units are in microns.
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Chapter 7:

Extraction of Solids from a Single Surface

7.1 Introduction to the Solid Elbow Extraction Problem

The subject of this chapter, the extraction of solid geometries from a single

triangulated surface, details a solution to the original problem that inspired and required

the implementation many of the surface modeling utilities presented in this thesis. This

chapter is organized in a story-like manner whereby the procedure to extract solids is

outlined and applied to a real example; the extraction of solid elbows. At intermediate

stages in the procedure, necessary algorithms are discussed and applied to the elbow

example. The intended purpose for solid extraction could vary from one application to

another. The application that required this work is discussed in Chapter 8.

Presented in Fig. 44 is an introduction to the solid elbow extraction problem. The

Mask... (B)

Figure 44 The formation of the solid polysilicon elbows represented by a
single advanced surface generated from a lithography and etching process
using SAMPLE-3D. Units are in microns.
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elbow shaped mask and simulation volume containing a layer of negative resist,

polysilicon, and oxide are given in Fig. 44 A. A simple lithography and etching process

usingSAMPLE-3D was used to advance the initially flat surface into the conformal elbow

shape of the wafer materials represented in Fig. 44 B. The process began by calculating

an aerial image,bleaching the resist, and developing the resist in a lithography step. The

resulting resist pattern was then transfened to the polysilicon by a reactive ion etching

simulation. The surface advanced in time and was influenced by self-shadowing and

bombardment [18]. The layer of oxide was used as a substrate allowing for a complete

etch through the polysilicon layer. The elbow pattern emerged in the single triangulated

surface representation shown in Fig. 44 B. This result is the starting point for the

extraction procedure. The objective is to extract the volumes of remaining polysilicon by

representing them as enclosed triangulated surfaces.

7.2 Overview of the Extraction Procedure

To extract the solid geometry from the polysilicon layer, aconstructive procedure

of intersecting the simulated surface with "cutting planes" is used. Altogether, six

different cutting planes are used. Two of them represent the interface between the layer of

resist with the polysilicon and the polysilicon with the layer ofoxide. The remaining four

cutting planes are the simulation boundary planes in the X and Y axis directions.

Although this example makes use of planar cutting planes, non-planar surfaces could also

be used for cutting.

After intersecting the simulated surface with the initial two cutting planes,

unwanted surface conesponding to the layer ofresist and oxide is identified and removed.

To do this, deloop algorithms are employed [7]. This removal procedure is physically

analogous to the chemical reaction of stripping offthe resist and the removal ofoxide by

chemical means or sputter etching. To complete the procedure, the same deloop

algorithms are again employed to remove the unwanted surface after intersection with the
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simulation boundary planes.

The reason for not simultaneously intersecting the simulated surface with all six

cutting planes is two fold. First, separating the intersection and unwanted surface removal

into three steps avoids thethree plane intersection problem. Second, after intersecting two

triangulated surfaces, irregular thin shaped triangles result that must be corrected before

proceeding with the intersection of the next set of cutting planes.

Finally, the enclosed solids are represented by a single linked list of triangles and

must be separated into individual lists conesponding to each of the formed solids.

Following this step, each enclosed surface is oriented with outwardpointing normals.

Below is a simplified account of the extraction steps:

• 1 Introduce 6 new flat surfaces (2 at a time) that represent the resist/poly
^ interface, poly/oxide interface, and the4 simulation boundaries.
o
o

,J 2 Intersect the new surfaces with the original etched surface.
o

g 3 Combine multiple intersecting surfaces into one surface.
CO
J-l

a 4 Remove the unwanted surface.

1— 5 Identify and remove thin triangles without altering topographical features.

6 Identify the enclosed surfaces that remain.

7 Orient triangles to conect for a properoutward surface normal.

7.2.1 Initial Surface Intersections and Combinations

In Fig. 45, the first three steps of the extraction procedure are illustrated. In Fig. 45

A, the original surface is simultaneously plotted with the cutting planes. Accompanying

the plot is a representation of the linked list of triangles conesponding to the three

individual surfaces. In Fig. 45 B, the surfaces are intersected. The corresponding linked

list representation shows that the triangles from each of the three surfaces have
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(A) 3 Independent Surfaces
Etched a
SurfaceZi
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Flat a Flat a
Resist/Poly/A Poly/Oxide A
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1 t -*
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(B) 3 Intersected Surfaces
Etched a

Surface Za

*
A.

A-

Flat A
Resist/PolyZA
Surface A

Flat
Poly/Oxide
Surface

(C) 1 Self-Intersecting Surface

Single «
Surface ZA

Figure 45 Illustration of how the original surface is intersected and
combined with the first two cutting planes (steps 1,2,3, in the extraction
procedure).
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connectivity relationships to the other surfaces' triangles. Finally in Fig. 45 C, the three

linked lists are concatenated into one linked list. At this point, the plot of Fig. 45 C

represents asingle self-intersecting surface containing many thin triangles resulting from

the surface intersections.

7.2.2 Removing Unwanted Surface

Having intersected and combined multiple surfaces into a single self-intersecting

surface as shown in the plot of Fig. 45 C, the next step in the extraction process is to

remove unwanted portions of the surface. To accomplish this step, a variation of the

deloop algorithms developed by John Helmsen for lithography simulation [7] are

employed.

The first step in delooping a self-intersecting surface is to identify at least one

triangle that will either remain with the surface or will be removed with the loops. In

Helmsen's work, he assumed that the list head triangle, positioned in the comer of the

simulated surface, was always positioned on a valid portion of the surface. Therefore the

list head triangle was marked for "keeping". In the solid extraction example, this

assumption is not valid. In fact, the list head triangle could be positioned anywhere.

Identifying a triangle for "keeping" or "removal" is where this variation in Helmsen's

algorithm lies.

A simple method, although not a fully robust method, to find triangles for keeping

or removing is to locate nodes ata comerof the simulation region. In a comer, eachnode

is positioned equally in X and Y but has different Z coordinates. By comparing the value

of the Z coordinateof the node conesponding to the original surfacewith the cutting plane

nodes, three triangles (each adjacent to one of the comer nodes) can be marked for

keeping or removal. Recognize that the cutting planes bound the layer of material we

wish to extract. Therefore, if the comer node conesponding to the original surface is
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positioned above the extraction layer, it is marked for removal while the cutting plane

nodes aremarked for keeping. If the comer node conesponding to the original surface is

positioned between the cutting planes, then it is marked for keeping while the upper

cutting plane node is marked for removal, and the lower cutting plane node is marked for

keeping. Lastly, if the comer node conesponding to the original surface is positioned

below the lower cutting plane node, then all three nodes are marked for removal. These

three cases are presented in the 2 D illustration of Fig. 46.

Having identified three triangles (each adjacent to one of the comer nodes) for

keeping or removing, the delooping algorithm employs a breadth-first search method to

remove or keep triangles across the surface until segments on the intersection line is

reached. Crossing the intersection line, a new breadth-first search proceeds and does the

opposite keep or remove operation to the triangles. A complete description of the

delooping algorithm is found in Helmsen's work [6,7].

7.2.3 Removing Thin Triangles and Repeating the Intersection Loop

Now that the process for intersecting, combining, andremoving unwantedsurface

has been established, thin triangles resulting from the surface intersections are removed.

Because the thin triangle removal procedure has many interesting details, it is the subject

of Chapter 5. For now, let us assume that thin triangles throughout the surface are

removed while preserving the characteristic features of the surface such as edges, ridges,

and comers.

The process is now repeated twice; once with two new cutting planes representing

the X simulation boundaries, and once with two new cutting planes representing the Y

simulation boundaries. Intermediate steps in the intersection loop are given in Fig. 47. It

is important to note that the surface preparation is handled slightly different during the

second and third pass of the intersection loop just before intersecting and delooping.



(A) 2D cross-section of the self-intersecting surface

Nodes on the
intersection line

(B) Case 1 for deloop preparation

(C) Case 2 for deloop preparation

(D) Case 3 for deloop preparation

Resist/Poly

Poly/Oxide

Etched

)g( Node for removal
O Node for keeping

Figure 46 Identifying three triangles/nodes for "keeping" or "removal".
These are used in a preparation step for removing unwanted surface using
Helmsen's deloop algorithms.
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0^2

0^-2 0^2

0^2 0^2

Figure 47 Intermediate stages in the intersection loop of the extraction
procedure.
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Because the cutting planes are coplanar with the simulation boundaries and triangles that

intersect along the edge ofanother triangle are not considered true intersections, the nodes

along the surface edge of the non-cutting plane surface are slightly pushed outside the

simulation boundaries. This has twobenefits; it permits true triangle intersections, and it

facilitates the selection of a.triangle for keeping or removal prior to delooping (any

triangle positioned outside of thesimulation boundary suffices).

7.2.4 Separation of a Discontinuoussurface into Individual Surfaces

At the point in the extraction procedure depicted in Fig. 47 F, a single surface

containing multiple disconnected groupings remains (Fig. 47 F shows two groups). The

linked list of triangles, segments, and nodes needto be separated into individual surfaces

representingeach groupingas a separate surface. This objective is depicted in Fig. 48.

(A) A single surface containing
disconnected groupings

(B) Multiple surfaces resulting in
disconnected groupings

Figure 48 A linked list representation of a single surface containing
multiple groupings (3) that are separated into multiple individual surfaces.

To determine the number of groupings in a surface and decompose it into multiple

surfaces, the following pseudo code procedure is followed:
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reset flags within the triangle, segment, and node list to 0

initialize a group counter to 0

while (a triangle exists whose flag is set to zero)

{

increment the group counter

flag the triangle with the current value of the group counter

perform a breadth-first search marking adjacent triangles

with the same value of the group counter

}

flag all the segments connected to the triangles with the same
value as the their corresponding triangle's flag

flag all the nodes connected to the segments with the same value
as the their corresponding segment's flag

initialize "group counter" number of new surfaces

for each surface element (triangles, segments, and nodes) in
the flagged surface

{

delete the element from the original surface and append it to
a new surface identified by the flag of the surface element

}

destroy the original surface which should now be empty

7.2.5 Orienting Triangles of an Enclosed Surface

In pursuit of extracting enclosed surfaces from a single surface, many operations

have taken place including the creation of cutting planes, surface intersections, thin

triangle removal, and regrouping. Unfortunately, consistency in the direction of the

triangles' outward normals are not maintained by all of these operations. Thus the final

step of reorienting the triangles can be regarded as a clean-up step.

Figure 49 shows an illumination plot where triangles are individually painted with

a grayscale value proportional to the angle between the triangle's outward normal

direction and direction to the illumination source. If the triangle's outward normal
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direction opposes the direction toward the illumination plot, the triangle is painted black.

As seen in Fig. 49 A, many triangles alternate in their shading intensity. This indicates

that many adjacent triangles do not share aconsistent outward normal direction. In Fig.

49 B, this problem has been conected. To correct triangles for consistency in the direction

of their outward facing normals, the following illustrated steps are followed:

1 Examine the outward normal of the enclosed surface's head triangle by
extending a directed lineoriginating atthecenter of the head triangle.

2D Cross-section of an enclosed surface

Head

" Intersection of head triangle's normal with surface

2 Check every triangle in the surface for an intersection.

No Intersection Intersection

Angle Sum ..••$
< 360°

Angle Sum ..•"<
= 360° "

3 If an odd number of intersections are found, reorient the head triangle,
otherwise do nothing.

4 In a breadth-first search manner, orient the triangles adjacent to the head
triangle to have consistent outward pointing normals.

Inconsistent
Orientation

Head

Consistent
Orientation

Note the above procedure can be used to orient triangles of a non-enclosed surface

(has at least two surface edge segments) by replacing steps 1-3 with a decision about the

proper direction for the head triangle's normal direction. Then step 4 is repeated.
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Figure 49 Two enclosed surfaces containing disoriented triangles (A), and
the result after being corrected for orientation (B). Note these elbows were
simulated with a finer mesh (C) than those presented earlier in this chapter.
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7.3 Improving the Efficiency of Solid Extraction

Although the solid-extraction utility has been designed to handle non-planar

cutting planes, future use may show that planar cutting planes like those in the elbow

example are most common. If this is the case, efficiency in the spatial partitioning and

intersection steps can be improved. During the extraction step depicted in Fig. 47 A,

triangles in the non-planar simulation surface whose nodes do not straddle either cutting

plane need not be inserted into the octtree since they are not candidates for intersections.

Likewise, only triangles bordering the simulation boundaries are intersection candidates

during the extraction steps depicted in Fig. 47 C and 47 E. These enhancements should

have a noticeable run-time improvement since the number of triangles inserted into the

octtree is reduced. Consequently this also reduces the number of triangle intersection

tests.

Although less significant, another source for improving run-time speed is in the

triangle reorientation step. As stated in Sec. 7.2.5 and illustrated in Fig. 49 A, triangle

orientation can be adversely affected during the solid extraction procedures. To conect

the inconsistent orientation and give the enclosing surface an outward pointing normal, a

four step procedure with a running time,of 0(2n) was given. In step 2 of the procedure,

every triangle is tested for an intersection with the directed normal vector of the head

triangle. Because the cunent implementation has already spatially partitioned all triangles

into an octtree, intersections with the head triangle's normal vector need only be checked

with triangles in the octtree cells pierced by the vector. This would reduce the running

time for reorientation by approximately 50%.

Although not necessarily an efficiency improvement, it would be nice to eliminate

the need for reorientation by moving the responsibility for initialization and maintenance

of the triangles' orientation to the initialization and re-triangulation operations. Inspection

of Fig. 49 A shows that the cutting planes were not oriented before they were used.
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Provided the cutting planes areplanar, as depicted throughoutthis chapter, the direction of

their outward normals could have been properly initialized without enor. Then

subdivided triangles introduced during the surface intersection steps would have to be

inserted while maintainingconsistentorientation with its neighbors. With the exception of

the triangle flipping operations, the thin triangle removal routines would not have to be

modified since the orientation of triangles sunounding a removed triangle are not altered.

With these changes, the presence of disoriented triangles canbe eliminated.
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Chapter 8:

Interconnect Analysis

8.1 An Application of the Surface Modeling Utilities - Interconnect
Analysis

The driving force that inspired the development of most of the surface modeling

utilities in this thesis was the need for computing parasitic interconnect parameters on

rigorously simulated three dimensional surfaces. FASTCAP and FASTHENRY are both

programs developed by Professor Jacob White at M.I.T. [13,11] that can respectively

compute capacitance and inductance matrices on 3D topologies. In addition, many

device simulators [21,17,18,3,1] have been (are being) developed that can rigorously

simulate 3D topology results from integrated circuit manufacturing processes. Having

both of these tools available, it is a natural desire to use them for prediction of parasitic

parameters such as mutual capacitance on the simulated topologies. To accomplish this

taskhowever, it is necessary to first extract solid geometries from the surface simulators as

presented in Chapter 7.

In this chapter, a comparison is made between SAMPLE-3D's rigorously

simulated polysilicon elbows presented in Sec. 7.1 (Introduction to the Solid Elbow

Extraction Problem) and a pair of first order approximation elbows generated using

CUBEGEN, one of a few primitive solid model generators accompanying the FASTCAP

package. We will see from the polysilicon elbow example that parasitic capacitance

calculations based on topologies that deviate from a realistic profile can produce

significant overestimates.
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8.2 Generating an Elbow Model using CUBEGEN

For the sake of comparing capacitance results between different methods of

estimating the geometry of etched polysilicon elbows, CUBEGEN is used to create a solid

model and compare the resulting capacitance analysis with that of the SAMPLE-3D

results. To model the elbows using CUBEGEN, one could approximate the elbow

geometry as a direct extrusion of the polysilicon through the mask, or for more accuracy

one can use information from the aerial image generatedduring the SPLAT [5] simulation

shown in Fig. 50. Using the 30% percent threshold model from the aerial image to closer

Aerial Image of Elbows

•^•"••••^^^^^^^^^••^^^^^^^^^

X-Axis

Figure 50 Aerial image through the elbow mask using SPLAT.

approximate the actual feature widths of the elbows, a 0.4 micron feature width along the

longitudinal portions is measured. Coincidently, the width of the mask features are also

0.4 microns. Thus the direct extrusion approximation and the 30% threshold model yield

the same width approximation along the longitudinal portion of the polylines away from

the elbowcomer. In Fig. 51, the rigorously simulated andextruded polysilicon elbowsare

shown.



(A)

Figure 51 3D representations of polysilicon elbows generated from a
rigorous topography simulator (A) and a first order mask extrusion
approximation (B).
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8.3 Comparison of Capacitance Analyses

Having created two models of the solid polysilicon elbows, one using SAMPLE-

3D and one using CUBEGEN, input files are created for FASTCAP and the capacitance

analysis is done. Figure 52 shows the final few lines of FASTCAP output from the

analysis of both models.

Of interest from the FASTCAP results is the capacitance matrix which shows the

self capacitance of each solid with infinity and the mutual capacitance between the

elbows. Table 1 lists the difference between the results as a percent difference with

respect to the SAMPLE-3D elbows. Notice the significant 44% difference in mutual

capacitance.

Table 1 Percent Difference of capacitance matrices
withrespect to the SAMPLE-3D matrix.

Large Elbow 1 Small Elbow 2

Large Elbow 1 +19% +44%

Small Elbow 2 +44% +27%
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INPUT SUMMARY

Expansion order: 2

Number of partitioning levels: 4

Overall permittivity factor: 1

Total number of panels: 774

Number of conductor panels: 774

Number of dielectric interface panels:0

Number of thin conductor on dielectric

interface panels: 0

Number of conductors: 2

No expansions at level 4 (lowest)

Percentage of multiplies done by multipole:

78.8%

|CAPACITANCE MATRIX, attofarads
1 2

560_Tria_Poly%GROUPl 1 78.41 -26.16

214_Tria_Poly%GROUPl 2 -26.16 48.56

INPUT SUMMARY

Expansion order: 2

Number of partitioning levels: 3

Overall permittivity factor: 1

Total number of panels: 396

Number of conductor panels: 396

Number of dielectric interface panels:0

Number of thin conductor on dielectric

interface panels: 0

Number of conductors: 2

No expansions at level 3 (lowest)

Percentage of multiplies done by multipole:

62.4%

CAPACITANCE MATRIX, attofarads

1 2

1%LARGE_ELB0W 1 93.6 -37.61

1%SMALL ELBOW 2 -37.61 61.53

Figure 52 Comparison of capacitance analysis results using FASTCAP.

8.3.1 Accounting for the Difference in Mutual Capacitance

Because the difference in capacitances appears so large, one may suggest it is due

to numerical issues caused by the coarse tiling of the solids. This is a valid issue for the

following reason. FASTCAP assumes that the charges are uniformly distributed across a

panel, and when this assumption is inadequate, inaccurate results occur. In fact, it is

known that charges across the elbow structures will accumulate along the structure's

edges. The authors of FASTCAP realized this and consequently built their primitive solid

modelers to automatically discretize the panels along the surface edges. By making this

discretization, the uniformity of charge distribution across individual panels is improved.

The discretization is apparent in Fig. 51 B and 52 B.

With the concept of uniform charge distribution in mind, it would make sense that
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finer triangulations and finer panels would lead to more accurate results. Of course the

accurate results will be at the expense of cpu time. To test this hypothesis and establish

the adequacy of the capacitance results in Fig. 52, both the SAMPLE-3D and CUBEGEN

elbows were regenerated with finer panels (1444 triangles and 1100 panels respectively)

and FASTCAP was re-executed. The results are shown in Fig. 52. The resulting

xterm SAMPLE-3D Elbows

INPUT SUMMARY

Expansion order: 2

Number of partitioning levels: 4

Overall permittivity factor: 1

Total number of panels: 1444

Number of conductor panels: 1444

Number of dielectric interface panels:0

Number of thin conductor on dielectric

interface panels: 0

Number of conductors: 2

Percentage of multiplies done by multipole:

85.5%

CAPACITANCE MATRIX, attofarads

1 2

1046_Tria_Poly%GROUPl 1 78.98 -26.24

398_Tria_Poly%GROUPl 2 -26.24 48.61

Xterm CUBEGEN Elbows

INPUT SUMMARY

Expansion order: 2

Number of partitioning levels: 4

Overall permittivity factor: 1

Total number of panels: 1100

Number of conductor panels: 1100

Number of dielectric interface panels:0

Number of thin conductor on dielectric

interface panels: 0

Number of conductors: 2

Percentage of multiplies done by multipole:

89.3%

CAPACITANCE MATRIX, attofarads

1 2

1%LARGE_ELB0W 1 94.14 -37.95

1%SMALL ELBOW 2 -37.95 61.99

Figure 53 Comparison of capacitance analysis results using FASTCAP
with finer panels than analyzed in Fig. 52.

capacitance analysis was within 1% of the results shown in Fig. 52. Thus the adequacy of

the previous results are established.

One may also question the effect of removing thin triangles on the capacitance

results. Again a capacitance analysis was conducted on the elbow structures before and

after thin triangle removal only to find that the FASTCAP simulation was three times

faster after thin triangles were removed (likely due to the reduced triangle count), and the
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capacitance matrix results were within 1.5% of eachother.

Having disputed the reasons above as major contributors to the difference in the

models' mutual capacitances, the 44% capacitance difference reported in Table 1 is most

likely due to appreciable differences in geometry, not the coarseness or regularity of the

tiling.

8.3.2 Geometric Differences in the Elbow Models

One geometric difference between the SAMPLE-3D and CUBEGEN elbow

models is that the SAMPLE-3D simulation accounts for light diffraction at the elbow

comers yielding a more realistic profile. The rounding of the elbows' comers as well as

the slight rake of the side walls is enough to change the surface area and local distance

betweenelbows which are importantparameters in the capacitance calculation.

Inspection of the overlaid plots in Fig. 54 shows the geometric differences in line

widths, comer rounding, and side wall raking. Table 2 quantifies the differences by

measuring surface area and separation distances. Notice that the CUBEGEN elbows have

20% more area and are 27% closer to each other. These are significant differences in

Table 2 Geometric differences between the SAMPLE-3D and

CUBEGEN generated elbow models.

SAMPLE-3D CUBEGEN % Difference

Surface Area (u\m2) 1.77/4.09 2.24/4.80 +20%

Separation Distance (|nm) 0.55 0.40 -27%

geometry and will undoubtedly lead to significantdifferences in mutual capacitance.

8.3.3 Incorporating a Bias in the CUBEGEN Model

Thus far we have established that a CUBEGEN model generated as an extrusion

through the mask and a CUBEGEN model generated with 30% threshold information
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Figure 54 Overlaid plots showing geometric differences in the elbow
models. Units are in microns.

from the aerial image will both lead to capacitance analysis results that are 44% greater

than capacitance results from a more realistic model. At this point, a circuit designer may

ask, "If I incorporate enough bias in the CUBEGEN model to closely approximate the

actual surface area and separation distance, how realistic will the capacitance be?" This

question is quite relevant since this is the approachcircuit designers take when predicting

capacitances. The difficulty in this method is knowing how much bias to introduce.

Despite this difficulty, another CUBEGEN model is generated to test the circuit designer's

question.

To generate a CUBEGEN model that closely approximates the surface area and

separation distance of the SAMPLE-3D model, a 0.5 micron mask bias is required. The
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small geometric differences aregiven in Table 2., andoverlaid plots are given in Fig. 54.

Table 3 Geometry tabulation of the SAMPLE-3D and
CUBEGEN elbows generated with a 0.5 micron mask
bias to reduce geometric differences.

SAMPLE-3D CUBEGEN % Difference

Surface Area (pm2) 1.77/4.09 1.83/4.07 +1%

Separation Distance (|xm) 0.55 0.50 -9%

Top View

Side View

Figure 55 Overlaid plots showing small geometric differences between
the SAMPLE-3D model and CUBEGEN model generated with a 0.5
micron mask bias. Units are in microns.

The capacitance analysis results ofthis test are shown in Fig. 56, and Table 1contains the

percent differences in capacitance. Notice that the mutual capacitance difference has



Xterm SAMPLEr3D;Elbows

INPUT SUMMARY

Expansion order: 2

Number of partitioning levels: 4

Overall permittivity factor: 1

Total number of panels: 774

Number of conductor panels: 774

Number of dielectric interface panels:0

Number of thin conductor on dielectric

interface panels: 0

Number of conductors: 2

No expansions at level 4 (lowest)

Percentage of multiplies done by multipole:

78.8%

CAPACITANCE MATRIX, attofarads

1 2

560_Tria_Poly%GROUPl 1 78.41 -26.If

214_Tria_Poly%GROUPl 2 -26.16 48.51

xterm CUBEGEN Elbows;

INPUT SUMMARY

Expansion order: 2

Number of partitioning levels: 3

Overall permittivity factor: 1

Total number of panels: 396

Number of conductor panels: 396

Number of dielectric interface panels:0

Number of thin conductor on dielectric

interface panels: 0

Number of conductors: 2

No expansions at level 3 (lowest)

Percentage of multiplies done by multipole:

69.4%

CAPACITANCE MATRIX, attofarads

1 2

1%LARGE_ELB0W 1 83.55 -30.33

1%SMALL_ELB0W 2 -30.33 53.42

Figure 56 FASTCAP analysis comparison between the SAMPLE-3D
elbows model and the CUBEGEN model incorporating a 0.5 micron mask
bias to reduce the geometric differences.

reduced to 16%. This answers the circuit designers question.

Table 4 Percent Difference of capacitance matrices
with respect to the SAMPLE-3D matrix.

Large Elbow 1 Small Elbow 2

Large Elbow 1 +7% + 16%

Small Elbow 2 +16% +10%
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Provided the circuit designer can exactly predict the required mask bias, the

capacitance result will becloser to that ofa more realistic geometry model, but it is still a

considerable over-estimate.
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8.4 A Final Word on Interconnect Analysis

The geometric differences inthe polysilicon elbow models were significant and led

to significant differences in the capacitance analysis. Elliot, Allan, and Walton [4] realized

how sensitive interconnect analysis is to 3D geometry and demonstrated that parasitic

capacitance values using conformal and planar 3D data can be significantiy different. In

the tools that they developed, first order approximations like the CUBEGEN elbows are

manipulated in a simple way toconform to non-planar substrates. Although their tools do

not rigorously simulate the local topography of the device features, they do convey the

message that circuitdesigners need to employ more realistic 3D topography simulators to

improve the accuracy of their interconnect analyses. Incorporating educated biases in the

mask will help the accuracy of the capacitance predictions, but the errors can still be

appreciable.

On a greater level of accuracy, the capacitance comparison of the polysilicon

elbow example in this chapter supports Elliot, Allan, andWatson's observations and hence

the importance of the relationship between manufacturing and chip performance.
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Chapter 9:

Summary

In this thesis, a number of surface modeling utilities have been presented for use in

correcting triangle irregularities that develop during surface advancement by process

simulation tools of integrated circuits. Although these utilities are intended to support

TCAD tools, they were developed in general enough context that they could be used to

address a broader audience of scientific triangulation problems.

Of notable interest in this thesis was the introduction of a new means by which

integrated circuit designers can perform interconnect analyses using results from

rigorously simulated 3D topologies. An example comparing the capacitance matrices

from a rigorously simulated surface employing the new solid extraction utility was

compared to acommonly used first-order method for device approximation. Interestingly,

the first-order model lead to aconsiderable (44%) over-estimate of thecapacitance matrix

calculated by FASTCAP. The significant difference in capacitance was largely

attributable to geometric differences such as surface area and separation distance between

the conductors. This result reestablishes the need for more accurate 3D semiconductor

device simulators and the supporting surface modeling utilities needed to improve the

robustness of the simulators.

While 3D semiconductor topography simulators are still somewhat slow and

require extensive memory for entire wafer layouts, future projects to simulate portions ofa

layout such as lines, elbows, and T-shaped conductors followed by solid extraction and

capacitance analysis are feasible. Results from these experiments can be tabulated with

corresponding correction factors. In this way, circuit designers can apply these factors to

crude models while obtaining more realistic capacitance analyses in a fast time-frame.
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This vision that has already prompted Alex Quezada's tabulation ofcapacitance correction

factors for a setof isotropic etched T-shaped conductors [16].

Regarding the state of the software used to implement the surface modeling

utilities, there are many ways in which efficiency can be improved. Atthe end ofmany

chapters, abrief discussion was included about how and where significant improvements

can be made. Before continuing development of these utilities, the issues presented in

these sections should be considered.

To date, at least five different people have added functionality to the software

(NETCH). Because few have been members of the Berkeley TCAD Research Group at

the same time, little communication to preserve a consistent software methodology has

occurred. Consequently, the software organization and implementation of NETCH suffers

from a lack of structured software engineering practices. A number of modules are

sparsely commented and few header files are used todeclare the type and usage of public

functions. Before continuing development of NETCH, I would suggest that a serious

effort be made to restructure, or rewrite some of the current modules. In this way,

software maintenance and extensibility can be made much easier. This project may also

entail the development of a new framework in which the algorithms currently housed

within NETCH shouldreside. Refer to Robert Wang's thesis [24] for adetailed discussion

of this framework. This restructuring project is well suited for a computer science

graduate student interested in software engineering of scientific applications.
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Appendix - User's Guide

The algorithms developed in this thesis have been packaged within NETCH release

version 2.1. The following list contains an extension to the SIMULATOR COMMANDS

section of the man page for NETCH.

SIMULATOR COMMANDS (additional):

unitization commands:

savejsurface surface_idsim_parameters node_directionfilename;

This command is used to save the geometry and some optional information
obtained from running a NETCH simulation. This is useful for saving
intermediate states of the surface so that it can be loaded back into NETCH's

data structures at a later time for continued simulation or operations. The
parameters include:

surfaceJd=-l will process all surfaces, otherwise only the indicated is
processed. NETCH tagseach surface with an integerstarting with 0, then
1,2, etc.

sim_parameters=l saves the necessary simulation parameters used during a
facet etching or deposition process, otherwiseuse 0.

nodejiirection=\ saves the node advancement-information for ray etching,
otherwise use 0.

load_surface filename',

This command loads the geometry and possibly some simulation parameters of
a surface that was saved using the save_surface command. This is useful for
continuing a long simulation process from anintermediate state. If the file was
generated by some other means, the contents of the file allows any and all
simulator commands listed in the man page for NETCH as well as the
following geometry commands:

Surface surfID;

Node nodelD xyz\

Segment segmID nodelD nodelD',

Triangle trialD segmID segmID segmID;
Forthe geometry commands to work properly, the Surface command must
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proceed all the elements belonging to the surface, and all elements ID's
referenced inan argument list must have been previously defined.

create_surface_x x;

Within the simulation boundaries defined by simjregion, initialize a flat
surface atx with a mesh density setby themeshdensity command.

create_surface_y y;

Within the simulation boundaries defined by simjregion, initialize a flat
surface aty with a mesh density setby themeshdensity command.

create_surface_z z\

Within the simulation boundaries defined by simjregion, initialize a flat
surface at z with a mesh density set by the meshdensity command. Note that
this command is not required to begin a simulation. A similar operation is
automatically executed when the program first executes.

surface triangulation commands:

calc_surface_area [surface_id];

For the indicated surface, compute the area of all triangles within the surface.
Setting surface_id=-l will perform the operation on all defined surfaces.

calc_coplanarity [surface_id];

For the indicated surface, calculate a normalized coplanarity vector at each
node. As the magnitude of the coplanarity vectors approach 1.0, the surface is
perfectly flat at the node. As the coplanarity vector approaches 0.0, the surface
comes to a cusp at the node. See the plot3Dmtv_vectorscommand for viewing
the result of these calculations. Setting surface_id=-l will process all defined
surfaces.

ridge_angle degrees;

Specifies the dihedral angle between adjacent triangles above which the
adjoining segment is considered to be of topological significance. The
ridge_angle parameter is used to make topological decisions in operations like
removeJhinjrias and delaunay_surface. The default is 45°.

remove_thin_trias I[surfacejd] degrees];

Remove all the thin triangles throughout the identified surface without altering
any significant topological features. Setting surface_id=-l will perform the
operation on all defined surfaces. The optional degrees parameter is used to set
the ridgejzngle which is used to identify a topologically significant segment
whose topology must be preserved during the removal of its adjacent thin
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triangle.

delaunay.surface [[surfaceJd] degrees];

For the identified surface, alterthe triangulation of the mesh so it possesses the
properties of a 2 */2 D Delaunay triangulation. Setting surfacejd=-\ will
process all defined surfaces. The optional degrees parameter is used to set the
ridgejangle which is used to identify a topologically significant segment that
should not be flipped in the Delaunay triangularization process.

decimate_surface [[[surfacejd] incremental] calc_coplanarity]
copl_threshold];

To decimate the indicated surface means to reduce the mesh granularity in
regions where the surface curvature is low. The decision to remove triangles is
based on the coplanarity calculations made by calcjcoplanarity. The
decimation arguments include:

surfacejd=-l will process all surfaces, otherwise only the indicated is
processed. NETCH tags each surface with an integer starting with 0, then
1,2, etc.

incremental=l will decimate the surface using an incremental algorithm.
When using the incremental algorithm, not all the nodes whose coplanarity
vector has a magnitude greater than copljhreshold are removed.
Afterwards, youmaywantto removeJhinjrias and do a delaunay_surface
operation. Setting incremental^ will usea fastgreedy algorithm that will
try to remove all the nodes whose coplanarity vector has a magnitude
greater than copljhreshold. The defaultis incremental^.

calc_coplanarity=l will issue a call to the calcjcoplanarity operation with
surfacejd. Setting calc_coplanarity=Q will not calculate the coplanarity.
Be aware that the coplanarity must be calculated before you can
successfully decimate the surface. The option not to calculate the
coplanarity is useful when you are using the incremental algorithm to
decimate triangles a little at a time. This allows successive decimations to
be based on the initial topography.

copljhreshold is used to inform the algorithm the tolerable amount of
normalized surface coplanarity beyond which the surface can be
considered flat. See the command description for calcjcoplanarity. The
default is 0.98.

smooth_triangles [surfacejd];

Without repositioning any nodes, re-establish a mesh connectivity thatreduces
the crenulation of the surface. Mathematically, this command minimizes the
dihedral angle between adjacent triangles. This command is useful for
reestablishing a ridge line along surface areas of high curvature. After issuing
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this command, it may be desirable to issue a delaunayjsurface and
removeJhinjrias command. Setting surfacejd^A will process all defined
surfaces.

smoothjaodes [surfacejd];
Without changing the mesh connectivity, position nodes at the geometric
center of their neighbor nodes. Particular attention is paid to nodes along a
ridge line defined by the ridgejangle command so as to maintain the
topographical features in the surface. After issuing this command, the surface
may appear to possess the properties ofa Delaunay triangulation. This is not
necessarily true. Setting surfacejd--\ will process all defined surfaces.

orient_surface [[surfacejd] orient];

Orient the triangles of the indicated surface so their nodes are consistently
ordered in the same direction. The optional orientparameter is used to set the
triangles orientation flag; use 1to orient them DOWN or -1 to orient them UP.
The defaultis 1. Setting surfacejd--\ willprocess all defined surfaces.

solid extraction commands:

extract_solidJayer surfacejd zjower zjipper,

Extracts the solid formed by the volume boundedby the z coordinates zjower
and zjupper along with the identified surfacejd. If mutiple groupings result
from the solid extraction, each groupingis reorganized in the data structures to
occupy its own surface. Note that further advancement of the surface should
not be attempted after the solid layerhas been extracted. Setting surfacejd-A
will process all defined surfaces; otherwise only the specified surface is
processed.

createjastcapjnput [[surfacejd]filename];

Creates a generic input file readable by FASTCAP from M.I.T. for calculating
capacitance matrices. The file created is called filename, or the default file
"fastcap.inp" can be used. Setting surfacejd=A will process all defined
surfaces; otherwise only the specified surface is processed.

execution and plotting commands:

plot3Dmtv [filename title subtitle xlabel ylabel zlabel nodeJD segmJD triaJD
thinjtria smallJria ridge_segm edge_segm intlinejsegm surfacejd];

Create a PLOTMTV input data file for viewing of the surface mesh, and then
execute the PLOTMTV program. All parameters are optional and assume a
default value when not specified.

nodeJD=l includes the node's ID number in the plot; nodeJD=Q does not.
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segmJD=l includes the segment's ID number in the plot; segmJD=Q does
not.

triaJD=\ includes the triangle's ID number in the plot; triaJD=Q does not.

thinjria=l will distinguish thin triangles with a magenta color; thinjria=0
does not.

smallJria=l will distinguish small triangles with a cyan color; smalljria=Q
does not.

ridgejsegm=l will distinguish segments positioned on a topologically
significant ridge with a blueish-green color; ridge_segm=Q does not. See
the command ridge jangle.

edge_segm-\ will distinguish segments positioned on the edge of the surface
with a purple color; edge_segm=0 does not. An edge segment has only one
adjacent triangle.

intline_segm=l will distinguish segments created during a triangle intersection
with a green color; intline_segm=0 does not.

surfacejd=A will plot all the defined surfaces; otherwise plot a specific
surface beginning with surfacejd=Q.

plot3Dmtv_vectors [filename title subtitle xlabelylabel zlabel nodeJD segmJD
triaJD triajidir nodejdvect nodej:opl_vect surfacejd];

Create a PLOTMTV input data file for viewing of various vector quantities,
and then execute the PLOTMTV program. All parameters are optional and
assume a default value when not specified.

nodeJD=l includes the node's ID number in the plot; nodeJD=Q does not.

segmJD=l includes the segment's ID number in the plot; segmJD=Q does
not.

triaJD=l includes the triangle's ID number in the plot; triaJD=Q does not.

tria_ndir=\ will show the triangles' normal vectors; triajidir=Q does not.

node_dvect=l will show the nodes' direction vectors; node_dvect=0 does not.

node_copl_vect=\ will show thenodes' coplanarity vectors; node_copl_vect=0
does not.

surfacejd-A will plot all the defined surfaces; otherwise plot a specific
surface.
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