Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYSTEM-LEVEL CODESIGN OF MIXED
HARDWARE-SOFTWARE SYSTEMS

by

Asawaree Prabhakar Kalavade

Memorandum No. UCB/ERL M95/88

26 October 1995

SYSTEM-LEVEL CODESIGN OF MIXED
HARDWARE-SOFTWARE SYSTEMS

Copyright © 1995
by

Asawaree Prabhakar Kalavade

Memorandum No. UCB/ERL M95/88
26 October 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

SYSTEM-LEVEL CODESIGN OF MIXED
HARDWARE-SOFTWARE SYSTEMS

by
Asawaree Prabhakar Kalavade
Doctor of Philosophy in Electrical Engineering
University of California, Berkeley

Professor Edward A. Lee, Chair

This thesis provides a systematic approach to the system-level design of
embedded signal processing applications. Such applications tend to have mixed
hardware-software components and are often subject to severe cost, performance,
and design-time constraints. Our approach is to codesign these systems. The code-
sign approach allows the hardware and software designs to be tightly coupled
throughout the design process. We focus on the four key problems of partitioning,
cosynthesis, cosimulation, and design methodology management. Applications are
assumed to be specified using synchronous dataflow semantics.

A key contribution of the thesis is to formulate the extended partitioning
problem. In system-level design, applications are represented as task graphs where
tasks (called nodes) have moderate to large granularity and each node has several

implementation options differing in area and execution time. The extended parti-

tioning problem involves the joint determination of the mapping (hardware or soft-
ware), schedule, as well as the implementation option for each node, so that the
overall area allocated to nodes in hardware in minimum. This problem is consider-
ably harder (and richer) than the traditional binary partitioning that determines just
the best mapping and schedule.

Both extended and binary partitioning problems are constrained optimiza-
tion problems and are shown to be NP-hard. We first present an efficient heuristic,
called GCLP, to solve the binary partitioning problem. The heuristic reduces the
greediness associated with serial traversal-based algorithms by formulating a glo-
bal criticality (GC) measure. The GC measure also permits an adaptive seleétion of
the objective (optimizing either area or time). We then present an efficient heuristic
for extended partitioning, called MIBS, that alternately uses GCLP and an imple-
mentation-bin selection procedure. The implementation-bin selection procedure
chooses the bin that maximizes the area-reduction gradient. Solutions generated by
both heuristics are shown to be reasonably close to optimal. Extended partitioning
generates considerably smaller overall hardware area as compared to binary parti-
tioning.

Our approach to cosynthesis is to generate synthesizeable descriptions of
the hardware and software components and to use pre-existing synthesis tools such
as Ptolemy and Hyper to generate the actual software and hardware implementa-
tions. Techniques for generating these synthesizeable descriptions, starting with a
partitioned graph, are discussed. Cosimulation involves simulating the hardware,
the processor, and the software that the processor executes, within a unified frame-
work. The requirements of a cosimulation framework are discussed and the 'use'of
Ptolemy for hardware-software cosimulation is illustrated.

Due to the large system-level design space, the system-level design prob-

lem cannot, in general, be posed as a single well-defined optimization problem.
Typically, the designer needs to explore the possible options, tools, and architec-
tures. We believe that managing the design process plays an equally important role
in system-level design, as do the tools used for different aspects of the design. To
this end, we present a framework that supports design methodology management.
We embody all the above concepts in a tool }called the Design Assistant.
The Design Assistant contains tools for partitioning, synthesis, and simulation and

operates in the design methodology management framework.

e AT

Edward A. Lee, Thesis Committee Chairman

To my parents
-Pratyush. ..

TABLE OF CONTENTS

ABSTRACT 1
DEDICATION iii
LIST OF FIGURES viii
ACKNOWLEDGEMENTS xi
1 INTRODUCTION 1
1.1 Issues in System-level Design..........cccovriirnncsernsisccsncncnnncesnnsnnnnees 3
1.1.1 Partitioningcccoseeeessssosnsesssssssseessssssesssscsassessssassassesessesassescass 4

1.1.2 System Synthesiscoeerirescrirecrnsnnsnrcnsiscsiscsnsnsessessesesscnnens 7

1.1.3 System Simulation..........ccceueeeeerrrisseniescsnsesssssnssnseessssssssssssssasssons 9

1.1.4 Design-Space EXplOrationccceceverecrcrnenecciersensesnssesacencend 9

1.2 The Codesign Philosophy for System-level Design.........c.cccccovveeeruncnee. 10

2 THE DESIGN ASSISTANT 12
2.1 A Typical Codesign Flow and Tools for Codesign..........cccoccoceererernencee 14

2.2 Requirements for Design-Space Exploration...........ccccocvevciveversurcnrucene. 18

2.3 Specification SEMANLICSccccevrrrerererraererreressasanesessssseeseesaesssensnsesesnses 19

2.4 Target ArCRItECIUTEcccociueverrrverniesscninnansssaesaeressesaesessessssssssassssasassans 21

2.5 Restrictions in the Design ASSiStant............cooveeirveneninennncennncnsssseseeens 23

2.6 SUIMMMATYccoveverreeeereererresreressersssassessesssssssasssossnsessassssssessessessessessassassans 24

3 EXTENDED PARTITIONING 25
3.1 Problem Definitioncoccececnineinenininsnccnesssssssssssssssscssessesssssssssassasees 26
3.1.1 ASSUMPHONScovturueneniererssaeresssasnssessssnsssssssssssssesaensanssssennaseans 27

3.1.2 Binary Partitioningccceeeceerucesnenecsessescsssesssnesessenessesasnssnans 28

3.1.3 Extended Partitioningc.ceceeveririresrecsncsesescssioecenensanseseseses 28

3.2 REIUEA WOTK....ococsessososes s 31
3.2.1 Binary Partitioning: Related Work.........cccccceeceneerenreenrveerrernerees 32

3.2.2 Extended Partitioning: Related Work...........cccceeveercneevereescrennes 36

iv

3.3 The Binary Partitioning Problem: GCLP Algorithmcceceuvurreuenens 37

3.3.1 Algorithm Foundationcccccceeeevenreerenensenecracseccnssncesssssssesass 37
3.3.2 Global Criticality (GC)........cccvereeerenrranesrresasescrennsesseseesssssnasssssaend 41
3.3.3 Local Phase (LP)cccoeveevrcrnenencrenencensannecsnessssssesesssssssnessenned 44
3.3.3.1 Motivation for Local Phase Classification..............coceueues 4

3.3.3.2 Local Phase 1 or Extremity nodesccccevcececeuceneencnnnas 46

3.3.3.3 Local Phase 2 or Repeller Nodes..........ccoccceneeecenccsnnacaes 49

3.3.3.4 Local Phase 3 or Normal Nodes........c.cccccoveurecsencmcensanccnnes 52

3.3.4 GCLP AIOTithmcooueerreercerrneeneecnnrnsnnnreraenencssnsaesnnensssssssesses 53

3.4 Performance of the GCLP Algorithmccoeeevevnriencecrerecenenseesenenne 56
341 EXAIMPIESccoeveererereeceetcnerrseneseeressssessesessesessssessesaesessssssnssssssas 56
3.42 Experiment 1: GCLP vs. ILP........c.cccevecenrennrenerscnnssssssssssosssassonns 58
3.4.3 Experiment 2: GCLP with and without local phase nodes.......... 60
3.4.4 AlGOrithm TIACEcccovevererrrererncrsensensrersnonsosseesssssnsssncssossnesnsssanses 61
3.4.5 Summary of the GCLP algorithm...........ccceceevenrrurvceuescnssacanonscnes 65

3.5 Algorithm for Extended Partitioning: Design Objectives...................... 66
3.6 Implementation-bin Selectionccccccerereerereerereesenererransesnseceseseaeeneand 69
3.6.1 OVEIVIEWccuirernincecnincnenssensssessssssassesssssssassssesnssnsessesssasassenss 69
3.6.2 Bin Fraction Curve (BFC)........ccccecemineenerenenrrennsaesesensesereensnens 71
3.6.3 Implementation-bin Selectioncceceeeemreccreneenenereceeaneeencs 73

3.7 The Extended Partitioning Problem: MIBS Algorithm.............cccceceue... 75
3.8 Performance of the MIBS Algorithm...........ccccoerneneeerereernsnsencsesnesenenes 77
3.8.1 Estimation of the Hardware Implementation Curve.................... 77
3.8.2 Experiment 1: MIBS vs. ILP..........ccovrrrrcenerreecnerreenerennesnnnnns 78
3.8.3 Experiment 2: Binary Partitioning vs. Extended Partitioning79
3.8.4 Parameter TUNINGccccocorrirreceeernmrarrecerresasansesssresseessessssessenens 81

3.9 SUMMATYcocorrinerininereneniesesnssssssesssessssssssesssssssssssssssassssessssessrasasssens 82
4 COSYNTHESIS AND COSIMULATION 84
4.1 COSYNLRESIS.......coviiiiiireininicieneiiassnsiensiaessssssesassessasesnssassassesessessansnens 85
4.1.1 Architectural Model............ccccoeeeninunuerrcenenrnrenenrerescsssseresssnnnns 85

6.2.1 Synthesis of Mixed Control-Dataflow Systems...........cccceeeeece 149

6.2.2 System-level Low Power Synthesiscccccoueuecveenecnecncvencnnns 150
6.2.3 Smart Frameworks..........coeeerrirmneieinssnsesseessesssenesssncsnssesasenss 150

7 REFERENCES 152
8 APPENDIX _ 162
Al ILP Formulation for Problem P1ociniinnienennenensencsenincncenes 162
A2 Proof of NP-Completeness for Problem P1oocooeniennenennncccinnncne 166
A3 ILP formulation for Problem P2cccocvivinnniinnnienienennnnnenseniessnnaens 167
A4 Complexity Analysis of the GCLP Algorithmcccevevveeeninieccncee. 172
A5 Complexity Analysis of the Bin Selection Procedure174
A6 Complexity Analysis of the MIBS Algorithmcoeurennennnecncnnens 175
A7 Algorithm for Random Graph Generationececeeeuencrereseenesseeenns 176
A7.1 Random DAG Generationcceceveriucsnesuesensnesnesasssersesssssesnees 176
A7.2 Generation of Hardware-Software Area-Time Values 177
A7.3 Implementation Curve GEnerationeccoeeseesereresssesesnances 181

A8 Estimation of Area and Execution Time Parameterscccceervenecee 182
A8.1 Hardware ESmAtioncccevevcrcrcseisensensunssnsnnsnesanssessesssssesnens 182
A8.2 Software ESmMAtioNcccccceeomecenrinscsssenesnnissesessssssnssssanannse 184

A9 Automated Flow Execution in the DMM Domainccccceverennenee 185
A9.1 Preliminariesc..coceviecerssisesnsensessissensessassnsssssessnssnssnessssasnane 185
A9.2 Run Al MOdEccoeeecvrrcnniisinesinssessssiesecsassssssssesssssessessessesnses 186
A9.3 Run Upto MOdEccecemrrviiisinrincsesnsnisesnssisnsansssessssssanssscssesssasnes 193
A9.4 Run This MOAEc.cocerruruerrncrercscsssenisanasmsesessesssssseesssmsassessesssess 193

4.1.2 The Cosynthesis APPrOACh........cccererrrrererereresesssessesssnsssssssssnns 90

4.1.3 Hardware SYnthesiscccoecvererrererernrerenenssesesssssssssssesensesssssanns 95
4.1.4 Software SYNthesisccceceeererererererereeseressssesssssessssssssssasseses 99
4.1.5 Interface SyNthesis.........ccceceeveverrererecrsreeneseenssssesessssssssesesesens 101
4.1.6 Other Synthesis APProaches.............cceceereurereceseseeersencseseserenens 103
4.1.7 SUMMEATY.......cocereerererereerneresreesseeresesesssesssssrsnssssesssssesssesesssssens 104

4.2 COSIMUIALONcocurecnecnrnrerrenescssesssresssssssesessssssssssssessssarssssssasasarassses 105
4.2.1 The Ptolemy Frameworkcccoeceueuerrenrerereeseseasesesnsssnsssenes 109
4.2.2 Cosimulation Using Ptolemy..........c.coceeeeuerrreeeesusuererrenenssessennes 113
4.2.2.1 System-level Modeling...........ccceeveeeruernreneereernesensesnenes 114

4.2.2.2 System SIMUlAHONcccoceevereerererirerererersnernesereresessssesenens 116

5 DESIGN SPACE EXPLORATION 118
5.1 Related WOrK......ccovurnrernniriesnesissnsssnssesessssssesssesssesssssssssssssesesssesosne 120
5.2 Design Methodology Management: Requirements.............cccevevevenecn. 122
5.3 INFTaSITUCKUTEccccvmrererrrrerrererssrersnnraessesssssessesessssesesesnssssesessssssosssasaens 124
5.3.1 Flow, Tool, and Data Model.............cccecovreerreemmereerensererennannans 124
5.3.2 DEPENAENCIEs..........coceverererneeerererenennsesssesssesesssssessasesssssssssssase 127
5.3.3 Flow Managementccceereererenenersnenenesenencsessossesnsesassenssens 128

5.4 Implementation: DMM Domain within Ptolemy.............ccoeceueururvennn. 129
5.5 EXAMPIES ..o e s st s etessseaesss st s e s s ssses 133
5.5.1 Multiprocessor System Desig.........ccccceuvrvrernveernieererirveseneenonens 134
5.5.2 Design ASSIStANLcoveecuirerireseenrerisnsseseenesesesansssesssssssssssnns 136

5.6 SUMIMATYccoeneirirrrrrrsermsentetrenna s e sssesessssssesessssssssssssessensmssenneases 141
6 CONCLUSION 143
6.1 CORMIDULIONcovvureiiirinrcerenrnsrncerersrere e ssenesssssesesessaessesssssessnsans 143
6.1.1 Partitioningcccccecvurrericssesenerenernseensnssenssesssssssnesesesssssssoses 145
6.1.2 Cosynthesis and Cosimulationcceceeverereemererererenererennvenens 147
6.1.3 Design Methodology Managementccocueueeeeneceveeeernne 148

6.2 FUture direCtONS.c.ccvuecerererrerseeieaetese e seeess st eeeresssssesessasssenesenns 149

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

. case 1: mapping based on GC only, case 2: threshold

modified for repellers, case 3: complete local phase

Classification.ccoccivnneneccsinennniimsnsesinneninesesissensenesessnesend 61
Algorithm trace: GC and the Mapping. All normal nodes,

threshold = 0.5.covieirnreineiceniisncsensissesisessesnsesssesnses 62
GC and mapping: (a) without extremity measures (b) with
EXITEIMILY MEASUIES.cceeeererrererceeecassesseessonssssonsssesssssessrssesssesessnes 63
GC and mapping: (a) without repeller measures (b) with

repeller measures to change the threshold.cccooeveerennnncnd 64
MIBS approach to solving extended partitioningcccceecercenne 68
The bin selection procedureceeveerecrncreiseccsesnesessesnnaenas 70

Bin fraction and bin sensitivity for implementation-bin selection 74
Weighted Bin Sensitivity.cccecreervcrnnsensnnicsnnecsnnsecssesseosenns 74

(a) Estimation of the hardware area for a node, for a given
sample period (b) Computation of the hardware implementation

CUrve for 8 NOAE.cccveriiecrrercrrcceieenisnssssssssesesnsssnssassssnsssssssns 78
Comparison of MIBS and ILP solutions.ccceeurueccnsesususnenss 79
MIBS vs. GCLP

(Extended Partitioning vs. Binary Partitioning)cccccecevceunee. 80
(a) Node distribution among implementation bins.

(b) Solution time of MIBS algorithm averaged over random

graphs per graph SiZe.ccccciccccrieniennnnnineeesessessnesreessesassnssnssnes 81
The target architeCture.cccoceevevenserrscessresnseessscesesssssssesonssssss 85
Architecture of a hardware module.ccceceeveneiceniensenrecrecnennes 87
The global controller for the hardware-software interface. 88
Cosynthesis aPProach.........ccceceeeereeeienvrseneserseeenteceeseeneeseseesesanens 91
Hardware, software, and interface graphs. Each node in

the hardware (software) graph contains a Silage or VHDL

(C or assembly) AeSCHPON.ccccveererenrerrereseeraeressersesseseraeseesesees 94
Mechanism for hardware synthesis for a single node.................... 96
An example illustrating the hardware synthesis mechanism. 97

Architecture of the datapath and controller in a hardware
module. This is the underlying architecture generated by

Hyper, augmented with the ready and completion signals. 98
Mechanism for software synthesis from the software graph....... 100

Figure 1.1
Figure 1.2
Figure 1.3

Figure 1.4
Figure 1.5

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4

Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Figure 3.11
Figure 3.12
Figure 3.13

LIST OF FIGURES

Task-level description of the receiver section of a modem. 1
System-level designc.ccocceeninnivisinnnnciscsnisieseesesansesssasssesssns 4
Hardware design options for a “node” at the algorithmic,
transformational, and resource levelscoccoceueereecnesneenennnnne. 5
Software design options for 8 nodecceveerueennerneinsennicenenns 7
Design specification hierarchy and translation across levels

Of BDSITACHON.cueverececnsraesesscsrensanesessesaesessimnansnessssessesasssssssnsssanans 8
The Design ASSIStANtccccoceviivnsrnsinennsisnesesresiessessesnssssssassense 13
A Codesign FIoWcccocviviiiniitiincnininsenseesnsssssnassssnssesnans 14
Models of computation used in system-level modeling 19
Typical target architectures for mixed hardware-software

SYSTEIMIS ...vuveerreerecesessersnesasnsnsassensassesesasseseresentsnsnssasenssessssasssasassasnns 22
The target architeCturecoccecereesveceriscsnssesnnserssnsnessessessesseseans 22
Specification semantics and target architecture.............ccccoeevevernens 23
The Extended Partitioning Problemcoceuiveveeieniniennncnnennnas 26

Typical hardware area-time trade-off curves, called hardware
implementation curves. The design points are called

implementation bins.cccoeceenenvneineniniinenrininenenieseesennens 29
Implementation alternatives for a node within a mapping............. 30
CH;: Hardware implementation curve for node i. Each bin
corresponds to a possible design option for the node. 31
Selection of the mapping objective at each step of GCLP. 39
The GCLP AlGOrthm.ccccevmvinerricnscnnnsesenesnenicsseesesssessenesens 40
Computation of Global Criticalityccccccecereeerrecsrnncscsescsiesend 42
Hardware (EX},) and software (EXs) extremity sets............ccoeeeee 48
An example repeller propertyocceceeeerccrsnseccnsecsncsscssissesscssens 50

Receiver section of a modem, described in Ptolemy.
Hierarchical descriptions of the AGC and timing recovery

DIOCKS Are SHOWI.c.vuiereeeeiinrecceeeesssreesssarssessssessssssnssssssensassssane 57
Estimation of area and time values in hardware and software...... 57
GCLP vs. ILP: Random examplesccceureeeccnmeccvennrcccsecesenss 59

Effect of local phase classification on GCLP performance

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Edward A. Lee for introducing me
to this research area and for his continous support, guidance, and encouragement. I
appreciate the freedom and collegial respect that he offered me while pursuing my
research.

Discussions with Prof. Jan Rabaey have been instrumental in shaping a
number of ideas presented in this thesis and have given me valuable insight into
the overall area of highlevel synthesis and system-level design space exploration. I
am grateful to him for his interest and guidance.

I would also like to thank Prof. Brayton and Prof. Adler for some of the
stimulating discussions that were useful in improving the overall quality of this
dissertation.

I gratefully acknowledge the financial support provided by the Semicon-
ductor Research Consortium (contract number DC-324 and grant number DC-008)
over the past five years.

I would like to thank the Ptolemy team for developing such a wonderful
(and at times frustrating!) software environment. I would also like to thank the
Hyper team for answering my questions on Hyper.

Most of all, I want to thank my family for being an infinite source of love
and encouragement. I especially want to thank Pratyush Moghe for making this
thesis a reality.

Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
- Figure 5.7

Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11

Figure 5.12
Figure 5.13

Figure 5.14
Figure 6.1
Figure A.1

Figure A.2

Software synthesis for chirp signal generator............................ 102
COSIMUIALION..........couruerrrrreeenseresaess s secsssssssssssseseenesssssnesssnnes 108

Block objects in Ptolemy send and receive data encapsulated
in Particles to the outside world through Portholes.
Buffering and transport is handled by the Geodesic and

garbage collection by the Plasma.................ooeereerememmeeesrrrerernnnn. 110
The universal EventHorizon provides an interface between

the external and internal DOmains.eeeeeeneeerneemresensessnnes 111
Hardware-software cosimulation using Ptolemy: system

MOCELNGcereireerenecsrereessssesessesssssasssensaesesmessssssssssmssaseees 113
Hardware-software cosimulation using Ptolemy......................... 116
The design SPACE.c.cccoveurercerinrinerrerenserciseesseseneseessessesesees s 119
User’s view of the design flow and tools................ccovevruvenns.... 124
A design flow for the multiprocessor synthesis example 125
Internal representation of the tools and data................................ 127
Dependencies used for tool management.oorenen......... 128
Flow execution mechanisms.ccoveveermeereesrereresnerorsssernons 129
The design flow for the multiprocessor synthesis example,
specified within the DMM domain in Ptolemy............................ 130
An example of Tool encapsulation: CodeGenerator tool. 131
Control panel in the DMM domain..............cooreeeerereemeeenronnnnn. 132
The Design Assistant implemented in the DMM domain 137
Run-time behavior of the Design Assistant with manual
PATHLONING.ocecmeurrretesresenseescsessssesesseesesssesessssessessesensoes 137
Hardware and software graphs generated by T3......................... 138
Silage and CG56 assembly code generated by the hardware

and software Synthesis t00IS............c.ueeecemeeeeeeeesneesereneesnonssssssenns 139
Support for Tetargeting.ueveervereecnceesesensssessses e 140
The Design ASSIStantceeveeemsremsmmssrsensessonsesssseseseenns 149
Methodology for the estimation of hardware area required for

a node when implemented at a sample period d. 183
Illustration of possible nondeterminacy..............coourrurrennn...... 187

1

INTRODUCTION

System-level design usually involves designing an application specified at
a large granularity. A typical design objective is to minimize cost (in terms of area
or power) while the performance constraints are usually throughput or latency
requirements. The basic components of a system-level specification are called
tasks (or nodes). The task-level description of a particular application (modem) is

shown in Figure 1.1. The specification has two characteristics. First, tasks are at a

2-PSK Passband Recelver

Figure 1.1. Task-level description of the receiver section of a modem.

1

higher level of abstraction than atomic operations or instructions. This allows for
complex applications to be described easily and more naturally. Secondly, there is
no commitment to how the system is implemented. Since the specification does
not assume a particular architecture, it is possible to generate either a hardware, or
a software, or a mixed implementation. This is especially important for the synthe-
sis of complex applications whose cost and performance constraints often demand
a mixed hardware-software implementation.

System-level design is very broad problem. In this thesis, we restrict our
attention to the design of embedded systems with real-time signal processing
components. Examples of such systems include modems for both tethered and
wireless communication, cordless phones, disk drive controllers, printers, digital
audio systems, data compression systems, etc. These systems are characterized by
stringent performance and cost constraints.

Such applications often tend to have mixed hardware and software imple-
mentations. For instance, full-software implementations (program running on a
programmable processor) often cannot meet the performance requirements, while
custom-hardware solutions (custom ASIC) may increase design and product costs.
It is important, therefore, not to commit each node in the application to a particular
mapping (hardware or software) or implementation (design style within hardware
or software) when specifying the application. The appropriate mapping and imple-
mentation for each node can be selected by a global optimization procedure after
the specification stage. The task level of abstraction allows this flexibility. Also,
such embedded systems typically have a product cycle time of 18 months or so
[Keutzer94] which imposes a severe time-to-market constraint. Manual de§e16p-
ment of a lower-level design specification (such as at the RTL level) is quite inten-

sive due to the sheer complexity of the applications. As a result, it is desirable to

specify the application at the task level and allow a design tool to generate the
lower levels of implementation from it.

Such a system-level design approach is now viable due to the maturity of
lower-level design tools and semiconductor technology. Computer-aided design
tools that operate at lower levels of abstraction (as shown later in Figure 1.5) are
quite robust. The next step is to use these CAD tools for system-level design. Also,
advances in semiconductor manufacturing have made it possible to fabricate a
“system on a chip”. For instance, core-based ASICs that contain cores of program-
mable processors along with custom hardware on the same die are now a commer-
cial reality.

In the next section, we discuss a few key issues in system-level design. Our

approach to solving these problems is outlined in Section 1.2.

1.1 Issues in System-level Design

Figure 1.2 summarizes the key issues in system-level design. These are
partitioning, synthesis, simulation, and design-space exploration. In this thesis, we
address these issues in order. Several hardware and software implementation
options are usually available for each node in the task-level description. The parti-
tioning process determines an appropriate mapping (hardware or software) and an
implementation for each node. A partitioned application has to be synthesized and
simulated within a unified framework that involves the hardware and software
components as well as the generated interfaces. The system-level design space is
quite large. Typically, the designer needs to explore the possible optibns, tools, and
architectures, choosing either automated tools or manually selecting his/her

choices. The design-space exploration framework attempts to ease this process.

task-level spedcification

Figure 1.2. System-level design
We next discuss each of these issues in more detail.

1.11 Partitioning

Perhaps the most important aspect of system-level design is the multiplic-
ity of design options available for every node in the task-level specification. Each
node can be implemented in several ways in both hardware and software map-
pings. The partitioning problem is to select an appropriate combination of map-
ping and implementation for each node.

For instance, a given task can be implemented in hardware using design
options at several levels.

1. Algorithm level: Several algorithms can be used to describe the same task.

For instance, a finite impulse response filter can be implemented either as

an inner product or using the FFT in a shift-and-add algorithm. As a trivial

example, a biquad can be described using the direct form or the transpose

form (Figure 1.3).

2. Transformation level: For a particular algorithm, several transformations
[Potkonjak94] can be applied on the original task descriptioﬁ. Figure 1.3-b
shows two such transformations. In the first transformation, multiplication

by a constant (filter coefficients) is replaced by equivalent shift and add

TR
at D2
iginal \ceplace multiply by shift-adg’ retimed

tc = 4 cycles operations] {6 = 4 cycles [Cyo] cperations tc = 4 cycles operations
#adders = 2 1 jmime #adders=2 |1 [s1s2 #adderse1 | imies
multipliers =2 [{ 2 MO 81] g agajshift =22 Jsedat | 4o iipior o q |2 Jm2e2
area = 22 = 3 |a3a2 S [m3al
% o aea=10 [—= area =11 4 [mind

(8munipty = 10 8490 = 1 8gpin-add = 3)
(tmuttiply = tadd = tshin-add = 1 Cycle)

(c) Besource-level implementation options

1 m1 m2 \
2 [m3msal

3 a3l a2 t=4 cydes

4 o4 an22

Fastest implementation

1 [m
2 |m2

3 |m3al

4 |miad | 1agcycks
) L as 11

6 |4

\ Smallest implementation /

Figure 1.3. Hardware design options for a “node” at the algorithmic, transforma-
tional, and resource levels.

operations. Since the area of a shift-add operator is smaller than that of a
- multiplier, the transformed design has a smaller area for the same execu-
tion time. The second transformation shows the retimed design. By chang-
ing relative positions of delay elements, the operations can be distributed
over the various clock cycles to get a better resource utilization and conse-

quently a smaller area for the same execution time.

3. Resource level: A task, for a specified algorithm and transformation set,
can be implemented using varying numbers of resource units. Typical
resource units are adders and multipliers. Varying the resource units
changes the values of the implementation metrics (area and execution
time). Figure 1.3-c shows two resource-level implementation options for
the direct form biquad. It shows the schedule and area for the fastest (criti-

cal path of 4 cycles) and smallest (only one resource of each kind) designs.

Similarly, different software synthesis strategies can be used to implement
a given node in software. For instance, inlined éode is faster than code using sub-
routine calls, but has a larger code size. Thus, there is a trade-off between code size
and execution time. Figure 1.4-a shows a 3 node subgraph associated with a node.
The schedule describes the sequence in which nodes have to be executed such that
at the end of one pass through the graph, the number of samples on all the arcs is
restored to the number at start (i.e., there is no accumulation of data). A possible
schedule, along with the corresponding generated code, is shown in Figure 1.4-b.
Figure 1.4-c shows three possible software implementations differing in size and
execution time.

Thus each node in the task-level description can be implemeﬁted in several
ways in either hardware or software. Current design tools can generate multiple
implementations for every task. In system-level design, there are a number of such

6

tasks and the overall design is to be optimized. Clearly, it is not enough to optimize
each task independently. For example, if each task in the task-level specification
were fed to a highlevel hardware synthesis tool that is optimized for speed (i.e.,
generates the fastest implementation), then the overall area of the system might be
too large. Hardware-software partitioning is the problem of determining an imple-
mentation for each node 5o that the overall design is optimized. There are two
parts to this problem: (1) Binary partitioning is the problem of determining, for
each node, a hardware or a software mapping and a schedule. (2) Extended parti-

tioning is the problem of selecting an appropriate implementation, over and above

binary partitioning.

1.1.2 System Synthesis

Once the appropriate implementation for each task has been determined,

@ ®)
#samples produced 4 les med
by node Aper fiting by node 8 per fing apossible comesponding code

schedule o540 for node A;

for(j=1j<=4; j++)
4BCCC)
node in & task-level description A) gg E: Eg g';
h associated with a nod e for e U,
subgraph & & node y code for node C;
(©)
possible schedules code size data size | execution timel
ABBBBCCCCCCCCCCCC 17¢ 16b 17
A(4BCCC) 5¢c 7b 17t+ 4y
A(4B(3C)) 3¢ 7b 17t + 16y
A ; -
code size of one node = ¢ words
code size for loop constructs = 0

execution time of one node = t cycles
execution overhead for loop constructs = y cycles
buffer size per sample communicated = b words

Figure 1.4. Software design options for a node

the hardware-software synthesis problem is that of synthesizing the implementa-
tions. Implementations for nodes mapped to hardware or software can be gener-
ated by feeding the nodal descriptions to synthesis tools. Figure 1.5 shows both the
hardware and the software design paths followed by existing synthesis tools. The
hardware design path consists of highlevel hardware synthesis [McFarland90a],
followed by logic synthesis [Brayton90], and layout synthesis [DeMicheli86]. The
software design path comprises highlevel software synthesis [Pino95a], followed

by compilation and assembly.

ylil = y{1] + {7 * coefff);
z[i) = y{i] - factor;

01101100 10101011
11111110 01010101
10“0111 11001110

Figure 1.5. Design specification hierarchy and translation across levels of
~ abstraction.

1.13 System Simulation

Simulation plays an important role in the system-level design process. At
the specification level, it is possible that the design may be specified using a com-
bination of one or more semantic models. Tools that allow the simulation of such
heterogeneous specifications are required. At the implementation level, simulation
tools that support mixed hardware-software systems are needed.

Throughout the design process, it should be possible to simulate systems
where the components are described at different levels of abstraction. As parts of
the design evolve from specification to their final implementation, functional mod-
els can be replaced by more lower-level structures. A simulation environment

should be capable of supporting these aspects.

1.14 Design-Space Exploration

System-level design is not a black-box process, but relies considerably on
user creativity. For instance, the user might want to experiment with the design
parameters, the tools used, or the sequence in which these tools are applied. As
such, there is no hardwired design methodology. The design process could get
quite unwieldy as the user experiments with the design methodology. As a result,
an infrastructure that supports design-space exploration is also a key aspect of the
system-level design process.

Tools for design-space exploration fall under two categories: estimation
and management. Estimation tools are primarily used for what-if analysis, i.e., they
give quick predictions on the outcome of applying certain synthesis or transforma-
tion tools. Management tools orchestrate the design process, i.e., for systematic
control of the design data, tools, and flow.

Design methodology management includes tools for visualizing the design

process and managing the invocation of tools. Since tools involved in the system-
level design brocess are often computationally intensive, it is important to avoid
unnecessary invocation of tools. This requires that the design flow be specified in a
modular way so that only desired tools may be invoked. Further, the designer
should not have to manually keep track of the tools that have been run. Thus, in
order to support efficient exploration of the design space, a mechanism to manage
the design flow, tools, and data is required.

1.2 The Codesign Philosophy for System-level Design

Designing systems containing both hardware and software components is
not a new problem. The traditional design approach has been somewhat hardware-
first in that the software components are designed after the hardware has been
designed and prototyped. This leaves little flexibility in evaluating different design
options and hardware/software mappings. With isolated hardware and software
design paths, it also becomes difficult to optimize the design as a whole. Such a
design approach is especially inadequate when designing systems requiring strict
performance and a small design cycle time. Our approach to designing such sys-
tems is to adopt the codesign! philosophy.

The key tenet in codesign is to avoid isolation between hardware and soft-
ware designs. The strategy allows the hardware and software designs to proceed in
parallel, with feedback and interaction between the two as the design progresses.

This is accomplished by developing tools and methodologies that support the

1. One of the early definitions of codesign was given by Franke and Purvis [Franke91] as
“The system design process that combines the hardware and software perspectives from the
earliest stages to exploit design flexibility and efficient allocation of function”. Wolf
[Wolf94] emphasizes that “‘the hardware and software must be designed together to make
sure that the implementation not only functions properly but also meets performance, cost,
and reliability goals™.

10

tightly coupled design of the hardware and software through a unified framework.
The goal of codesigning the hardware and software components of a system is to
achieve high-quality designs with a reduced design time.

This thesis presents a systematic approach to the system-level design of
embedded signal processing systems, based on the codesign philosophy.

11

2

THE DESIGN ASSISTANT

Since system-level design oversees highlevel synthesis, logic synthesis,
etc., decisions made at the system level impact all the layers below it. In other
words, if the objective in system-level design is to come up with the “best” system
implementation, there are a large number of design options. Each task can be rep-
resented by a multiplicity of algorithms, each algorithm selection can in turn be
represented by several transformation-level and resource-level options. The sys-
tem-level designer is faced with the question of selecting the best design option. In
the context of mixed hardware-software systems, system-level design offers even
greater challenges. How do we take advantage of the inherently distinct properties
of hardware and software and still couple tightly their design processes? How can
the mixed hardware-software system be simulated? In the light of the numerous
tools involved in this process, can we relieve the designer of the burden of design
management?

In order to address these issues, we present a framework called the Design
Assistant. The Design Assistant provides a platform that spans the entire gamut of
system-level design. It consists of: (1) specific tools for partitioning, synthesis, and
simulation that are configured for a particular codesign flow by the user, and (2) an

12

underlying design methodology management infrastructure for design-space
exploration. The architecture of the Design Assistant is shown in Figure 2.1. The
inputs to the Design Assistant include the design specification and the design con-
straints, and the output is an implementation for the system. The user configures
the tools and constructs a design flow by determining the connectivity and the
parameters of the tools. The design methodology manager is a transparent infra-
structure that manages the design data, tools, and flow.

This chapter describes the various components of the Design Assistant. In
Section 2.1, a typical codesign flow is discussed and the various tools required in
the codesign process are outlined. In Section 2.2, the requirements of a design
methodology management infrastructure are discussed. In Section 2.3, we outline
the assumed specification semantics. The assumed target architecture is described
in Section 2.4. Key restrictive assumptions made in the thesis are listed in Section
25.

(Design Specification) (Design Constraints) (User inpu?)
P
\

6esign Assistant

(System Imipﬁmemm@

Figure 2.1. The Design Assistant
13

2.1 A Typical Codesign Flow and Tools for Codesign

A typical codesign flow is shown in Figure 2.2, A task-level specification
(for example, a modem specified by a dataflow graph as in Figure 1.1) is trans-
formed into the final implementation by a sequence of tools. The final implementa-
tion consists of custom and commodity programmable hardware components and
the software running on the programmable components. The design objective is

assumed to be to minimize the total hardware area. The design constraints include

(Design Specification)
(Design Constraints) modem.sdf (User Input)
/ | Area -Time w
DESIGN FLOW Estimation
h
Manual
HW -SW
Partitioning CPLEX (ILP)
m—— MIBS
interface Software
Synthesis Synthesis
Netlist
Generation
. (S} —roemy
v o
Synthesized System
(Layout + Software)

Figure 2.2. A Codesign Flow.

14

the desired throughput and the architectural model (maximum allowable hardware
area, memory size, communication model, etc.). The design flow describes the
sequence of tools that operate on the design data to generate the final implementa-
tion.

The components of the codesign flow include tools for estimation, parti-
tioning, synthesis, and simulation.

Estimati

The Estimation tool generates estimates of the implementation metrics
(area and execution time requirements) for each of the nodes in the graph in differ-
ent implementations in hardware and software realizations. These estimates are
used by the partitioning tool. Details of the estimation tool are discussed in Section
3.4.1 and Appendix AS8.

Partitioni

After obtaining the estimates of the area and execution times, the next step
in the codesign flow is partitioning. The goal of partitioning is to determine, for
each task, three parameters: mapping (whether it is in hardware or software),
schedule (when it executes, relative to other tasks), and implementation (which
type of implementation option to use with respect to the algorithm, transformation,
and area-time value). The Design Assistant framework allows the user to experi-
ment with different partitioning tools. The figure shows three possible partitioning
tools: manual, an ILP solver (CPLEX), or an efficient heuristic (MIBS).

Partitioning is a non-trivial problem. Consider a task-level specification,
typically in the order of 50 to 100 nodes. Each task can be mapped to either hard-
ware or software. Furthermore, within a given mapping, a task can be implemented
in one of several options. Suppose there are 5 design options. Thus there are

(2%5)100 design options in the worst case! Although a designer may have a pre-

15

ferred implementation for some (say p) nodes, there are still a large number of
design alternatives with respect to the remaining nodes ((2*5)'%07). Determining
the best design option for these remaining nodes is, in fact, a constrained optimiza-
tion problem. In this thesis, we will focus on analytical tools to solve this problem,
although the Design Assistant framework itself does not presuppose a particular
tool.

In Chapter 3, we formulate the extended partitioning problem. Given the
estimates for area and time values of each design option for all the tasks, we
develop heuristics to determine the design options that result in a minimum overall
area approximately, and still satisfy the throughput constraints. Heuristics are
required because exact methods are computationally intensive. A heuristic, called
MIBS (Mapping and Implementation Bin Selection), that solves the extended par-
titioning problem is presented in Chapter 3. MIBS is developed in two stages.
First, in Section 3.3, an algorithm (Global Criticality/Local Phase, or GCLP) that
solves just the hardware/software mapping and scheduling probleml is presented.
GCLP is a very efficient heuristic; the complexity is O(IMZ), where IVl is the num-
ber of tasks in the design specification. It uses a combination of global and local
measures in order to determine the best mapping. The MIBS algorithm, described
in Section 3.5, determines the mapping and implementation bin by a joint optimi-
zation process. It uses GCLP as a core and has cubic complexity in the order of
number of tasks.

Cosynthesis

Once the application is partitioned into hardware and software, the individ-
ual hardware, software, and interface components are synthesized. The particular

synthesis tool used depends on the desired technology. The figure shows just two

1. We call this the “binary partitioning problem”.
16

possibilities for hardware synthesis: (1) Silage [Hilfinger85] code can be generated
for the nodes mapped to hardware, and the generated code can be passed through
the Mentor Graphics [MentorGraphics1] tools to generate a standard-cell imple-
mentation (2) VHDL code can be generated and passed through Synopsys [Synop-
sys] tools to generate a gate-array implementation. Similarly, different software
synthesis strategies can be used; for instance, the software synthesis tool could
generate C or assembly code. The interface generation depends on the desired
architectural model. For instance, in a8 memory-mapped communication model, the
address decoders and latches as well as the code that writes to and reads from the
memory locations need to be synthesized.

There are several published approaches to the problem of synthesizing
hardware and software from highlevel specifications. Typically, the complexity of
the input to these synthesis systems corresponds to that of a single task in a sys-
tem-level specification. Instead of reinventing the task-level synthesis tools, we
have developed a system-level synthesis approach that builds upon them. The key
aspects of this synthesis approach are discussed in Chapter 4.

Cosimulati

Once the hardware, software, and interface components are synthesized,
the Netlist Generator puts them together and the system is simulated. Ptolemy
[Buck94a] is a simulation environment that allows different models of computa-
tion to interact seamlessly. Due to its support for multiparadigm simulation,
Ptolemy is suitable for simulating heterogeneous systems through the entire design
process, from the specification to the implementation levels. The use of Ptolemy

for hardware-software cosimulation is discussed in Chapter 4.

17

2.2 Requirements for Design-Space Exploration

As discussed in Chapter 1, the design process is not a black-box push-but-
ton process; it involves considerable user interaction. The user experiments with
different design choices; design-space exploration is the key to system-level
design. Managing the complexity of this design process is non-trivial. The features
needed for efficient design-space exploration include:

1. Modular and configurable flow specification mechanisms

In Figure 2.2, the user might be interested in first determining whether a

feasible partition exists. At this point only the Estimation and Partition

tools need to be invoked; subsequent tools need not be run. Unnecessary
tool invocations can be avoided if the flow specification is modular.

A number of design options are available at each step in the design process.

For instance, the Partition tool can be either a manual partitioning tool, or

an.exact (but time consuming) tool such as CPLEX using integer linear

programming techniques, or an efficient heuristic such as MIBS. Depend-
ing on the available design time and desired accuracy, one of these is
selected. This selection can be done either by the user, or by embedding
this design choice within the flow. A design flow with a configurable flow

specification mechanism is thus compact and efficient.

2. Mechanisms to systematically track tool dependencies and automatically
determine the sequence of tool invocations
The user should not have to keep track of tools that have already run and
those that need to be run. Also, if a specific tool is changed on the fly, the
entire system need not be re-run; only those tools that are affected should

be run. A mechanism that automatically determines the sequence of tool

18

invocations is needed. For instance, if the user changes the hardware syn-
thesis mechanism (perhaps a standard-cell based design instead of one
based on field programmable gate arrays), the system should only invoke
the dependencies of the hardware synthesis tool (in this case: Hardware

Synthesis, Netlist Generation, Simulation).

3. Managing consistency of design data, tools, and flows
Different types of tools, with varying input and output formats, are used in
the system-level design process. At the very least, a mechanism to auto-
matically detect incompatibilities between tools is required. Data transla-
tors could also be invoked automatically.
At the system level, it is no longer sufficient to keep track of versions of

data — versions of tools and design flows also need to be maintained.

A design methodology management infrastructure that supports these

requirements is described in Chapter 5.

2.3 Specification Semantics

A complete system-level design is likely to involve various subsystems,

each of which is specified in a different model of computation. Figure 2.3 shows

system-level application

Figure 2.3. Models of computation used in system-level modeling.

19

four classes of semantics that can be used for abstract system-level modeling. A
particular model may be better-suited for a certain part of an application, based on
its properties; For instance, control-dominated components of an application are
best described by hierarchical FSMs, while computation-dominated components
are better-suited to dataflow semantics. FSM and datafiow semantics have been
shown to be amenable to both hardware and software synthesis. Discrete-event
models are commonly used for hardware modeling and are usually implemented in
hardware. Another possible class of semantics is the imperative model, such as
that found in C or C++. Such a model is usually better-suited for a software imple-
mentation. Thus, an application can be specified using a combination of these
semantics, with each component subsystem being represented in a model of com-
putation best suited for it.

We focus on periodic real-time signal processing applications with fixed
throughput constraints. Many such applications can be specified in the synchro-
nous dataflow (SDF) model of computation [Lee87] quite naturally. In this model,
an application is represented as a graph, where nodes represent computations and
arcs indicate the flow of data. A node fires when it receives data on all of its inputs,
and on firing, it generates data on all of its outputs. SDF is a special case of data-
flow, where the number of samples consumed and produced by a node firing is
known statically (at compile time). This makes it possible to develop efficient
compile-time scheduling techniques. The SDF specification supports manifest iter-
ations, hierarchy, delays, feedback, and multirate operations. Synthesis of both
hardware [Rabaey91] and software [Pino95a] from the SDF mode! of computation
has been demonstrated and the model has provén useful for a reasonable set of sig-
nal processing applications.

In this thesis we focus on the design of the components of an application

20

that are represented in the SDF model of computation; the entire application itself
will likely use a variety of models, however.

Figure 1.1 shows a typical task-level SDF specification in Ptolemy. The
SDF graph can be translated into a directed acyclic graph (DAG), representing pre-
cedences between tasks, using techniques discussed in [Lee87]. This DAG is the
input to the hardware-software partitioning algorithms. We assume that a hierar-
chically specified node in the SDF graph (such as the AGC in Figure 1.1) is not
flattened when the SDF graph is converted to a DAG, i.e., it retains its hierarchical
structure. The user can guide the partitioning process by choosing the hierarchy.

The hierarchical representation of & node is called its subgraph.

24 Target Architecture

Although the Design Assistant does not assume a target architecture, the
particular partitioning and synthesis tools used depend on the underlying target
architecture. Figure 2.4 shows two typical architectures of mixed hardware-soft-
ware systems. Figure 2.4-a illustrates a core-based ASIC. This is an emerging
design style, where a programmable processor core is combined with a custom
datapath within a single die [Bier95b]. Such core-based designs offer numerous
advantages: performance improvement (due to critical components being imple-
mented in custom datapaths, and faster internal communication between the hard-
ware and software), field and mask programmability (due to the programmable
core), and area and power reduction (due to integration of hardware and software
within a single core). This architecture is especially attractive for portable applica-
tions, such as those typically found in digital cellular telephony. Figure 2.4-b illus-

trates a board-level architecture comprising several programmable and custom

21

(a) (b)

Programmable |

Processor Coref

Chip-level architecture Board-level architecture
Core-based ASIC containing a single DSP

Figure 2.4. Typical target architectures for mixed hardware-software systems.
hardware and software components. These include FPGAs, ASICs, general pur-
pose programmable processors, special purpose processors (DSP for instance), and
domain-specific processors (processors optimized for a class of applications).

In this thesis we assume that the target architecture consists of a single pro-
grammable processor and multiple hardware modules. Figure 2.5 shows the cho-

sen architecture. The hardware consists of the custom or semi-custom datapath

— g 2088 sebed
£ Controller
Hardware
Module
Processor -
amare |
Core I: Module
Hardware |
Module Control
Data A
L]
L)

Figure 2.5. The target architecture.

22

components, and the software is the program running on the programmable com-
ponent. The hardware-software interface, consisting of the glue logic and control-
lers, depends on the communication mechanism selected. The specifics of the
interface are discussed in Chapter 4. This target architectural model subsumes both
the design styles shown in Figure 2.4. Further details of this architecture are given

in Section 4.1.1.

2.5 Restrictions in the Design Assistant

In summary, within the large design space, we restrict the applications of
interest to be of the type shown in Figure 2.6. To reiterate the key limitations of our
approach:

1. We restrict our techniques to the design of applications specified as SDF
graphs. In particular, we assume that the DAG generated from such a SDF

graph is the input to our partitioning and synthesis tools.

2. The target architecture is assumed to be of the type shown in Figure 2.5, it
consists of a single programmable processor and multiple hardware mod-

ules.

s

multiprocessor system

uniprocessor board with
a hardware accelerator

core-based ASIC

custom ASIC

Implementation Technology

-
Model of Computation
FSM Dataflow Hybrid Systems

Figure 2.6. Specification semantics and target architecture.

23

3. In the partitioning and synthesis techniques, we assume that hardware is
not reused between modules. The implications of this assumption are dis-

cussed in Chapter 4.

2.6 Summary

We propose the Design Assistant as a framework for system-level design.
The Design Assistant is a unified platform consisting of tools for partitioning, sim-
ulating, and synthesizing mixed hardware-software systems. System-level design
is not a black-box process. The designer may wish to experiment with different
design parameters, tools, and flows. The Design Assistant supports efficient design
space exploration; embedded in it is a design methodology manager that manages
the design flow, tools, and data.

The next three chapters focus on the various aspects of the Design Assis-
tant. In Chapter 3, an analytical framework for hardware-software partitioning is
proposed. In Chapter 4, we discuss the approach used to cosynthesize and cosimu-
late a partitioned application. The design methodology management infrastructure

is presented in Chapter 5.

24

3

EXTENDED PARTITIONING

In this chapter, we focus on the hardware-software partitioning problem for
embedded signal processing applications. As discussed in Chapter 2, the task-level
description of an application is specified as an SDF graph. The SDF graph is trans-
lated into a DAG representing precedences and this DAG is the input to the parti-
tioning tools.

The binary partitioning problem is to map each node of the DAG to hard-
ware or software, and to determine the schedule for«eachA node. The hardware-soft-
ware partitioning problem is not just limited to making a binary choice between a
hardware or software mapping. As discussed in Chapter 1, within a given map-
ping, a node can be implemented using various algorithms and synthesis mecha-
nisms. These implementations typically differ in area and delay characteristics; we
call them “implementation bins”. The extended partitioning prpblem is the joint
problem of mapping nodes in a DAG to hardware or software, and within each
mapping, selecting an appropriate implementation bin (Figure 3.1).

Partitioning is, in general, a hard problem. The design parameters can often
be used to formulate it as an integer optimization problem. Exact solutions to such
formulations (typically using integer linear programming (ILP)) are intractable for

25

even moderately small problems. We propose and evaluate heuristic solutions. The
heuristics will be shown to be comparable to the ILP solution in quality, with a
much reduced solution time.

The chapter is organized as follows. In Section 3.1, the binary partitioning
problem is defined. This is followed by a motivation and a definition for the
extended partitioning problem. In Section 3.2, we discuss the related work in the
area of hardware-software partitioning. In Section 3.3, we present the GCLP algo-
rithm to solve the binary partitioning problem. Its performance is analyzed in
Section 3.4. In Section 3.5, we present the MIBS heuristic to solve the extended
partitioning problem. The MIBS algorithm essentially solves two problems for
each node in the precedence graph: hardware/software mapping and scheduling,
followed by implementation-bin selection for this mapping. The first problem, that
of mapping and scheduling, is solved by the GCLP algorithm. For a given map-
ping, an appropriate implementation bin is selected using a bin selection proce-
dure. The bin selection procedure is described in Section 3.6. The details of the
MIBS algorithm are described in Section 3.7, and its performance is analyzed in

Section 3.8.

3.1 Problem Definition

In Section 3.1.1, we state the major assumptions underlying the partition-
ing problem. The binary partitioning problem is defined in Section 3.1.2. The

extended partitioning problem is motivated and defined in Section 3.1.3.

Binary Partitoning { | Hardware/Software Mapping and Scheduling |

Extended Partitioning { | Hardware/Software Mapping and Scheduting | + | Implementation-bin Selection

Figure 3.1. The Extended Partitioning Problem
26

3.1.1 Assumptions
The partitioning techniques discussed in this thesis are based on the follow-
ing assumptions:

1. The precedences between the tasks are specified as a DAG (G = (N, A)).
The throughput constraint on the SDF graph translates to a deadline con-
straint D, i.e., the execution time of the DAG should not exceed D clock
cycles.

2. The target architecture consists of a single programmable processor (which
executes the software component) and a custom datapath (the hardware
component). The software and hardware components have capacity con-
straints — the software (program and data) size should not exceed AS
(memory capacity) and the hardware size should not exceed AH. The com-
munication costs of the hardware-software interface are represented by
three parameters: al;omm, Scomm» 80d leomm. Here, ahoomm (aScomm) is the
hardware (software) area required to communicate one sample of data
across the hardware-software interface and 7.4y, is the number of cycles
required to transfer the data. The parameter ah,,p,, represents the area of
the interface glue logic and as,,y,, represents the size of the code that
sends or receives the data. In our implementation we assume a self-timed
blocking memory-mapped interface. We neglect the communication costs

of software-to-software and hardware-to-hardware interfaces.

3. The area and time estimates for the hardware and software implementation
bins of every node are assumed to be known. The specific techniques used

to compute these estimates are described in Section 3.4.1.

4. In this work we assume that there is no resource shering between nodes

27

mapped to hardware. The issue is discussed further in Chapter 4.

3.1.2 Binary Partitioning

The binary partitioning problem (PI): Given a DAG, area and time esti-
mates for software and hardware mappings of all nodes, and communication costs,
subject to resource capacity constraints and a deadline D, determine for each node
i, the hardware or software mapping (M;) and the start time for the execution of the
node (schedule 7;), such that the total area occupied by the nodes mapped to hard-
ware is minimum.

P1 is combinatorial in the number of nodes (O(Z/N/) by enumeration). PI
can be formulated exactly as an integer linear program (ILP) as shown in Appen-
dix Al. It is shown to be NP-hard in Appendix A2.

3.13 Extended Partitioning

As-discussed in Chapter 1, in addition to selecting a hardware or software
mapping for the nodes, there is yet another dimension of design flexibility — for a
particular mapping, a node can have different implementation alternatives. These
implementation alternatives correspond to different algorithms, transformations,
and synthesis mechanisms that can be used to implement a node. Figure 3.2 shows
the Pareto-optimal points in the area-time trade-off curves for the hardware imple-
mentation of typical nodes. The nodes shown include a pulse shaper, a timing
recovery block, and an equalizer. The design points on the curves represent differ-
ent implementations for the node resulting from different synthesis techniques.
The sample period is shown on the X axis, and the corresponding hardware area
required to implement the node is shown on the Y axis. The left-most point on the
X axis for each curve corresponds to the critical path of that node; it represents the

fastest possible implementation of the node. As the sample period increases, the

28

same node can be implemented in a smaller hardware area. The right-most point
on the X axis for each curve corresponds to the smallest possible area; it represents
the point where only one resource of each type is used and the design cannot get
any smaller. Thus, the curve represents the design space for the node for a particu-
lar algorithm in a hardware mapping. We have generated each of these curves by
running a task-level Silage [Hilfinger85] description of the node through Hyper
[Rabaey91], a high-level synthesis system. The various design points for a given
node were obtained by computing the hardware area corresponding to different
sample periods.

Similarly, different software synthesis strategies can be used to implement
a given node in software, giving rise to similar area-time trade-off curves for soft-
ware implementations. For instance, inlined code is faster than code using subrou-

tine calls, but has a larger code size. Thus, there is a trade-off between code size

65 T T T T T
60f @ fastest bin for equalizer node timing recoony —t-
+ ' equalizer {31--
sk 1 -
' 14
o | B -
s | n -
o i '
3 i :
8 40fp | -
[]] '
'E as |- E " implementation bins for pulse_shaper
I c}
2 W[| o -
oF Y T B---... o]
¥ i for ol
15 m.,.* slowest bin for equalizer node -
10 I] P)
0 20 40 60 . 100 120
sample period (cy?es)

Figure 3.2. Typical hardware area-time trade-off curves, called hardware imple-
mentation curves. The design points are called implementation bins.

29

(program and/or data memory) and execution time. Software for each node can be
synthesized using different optimization goals such as-throughput, program mem-
ory, or data memory [Ritz93][Murthy94].

In Figure 3.2, a curve corresponds to various implementations of a node for
a particular algorithm. Each node can also be implemented using different algo-
rithms and transformations. Figure 3.3 generalizes this. Thus, several implementa-
tion alternatives (or implementation bins) exist for a node, within each mapping.

We assume that associated with every node i is a hardware implementation
curve CH;, and a software implementation curve CS;. The implementation curve
plots all the possible design alternatives for the node. CH;= {(ah,j, th,f), J€ NHi 1
where ah,j and th{ represent the area and execution time when node i is imple-
mented in hardware bin j, and NH; is the set of all the hardware implementation
bins (Figure 3.4). CS; = {(as,j, ts,j), J€E NSi }, where as,j and ts,j represent the pro-
gram size and execution time when node i is implemented in software bin j, and
NS; is the set of all the software implementation bins. The fastest implementation
bin is called L bin, and the slowest implementation bin is called H bin.

The extended partitioning problem (P2): Given a DAG, hardware and

software implementation curves for all the nodes, communication costs, resource

Node
FIR)
‘// \
Algorithm 1 Algorithm 2 cee Algorithm m
(direct form) (cascade form) (transpose form)
transform 1, , transform k }" transform 1, , transform k
PN RINA
fast » « « Slow fast « « «Slow fast <. &low fast <. eslow

Figure 3.3. Implementation alternatives for a node within a mapping

30

area A CH[
j=1 NH; = set of hardware implementation bins
CHy={(ah/, thf). je NH,}

ah/ j=INH]

H
Lbin th Hbin time

Figure 3.4. CH; Hardware implementation curve for node i. Each
bin corresponds to a possible design option for the node.

capacity constraints, and a required deadline D, find a hardware or software map-
ping (M), the implementation bin (B;*), and the schedule (¢;) for each node i, such
that the total area occupied by the nodes mapped to hardware is minimum.

It is obvious that P2 is a much harder problem than P1. It has 2B)M alter-
natives, given B implementation bins per mapping. P2 can be formulated exactly
as an integer linear program, similar to P/. An ILP formulation for P2 is given in
Appendix A3.

The motivation for solving the extended partitioning problem is two-fold.
First, the flexibility of selecting an appropriate implementation bin for a node,
instead of assuming a fixed implementation, is likely to reduce the overall hard-
ware area. In this chapter, we investigate, with examples, the pay-off in using
extended partitioning over just mapping (binary partitioning). Secondly, from the
practical perspective of hardware (or software) synthesis, solution to P2 provides
us with the best sample period or algorithm to use for the synthesis of a given
node.

3.2 Related Work

The binary partitioning problem has received some attention recently. In
Section 3.2.1, we will discuss some of the other approaches used to solve the

31

binary partitioning problem.
As of this writing, we are not aware of any work that formulates or solves
the extended partitioning problem in system-level design. In Section 3.2.2, we will

briefly summarize the related work in physical CAD and highlevel synthesis.

3.21 Binary Partitioning: Related Work

The hardware/software mapping and scheduling problem can be formu-
lated as an integer linear program (ILP) and solved exactly. This formulation
becomes intractable even for moderately-sized applications (Appendix Al). Some
heuristics have been reported to solve the variants of this problemz.

Gupta et al. [Gupta92] discuss a scheme where all nodes (except the data-
dependent tasks) are initially mapped to hardware. Nodes are at an instruction
level of granularity. Nodes are progressively moved from hardware to software
subject to timing constraints in a manner described next. A hardware-mapped node
is selected (this node is an immediate successor of the node previously moved to
software). The node is moved to software if the resultant solution is feasible
(meets specified throughput) and the cost of the new partition is smaller than the
earlier cost. The cost is a function of the hardware and software sizes. The algo-
rithm is greedy and is not designed to find a global minimum.

The scheme proposed by Henkel et al. [Henkel94] also assumes an instruc-
tion level of granularity. All the nodes are mapped to software at the start. Nodes
are then moved to hardware (using simulated annealing) until timing constraints
are met. Due to the inherent nature of simulated annealing, this scheme requires

long run times and the quality of the solution depends on the cooling schedule. -

2. Unless stated differently, the target architecture assumed in these approaches consists of
a programmable processor and custom hardware modules that communicate via shared
memory.

32

Baros e al. [Baros92] present a two-stage clustering approach to the map-
ping problem. Clusters are characterized by attribute values (degree of parallelism,
amount of data dependency, degree of repetitive computations, etc.) and are
assigned hardware and software mappings based on their attribute values. Clusters
with a large number of repetitive computations are assigned to software. This
approach ignores precedences and scheduling information; it solves only the map-
ping problem. Scheduling the clusters after mapping them to hardware or software
leaves little flexibility in trying to achieve a desired throughput. The mapping pro-
cess does not try to minimize hardware area or maximize software utilization.

D’Ambrosio et al. [Ambrosio94] describe a branch and bound-based
approach for partitioning applications where each node has a deadline constraint
(instead of an overall throughput deadline). Each node has three attributes: the
deadline, the number of software instructions needed to execute it, and the type of
hardware units it can be implemented on. The target architecture consists of a sin-
gle software processor and a set of different hardware modules. The input specifi-
cation is transformed into a set of constraints. The set of constraints is solved by an
optimizing tool called GOPS, which uses a branch and bound approach, to deter-
mine the mapping. The approach suffers from limitations similar to those in a ILP
formulation, that is, solving even moderate-sized problems can become computa-
tionally infeasible.

In the approach proposed by Eles er al. [Eles94], each node and arc in the
graph is annotated with a weight. The weight of a node is a convex combination of
four terms: computation load (number of operations executed), uniformity (the
ratio of the number of operations in the node to the number of distinct types of
operations in the node), parallelism (the ratio of the number of operations in the
node to the length of the critical path of the node), and software-suitability (the

33

ratio of the number of software-suitable operations in the node to the number of
operations in the node. The software-suitable instructions include floating point
operations, file accesses, etc.). The coefficients of these factors are decided by the
designer. They claim that a node with a high weight is better suited to hardware.
The weights on arcs correspond to the communication cost. The hardware-soft-
ware partitioning problem is then formulated as the problem of partitioning the
graph into two sets such that the sum of the communication costs across the parti-
tion is minimized, subject to the constraints that no node with a weight less
(greater) than w; (w},) is assigned to hardware (software). The parameters w; and
wy, are set by the designer. The problem is solved by simulated annealing. Their
scheme ignores throughput constraints; it does not solve the scheduling problem.

Jantsch ez al. [Jantsch94] present an approach for improving the overall
performance of an application by moving parts to hardware, subject to a constraint
on the size (number of gates) of the allowed hardware. Initially, all the nodes are
mapped to software and are assumed to execute according to a sequential schedule.
They restrict themselves to the problem of finding the set of nodes that can be
moved to hardware so as to get the maximum speedup, subject to the allowed
hardware capacity. The problem translates to the knapsack packing problem (given
k items, each with a utility and size, select the set of items that can be packed into a
knapsack of a given capacity such that the total utility is maximized) and is solved
using dynamic programming. Since they assume a schedule to be available, their
approach does not consider overlapped hardware and software execution and
hence could lead to poor resource utilization.

Thomas et al. [Thomas93] propose a manual partitioning approach for
task-level specifications. They discuss the properties of tasks that render them suit-

able to either hardware or software mapping, such as types of arithmetic operations

34

used, data parallelism, and existence of control structures. In their approach, the
designer has to qualitatively evaluate these properties and make a mapping deci-
sion. As will be shown later, our approach not only quantifies such properties, but
also incorporates mapping decisions based on algorithmic properties into an auto-
mated partitioning approach.

We will now briefly discuss some work in related areas such as software
partitioning, hardware partitioning, and highlevel synthesis to evaluate the possi-
bility of extending it to the binary partitioning problem.

The heterogeneous multiprocessor scheduling problem is to partition an
application into multiple processors. The processors could be heterogeneous, i.e.,
the execution times on the different processors vary. Approaches used in the litera-
ture [Hamada92][Sih93] to solve this problem ignore the area dimension while
selecting the mapping; they cannot be directly applied to the hardware/software
mapping and scheduling problem.

Considerable attention has been directed towards the hardware partitioning
problem in the highlevel hardware synthesis community. The goal in most cases is
to meet the chip capacity constraints; timing constraints are not considered. Most
of the proposed schemes (for example, [McFarland90b], [Lagnese91], and
[Vahid92]) use a clustering-based approach first presented by Camposano er al.
[Camposano87].

The approaches used to solve the throughput-constrained scheduling prob-
lem in highlevel hardware synthesis, (such as force directed scheduling by Paulin
et al. [Paulin89]), do not extend to the hardware/software mapping and scheduling
problem directly. Such approaches do not consider the area and time Aheterogeneity
that is offered by the possibility of hardware or software mappings. Also, they
solve only the scheduling problem — mapping (to & particular type of hardware) is

35

assumed to be known. Decoupling the mapping and scheduling problems leaves
little flexibility in trying to achieve a desired throughput. Further, most of these
approaches use the notion of “slack” or “mobility”, which is the difference
between the ASAP and ALAP schedules, for scheduling nodes. In the hardware-
software partitioning case, such ASAP and ALAP times cannot be determined
exactly since each node has two possible values of execution time (corresponding

to hardware and software mappings).

In Section 3.3, we will present an algorithm for automated hardware-soft-
ware partitioning that overcomes most of the drawbacks of the approaches dis-
cussed here. It operates on task-level specifications and attempts to find a partition
that meets the throughput constraints, while approximately minimizing the hard-
ware area and maximizing the software utilization. It is an efficient (OINIZ) heuris-
tic that uses a combination of global and local measures while making the mapping
and scheduling decisions. It also takes into account the inherent suitability of a
node to either a hardware or a software realization based on intrinsic algorithmic
properties. For the examples tested, the solutions generated by the algorithm are

found to be reasonably close to the corresponding optimal solutions.

3.22 Extended Partitioning: Related Work

The authors are not aware of any published work that formulates or solves
the extended hardware-software partitioning problem in system-level design. The
problem of selecting an appropriate bin from the area-time trade-off curve is remi-
niscent of the technology mapping problem in physical CAD [Brayton90], and the
module selection (also called resource-type selection) problem in highlevel syn-
thesis [DeMicheli94], both of which are known to be NP-complete problems.

The technology mapping problem is to bind nodes in a Boolean network,

36

representing a combinational logic circuit, to gates in the library such that the area
of the circuit is minimized while meeting timing constraints. Gates with different
area and delay values are available in the . library. Several approaches
([Chaudhary92], among others) have been presented to solve this problem.

The module selection problem is the search for the best resource type for
each operation. For instance, a multiply operation can be realized by different
implementations, e.g., fully parallel, serially parallel, or fully serial. These
resource types differ in area and execution times. A number of heuristics

([Ishikawa91], among others) have been proposed to solve this problem.

3.3 The Binary Partitioning Problem: GCLP Algorithm

In this section, we present the Global Criticality/Local Phase (GCLP) algo-
rithm to solve the hardware/software mapping and scheduling problem (PI). The

notation used is summarized in Table 1.

331 Algorithm Foundation

The underlying scheduling framework in the GCLP algorithm is based on
list scheduling [Hu61]. The general approach in list scheduling is to serially
traverse a node list (usually from the source node to the sink node in the DAG?)
and for each node to select a mapping that minimizes an objective function. In the
context of PI, two possible objective functions could be used: (1) minimize
the finish time of the node (i.e., sum of the start time and the execution time), or (2)
minimize the area of the node (i.e., the hardware area or software size). Neither of

these objectives by itself is geared toward solving P1, since P] aims to minimize

3. Note that we are not restricted to a single source (sink) node. If there are multiple source
(sink) nodes in the DAG, they can all be assumed to originate from (terminate into) a dum-
my source (sink) node.

37

area and meet timing constraints at the same time. For example, an objective func-
tion that minimizes finish time drives the solution towards feasibility from the
viewpoint of deadline constraints. This solution is likely to be suboptimal
(increased area). On the other hand, if a node is always mapped such that area is
minimized, the final solution is quite likely infeasible. Thus a fixed objective func-

tion is incapable of solving P1, a constrained optimization problem. There is also a

Notation Interpretation
Graph Parameters
G DAGG = (N, A), where N is set of nodes representing computations, and A
is set of arcs representing precedences
D Deadline (or makespan) constraint. The execution time for the graph
should not exceed D cycles.
ah; Hardware area estimate for node i
as; Software size estimate for node i
th; Hardware execution time estimate for node i
ts; Software execution time estimate for node i
size; Size of node i (number of atomic operations)
Architectural Constraints
| AH Hardware capacity constraint (total area of nodes mapped to hardware can-
not exceed AH)
AS Saoftware capacity constraint (total area of nodes mapped to software can-
not exceed AS)
ah Hardware required for the transfer of one data sample between hardware
comm and software
as Software required for the transfer of one data sample between hardware
comm and software
. Number of cycles required to transfer one sample of data between hard-
comm ware and software
Algorithm Outputs
M; Mapping for node i (0 for software, 1 for hardware)
4 Start time for the execution of node i (schedule)

Table 1. Summary of notation
38

limitation with list scheduling; mapping based on serial traversal tends to be
greedy, and therefore globally suboptimal.

The GCLP algorithm tries to overcome these drawbacks. It adaptively
selects an appropriate mapping objective at each str:p4 to determine the mapping
and the schedule. As shown in Figure 3.5, the mapping objective for a particular
node is selected in accordance with:

1. Global Criticality (GC): GC is a global look-ahead measure that estimates

the time criticality at each step of the algorithm. GC is compared to a

threshold to determine if time is critical. If time is critical, an objective

function that minimizes finish time is selected, otherwise one that mini-
mizes area is selected. GC may change at every step of the algorithm. The
adaptive selection of the mapping objective overcomes the problem associ-
ated with a hardwired objective function. The “global” time criticality mea-

sure also helps overcome the limitation of serial traversal.
4 Ot)

GC y min(finish time)
global (time) f Gﬁ Obi2

criticality min(% resource consumed)
measure threshold
\ 0.5 j
F
Local Phase delta * Phase 1 (Extremity)
(nodal preference / * Phase 2 (Repeller)
properties measure) « Phase 3 (Normal)

Figure 3.5. Selection of the mapping objective at each step of GCLP.

4. A step corresponds to the mapping of a particular node in the DAG.
39

2. Local Phase (LP): LP is a classification of nodes based on their heteroge-
neity and intrinsic properties. Each node is classified as an extremity (local
phase 1), repeller (local phase 2), or normal (local phase 3) node. A mea-
sure called local phase delta quantifies the local mapping preferences of
the node under consideration and accordingly modifies the threshold used

in GC comparison.

The flow of the GCLP algorithm is shown in Figure 3.6. N represents the
set of nodes in the graph. Ny(Nyy) is the set of unmapped(mapped) nodes at the
current step. Ny, is initialized to N. The algorithm maps one node per step. At the
beginning of each step, the global time criticality measure GC is computed. GC is
a global measure of time criticality at each step of the algorithm, based on the cur-
rently mapped and unmapped nodes and the deadline requirements. The details of
this computation will be given in Section 3.3.2. Unmapped nodes whose predeces-
sors have already been mapped and scheduled are called ready nodes. A node is

NUB N, NMB ¢

Select Node
Among Ready
Nodes

identify Local Phase
and Compute A

Select Mapping M;
Find start time t;

Ny« {i} Ny= N}
update(Tremaining)

IM times

yes lwh 4

Figure 3.6. The GCLP Algorithm.
40

selected for mapping from the set of ready nodes using an urgency criterion, i.e., &
ready node that lies on the critical path is selected for mapping. Details of this
selection are given in Section 3.3.4. The local phase of the selected node is identi-
fied and the corresponding local phase delta is computed. The details of this com-
putation will be given in Section 3.3.3. GC and the local phase delta are then used
to select the mapping objective. Using this objective, the selected node is assigned
a mapping (M,). The mapping is also used to determine the start time for the node
(7). The process is repeated [Nl times until no nodes are left unmapped.

Next, we describe the computation of the global time criticality.

3.3.2 Global Criticality (GC)

GC is a global lookahead measure that estimates time criticality at each
step of the algorithm. Figure 3.7 illustrates an example used for computing GC. At
a given step, the hardware/software mapping and schedule for the already mapped
nodes is known (Figure 3.7-a). Using this schedule and the required deadline D,
the remaining time 7., is first determined. Next, all the unmapped nodes (nodes 4
and 5 in this example) are mapped to software and the corresponding finish time TS
is computed, as shown in Figure 3.7-b. Suppose that TS exceeds the allowed dead-
line D. Some of the unmapped nodes have to be moved from software to hardware
to meet the deadline’. Define this to be the set Ng_, . Suppose that in the example,
Ng_.y={5}. The finish time (T”) is then recomputed as shown in Figure 3.7-c. GC
at this step of the algorithm is defined as the fraction of unmapped nodes that have
to be moved from software to hardware, so as to meet feasibility. A high value of
GC indicates that many as-yet unmapped nodes need to be mapped to hardware so

as to get a feasible solution, or in other words, time as a resource is more critical.

5. Assuming there is at least one feasible solution to PI satisfying the deadline constraint.

41

(a)

Ny : mapped nodes = {1,2,3) Trom
Ny : unmapped nodes = {4,5} b

Trem = remaining time
TS = finish time 1 N, mapped
to sofiware
Ns.. 1= 56t of nodes that have to be

moved from software to
hardware to meet deadline

T = finish time if Ng., IS
mapped to hardware

T s
i€

GC=—32H
D g size;
i

U
Figure 3.7. Computation of Global Criticality

GC is thus a measure of global time criticality at each step. The following proce-

dure summarizes the computation of GC.

Procedure: Compute_GC
Input: .- Mapped (Ny) and Unmapped (Ny) nodes, D, ts; th;, size;, Vi€ N
Qutput: GC
S1. Find the set Ng_,; of unmapped nodes that have to be moved from software to
hardware to meet deadline D
S1.1. Select a set of nodes in Ny, using a priority function Pf, to move from
software to hardware ’

S1.2. Compute the actual finish time (7") based on these N_,j; nodes being
mapped to hardware

S13. ¥ >DgotoSl1.1

42

sizei
i€
S2. GC=—=2H___ 0<GCcs1
sizei
i€ U

In S1.1, the set of nodes to be moved to hardware is selected on the basis of
a priority function Pf. One obvious Pfis to rank the nodes in the order of decreas-
ing software execution times s;. A second possibility is to use (zsy/th;) as the func-
tion to rank the nodes. This has the effect of first moving nodes with the greatest
relative gain in time when moved to hardware. A third possibility is to rank the
nodes in increasing order of ah;; nodes with smaller hardware area are moved out
of software first. Our experiments indicate that the (¢s;/th;) ordering gives the best
results.

S1.2 determines whether moving this set Ng_,; to hardware meets feasibil-
ity by computing the actual finish time 7%. The finish time can be computed by an
O(lAl + IN1) algorithm, as shown in Appendix A4. If the result is infeasible, addi-
tional nodes are moved by repeating steps S1.1 to S1.3.

GC is computed in S2 as a ratio of the sum of the sizes of the nodes in
Ng_,y to the sum of the sizes of the nodes in Ny;. The size of a node is taken to be
the number of elementary operations (add, multiply, etc.) in the node. Each node is
represented by its size since nodes can be heterogeneous in general.

As indicated earlier, GC is a measure of global time criticality; a high GC
indicates a high global time criticality. GC has yet another interpretation; it is a
measure of the probability (simplistically speaking) that any ﬁnmapped node is
mapped to hardware. This probability may change at each step of the algorithm.

43

333 Local Phase (LP)

GC is an averaged measure over all the unmapped nodes at each step. This
desensitizes GC to the local properties of the node being mapped. To emphasize
the local characteristics of nodes, we classify nodes as extremities (or local phase 1
nodes), repellers (or local phase 2 nodes), or normal nodes (or local phase 3
nodes).

3.33.1 Motivation for Local Phase Classification

Since nodes are at a task level of granularity, they are likely to exhibit area
and time heterogeneity in hardware and software mappings. Nodes that consume a
disproportionately large amount of resource on one mapping as compared to the
other mapping are called extremities or local phase 1 nodes. For instance, a hard-
ware extremity requires a large area when mapped to hardware, but could be
implemented inexpensively in software. The mapping preference of such nodes,
quantified by an extremity measure, modifies the threshold used in GC compari-
son.

Once a feasible solution is obtained, it is usually possible to further swap
nodes between hardware and software so as to reduce the allocated hardware area.
GCLP uses the concept of repellers or local phase 2 nodes to perform on-line
swaps (as opposed to post-mapping swaps) of similar nodes between hardware and
software. To do this, we identify certain intrinsic nodal properties (called repeller
properties) that reflect the inherent suitability of a node to either a hardware or a
software mapping. For instance, bit operations are handled better in hardware,
while memory operations are better suited to software. As a resuit. & node with

many bit manipulations, relative to other nodes, is a software repeller, while a node

44

with a lot of memory operations, relative to other nodes, is a hardware repeller.
Moving a node with many bit manipulation operations out of software is thought
of as generating a repelling force from the software mapping. Hence the pfoportion
of bit manipulation operations m a node is a software repeller property. Similarly,
the proportion of memory operations in a node is a hardware repeller property. A
repeller property is quantified by a repeller value. The combined effect of all the
repeller properties in a node is expressed as the repeller measure of the node. All
nodes are ranked according to their repeller measures. Given two nodes N1 and N2
with similar software characteristics, if N1 has a higher software repeller measure
than N2, and given the choice of mapping one of them to hardware, N1 is pre-
ferred. The details of the computation of the repeller measure are deferred to
Section 3.3.3.3.

Let us see how the repeller measures effect an on-line swap in GCLP. Sup-
pose that the deadline constraint demands that only one of nodes N1 and N2 be
mapped to hardware. In this case, the node with a smaller hardware area (say N1)
should be selected for hardware mapping. Consider the scenario when N1 is
mapped at an earlier step than N2 (due to the serial traversal of the graph). If time
is not critical early on when N1 is mapped, mapping based on GC alone might map
N1 to software. Later as time becomes critical, N2 is mapped to hardware. N1 is,
however, a better candidate for hardware mapping than N2. In general, the prefer-
ences of all the nodes get modified by serial traversal and possibly suboptimal
mapping choices are made. One way to address this is to swap nodes across map-
pings after the algorithm is done. Alternatively, we use the repeller measure of the
node being mapped as an on-line bias to modify the threshold used in GC compar-
ison. To use our example, the software repeller measure of N1 is used to bias its

mapping out of software (towards hardware), thereby making it possible for the

45

yet-unassigned node N2 to get mapped to software. The net effect of such on-line
swaps is a reduction in the total hardware area.

Normal nodes (local phase 3) do not modify the default threshold value;
their mapping is determined by GC consideration only.

In the following sections, we outline procedures to classify nodes into local
phases and quantify their local phase measures.

3.33.2 Local Phase 1 or Extremity nodes

The bottleneck resource in hardware is area, while the bottleneck resource
in software is time. Extremities are nodes that consume a disproportionately large
amount of the bottleneck resource on a particular mapping (relative to the other
mapping).

A hardware extremity node is defined as a node that consumes a large area
in hardware, but a relatively small amount of time in software. A software extrem-
ity node is defined as a node that takes up a large amount of time in software, but a
relatively small amount of area when mapped to hardware. The rationale in mov-
ing a hardware (software) extremity node to software (hardware) is obvious.

The disparity in the resources consumed by an extremity node i is quanti-
fied by an extremity measure E;. The extremity measure is used to modify the
threshold to which GC is compared when selecting the mapping objective (as
shown in Figure 3.5); i.e., E; is the local phase delta for an extremity node.

Extremity Measure

We now describe a procedure to identify extremity nodes in a graph and

compute the extremity measure E; for all such nodes.

Procedure: Compute_Extremity_Measure

Input: Is; ah; Vi€ N, a., p percentiles
Output: E,Vie N,-05<E;<05

S1. Compute the histograms of all the nodes with respect to their software execu-
tion times (ts;) and hardware areas (ah;)

S2. Determine ts(a) and ah(f) that correspond to a and f percentiles of the ts and
ah histograms respectively

S3. Classify nodes into software and hardware extremity sets EX; and EX
respectively:
If (15;215(a) and ah;<ah(B)), i€ EX (software extremity)

If (ah; 2 ah (B) and ts;<ts(a)), i € EX, (hardware extremity)

S4. Determine the extremity value x; for node i
15;/18, s

Ifie EXs,xi = m

, else x; =

where 15, = max;{1s;} and ah,,,, = max;{ah;}

S5. Order the nodes in EX (EH}) by x. Denote the maximum and minimum
extremity values as XS;,5; (XApq,) a0d XSpin (xhpiy) respectively.

S6. Compute the extremity measure E; for node i:

X;= XS,

Ific EX ,E,= 05x——"% _ _05<E.<0
s XSmax = *Smin !
J‘:i""hmin
elseif i € EXh’Ei =05x ,OSEiSO.S
Xhmax'thin

In S1, we compute a distribution of the nodes with respect to their software
execution times ts; and hardware areas ah;. Parameters o and B represent percen-
tile cut-offs for these distributions. For instance, in S3, a node i is classified as a
software extremity node if it lies above o percentile in the ¢s histogram
(tsl. >ts(a)) and below B percentile in the ah histogram (ahi <ah(P)). Simi-
larly, a node i is classified as a hardware extremity if it lies above B percentile in
the ah histogram (ahi>ah (B)) and below o percentile in the zs histogram
(1s;<ts (c)). Figure 3.8 shows typical histograms and the identification of

47

abovea percentile

number of nodes 1
per ts

(hardware extremity) EXs (software extremity)

h
numgler of nodes i
per :
affove g percentile

ah(B) an
Figure 3.8. Hardware (EX}) and software (EX) extremity sets

extremities. For the examples that we have considered, values of o and f in the
range (0.5, 0.75) are used. A value outside this range tends to reduce the number of
nodeé that fit this behavior and consequently the extremities do not play a signifi-
cant role in biasing the local preferences of nodes. The extremity value of a node is
computed in S4. The extremity measure E; of a node i is computed in S6,

-05¢< Ei £05.

Threshold Modification using the Extremity Measure

Let GCj, denote the value of GC at step k when an extremity node i is to be
mapped. If E; is ignored, the threshold assumes its set value of 0.5. Since GCy, is
averaged over all unmapped nodes, mapping of node i in this case is based just on
GCy. This leads to:

1. Poor mapping: Suppose node i is & hardware extremity. If GC; 2 0.5, Objl
is selected in Figure 3.5 (minimize time), and i could get mapped to hard-
ware based on time-criticality. However, i is a hardware extremity and
mapping it to hardware is an obviously poor choice for PJ.

2. Infeasible mapping: Suppose node i is a software extremity. If GC; <0.5,

48

BLIM

1 Tscrambler

o/1"™e Y|

'123 45
nodes in graph

Figure 3.9. An example repeller property.
does not have any bit manipulations, and hence its BLIM value is 0. The higher the

BLIM value, the worse is the suitability of a node to software mapping.

Consider two nodes N; and N,, with software (hardware) areas as; (ah;)
and as; (ahy) respectively. Suppose BLIM; > BLIM;. Now, if as, = as,, then ah;
< ah, (because bit-level operations can be typically done in a smaller area in hard-
ware). Thus N; is a software repeller relative to Nj, based on the bit-level instruc-
tion mix property. Based on the discussion in Section 3.3.1, given the choice of
mapping one of N1 or N2 to hardware, N1 is preferred for hardware mapping on
the basis of the BLIM property.

Other repeller properties mentioned earlier are similarly quantified through
their property values. The cumulative effect of all the repeller properties in a node
is considered when mapping a node. The repeller measure R; of a node captures
this aggregate effect. It is expressed as a convex combination of all the repeller
property values of the node. The repeller measure is used to modify the threshold
against which GC is compared when selecting the mapping objective (as shown in

Figure 3.5); i.e., R; is the local phase delta for repeller nodes.

Repeller Measure

The procedure outlined below describes the computation of the repeller
measure (R;) for each node i. Let RH be the set of hardware repeller properties, and
RS be the set of software repeller properties. Let P = RH URS be the complete

50

Ob;2 is selected in Figure 3.5 (minimize area) and i could get mapped to
software. Node i is a software extremity, however, and mapping it to soft-

ware could exceed the deadline.

To overcome these problems, the extremity measure E; is used to modify
the default threshold in the direction of the preferred mapping. The new threshold
is 0.5 + E;. GC} is compared to this modified threshold. For software extremities,
-05<E;<0, so that O<Threshold<0.5, and for hardware extremities,
0<E;<0.5,so that 0.5 < Threshold< 1.

3.3.3.3 Local Phase 2 or Repeller Nodes

The use of repellers to effect on-line swaps and reduce the overall hard-
ware area was discussed in Section 3.3.3.1. In this section, we quantify a repeller
node with a repeller measure and describe its use in GCLP.

' Several repeller properties can be identified for each node. Bit-level
instruction mix and precision level are examples of software repeller properties;
while memory-intensive instruction mix and table-lookup instruction mix are pos-
sible hardware repeller properties. Each property is quantified by a property value.
The cumulative effect of all the properties of a node is expressed by a repeller
measure.

Let us consider the bit-level instruction mix, a software repeller property,
in some detail. This property is quantified through its property value called BLIM.
BLIM; is defined as the ratio of bit-level instructions to the total instructions in a
node i (0SBLIM iS1). For instance, consider the DAG shown in Figure 3.9-a.
Suppose that node 2 in the graph is an IIR filter and node 5 is a scrambler. Figure
3.9-b shows the hypothetical BLIM values plotted for all the nodes in the DAG in
Figure 3.9-a. Node 5, the scrambler, has a high BLIM value. Node 2, the IIR filter,

49

set of repeller properties.

Procedure: Compute_Repeller_Measure

Input: v;p = value of repeller property p fornode i, i€ N, p€ P
Qutput: Repeller measure R;, Vi€ N, -0.5< R;< 0.5

S1. Compute for each property p:
02 (v @:variance of v; 2 over all i
min(v; ,) = minimum of v; , over all i
max(v; ,p)=maximum of v;) overalli
LetRX-RHifpe RH orRX=RSif p€ RS

)

o(v

a = 2P = weight of repeller property p, a =1,
p 2 P
g o (v; p) PERX
pE€ RX
S2. Compute the normalized property value nv; p for each property p, of node i
. —=min(v,)
n; , = P P ,0<ny, <1
, max(vi’ p) - mm(vi, p) »
S3. Compute the repeller measure R; for each node i
-- -(a-nv, - a-nv,),-05<R.<05.
PERH P hp PERS P hP '

The value v; , of each repeller property p for node i is obtained by analyz-
ing the node. For instance, consider the bit-level instruction mix property. The bit-
level operations (such as OR, AND, EXOR) are first identified in the node. The
BLIM value of a node i is simply the ratio of the number of bit-level operations to
the total number of operations in that node. Other repeller property values are sim-
ilarly cornpute;d.6

In S1 of the above procedure, the variance, minimum, and maximum of
each repeller property value are computed. The property values are normalized in

S2.In S3, the repeller measure for each node is computed as a convex combination

6. Guerra ef al. [Guerra94) present techniques for the quantification of algorithmic properties such
as operator concurrency, temporal density, and regularity.

51

of the normalized repeller property values. The weight ay, of a property p is propor-
tional to the variance of its value. This deemphasizes properties with small vari-
ances in their values. When the repeller measure is used to swap repeller nodes
with comparable property values, there is hardly any area reduction; they are not

worth swapping. The variance weight ensures this.

Threshold Modification using the Repeller Measure

As described in Section 3.3.3.1, repellers constitute an on-line swap to
reduce the overall hardware area — a post-mapping swap is avoided. Recall that
the repeller measure is a measure of the swapping gain of two similar local phase 2
nodes between hardware and software mappings. Given a choice of mapping just
one of two nodes to hardware, the node with a higher software repeller measure is
chosen.

Given a phase 2 node i with a sufficiently high software repeller measure,
the algorithm tries to achieve a relative shift of i out of software. It modifies the
threshold such that the objective selected will favor the complementary mapping.
This swap frees up the current resource for an as-yet unscheduled node with a
lower repeller property measure, thus reducing the overall allocated hardware area.

The repeller measure R; is used to modify the threshold so that the new
threshold is 0.5 + R; For software repellers, -0.5< R; < 0, so that
0 <Threshold 0.5, and for hardware repellers, 0< Ri <05 so that
0.5 < Threshold< 1.

3.3.3.4 Local Phase 3 or Normal Nodes

A node that is neither an extremity nor a repeller is defined to be a local
phase 3 node or a normal node. The threshold is set to its default value (0.5) when

52

a normal node is mapped. Thus the mapping objective is governed by GC alone.
In summary, nodes are classified into three disjoint sets: extremity nodes,
repeller nodes, and normal nodes. The local preference of each node is quantified
by its measure, represented by a local phase delta (A). In particular, A = E; for
extremity nodes, A = R; for repeller nodes, and A = O for normal nodes. This
local phase delta is used to compute the modified threshold: threshold = 0.5 + A.

334 GCLP Algorithm

Algorithm: GCLP

Input: ah;, as;, th;, ts;, E; (extremity measure), and R;, (repeller measure)
VieN
Communication costs: @hcomm, aScomm> 804 {comm, and constraints:
AH, AS, and D.

Qutput: Mapping M; (M; € {hardware, software}), start time ¢;, Vi€ N

Initialize: Ny = {unmapped nodes} = N, Ny, = {mapped nodes} =¢ .
Procedure:
while {INyl >0} {

S1. Compute GC
S2. Determine Np, the set of ready nodes

S3. Compute the effective execution time 7,,,.(i) for each node i
Ifie Ny toxec(i) = GC “th; + (1-GC) -1s;
elseif i € N, Loxec(i) = thy -I(M; == hw) + ts; - I(M; == sw)’
S4. Compute the longest path longestPath(i), Vi € Np using f,y,.(i)
S5. Selectnode i, i € Ny, for mapping: max(longestPath(i))
S6. Determine mapping M; for i

S6.1. if(E‘.*O) A= Y- E; (local phase 1)
where 7 is extremity measure weight, 0 <y<1
else if(R;#0) A=v-R; (local phase 2)
where v is repeller measure weight, 0 <v<1
else A = 0; (local phase 3)

7. I(expr) is an indicator function that evaluates to 1 when expr is true, 0 else.

53

$6.2. ' Threshold = 0.5+ A, 0 < Threshold < 1

S6.3. If (GC 2 Threshold) m: minimize(Objl);
else m: minimize(Obj2);

$6.4. M;=m; Set(t;); Ny=N\ik Ny, « {i} B
Update(Tremainings AH remainings ASremaining);

The algorithm maps one node per step. In S1, GC is computed using the
procedure described in Section 3.3.2. In S2, we determine the set of ready nodes,
i.e., the set of unmapped nodes whose predecessors have been mapped. One of
these ready nodes is selected for mapping in S5. In particular, we select the node
on the maximum longest path, the critical path of the graph. The critical path gen-
erally involves unmapped nodes; computing it can present problems since the exe-
cution times of such nodes is not known at the current step. To overcome this
difficulty, we define the effective execution time (7,,.(i)) of an unmapped node i
as the mean execution time of the node, assuming it is mapped to hardware with
probability GC and to software with probability (1-GC). Here we use the notion of
GC as a node-invariant hardware mapping probability (see Section 3.3.2). In S6,
the mapping and schedule are determined for the selected node. If the node is an
extremity (or a repeller) its extremity (or repeller) measure is used to modify the
threshold. The contribution of the extremity and repeller measures can be varied
by weighting factors y and v. In Section 3.8.4, we discuss the tuning of these
weights. The mapping objective is selected in S6.3 by comparing GC against the
threshold. If time is critical, an objective that minimizes the finish time is selected,
otherwise one that minimizes resource consumption is selected. The objective

functions are:

8. Using set-theoretic notation, Ny = Ny\{i} means element i is deleted from set Ny, and Ny« {i}
means element i is added to set N),.

54

Obj1.: tﬁ,,(i, m), where m € {software, hardware}
BnCism) = max(maxpyiga(P) + 1P, Hialm)) + 1(i.m)

where

P(i) = set of predecessors of node i, p € P (i)

1n(p) = finish time of predecessor p

1.(p.i) = communication time between predecessor p and node i

Ifja5/(m) = finish time of the last node assigned to mapping m

= 0 if m corresponds to hardware

1(i,m) = execution time of node i on mapping m

tot tot

i comm) (ahi +ahcomm)
AH

AS remaining
Obj1 selects a mapping that minimizes the finish time of the node. A node

(as.+as

Obj2: -I(m = sw) +

-I(m = hw)

can begin execution only after all of its predecessors have finished execution and
the data has been transferred to it from its predecessors. Also, a node cannot begin
execution on the software resource until the last node mapped to software has fin-
ished execution.

Obj2 uses a “percentage resource consumption” measure. This measure is
the fraction of the resource area of a node (nodal area plus communication area) to
the total resource area. The area ah, ;™ (aS.omm™") takes into account the total
cost of communication (glue logic in hardware and code in software) between
node i in hardware (software) and all its predecessors. For the hardware resource,
the resource area required by the node is divided by the available hardware area
(AH remaining). Obj2 thus favors software allocation as the algorithm proceeds.

As shown in Appendix A4, GCLP has a quadratic complexity in the num-
ber of nodes. The performance of the algorithm is analyzed in the next section.

55

34 Performance of the GCLP Algorithm

The examples used to analyze the algorithm performance are described in
Section 3.4.1. We present two sets of experiments. The first experiment
(Section 3.4.2) is a comparison of the solution obtained with GCLP to the optimal
solution generated by an ILP formulation (described in Appendix A1). The second
experiment (Section 3.4.3) demonstrates the effectiveness of classifying nodes into
extremities and repellers. Section 3.4.4 discusses the algorithm behavior with the

help of an example trace.

34.1 Examples

Two classes of examples are used to analyze the performance of the algo-
rithm: practical examples, and random graphs.

Practical Examples

We consider practical signal processing applications with periodic timing
constraints. Two examples are used: 32KHz 2-PSK modem, and 8 KHz bidirec-
tional telephone channel simulator (TCS). These applications are specified as SDF
graphs in the Ptolemy [Buck94a] environment. Figure 3.10 shows the receiver sec-
tion of the modem example. A DAG is generated from the SDF graph representa-
tion. Nodes in the DAG are at a task level of granularity. Typical nodes in the
modem include carrier recovery, timing recovery, equalizer, descrambler, etc. in
the receiver section, and pulse shaper, scrambler etc. in the transmitter section. The
nodes in the TCS include linear distortion filter, Gaussian noise generator, har-
monic generator, etc. In the modem and TCS examples considered, the DAGs con-

sist of 27 and 15 nodes respectively’.

9. Much larger examples have been easily solved with the GCLP algorithm (as will be shown in Section
3.4.3), Here, we consider these relatively small examples that can be solved by ILP as well. The intent is
to compare the GCLP solution to the optimal ILP solution to evaluate the quality of the heuristic.

56

2-PSK Passband Receiver

|
Rscovery
o s ==
—
l
i |

Figure 3.10. Receiver section of a modem, described in Ptolemy. Hierarchical
descriptions of the AGC and timing recovery blocks are shown.

The area and time estimates (in hardware and software mappings) for each
node in these DAGs are obtained by using the Ptolemy and Hyper environments
(Figure 3.11). We assume a target architecture consisting of: (1) Motorola DSP
56000 [Motorola)] for the software component, (2) standard-cell based custom

hardware generated by Hyper [Rabaey91], and (3) self-timed memory-mapped I/O

+ SDF graph
SDF to DAG converter
DAG
Ptolemy Code Generator

:::af:dc:o::de Motorola 56000 assembly code
for each node
Code profiler
as;
ts;

Figure 3.11. Estimation of area and time values in hardware and software.

57

for hardware-software communication. The code generation feature of Ptolemy is
used to synthesize 56000 assembly code [Pin0c95a] and Silage code [Kalavade93]
for each node in the DAG. Estimates of the software area (as;) and software execu-
tion time (7s;) for each node i are obtained by using simple scripts that analyze the
generated DSP 56000 assembly code. The Silage code for each node i is input to
Hyper, which generates estimates of the hardware execution time (t#;) and hard-
ware area (ah;) for the node. The hardware execution time is computed as the best-
case execution time (corresponding to the critical path of the control-dataflow
graph associated with the node!®). The hardware area is computed by setting the
sample period to the critical path. Further details of the estimation mechanisms can
be found in Appendix AS.

Random Examples

A random graph generator is used to generate a graph with a random topol-
ogy for a given number of nodes (graph size). The hardware-software area and
time estimates of the nodes in the random graph are generated by taking into
account the trend observed in real examples. Details of the techniques used to gen-
erate the random graphs are given in Appendix A7. For each size, we generate 10
random graphs differing in topology and area and time metrics. The heuristic is
applied for each random graph and the average value of the result is reported for

that size.

34.2 Experiment 1: GCLP vs. ILP

Examples are first partitioned using the GCLP algorithm. The ILP formula-
tion for these examples is then solved using the ILP solver CPLEX!!. Table 2 lists
the GCLP and ILP solutions for the modem and TCS examples. The total hard-

10. This control-dataflow graph is generated by Hyper during the hardware synthesis process.
11. CPLEX is a commercially available optimization software.

58

example | size || algorithm total hardware area DSP utilization solution
. (normalized with respect | (1 - idle_time/D)*100 | time
to hardware area required
in ILP solution)
modem | 27 ILP 10 93.8% 19190 s
[car 1.1935 84.89% 0535 s
TCS 15 ILP 10 735% 6656 s
GCLP 10 735% 0.387s
Table 2. Results from ILP and GCLP algorithm.

ware area (normalized with respect to the optimal solution), DSP utilization, and
solution time for all the cases are compared. The solution time represents the CPU
time required to generate the solution on a SPARCstation 10. The total hardware
area obtained with the GCLP algorithm is quite close to the ILP solution. In the
modem example, the GCLP mapping has all but one node identical with the ILP
mapping. The GCLP mapping for the TCS is identical to the ILP mapping.

Figure 3.12 compares the total hardware area obtained with the GCLP
algorithm to the optimal solution obtained with ILP formulation for a number of
random examples. For all tested examples the generated GCLP solution is within
30% of the optimal solution. Examples larger than 20 nodes could not be solved
by ILP in reasonable time!2. GCLP has been used to solve examples with up to

1.5

] || |} || I I 1] I
goip-area/ip-area

4~ GCLP total rmrawarcfa"’a"’rea“"ﬁ -

(normalized w.r.t. ILP)

!

e

Y

H

| JENRTY N

é 11 =

s ILP total hardware area

g 1 =t =t =ttt = -

°°_9||41411||
4 6 8 10 12 14 16 18 20

Graph size [N]

Figure 3.12. GCLP vs. ILP: Random examples

59

500 nodes with relative ease.

343 Experiment 2: GCLP with and without local phase nodes
To examine the effect of local phase nodes on the GCLP performance, the
GCLP algorithm is applied under three cases:

Case 1. The local phase classification is not used — all nodes are normal nodes
with A = 0. The objective function is selected by comparing GC with the
default threshold = 0.5.

Case 2. Nodes are classified as either repellers or normal nodes. For repeller nodes
A = R;, otherwise A = 0.
Case 3. Complete local phase classification, using extremities, repellers, and nor-
mal nodes. For extremity nodes A = E;, for repeller nodes A = R;, and
for normalnodes A = 0.
In the modem example, it was found that:
1. Repellers reduce the hardware area through on-line swaps (the solution
obtéined in case 2 is 13% smaller than the solution obtained in case 1).
2. Extremities are seen to match their expected mappings (ex: Pulse Shaper, a
hardware extremity node, is mapped to software. Carrier Recovery, a soft-

ware extremity node, is mapped to hardware).

3. Repeller nodes are also mapped to their intuitively expected mappings (ex:
Scrambler, a high BLIM software repeller, is mapped to hardware).

Figure 3.13 plots the results of these three cases when applied to random
examples. The total hardware areas are normalized with respect to the total hard-
ware area obtained in case 1. It is seen that the use of repellers (case 2) signifi-

cantly reduces the hardware area as compared to a purely GC-baséd selection in

12. Some fine-tuning of the ILP formulation could improve the ILP solution time slightly.

60

1.1

1] i
all normal
repsliers and normal
extromities, npolem and normal

T
- case 1: hardware area (no local phase classification)
1 0000090060000 -

§§§

§ case 2: GC-R hardware area (nomllmd w.r.t case 1)
2 +
o+ * ,I
Pl -V A oo
i K 4 !
§ "”--“; " p m ‘0‘“ ’# K :
\) ! . 3 4 J N N
-g G- m‘\‘ 'I 'm\ ;: "“‘ ,.'f 'm‘ ! Ve
@ 08 = ‘\‘\ ll 5' m .“\ I’ A E m =
§ \‘\g 'l .‘:‘¥’ m'

°7= case 3: GCLP hardware area (normalized W. 1t case 1) =

08] 1 1 1]
[} 20 40 €0 a0 100

graph 620 |N|
Figure 3.13. Effect of local phase classification on GCLP performance:
case 1: mapping based on GC only, case 2: threshold modified for repel-

lers, case 3: complete local phase classification.

case 1. This verifies our premise that repellers effect on-line swaps to reduce the
total hardware area. Using both extremity and repeller nodes further improves the
quality of the solution. On an average, the complete classification of local phase

nodes reduces the total hardware area by 16.82 %, when compared with case 1.

344 Algorithm Trace
The behavior of GCLP with complete local phase classification of nodes is
quite complex. To understand the relation between node classification, threshold,

GC, and the actual mapping at each step of the algorithm, we illustrate these key
parameters in algorithm traces for specific examples.

Figure 3.14 illustrates the GC variation and the mapping at each step,
ignoring the local phase classification. When GC > 0.5, time is critical. Almost
always, nodes get mapped to hardware. Eventually, this reduces the time criticality

61

14 p= GC -
Mapping oo
12

1= -

08 = GC -
Nig=a—a

02 =

QGC and the resultamt mapping

0 5 10 15 20
aigorthm steps

Figure 3.14. Algorithm trace: GC and the Mapping. All
normal nodes, threshold = 0.5.

and GC reduces. When it drops below 0.5, area minimization is selected as the
objective. In most cases, this objective selects software mapping. Subsequently,
time becomes critical, GC increases, and further nodes get mapped to hardware.
Thus GC (and the mapping) adapts continually.

: Figure 3.15 illustrates the effect of adding extremity nodes to the above
example. Nodes mapped in steps 8 and 10 are software extremities. In Figure 3.15-
a, the extremity measure is not considered, in Figure 3.15-b, it is. We assume that
nodes are mapped in the same order in both these cases. Mapping marked by a
cross means software mapping and by a square means hardware mapping. In Fig-
ure 3.15-a, the extremity measures are not considered; the threshold assumes its
default value (0.5). The software extremity node mapped in step 8 (marked el)
gets mapped to software, hence, time criticality increases. When compared to the
corresponding mapping in Figure 3.15-b, nodes mapped subsequently in steps 15
and 16 (marked h) get mapped to hardware. A similar effect is observed while
mapping nodes in steps 22, 23, and 24 (marked 42 in Figure 3.15-a). The generated
solution has a total hardware area of 1253, and 14 nodes are mapped to hardware.
Also, the sample mean of the GC over all steps is 0.50448. In Figure 3.15-b,

62

extremity measures are used to change the default threshold. The extremity mea-
sure for nodes mapped in steps 8 and 10 lowers the threshold at the points marked
el and e2 in Figure 3.15-b. This induces a hardware mapping. Mapping these soft-
ware extremities to hardware reduces time criticality. Subsequently, nodes mapped
in steps 15 and 16 (marked s/) get mapped to software. The total hardware area is
756, and 10 nodes are mapped to hardware. Thus by taking into account the local
preference of nodes 8 and 10, the quality of the solution is improved by 40%. Also,

Figure 3.15. GC and mapping: (a) without extremity measures (b) with
extremity measures.

63

the sample mean of the GC over all the steps is 0.4288.

Figure 3.16 illustrates the effect of repellers on GC and mapping at each

step of the algorithm applied to a particular example. In this example, nodes

mapped in steps 6 and 10 are software repellers; the node mapped in step 6 has a

larger repeller measure than the node mapped in step 10. In Figure 3.16-a repellers

are not considered, in Figure 3.16-b, they are. We assume that nodes are mapped in

the same order in both the cases. In Figure 3.16-a, the repeller measures are not

considered when mapping — the threshold assumes its default value of 0.5. In this

16

14

12

08

06

04

02

16

14

12

0.6

04

02

. Threshold =0.5

A 1] 1

0 S 10 15 20 25 30
aigorthm e10p
(®)
! 1 L Ll !
hargware .
s1 Mapping |

] 1 [1
0 s 10 15 20 25 30
axortthm sisp -

Figure 3.16. GC and mapping: (a) without repeller measures (b) with
repeller measures to change the threshold.

64

case, node mapped in step 6 is mapped to software and the node mapped in step 10
is mapped to hardware. Clearly, this mapping can be improved. In Figure 3.16-b,
repeller measures are taken into consideration; they modify the default threshold
and hence the mapping. The repeller measure for the node mapped in step 6 lowers
the threshold at the point marked r] in Figure 3.16-b. This forces the node to get
mapped to hardware. The threshold for the node in step 10 is not lowered as much
and it gets mapped to software. The mapping of nodes in steps 6 and 10 is thus
exactly opposite to that in Figure 3.16-a. Thus nodes in steps 6 and 10 were in
effect swapped on-line in Figure 3.16-b — the node with a larger repeller measure
displaced the one with a smaller measure and this reduced the overall area (1803 in
Figure 3.16-a vs. 1677 in Figure 3.16-b, 17 nodes are mapped to hardware in both

cases).

34.5 Summary of the GCLP algorithm

We have so far discussed the Global Criticality/Local Phase algorithm to
solve the binary partitioning problem (PI). The key features of the algorithm can
be summarized as follows.

Global criticality is a global lookahead measure that quantifies the time
criticality at each step of the algorithm, taking into account the currently
unmapped nodes and the desired throughput requirements. GC is compared with a
threshold to select a mapping objective at each step of the algorithm. Nodes that
consume disproportionate amounts of resources in hardware and software map-
pings are classified as extremities. The threshold used for mapping such nodes is
modified to account for their mapping preference. The total hardware area is fur-
ther reduced by using the concept of on-line swaps between repeller nodes. Repel-
ler nodes are classified and quantified on the basis of intrinsic nodal properties.

65

The threshold used for mapping repeller nodes is modified in accordance with their
relative “repulsion” for a mapping. The GCLP algorithm is computationally effi-
cient (O(IN2)) with a solution quality comparable to the optimal.

3.5 Algorithm for Extended Partitioning: Design Objectives

The GCLP algorithm described so far solves the binary partitioning prob-
lem P1. The extended partitioning problem P2 is to jointly optimize the mapping
as well as implementation bin for each node. Consider the implementation-bin
curve of a node as shown in Figure 3.4. Denote L to be the fastest (left-most)
implementation bin, and H to be the slowest (right-most) implementation bin. As
the implementation-bin curve is traversed from bins L to H, the hardware area
required to implement the node decreases. From the viewpoint of minimizing
hardware area, each node mapped to hardware can be set at its H bin (lowest area).
This might, however, be infeasible since the H bins correspond to the slowest
knplemenmﬁons. The extended partitioning problem is to select an “appropriate”
implementation bin and mapping for each node such that the total hardware is min-
imized, subject to a deadline and resource constraints. This problem is obviously
far more complex than the mapping (binary partitioning) problem. Our goal is to
design an efficient algorithm to solve the extended partitioning problem. There are

two guiding objectives used in the design of this algorithm.

ably: The binary parti-
tioning problem has 2™ mapping possibilities for INM nodes in the graph.
Given B implementation bins within a mapping, the extended partitioning
problem has (2B)M possibilities in the worst-case. The algorithm complex-

ity should not scale with the dimensionality (number of design alternatives

66

per node) of the partitioning process, i.e., if a binary partitioning algorithm
has complexity O(IN12), the extended partitioning algorithm should not
have complexity O(IN1?B), since B is typically in the range 5 to 10. Obvi-
ously the binary partitioning algorithm cannot be extended directly to solve
the extended partitioning problem, since the implementation possibilities
explode.

2. Design Objective 2; Reuse of GCLP: Since we already have an efficient
algorithm for binary partitioning, the algorithm for extended partitioning
should reuse it. This suggests that extended partitioning can be decom-
posed into two blocks: mapping and implementation-bin selection. GCLP

can be used for mapping.

It is not enough, however, to decompose the extended partitioning problem
into two isolated steps, namely that of mapping followed by implementation-bin
selection. The serial traversal of nodes in a graph means that the implementation
bin of a particular node affects the mapping of as-yet unmapped nodes. Since there
is a correlation between mapping and implementation-bin selection, they cannot be
optimized in isolation. This dependence has to be captured in the algorithm.

Our approach to solving the extended partitioning problem is summarized
in Figure 3.17. The heuristic is called MIBS. In the final solution, each node in the
graph is characterized by three attributes: mapping, implementation bin, and
schedule. As the algorithm progresses, depending on the extent of information that
has been generated, each node in the DAG passes through a sequence of three
states: (1) free, (2) tagged, and (3) fixed. Before the algorithm begins, all three
attributes are unknown. Such nodes are called free nodes. Assuming median area
and time values, GCLP is first applied to get a mapping and schedule for all the
free nodes in the graph. A particular free node (called a 7agged node) is then

67

1 ‘freenodes-N

A Compute mapping and schedule for free nodes
— Set median area-time values

— Apply GCLP

mapping for all free nodes

| Select tagged node T with mapping MTI
| Find Implementation bin for 7 within mapping My l

free = free\T
fixede= T
update(schedule)

IM times |,

Mapping, schedule, and implementation
bin for &ll nodes

Figure 3.17. MIBS approach to solving extended partitioning

selected. Assuming its mapping to be that determined by GCLP, an appropriate
‘implementation bin is then chosen for the tagged node. In the following section,
we describe a bin selection procedure that determines the implementation bin for
the tagged node. Once the mapping and implementation bin are known, the tagged
node becomes a fixed node. GCLP is the applied on the remaining nodes and this
process is repeated until all nodes in the DAG become fixed; the MIBS algorithm
has M steps13 for IN] nodes in the DAG.

The MIBS approach subscribes closely to the design objectives outlined.
GCLP is used for mapping (according to Design Objective 2). Since GCLP and
bin selection are applied alternately within each step of the MIBS algorithm, there

is continuous feedback between the mapping and implementatioq-bin selection

13. Each Srep of the MIBS algorithm constitutes the determination of the mapping, implementation bin, and
schedule of a node.

68

stages. The MIBS algorithm will be shown to be reasonably efficient (O(IVI® +
B-N1®), where B is the number of implementation bins per mapping. Thus it scales
polynomially with the dimensionality of the problem (Design Objective 1).

In the next section, we describe the bin selection procedure to solve the

implementation-bin selection problem.

3.6 Implementation-bin Selection

3.6.1 Overview

In the following, we restrict ourselves to the problem of selecting the
implementation bin for hardware-mapped nodes only. The concepts introduced
here can be extended to software implementatioh-bin selection as well.

Recall from Figure 3.17 that, in each step of the MIBS algorithm, GCLP is
first applied to determine the revised mapping of free nodes. Let the free nodes
mapped to hardware at the current step be called free” nodes. A tagged node is
selected from the set of free nodes. Aséuming its mapping to be that determined by
GCLP, the bin selection procedure is applied to select an implementation bin for
the tagged node.

Figure 3.18 shows the flow of the bin selection procedure. The key idea is
to use a lookahead measure to correlate the implementation bin of the tagged node
with the hardware area required for the free’l nodes. It selects the most responsive
bin in this respect as the implementation bin for the tagged node.

Computing the lookahead measure can be very complex since the final
implementation bins of the free” nodes are not known at this step. To simplify mat-
ters, we assume that ﬁee" nodes can be in either L or H bins!4, All ﬁ'ee” nodes are

14. A free® node loses this restriction when it becomes tagged later on.

69

assumed to be in their H bins initially. The lookahead measure (called bin fraction
BF 7f) computes, for each bin j of the tagged node 7, the fraction of free” nodes that
need to be moved from H bins to L bins in order to meet timing constraints. A high
value of BFy/ indicates that if the tagged node T were to be implemented in bin j, a
large fraction of free” nodes would likely get mapped to their fast implementations
(L bins), hence increasing the overall area. The bin fraction curve (BFCry) is the
collection of the all bin fraction values of the tagged node T.

Bin sensitivity is the gradient of BFCr. It reflects the responsiveness of the
bin fraction to the bin motion of node T. Suppose that the maximum slope of the
bin fraction curve is between bins k-1 and k (Figure 3.18). Moving the tagged node
from bin k-1 to k shifts the largest fraction of free” nodes to their L bins. Equiva-
lently, the k to k-1 motion for the tagged node results in the largest reduction of the
area of free" nodes. Hence the (k-1)th bin is selected as the implementation bin for
the tagged node (Br*). The computation of the BFC and bin senmsitivity is
described next.

The notation used in the bin selection procedure is summarized Table 3.

fixed nodes
tagged node T . free nodes
N A e
Compute Bin Fraction (BFCy) | Ly k1 k Hr

v BS
Compute Bin Sensitivity
| ! LT H7'
. A
| Select Bin (B;") l area \éBT'
. +——time

By
Figure 3.18. The bin selection procedure

70

Notation Interpretation
T Tagged node
fixed nodes Nodes whose mapping as well as implementation bin has been fixed
free nodes Nodes whose mapping and implementation bin have not been fixed
free” nodes fll;eor{&-lﬁ?smappedtohmﬂwmbyGCLPmanystepinthebﬂBS
CHy(CSy) Hardware (software) implementation curve for node T
NHy (NS7) Set of hardware (software) implementation bins for node T
Ly (Hy) L (H) bin for node 7. L (H) is the fastest (slowest) bin.
Br* Implementation bin finally selected for node T
BF{ Bin fraction computed when node T is implemented in bin j
BFCy Bin fraction curve for node T
BS oy Maximum value of bin seasitivity
Table 3. Summary of notation used in bin selection procedure.

3.6.2 Bin Fraction Curve (BFC)

Assuming node T is implemented in bin j, BFf/ is computed as the fraction
of free" nodes that have to be moved from their H bins to their L bins in order to
meet feasibility. The bin fraction curve BFCp is the plot of the bin fraction BFy/ for
each bin j of the tagged node 7. The procedure to compute the BFC is described
next. The underlying concept is similar to that used in GC -calculation
(Section 3.3.2). For simplicity, we apply the bin selection procedure only for a
tagged node mapped to hardware by GCLP. A single implementation bin is

assumed when the tagged node is mapped to software.

Procedure:

Input:

Qutput:

Compute_BFC

Nfizea = {fixed nodes}, Nje" = {free” nodes},

T = tagged node, with mapping My (assumed hardware),
hardware implementation curve CHy

BFCr={(BFY,), Vj € NHy)

71

Initiglize: Npy_,, = 9, lesec(p) known for all fixed nodes p, p € Npippy-

for(j=1;j< INHT|,j+|-) {
S1. Set 1, (T) =thy

S2. Forall k€ N,,", set 1,500 (k) = thy¥ (all free® nodes at H bins)
S3. Compute Tgy;sp, given the mapping and tex for all nodes

S4., Find the set Ny_,; of free® nodes that need to be moved to their L bins in
order to meet deadline

h
S4.1. NH_,L<—next(Nf,ee)

S42. o (f) =tht, VfE Ny, (setto L bins)
S54.3. Update(Tﬁ,,,-sh)

S44. I Ty > D g0 10 S4.1

; size;
i€

s5. BFf = =H=L o<BF/s<1.
z size;

ien, "

The sequence S1 to S5 outlines the procedure used to compute the bin frac-
tion BF’ for a particular bin j. Nfizeqis the set of fixed nodes and Nﬁee" is the set of
free nodes that has been mapped to hardware by GCLP at the current step of the
MIBS algorithm. In S1, the execution time of the tagged node is set to the execu-
tion time for the jth bin. In S2, the execution times for all thé free" nodes are set
corresponding to their respective H bins. The finish time for the DAG (Tgp;gp) is
computed in S3. In S4, we compute Ny._,;, the set of free” nodes that need to be
moved to their L bins in order to meet the timing constraints. Various ranking func-
tions can be used to order the free" nodes. One obvious choice is to rank the nodes
in the order of decreasing H bin execution times th,-” . A second possibility is to use

(thf/th L) as the function to rank the nodes. This has the effect of moving nodes

72

with the greatest relative gain in time when moved from H to L bin.

BFTi is computed in S5 as a ratio of the sum of the sizes of the nodes in
Ny 1 to the sum of the sizes of the nodes in Nﬁ.ee". Recall that the size of a node is
the number of elementary operations (add, multiply, etc.) in the node.

In summary, a high value of the bin fraction for node T indicates that
selecting the jth implementation bin is likely to result in a large fraction of free”
nodes being subsequently assigned to their L bins.

3.6.3 Implementation-bin Selection

Figure 3.19-a plots a typical bin fraction curve for a tagged node T. Let
Ly(Hr) denote the L(H) bin for node T. How is the desired bin Br* to be sélected
for this node? An intuitive choice is to set By* = Hr, since this corresponds to the
smallest hardware area for node T. At Hy, however, BFT” is high, i.e., a large frac-
tion of the ﬁ'eeh nodes are in L bins so that the total hardware area might be unnec-
essarily large. As the tagged node shifts from bin Hy downwards, the resulting
decrease in BF implies that the fraction of free nodes at their L bin decreases, and
consequently the allocated hardware area of free nodes reduces. The slope of
BFCr represents how fast the free" node area reduces with the (leftward) bin
motion of node T. This slope is called bin sensitivity BS; it reflects the correlation
between bin motion of the tagged node and the overall area reduction of the free”
nodes. That is, BSy/ = BFf"*) . BFjJ, L<j< H- 1, where BS;# = 0.

Let the maximum bin sensitivity be BS,,,, (Figure 3.19-b). The implemen-
tation bin (B7*) for the tagged node T is selected to be the bin with bin sensitivity
equal to BS,,y, if BSp,, > 0. If BFCy is constant (Figure 3.19-c), then BSpax =0,
and the tagged node is mapped to its H bin, since moving it from its slowest to

fastest implementations does not affect the free" nodes.

73

(a) ()
BFCTA/,I i BFC:
o000
BF#

T

Bin Sensitivity Bin Sensitivi
Bsmu josescncese '

selected bin selected bin
Figure 3.19. Bin fraction and bin sensitivity for implementation-bin selection

Consider the plot of bin sensitivity in Figure 3.20-a, where the regions
marked S1 and S2 have identical slopes, i.e., same bin sensitivity. In this case, bin
B1 which is closer to the Hy bin is preferred over bin B2 since it corresponds to a
smaller area of node T. To incorporate this effect in general, the bin sensitivity val-
ues are weighted by the area of node T. In particular, the weighted bin sensitivity is
plotted by multiplying the bin sensitivity at each bin j by ahy/ahy’ (Figure 3.20-
c). Br* is then selected to be the bin with the maximum weighted bin sensitivity. In

case of a tie for the maximum weighted bin sensitivity, the bin closer to Hy bin is

(a)
BFC St

S2
T T
LT Hr

(b)

Bin sensitivity

Lr B2 Bl Hr

Figure 3.20. Weighted Bin Sensitivity.

74

selected.

In summary, the strategy for implementation-bin selection is to plot the
weighted bin sensitivity and set By* to be the bin with the maximum bin sensitivity
that is closest to the Hy bin. The bin selection procedure has complexity O(B+ (M
+ Al), as shown in Appendix AS. The procedure is outlined below:

Procedure bin_selection

Input Nfizea = {fixed nodes}, Npy," = {free” nodes}
T = tagged node, with mapping M7 (assumed hardware),
hardware implementation curve CHy

Qutput Br*

S1. Compute BFCr(Section 3.6.2)

S52. Compute bin sensitivity
S3. Compute weighted bin sensitivity

S4. Determine bin By* corresponding to the bin with the maximum weighted bin
sensitivity

In the next section, we present the Mapping and Implementation Bin Selec-

tion (MIBS) algorithm to solve the extended partitioning problem P2.

3.7 The Extended Partitioning Problem: MIBS Algorithm

Algorithm: MIBS

Input: Vi€ N: CH,, CS;, E; (extremity measure), and R; (repeller mea-
sure).
Software-hardware interface communication costs: @/ omm» S comms
and f.,mn,- Constraints: AH, AS, and D.

Qutput Vi € N:mapping M; (Mi € {hardware, software}), implementa-
tion bin B;*, and start time 1;.
itialization Nﬁxed = {fixed nodes} = ¢, Npree = {free nodes} = {N}.

Compute median area and time values for all nodes in software and
hardware.

75

while {INgl >0} {

S1. Determine M;and ¢;for all i € Neree
S1.1. Foralli€ Niree» set area and time values to their median values
S1.2. Use GCLP to compute M; and ¢; for i € Ny, . (Section 3.3)

S2. Determine the set of ready nodes Ny

S3. Select tagged node T (T € Np) using urgency measures

S4. Determine the implementation bin BT’ for node T assuming mapping My
S4.1. Use the bin selection procedure to determine bin BT‘ (Section 3.6)
S5. Nfree = NpeMT) Nfirea < {T} , Update t7 based on the selected implemen-
tation bin By .
}

N represents the set of nodes in the graph. Ny, is the set of free nodes; it is
initialized to N. Nfireq is the set of fixed nodes and is empty at start. The median
values of the area and time on hardware and software mappings are computed in
the initialization phase. For each step, the MIBS algorithm computes the mapping,
the implementation bin, and the schedule of one node. In S1 of each step, the map-
ping and schedule fdr all the free nodes is first computed. This is done by applying
GCLP over the set of free nodes assuming median area and time values. The set of
ready nodes is determined in S2. This represents the set of nodes whose predeces-
sors are fixed nodes. One of these ready nodes is selected as a tagged node in S3.
In particular, we select a ready node on the critical path. In S4, the bin selection
procedure is applied to determine the implementation bin for this tagged node.
Finally, in S5, the schedule of the tagged node is updated depending on the imple-
mentation bin selected. The tagged node then becomes fixed. The sequence S1-S5
is repeated IVl times until all the nodes in the graph become fixed.

Note that the mapping of all the nodes is not finalized at one shot in MIBS;

future mappings of the remaining free nodes are allowed to change depending on

76

the implementation bin selected for a tagged node. At any step, the known map-
pings and implementation bins of the fixed nodes affect the mappings of the free
nodes. The complexity of the MIBS algorithm is O(IN® + B-IN12), where B is the
number of implementation bins per mapping (Appendix A6).

3.8 Performance of the MIBS Algorithm

The performance of the MIBS algorithm is examined in this section. As in
Section 3.4, we will use both practical examples (the modem and TCS) as well as
random graphs to evaluate the performance.

The procedure used to generate the hardware implementation curve for
each node in the DAG is described in Section 3.8.1. In Section 3.8.2, the solutions
obtained with the MIBS algorithm are compared to the optimal solutions obtained
with the ILP formulation. In Section 3.8.3, we demonstrate the effectiveness of the

MIBS algorithm in reducing the hardware area relative to the GCLP algorithm.

3.8.1 Estimation of the Hardware Implementation Curve

Silage code is generated for all the nodes in the DAG using the Silage code
generation feature of Ptolemy. The Hyper environment is used to generate the
hardware implementation curves as follows (see Figure 3.21). For each node, the
critical path 7, associated with its control-dataflow graph is first computed. The
hardware area required to implement the node at a sample period d equal to the
critical path is estimated (Appendix A8.1 discusses the estimation techniques in
detail). This sample period corresponds to the L implementation bin for the node.
The sample period is then increased in multiples of the sample period until the
required hardware reduces to just one resource of each type. This sample period

corresponds to the H implementation bin for the node; the hardware area cannot

77

nodai description

| Compute critical path T, |
d=Tc_1 nodal description
sample period d nodal description (L bin)

l l —>| Estimate area |
Area Estimator
hardware area

area-time
implementation curve

(@ (®)
Figure 3.21. (a) Estimation of the hardware area for a node, for a given sam-

ple period (b) Computation of the hardware implementation curve for a node.
get any smaller using the particular synthesis mechanism. Sample periods between
L and H bins correspond to the remaining implementation bins for the node.
The generation of the implementation curve for the random graphs is dis-

cussed in Appendix A7.3.

3.8.2 Experiment 1: MIBS vs. ILP
ILP formulations of the modem and TCS examples become impossible to
solve in a reasonable time. A simplified version of the modem example with 15
nodes and 5 hardware implementation bins per node is considered here. The ILP
formulation for this example requires 718 constraints and 396 variables. Table 4
summarizes the solutions obtained with ILP and with MIBS algorithm. The close-
ness of the solutions is encouraging, especially since ILP becomes formidable for
even slightly larger problems. '
Figure 3.22 plots the MIBS and ILP hardware areas for a number of ran-
dom examples. For the examples tested, the MIBS solution is within 18% of the
78

Scenario hardware area solution time

ILP 158 3.5 hours

MIBS 181 3 minutes

Comparison 1.1456 times bigger 70 times faster
Table 4. Comparison of ILP and MIBS solutions.

optimal solution obtained by ILP. Larger examples could not be solved by ILP in
reasonable time. In these examples, ILP failed to give even a single feasible inte-

ger solution.

383 Experiment 2: Binary Partitioning vs. Extended Parti-
tioning .

Our next objective is to evaluate the effectiveness of the extended parti-
tioning approach in reducing the total hardware area compared with binary parti-
tioning. Three cases are considered. In the first case, mapping is done based on
GCLP, assuming that the execution times and areas for the nodes mapped to hard-
ware are set to the values corresponding to their L bins. In the second case, this
mapping is recomputed, now with the area and execution time values correspond-
ing to the median implementation bins. In the third case, extended partitioning is

done based on the MIBS algorithm. Table 5 shows the results for the three cases

13

T T T | S— | T
125 b= mbs-area/ip-area $ _
MIBS hardware area P
2= (normalized w.r.t. ILP) -

115 p= -

11 = -

mbe-grea/ip-area

105 = -

b bt

ILP hardware area

PN O TR Y TSN IR I
4

8 10 12 18
graph size |N|

Figure 3.22. Comparison of MIBS and ILP solutions.

79

case Scenario hardware area reduction solution
‘ area normalized with tim
respect to case 1 €
1 GCLP, L implementation bin 736 1.0 0.0525s
2 GCLP, median implementation bin 530 0.7201 . 0.0525s
3 MIBS 362 04918 0.7974s
Table 5. Area improvement using MIBS vs. GCLP

applied to the modem example. The MIBS solution is observed to be much supe-
rior to both the GCLP solutions (50% less hardware compared to case 1, and 32%
less than case 2). This strengthens our premise that implementation flexibility can
be used at the partitioning level to reduce the overall hardware area.

In Figure 3.23, we compare, for random graphs, the hardware area obtained
with MIBS to that obtained with GCLP (median area and time values). On an aver-
age, the area generated by MIBS is 26.4% smaller than that generated by GCLP.

Figure 3.24-a shows the distribution of the nodes among the implementa-
*'tion bins selected by the MIBS algorithm. This distribution is averaged over a
number of random examples for a fixed graph size of 25 nodes. The bins are classi-
fied into 5 categories: L bin, L to median bin, median bin, median to H bin, and the
H bin. It is seen that the nodes in hardware are distributed among all the imple-

mentation bins. This flexibility reduces time criticality at every mapping decision

1.1

i J] |}
QCLP wkh median value
MBS

1}0-6060600-00666060006000 -

GCLP (median bins) hardware area

0.8 = ¥ \\‘ + . ’*+‘F * -

' -\-
o7f= MIBS h#d\varo area ‘

(normalized w.r.t. GCLP madlan)
06 1 1 1 L

0 20 0 60 [100
graph s2o [N|

Figure 3.23. MIBS vs. GCLP (Extended Partitioning vs. Binary Partitioning)

grea reduction of MIBS over GCLP with median values
+
+
~
g

80

& T T T T T b T T T T
nlk dsiribution of nodes among bins —— | Solution time of MIBS @~
Y - 7
50 |- - -
ol -
b } -
2} - -
10 ‘ I -
0 i I 1 1 0 60 100

L LM M MH H graph size [N]

(a) ®)

Figure 3.24. (a) Node distribution among implementation bins. (b) Solution
time of MIBS algorithm averaged over random graphs per graph size.

and improves DSP utilization, i.e., the number of nodes mapped to software
increases. This combined effect (reduced number of hardware nodes and their dis-
tribution over several bins) reduces the total hardware area. The MIBS solution
time is plotted as a function of the graph size in Figure 3.24-b. The algorithm has
complexity of O(INI3 + B. le).

3.84 Parameter Tuning

Several user-settable parameters come into play in the MIBS algorithm.
These include: (1) the cut-off percentiles (o, B) used for classifying extremities in
GCLP, (2) the extremity measure weight (y) and the repeller measure weight (v)
in GCLP, (3) the ranking function for GC calculation (ts, ts/th, or ah), and (4) the
ranking function for BF calculation (e, enfljenk, or ahl).

Parameters o, B, v, and v are tuned by a simple binary search between 0
and 1. We have incorporated this automated search mechanism in our algorithm
implementation. Since the MIBS algorithm is extremely fast, such an exploration
is computationally viable. The ts/th and thH[thE ranking functions have been found
to perform best for GC and BF calculations respectively.

81

3.9 Summary

At the system-level, designs are typically represented modularly, with
moderate to large granularity. Each node can be implemented using a variety of
algorithms and/or synthesis mechanisms in hardware or software. These imple-
mentations typically differ in area and execution time. We define extended parti-
tioning as the joint problem of mapping nodes in a precedence graph to hardware
or software, scheduling, and selecting a particular implementation (called imple-
mentation bin) for each node. The end-objective is to minimize the total hardware
area subject to throughput and resource constraints. The extended partitioning
problem is NP-hard; we proposed an efficient heuristic called MIBS to approxi-
mately solve it. The MIBS algorithm has a complexity of O(INP® + B+IN1%), where
IM is the number of nodes, and B is the number of implementation options per
node, per mapping.

In this chapter, we first presented the GCLP algorithm to solve the binary
- partitioning (mapping and scheduling) problem. It uses a global time criticality
measure to adaptively select a mapping objective at each step — if time is critical,
it selects a mapping that minimizes the finish time of the node, otherwise it mini-
mizes the resource consumption. This time criticality measure overcomes the
inherent drawback with serial traversal. In addition to global consideration, local
optimality is sought by taking into account the preferences of nodes that consume
disproportionate amounts of resources in hardware and software mappings. This
effect is quantified by classifying nodes as extremities. The hardware area is fur-
ther reduced by using a concept of repellers to effect on-line swaps between nodes.
Repellers take into account the relative preferences of nodes, baged on intrinsic

algorithmic properties that dictate a preferred hardware or software mapping. The

82

GCLP algorithm is computationally efficient (O(lNIz)). For the examples tested,
the GCLP solution was found to be no more than 30% larger than the optimal solu-
tion. The effectiveness of local phase nodes (extremities and repellers) in reducing
the overall hardware area was experimentally verified. On an average, the use of
local phase nodes reduces the hardware area by 17%, relative to solutions obtained
without using local phase classification of nodes.

The philosophy of the MIBS algorithm is to extend the GCLP heuristic for
extended partitioning without the associated complexity buildup. The strategy is to
classify nodes in the graph as free, tagged, and fixed. Initially all nodes in the
graph are free'— their mappings and implementation bins are unknown. GCLP is
applied over the set of free nodes. A tagged node is then selected from this set; its
mapping is assumed to be that determined by GCLP. A bin selection procedure is
used to compute an appropriate implementation bin for the tagged node. The pro-
cedure uses a lookahead measure, called bin fraction, which estimates for each bin
of the node, the fraction of unmapped nodes that need to move to their fastest
implementations so that timing constraints are met. The bin fraction is used to
compute a bin sensitivity measure that correlates the implementation bin with the
overall hardware area reduction. The procedure selects the bin with maximum bin
sensitivity. The procedure simplifies this computation by assuming that the
remaining free nodes are either in their slowest or fastest implementations. The
tagged node becomes a fixed node once its implementation bin is determined.
GCLP is then applied over the remaining free nodes and the sequence is repeated
until all nodes in the graph become fixed. In the examples tested, the MIBS solu-
tion is found to be within 18% of the optimal solution. Experimental results also
indicate that implementation bins can be used effectively to reduce the overall area

by as much as 27% over solutions generated using binary partitioning.

83

4

COSYNTHESIS AND COSIMULATION

In Chapter 3, algorithms to partition an application into hardware and soft-
ware were described. Partitioning makes three attributes available for each node in
the application: a hardware or software mapping, the type of implementation for
this mapping, and a schedule.

The next step in the design process is to synthesize the mixed hardware-
software system. The cosynthesis problem is to synthesize the hardware, software,
and interface components for the final implementation. In Section 4.1 we discuss
this problem. Based on the assumed target architecture, we develop an architec-
tural model in Section 4.1.1. Our approach to synthesis is discussed in Section
4.1.2. We describe the particular mechanisms used to synthesize the hardware, the
software, and the interface in Sections 4.1.3 to 4.1.5. Some of the other approaches
to synthesis are discussed in Section 4.1.6.

Hardware-software cosimulation is the process of simulating the hardware
and software components of a mixed hardware-software system within a unified
environment. This includes simulation of the hardware modules, the processor,
and the software that the processor executes. The cosimulation problem is dis-

cussed in Section 4.2. The requirements of a cosimulation environment are out-

84

lined. Ptolemy has an infrastructure that supports most of these requirements. The
relevant details of the Ptolemy environment are discussed in Section 4.2.1. Our
approach to hardware-software cosimulation within the Ptolemy environment is

presented with the help of an example in Section 4.2.2.

4.1 Cosynthesis

After partitioning, each node of the DAG is annotated with a mapping,
implementation bin, and schedule. We define cosynthesis as the problem of syn-
thesizing the final implementation (hardware, software, and interface) from this
annotated DAG.

4.1.1 Architectural Model

A particular target architecture for the mixed hardware-software system
has been assumed in Chapter 2. As shown in Figure 4.1, the architecture consists
of a single programmable processor and multiple hardware modules connected to a
single system bus. Each node mapped to hardware is synthesized as a hardware

module!. A hardware module consists of a datapath and controller, and input and

:: Controller
—p o
—
—p t Hardware
Module | ——
. Processor | = .
[a'd‘ ”m :
) Core Module :
Hard —>
system Viodue' [+ Contro System
nputs Data outputs

Figure 4.1. The target architecture.

85

output interfaces. The input and output interfaces are responsible for the communi-
cation between the hardware modules and the processor. The software component
of the architecture is the program that runs on the programmable processor. This
includes the communication code, i.e., the device drivers that manage communica-
tion of data between hardware and software. The architecture is assumed to be
non-pipelined, i.e., one set of input data is processed completely before the second
set arrives into the system. We assume that nodes in hardware and software com-
municate via a8 memory-mapped, asynchronous, blocking communication mecha-
nism?. By memory-mapped communication between the software and hardware,
we mean that data is communicated across the hardware-software boundary by
writing to and reading from a shared address space. The various components in the
architecture are configured as a globally asynchronous locally synchronous model.
This means that each individual hardware module operates internally as a synchro-
nous circuit, but the modules themselves communicate with each other and the
processor asynchronously. In other words, within a hardware module, a module
controller activates the various components of the datapath (ALUs, registers, mul-
tiplexers, etc.) at predetermined clock cycless. Communication between a hard-
ware module and the processor or between hardware modules is asynchronous,
though. The reason is obvious. Since the schedule generated by partitioning is
based on execution-time estimates, it is not guaranteed to be cycle-accurate. That

is, we cannot exactly determine when a processor or hardware module should

1. We assume no hardware reuse between modules. This issue is further discussed in Sec-
tion 4.1.3.

2. A system may contain several types of interfaces, such as serial ports or custom-designed
peripherals. All nodes need not communicate via the same mechanism. An appropriate
communication mechanism may be selected for the different data transfers, depending on
various factors such as the size of the data (number of words and the bitwidth) and whether
the data is communicated on-chip or off-chip. In this work we simplify matters by restrict-
ing all nodes to use the same type of communication mechanism.

3. The datapath and controller will be discussed in detail in Section 4.1.3.

86

clock. The generated schedule is valuable, however, in that it can reliably indicate
the order in which nodes execute. A global controller activates the hardware mod-
ules in this order.

Architecture of a hardware module

The architecture of a hardware module is shown in Figure 4.2. We refer to
the datapath and controller collectively as the kernel of a hardware module. Each
kernel has two handshaking signals, ready and completion, in addition to the input
and output data signals. Each input and output of the kernel is connected to a data
latch. A latch has an input enable (IE) and an output enable (OE) control. The ker-
nel begins its computation after it receives a ready signal, which indicates that
valid data is available on all of its inputs. On finishing computation, the k.ernel
raises a completion flag. The ready signal is a function of the input enable signals
and the completion signal and is generated by combinational logic.

The details of the hardware-software, software-software, and hardware-
hardware interface are described next.

Hardware-software interface

In a memory-mapped scheme, each input and output of a hardware module
corresponds to a unique address in the shared address space of the processor. A tra-

ditional implementation of memory-mapped communication requires an explicit

4 -+ardware Module
Y —
ink— :
IEy
v i -
system | o

data bus
Figure 4.2. Architecture of a hardware module.

87

completion
)

3 7

IE OE
(input enable) (output enable)

Figure 4.3. The global controller for the hardware-software interface.

address decoder that enables the appropriate input (output) of a hardware module
when a write (read) to that address arrives. As the number of modules increases,
the decoder tends to get quite large. To reduce the time overhead associated with
semaphore checking and area overhead associated with explicit address decoders,
we apply the ordered transactions principle, proposed by Lee et al. [Lee90]
[Sriram93]*. The hardware-software communication scheme works as follows.
The schedule (determined by partitioning) is analyzed to determine the order of
data transfers across the hardware-software interface. Each data transfer is
assigned a unique memory address. Thus, the sequence of hardware module-
addresses to which the processor sends read and write signals, is known apriori
from the schedule. Each of these addresses corresponds uniquely to an input or
output latch of a particular hardware module. A global controller, shown in
Figure 4.3, uses the order information to activate the input and output latches of all
the hardware modules. When the processor issues a write request, the global con-
troller knows the corresponding input latch based on the order of transfers; it does
not need to explicitly decode the address. Accordingly, it enables the correspond-

ing input latch and the data from the processor is latched into the hardware mod-

L3

4. They propose this principle in the context of shared-memory multiprocessor machines
running SDF applications.

88

ule. Note that a hardware module’s input data is always read before the next input
arrives, since the architecture is non-pipelined. When all the inputs to a kernel are
available, the combinational logic associated with the hardware module generates
a ready signal that notifies the kernel to begin execution. When the processor
issues a read request, the controller checks whether the corresponding hardware
module has set its completion signal. If not, the controller stalls the processor until
completion gets set. When completion is set, the controller enables the correspond-
ing output latch and the data from the hardware module is made available to the
processor. If the execution-time estimates are reasonably accurate, the ordered
transactions approach does not introduce a significant overhead (the ready or com-
pletion signals are already set when the processor request arrives).

Software-software interface

Data transfers between two software nodes are assigned unique memory
addresses in the internal data memory of the processor. Communication between
two software nodes is achieved by writing the results to the corresponding loca-
tions in the internal data memory. Since the software executes sequentially accord-
ing to the schedule, there is no need for semaphore checking.

Hardware-hardware interface

Communication between two hardware modules is achieved by directly
connecting the output latch of the sending hardware module to the corresponding
input latch of the receiving hardware module. After the sending hardware module
finishes sending data, its completion signal enables the input latch of the receiving
module. The completion signal of the sending module is also used in the combina-
tional logic that generates the ready signal for the receiving module.

89

4.1.2 The Cosynthesis Approach
The cosynthesis problem involves synthesizing the following components:

1. the datapath and controller for each hardware module.

2. the program running on the programmable processor. This includes the
code to read from and write to the shared memory locations for communi-

cation with the hardware modules.

3. the global controller, the input and output interfaces of the hardware mod-
ules, and the netlist connecting the controller to the various hardware mod-

ules and the processor.

Our approach to synthesis is shown in Figure 4.4. The application is speci-
fied as an SDF graph. As discussed in Chapter 2, the SDF graph is first translated
to a directed acyclic graph representing data precedences. The DAG is an imple-
mentation-independent specification of the application, i.e., nodes are at a task
level of granularity and have no commitment to a particular hardware or software
implementétion. The partitioning tool (discussed in Chapter 3) annotates each
node of the DAG with a mapping, implementation bin, and schedule.

This annotated graph is then passed to a technology-dependent retargeting
tool. This tool replaces each node in the DAG (and all the nodes within its hierar-
chy) with a technology-dependent representation corresponding to the mapping
and implementation bin selected by the partitioning tool. By technology-dependent
representation, we mean an assembly or C code representation for nodes mapped

to software, and a VHDL or Silage representation for nodes mapped to hardware>.

5. Note that the technology-dependent hardware description is still not the final implemen-
tation; the hardware implementation (at the architecture or layout-level) for a node is gen-
erated by highlevel synthesis tools that operate on this description. We assume such a two-
tiered approach because it is unreasonable to expect full implementations of task-level el-
ements to be available in a library, while library elements for Silage and VHDL descrip-
tions are readily available within Ptolemy.

90

Furthermore, if different implementations are available for a node (for instance,
cascade and transpose form IIR filters, or inlined and subroutine-based software
representations), the retargeting tool selects the one corresponding to the imple-
mentation bin selected by the partitioning tool. In the case of hardware-mapped
nodes, transformation and resource-level implementation options are also possible,
as discussed in Chapter 1. Since these come into play only at a lower level, the cor-
responding technology-dependent description of a hardware-mapped node is anno-

| soF Graph
Generate DAG
DAG
Partition (MIBS)
annotated DAG
(mapping, implementation bin, schedule)

Netlist Generator

l system implementation
Figure 4.4. Cosynthesis approach

91

tated with the selected transformation and sample period. This information is then
used by the hardware synthesis tools.

This retargeting approach assumes the existence of a library for each tech-
nology. For instance, suppose a node is an IIR filter. We assume descriptions of the
IIR filter in C, VHDL, Motorola 56000 assembly code, etc. to be available. For
instance, within the Ptolemy environment, extensive libraries for the various tech-
nologies, such as C, assembly code for various DSPs, VHDL, and Silage are avail-
able. Also, multiple representations (corresponding to different values of the
implementation metrics) could be available for the same node within a given tech-
nology.

An alternative to the library-based retargeting approach is to compile the
technology-independent representation of every node into its desired representa-
tion. In this approach, the node is described in a highlevel language, such as C. The
C description for the node is then translated to an intermediate representation,
which is typically a variant of a control-datafiow graph [McFarland90a). The inter-
mediate representation is compiled to either VHDL, or assembly code, depending
on the desired synthesis technology. This compilation approach can be simplisti-
cally thought of as retargeting at the instruction level, accompanied by some tradi-
tional compiler-like optimizations. Such a compilation approach is used in the
DSPStation [MentorGraphics1] for synthesizing hardware or software from a
highlevel description based on Silage.

We have chosen the library-based retargeting approach. There are two
advantages to this approach. First, it is computationally efficient and retains rpodu-
larity. If a node (or its mapping or implementation) changes, the éorrespondix;g
representation for the node is re-synthesized by simply selecting the new library

element. In the compilation approach, the intermediate graph would have to be

92

regenerated and compiled. Secondly, each module can be individually optimized
(when added to the library), thereby improving the quality of the implementation.
The disadvantage of this approach is that it depends on the richness of the library.
If a corresponding element does not exist in the library, the user is forced to
develop it.

After the retargeting step, each node in the DAG has been replaced by an
equivalent technology-dependent representation. The address generator assigns a
unique address to every data transfer involving a software and a hardware node,
i.e., every arc connecting a software node to a hardware node is assigned an
address in the processor’s external address space. .

The next step in the synthesis process is to generate the hardware, soft-
ware, and interface graphs. Figure 4.5 shows typical hardware, software, and
interface graphs for a simple example. These graphs are fed to the hardware, soft-
ware, and interface synthesis tools respectively. A separate hardware graph is
generated for each node mapped to hardware. Since a node could be represented
hierarchically in the original description, the hardware graph can, in general, con-
tain several subnodes. The hardware graph is annotated with the transformation
and sample period corresponding to the implementation bin selected for this node.
The hardware synthesis tool generates a datapath and controller for each hardware
graph as ;equired by its implementation bin. For software nodes, the synthesis
technique is slightly different. All nodes mapped to software are combined in a
single software graph. Send and receive nodes are added wherever a hardware-
software communication occurs. Recall that the partitioning algoﬁthm generates a
global schedule that determines the order in which all the nodes in the DAG begin
execution. The ordering between the nodes of the software graph is derived from

this global schedule. The software synthesis tool generates a single program from

93

the software graph. The program contains code for all the nodes in the software
graph, where the code is concatenated in the predetermined ordering.
The order generator determines the order of transfers between nodes

mapped to software and hardware. The interface synthesis tool generates the glo-
ordering: 1-2-3-4-5-6 annotated DAG
generated by the x:3
tioni 3
partitioning process . o ¢

Y
4 Wem&ical representation of a node
> b (called subgraph)

Figure 4.5. Hardware, software, and interface graphs. Each node in the hard-
ware (software) graph contains a Silage or VHDL (C or assembly) description.

94

bal controller using this order of transfers. It also generates the interface glue logic
(latches, combinational logic for generating the ready signal, etc.) for the hardware
modules.

A netlist that describes the connectivity between the hardware modules, the
processor, and the global controller is next generated. Standard placement and
routing tools can then be used to synthesize the layout for the complete system.

In the following sections we discuss the hardware and software synthesis

tools in more detail.

4.13 Hardware Synthesis
Given a hardware graph (for a node), we wish to synthesize its datapath
and controller. The general approach for hardware synthesis is to:
1. Generate a synthesizeable description of the hardware graph. A synthesize-
able description is typically in a language such as Silage or VHDL. Such a
description is generated by combining the technology-dependent descrip-
tion of all the subnodes in the hardware graph.

2. Feed this description to highlevel hardware synthesis tools to obtain the
implementation for the node. Several highlevel synthesis tools that operate
on such synthesizeable descriptions already exist — our approach is to use

them directly.

Figure 4.6 summarizes the hardware synthesis mechanism. We restrict our-

selves to Silage6 descriptions for the hardware graph, and assume that the Hyper

6. Silage [Hilfinger85] is an applicative language that is well-suited to expressing DSP ap-
plications. Its key features include: dataflow semantics, multirate operatars, manifest iter-
ations, signal precision specification, and single-assignment. Several research and
commercial synthesis systems use Silage as the specification language (for instance, Hyper
from UC Berkeley [Rabaey91], Cathedral from IMEC [Laneer91}, and DSPStation from
Mentor Graphics [MentorGraphics1]).

95

lhexdware graph

Silage code generation
(Ptolemy)

i Silage code

| Highlevel hardware synthesis
(Hyper)

Figure 4.6. Mechanism for hardware synthesis for a single node

system [Rabaey91] is used to synthesize the datapath and controller from this
Silage code.

Figure 4.7 illustrates the hardware synthesis mechanism with an example.
Figure 4.7-a shows a simple task-level description (specified in Ptolemy), where
one of the nodes is a 5th order IR filter. Suppose that this node is mapped to hard-
ware. Let us consider the synthesis of its implementation. Figure 4.7-b shows the
hierarchical description of this node (a cascade of two biquads and a first order
section). The first biquad is specified hierarchically in terms of elementary opera-
tions as shown in Figure 4.7-c, and the second biquad and the first order section
are assumed to be monolithic. Figure 4.7-d shows the hardware graph for the node.
Each subnode in the hardware graph contains Silage code. A single Silage program
is generated by combining the Silage descriptions of the individual subnodes in the
hardware graph. We have developed a Silage code generation mechanism, within
Ptolemy, that generates Silage code starting from such a hardware graph (see
[Kalavade93] and [Ptolemy95, Chapter 17] for details on Silage code generation’).

7. The Silage code generation process includes: (1) generating a schedule for the subnodes
in the hardware graph (2) stitching together the code from the individual subnodes in the
order specified by the schedule (this includes buffer management between the modules).

96

The generated Silage description for the IIR node in our example is shown in
Figure 4.7-e. This description, along with the transformation and sample period
values of the node (corresponding to its implementation bin) are used by Hyper to

generate the implementation. Figure 4.7-f shows the final layout of the datapath

and controller for the IR filter.

tnp:schematic (naiciFncsS

hierarchical description of node
)" | B 1y ® |
owd

pigwd forder

> -2 & ol6 .
[| () ?. i —\)]b'qUBle—bfzrstOrder{—b

(d)
hardware graph for node “5th Ordef Filter”

FHETER Silage code generation (Ptolgmy)

&

[oefine gan__5 Fix<16,14>(1.0)

[oefine gan__6 Fix<16,14>(1.0)

' . lcefire gain_7 fix<16,14>(1.0)

loafine gain_8 F1x<16,14>(1.0)

lecefine d1_9 frix<5,0>(-1.14299988746643)
roefine 629 Frx<5,0>(0. 412799954414 362)
poefine nO_9 f1x<5,0>(0 0674550533294678)
: #oafine nl_9 f1x<5,0>(0.134999990463257)
T Hoafine n2_9 f1x<5,0>(0 0674550533294678)
froefine al fix<16,14>(1.0)

lecefine a2 Fix<16,14>(1 0)

ttdefine rum f1x<16,14>

func main(in Fix<6,11>) out Fix<S, 0> -
OuaTn begnn

i out_0 = fix<16,11>(output_1_1 = cutput_8 =+ cutput__T7),
- - cutput_1_ 1 = fix<d6,11>(output__4),
‘ output_2_1 = fix<16, Li>(output_4) .
output_1_ 2 = fix<16,11>(output_2_181),
(f) output_2_2 = fix<l6,11>{output_7_ 1819,
output_3__2 = fixd6,11>(output_2_181),

output__5 = fix<16,11>(output_3_2 * gain_5),

(transtrmaﬁon am Sam‘e mrim) hJoutput_6 = fix<16,11>(output_2_3 * guin_6),

output__7 = fFix<16,11>(output_1_3 * gain_7),
(e‘ output _B = fix<l6,11>(cutput_1l__2 * gain_8),
/* star SilageBiguad) */
yea1 - 0,
y8a? - 0,
y = out_0 - num(dl_9* y81) - rum(d?_9 * y82),
output__9 = rum(n0_9 * y) + num(nl_9 * y81) « rum(n?_9 * y@2),
/* star S3lageFirstOrder */
xB31

= 13 - fixds, _2_a.),
A - ﬁ::_%:! - deﬁ.ﬁ»’gm:_?_mg,
Synthesis using Hyper output 4 = Fix<l6,11>(in ~ ouTpt_6 - cutput_S),

x = eu:pn:ut_l) + num(al * x81),
out = x < rum{a? * @),

and,

“f1 fthOrder 511" 47 Yines, 1494 characters

Figure 4.7. An example illustrating the hardware synthesis mechanism.

97

Hyper-generated Architecture

Figure 4.8 shows the generic architecture of the datapath and controller
generated for a single hardware graph. The datapath comprises one or more execu-
tion units (ALUs, multipliers, adders, etg.). Inputs to the execution units are
latched in registers. If an execution unit receives inputs from several sources, a
multiplexor is added. Outputs of the execution unit are latched in tristate buffers.
Data is communicated internally via a crossbar network. The datapath is controlled
by a module controller. Associated with each execution unit is a local controller;
the module controller controls the local controllers.

Note that the module controller generated by Hyper does not normally

include the ready and completion signals. It can be modified slightly to incorporate
ing Ny ing ready completion outy out, Out

module controller

crossbar network

JOJJORUOO [820] |¢—p
T

Figure 4.8. Architecture of the datapath and controller in a hardware module.
This is the underlying architecture generated by Hyper, augmented with the
ready and completion signals.

98

these signals. The module controller activates the execution units and the local
controllers only after receiving the ready signal. It sets the completion signal after
processing one set of inputs.

Hardware Reuse

A limitation of our current partitioning and synthesis mechanism is that it
does not allow reuse of hardware berween nodes. This is limiting especially in the
case of multirate applications, where the DAG may contain several instances of a
particular node. In such a case, the partitioning algorithm can be modified to take
reuse into account®. The synthesis process would then have to take this reuse into

account while generating the interface.

4.14 Software Synthesis

The software synthesis problem is to generate a software implementation
(the program running on the programmable processor) corresponding to a software
graph. Although the software synthesis technique described here applies to any tar-
get processor, our discussion assumes that the programmable processor used is a
Motorola DSP 56000.

Recall that a software graph contains all the nodes mapped to software,
augmented by send and receive nodes for communication. Each node in this graph
contains a technology-dependent representation, i.e., a codeblock representing the
functionality of the node. The software synthesis process essentially involves
stitching together these codeblocks to generate a single program for the entire soft-
ware graph. To preserve the functionality of the system, the codeblocks need to be

put together according to the sequence generated by the partitioning tool. Note,

8. A simplistic approach is to consider the extremity and repeller measures of a node with
multiple instances in the DAG and explicitly assign all the instances of the node to its pre-
ferred mapping.

99

however, that the schedule generated by the partitioning tool is at the level of
nodes in the DAG; it does not contain any information on the sequence in which
the subnodes within a hierarchical node should be executed. As a result, we first
need to determine this sequence before we can stitch together the codeblocks. Such
a sequence is generated by standard list scheduling techniques available within
Ptolemy. The ordering of the nodes in the software graph is updated using this
sequence. The final ordering is referred to as the flattened ordering. The individual
pieces of code are then stitched together in the order specified by the flattened
ordering. Note that this includes the code for the send and receive nodes too. The
code for a send node contains a “write” instruction; it writes the results generated
by the node connected to its input to the memory location assigned to its input arc.
Similarly, a receive node contains a “read” instruction to read from the memory
location assigned to its output arc. The end product is a program corresponding to
the software graph. Our approach for software synthesis is summarized in
Figure 4.9.

software graphl 1 ordering

— schedule each hierarchical node
— expand each hierarchical node according to its schedule
— update ordering to get flattened ordering

flattened software graph and its ordering

generate code for flattened software graph
— add initialization code
— add communication code

— stitch code blocks together according to ordering
(CG56 code generation mechanism in Ptolemy)

Figure 4.9. Mechanism for software synthesis from the software graph.

100

We have augmented the DSP 56000 code generation capability within
Ptolemy ([Pino95a] and [Ptolemy95, Chapter 14]) to stitch together the code
according to a predefined schedule. This predefined schedule is the order derived
from the global schedule generated by the partitioning tool. The generated code is
repeatedly executed by the DSP.

Figure 4.10 shows the software synthesis mechanism with the help of an
example. Figure 4.10-a shows the task-level DAG annotated with the mapping and
the ordering for a simple application (chirp signal generation). Suppose that nodes
1 (constant generator), 3 (integrator2), and 5 (xgraph) are mapped to software.
Suppose further that node 3 is represented hierarchically as shown in Figure 4.10-
b, while nodes 1 and 5 are monolithic. The software graph and the derived order-
ing is shown in Figure 4.10-c. The flattened software graph and its ordering are
shown in Figure 4.10-d. The generated code (according to the flattened ordering) is
listed in Figure 4.10-e.

4.1.5 Interface Synthesis

Interface synthesis involves synthesizing the global controller as well as
the interface glue logic. A finite state machine description for the global controller
can be generated using the order of transfers. An implementation for the controller
can be synthesized using logic synthesis tools. The latches and other glue logic
surrounding a hardware module can be synthesized using a template-based
approach, such as that proposed by Sun et al. [Sun92]. The interface graphs can be
used to generate a netlist connecting the various hardware modules. Currently, the

interface synthesis is done manually, although the approach we have presented is

relatively simple to automate.

101

Task-level DAG annotated with mapping and ordering
H S H S

S
constam—ul;"’W W""F > @

ordering: 1,2,3.4,5 / 3

(generated by

the partitioning ()
tool)

ordering
derived from (¢)

global schedule
i

13,5

(d)

(e)

)'";’3-’%\’* hlerarchlcal repfesemabon
3-3om for node 3
nodal schedule: 3-3, 3-1, 3-2

nnnnnnn esseveces:

[] User: kalavade
; Target: scheduled-C05%6
, Univarse: chirp

main loop beghns
LOOP
; code from star swcgl.Constl (class CCS6Const)

; code from star sendl
move x:1,
move %0, x:4094

, code from star recvl
move x:4095,x0
move x0,%:2

, code for integrator2
; code Frem star Crml (class CGC56Cain)
x:
m 00 2m0047683716 yl
WY" ’dv yl,a

x:9
code From star Add.'input-n (class CGS6Add)
move x:2,x0 , 1st input -> x0
move x:3,a : end input -> a
add xo,

move
code from star Forlt output=21 (c‘lns AnyAsmFork)

code from star send2
move x 4,
move %0, x:4096

; code from star recv2
move x:4097,x0
move x0,x:5

, code from star swcgl.Xgraghl (class CG56Xgraph)

move x:5,8
move a,y:l
jmp LOOP

main loop ends

START

+ initialization cgdo from star Constl (class CGS56Const)
org x:
de 0.00199997425079346
org p:

; this move saturates

Figure 4.10. Software synthesis for chirp signal generator.

102

(@)

4.1.6 Other Synthesis Approaches

In this section we discuss some of the other approaches to cosynthesis.
Systems that synthesize just hardware or just software from synthesizeable
descriptions have been around for a while. A comprehensive summary of these
tools exists elsewhere [Camposano91][Bier95a] and we will not discuss them here.
Instead, we will discuss a few representative systems that focus on the higher-level
cosynthesis problem.

Chiodo et al. [Chiodo94] focus on the cosynthesis of control-dominated
applications. An applicaﬁon is typically described in Esterel or VHDL. This is
translated to an internal representation consisting of a network of CFSMs (code-
sign finite state machines). CFSMs are similar to hierarchical concurrent FSMs. In
addition, they communicate by broadcast. Events can have arbitrary propagation
times, and do not necessarily follow the synchronous hypothesis. Each CFSM cor-
responds to a component of the system being modeled and is manually assigned to
either hardware or software. Hardware is generated using logic synthesis tools. For
software synthesis, each node in the CFSM is translated to a thread and a run-time
scheduler controls the execution of threads. This is different from our approach,
where a run-time scheduler is not required since the schedule is known at compile
time. The key strength of the semantics of the CFSM:s is that these systems can be
verified using formal verification techniques.

In the VULCAN system [Gupta93], an application is specified in Hard-
wareC and translated into a control-dataflow based internal representation. During
software synthesis, the internal representation is compiled to C code. Hardware is
synthesized by passing the internal representation through highlevel synthesis
tools.

The COSYMA system [Henkel94] starts with a C-like description of the

103

application, which gets translated to an internal syntax graph. After partitioning,
the internal graph is compiled to HardwareC and C representatiohs for hardware
and software synthesis respectively.

Srivastava ef al. [Srivastava9l] have developed a framework, called
SIERRA, for synthesizing thg hardware and software components for multi-board
systems. An application is described as a hierarchical network of communicating
sequential processes. The user maps the application onto a system architecture,
consisting of multiple boards with dedicated hardware modules and programmable
processors. They have developed techniques that automatically generate the netlist
for the system architecture. Software synthesis involves generating code for each
process; a real-time kernel on the processors manages the software execution. The
interface is synthesized using a template-based approach [Sun92].

Chou er al. [Chou92] address the problem of synthesizing the device driv-
ers and glue logic for the hardware-software interface between microcontrollers
and hardware devices. Given a list of device ports that need to be connected to the
microcontroller and a list of available microcontroller ports, they present a proce-
dure for assigning device ports to controller ports.

Coelho ez al. [Coelho94] present an interesting variant of the cosynthesis
problem. They address the problem of resynthesizing the system when the specifi-
cations change, while ensuring that hardware does not have to be resynthesized.
They present techniques to resynthesize software such that the timing constraints

imposed by the hardware are still met.

417 Summary

Cosynthesis is the problem of synthesizing the hardware, software, and

interface components of the system, starting with a partitioned DAG. Our synthe-

104

sis techniques target an architecture consisting of a single programmable processor
and multiple hardware modules. The architecture is assumed to be non-pipelined
and nodes mapped to hardware and software communicate using a memory-
mapped, self-timed, blocking mechanism. Hardware-software communication is
managed efficiently using the ordered transactions principle.

Our approach to cosynthesis is to decompose the partitioned DAG into
hardware, software, and interface graphs, where each node in the hardware and
software graphs is a technology-dependent representation of the original node.
Pre-existing synthesis tools are used to generate the final implementation from
these graphs. The emphasis in our work has been on generating synthesizeabie rep-
resentations for the hardware and software components. We use preexisting syn-

thesis tools (such as Hyper and Ptolemy) to generate the final implementation.

4.2 Cosimulation

Hardware-software cosimulation is the process of simulating the hardware
and software components of a mixed hardware-software system within a unified
environment. This includes simulation of the hardware modules, the processor,
and the software that the processor executes.

Hardware is typically simulated using discrete-event or cycle-driven simu-
lators. The processor that executes the software can be modeled at various levels of
detail, depending on the desired accuracy and simulation speed. In general, there is
a spectrum of approaches for modeling a processor [Row"son94][Chan395]
[Becker92][Shanmugan94). Possible approaches include:

1. Detailed processor models: In principle, the processor components could

be modeled using a discrete-event model of their internal hardware archi-

105

tectures (datapath, instruction decoder, busses, memory management unit,
etc.) as they execute the embedded software. The processor internals are
modeled in a way typical of hardware systems, often using VHDL or Ver-
ilog. The interaction between models of individual processors and other
components is captured using the native event-driven simulation capability
supported by a hardware simulator. Unfortunately, most processor vendors
are reluctant to make such models available, because they reveal a great
deal about the internal processor design. Moreover, such models are

extremely slow to simulate.

. Bus models: These are discrete-event shells that simulate the activity on
the periphery of a processor without executing the software associated with
the processor. This is useful for verifying very low-level interactions, such
as bus and memory interactions, but it is difficult to guarantee that the
model of activity on the periphery is accurate; it is also difficult to simulate

the interaction of the software with the hardware.

. Instruction-set architecture models: The instruction set architecture can be
simulated efficiently by a C program. The C program is an interpreter for
the embedded software. It updates a representation of the processor state
and generates events to model the activities on the periphery of the proces-
sor when appropriate. This type of modeling can be much more efficient
than detailed processor modeling because the internals of the processor do
not suffer the expense of discrete-event scheduling.

. Compiled Simulation: Very fast processor models are achievable in princi-
ple by translating the executable embedded software specification into

native code for the processor doing the simulating. For example, code for a

106

programmable DSP could be translated into Sparc assembly code for exe-
cution on a workstation, This is called binary-to-binary translation. The
translated code has to include code segments that generate the events asso-
ciated with the external interactions of the processor. In principle, such pro-
cessor simulations can be extremely fast. The dominant cost of the
simulation becomes the discrete-event or cycle-based simulation of the

interaction between the components.

5. Hardware Models: If the processor exists in hardware form, the physical

hardware can often be used to model the processor in a simulation. Alterna-
tively, the processor could be modeled using an FPGA prototype, for
instance, using Quickturn. The advantage of this sort of processor model is
the simulation speed, while the disadvantage is that the physical processor

must be available,

- Thus, depending on the desired simulation accuracy and speed, one of
these models can be used for simulating the processor in the mixed hardware-soft-
ware system. A cosimulation environment should allow the processor to be mod-
eled using any of these approaches.

It is often useful to be able to simulate the system at different levels of
abstraction, throughout the entire design process. For instance, at the start of the
design process, the hardware components may not have been synthesized com-
pletely. At this point, to study the interaction of the hardware and software, the
hardware could be modeled functionally. As the design evolves, and more imple-
mentation-level details of the hardware become available, the functional model of
the hardware can be replaced by a more detailed model at the netlist level. On the
other hand, once the detailed operation of the hardware has been verified, one
could go back and replace the hardware components by a highlevel model to

107

increase the speed of the simulation. A cosimulation environment should support
this migration across levels of abstraction.

Some of the components in the mixed hardware-software system may be
off-the-shelf components, whose design is not part of the current design process.
Such components can be modeled by a functional representation through the entire
design process. It is not required to model the internal architectural details since
they can be assumed to be correct, besides, we have no control over changing the
model of such a component anyway.

In addition to the digital components, a system may also contain analog
components. The cosimulation environment should also be able to support the
modeling of such components and their interaction with the rest of the system. Fig-
ure 4.11 summarizes these aspects of cosimulation.

Thus it is clear that a single simulator, such as a discrete-event hardware
simulator, cannot support all these requirements of hardware-software cosimula-
tion. A framework that allows these different models to be mixed and matched is

required for effective cosimulation.

software hardware

@onal model functional model

a
@m-set level model .

. analog model

detailed architectural model neﬂist-level>

Figure 4.11. Cosimulation.

108

Ptolemy [Buck94a] is a heterogeneous simulation and prototyping environ-
ment, developed by the DSP Group at the University of California at Berkcleyg.
Ptolemy has the unique capability of supporting the integrated simulation of differ-
ent models of computation. It meets most of the above-mentioned requirements of
a cosimulation environment. We use Ptolemy for the cosimulation of mixed hard-
ware-software systems.

In Section 4.2.1, we describe the features of Ptolemy that make it suitable
for simulating systems with such diverse components. The use of Ptolemy for

cosimulation is demonstrated with the help of an example in Section 4.2.2.

4.2.1 The Ptolemy Framework

Ptolemy is an environment for simulation and prototyping of heteroge-
neous systems. It uses object-oriented software technology to model each sub-
system in its most natural and efficient manner, and has mechanisms to integrate
heterogeneous subsystems into a whole.

Figure 4.12 shows the structural components of Ptolemy. The basic unit of
modularity in Ptolemy is the Block. The system being simulated (or designed) is
described as a network of Blocks. A Scheduler determines the operational seman-
tics of a network of Blocks, i.e., it determines the order in which the Blocks are
executed. The operation of the Scheduler is governed by the semantics of the
underlying description. The lowest level (atomic) objects in Ptolemy are of the
type Star, derived from Block. A Star is described by a C++ description. The
description includes a function that gets invoked when a Block is initialized
(“setup()”), a function to describe the run-time behavior of the Block (“go0”), and

9. While Ptolemy supports both simulation and synthesis of systems, we restrict the discus-
sion in this section to the simulation aspects only. Complete details of Ptolemy can be found
in [Ptolemy95]

109

a function that gets called at the termination of the simulation (“wrapup()”). A
Galaxy, also derived from Block, contains other Blocks internally. A Galaxy may
internally contain both Galaxies and Stars.

Ptolemy accomplishes the goal of multiparadigm simulation by supporting
a plethora of different design styles encapsulated in objects called Domains. A
Domain realizes a computational model appropriate for a particular type of sub-
system. Some of the simulation Domains that are currently supported include
‘Synchronous Data Flow’ (SDF), ‘Dynamic Dataflow’ (DDF), ‘Discrete Event’
(DE), and the ‘Digital Hardware Modeling Environment’ (Thor).

A Domain in Ptolemy consists of a set of Blocks and Schedulers that con-
form to a common computational model — the operational semantics that govern
how Blocks interact with one another. The Domain class by itself gives Ptolemy
the ability to model subsystems differently, using a model appropriate for each sub-
system. It also supports mixing these models at the system level to develop a heter-

ogeneous system with different levels of abstraction. The mixture is hierarchical.

Block Geodesic

« setup() * initialize()

* go() * numinit()

« wrapup() + setSourcePort()
Geodesi 8 SStDBSfPOﬂO

PortHole} Block{ PortHol PortHolg): Block{ PortHol

icjeParticle
PortHole Plasma Parhde. readType()
* initialize() * print()
- fBGBiVSDmaO * operator <<0
 sendData() * cone()

Figure 4.12. Block objects in Ptolemy send and receive data
encapsulated in Particles to the outside world through Portholes.
Buffering and transport is handled by the Geodesic and garbage
collection by the Plasma.

110

Any model of computation can be used at the top level of the hierarchy. Within
each level of the hierarchy, it is possible to have Blocks containing foreign
Domains. This hierarchical heterogeneity is quite different from the concept of a
simulation backplane, implemented for example in Viewlogic’s SimBus system. A
simulation backplane imposes a top-level model of computation through which all
subsystems interact.

Figure 4.13 shows the top view of a system associated with a certain
Domain called “XXX”, associated with which are XXXStars and a XXXSched-
uler. A foreign subsystem that belongs to Domain YYY, and has its own set of
YYYStars and a YYYScheduler is embedded in this XXXDomain system. This
foreign subsystem is contained entirely within an object called an XXXWormhole.
An XXXWormhole is a type of XXXStar — so at its external interface it obeys the
operational semantics of the external Domain, but internally it consists of an entire
foreign subsystem. A Wormhole can be introduced into the XXX Domain without
any need for the XXXScheduler to know of the existence of the YYY Domain.

The key to this interoperability is the interface between the internal structure of a

Top-level System
/ XXXDomain

EventHorizon

Figure 4.13. The universal EventHorizon provides an interface between
the external and internal Domains.

111

Wormhole and its external environment. This interface is called the EventHorizon.
The EventHorizon is a minimal interface that just supports exchange of data and
permits rudimentary standardized interaction between schedulers. Each Domain
provides an interface to the EventHorizon, and thus gains an interface to any other
Domain,

The Domain and the mechanism of coexistence of Domains are the pri-
mary features that distinguish Ptolemy from otherwise comparable systems such
as Comdisco’s SPW and Bones, Mentor Graphic’s DSPstation, and the University
of New Mexico Khoros System [Rasure91].

We use the SDF and Thor simulation Domains for hardware-software
cosimulation. Some details of these Domains are discussed next.

Synchronous Data Flow (SDF) Domain: The SDF Domain is a data-
driven, statically scheduled Domain. “Data-driven” means that the availability of
data on the inputs of a Star enables it. Stars with no inputs (“sources”) are always
enabled. “Statically scheduled” implies that the firing order of the Stars is deter-
mined only once during the start-up phase and this schedule is periodic. The SDF
Domain supports simulation of algorithms, and also allows functional modeling of
components such as filters and signal generators.

Thor Domain: The Thor Domain implements the Thor simulator
[Thor86), which is a cycle-based register-transfer-level simulator for digital hard-
ware. It supports the simulation of circuits from the gate level to the behavioral
level. The Thor Domain makes it possible to simulate digital components ranging

in complexity from simple logic gates to programmable DSP chipslo.

10. The Thor domain might likely be replaced in the future by a VHADL domain.

112

4.2.2 Cosimulation Using Ptolemy

Figure 4.14 shows an example of a mixed hardware-software system being
simulated in Ptolemy. Figure 4.14-a shows the task-level SDF description of an
application (telephone channel simulator) that is running on this system. Using the
partitioning techniques described in Chapter 3, this application can be partitioned

into hardware and software. The software synthesis mechanism described in Sec-

Telephone Channel Simulator (a)

Gaussizn noise mptired
A5 T
Linew Distortion

=}

]

>t ()

Freq-offset Non-Linewr
Phmse Jitter Distortion

DSP56000

113

tion 4.1.4 is used to generate DSP assembly code corresponding to the nodes that
are mapped to software. Hardware modules are synthesized for the nodes mapped
to hardﬁvare using techniques described in Section 4.1.3. The next step in the
design process is to simulate the interaction between the DSP (running the gener-
ated code) and the hardware modules.

4.2.2.1 System-level Modeling

The top-level model of the system is represented in the Thor Domain in
Figure 4.14-b. The key components of the target architecture include the DSP, cus-
tom hardware, and the glue logic.

Modeling the DSP

The DSP56000 is modeled as a Star in the Thor Domain!!. The “setup()”
method of the DSP Star establishes a socket connection with Sim56000, Motor-
ola’s stand-alone simulator for the DSP56000. Sim56000 is an instruction-set sim-
ulator; it accurately models the behavior of each of the processor’s signal pins,
while executing the code. During its “go()” method, this Star translates the logic
values present at the processor’s pins into values meaningful to the simulator,
transfers them to Sim56000, and commands the simulator to advance the simula-
tion by one step. It waits for the simulator to transmit the new logic values back to
the processor pins and continues with the rest of the simulation.

Functional model of the hardware

Nodes mapped to hardware can be modeled at different levels of abstrac-
tion. In this example, we model the hardware at a functional level. Tl_xe Silage code
for the hardware module is translated to C++ code. This code is nested inside an

11. Early work on encapsulation of the Motorola simulator for interfacing with a stand-
alone Thor simulation was done by Bier et al. [Bier89). We have extended their techniques
to encapsulate the simulator into a Ptolemy Star.

114

SDF Star and simulated as a Wormhole within the parent Thor Domain, as shown
in Figure 4.14-¢12. When this wormhole is run, it models the functional behavior
of the hardware module. At the output of the hardware module is a “delay” block
that emulates the execution time of this hardware module!3, Such a model for the
hardware module allows us to model the timing associated with the interaction
between the hardware module and the rest of the system without having to go
through a slow architectural simulation of the module.

Alternatively, the hardware could be simulated at a structural level within
the same framework by replacing the functional model and the delay by a struc-
tural VHDL description of the hardware module.

Modeling the glue logic and the system 1/O

The glue logic consisting of clock generators, decoders, and latches is eas-
ily modeled in the Thor Domain.

Besides processors and digital logic, it is often necessary to model analog
components such as A/D and D/A converters, and filters that operate in conjunc-
tion with this digital hardware. These analog components can most conveniently
be represented by their “functional models” using the SDF Domain. Often abstract
functional modeling of components such as filters is sufficient — detailed behav-
ioral modeling is not needed — particularly if an off-the-shelf component with
well-understood behavior will be used in the final implementation. The Wormhole
mechanism discussed earlier is used to mix the data-driven, statically-scheduled
SDF models of analog components with event-driven, logic-valued Thor models
of digital components within a single simulation. Figure 4.14-c shows a signal

source being modeled as a sine generator followed by an analog to digital con-

12. Chapter 17 of [Ptolemy95] describes this Silage to C++ translation in some detail.
13. The execution time for a hardware module is determined by synthesizing an implemen-
tation for the node using hardware synthesis techniques discussed in Section 4.1.3.

115

verter. The A/D converter is modeled functionally as a bandpass filter followed by
a quantizer, as shown in Figure 4.14-d. A functional model of this kind can be eas-

ily generated from the available device specifications.

4.2.2.2 System Simulation

Figure 4.15 shows the run-time behavior of the system. The logic analyzer

|| Prolesu/Thor analyzer Canalyzer, Inputs=St) similstor ststus: rumi
°

Prolemy/Ther Logic Analyzer

b2- $00 bi- $0 b0~ 000000 $0000 m sm}

5 3 1] 3 R
pc- HilH sr- HIEE omr- 802 - n2- $tftf
la= $0000 Tc= SO0 3 - { mi- SO1{f

ssh- HINIE ssl- OG0T sp- \ 300 no- $0000 ol SEfEf |
cyc={IBI[0E ictr= [efseeh] cntl- Q0O00N0 cnt2- 000000 ent3-000000 cnt 4-000000
P:$0001 062680 000028 - DO #<$26,%29

go
STIMULATION ABORTED

ASERED

Siftt

S

Sttt

SOfff

$0000 n2) 2- Ittt
00 nl- S0000 S{Ifr
000 ¥ - Sfftf

cni2- (T { QUONHN

|cES By El-assemble Risplay < --more

Figure 4.15. Hardware-software cosimulation using Ptolemy.

116

shown in Figure 4.15-a displays the traffic on the DSP bus. Figure 4.15-c shows
the Motorola DSP simulator, which executes the generated assembly code. The
simulation can be halted at any time by interrupting the simulator window and
intermediate register contents can be examined. Data sent to the functional model
of the hardware is transformed and passed onto the rest of the simulation after the
delay equal to the execution time of that hardware module.

Thus the mixed hardware-software system can be simulated within the
Ptolemy environment. The different domains are used to model the interaction

between the components of the system at different levels of abstraction.

117

S

DESIGN SPACE EXPLORATION

In the previous chapters we have discussed specific solutions for automated
partitioning and synthesis. There we assumed a particular design objective and tar-
get architecture. In general, the system-level design problem cannot be posed as a
single well-defined optimization problem from the designer’s perspective. Typi-
cally, the designer needs to explore the possible options, tools, and architectures,
choosing either automated tools or manually selecting his/her choices. This design
space is quite large. As shown in Figure 5.1, a large number of target architectures
and implementation technologies could be used to implement a system. Several
optimization objectives and constraints are possible. The user also has access to a
large number of design tools. The user might experiment with the design parame-
ters, the target architectures, the optimization criteria, the tools used, or the
sequence in which these tools are applied. As such, there is no hardwired design
methodology. System-level design requires an infrastructure that supports efficient
design space exploration — such an infrastructure permits considerable ﬂexibiliiy
and at the same time relieves the user of the book-keeping.

As discussed in Chapter 1, tools that aid in design space exploration fall
into two categories: estimation and management. Estimation tools are primarily

118

used for what-if analysis, i.e., they give quick predictions on the outcome of apply-
ing certain synthesis or transformation tools. Management tools are required to
orchestrate the design process, i.e., for systematic control of the design data, tools,
and flow. In this chapter we focus on the management aspects of design space
exploration; this is often referred to as design methodology managementl.

In Section 5.1, some of the related work in this area is discussed. In Section
5.2, we identify some of the requirements of a design methodology management
framework. An infrastructure that supports these requirements is proposed in Sec-

tion 5.3. We have implemented this infrastructure within the Ptolemy environment.

| DSP system '—

multiprocessor FPGA

DESIGN SPACE

Design Tools

manual partioning, ILP
‘compiler v.1,v.2, v3

Figure 5.1. The design space.

1. Design methodology is defined as “the processes, techniques, or approaches employed
in the solution of a problem". Design methodology management (DMM) is formally de-
fined as “definition, execution, and control of design methodologies in a flexible and con-
figurable way” [Kleinfelft94).

119

Some details of the implementation are presented in Section 5.4. In Section 5.5, we
discuss the operation of the design methodology management framework with the

help of two representative design flows.

5.1 Related Work

Design methodology management (DMM) as such is not new; traditional
DMM systems (often referred to as “frameworks”) are used quite extensively in
the physical VLSI design process. Kleinfelft et al. [Kleinfelft94] provide an
exhaustive summary of the various research activities in this area. We mention
only a few representative systems here.

The three main problems in design methodology management involve data
management, tool management, and flow management.

The DMM systems used in the physical VLSI design process focus prima-
rily on data management (i.e., maintaining consistent versions of data)
[Harrison86] and tool management (i.e., invoking a user-specified tool after ensur-
ing that the preconditions for enabling it are satisfied) [Chiuch90][Bosch91]
[Brockman91]. Commercial CAD frameworks such as the Falcon framework
[MentorGraphics2] also assist in tool and data management. The NELSIS frame-
work [Bosch91][VanDerWolf93] provides a systematic representation and man-
agement mechanism for data and tools within a semantic database. CFI [CFI]
defines standards for tool encapsulation and data models. As of this writing, no
standard for flow management has been proposed by CFI.

The MMS framework [Allen91] focusses on distributed tool execution and
multi-user environments. Recent efforts address the flow management problem.

Some efforts approach the flow management problem from an Al angle [Knapp86]

120

[Bushness89], where the methodology and firing rules are stored in a knowledge-
base and an inference engine determines the tool execution sequence. Yoda
[Dewey89], a filter design system, has a knowledge-base of predictors (estima-
tors). Predictors are used to determine the outcome of applying a particular tool
and the results from such an exploration are used to construct a design plan (simi-
lar to a script), with feedback from the designer. The generated design plan is then
automatically executed, where the actual tools are run. A trace-driven approach is
proposed in {Casotto90], where a sample design session (the sequence of tools run
by the user) is saved and future design sessions can be automatically controlled by
following this trace.

CODES [Buchenrieder92] is a framework for codesign. It provides an open
architecture for the integration of commercial and proprietary tools. A graphical
representation of a design flow is translated to an internal Petri net representation.
This is analyzed to determine firing rules. A codesign manager invokes the tools
based on these firing rules.

Bentz et al. [Bentz95] present an information-based approach to design.
They combine some of the traditional design methodology management features
(such as data and tool management) with novel features for design space explora-
tion via a tool called Design Agent. The Design Agent assists the user in collecting
and managing information about a design. The designer queries for specific feed-
back (example: “what is the area of this FIR filter when implemented as an ASIC
in a particular technology?”, or “what is the code size when implemented on a par-
ticular DSP?”), rather than explicitly performing tasks to obtain this information.
The Design Agent computes the information based on actions (sequence of tools)
specified its database. These actions are context-specific, that is, different sets of

actions apply to different design domains (such as ASIC design and DSP design).

121

52 Design Methodology Management: Requirements

Our focus is primarily on design flow specification and management. We
do not address issues of database management, multi-user operation, and distrib-
uted tool execution. Our goal is to develop a framework that simplifies the
designer’s tasks by (1) providing mechanisms that allow the design flow to be
specified in an intuitive way, (2) automatically invoking the tools in the design
flow whenever possible, and (3) managing the infrastructure when the user decides
the sequence of tool execution. The key features required for this are discussed
next.

Flow Specification

Since tools involved in the system-level design process are often computa-
tionally intensive, it is important to avoid unnecessary invocation of tools. This
requires that the design flow be specified in a modular way so that only the desired
tools may be invoked. It should also be possible to specify the design flow hierar-
chically, in order to retain design modularity.

Specification of the flow also requires iterative and conditional constructs.
Consider an example where an application is to be mapped to a multiprocessor
system. Assume that the number of processors is not known apriori. The design
sequence usually is to (1) estimate the number of processors required, (2) schedule
the application onto these processors and compute the resultant throughput, (3) if
the throughput does not meet the desired throughput, repeat (1), else continue with
the remaining parts of the design such as code generation and netlist generation. To
express such a design flow, the flow specification mechanism should support con-
structs such as conditionals and iterations.

A number of design tools are available for each step in the design process.

122

Consider hardware-software partitioning for example. If the application involves
few components that have obvious mappings, partitioning could be done manually.
If the mappings are not obvious, an exact and time-consuming integer-linear pro-
gramming approach could be used to determine the optimal mappings. On the
other hand, if the application is quite complex and there are several options avail-
able for implementing the different components, an efficient heuristic (such as the
MIBS algorithm) could be used. If the design flow is parameterizeable, a new flow
need not be developed for each type of tool used. Depending on the design size,
the available design time, and the desired accuracy, one of the tools can be
selected. This selection can be done either by the user, or by embedding this design
choice within the flow.

Flow Execution

A designer should not have to keep track of the tools that have already run
ahd those that need to be run. When the parameters or the data associated with a
tool change, the entire design flow need not be re-run; only the affected tools
should be run again. Keeping track of the tools that need to be run is quite cumber-
some. A mechanism that automatically determines the sequence of tool invoca-
tions is needed. This calls for a mechanism much like a graphical “make” utility
[Feldman79].

Flow Management

Different types of tools, with varying input and output formats, are used in
the system-level design process. In the very least, 8 mechanism to automatically
detect incompatibilities between tools is required. Data translators could also be
invoked automatically.

Versions of tools and design flows also need to be maintained; it is not suf-

ficient to just keep track of versions of data.

123

5.3 Infrastructure

We have developed an infrastructure that tries to support most of the
requirements discussed in the previous section. Details of the infrastructure are
discussed in this section. In Section 5.3.1, we present the underlying models used
to specify the design flow, tools, and data. We use the term dependency to qualify
the conditions that require a tool to be invoked for execution. In Section 5.3.2, we
identify different types of dependencies. The flow execution mechanism analyzes
the dependencies and automatically invokes tools within a design flow. Details of

the flow execution mechanism are presented in Section 5.3.3.

5.3.1 Flow, Tool, and Data Model

Figure 5.2 illustrates the user’s view of the design flow and tools. The
design flow is specified as a directed graph, where nodes represent tools, and arcs
specify the ordering between tools?.

Tools encapsulate actual programs. Tool parameters specify the arguments
for these programs. A tool can have multiple input and output ports. The ports are

used to transfer filenames between tools. A “source” tool (such as a signal genera-

(a) DESIGN FLOW (b) TOOL
filename parameters
(‘
.| Tool 2 »
o e i s
Tool 1}, | nput Port 2,
Tool J|—¥ Tool K

Figure 5.2. User’s view of the design flow and tools.

2. Certain restrictions are imposed on the design flow in our implementation so as to avoid
possible nondeterminacy. Refer to Section 5.4.

124

tor) has no input ports, while a “sink” tool (such as a display tool) has no output
ports.

Ports can be either required or optional. The difference between required
and optional input ports is that a tool cannot run unless it has data (valid filenames)
on all its required input ports. A tool can run even if data is absent on an optional
input port. When a tool is run, it generates data on all its required output ports, but
not necessarily on optional output ports. Optional ports facilitate the use of condi-
tionals and iterations in flows>. To understand this, consider the multiprocessor
synthesis example mentioned earlier. The design problem is to synthesize a multi-
processor system that meets a desired throughout with a minimum number of pro-
cessors. A possible design flow is shown in Figure 5.3. The proc_estimator
determines the number of processors required and is described hierarchically as
shown in the figure. The estimator tool estimates the number of processors needed.
The estimated number of processors num_procs_est is given to a scheduler that
computes the actual throughput for this number of processors. The comparator
compares the actual throughput to the desired throughput and sends feedback to

the estimator. The estimator has both a required input (port x), and an optional

application num_procs ji netlist generato++
source Dl.p‘roc_estima': , » code generator

application

aestred‘mﬂﬂ
--’ comparator

Figure 5.3. A design flow for the multiprocessor synthesis example.

3. Note that initial tokens can be used on arcs to equivalently model the functionality of-
fered by optional ports.

125

input (port y). The feedback from the comparator is fed to the optional port of the
estimator. If there is no feedback, the estimator estimates the number of processors
based on its own information. If there is feedback, it updates its earlier estimate.
Both output ports of the estimator are optional. When the estimation loop con-
verges, the estimator generates data on the optional output port a, otherwise it gen-
erates the data for the revised estimate on the other optional output port b.

While optional ports permit modeling of a wide variety of applications,
their use can potentially lead to nondeterminate behavior. In our implementation,
we handle nondeterminacy by imposing strict restrictions on the allowed design
flows for fully automated design flow execution. The flow scheduler identifies a
potential nondeterminacy in a design flow and alerts the user. In most cases, the
user knows what he/she had in mind when designing the design flow and can guide
the system accordingly. The details of our implementation are described in Section
54.

Figure 5.4 shows the internal model of the tools and the data associated
with a tool’s input and output ports. Associated with each tool is a flag, called
Param_Changed_Flag, which gets set when parameters of a tool are changed.
Associated with each port of a tool are several attributes: File_Nameq,,
File_Namey,,, Time_Stamp,g, Time_Stamp,,, and Optional_Flag.
File_Name,,, and Time_Stamp,,, attributes store the filename and the timestamp*
of the data on a port as of the earlier invocation of the tool. F ile_Name,,,,, (and
Time_Stamp,,,,,) represent the filename and the timestamp of the data updated on a
port in the current invocation of the tool. Optional_Flag indicates whether the port
is required or optional. The infrastructure stores the internal representation of the

design flow as shown in Figure 5.4-c.

4. The timestamp indicates when the data associated with the file was last modified.

126

(a) (b)
TOOL MODEL (tool attributes) DATA MODEL (port attributes)

Port 1 ‘ -PORT
Port1, ——
Port2 | TOOLJ| PotM ‘
— | —— H
e File_Namee; | Optional_Flag
' Param_Changed_Flag F18-NaMénow Time stamp,.,
Time_Stampg,,

(Param_Changed_Flag

File_Name,
File_Name,,

Figure 5.4. Internal representation of the tools and data.

5.3.2 Dependencies

The Param_Changed_Flag, and the filename and timestamp attributes are
used to determine whether a tool needs to be run. For example, if the parameters of
a tool have changed since its last invocation, the tool needs to be run. Similarly, if
the filename associated with the current invocation of a tool is different from the
filename associated with its previous invocation, this indicates a change in data,
and requires the tool to be run again. We use the term dependency to qualify this
behavior. Figure 5.5 shows three types of dependencies that are supported.

A temporal dependency tracks the timestamps associated with the data on
the input ports of a tool. A tool needs to be run if its temporal dependency is alive,
i.e., if the timestamp on any of its inputs is newer than the timestamp associated

with the previous invocation of the tool, or if Time_Stamp,,,,, > Time_Stamp,,,,. A

127

parameters

for every input

Temporal
. File_Nameyg,, = File_Name ¢
Time_Stamp,e,, > Time_Stamp,a¢ Param_Changed _Flag = 1

Figure 5.5. Dependencies used for tool management.
data dependency tracks changes in the filenames associated with the input ports of

the tool. A tool needs to be run if its data dependency is alive, i.e., if the filename
of the data associated with any input port is different from the filename associated
with the previous invocation of the tool, or equivalently if File Name =
File_Name,,,. A parametric dependency tracks parameter changes; a tool is run if

any parameter changes.

533 Flow Management

Automatic flow invocation is based on analyzing the tool dependencies and
executing tools as required. A tool is said to be enabled when all of its required
input ports have data. Absence of data on the optional input ports does not affect
enabling. Once enabled, a tool is checked for dependencies. A tool is invoked (run)
when at least one of its dependencies is alive. On execution, a tool generates data
on its required output ports, and possibly on its optional output ports.

As shown in Figure 5.6, two types of flow invocation mechanisms are

desired: data-driven, and demand-driven. In the data-driven approach, the flow

128

Data-Driven Flow Exeeuthn/"—\‘
-

“~O

Demand-Driven Flow Execution

Figure 5.6. Flow execution mechanisms.
scheduler traverses the flow according to precedences. The process halts when all

tools with live dependencies have been exhausted. In the demand-driven mode, the
user selects a tool for execution. The scheduler traverses the predecessors and exe-
cutes all tools with live dependencies on the path. The details of the scheduler are

given in the next section and in Appendix A9.

54 Implementation: DMM Domain within Ptolemy

We have implemented the design methodology management framework
within the Ptolemy environment as a separate domain (called DMM domain). The
details of the flow specification and execution mechanisms are described next.

Flow Specification

The design flow is specified as a graphical netlist (through the Ptolemy user
interface, VEM). The netlist shows the connectivity between tools. In the current
implementation, the flow is restricted to having a single “sourqe” tool; multiple
sources are not allowed. The flow can be described hierarchically. Figure 5.7
shows the design flow for the multiprocessor synthesis example described earlier.
This flow will be discussed in more detail in Section 5.5.1. Optional ports can be

used to define conditionals and iterations in the flow definition. However, this

129

could lead to nondeterminate flows. A following section on the flow scheduler dis-
cusses the operation of the scheduler when this happens.

Tool Encapsulation

Tools are encapsulated within Stars (the atomic elements in Ptolemy,
described in Section 4.2.1). Tool encapsulation involves writing scripts that call
various programs. These programs could be either other Ptolemy functions or
stand-alone executables. Figure 5.8 shows an example of tool encapsulation. It
shows the Code Generator tool from the multiprocessor synthesis example. The
Code Generator generates a multiprocessor implementation (multiple programs)
for the input application. It uses a code generation routine within Ptolemy (ptk-
GenCode) to generate the code. The Code Generator has two inputs (both
required): the application description (graph) and the number of processors (num-
Procs). The tool generates programs for all the processors. The output of the tool is

specified as a file (codeFileNames) containing the names of the generated pro-

Source

&

T1

Figure 5.7. The design flow for the multiprocessor synthesis example, speci-
fied within the DMM domain in Ptolemy.

130

grams. The Code Generator has a parameter (targetArch) that specifies the
assumed target architecture. The function “go()” contains the code that gets exe-
cuted when the tool is invoked. When invoked, the tool first reads in the name of
the file containing the graph (graphName). The functions getName(), getDomain()
and getHandle() obtain the identifiers for the application pointed to by graph-
Name. The number of processors is read into the variable numberProcs by scan-

ning the input file procFileName. The Ptolemy routine that generates the code

graph codsFileNames
—_,|Code Generator -
numProcs
T targetArch

“‘iinpm {name mph }}

put { name { numProcs}}
output {name{codeﬁ!eNames}} S
;state { name { targatArch } default { sharedMemory } }

/] get apphcat:on name and ldentﬁers

e grathame = graph getFleName()

__name = getName(graphName);

domam = getDomain{ graphName »

hand!e = getHandle(grathame %

:’l get number of prooessors L

‘:,procFleName = nmnProes.gerFileNameo

. p = fopen(procFileName,)

: fscam(fp “%d‘ &numberProcs) ‘:‘: S

I/ runtcl command for code generation - o
cl VarEva!(ptldtuesp, “pikGenCode", name, domam handle

Figure 5.8. An example of Tool encapsulation: CodeGenerator tool.

131

(ptkGenCode) is then called with the application identifiers, the target architecture,
and the number of processors. The result is written into the file codeFileNames.

Flow Scheduler (DesignMaker)

The tool writer need not worry about the underlying timestamps and filena-
mes. The DMM attributes (Param_Changed_Flag, Time_Stamp,,,, File_Name,,,,
Time_Stamp,,,,, File_Name,,,, and Optional_Flag) and flow netlists are stored
within the Oct database [Harrison86]. The flow manager called DesignMaker ana-
lyzes these attributes and automatically invokes the tools. Figure 5.9 shows the
control panel associated with DesignMaker. There are three possible approaches to
executing the flow: (1) The user opts to run the entire design flow (Run All), or (2)
The user selects a certain tool upto which the flow should be executed (Run Upto),
or (3) The user asks for a specific tool to be invoked (Run This).

In the Run All mode, the flow scheduler traverses the design flow, starting
with the source tool, executing tools as necessary. To do this, it maintains a list of
enabled tools. An enabled tool is checked for its dependencies and invoked for

execution if any of its dependencies is alive. On execution, the appropriate descen-

DesignMaker
Control panel for "multiProcExampleS”

O Grephica) Animation
O Textual Animation

Flow Management

Design Management

Reset Design Status
.--_.l-''''"'—’.--.-—_"'—“_";';..E—'—_""—“"""—'J
Figure 5.9. Control panel in the DMM domain.

132

dents of the tool are identified, and their corresponding input port is marked. If all
the required input ports of a descendent tool are marked, the descendent tool is
added to the list of enabled tools. Further details are presented in Appendix A9.2.

As mentioned earlier, it is possible that a flow may have a nondeterminate
behavior due to the presence of optional ports. Currently, the scheduler does very
strict checking and conservatively flags flows that are possibly nondeterminate.
The pseudocode for the algorithm for detecting nondeterminacy is given in Appen-
dix A9.2. Some of these flagged flows can be determinate if the user has taken
appropriate care in designing the flow. In such a case, the user can choose to use
our flow scheduler at his/her risk. Alternatively, the user can schedule the tools
manually in the sequence desired, by using the Run This mode.

In the Run Upto mode, the user selects a certain tool upto and including
which the flow should be executed. All the predecessors of the selected tool are
identified and tagged. The design flow is then traversed as in the Run All mode;
only the tagged tools are executed. In the current implementation, we support this
mode for acyclic flows only. The details of the scheduling algorithm are given in
Appendix A9.3.

As mentioned earlier, the user can choose to manually schedule the flow by

using the Run This mode. Details are given in Appendix A9.4.

5.5 Examples

The design methodology management domain and the operation of

DesignMaker are described next with the help of two examples.

5. The generated data might not be independent of the sequence used to invoke the tools.

133

5.5.1 Multiprocessor System Design

Consider the design flow for the multiprocessor synthesis example, shown
in Figure 5.7. A dataflow graph G (GraphName) describing the application (ex:
music synthesis) and a specific interprocessor communication mechanism (tar-
getArch, for example shared memory) are specified by the user. The goal is to syn-
thesize this multiprocessor system with the minimum number of processors such
that a required throughput is met. The synthesis process generates the hardware
components (netlist) and the software components (programs running on the pro-
CEsSors).

We now run through a typical flow execution sequence. Suppose that the
required makespan (or 1/throughput) is 320 cycles.

When the Run All command is issued, the scheduler detects a possible non-
determinacy between tools 74 and 76 Sand alerts the user accordingly. The control
panel in Figure 5.7 shows the query for continuing or aborting the run. We know,
however (by the way we have designed it), that the estimator tool T'3 (ProcEstima-
tor) generates the output going to T6 only after T4 has finished. Hence, there is no
nondeterminacy. We can then select the “continue” option to use the automated
scheduling. The operation of the system under this selection is discussed next.

Suppose that the flow is run the very first time using Run All. Tools are
examined for active dependencies by traversing the flow according to precedence
ordering between tools. Source (T1) outputs the dataflow graph G specified by
GraphName. NumProcEstimator (T2) and Code Generator (T7) are dependent on
T1. Note that T2 is enabled, while 77 is not (the second input N has not yet been

generated). 72 is a hierarchical description of the estimation process, which deter-

6. Since the nondeterminacy condition is (using the notation defined in Appendix A9)
T4 =P(T6),T6 # P(T4), and T4 = OP(T6).

134

mines the minimum number of processors required to implement G at the desired
throughput by an iterative computation. The operation of the estimator is described
next.

ProcEstimator (T3) estimates the number of processors (N) required to
implement G. T3 has an optional input that receives an indication as to whether or
not the current N satisfies the throughput requirements. When this input is avail-
able, T3 uses it to improve the estimate for N, and when it is not, 7’3 computes the
estimate from scratch. Note that the loop (T'3-74-T5) does not deadlock because
this input is optional. At the start the feedback input is not available since 75 has
not run. In this case, 73 computes the estimate based on its estimation algorithm.
Estimators of different accuracy can be selected by changing parameters of this
block. Consider a simple estimator that computes the estimate assuming maximum
parallelism. Suppose that the sum of execution times of all the nodes in G is 900.
T3 estimates a lower bound of 3 (=900/320) processors. The Scheduler (T4) then
schedules G onto N (N=3) processors and determines the actual time required
(makespan M) to implement G. Different scheduling algorithms can be selected by
changing parameters of 74. Suppose it computes the makespan to be 350. The
Comparator (T5) compares the required makespan (320) and M (350) to generate
the control signal for 73. T3 is enabled by the input received on its optional input,
and refines its estimate of N to 4. Note that up to this point, as the system is being
run the very first time, data dependencies are alive for all the blocks. For 74 how-
ever, the data dependency is no longer active (since the same filename is retained),
but temporal dependency becomes alive. Recall that temporal dependencies detect
out-of-date data. As the timestamp on the input to T4 is newer than the timestamp
associated with the previous invocation of T4, T4 is re-run and it recomputes M

(say, 290). T5 sends a output of zero to T3. T3 detects convergence of the estima-

135

tion loop when the feedback from 75 is zero, and sends the computed number of
processors N to the fork T6. T6 merely copies its input data to its two outputs.

Since its second input is available, the Code Generator (T7) is now
invoked. T7 synthesizes software for the N processors. 78 generates the netlist for
the system. The generated architectural model, where the processors run the syn-
thesized software, is then simulated by the Simulator (T9). T9 has a parameter
(irerations) that indicates the number of cycles to simulate the design for. After T9
runs, no live dependencies exist and the flow execution stops.

Subsequent changes to the flow or data could render parts of the flow
invalid. For instance, suppose that the parameter “iterations” to T9 is modified and
the Run All command is issued. A parametric dependency is activated for 79. As
no other dependencies are alive, only 79 is invoked. If the Run All command is
issued again, since no data files or parameters have changed, no tool is invoked.
Next, suppose that Run All is issued after GraphName is changed. T! is first
invoked due to a parametric dependency. This activates a data dependency for 72
as the input data (GraphName) changes, causing it to be invoked. Other tools on
the downstream flow that are data-dependent on 72 (the complete flow) are then
invoked by the scheduler.

5.5.2 Design Assistant

The Design Assistant, described in Chapter 2, is a framework for system-
level codesign. Figure 5.10 shows the Design Assistant implemented in the DMM
domain.

Source (T1) outputs the SDF graph G specified by GraphName (say. sim-
ple.sdf). G is then partitioned into hardware and software. Currently the Design

Assistant supports manual partitioning.

136

T4 Hardware
Synthesis-1

hwipt, 51898) hwi.si

simple.sdf simple.sdf hw2.pt,... hwe.sil
}_102
WL 5] [| Code

ol

FileSouce X - Hardware
Source Manual - Retargeting| gy, pt Synthesis-2
T Partitioning - Scheduling - (Hyper)
T2 - Synthesis Graph |, Jiell| S35 o

Generation Software 6
T3 Synthesis
(CGS56)T5

Figure 5.10. The Design Assistant implemented in the DMM domain.

Figure 5.11 shows the behavior of 72 when configured for manual parti-
tioning. The application, which is to be partitioned, is automatically displayed by
the partitioning tool (Figure 5.11-a). The partitioning tool also brings up a selec-
tion panel to aid in manual partitioning (Figure 5.11-b). The user can then select
parts of the application and assign them to hardware or software.

The next tool in the design flow is 73. T3 first retargets the nodes in the
SDF description to technology-dependent nodes (CG56 for software-mapped
nodes, and Silage for hardware-mapped nodes). T3 then inserts the Send and
Receive nodes for communication across the hardware-software boundary. Since

we have done manual partitioning, a global schedule needs to be generated. Given

simple.sdf

Gan

IDGaussian Gain

Select Hardware/Sottware Mapping

Ramp FIR Select stare (s); Get-star-names (N); Select impiementation
1 B Software
A : ; s O Haroware
: ST o Stimuius/Monlit
Lo SEEE T
O Display Partition (red:hw blue:sw)
(a) O Clear Highlights

! DONE] (b)
Figure 5.11. Run-time behavior of the Design Assistant with manual partitioning.

137

the assignment to hardware and software, 73 generates a global schedule’. Finally,
T3 generates the hardware and software graphs using techniques described in Sec-
tion 4.1.2. A separate hardware graph is generated for each node mapped to hard-
ware. A single software graph is generated for all the nodes mapped to software.
The software graph includes the Send and Receive nodes. T3 uses the global sched-
ule to derive a schedule for the nodes mapped to software. Figure 5.12 shows the
outputs generated by T3 for the graph simple.sdf shown in Figure 5.11. Suppose
that the nodes IIDGaussian and FIR are mapped to software, and the nodes Gain
and Add are mapped to hardware. The nodes Ramp and Blackhole correspond to
the stimulus and monitor nodes which are not actually synthesized. Figure 5.12 (a)

and (b) show the hardware graphs for the two hardware-mapped nodes.

coms'n SOF dosann SOF

cefgalary cooel twsyn_gal { oefgataxy ceﬂ-unm‘ {
comsin S1lage oomn Silage
terget cefeult-Silage target defauit-Silagn
star codel_Canl Gnn star code.

Trput_21 Add
8)1as code?_out_sendS code? _Add_tront N1
alias coded_in_receiveb :ml_m.'!m.a nputsl
aliss codeZin receive’? code2 ASd_tnput 21 wnputsd

3

terget default-SOF

star caeZ hwsyn gall code? twsyn_ga!

star In0 BlackMole

~EpOrts 100 1nput 1

camect code fwsyn g1l codel_cut_sendS DusmyIn0 “vrputsl”
star DusmyOutl Const

connect DummyOutl autout codel_twsyn_gell code2 in_receives
star DummyOst2 Const
connect DmanOut? asntput code?_tesyn_gsll cade2_yn_receyve?

alias codel_out_senddé cadel_Cnnl autput
al1es codel_in_recervad codel Ganl input

carget defaulit-SDF
ster me.mu <oded_agyn_ga)
tur OuemyOut0
onnect nnwno mtput cadel_vayn_oall codel_in_recerved
tur Ind BisciHole
nusports Inl nput 1
connect cooel_hwsyr_gall codel_out_sendd Dusmylnl ~inputél®

hwi.pt (ot L]
hw2.pt
hardware graphs
software graph software ordering
set
0. cooe0_1IDGeuss anl

domain CCS6)
inewuniverse code0 CG56 Em'ﬁ:.'g{ﬁ?m
target scmuug:;&is.:‘ . ad ¢ ocke0. codeO_FIR1
argetparee s 11e “code. s) X

8 o star code0_110Ceussianl 1IDCaussian c0de0. code_sand?

X star codeO_FIR1 FIR
! ster codeO_send0 Send
satstate codeO_sand0 cutAddr “4096
' star code0_receivel Recuive
setstate codeO_receivel inAddr “4304"

code0.sched” 5 1ines; 99 characters

connact code0_FIRL "output” coded_sand? “input”
connect codeO_receivel “output™ codeO_FIR1 “input”™

Figure 5.12. Hardware and software graphs generated by 73.

7. If the antomated partitioning mechanism described in Chapter 3 were used, this step
would not be needed since the automated partitioning algorithm generates the schedule.

138

Figure 5.12-(c) and (d) show the software graph and the software ordering respec-
tively. Note the added Send and Receive nodes in the software graph and ordering.

T4 and T5 are the hardware and software synthesis tools. 74 generates
Silage code for each hardware graph. T5 generates a single assembly code file cor-
responding to all the software-mapped nodes. It uses the schedule generated by T3
to order the nodes in the software graph. The outputs of 74 and T5 are shown in
Figure 5.13.

T6 uses the generated Silage code to generated the final layout for the hard-
ware components by running Hyper.

The current implementation of the Design Assistant has some restrictions:

1. It supports a predefined target architecture consisting of a single program-
mable processor and multiple hardware units. The current implementation

assumes a Motorola 56000 target processor and Silage-based hardware

arget defeult-Silage
jUniverse - codel _twsyn_ge)
ave:

[#vefrne true 1
levefine false 0

{eosfane gain__0 Fixcds, 14x(0.75)
fux snn(codel n_receivel Fizc§,10) codel out_sincd Fixc§,lé -

T4 hw1.sil o
/* star: codel_tesyn_gel.coded Ganl (class: SilageCain) */

o oAl - CFd5,140(coILerecevad * QRN 5.
end,
HW SynthOSiS"' coved. 811" 24 Jioes, 473 characters

hw2.sil

Fsroﬂ Oefault-Silage
Untvarse: codoz_t-m_p‘l

/

func meIn(coce2_1n_recetives ﬁxds 14>, code2_sn_recerve? - ﬁms ,14>)
de2_cut_sends FinclB, 14>

/' nu .coced_hwsyn_gal . coded_ASd_1nput 21 (class SilageAsd) °/
cml.out sendS o Fucds,14>(code_in_receivet ¢ code?_yn_recarve?),

Target schaduled=CTSE

» Umiverse’ codel

. ymtalization cooe from ster coadel.cokO_lICassionl (class CCSAINCass an)
. anitialazation code from star cooe0.codeO_FIRL (<lass CCSEFIR)

, ymtahization cade from star cooe0. codel_send0 (class (BGSend)

. ymtwehtion code from ster ¢cooeD.codel_recervel (class OCSERacuive)

. imitialization cooe from star coded.coded_send? (class OB@Send)

T5

SW synthesis

$%p WOP_0

Figure 5.13. Silage and CG56 assembly code generated by the hardware
and software synthesis tools.

139

o' AlternativeStar/Port/State 5]

Port "signalin™ does not exist in star "FiR1 " in domaln "CG56"

Enter altemnative port name:

| input i

Figure 5.14. Support for retargeting.

synthesis, although it can be easily extended to support other processors or
VHDL-based synthesis. Also, as mentioned in Chapter 4, we do not con-

sider hardware reuse.

2. T3 operates on a directed acyclic graph. It can be extended quite easily to
support the full SDF model by simply adding a tool that converts a SDF
graph to a directed acyclic graph.

3. The hardware-software interface is not automnatically generated, although

the techniques described in Section 4.1.5 can be automated quite easily.

4. The retargeting mechanism in 73 assumes the existence of Silage and
CGS56 library elements for all the nodes in the SDF graph. We have imple-
mented a rudimentary mechanism to query the user for alternative elements
if a certain element does not exist in the corresponding implementation.
The alternative element should, however, have the same number (names
can be different) of inputs and outputs as the SDF (technology-indepen-
dent) model. Figure 5.14 shows a simple scenario where the FIR node in
simple.sdf is mapped to software. The names of the ports in the technology-
independent model (SDF) and the technology-dependent model (CG56)
are different (called signalln and signalOut in the SDF domain and input
and output in the CG56 domain). The system queries for an alternative port

name to look for when doing the retargeting. A similar mechanism queries

140

for an alternative star if one doesn’t exist for the desired implementation.

5.6 Summary

The system-level design space is quite large. As the number of tools and
design possibilities increases, the design space explodes quite rapidly. Although a
number of CAD systems for system-level design are now emerging [Chou94]
[Kumar93][Theissinger94], most of them do not provide any support for managing
the complexity of the design process; they contain point tools and leave the man-
agement aspects to the designer. We believe that managing the design process
plays an equally important role in system-level design, as do the tools used for dif-
ferent aspects of the design. To this end, we have developed a framework that sup-
ports design methodology management. The design flow is. considered a part of the
design itself.

In this chapter, we have presented an infrastructure that supports efficient
management of the design process, with emphasis on design flow management.
This infrastructure contains powerful constructs for flow definition, dependency
analysis, and automated flow execution. The infrastructure is developed as the
DMM domain within Ptolemy. A tool called DesignMaker is responsible for auto-
mated flow management. Although DesignMaker derives its name from being a
“make” utility for designs, it is much more powerful than a “graphical” matke util-
ity. Specification of iterations, hierarchy, and conditionals in the design flow,
allowing optional inputs and outputs for tools, ensuring tool gompatibility, and
detecting parameter changes are some of the additional features.

We have integrated a number of point tools (such as tools for estimation,

hardware-software partitioning, cosynthesis, and cosimulation) into this frame-

141

work to form a complete codesign environment, which we call the Design Assis-
tant.

142

6

CONCLUSION

This thesis studies a systematic approach to the system-level design of
embedded signal processing systems. The key ideas presented are summarized in
Section 6.1. In Section 6.2, we conclude with a discussion of some of the future

directions to this research.

6.1 Contribution

In this thesis we develop techniques for the design of embedded signal pro-
cessing systems. The design of such systems is challenged by stringent cost, per-
formance, and time-to-market constraints. Pure hardware or software
implementations often cannot meet these constraints; besides, some parts of these
applications are inherently better-suited to either hardware or software. Hence,
these applications tend to have mixed hardware and software implementations.
Due to their algorithmic complexity and also to avoid early commitment to a par-
ticular hardware or software implementation, these applications are best specified
at a task level of granularity.

Our approach to designing such systems is to codesign the hardware and

143

software components. This allows the hardware and software designs to proceed in
parallel, with feedback and interaction between the two as the design progresses.
The codesign approach enables the exploration of a wide variety of implementa-
tion options. Thus, the system can be optimized in its entirety.

Four key problems are identified in the context of system-level codesign of
embedded systems: partitioning, synthesis, simulation, and design methodology
management. We attempt to provide solutions to all these problems. To enable
meeting this ambitious objective, we have chosen to focus on a class of signal pro-
cessing systems that is specified using synchronous dataflow semantics.

At the system-level, designs are typically represented as task graphs, where
tasks have moderate to large granularity. Each task can be synthesized by a multi-
plicity of algorithms. Each algorithm selection, can, in turn, be synthesized using
different transformations and resource-level options. The resulting implementa-
tions typically differ in area and execution time. The objective in system-level
design is to select the “best” implementation for the system as a whole. The sys-
tem-level designer is hence faced with the question of selecting the best design
option for each task from a considerably large number of design options. We
present a systematic approach to solving this problem by formulating the binary
partitioning and extended partitioning problems. The key contribution is summa-
rized in Section 6.1.1.

In the context of mixed hardware-software systems, system-level design
offers even greater challenges. How do we take advantage of the inherently dis-
tinct properties of hardware and software and still tightly couple thejr design pro-
cesses? We present approaches to cosynthesis and cosimulation that address this
problem. The key ideas are summarized in Section 6.1.2.

The system-level design space is quite large. In general, the system-level

144

design problem cannot be posed as a single well-defined optimization problem
from the designer’s perspective. Typically, the designer needs to explore the possi-
ble options, tools, and architectures, choosing either automated tools or manually
selecting his/her choices. We believe that managing the design process plays an
equally important role in system-level design, as do the tools used for different
aspects of the design. To this end, we develop a framework that supports design
methodology management. The key aspects of this infrastructure are summarized

in Section 6.1.3.

6.1.1 Partitioning

Binary partitioning is the problem of determining, for each node in the
application, a hardware or software mapping and schedule for execution. We
define extended partitioning as the joint problem of mapping nodes in a prece-
dence graph to hardware or software, scheduling, and selecting a particular imple-
mentation bin for each node. The end-objective in both cases is to minimize the
total hardware area subject to throughput and resource constraints. Since both of
these problems are NP-hard, we develop efficient heuristics.

We present the GCLP heuristic to solve the binary partitioning problem.

This algorithm has several unique features:

1. Recognizing that binary partitioning is a constrained optimization prob-
lem, GCLP uses a global time-criticality measure GC to adaptively select a
mapping objective at each step — if time is critical, it selects a mapping
that minimizes the finish time of the node, otherwise it minimizes the
resource consumption. The global time criticality measure attempts to

overcome the inherent drawback of serial traversal.

2. In addition to global consideration, local preference is taken into account

145

in the case of a node that consumes disproportionate amounts of resources
in hardware and software mappings. Such a node is classified as an extrem-
ity and is quantified by an extremity measure. The extremity measure is
used to bias the mapping selected by GC alone. The motivation in identify-
ing extremities is to avoid infeasible or poor mappings that may arise if

these preferences are not taken into account.

3. We also identify several intrinsic properties (such as bit manipulation
operations and memory intensive operations) that make a node suited to
either hardware or software. The effect of these properties is quantified by
a repeller measure. The repeller measure is used in a novel way to effect
on-line swaps between nodes to reduce the hardware area. This avoids post
mapping swaps.

The GCLP algorithm is computationally efficient (OIVI2). For the examples
tested, the solution from GCLP is reasonably close to the optimal solution. We ver-
ify with examples that quantifying the local phase of nodes (i.e., extremities and
repellers) helps improve the quality of the solution.

The formulation and solution of the extended partitioning problem is an
original contribution of this thesis. We are not aware of any other work that
attempts to do this at the system level. We present the MIBS heuristic to solve the
extended partitioning problem.

The philosophy of the MIBS algorithm is to extend the GCLP heuristic for
extended partitioning without the associated complexity buildup. The strategy is to
classify nodes in the graph as free, tagged, and fixed. Initially all nodes in the graph
are free — their mappings and implementation bins are unknown. GCLP is applied
over the set of free nodes. A tagged node is then selected from this set; its mapping

is assumed to be that determined by GCLP. A bin selection procedure is used to

146

compute an appropriate implementation bin for the tagged node. It uses a looka-
head measure, called the bin fraction, which estimates, for each bin of the node,
the fraction of unmapped nodes that need to move to their fastest implementations
so that timing constraints are met. The bin fraction is used to compute a bin sensi-
tivity measure that correlates the implementation bin with the overall hardware
area reduction. The bin selection procedure selects the bin with maximum bin sen-
sitivity. The computation of bin sensitivity is simplified by assuming that the
remaining free nodes are either in their slowest or fastest implementations. The
tagged node becomes a fixed node once its implementation bin is determined.
GCLP is then applied over the remaining free nodes and the sequence is repeated
until all nodes in the graph become fixed.

The MIBS algorithm is reasonably efficient and has a complexity of O(INP
+ B -IN1?), where I is the number of nodes, and B is the number of implementa-
tion options per node, per mapping. In the examples tested, the MIBS solution is
reasonably close to the optimal solution. We also illustrate that implementation
bins can be used effectively to reduce the overall area over solutions generated

using binary partitioning.

6.1.2 Cosynthesis and Cosimulation

Cosynthesis is the problem of synthesizing the hardware, software, and
interface components of the system, starting with a partitioned DAG. Our synthe-
sis techniques target an architecture consisting of a single programmable processor
and multiple hardware modules. The architecture is assumed to be non-pipelined
and nodes mapped to hardware and software communicate using a memory-
mapped, self-timed, blocking mechanism. An architecture for efficiently managing

hardware-software communication is described.

147

Our approach to cosynthesis is to decompose the partitioned DAG into
hardware, software, and interface graphs, where each node in the hardware and
software graphs is a technology-dependent representation of the original node.
Synthesis tools are used to generate the final implementation from these graphs.
The emphasis in our work is on generating synthesizeable representations for the
hardware and software components. We use pre-existing synthesis tools (such as
Hyper and Ptolemy) to generate the final implementation.

Hardware-software cosimulation is the process of simulating the hardware
and software components of a mixed hardware-software system within a unified
environment. This includes simulation of the hardware modules, the processor,
and the software that the processor executes.

We identify some of the key requirements of a cosimulation framework and
show, with the help of an example, how the Ptolemy environment is effectively

used for cosimulation.

6.1.3 Design Methodology Management

We present an infrastructure that supports efficient management of the
design process, with emphasis on design flow management. This infrastructure
contains powerful constructs for flow definition, dependency analysis, and auto-
mated flow execution. The infrastructure is developed as the DMM domain within
Ptolemy. A:tool called DesignMaker is responsible for automated flow manage-
ment.

Design Assistant

The Design Assistant is a framework for unified system-level design. Fig-
ure 6.1 illustrates the Design Assistant. It contains specific tools for partitioning,

synthesis, and simulation, which are configured by the user to create a design flow.

148

3 R Design Constraints
(e speearon) ((ponoorerenes)

(Chapter 2.3) (Chapter 2.4)

Design e
Tools I Estimation | (Appendix A8)

Partitioning { (Chapter 3)

(Chapter 4.1)

Simulation { (Chapter 4.2)

(System Impiementation)

Figure 6.1. The Design Assistant
The Design Assistant operates in the DMM framework.

6.2 Future directions

6.2.1 Synthesis of Mixed Control-Dataflow Systems

The partitioning and synthesis techniques developed in this thesis apply to
a class of applications that can be described using the synchronous dataflow model
of computation. The SDF model is limiting in describing the dynamic behavior
and control structures that are required to model typical embedded systems. The
next obvious step is to extend our design techniques to a larger domain of applica-
tions. A good starting point is mixed control and dataflow systems.

Several questions need to be answered. 1. How should these systems be
specified? Two opposite philosophies are emerging. One is a unified approach that
seeks a consistent semantics for specification of the complete system (for example,

boolean dataflow semantics [Buck94b], which allows specification of some control

149

structures within a primarily dataflow model). The other is the hererogeneous
approach that seeks to systematically combine disjoint semantics (for example, a
combination of dataflow and FSM semantics [Chang95], where each component of
the system is specified in a model best suited for it). 2. Once specified, how can
these systems be partitioned into hardware and software? 3. What is the best
approach for simulating such systems? Chang et al. discuss some of the issues

related to cosimulation in [Chang95].

6.2.2 System-level Low Power Synthesis

Our partitioning techniques have focussed on two metrics: area and time.
With the growing importance of low power systems, it is important to introduce a
third dimension of power consumption in the system-level design process. Low
power design techniques at the circuit and architecture level are gaining some
maturity [Chandrakasan95]. Can we extend them to the system level? This would
include developing techniques for mapping nodes into different hardware/software
implementations with the additional goal of minimizing the power consumption.
This would also involve developing new techniques for analyzing power con-
sumption from high-level system specifications. Some research is underway in the
area of high-level power estimation [Mehra94] [Tiwari94). The related hardware/
software interface also contributes to the power and needs to be carefully designed.
Some insight into the issues involved in designing power-sensible CAD tools is

given by Singh et al. [Singh95].

6.2.3 Smart Frameworks

The design space exploration process can be further systematized to
develop “smart” frameworks. For instance, given a user-specified performance

constraint, the design methodology management system could automatically con-

150

figure a design flow. One way to achieve this is by using high-level performance
estimates to determine appropriate design flows.

A starting point in this direction is the “information-based” design
approach proposed by Bentz ef al. [Bentz95). Currently, this approach attempts to
provide the user with estimates. The next step is to develop techniques to allow the

system to use these estimates for configuring design flows.

151

REFERENCES

[Allen91]
W. Allen, D. Rosenthal, K. Fidule, “The MCC CAD Framework Methodol-
ogy Management System”, Proc. of the 28th Design Automation Confer-
ence, San Francisco, CA, USA, June 1991, pp. 694-698.

[Ambrosio%4]
J. G. D’Ambrosio, X. Hu, “Configuration-level Hardware/Software Parti-
tioning for Real-Time Embedded Systems”, Proc. of CODES/CASHE,
Third International Workshop on HardwarelSoftware Codesign, Grenoble,
France, Sept. 1994, pp. 34-41.

[Baros92]
E. Baros, W. Rosential, “A Method for Hardware/Software Partitioning”,
Proc. of COMPEURO’92, IEEE Intl. Conference on Computer and Soft-
ware Engineering, The Hague, The Netherlands, May 1992, pp. 580-585.

[Becker92] :
D. Becker, R. K. Singh, S. G. Tell, “An Engineering Environment for hard-
ware/software co-simulation”, Proc. of the 29th Design Automation Con-
ference, Anaheim, CA, USA, June 1992, pp. 129-134.

[Bentz95]
Ole Bentz, “Information Based Design”, Presented at the Industrial Lia-
sion Program (ILP) Conference, Berkeley, CA, USA, March 8, 1995.

[Bier89]
J. C. Bier, E. A. Lee, “Frigg: A Simulation Environment for Multiple-Pro-
cessor DSP System Development”, Proc. of the International Conference
on Computer Design, Cambridge, MA, USA, Oct. 1989, pp. 280-3.

[Bier95a)
J. Bier, P. Lapsley, E. A. Lee, F. Weller, “DSP Design Tools and Methodol-
ogies,” Technical Report, Berkeley Design Technology, 39355 California
St., Suite 206, Fremont, CA 94538, USA, 1995.

[Bier95b]
J. C. Bier, “DSP Processors and Cores: The Options Multiply”, Integrated
System Design, June 1995, pp. 56-67.

[Bosch91]
K. O. ten Bosch, P. Bingley, P. van der Wolf, “Design Flow Management in
the Nelsis CAD Framework”, Proc. of the 28th Design Automation Confer-
ence, San Francisco, CA, USA, June 1991, pp. 711-716.

[Brayton90]
R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, “Multilevel
Logic Synthesis”, Proceedings of the IEEE, Feb. 1990, vol. 78, no. 2, pp.
264-300.

[Brockman91]
Brockman, S. W. Director, “The Hercules CAD Task Management Sys-

152

tem”, Proceedings of the International Conference on Computer Aided
Design (ICCAD), Santa Clara, CA, USA, Nov. 1991, pp. 254-247.

[Buchenrieder92]
K. Buchenrieder, C. Veith, “CoDES: A Practical Concurrent Design Envi-
ronment”, Handouts of the 1st Intl. Workshop on HardwarelSoftware Code-
sign, Estes Park, Colorado, USA, Sept. 1992.

[Buck94a]
J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a Framework
for Simulating and Prototyping Heterogeneous Systems”, International
Journal of Computer Simulation, special issue on “Simulation Software
Development,” Apr. 1994, vol. 4, pp. 155-182.

[Buck94b]
J. T. Buck, “A Dynamic Dataflow Model Suitable for Efficient Mixed
Hardware and Software Implementations of DSP Applications”, Proceed-
ings of CODESICASHE, Third International Workshop on HardwarelSoft-
ware Codesign, Grenoble, France, Sept. 1994, pp. 165-172.

[Bushness89]
M. Bushnell, S. W. Director, “Automated Design Tool Execution in the
Ulysses Design Environment”, IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, March 1989, pp. 279-287.

[Camposano87]
R. Camposano, R. K. Brayton, “Partitioning before Logic Synthesis”,
Proc. of the Intl. Conference on Computer Aided Design (ICCAD), Santa
Clara, CA, Nov. 1987, pp. 324-326.

[Camposano91]
High-level Synthesis, Edited by: R. Camposano, W. Wolf, Dordrecht, Klu-
wer Academic Publishers, 1991.

[Casotto90]
Andrea Casotto, A. R. Newton, “Design Management Based on Design
Traces”, Proceedings of the 27th Design Automation Conference, Orlando,
Florida, USA, June 1990, pp. 136-141.

[CFI]
CAD Framework Initiative.

[Chandrakasan95]
A. P. Chandrakasan, R. W. Broderson, “Minimizing Power Consumption in
Digital CMOS Circuits”, Proceedings of the IEEE, Apr. 1995, vol. 83, no.
4, pp. 498-523.

[Chang95]
W.-T. Chang, A. Kalavade, E. A. Lee, “Effective Heterogeneous Design
and Cosimulation”, Proc. of NATO Advanced Study Institute Workshop on
Hardware/Software Codesign, Lake Como, Italy, June 1995.

[Chaudhari94]
S. Chaudhuri, R. Walker, “Computing Lower Bounds on Functional Units
before Scheduling”, Proceedings of the 7th Intl. Symposium on High-level

153

Synthesis, Niagara-on-the-lake, Ontario, Canada, May 1994, pp. 36-41.

[Chaudhary92]
K. Chaudhary, M. Pedram, “A Near Optimal Algorithm for Technology
Mapping Minimizing Area under Delay Constraints”, Proc. of 29th Design
Automation Conference, Anaheim, CA, USA, June 1992, pp. 492-498.

[Chiodo94]
M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-Vincen-
telli, L. Lavagno, “Hardware-Software Codesign of Embedded Systems”,
IEEE Micro, Aug. 1994, vol.14, no.4, pp. 26-36.

[Chiuch90]
T. Chiuch, R. Katz, “A History Model for Managing the VLSI Design Pro-
cess”, Proceedings of the International Conference on Computer Aided
Design (ICCAD), Santa Clara, CA, Nov. 1990, pp. 358-361.

[Chou92]
P. Chou, R. Ortega, G. Borriello, “Synthesis of the Hardware/Software
Interface in Microcontroller-Based Systems”, Proc. 1992 IEEEIACM
International Conference on Computer-Aided Design, Santa Clara, CA,
USA, Nov. 1992, pp. 488-95.

[Chou94]
P.Chou, E. A. Walkup, G. Borriello, “Scheduling for Reactive Real-Time
Systems”, JEEE Micro, Aug. 1994, pp. 37-47.

[Coelho94]
C.N. Coelho, C.-Y.J. Yang, V. Mooney, G. De. Micheli, “Redesigning
Hardware-Software Systems”, Proceedings of CODESICASHE, Third
International Workshop on Hardwarel/Sofiware Codesign, Grenoble,
France, Sept. 1994, pp. 116-123.

[CPLEX]
CPLEX Optimization, Inc., “Using the CPLEX Callable Library”, CPLEX
Optimization, Inc., Suite 279, 930 Tahoe Blvd., Bldg. 802, Incline Village,
NV 89451-9436.

[DeMicheli86]
Design Systems for VLSI Circuits: Logic Synthesis and Silicon Compila-
tion, edited by G. De Micheli, A. Sangiovanni-Vincentelly, P. Antognetti,
NATO Advanced Study Institute Series on Logic Synthesis and Silicon
Compilation for VLSI Design, Series E, Alllied Sciences, v.136, 1986.

[DeMicheli94]
G. De Micheli, “Synthesis and Optimization of Digital Circuits”, New
York, McGraw-Hill, 1994,

[Dewey89]
Allen Dewey, S. W. Director, “Yoda: A Framework for the Conceptual
Design of VLSI Systems”, Proceedings of the International Conference on

Computer Aided Design (ICCAD), Santa Clara, CA, USA, Nov. 1989, pp
380-383.

154

[Eles94]

P. Eles, Z. Peng, A. Daboli, “VHDL System-Level Specification and Parti-
tioning in a Hardware/Software Co-Synthesis Environment”, Proceedings
of CODESICASHE, Third International Workshop on Hardwarel/Software
Codesign, Grenoble, France, Sept. 1994, pp. 49-55.

[Feldman79]
S. Feldman, “Make — A Program for Maintaining Computer Programs”,
Software Practice and Experience, 1979, Vol. 9, pp. 255-265.

[Franke91]
D. W. Franke, Martin K. Purvis, “Hardware/Software Codesign: A Per-
spective”, Proc. of 13th Intl. Conference on Software Engineering, Austin,
Texas, USA, May 1991, pp. 344-352.

[Garey79]
M. Garey, D. Johnson, “Computers and Intractability”, W. H. Freeman and
Company, New York, 1979.

[Gong94]
J. Gong, D. D. Gajski, S. Narayan, “Software Estimation from Executable
Specifications”, Journal of Computer and Software Engineering, 1994,
vol.2, no.3, pp. 239-58.

[Guerra94]
L. Guerra, M. Potkonjak, J. Rabaey, “System-level Design Guidance Using
Algorithm Properties”, VLSI Signal Processing VII, Oct. 1994, Edited by
Jan Rabaey, Paul M. Chau, John Eldon, IEEE, New York, pp. 7?

[Gupta92]
R. Gupta, G. DeMicheli, “System-level Synthesis Using Re-programmable
Components”, Proceedings of the European Conference on Design Auto-
mation, Brussels, Belgium, Feb.1992, pp. 2-7.

[Gupta93]
R. K. Gupts, “Co-synthesis of Hardware and Software for Digital Embed-
ded Systems”, Ph. D. Dissertation, Stanford University, Dec. 1993.

[Hamada92]
T. Hamada, S. Banerjee, P. M. Chauy, R. D. Fellman, “Macropipelining
Based Heterogeneous Multiprocessor Scheduling”, Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), San Francisco, CA, USA, March 1992, vol 5, pp. 597-600.

[Harrison86]
D. Harrison, P. Moore, R. Spickelmier, A. R. Newton, “Data Management
and Graphics Editing in the Berkeley Design Environment”, Proceedings
of the International Conference on Computer Aided Design (ICCAD),
Santa Clara, CA, USA, Nov. 1986, pp. 24-27.

[Henkel94]
J. Henkel, T. Benner, R. Ernst, W. Ye, et al., “COSYMA: A Software-ori-
ented Approach to Hardware/Software Codesign”, Journal of Computer
and Software Engineering, 1994, vol. 2, no. 3, pp. 293-314.

155

[Herrmann94]
J. Herrmann, Henkel, R. Emnst, “An Approach to the Adaptation of Esti-
mated Cost Parameters in the COSYMA System”, Proceedings of CODES/
CASHE, Third International Workshop on HardwarelSoftware Codesign,
Grenoble, France, Sept. 1994, pp. 100-107.

[Hilfinger85]
P. Hilfinger, “A High-level Language and Silicon Compiler for Digital Sig-
nal Processing”, Proc. of IEEE 1985 Custom Integrated Circuits Confer-
ence, Portland, OR, USA, May 1985, pp. 213-216.

[Hu61]
T. C. Hu, “Parallel Sequencing and Assembly Line Problems”, Operations
Research 9(6), Nov. 1961, pp. 841-848,

[Ishikawa91)
M. Ishikawa, G. De Micheli, “A Module Selection Algorithm for High-
level Synthesis”, Proc. of 1991 IEEE International Symposium on Circuits
and Systems, Singapore, June 1991, vol.3, pp. 1777-80.

[Ismail94]
T. B. Ismail, K. O’Brien, A. Jerraya, “Interactive System-level Partitioning
with PARTIF”, Proceedings of EDAC94, Paris, France, Feb. 1994, pp. 464-
468.

[Jantsch94]
A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, H. Tenhunen, “Hardware/
Software Partitioning and Minimizing Memory Interface”, Proceedings of
EuroDAC’ 94, Grenoble, France, Sept. 1994, pp. 226-31.

[Johnsonbaugh91]
R. Johnsonbaugh, M. Kalin, “A Graph Generation Software Package”,
Proc. of 22nd SIGCSE Technical Symposium on Computer Science Educa-
tion, San Antonio, TX, USA, March 1991, vol. 23, no 1, pp. 151-154.

[Kalavade92]
A. Kalavade, E. A. Lee, “Hardware/Software Codesign Using Ptolemy —
A Case Study”, M. S. Report, Dec. 1991, Dept. of EECS, Univ. of Califor-
nia, Berkeley, CA, 94720.

[Kalavade93]
A. Kalavade, E. A. Lee, “A Hardware/Software Codesign Methodology for
DSP applications”, IEEE Design and Test of Computers, Sept. 1993, pp.
16-28.

[Kalavade94a]
A. Kalavade, E. A. Lee, “Manifestations of Heterogeneity in Hardware/
Software Codesign”, Proc. of the 31st Design Automation Conference, San
Diego, CA, USA, June 1994, pp. 437-438.

[Kalavade94b]
A. Kalavade, E. A. Lee, “A Global Criticality/ Local Phase Driven Algo-
rithm for the Constrained Hardware/Software Partitioning Problem”, Proc.
of CODESI/CASHE, Third International Workshop on Hardware/Software

156

Codesign, Grenoble, France, Sept. 1994, pp. 42-48.

[Kalavade95a] A
A. Kalavade, Jose Pino, E. A. Lee, “Managing Complexity in Heteroge-
neous System Specification, Simulation, and Synthesis”, Proc. of Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Detroit, Michigan, USA, May 1995, vol. 5, pp. 2833-2836.

[Kalavade95b]
A. Kalavade, E. A. Lee, “The Extended Partitioning Problem: Hardware/
Software Mapping and Implementation-bin Selection”, Proc. of Sixth
International Workshop on Rapid System Prototyping, Chapel Hill, North
Carolina, USA, June, 1995, pp. 12-18.

[Keutzer94]
K. Keutzer, “Hardware-Software Co-Design and ESDA”, Proc. of 31st
Design Automation Conference, San Diego, CA, USA, June 1994, pp. 435-
6.

[Kleinfelft94]
S. Kleinfelft, M. Guiney, J. K. Miller, and M. Barnes, “Design Methodol-
ogy Management”, Proc. of the IEEE, vol. 82, no. 2, Feb. 1994, pp. 231-
250.

[Knapp86]
D. W. Knapp, A. Parker, “A Design Utility Manager: the ADAM Planning
Engine”, Proceedings of the 23rd Design Automation Conference, Las
Vegas, Nevada, USA, June 1986, pp. 48-54.

[Kumar93]
S. Kumar, J. H. Aylor, B. W. Johnson, W. A. Wulf, “A Framework for
Hardware/Software Codesign”, Computer, Dec. 1993, vol. 26, no. 12, pp.
39-45.

[Kurdahi89]
F. J. Kurdahi, A. C. Parker, “Techniques for area estimation of VLSI Cir-
cuits”, JEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Jan 1989, vol. 8, no. 1, pp. 81-92.

[Lagnese91]
E. D. Lagnese, D. E. Thomas, “Architectural Partitioning for System-level
Synthesis of ICs”, IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and Systems, July 1991, vol. 10, no. 7, pp. 847-860.

[Laneer91]
D. Laneer, et al., “Architectural Synthesis for Medium and High Through-
put Signal Processing with the New CATHEDRAL Environment”, High-
level VLSI Synthesis, edited by R. Camposano, W. Wolf, W. Dordrecht,
Kluwer Academic Publishers, 1991, pp 27-54. 7*

[Lee87]
E. A. Lee, D. G. Messerschmitt, “Synchronous Data Flow”, Proceedings of
the IEEE, September 1987, vol. 75, no. 9, pp. 1235-1245.

157

[Lee90]
' E. A. Lee, J. C. Bier, “Architectures for Statically Scheduled Dataflow”,
Journal of Parallel and Distributed Computing, Dec. 1990, pp. 333-348.
[McFarland89]
M. C. McFarland, “A Fast Floorplanning Algorithm for Architectural Eval-
vation”, Proceedings of International Conference on Computer Design,
Santa Clara, CA, USA, Oct. 1989, pp. 96-99.
[McFarland90a]
M. C. McFarland, A. C. Parker, R. Camposano, “The High-level Synthesis
of Digital Systems.”, Proceedings of the IEEE, Feb. 1990, vol.78, no. 2, pp.
301-18.
[McFarland90b]
M. C. McFarland, T. J. Kowalski, “Incorporating Bottom-up Design into
Hardware Synthesis”, IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, Sept. 1990, vol. 9, no. 9, pp. 938-950.
[Mehra94]
R. Mehra, J. Rabaey, “Behavioral Level Power Estimation and Explora-
tion”, Proc. of International workshop on Low Power Design, Napa Valley,
CA, USA, April 1994, pp. 197-202
[MentorGraphics1]
Mentor Graphics Tools, Mentor Graphics Corp., 1001 Ridder Park Drive,
. San Jose, CA 95131-2314.
[MentorGraphics2]
" Falcon Framework Reference Manual, Mentor Graphics Corp., 1001 Rid-
der Park Drive, San Jose, CA 95131-2314.
[Motorola) '
DSP56000/DSP56001 Digital Signal Processor, User’s Manual, Motorola
Inc., 1990.
(Murthy94]
P. K. Murthy, S. S. Bhattacharyya, E. A. Lee, “Minimizing Memory
Requirements for Chain-structured Synchronous Dataflow Programs”,
Proc. of International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP 94), Adelaide, Australia, April 1994, vol. 2, pp. 453-456.
[Papadamitriou82]
C. H. Papadamitriou, K. Steiglitz, “Combinatorial Optimization: Algo-
rithms and Complexity”, Prentice-Hall, Inc. 1982.
[Paulin89]
P. G. Paulin, J. P. Knight, “Force-Directed Scheduling for the Behavioral
Synthesis of ASICs”, IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, June 1989, vol. 8, no. 6, pp. 661-679.
[Paulin95]
P. G. Paulin, et al., “DSP Design Tool Requirements for Embedded Sys-
tems: A Telecommunications Industrial Perspective”, Journal of VLSI Sig-
nal Processing, Jan. 1995, vol. 9, no. 1-2, pp. 23-47.

158

[Pino95a) .

J. L. Pino, S. Ha, E. A. Lee, J. T. Buck, “Software Synthesis for DSP using
Ptolemy”, Journal of VLSI Signal Processing, Jan. 1995, vol. 9, no. 1-2,
pp. 7-21.

[Pino95b]
J. L. Pino, E. A. Lee, “Hierarchical Static Scheduling of Dataflow Graphs
onto Multiple Processors”, Proc. of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 95), Detroit, M1, USA,
May 1995, vol. 4, pp 2643-2646.

[Potkonjak94]
M. Potkonjak, J. Rabaey, “Optimizing Resource Utilization using Transfor-
mations”, IEEE Transactions of Computer-Aided Design of Integrated Cir-
cuits and Systems, March 1994, vol. 13, no. 3, pp. 277-292.

[Press88]
W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, “Numerical
Recipes in C: The Art of Scientific Computing”, Cambridge University
Press, 1988.

[Ptolemy95]
The Almagest: Ptolemy User’s and Programmer’s Manual. (http://
ptolemy.eecs.berkeley.edu/Almagest.html)

[Quantify]
Quantify manual pages, Pure Software Inc.

[Rabaey91]
J. M. Rabaey, C. Chu, P. Hoang, M. Potkonjak, “Fast Prototyping of datap-
ath-intensive Architectures”, IEEE Design and Test of Computers, pp. 40-
51, June 1991.

[Rabaey94]
J. Rabaey, M. Potkonjak, “Estimating Implementation Bounds for Real
Time DSP Application Specific Circuits”, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, vol. 13, no. 6, June 1994,
pp. 669-683.

[Rabaey95]
J. Rabaey, L. Guerra, R. Mehra, “Design Guidance in the Power Dimen-
sion”, Proc. of International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Detroit, Michigan, USA, May 1995, vol. 5, PP-
2836-2839.

[Rasure91]
J. R. Rasure, C. S. Williams, “An Integrated Data Flow Visual Language
and Software Development Environment”, Journal of Visual Languages
and Computing, Sept. 1991, vol. 2, no. 3, pp 217-246.

[Ritz93]
S. Ritz, M. Pankert, V. Zivojinovic, H. Meyr, “High-level Software Synthe-
sis for the Design of Communication Systems.”, IEEE Journal on Selected
Areas in Communications, April 1993, vol.11, no.3, pp. 348-58.

159

[Rowson94]
J A. Rowson, “Hardware/Software Co-Simulation”, Proceedings of the
31st Design Automation Conference, San Diego, CA, USA, June 1994, pp.
439-440.

[Sharma93]
A. Sharma, R. Jain, “Estimating Architectural Resources and Performance
for High-level Synthesis Applications”, JEEE Transactions on VLSI Sys-
tems, June 1993, vol. 1, no. 2, pp. 175-190.

[Shanmugan94]
K. Sam Shanmugan, “Simulation and Implementation Tools for Signal
Processing and Communication Systems”, IEEE Communications Maga-
zine, July 1994, pp. 36-40.

[Sih91]
G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Com-
munication”, Ph. D. Thesis, Electronics Research Laboratory, University of
California, Berkeley, UCB/ERL M91/29, April 1991.

[Sih93]
G. Sih, E. A. Lee, “A Compile-Time Scheduling Heuristic for Interconnec-
tion-Constrained Heterogeneous Processor Architectures”, IEEE Transac-
tions on Parallel and Distributed Systems, Feb. 1993, vol. 4, no. 2, pp. 175-
187.

[Singh95]
D. Singh, J. M. Rabaey, M. Pedram, et al., “Power Conscious CAD Tools
and Methodologies: A Perspective”, Proceedings of the IEEE, Apr. 1995,
vol. 83, no. 4, pp. 570-94.

[Sriram93]
S. Sriram, E. A. Lee, “Design and Implementation of an Ordered Memory
Access Architecture”, Proc. of IEEE Intl. Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Minneapolis, MN, April 1993,
vol 1., pp. 345-348.

[Srivastava91]
M. B. Srivastava, R. W. Broderson, “Rapid-Prototyping of Hardware and
Software in a Unified Framework”, Proc. IEEE Conference on Computer
Aided Design (ICCAD), Santa Clara, CA, Nov. 1991, pp. 152-155.

[Sun92]
J. S. Sun, R. W. Brodersen, “Design of System Interface Modules”, Proc.
of Intl. Conference on Computer Aided Design (ICCAD), Santa Clara, CA,
USA, Nov. 1992, pp 478-481.

[Synopsys]
Synopsys Tools, Synopsys Inc., 700 East Middlefield Rd., Mountain View,
CA 94043.

[Theissinger94]
M. Theissinger, P. Stravers, H. Veit, “Castle: An Interactive Environment
for HW-SW Co-Design”,Proceedings of CODES/CASHE, Third Interna-

160

tional Workshop on Hardwarel/Software Codesign, Grenoble, France, Sept.
1994, pp. 203-9.

[Thomas93]
D. E. Thomas, J. K. Adams, H. Schmit, “A Model and Methodology for
Hardware/Software Codesign”, IEEE Design and Test of Computers, Sept.
1993, pp. 6-15.

[Thor86]
“Thor Tutorial”, VLSI/CAD Group, Stanford University, 1986.

[Tiwari94]
V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded Software: A
First Step Towards Software Power Minimization”, IEEE Transactions on
VLSI Systems, Vol. 2, no. 4, Dec. 1994, pp 437-445.

[Vahid92]
F. Vahid, D. Gajski, “Specification Partitioning for System Design”, Pro-
ceedings of the 29th Design Automation Conference, June 1992, Anaheim,
CA, USA, pp. 219-224,

[VanDerWolf93]
Pieter van der Wolf, “Architecture of an Open and Efficient CAD Frame-
work”, Ph.D. Thesis, Delft University of Technology, May 1993.

[Verbauwhede94]
1. Verbauwhede, C. Sheers, J. Rabaey, “Specification and Support for
Multi-dimensional DSP in the SILAGE Language”, Proc. of the Intl. Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP-94), Ade-
laide, Australia, April 1994, pp. 7?

[Wolf94]
W. H. Wolf, “Hardware-software Co-design of Embedded Systems”, Pro-
ceedings of the IEEE, July 1994, vol.82, no.7, pp. 965-89.

[Zimmerman88]
G. Zimmerman, “A New Area and Shape Function Estimation Technique
for VLSI Layouts”, Proceedings 25th Design Automation Conference, June
1988, pp. 60-65.

161

7

APPENDIX

Al ILP Formulation for Problem P1

The hardware/software mapping and scheduling problem P is formally
described by the following integer linear program:
Given:
1. Asetof nodes N={1, 2, ..., }, representing the tasks in the algorithm.

2. Associated with each node i in N, are four non-negative integers: ah;, as;,
th;, and ts;, representing the area and execution time corresponding to the in

hardware and software mappings of node i.

3. A directed acyclic graph G = (N,A). A is a set of arcs (i,j), where i, jE N.
An arc (i) in A implies that task i must complete its execution before task

J can start its own execution.

4. Associated with each arc (i,j) € A is a non-negative number pjj which rep-

resents the number of samples sent from node i to node j.

5. The source and sink nodes in the graph G are identified as S and K respec-

tively.

162

6. Six non-negative integer-valued parameters AH, AS, T, ah omm, AScomms
and I.,my, are specified. AH and AS are the capacities of the hardware and
the software resource respectively. The total area of all nodes mapped to
hardware (software) cannot exceed AH (AS). D is the deadline constraint,
i.e., the time between the start time of the source S and the finish time of
the sink K should be at most D. Parameters ahomm, @Scomm 204 Zomm 1€~
resent the hardware area required, the software area required, and the delay
incurred when one sample of data is sent between two nodes mapped to

different resources respectively.

Variables:

1. For each i € N, define binary variables A; and s; such that h; = 1 if task i is
mapped to hardware, 0 otherwise; and s; = 1 if task i is mapped to software,
0 otherwise. Obviously, #; + s; = 1. We use the two variables to make the
formulation easier to read; only h; contributes to the variable count. (N

variables)

2. For each i € N, define a non-negative integer variable 7;, the starting time

of task i. (N variables)

3.For each (i) € A, define a binary variable b,~j such that b,-j = 1if both i and

J are in hardware, O otherwise. (A variables)

4. For each (i,j) € A, define a binary variable Cijs such that Cij = 1 if nodes i

and j are on different mappings, and 0 if on the same mappingl.

5.For each i, j € N, define a binary variable d,-j such that d,j =1if ti < tj’ oth-
erwise d;; =0. (N(N-1) variables)

l.c;jwillbedeﬁnedintmmsofb,-jandhenceitisnotincludedinthevariableommt.
163

Objective function F: minimize hardware area

minimize(y° h; X ah;+ cinpinah

)
omm
iEN (fe A com

Subject to:
1. Hardware capacity constraint:
h.xah. + c..Xp..Xah S AH (1 constraint)
i ezN i 1 (iJFE A iy i comm
2. Software capacity constraint:
s:xXas;+ C;:Xp..Xas < AS (1 constraint)
IGEN] ! (ij;e A iy Yy comm
3. Deadline constraint:

e+ (hp Xthy) + (strsK) < D (1 constraint)

4. Precedence constraints:
Regardless of the mappings, if (ij) € A, then j starts executing at the end
of i.

<t.,

1+ (h;xthy) + (s;x1s;) + (cinpintcomm) ;

where (ij) € A (A constraints)

dij = 1for (ijf)€ A (A constraints)

5. Processor overlap constraint:
No two jobs can be executed simultaneously on the software processor. We
want to express the fact that if i and j are both on the software processor,
and j executes before i (i.e., (j,i) € A), then tj + execution time of j < I;.
The variable dj; is 1 if 1;< t;, and 0 otherwise. Define M = Y rs;. The
meaning of dj; is expressed by the following constraints: ‘
@y+d = 1 for i <j,i,j=1, ..., N. (N(N-1)/2 constraints)
tj- t,- (M- dij) <0 fori#j,i,j=1,...,,N. (N(N-1) constraints)

Since #; - 1; < M for an optimal solution, the expression is restrictive only

164

for d;j= 0. If d;; = 0, then j starts no later than i. The overlap constraint can
now be specified as:

fori#j,ij=1,...,N, ksuchthat k)€ A (N(N-1) constraints)
The expression is restrictive only for dj; =1 and s;=s;=1,ie., i and j are
both on software, and j starts no later than i. In this case it guarantees that

tj + execution time of i < 1;,8s it should be.

6. Additional constraints: To account for costs incurred when two communi-
cating nodes i and j are on different mappings, we use cij» where c;; is
expressed as:

1= (hyxh) - ((1-h) X (1-h)) , where (i) € A

¢ij
Cij
Note that this is a quadratic constraint in 4;, and it can be linearized by

defining a binary variable bj; for all (i,j) in A such that b= h;hj, where b;;
can be expressed by:

b; T h;

b; i S h ;

bijz (hi+hj- 1)

The original expression for ¢;jcan now be replaced by:

cij = h;+ hj- 2bij

Note that only b;; adds to the variable count (3A constraints); c;j is used
only to enhance readability; in the actual formulation c;j is replaced by
(h; + hj - 2bij) . (3A constraints)

A solution to the mapping and scheduling problem (P1) is specified com-
pletely by h; (mapping) and ¢; (schedule). The formulation has (V2 + N + A) vari-
165

ables and (g.Nz-g-NJf 5A+3) constraints, in addition to the integrality

constraints on the variables.

A2 Proof of NP-Completeness for Problem P1

Let PT be the decision (or recognition) version of P1, i.e., P17 is the prob-
lem of finding a feasible mapping and schedule. We will first show that PJ is NP-
complete. Since P1I is at least as hard as PJ, it follows that P1 is NP-hard.

Claim: P] is NP-complete.
Proof:
1. P] is in NP
A given solution (schedule and mapping) can be verified in polynomial
time.
2. P can be restricted to the Precedence Constrained Scheduling problem
(PCS)

The precedence constrained scheduling problem [Garey79] is as follows.
Instance: Set Y of tasks, each having length I(y) = 1, m processors, a partial
order < onY, and a deadline D.

Question: Is there an m-processor schedule s for Y that meets the overall
deadline D and obeys the precedence constraints, i.e., such that yJ < y2
implies s (y2) 2s(y1) +1(y1) =s(yI)+1?

P1 can be restricted to PCS, by setting the execution times in hardware and
software to be equal (i.e., the tasks take the same execution time on all pro-
cessors — hardware and software in this case).

The precedence constrained scheduling problem is NP-complete

166

([Garey79], pg. 239) for two processors and task lengths not all equal to 12. Thus,
a known NP-complete problem is a special case of P1, and hence, by restriction
(IGarey79], pg 63), PT is NP-complete.

Obviously, P1, the optimization version of P7 (find a feasible mapping and
schedule such that the hardware area is minimum), is at least as hard as the deci-

sion version3. Thus, P/ is NP-hard.

A3 ILP formulation for Problem P2

The extended partitioning problem can be formulated as an integer linear
problem. The formulation is similar to that of the binary partitioning problem.
Given:
1. Asetof nodes N={1, 2, ...,}, representing the tasks in the algorithm.

2. Associated with each node i € N, are non-negative integers, ah;;, th

ij’ ij'

where j =1, ..., INH}, and as;;, Is;;, where j = 1, ..., INS}, representing the

hardware and software implementation curves.

3. A directed acyclic graph G = (N,A). A is a set of arcs (i,j), where i, j€E N.
An arc (i) in A implies that task i must complete its execution before task

J can start its own execution.

4. Associated with each arc (ij) € A is a non-negative number Pij» Which rep-

resents the number of samples sent from node i to node j.

5. The source and sink nodes in the graph G are identified as S and K respec-
tively.

2. For the class of heterogeneous task-level graphs that we are interested in, the execution
times are obviously greater than 1.

3. P1 is not in NP, since a given solution for PJ cannot be verified in polynomial time to
be the minimum solution.

167

6. Six non-negative integer valued parameters AH, AS, D, ah.omm. Scomm:
and 7., are specified. AH and AS are the capacities of the hardware and
the software resource respectively. The total area of all nodes mapped to
hardware (software) cannot exceed AH (AS). D is the deadline constraint,
i.e., the time between the start time of the source S and the finish time of
the sink K should be at most D. Parameters @k qpmm, Scomm: 80d Ioomm T€P-
resent the hardware area required, the software area required, and the delay
incurred when one sample of data is sent between two nodes mapped to

different resources.

Variables:

1. For each i in N, define binary variables A; and s; such that h; = 1 if task i is
mapped to hardware, O otherwise; and s; = 1 if task i is mapped to software,
0 otherwise. Obviously, &; + s; = 1. We use the two variables to make the
formulation easier to read; only h; contributes to the variable count. (N

variables)

2. In addition to the variables indicating the mapping, additional variables for
selecting the optimal implementation bin are needed. Define a set of binary
variables bh,-j (and bs,-j), where i€ N,and j€ NH; (and j€ NS,-). In par-
ticular, bh;; = 1, if node i is mapped to hardware implemented bin j. In gen-
eral, let B be the number of implementation bins per node per mapping.
(2BN variables)

3. For each i € N, define a non-negative integer variable ¢;, the starting time

of task i. (N variables)

4. For each (ij) € A, define a binary variable bjj such that b;; = 1 if both i and

J are in hardware, 0 otherwise. (A variables)

168

5. For each (i,j) € A, define a binary variable Cijs such that cij = 1 if nodes i
and j are on different mappings, and 0 if on the same mapping. cij will be

defined in terms of b,-j and is not included in the variable count.

6. For each i, j € N, define a binary variable djjsuch thatd;;=1if 7, < s oth-
erwise d;; = 0.

(N(N-1) variables)

Objective function F: minimize hardware area.

minimize(y° bh;.x ah; + C;:Xp..Xah)
i€ N] e%H y (IJ;EA i Y comm

Subject to:

1. To ensure that only one implementation bin is selected for every node:

bh..+ bs.. = 1. (N constraints)
je);VH Y jeng- Y
Deﬁneh ; bh);I bs . where h; (s;) is 1 if i is in hard-
]E H; j€ S;

ware (software).

2. Hardware capacity constraint:
bh;xah; + ¢ %Py X ah <AH
i€ Nj €¥H y (IJFE A Y comm

(1 constraint)
3. Software capacity constraint:

bs..xas..+ C..Xp..Xas SAS
iENje S,' ij ij (i; §j o lij comm

(1 constraint)

4. Deadline constraint:

169

ty+ (bh, . xth,) + (bsg;:X1sy:) <D
K je));'HK K=K je%HK Kol

(1 constraint)

5. Precedence constraints:

1+ e, (bh;, xthy) + ke);('H,. (bs; xts;;) + ("ij X pij% Lomm) S t;

where (i) € A (A constraints)

dij = 1 for (i) € A (A constraints)

6. Processor overlap constraint:
No two jobs can be executed simultaneously on the software processor. We

want to express the fact that if i and j are both on the software processor,

and j executes before i (i.e., (j,i) € A), then tj + execution time of j <7;.

The variable d;; is 1 if tiSIj, and 0 otherwise. Define M = Y s The
1

meaning of d;; is expressed by the following constraints:

(d,.j-i- dﬁ) =1 fori<j,i,j=1,...,N. (N(N-1)/2 constraints)

ti=1;- (M- dij) <0 fori#j,i,j=1,...,N (N(N-1) constraints)

Since 7; - t; < M for an optimal solution, the expression is restrictive only

for d;;=0. If d;; =0, then j starts no later than i. The overlap constraint can

now be specified as:
comm

tj+ zimeh+times+);cjk><pjkxz -,<M: (S—dji-si-sj) ,

where,time, = (bh,, xth.,) time_ = (bs,, xts..),
h ke%ﬂj JET Ik s kt-:;’Hj JR Tk

170

S, = bs.,. ,and s; = bs.,.
k:
bokéEs, ! g ke&lsj Ik

fori#j,ij=1,...,N, ksuchthat (jk) € A (N(N-1) constraints)
The expression is restrictive only for djij=1lands;=s;=1,ie,iandjare
both on software, and j starts no later than i. In this case it guarantees that

tj + execution time of i < 1, as it should be.

7. Additional constraints:
To account for costs incurred when two communicating nodes i and j are

on different mappings, we use c;;. ¢;; is expressed as:
i b

cjj = 1= (hyxh) - ((1-h) x (1-h)) , where (i) € A

¢ij = hi+hj— 2":",'
Note that this is a quadratic constraint in h;, and it can be linearized by
defining a binary variable b;; for all (i,j) in A. such that b;;= hih;. This can
be expressed by:

b,-j <h,;

bij <h ;

bijz (hi+hj- 1)

The original expression for ¢;jcan now be replaced by:

¢ = h;+ hj- 2bij

Note that only b;; adds to the variable count. ¢;; is used only to enhance
readability; in the actual formulation c;; is replaced by c;j = h;+ hj - 2bij'
The three expressions defining b,-j add 3A constraints. (3A constraints)

A solution to the extended partitioning problem is specified completely by
h; (mapping), bh;; or bs;; (implementation bin depending on the mapping selected),
and #; (schedule). The formulation has (N2 +N-(2B+1) +A) variables and

171

(g N % - N +5A +3) constraints, in addition to the integrality constraints on

the variables.

A4 Complexity Analysis of the GCLP Algorithm

The run-time complexity for the GCLP algorithm is computed. Estimations
of area and time, and computations of the extremity and repeller measures are out-
side of the main loop and are not included in the complexity calculation. The com-
plexity of each sub-step of the GCLP algorithm (described in Section 33) is

shown below:

Complexity(GCLP)
S1. Compute GC: O(lAl + INT)

S1.1.Estimate the set of nodes to move to hardware: 0(1)
S1.2.Compute the actual finish time: O(lAl + V1)

S2. Determine the set of ready nodes: O(IN1)

S3. Compute the effective execution time: O(INI)

S4. Compute the longest paths: O(lAl)

S5. Select a ready node with maximum longest path: O(IVI)

S6. Determine the mapping and schedule: O(1)

The GC computation in S1 involves the estimation of a mapping, followed
by the computation of the actual finish time for this mapping. The estimation in
S1.1 is done by selecting nodes from an ordered list and is done in constant time.
The actual finish time is computed in S1.2 by ignoring communicati;m costs, using

the following procedure:

172

Procedure: Compute_actualFinishTime

Input: DAG with predetermined mapping and corresponding execution
time (,,,.(i)) for each node i
OQutput: Tfinish = finish time of the DAG

Initialization: dsp_Finish_Time =0, Tgnish =0:
S1. Label all nodes with their indegree
S2. Mark all nodes with 0 indegree as ready nodes
S3. while(ready nodes exist){
S3.1. Select ready node i: O(1)
S3.2. Find 15,,(i): O(1)
S3.3. if(i in software) tg,,(i) = max(maxj(tava,-, (D), dsp_Finish_Time)
(j: inputs of node i)
if(i in hardware) Z5p((i) = maxj(tavail(f))
S3.4. Update t5ish(!) = tsard(i) + texec(i): O(1)
S3.5. If i is in software:
dsp_Finish_Time = (dsp_Finish_Time > tgp;sp(i)) ?
dsp_Finish_Time : tg;c(i)
53.6. For each output k of node i set #4,4i/(k) = tpish(i)
S3.7. For each output k of node i, access node p connected to it
S3.7.1. Decrease indegree of node p
S53.7.2. If indegree of p is 0, add p to list of ready nodes

S3.8. Tﬁnish =(T finish > tﬁnish(i)) 7, finish tﬁnish(i)
} : (O(IAl + INT)

Since each node and arc is traversed once, the complexity of the algorithm
is O(IN1 + 1Al). The longest path calculation (S4 of GCLP) is described with the
help of the following procedure. Note that as the graph is acyclic, a label setting
algorithm can be used.

Procedure: Compute_longestPath

Input: G =(NA), teﬁ(i) forie N
Qutput: longest path d(i) for i € N (d(i) is the longest path from i to sink)

Initialization: counter c=0,d({)=0fori€ N
S1. Reverse the directions of all the arcs in the graph: (O(lAl))

173

S2. Topologically order the graph (an ordering where arc (i,j/) means node i is a
predecessor of node j)
S2.1. Label all nodes with their indegree: (O(IVI))
S2.2. while (¢ <INI) {
S52.2.1. Identify a node i with indegree = 0.
S2.2.2. Label i with c.
S2.2.3. Decrease indegree of all nodes connected to i.
S52.2.4. Delete node i and all arcs emanating from i.
S52.25. c=c+l
}:(O@4)
S3. Negate effective execution times forall i€ N. (te5(D) = (-1) °t¢ﬁ(z)): (O(ND)
S4. Traverse graph in topological order: (O(lAl))
S4.1. d(i) = min(d(})) + 1.4(i), where j € {predecessors of i}

S54.2. Negate d(i) to give longest path for each i, i € N : (O(IV))

Note that the longest path is computed as the shortest path on the graph
with negated execution times. The complexity of the algorithm is O(lAl), since
each edge is visited once.

The actual mapping and schedule (S6 of GCLP) are computed in constant
time. Thus, the total complexity for one step of the GCLP algorithm is O(IM + lAl).
The GCLP algorithm runs IN] times, hence total complexity is O(IM « (N + 1Al)).
Typically, for DSP applications, |A| = [N, hence the worst case complexity of the

GCLP algorithm is O(INI2).
AS Complexity Analysis of the Bin Selection Procedure

The bin selection procedure is applied on a tagged node to select its imple-
mentation bin. In general, let B be the number of implementation bins for each

node. The complexity of the bin selection procedure is computed as follows:

174

Complexity(bin selection)
S1. Compute BFC: O(B x (|N] +|4]))

S1.1.For each bin, compute the bin fraction: O(IM + 4l)
S1.1.1.Estimate the nodes to move to L bins
S1.1.2.Compute actual finish time assuming this mapping and bin selec-
tion
S2. Compute bin sensitivity: O(B)
S3. Compute weighted bin sensitivity: O(B)
S4. Select bin: O(B)

The bin fraction computation in S1.1 is similar to that used in the computa-
tion of GC. Hence, the complexity for computation of the bin fraction for a partic-
ular bin is O(IV1 + 141) (see Section 4). The complexity of S1 is hence O(B - (M +
lAl)) for B implementation bins. The complexity of other steps is simply in the
order of the number of bins B. The complexity of the bin selection procedure

hence O(B - (IM + Al)).

A6 Complexity Analysis of the MIBS Algorithm

The MIBS algorithm applies the GCLP-bin selection sequence IN] times,
for all the nodes in the graph. The complexity for each sub-step in the MIBS algo-

rithm is computed as follows:

Complexity(MIBS)
S1. Determine the mapping for all free nodes by running GCLP: O(IN1?)

S2. Determine ready nodes: O(INV)

175

S3. Select tagged node: O(INVI)

S4. Compute implementation bin for tagged node using the bin selection proce-
dure: O(B - (IN1 + 141)

The complexity of one step of the MIBS algorithm is O(IN12 + B -IN1). Each
step is repeated IN] times for the INl nodes, hence the complexity of the MIBS algo-
rithm is O(NP + B -IN?).

A7 Algorithm for Random Graph Generation

To get an estimate on the behavior of an algorithm in practice, empirical
studies can be performed. This involves devising a set of supposedly “typical”
instances, running the algorithm and its competitors on them, and comparing the
results. Of course, the usefulness of this technique depends on how “typical” the
sample instances are. Ideally we would like to run our algorithm on practical
examples. However, due to the absence of system-level benchmarks, and the lack
of time to generate a significant number of examples ourselves, we resort to gener-

ating random examples. The following procedure presents the method used to gen-

erate random DAGs.

A7.1 Random DAG Generation

Procedure: Generate_Random_Graph

Inputs: size of graph N

Output: Directed, acyclic graph, without parallel edges.

S1. A =random_int(N,N*)* (number of arcs)

S2. Generate a random permutation of 1, ..., N in the array “perm”
S2.1. for(i=0; i<N; i++) {perm{i] = i;}

4. The random number generator random_int(l,u) is used to generate random integers with-
in the range (/,u) and is adapted from [Press88].

176

S3.

S4.

S5.

S2.2. for(i=0; i<N; i++) {
S2.2.1. j=random_int(O,N-1),
S2.2.2. tmp = perm[i];
S2.2.3. perm[i] = perm[jl;
S2.2.4. perm[j] = tmp;}
Generate “A” random edges of the form (perm[i], perm(j]), for i <j
S3.1. for(i=0; i<A; i++) {
$3.2. src = random_int(0, N-2);
S3.3. dest = random_int(src+1, N-1);
S3.4. if(lexistsArc(src, dest)) add_arc(src, dest)}
Generate nodal information for each node i: size;, ts;, th;, as;, ah;.
S4.1. Determine if node i is an extremity, repeller, or normal node

S4.1.1. y=ranl()®
S4.1.2. if((y >=0) && (y <0.33)) i: extremity
S4.1.3. if((y >=0.33) && (y < 0.66)) i: repeller
S4.1.4. if((y >=0.66) && (y <= 1)) i: normal
S4.2. Set area and time values based on the nature of node i
Generate constraints: T, AH, AS.
S5.1. T'=random_int(sum_th, sum_ts)
S5.2. AH = random_int(ah_low, ah_high)
S5.3. AS = random_int(as_low, as_high)

graph [Johnsonbaugh91] with N nodes, a random permutation perm[0], ...,
perm[N-1] is generated in S2. This random permutation serves as a topological

ordering for the graph. In S3, a set of random edges is generated of the form

The numbser of arcs is first determined in S1. To generate a directed acyclic

(perm[i}, perm|j]) with i < j. This generates a directed acyclic graph.

A7.2 Generation of Hardware-Software Area-Time Values

graphs have been used for testing out scheduling heuristics, where the only param-

The nodal information is next generated in S4. Traditionally, random

5. ranl() uses a multiplicative congruential method to generate a uniformly distributed ran-

dom number in the range (0,1) [Press88).

177

eter associated with a node is its execution time. In that case, the execution time is
generated from a uniform distribution (see for example, [Sih91]). In our specific
problem, estimates for area and time on hardware and software are required. It is
obvious that there is a correlation between the area and time values for a particular
realization. In addition, there is a correlation between the values across hardware
and software. Hence generating independent random values for all the four quanti-
ties will not model a realistic example. To overcome this problem, we have
devised a methodology for generating these values, based on practical observa-
tions and realistic correlations. First, to model the nodal heterogeneity, a probabi-
listic measure is used (S4.1) to mark a node as an extremity node, repeller node, or
normal node. Secondly, the area and time values for the node are then set depend-
ing on the nature of the node (S4.2). The following procedure illustrates the gen-

eral methodology for generating the area and time estimates for an extremity node.

Procedure: Generate_Extremity_Node
Input: ISmins ASmins Pmins ARpin, BSmaxs Bmaxs marxs Ay, cutoff threshold
Qutput: ts, th, ah, as

S1. Compute threshold values sy, asy, thy, ahy, (for ex: tsy, = tsy;, + cutoff *
(*Smax - tSmin))
S52. Compute maximum and minimum extremity values
S2.1. XSy = tSmar | Ahpmin
S2.2. xspip = tsy, | ahyy,
S2.3. xhpay = Qo | 1Spin
S24. thin = ah,h / 1S
S2.5. deltay = xhy gy - Xhpip
S2.6. deliag = xSpayx = XSpin
S3. Determine if the node is a hardware or software extremity
S3.1. z=ranl()
S3.2. if(z < 0.5) hardware_extremity; else software_extremity;
S4. Generate an extremity measure in the range (0, 0.5) (ex = ran(0, 0.5))
S5. If hardware extremity:

178

S5.1. ah = random_int(ahy, ah,,,.)
S5.2. ts=ah [((2 * deltay * ex) + xhy,;,)
S5.3. as=random_int(asp,;,, as,;,)
S5.4. th = random_int(th,,;,, thy,)

S6. If software extremity:
S6.1. ts =random_int(ts,, tS,.)
S6.2. ah=ts/((2 * deltag* ex) + xsp;p)
S6.3. as =random_int(asy,;,, as,,)
S6.4. th =random_int(th,,;,, thy,)

The mechanism for the calculation of the area and time values for extremi-
ties reverse engineers the mechanism used for extremity calculation described in
Section 3.3.3.2. The range of area and time values in hardware and software is
specified by the input parameters. In S1, the cut-off threshold is used to compute
the threshold values of area and time in hardware and software, similar to that
described in Section 3.3.3.2 for extremity identification. The maximum and mini-
mum extremity values are computed in S2, using the definition of extremities. In
S3, the node is probabilistically set to be either a hardware or a software extremity,
and in S4 its extremity measure is generated as a random number in the range (0,
0.5). The area and time values are next generated in S5 and S6. If a node is a hard-
ware extremity, its ah is set to a random number between (ahy;, ah,,,,), and its
extremity measure is then used set the ¢s value. The th and as are set to random
numbers in the ranges (thy,;,, th;;) and (asy,;,, as,,) respectively. The area and time
values for a software extremity are similarly generated, as shown in S6.

The procedure for generating area and time estimates for repellers is as fol-

lows:

Procedure: Generate_Repeller_Node
Qutput: ts, th, as, ah

179

S1.
S2.

S3.
S4.

S5.

Generate TS and TH array values

Determine if the node is a hardware or software repeller
S2.1. z=ranl()

52.2. if(z < 0.5) hardware_repeller; else software_repeller;
Generate a repeller measure in the range (0, 0.5) (r = ran(0, 0.5))
If software repeller:

S4.1. ts =TS[random_int(0, 5))

S42. as=1s5/2

S43. ah=(1-r)*as

S44. th=(1+ranl() *ah

If hardware repeller:

S5.1. th=TH[random_int(0, 5)]

S52. ah=th/2

S53. as=(1-r)*ah

S5.4. ts=(1+ranl()) * th

software nodes, the software repeller measure is the relative area gain in hardware.
To take the similarity of nodes into account, in S1, a set of possible ¢s and th values
is generated. The ts (th) values for software (hardware) repellers are then selected
from this set 7S (TH) so as to ensure that similar nodes are considered. In S2, a
node is probabilistically assigned to be either a hardware or a software repeller,
and in S3 its repeller measure is generated. If the node is a software repeller, its ts
is selected to be one of the set of possible values from the set 7S. The as is related
to this z5. The value of ah is then generated from the as value using the repeller

measure. The area and time values for hardware repellers are similarly generated

Recall that repellers identify relative preferences, i.e., give two similar

in S5.

Procedure: Generate_Normal_Node
OQutput: ts, th, ah, as

S1.
S2.

ts = random_int(ts,ip, tS)
as=ts/2

180

S3. th =15/ random_int(1, 4)
S4. ah=1th/2

For a normal node, ts is generated as a random number between ts,,;, and
ts;,. The value of th is a fraction of the software time; this fraction is a probabilistic
number from 1 to 4. The areas are computed as a fraction of the times so as to cor-
relate the area and time values on a given mapping.

Finally, in S5 of the graph generation algorithm, the constraints are gener-
ated. The deadline is set to a random value between the sum of hardware and soft-
ware execution times. The hardware capacity is set to a random number between
ahioy, and ahyp;ep, where ahy,,, and ahy;g, are fractions of the sum of the hardware

sizes of all the nodes. The software capacity constraint is similarly generated.

A7.3 Implementation Curve Generation

To generate the random graphs for the extended partitioning problem, hard-
ware and software implementation curves are required for each node. A generic
implementation curve was obtained from practical observations of a number of
implementation curves. This curve gives the area and time values for various bins,
normalized with respect to the L bin values. The generic curve is of the form (7%,
aj"), where q" > 1, and af* < 1, for the k bins.

The area and time values for a single implementation are generated for a
node, as discussed in Section 7.2. The generated values of ah and th are assumed
to correspond to the L bin (ak, th"). The generic implementation curve is then
used to compute the area and time values for other bins. The generated curve is of

the form (th, ah*), where thk = 1f* * tht, ah* = af* * ahl.

181

A8 Estimation of Area and Execution Time Parameters

The partitioning process relies heavily on the estimates of the area and exe-
cution time on different hardware and software implementations. The usefulness
of the generated partition depends on how accurate the estimates are; if the actual
values obtained after synthesis are very different from the estimates, then the
resultant solution could be either infeasible or have an unnecessarily large hard-
ware area. Accuracy of the estimated area and time values is directly proportional
to the time spent on generating the estimates; the more accurate the estimate, the
longer it takes to derive it. In the limiting case, the best estimate is obtained after
actually synthesizing the implementation. Our philosophy in generating the esti-
mates was to get fairly accurate estimates from behavioral specifications, without
going through the entire synthesis process.

In Section A8.1, some of the related techniques in hardware estimation are
first briefly mentioned, followed by a discussion of the estimation mechanism that

we use. In Section A8.2, the software estimation techniques are discussed.

A8.1 Hardware Estimation

The hardware area required to implement a node consists of the active area
of the datapath6 (i.e., execution units, registers, multiplexors, and buffers) as well
as the interconnect area. Several methods to estimate the active area have been
proposed [Chaudhari94][Kurdahi89][Rabaey94]. Since the interconnect area is
usually a significant fraction of the active area, considering oniy the active area is
inaccurate, the interconnect area also needs to be estimated. ‘BUD
[McFarland90b], developed by McFarland et al., was one of the first highlevel syn-

6. We assume a standard-cell type hardware architecture; the extension to FPGAs is quite
straightforward.

182

Node

Generate Silage | (Ptolemy)
Silage

|Parse Silage I (Hyper)
CDFG

Estimator (Hyper)

sample period d

area estimate
Figure A.1. Methodology for the estimation of hardware area required
for a node when implemented at a sample period d.
thesis tools that took the interconnect area into account. The approach, however, is

based on doing an actual floorplanning of the generated modules to get an estimate
of the total area of the design. Zimmerman [Zimmerman88] describes slicing-
structure based mechanisms for estimating the floorplan areas. In the approach
proposed by Sharma et al. [Sharma93], the number of busses required in the design
is first estimated. This number is correlated to the interconnect area to estimate the
total area.

Mehra et al. [Mehra94] propose a statistical approach for computing the
total chip area (active plus interconnect) for a given sample period d. In this
scheme, the minimum bounds on the active area (4,.,) and the number and size of
buses (Np,s, Np;s) are first estimated using techniques proposed by Rabaey et al.
[Rabaey94]. The total area is then given by a statistical model that uses these val-
ues: Ay = al+a2-A, ,+a3 Ny Ny, A, where the parameters
al, a2, and a3 have been determined by experimental analysis. These tech-
niques have been implemented in the Hyper highlevel synthesis system
[Rabaey91]. We use the estimation techniques implemented in Hyper to generate
the hardware area estimates.

The overall methodology for obtaining the hardware area estimate for a
node, for a given sample period d, is summarized in Figure 8.1. Silage

183

[Hilfinger85] code is first generated for the node, using the approach described in
Chapter 4. This Silage code is then parsed to get a control-dataflow graph (CDFG)
[Verbauwhede94]. The estimator, using the estimation techniques implemented in
Hyper, operates on this CDFG to give the area estimate for this particular sample

period.

A8.2 Software Estimation

Software performance estimation is usually a very difficult problem. Com-
piler optimizations and operating system interaction make the area and time
requirements difficult to predict. Tools such as Quantify [Quantify] can be used to
get accurate estimates of the actual time spent in running the code. However, since
this requires running the software, code has to be generated, compiled, and run for
each node; the estimation times may be unacceptable. Besides, this gives only a
single trace, making it hard to estimate execution times when there is data depen-
- dency within a node. Other approaches for estimation have also been reported
[Gong94] [Tiwari94].

In our approach, the Motorola DSP 56000 is used as the target software
processor. Since the software model assumes no operating system, the estimates
generated by static profiling of the generated assembly code are fairly accurate.
Assembly code is generated for each node. A simple C program parses the gener-
ated assembly code to compute the estimates of the software size (program and
data memory required) and software execution time.

Herrmann et al. [Herrmann94] describe techniques to move the estimation
process into the partitioning loop in order to improve the quality of the solutionin

the cases where the estimates are inaccurate.

184

A9 Automated Flow Execution in the DMM Domain

In this section, the details of the flow execution mechanism are provided.
Some of the terms used in this section are first defined in A9.1. The scheduling
mechanisms used in the “Run All”, “Run Upto”, and “Run This” modes are

described in A9.2, A9.3, and A9.4 respectively.

A9.1 Preliminaries
We define some of the terms used in the rest of this section:

GrowN,A) The design flow specified as a graph Gg,,,(N,4), where N is
the set of nodes representing tools and A is the set of arcs
representing the connectivity between the tools.

Required Input Port The tool cannot run unless data is present on a required
input port.

Optional Input Port The presence of data on an optional input port is not essen-
tial for execution of the tool. The behavior of the tool could
depend on whether or not data is present on an optional

input port.

Required Output Port Data is always generated on a required output port when the
tool executes.

Optional Qutput Port Data may or maynot be generated on an optional output
port.

Path A path from tool i to tool j is a sequence of arcs from tool i
to tool j.

Predecessor i € P(j) (i is a predecessor of j) if there is a path from i to j.

Ordered predecessor i € OP(j) (i is an ordered predecessor of j) if there is atleast
one path from i to j that traverses all required input ports.
That is, i € OP(j) implies that j cannot run without i.

Source A tool with no inputs.
Nondeterminacy The generated data is possibly not independent of the
Condition sequence used to invoke the tools.

185

A9.2 Run All mode

In this mode, the graph is traversed, starting with the source tool, executing

tools as needed. The following algorithm describes the mechanism.

runAll(G‘ﬂow(N,A)) {
if (number_of sources > 1)
Error(“Multiple sources not allowed”);
for each tooliin N {
compute_predecessors(i); [* set P(i) */
compute_ordered_predecessors(i); [* set OP(i) */
}
[* check for possible nondeterminacy condition */
for each tool i in N {
for each tool j in P(i) {
if (F € PG {
if((i € OP())) && (j € OP(i))
Error(“Deadlock”); /* Fig. 8.2-a*/
if((i € OP())) && (j ¢ OP(i))
Error(“Possible Nondeterminacy™);
/* Fig. 8.2-b*/
}
elseif (i ¢ P()) {
if(j ¢ OP(i)
Error(“Possible Nondeterminacy”);
/* Fig. 8.2-c*/

}
}
if (nondeterminacy)
Query(“continue”, “run tool by tool”, “abort”),
enabledToolsList.add(source),
for each tool i
initialize(i); [* retrieve last_file_name and last_time_stamp
from Oct. Set param_changed_flag if parameters
were changed */
run_enabled_tools(); /* the main procedure */

As discussed in Section 5.3, to avoid possible nondeterminacy, design

flows with multiple sources are not supported for automated scheduling. The pre-

186

A<PE) B=P@A) A=PE B=P)

= A=P(C) C=P(B)
A=0P(B) B=OP(A) A=OP(B) B=OP(A) A= O(P()C) C=OP(B)

A=PB) B=P(C)
A=OP(B) B=OP(C)

Deadlock Nondeterminacy Nondeterminacy
A-Bor B-A? A-B-C or A-C-B?

Figure A.2. lilustration of possible nondeterminacy.

decessors and ordered predecessors for all the nodes are first computed. The algo-
rithms for computing the predecessors and ordered predecessors of a node are
outlined below and are self-explanatory. The predecessors and ordered predeces-
sors are used to detect possible nondeterminacy and deadlock. Figure 8.2 illus-
trates some of the cases implying possible nondeterminacy. If the scheduler detects
possible nondeterminacy, the user has the option to either abort the run, or control
the flow execution by running a tool at a time. If the user has designed the tools so
as to avoid nondeterminate behavior, the user can ask the system to run anyway
and automated scheduling is used (procedure run_enabled_tools()).

Before calling the procedure run_enabled_tools(), the tools are first initial-
ized. The filename and timestamp attributes for each port are loaded in from the
Oct database. If the tool has never run before, the last filename attribute is initial-
ized to “DUMMY”. The system also checks if a parameter has chanéed since the
previous invocation of this tool. The main routine for running the tools is

described in the procedure run_enabled_tools().

compute_predecessors(i) {
for all tools { clear_tag(); clean_mark_on_all _ports(), }
tag_predecessors(i),

187

for eachtooljin N
if(is_tagged()) add(P(i));

tag_predecessors(i) {

[* recursively tag predecessors */

tag(i);

for each input port p of i {

if(Yis_marked(p)) {

mark(p),
J = connected_tool(p),
tag_predecessors(j),

compute_ordered_predecessors(i) {
for all tools { clear_tag(); clear_mark_on_all_ports(); }
tag_required_predecessors(i),
for each tooljin N
if(is_tagged(j)) add(OP(i)J);

tag_required_predecessors(i) {
[* recursively tag required predecessors, i.e., predecessors connected to
required input ports*/
tag(i);
for each required input port p of i {
if(lis_marked(p)) {
mark(p);
J = connected_tool(p),
tag_required_predecessors(j);

The following procedure shows the mechanism to run enabled tools. A tool

i is first removed from the head of the list of enabled tools. If there is a tool j on the

188

list of enabled tools that is a predecessor to i, then i is not run, but simply moved to
a slot after j. This tries to enforce an ordering where a predecessor is always run
first. This rule will enforce the A-C-B ordering for the graph shown in Figure 8.2-
c. If there is no predecessor on the list of enabled tools, the selected tool is exam-

ined for live dependencies and executed if needed.

run_enabled_tools() {
while(enabledToolsList != empty) {
i = enabledToolsList.head();
nextTool = 0;
for each j in enabledToolsList {
if((€ P(i)) && (i € P()) {
enabledToolsList.move(i,j); /* move i to after j */
[* try to force a behavior by running j, which is a
predecessor to i, before running i. If there is a loop
between i and j, then we just run them in the order
on the list; we have already flagged to the user that
this could be a nondeterminate case. */

nextTool = 1;
break;
}
}
if(!nextTool) {
examine_dependency_and_run_if needed(i),
enabledToolsList.remove(i),
}

The following procedure examines a tool for live dependencies. If a depen-
dency is alive, the tool is executed, the generated data is passed on to its descen-
dents, and the descendents are enabled, otherwise the old data is propogated to its

descendents and the descendents are enabled.

examine_dependency_and_run_if needed(i) {
if(dependency_alive(i)) {
execute_tool(i);
send_new_output_data(i);

189

enable_descendents(i),
+update_status(i);

}

else {
send_old_output_data(i);
enable_descendents(i),

}

The following procedure checks for live dependencies. A parametric
dependency is alive if param_changed_flag is set. A source needs to run if it has
never run before, i.e., a required output port has attribute “DUMMY”.

In general, after a tool finishes execution, the newly generated file name is
copied over to the descendent ports. If a tool does not generate data on a certain
output (because it is optional), it sends an explicit “DUMMY” to the descendent
port. As a result, for non-source tools, a new file name of “DUMMY” on an input
port indicates that no new data has been propogated by the predecessor tool to this
port. This is the reason for the first check comparing the new filename to
DUMMY. If this check holds, then the data and temporal dependencies are evalu-
ated.

dependency_alive(i) {
if(param_changed(i))
return 1; /* parametric dependency */
if(is_source(i)) {
for each required output port p
if(stremp(last_file_name(p),”"DUMMY ")==0)
return 1;
}
else {
for each input port p of i {
if(stremp(new_file_name(p),"DUMMY”)!=0) {
if(strcmp(new_file_name(p),last_file_name(p)) !=0)
return 1; /* data dependency */
if(last_time_stamp(p) < new_time_stamp(p))
return 1; /* temporal dependency */

190

The following procedure calls the user-defined code associated with a tool.
This operates on the new filenames associated with the input ports. A
data_changed flag gets set for all the ports for which new data is generated during

this execution. The generated data is available in the new filename attribute.

execute_tool(i) {
execute the user-defined code associated with the tool;
for each output port p of i
if (data is generated on p)
set_data_changed_flag(p);

After a tool finishes execution, the next step in the procedure
examine_dependency_and_run_if needed is to send the generated data to the con-
nected ports, as shown in the following procedure send_new_output_data. For
required output ports, the corresponding descendent port is marked (as shown
shortly, this mark is used to identify whether a tool is enabled), while for an
optional output port p, the corresponding descendent port is marked only if p gen-
erated new data. If the optional output port did not generate data, an explicit

“DUMMY” is sent to the descendent port.

send_new_output_data(i) {
/* If new data is generated, send it to the connected input port, otherwise
send explicit DUMMY. Mark far port only if new data is sent. ¥/
for each output port p of i {
JfarPort = input port at the other end of the arc originating from p;
if(has_data_changed(p)) {
set_new_file_name(farPort, new_file_name(p)),
mark(farPor?t),
}
else {
/* p is an optional port that did not generate data in this iteration */
set_new_file_name(farPort, “DUMMY”);

191

set_new_file_name(p, “DUMMY”);
clear_mark(farPort),

The following procedure examines all the descendents of a tool to check if

they are enabled. A tool is enabled only if all its required input ports are marked.

enable_descendents(i) {
for each output port p' {
farPort = input port at the other end of the arc originating from p;
descendent = tool containing the farPort;
if(each required input of descendent is marked)
enabledToolsList put(descendent),
/* put only if not already there */

The following procedure is called to update the filename and timestamp

attributes in the Oct database in preparation for the next run.

update_status(i) {
for all ports {
last_file_name = new_file_name;
last_time_stamp = new_time_stamp,
}
store in Oct database;

The following procedure is executed by a tool if it has no live dependen-

cies. This procedure propagates the filenames to the descendent ports.

send_old_output_data(i) {
/* Send data generated on the previous invocation.
Mark only if not DUMMY */
for each output port p {
farPort = input port at the other end of the arc originating from p;
set_new_file_name(farPort, last_file_name(p));
if(stremp(last_file_name(p),”DUMMY?”) != 0)
mark(farPort),
else

192

clear_mark(farPort);

A9.3 Run Upto mode

In this mode, the user selects a certain tool upto which the flow should be

executed. All the predecessors of the selected tool are identified and tagged. The
design flow is then traversed as in the Run All mode; only the tagged predecessors

are executed. In the current implementation, we support this mode for acyclic

flows only.

runUpto(Ggous i) {

/* run upto a tool i in flow Gg,,, */
if(! is_acyclic(Ggow))
Error(“runUpto supported only on acyclic flows”);
if (number_of sources > 1)
Error(“Multiple sources not allowed”);
for each tool j in Gy,
initialize(i); [* retrieve last_file_name and last_time_stamp from
Oct. Set param_changed_flag if parameters were

: changed */
compute_predecessors(i);
for each jin P(i)
1ag(j);

enabledToolsList.add(source);
while(enabledToolsList != empty) {
k = enabledToolsList.head();
if(is_tagged(k)) {
examine_dependency_and_run_if needed();

}

A9.4 Run This mode

In this mode, a single user-selected tool is run. The selected tool is run if it

has valid input data. The tool operates on the data generated by its predecessors in

193

their latest invocation.

runTool(i) {
/* Run one iteration of a selected tool. Operates on the last data generated
by predecessor tools. Doesn’t run other tools */
for each tool i initialize(i);
/* read in last_file_name and last_time_stamp for tool i from Oct */
for each input port p of i {
farPort = output port at the other end of the arc terminating in p;
/* read in last_file_name and last_time_stamp of ancestor */
set_new_file_name(p) = last_file_name(farPort),
set_new_time_stamp(p) = last_time_stamp(farPort),
}
for each required input port p of i {
if(strcmp(new_file_name(p),”"DUMMY ”)==0)
Error(“Predecessors never run before, can’t run i.”);
else
mark(p);
}
for each optional input port p of i {
if(stremp(new_file_name(p),”"DUMMY ”)!=0)
mark(p);
else
clear_mark(p);
}
if(dependency_alive(i)) {
execute_tool(i);
update_status(i);

194

	Copyright notice 1995
	ERL-95-88 (1)
	ERL-95-88 (2)

