

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SYSTEM-LEVEL CODESIGN OF MIXED

HARDWARE-SOFTWARE SYSTEMS

by

Asawaree Prabhakar Kalavade

Memorandum No. UCB/ERL M95/88

26 October 1995

SYSTEM-LEVEL CODESIGN OF MIXED

HARDWARE-SOFTWARE SYSTEMS

Copyright © 1995

by

Asawaree Prabhakar Kalavade

Memorandum No. UCB/ERL M95/88

26 October 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

SYSTEM-LEVEL CODESIGN OF MIXED

HARDWARE-SOFTWARE SYSTEMS

by

Asawaree Prabhakar Kalavade

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Professor Edward A. Lee, Chair

This thesis provides a systematic approach to the system-level design of

embedded signal processing applications. Such applications tend to have mixed

hardware-software components and are often subject to severecost, performance,

and design-time constraints. Ourapproach is to codesign these systems.The code-

sign approach allows the hardware and software designs to be tightly coupled

throughout the design process. We focus on the four key problems of partitioning,

cosynthesis, (^simulation, and design methodology management. Applications are

assumed to be specified using synchronous dataflow semantics.

A key contribution of the thesis is to formulate the extended partitioning

problem. In system-level design, applications are represented as taskgraphs where

tasks (called nodes) have moderate to large granularity and each node has several

implementation options differing in area and execution time. The extended parti-

tioning problem involves the joint determination ofthe mapping (hardware or soft

ware), schedule, as well as the implementation option for each node, so that the

overall area allocated to nodes in hardware in rninimum. This problem isconsider

ably harder (and richer) than the traditional binary partitioning that determines just

the best mapping and schedule.

Both extended and binary partitioning problems are constrained optimiza

tion problems and are shown to be NP-hard. We first present an efficient heuristic,

called GCLP, to solve the binary partitioning problem. The heuristic reduces the

greediness associated with serial traversal-based algorithms by formulating aglo

bal criticality (GQ measure. The GC measure also permits an adaptive selection of

the objective (optimizing either area or time). We then present an efficient heuristic

for extended partitioning, called MIBS, that alternately uses GCLP and an imple

mentation-bin selection procedure. The implementation-bin selection procedure

chooses the bin that maximizes the area-reduction gradient. Solutions generated by

both heuristics are shown to be reasonably close to optimal. Extended partitioning

generates considerably smaller overall hardware area as compared to binary parti

tioning.

Our approach to cosynthesis is to generate synthesizeable descriptions of

the hardware and software components and to use pre-existing synthesis tools such

as Ptolemy and Hyper to generate the actual software and hardware implementa

tions. Techniques for generating these synthesizeable descriptions, starting with a

partitioned graph, are discussed. Cosimulation involves simulating the hardware,

theprocessor, and the software that the processor executes, within aunified frame

work. The requirements of a cosimulation framework are discussed and theuseof

Ptolemy for hardware-software cosimulation is illustrated.

Due to the large system-level design space, the system-level design prob-

lem cannot, in general, be posed as a single well-defined optimization problem.

Typically, the designer needs to explore the possible options, tools, and architec

tures. We believe that managing the design process plays an equally important role

in system-level design, as do the tools used for different aspects of the design. To

this end, we present a framework that supports design methodology management.

We embody all the above concepts in a tool called the Design Assistant.

TheDesign Assistant contains tools for partitioning, synthesis, and simulation and

operates in the design methodology management framework.

Edward A. Lee, Thesis Committee Chairman

To my parents

and

Pratyush

111

TABLE OF CONTENTS

ABSTRACT 1

UHjUIKsA 1 XVjiN •••MMMMMMMMMMM 111

LIST OF FIGURES viii

ACKNOWLEDGEMENTS xi

1 INTRODUCTION 1

1.1 Issues in System-level Design 3

1.1.1 Partitioning 4

1.1.2 System Synthesis 7

1.1.3 System Simulation 9

1.1.4 Design-Space Exploration 9

1.2 The Codesign Philosophy for System-level Design 10

2 THE DESIGN ASSISTANT 12

2.1 A Typical Codesign Flow andTools for Codesign 14

2.2 Requirements for Design-Space Exploration 18

2.3 Specification Semantics 19

2.4 Target Architecture 21

2.5 Restrictions in the Design Assistant 23

2.6 Summary 24

3 EXTENDED PARTITIONING .25

3.1 Problem Definition 26

3.1.1 Assumptions 27

3.1.2 Binary Partitioning 28

3.1.3 Extended Partitioning 28

3.2 Related Work 31

3.2.1 Binary Partitioning: Related Work 32

3.2.2 Extended Partitioning: Related Work 36

IV

3.3 The Binary Partitioning Problem: GCLP Algorithm 37

3.3.1 Algorithm Foundation 37

3.3.2 Global Criticality (GC) 41

3.3.3 Local Phase (LP) .44

3.3.3.1 Motivation for Local Phase Classification 44

3.3.3.2 Local Phase 1 or Extremity nodes 46

3.3.3.3 Local Phase2 or Repeller Nodes .49

3.3.3.4 Local Phase 3 or Normal Nodes 52

3.3.4 GCLP Algorithm 53

3.4 Performance of the GCLP Algorithm 56

3.4.1 Examples .56

3.4.2 Experiment 1:GCLP vs. ILP 58

3.4.3 Experiment 2: GCLP with and without local phase nodes 60

3.4.4 Algorithm Trace 61

3.4.5 Summary of the GCLP algorithm 65

3.5 Algorithm for Extended Partitioning: Design Objectives 66

3.6 Implementation-bin Selection 69

3.6.1 Overview 69

3.6.2 Bin Fraction Curve (BFC) 71

3.6.3 Implementation-bin Selection 73

3.7 The Extended Partitioning Problem: MIBS Algorithm 75

3.8 Performance of the MIBS Algorithm 77

3.8.1 Estimation of the Hardware Implementation Curve 77

3.8.2 Experiment 1: MIBS vs. ILP 78

3.8.3 Experiment 2: BinaryPartitioning vs. Extended Partitioning 79

3.8.4 Parameter Tuning 81

3.9 Summary 82

COSYNTHESIS AND COSIMULATION .84

4.1 Cosynthesis 85

4.1.1 Architectural Model 85

v

6.2.1 Synthesis of Mixed Control-Dataflow Systems 149

6.2.2 System-level Low Power Synthesis 150

6.2.3 Smart Frameworks 150

7 REFERENCES 152

8 APPENDIX . 162

Al ILP Formulation for Problem PI 162

A2 Proofof NP-Completeness for Problem PI 166

A3 ILP formulation for Problem P2 167

A4 Complexity Analysis of theGCLP Algorithm 172

A5 Complexity Analysis of theBinSelection Procedure .-...174

A6 Complexity Analysis of theMIBS Algorithm 175

A7 Algorithm for Random Graph Generation 176

A7.1 Random DAG Generation 176

A7.2 Generation of Hardware-Software Area-Time Values 177

A7.3 Implementation Curve Generation 181

A8 Estimation of Area and Execution Time Parameters 182

A8.1 Hardware Estimation 182

A8.2 Software Estimation 184

A9 Automated Flow Execution in the DMM Domain 185

A9.1 Preliminaries 185

A9.2 Run All mode 186

A9.3 Run Upto mode 193

A9.4 Run This mode 193

Vll

4.1.2 The Cosynthesis Approach 90

4.1.3 Hardware Synthesis 95

4.1.4 Software Synthesis 99

4.1.5 Interface Synthesis 101

4.1.6 Other SynthesisApproaches 103

4.1.7 Summary 104

4.2 Cosimulation 105

4.2.1 The Ptolemy Framework 109

4.2.2 Cosimulation Using Ptolemy 113

4.2.2.1 System-level Modeling 114

4.2.2.2 System Simulation 116

DESIGN SPACE EXPLORATION 118

5.1 Related Work 120

5.2 DesignMethodology Management: Requirements 122

5.3 Infrastructure 124

5.3.1 Flow, Tool, and Data Model 124

5.3.2 Dependencies 127

5.3.3 Flow Management 128

5.4 Implementation: DMMDomain withinPtolemy 129

5.5 Examples 133

5.5.1 Multiprocessor System Design 134

5.5.2 Design Assistant 136

5.6 Summary 141

CONCLUSION 143

6.1 Contribution 143

6.1.1 Partitioning 145

6.1.2 Cosynthesis and Cosimulation 147

6.1.3 Design Methodology Management 148

6.2 Future directions 149

VI

case 1:mapping based on GC only, case 2: threshold
modified for repellers, case 3: complete local phase
classification 61

Figure 3.14 Algorithm trace: GC and the Mapping. All normal nodes,
threshold = 0.5 62

Figure 3.15 GC and mapping: (a) without extremity measures (b) with
extremity measures 63

Figure 3.16 GC and mapping: (a) without repeller measures (b) with
repellermeasures to changethe threshold 64

Figure 3.17 MIBS approach to solving extended partitioning 68

Figure 3.18 The bin selection procedure 70

Figure 3.19 Bin fraction and bin sensitivity for implementation-bin selection 74

Figure 3.20 Weighted Bin Sensitivity 74

Figure 3.21 (a) Estimation of the hardware area for a node, for a given
sample period (b) Computation of the hardwareimplementation
curve for a node 78

Figure 3.22 Comparison of MIBS and ILP solutions 79

Figure 3.23 MIBS vs. GCLP
(Extended Partitioning vs. Binary Partitioning) 80

Figure 3.24 (a) Node distribution among implementation bins.
(b) Solution time of MIBS algorithm averaged over random
graphs per graph size 81

Figure 4.1 The target architecture 85

Figure 4.2 Architecture of a hardwaremodule 87

Figure 4.3 The global controller for the hardware-software interface 88

Figure 4.4 Cosynthesis approach 91

Figure 4.5 Hardware, software, and interface graphs. Each node in
the hardware (software) graph contains a Silage or VHDL
(C or assembly) description 94

Figure 4.6 Mechanism for hardwaresynthesis for a single node 96

Figure 4.7 An example illustratingthe hardware synthesis mechanism 97

Figure 4.8 Architecture of the datapath and controller in a hardware
module. This is the underlying architecturegenerated by
Hyper, augmented with the ready and completion signals 98

Figure 4.9 Mechanism for software synthesis from the software graph 100

IX

LIST OF FIGURES

Figure 1.1 Task-leveldescription of the receiver section of amodem 1

Figure 1.2 System-level design 4

Figure 1.3 Hardware design options for a "node" at the algorithmic,
transformational, and resource levels 5

Figure 1.4 Software design options for a node 7

Figure 1.5 Design specification hierarchy and translation across levels
of abstraction 8

Figure 2.1 The DesignAssistant 13

Figure 2.2 A CodesignFlow 14

Figure 2.3 Models of computation usedin system-levelmodeling 19

Figure 2.4 Typical target architectures for mixed hardware-software
systems 22

Figure 2.5 The targetarchitecture 22

Figure 2.6 Specification semantics andtarget architecture 23

Figure 3.1 The Extended Partitioning Problem .26

Figure 3.2 Typical hardwarearea-timetrade-off curves, called hardware
implementation curves. The design points arecalled
implementation bins 29

Figure3.3 Implementation alternatives for a node within a mapping 30

Figure 3.4 CHf. Hardware implementation curve for node i. Each bin
corresponds to a possible design option for the node 31

Figure3.5 Selection of the mapping objective at each step of GCLP 39

Figure 3.6 The GCLP Algorithm 40

Figure 3.7 Computation of GlobalCriticality 42

Figure 3.8 Hardware (EXh) and software (EX?) extremity sets 48

Figure 3.9 An example repeller property 50

Figure 3.10 Receiver section of a modem, describedin Ptolemy.
Hierarchical descriptions of the AGC and timing recovery
blocks are shown 57

Figure 3.11 Estimation of areaand time values in hardware and software 57

Figure 3.12 GCLP vs. ILP: Random examples 59

Figure 3.13 Effect of local phase classification on GCLP performance

Vlll

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Edward A. Lee for introducing me

to this research areaand for his continous support, guidance, and encouragement. I

appreciate the freedom and collegialrespect that he offered me while pursuing my

research.

Discussions with Prof. Jan Rabaey have been instrumental in shaping a

number of ideas presented in this thesis and have given me valuable insight into

the overall areaof highlevel synthesis and system-level design space exploration. I

am grateful to him for his interest and guidance.

I would also like to thank Prof. Brayton and Prof. Adler for some of the

stimulating discussions that were useful in improving the overall quality of this

dissertation.

I gratefully acknowledge the financial support provided by the Semicon

ductor Research Consortium (contract number DC-324 and grant number DC-008)

over the past five years.

I would like to thank the Ptolemy team for developing such a wonderful

(and at times frustrating!) software environment. I would also like to thank the

Hyper team for answering my questions on Hyper.

Most of all, I want to thank my family for being an infinite source of love

and encouragement. I especially want to thank Pratyush Moghe for making this

thesis a reality.

XI

Figure 4.10 Software synthesis for chirp signal generator 102

Figure 4.11 Cosimulation 108

Figure 4.12 Block objects in Ptolemy send and receive data encapsulated
in Particles to theoutside world through Portholes.
Buffering and transport is handled by theGeodesic and
garbage collection by the Plasma 110

Figure 4.13 Theuniversal EventHorizon provides an interface between
the external and internalDomains 111

Figure 4.14 Hardware-software cosimulation using Ptolemy: system
modeling 113

Figure 4.15 Hardware-software cosimulation using Ptolemy 116

Figure 5.1 The design space 119

Figure 5.2 User's view of thedesign flow and tools 124

Figure 5.3 A design flow for the multiprocessor synthesis example 125

Figure 5.4 Internal representation of thetools and data 127

Figure 5.5 Dependencies used for tool management 128

Figure 5.6 How execution mechanisms 129

Figure 5.7 The design flow for the multiprocessor synthesis example,
specified within the DMM domain inPtolemy 130

Figure 5.8 An example of Tool encapsulation: CodeGenerator tool 131

Figure 5.9 Control panel in theDMM domain 132

Figure 5.10 TheDesign Assistant implemented in the DMM domain 137

Figure 5.11 Run-time behavior of the Design Assistant with manual
partitioning 137

Figure 5.12 Hardware and software graphs generated byT3 138

Figure 5.13 Silage and CG56 assembly code generated bythe hardware
and software synthesis tools 139

Figure 5.14 Support for retargeting 140

Figure 6.1 The Design Assistant 149

Figure A.1 Methodology for the estimation ofhardware area required for
a node when implemented ata sample period d 183

Figure A.2 Illustration of possible nondeterminacy 187

1

INTRODUCTION

System-level design usually involves designing an application specified at

a large granularity. A typical design objectiveis to minimize cost (in terms of area

or power) while the performance constraints are usually throughput or latency

requirements. The basic components of a system-level specification are called

tasks (or nodes). The task-level description of a particular application (modem) is

shown in Figure 1.1. The specification has two characteristics. First, tasks are at a

2-PSK Passband Receiver

CWtWf nCCOVCfy

i
tePFStq

Figure 1.1. Task-level description of the receiver section of a modem.

higher level of abstraction than atomic operations or instructions. This allows for

complex applications to be described easily and more naturally. Secondly, there is

no commitment to how the system is implemented. Since the specification does

not assume a particular architecture, it is possible to generate either a hardware, or

a software, or a mixed implementation.This is especially important for the synthe

sis of complex applications whose cost and performance constraints often demand

a mixed hardware-software implementation.

System-level design is very broad problem. In this thesis, we restrict our

attention to the design of embedded systems with real-time signal processing

components. Examples of such systems include modems for both tethered and

wireless communication, cordless phones, disk drive controllers, printers, digital

audio systems, data compression systems, etc. These systems are characterized by

stringent performance and cost constraints.

Such applications often tend to have mixed hardware and software imple

mentations. For instance, full-software implementations (program running on a

programmable processor) often cannot meet the performance requirements, while

custom-hardware solutions (custom ASIC) may increase design and product costs.

It is important, therefore, not to commit each node in the application to a particular

mapping (hardware or software) or implementation (design style within hardware

or software) when specifying the application. The appropriate mapping and imple

mentation for each node can be selected by a global optimization procedure after

the specification stage. The task level of abstraction allows this flexibility. Also,

such embedded systems typically have a product cycle time of 18 months or so

[Keutzer94] which imposes a severe time-to-market constraint. Manual develop

ment of a lower-level design specification (such as at the RTL level) is quite inten

sive due to the sheer complexity of the applications. As a result, it is desirable to

specify the application at the task level and allow a design tool to generate the

lower levels of implementation from it.

Such a system-level design approach is now viable due to the maturity of

lower-level design tools and semiconductor technology. Computer-aided design

tools that operate at lower levels of abstraction (as shown later in Figure 15) are

quite robust. The next step is to use these CAD tools for system-level design. Also,

advances in semiconductor manufacturing have made it possible to fabricate a

"system on a chip*'. For instance, core-based ASICs that contain cores of program

mable processors along with custom hardwareon the same die are now a commer

cial reality.

In the next section, we discuss a few key issues in system-level design. Our

approach to solving these problems is outlined in Section 1.2.

1.1 Issues in System-level Design

Figure 1.2 summarizes the key issues in system-level design. These are

partitioning, synthesis, simulation, and design-space exploration. In this thesis, we

address these issues in order. Several hardware and software implementation

options are usually available for each node in the task-level description. The parti

tioning process determines an appropriate mapping (hardware or software) and an

implementation for each node. A partitioned application has to be synthesized and

simulated within a unified framework that involves the hardware and software

components as well as the generated interfaces. The system-level design space is

quite large.Typically, the designer needs to explore the possible options, tools, and

architectures, choosing either automated tools or manually selecting his/her

choices. The design-space exploration framework attempts to ease this process.

task-level specification

systern-t

system implementation

partitioning

softwhardware
synthesis

are

synthesis

simulation

I
design space exploration

Figure 1.2. System-level design

We next discuss each of these issues in more detail.

1.1.1 Partitioning

Perhaps the most important aspect of system-level design is the multiplic

ity of design options available for everynode in the task-level specification. Each

node can be implemented in several ways in both hardware and software map

pings. The partitioning problem is to select an appropriate combination of map

ping and implementation for each node.

For instance, a given task can be implemented in hardware using design

options at several levels.

1. Algorithm level: Several algorithms canbe used to describe the same task.

For instance, a finite impulse response filter can be implemented either as

an innerproduct orusingthe FFT in a shift-and-add algorithm. As a trivial

example, a biquad can be described using the direct form or the transpose

form (Figure 1.3).

2. Transformation level: For a particular algorithm, several transformations

[Potkonjak94] can be applied onthe original task description. Figure 1.3-b

shows two such transformations. In the first transformation, multiplication

by a constant (filter coefficients) is replaced by equivalent shift and add

y Direct form J

Task (Biquad)

fal Algorithm-level implementation options

V Transpose form

(til Transformation-level implementation options

original J Replace multiply by shift-agy \^ retimed
tc c 4 cycles
adders = 2

multipliers >= 2
areas 22

Corresponding

Control-dataflow graph

cycle operations
1 ml m2

2 m3m4a1

3 a3a2

4 04

tc s 4 cycles
adders = 2

add/shift = 2

area e 10

cycta operations

1 Si 62

2 s3s4a1

3 a3a2

4 a4

tCB 4 cycles
adders oi

muttqjliers *
areas 11

(amuttipry B10 *tuU • 1 fishm-add • 3)
(fmuftlpry " Wl a Wl-add * 1 CYCle)

(c) Resource-level implementation options

cvdo OPS

t-4 cycles

• -22

1 ml m2

2 m3m4a1

3 a3a2

4 •4

Fastest imp!amentation^
^v

cvde ops

t-6cycte8

a-11

1 ml

^B me

3 m3a1

4 m4a3

5 •2

6 •4

Smal est impCementation/

cycta operations

1 ml a3

2 m2a2

3 m3a1

4 m4o4

Figure 1.3. Hardware design options for a "node" at the algorithmic, transforma
tional, and resource levels.

operations. Since the area of a shift-add operator is smaller than that of a

multiplier, the transformed design has a smaller area for the same execu

tion time. The second transformation shows the retimed design. By chang

ing relative positions of delay elements, the operations can be distributed

over the various clock cycles to get a betterresource utilization andconse

quently a smaller area for the same execution time.

3. Resource level: A task, for a specified algorithm and transformation set,

can be implemented using varying numbers of resource units. Typical

resource units are adders and multipliers. Varying the resource units

changes the values of the implementation metrics (area and execution

time). Figure 1.3-c shows two resource-level implementation options for

the direct form biquad. It shows the schedule and area for the fastest (criti

cal path of 4 cycles)andsmallest (onlyoneresource of each kind)designs.

Similarly, different software synthesis strategies can be used to implement

a given node in software. For instance, inlined code is faster thancode using sub

routine calls, but has a largercode size. Thus, there is a trade-off between code size

and execution time. Figure 1.4-a shows a 3 node subgraph associated with a node.

The schedule describes the sequencein which nodes have to be executed such that

at the end of one pass through the graph, the number of samples on all the arcs is

restored to the number at start (i.e., there is no accumulation of data). A possible

schedule, alongwith the corresponding generated code, is shown in Figure 1.4-b.

Figure 1.4-c shows three possible software implementations differing in size and

execution time.

Thus each node in the task-leveldescription canbe implemented in several

ways in either hardware or software. Current design tools can generate multiple

implementations for every task. In system-leveldesign, thereare a number of such

6

tasks and theoverall design is tobeoptimized. Clearly, it is notenough tooptimize

each task independently. For example, if each task in the task-level specification

were fed to a highlevel hardware synthesis tool that is optimized for speed (i.e.,

generates the fastest implementation), then the overall area of the systemmightbe

toolarge. Hardware-software partitioning is theproblem of determining an imple

mentation for each node so that the overall design is optimized. There are two

parts to this problem: (1) Binary partitioning is the problem of deteraiining, for

each node, a hardware or a software mapping and a schedule. (2) Extended parti

tioning is the problem of selecting an appropriate implementation, overand above

binary partitioning.

1.1.2 System Synthesis

Once the appropriate implementation for each task has been determined,

(a)

hS^Eftrfi #samples consumedby node Aperfinng , by ^ B^fir|ng

node in a task Idescription

subgraph associated with a node

(c)

(b)

flJgSSJHfi corresponding coda

fidlflriuIfi codefbrnodeA;
for(j«1a<«4;i++)

A(4BCCC) < erfe^nodeB
code for node C
code for node C
code for node C

}

possible schedules code size data size execution time

ABBBBCCCCCCCCCCCC 17c 16b 17t

A(4BCCC) 5c 7b 17t + 4y
A(4B(3Q) 3c 7b 17t + 16y

Assumptions
code size of one node « c words
code size for loop constructs « 0
executiontime of one node • tcycles
execution overhead for loopconstructs - y cycles
buffersize per sample communicated « b words

Figure 1.4. Software design options for a node

the hardware-software synthesis problem is that of synthesizing the implementa

tions. Implementations for nodes mapped to hardware or software can be gener

ated byfeeding thenodal descriptions tosynthesis tools. Figure 1.5 shows both the

hardware and the software design paths followed by existing synthesis tools. The

hardware design path consists of highlevel hardware synthesis [McFarland90a],

followed by logicsynthesis [Brayton90], andlayout synthesis [DeMicheli86]. The

software design path comprises highlevel software synthesis [Pino95a], followed

by compilation and assembly.

r

v

Task level modem

Hardware Design Path

Phcse

SESSSTTsec
Prl.

Domodulctlon

Highlevel hardware synthesis

Architecture level

•J Contrdfier

Logic synthesis

—•

O
Gate level

Layout synthesis

Mask level

FSM

Carrier
Recovery

EquaMHs!

Tj Timing J

"\
Software in Path

/£Highlevel software synthesisis A

Highlevellanguage

fbn>0; kloGpCount;**)

yH-yn-ll + xH'coeTilO;

*ID »yfll- factor;

Compilation
ribBWiiWI

Assembly level
rep #128-2
mac xl ,y1,a x:(r5)+. xl y:(r0)-,y1
mac x1 ,y1 jet x0,x:(r5)+ y:(rO)-, y1

v macrx0,y1,ar5,x:7
move m7,m5

$ movea,xS4

vi

. W^^^^^^"^"«*

Machine code level

0110110010101011

11111110 01010101

1011011111001110

Figure 1.5. Design specification hierarchy and translation across levels of
abstraction.

8

1.13 System Simulation

Simulation plays an important role in the system-level design process. At

the specification level, it is possible that the design maybespecified using acom

bination of one or more semantic models. Tools that allow the simulation of such

heterogeneous specifications are required. At theimplementation level, simulation

tools thatsupport mixed hardware-software systems are needed.

Throughout the design process, it should be possible to simulate systems

where the components are described at different levels of abstraction. As parts of

thedesign evolve from specification to their final implementation, functional mod

els can be replaced by more lower-level structures. A simulation environment

should be capable of supporting theseaspects.

1.1.4 Design-Space Exploration

System-level design is not ablack-box process, but relies considerably on

user creativity. For instance, the user might want to experiment with the design

parameters, the tools used, or the sequence in which these tools are applied. As

such, there is no hardwired design methodology. The design process could get

quite unwieldy as the user experiments with the design methodology. As aresult,

an infrastructure that supports design-space exploration is also akeyaspect of the

system-level design process.

Tools for design-space exploration fall under two categories: estimation

and management. Estimation tools are primarily used for what-ifanalysis, i.e., they

givequick predictions onthe outcome of applying certain synthesis or transforma

tion tools. Management tools orchestrate the design process, i.e., for systematic

control of the design data, tools, and flow.

Design methodology management includes tools for visualizing the design

process and managing the invocation of tools. Since tools involved in the system-

level design process are often computationally intensive, it is important to avoid

unnecessary invocation of tools. This requires thatthe design flow be specified in a

modular way so that only desired tools may be invoked. Further, the designer

should not have to manually keep track of the tools that have been run. Thus, in

order to support efficientexploration of the design space, amechanism to manage

the design flow, tools, anddatais required.

1.2 The Codesign Philosophy for System-level Design

Designing systems containing both hardware and software components is

not a new problem.The traditional design approach has been somewhat hardware-

first in that the software components are designed after the hardware has been

designed and prototyped. This leaves little flexibility in evaluating different design

options and hardware/software mappings. With isolated hardware and software

design paths, it also becomes difficult to optimize the design as a whole. Such a

design approach is especially inadequate when designing systems requiring strict

performance and a small design cycle time. Our approach to designing such sys

tems is to adopt the codesign1 philosophy.

The key tenet in codesign is to avoid isolation between hardware and soft

ware designs. The strategy allows thehardware and software designs to proceed in

parallel, with feedback and interaction between the two as the design progresses.

This is accomplished by developing tools and methodologies that support the

1.One of theearly definitions of codesign wasgivenby Franke and Purvis [Franke91] as
'The system design process that combines the hardware and software perspectives from the
earliest stages to exploit design flexibility and efficient allocation of function". Wolf
[WolfW] emphasizes mat "the hardware and software must bedesigned together to™»^
sure that theimplementation notonlyfunctions properly butalso meets performance, cost,
and reliability goals".

10

tightly coupled design of the hardware and softwarethrough a unified framework.

The goal of codesigning the hardware and software components of a system is to

achieve high-quality designs with a reduced design time.

This thesis presents a systematic approach to the system-level design of

embedded signal processing systems, based on the codesign philosophy.

11

2

THE DESIGN ASSISTANT

Since system-level design oversees highlevel synthesis, logic synthesis,

etc., decisions made at the system level impact all the layers below it. In other

words, if the objective in system-level design is to come up with the "best" system

implementation, there area large numberof design options. Each task can be rep

resented by a multiplicity of algorithms, each algorithm selection can in turn be

represented by several transformation-level and resource-level options. The sys

tem-level designer is faced with the questionof selectingthe best design option. In

the context of mixed hardware-software systems, system-level design offers even

greater challenges. How do we take advantage of the inherentlydistinct properties

of hardware and software and stillcouple tightlytheir design processes? How can

the mixed hardware-software system be simulated? In the light of the numerous

tools involved in this process, can we relieve the designer of the burdenof design

management?

In order to address these issues, we present a framework called the Design

Assistant.The Design Assistant providesa platformthat spans the entire gamut of

system-level design. It consists of: (1) specific tools for partitioning, synthesis, and

simulation that areconfigured for a particular codesign flow by the user,and (2) an

12

underlying design methodology management infrastructure for design-space

exploration. The architecture of the Design Assistant is shown in Figure 2.1. The

inputs to the Design Assistant include the design specification and thedesign con

straints, and the output is an implementation for the system. The user configures

the tools and constructs a design flow by determining the connectivity and the

parameters of the tools. The design methodology manager is a transparent infra

structure that manages the design data, tools, and flow.

This chapter describes the various components of the Design Assistant. In

Section 2.1, a typical codesign flow is discussed and the various tools required in

the codesign process are outlined. In Section 2.2, the requirements of a design

methodology management infrastructure are discussed. In Section 2.3, we outline

the assumed specification semantics. The assumed target architecture is described

in Section 2.4. Key restrictive assumptions madein the thesis are listedin Section

2.5.

(DesignSpecification)(DesignConstraints) (UserInput)

/Design Assistant
Design

Methodology

Manager

(System Implementation)

Figure 2.1. The Design Assistant

13

2.1 A Typical Codesign Flow and Tools for Codesign

A typical codesign flow is shown in Figure 2.2. A task-level specification

(for example, a modem specified by a dataflow graph as in Figure 1.1) is trans

formed into the final implementation by a sequence of tools. The final implementa

tion consists of custom and commodity programmable hardware components and

the software running on the programmable components. The design objective is

assumed to be to minimize the total hardware area.The design constraints include

(Design Constraints)
QDesign Specification)

(User Input \

r
DESIGN FLOW

r-^Trr^f
Silage

Generation

Hardware
Synthesis

i Mentor Graphics

C

modem.sdf

Area -Time
Estimation

HW-SW
Partitioning

Interface
Synthesis

Netiist
Generation

Manual

CPLEX(ILP)
MIBS

Software
Synthesis

Simulation |t— Ptolemy

Synthesized System
(Layout + Software)D

Figure 2.2. A Codesign Flow.

14

the desired throughput and the architecturalmodel (maximum allowable hardware

area, memory size, communication model, etc.). The design flow describes the

sequence of tools thatoperate on the design data to generate the final implementa

tion.

The components of the codesign flow include tools for estimation, parti

tioning, synthesis, and simulation.

Estimation

The Estimation tool generates estimates of the implementation metrics

(area and execution timerequirements) for each of thenodes in thegraph in differ

ent implementations in hardware and software realizations. These estimates are

used by the partitioning tool. Details of the estimation tool are discussed in Section

3.4.1 and Appendix A8.

Partitioning

After obtaining theestimates of thearea and execution times, the next step

in the codesign flow is partitioning. The goal of partitioning is to determine, for

each task, three parameters: mapping (whether it is in hardware or software),

schedule (when it executes, relative to other tasks), and implementation (which

type of implementation option to use with respect to the algorithm, transformation,

and area-time value). The Design Assistant framework allows the user to experi

ment with different partitioning tools. The figure shows three possible partitioning

tools: manual, an ILP solver (CPLEX), or anefficient heuristic (MIBS).

Partitioning is a non-trivial problem. Consider a task-level specification,

typically in the order of 50 to 100 nodes. Each task canbe mappedto either hard

ware orsoftware. Furthermore, within agivenmapping, a taskcanbe implemented

in one of several options. Suppose there are 5 design options. Thus there are
inn

(2*5)AUU design options in the worst case! Although a designer may have a pre-

15

ferred implementation for some (say p) nodes, there are still a large number of

design alternatives with respect to the remaining nodes ((2*5)100"p)- I^termining

the best design option for these remaining nodes is, in fact, a constrained optimiza

tion problem. In this thesis, we will focus on analytical tools to solve this problem,

although the Design Assistant framework itself does not presuppose a particular

tool.

In Chapter 3, we formulate the extended partitioning problem. Given the

estimates for area and time values of each design option for all the tasks, we

develop heuristics to determine the designoptionsthat result in aminimum overall

area approximately, and still satisfy the throughput constraints. Heuristics are

required because exact methods are computationally intensive. A heuristic, called

MIBS (Mapping and Implementation Bin Selection), that solves the extended par

titioning problem is presented in Chapter 3. MIBS is developed in two stages.

First, in Section 3.3, an algorithm (Global Criticality/Local Phase, or GCLP) that

solves just the hardware/software mapping and scheduling problem1 is presented.

GCLP is avery efficient heuristic; the complexity is 0(IM2), where \N\ is the num

ber of tasks in the design specification. It uses a combination of global and local

measures in order to determine the best mapping. The MIBS algorithm, described

in Section 3.5, determines the mapping and implementation bin by a joint optimi

zation process. It uses GCLP as a core and has cubic complexity in the order of

number of tasks.

Cosynthesis

Once the applicationis partitioned into hardware and software, the individ

ual hardware, software, and interface components are synthesized. The particular

synthesis tool used depends on the desired technology. The figure shows just two

1.We call this the "binary partitioning problem".

16

possibilities for hardware synthesis: (1) Silage [Hilfinger85] code canbe generated

for the nodes mapped to hardware, and the generated code can be passed through

the Mentor Graphics [MentorGraphicsl] tools to generate a standard-cell imple

mentation (2) VHDL code can be generated and passedthrough Synopsys [Synop-

sys] tools to generate a gate-array implementation. Similarly, different software

synthesis strategies can be used; for instance, the software synthesis tool could

generate C or assembly code. The interface generation depends on the desired

architectural model. For instance, in a memory-mapped communication model, the

address decoders and latches as well as the code that writes to and reads from the

memory locations need to be synthesized.

There are several published approaches to the problem of synthesizing

hardware and software from highlevel specifications. Typically, the complexity of

the input to these synthesis systems corresponds to that of a single task in a sys

tem-level specification. Instead of reinventing the task-level synthesis tools, we

have developed a system-level synthesis approach that builds upon them. The key

aspects of this synthesis approach arediscussedin Chapter 4.

Cosimulatiftn

Once the hardware, software, and interface components are synthesized,

the Netlist Generator puts them together and the system is simulated. Ptolemy

[Buck94a] is a simulation environment that allows different models of computa

tion to interact seamlessly. Due to its support for multiparadigm simulation,

Ptolemy is suitable for simulating heterogeneous systems through the entiredesign

process, from the specification to the implementation levels. The use of Ptolemy

for hardware-software cosimulation is discussed in Chapter 4.

17

2.2 Requirements for Design-Space Exploration

As discussed in Chapter 1, the design process is not a black-box push-but

ton process; it involves considerable user interaction. The user experiments with

different design choices; design-space exploration is the key to system-level

design. Managing the complexity of this design processis non-trivial.The features

needed for efficient design-spaceexplorationinclude:

1. Modular and configurable flow specification mechanisms

In Figure 2.2, the user might be interested in first determining whether a

feasible partition exists. At this point only the Estimation and Partition

tools need to be invoked; subsequent tools need not be run. Unnecessary

tool invocations can be avoided if the flow specificationis modular.

A number of design options areavailable at each step in the design process.

For instance, the Partition tool can be either a manual partitioningtool, or

an exact (but time consuming) tool such as CPLEX using integer linear

programming techniques, or an efficient heuristic such as MIBS. Depend

ing on the available design time and desired accuracy, one of these is

selected. This selection can be done either by the user, or by embedding

this design choice within the flow. A design flow with a configurable flow

specificationmechanism is thus compactandefficient.

2. Mechanisms to systematically track tool dependencies and automatically

determine the sequence of tool invocations

The user should not have to keep track of tools that have already run and

those that need to be run. Also, if a specific tool is changed on the fly, the

entire system need not be re-run; only those tools that are affected should

be run. A mechanism that automatically determines the sequence of tool

18

invocations is needed. For instance, if the user changes the hardware syn

thesis mechanism (perhaps a standard-cell based design instead of one

based on field programmable gate arrays), the system should only invoke

the dependencies of the hardware synthesis tool (in this case: Hardware

Synthesis, Netlist Generation, Simulation).

3. Managing consistency of design data, tools, and flows

Different types of tools, with varying input and output formats, are used in

the system-level design process. At the very least, a mechanism to auto

matically detect incompatibilities between tools is required. Data transla

tors could also be invoked automatically.

At the system level, it is no longer sufficient to keep track of versions of

data — versions of tools and design flows also need to be maintained.

A design methodology management infrastructure that supports these

requirements is described in Chapter5.

2.3 Specification Semantics

A complete system-level design is likely to involve various subsystems,

each of which is specified in a different model of computation. Figure 2.3 shows

system-level application

Figure 2.3. Models of computation used in system-level modeling.

19

four classes of semantics that can be used for abstract system-level modeling. A

particular model may be better-suited for a certain partof an application, based on

its properties. For instance, control-dominated components of an application are

best described by hierarchical FSMs, while computation-dominated components

are better-suited to dataflow semantics. FSM and dataflow semantics have been

shown to be amenable to both hardware and software synthesis. Discrete-event

models arecommonly used forhardware modeling andareusually implemented in

hardware. Another possible class of semantics is the imperative model, such as

that found in C or C++. Such a model is usually better-suited for a software imple

mentation. Thus, an application can be specified using a combination of these

semantics, with each component subsystem being represented in a model of com

putation best suited for it.

We focus on periodic real-time signal processing applications with fixed

throughput constraints. Many such applications can be specified in the synchro

nous dataflow (SDF) model of computation [Lee87] quite naturally. In this model,

an application is represented as a graph, where nodes represent computations and

arcs indicate the flow of data. A node fires when it receives data on all of its inputs,

and on firing, it generates data on all of its outputs. SDF is a special case of data

flow, where the number of samples consumed and produced by a node firing is

known statically (at compile time). This makes it possible to develop efficient

compile-time scheduling techniques. The SDF specification supports manifest iter

ations, hierarchy, delays, feedback, and multirate operations. Synthesis of both

hardware [Rabaey91] and software [Pino95a] from the SDF model of computation

has been demonstrated and the model has proven useful for a reasonable set of sig

nal processing applications.

In this thesis we focus on the design of the components of an application

20

that are represented in the SDF model of computation; theentire application itself

will likely use a variety of models, however.

Figure 1.1 shows a typical task-level SDF specification in Ptolemy. The

SDF graph canbe translated into adirected acyclicgraph (DAG), representing pre

cedences between tasks, using techniques discussed in [Lee87]. This DAG is the

input to the hardware-software partitioning algorithms. We assume that a hierar

chically specified node in the SDF graph (such as the AGC in Figure 1.1) is not

flattened when the SDF graph is converted to a DAG, i.e., it retains its hierarchical

structure. The user can guide the partitioning process by choosing the hierarchy.

The hierarchical representation of a node is called its subgraph.

2.4 Target Architecture

Although the Design Assistant does not assume a target architecture, the

particular partitioning and synthesis tools used depend on the underlying target

architecture. Figure 2.4 shows two typical architectures of mixed hardware-soft

ware systems. Figure 2.4-a illustrates a core-based ASIC. This is an emerging

design style, where a programmable processor core is combined with a custom

datapath within a single die [Bier95b]. Such core-based designs offer numerous

advantages: performance improvement (due to critical components being imple

mented in custom datapaths, and faster internal communication between the hard

ware and software), field and mask programmability (due to the programmable

core), and areaand power reduction (due to integration of hardware and software

within a single core).This architecture is especially attractive for portable applica

tions, such as those typically found in digitalcellular telephony.Figure2.4-b illus

trates a board-level architecture comprising several programmable and custom

21

(a) (b)

Local memory

—r

DSP chip

ASIC

Shared

Memory

3 I I
J system bus J

Chip- evel architecture
Core-based ASIC

Figure 2.4. Typical target architectures for mixed hardware-software systems.

hardware and software components. These include FPGAs, ASICs, general pur

pose programmable processors, special purpose processors (DSP for instance), and

domain-specific processors (processors optimized for a class of applications).

In this thesis we assume that the target architecture consists of a single pro

grammable processor and multiple hardware modules. Figure 2.5 shows the cho

sen architecture. The hardware consists of the custom or semi-custom datapath

ASIC
FPGA

Board-level architecture

containing a single DSP

Address
&&xa$tsast;;itt;mr.w\iAWi:itm<1?-

Processor

Core

Data

+++

+t±

c

Hardware

Module

Hardware

Module

Hardware

Module

Controller

Control

%r

Figure 2.5. The target architecture.

22

components, and the software is the program running on the programmable com

ponent. The hardware-software interface, consisting of the glue logic andcontrol

lers, depends on the communication mechanism selected. The specifics of the

interface are discussed in Chapter 4. This target architectural model subsumesboth

the design styles shown in Figure 2.4. Further details of this architecture are given

in Section 4.1.1.

2.5 Restrictions in the Design Assistant

In summary, within the large design space, we restrict the applications of

interestto be of the type shownin Figure 2.6.To reiterate the key limitations of our

approach:

1. We restrict our techniques to the design of applications specified as SDF

graphs. In particular, we assume that the DAGgenerated from such a SDF

graphis the input to our partitioning and synthesis tools.

2. The targetarchitecture is assumedto be of the type shown in Figure 2.5, it

consists of a single programmable processor and multiple hardware mod

ules.

multiprocessor system •§
c

uniprocessor board with *§
a hardware accelerator H

core-based ASIC

custom ASIC ©
75.
E

Model of Computation
FSM Dataflow Hybrid Systems

Figure 2.6. Specification semantics and target architecture.

23

3. In the partitioning and synthesis techniques, we assume that hardware is

not reused between modules. The implications of this assumption are dis

cussed in Chapter 4.

2.6 Summary

We propose the Design Assistant as a framework for system-level design.

The DesignAssistantis aunified platform consisting of tools for partitioning, sim

ulating, and synthesizing mixed hardware-software systems. System-level design

is not a black-box process. The designer may wish to experiment with different

design parameters, tools, and flows. The Design Assistant supports efficientdesign

spaceexploration; embeddedin it is a design methodology manager thatmanages

the design flow, tools, and data.

The next three chapters focus on the various aspects of the Design Assis

tant. In Chapter 3, an analytical framework for hardware-software partitioning is

proposed. In Chapter 4, we discuss the approach usedto cosynthesizeandcosimu-

late a partitioned application. The design methodology management infrastructure

is presented in Chapter 5.

24

3

EXTENDED PARTITIONING

In this chapter, we focus on thehardware-software partitioning problem for

embedded signal processing applications. As discussed in Chapter 2, the task-level

description of an application is specified as an SDF graph. The SDF graph is trans

lated into aDAG representing precedences and this DAG is the input to the parti

tioning tools.

The binary partitioning problem is tomap each node of the DAG to hard

ware orsoftware, andto determine the schedule for each node. The hardware-soft

ware partitioning problem isnot just limited tomaking abinary choice between a

hardware or software mapping. As discussed in Chapter 1, within agiven map

ping, anode can be implemented using various algorithms and synthesis mecha

nisms. These implementations typically differ inarea and delay characteristics; we

call them "implementation bins". The extended partitioning problem is the joint

problem of mapping nodes in a DAG to hardware or software, and within each

mapping, selecting an appropriate implementation bin (Figure 3.1).

Partitioning is, ingeneral, ahard problem. The design parameters can often

beused to formulate it as an integer optimization problem. Exact solutions tosuch

formulations (typically using integer linear programming (ILP)) are intractable for

25

even moderately small problems. We propose andevaluate heuristicsolutions. The

heuristics will be shown to be comparable to the ILP solution in quality, with a

much reduced solution time.

The chapter is organized as follows. InSection 3.1, thebinary partitioning

problem is defined. This is followed by a motivation and a definition for the

extended partitioning problem. In Section 3.2, we discuss the related work in the

area of hardware-software partitioning. In Section 3.3,we present the GCLPalgo

rithm to solve the binary partitioning problem. Its performance is analyzed in

Section 3.4. In Section 3.5, we present the MIBS heuristic to solve the extended

partitioning problem. The MIBS algorithm essentially solves two problems for

each node in the precedence graph: hardware/software mapping and scheduling,

followed by implementation-bin selection for this mapping. The first problem, that

of mapping and scheduling, is solved by the GCLP algorithm. For a given map

ping, an appropriate implementation bin is selected using a bin selection proce

dure. The bin selection procedure is described in Section 3.6. The details of the

MOBS algorithm are described in Section 3.7, and its performance is analyzed in

Section 3.8.

3.1 Problem Definition

In Section 3.1.1, we state the major assumptions underlying the partition

ing problem. The binary partitioning problem is defined in Section 3.1.2. The

extended partitioning problem is motivated and defined in Section 3.1.3.

Binary Partitioning {

Extended Partitioning {

Hardware/Software Mapping and Scheduling

Hardware/Software Mapping and Scheduling Implementation-bin Selection

Figure 3.1. The Extended Partitioning Problem

26

3.1.1 Assumptions

The partitioning techniques discussedin this thesis arebasedon the follow

ing assumptions:

1. The precedences between the tasks are specified as a DAG (G = (N, A)).

The throughput constraint on the SDF graph translates to a deadline con

straint D, i.e., the execution time of the DAG should not exceed D clock

cycles.

2. The target architecture consists ofasingle programmable processor (which

executes the software component) and a custom datapath (the hardware

component). The software and hardware components have capacity con

straints — the software (program and data) size should not exceed AS

(memory capacity) and the hardware size should not exceed AH.The com

munication costs of the hardware-software interface are represented by

three parameters: ahcomm, ascomm, and tcomm. Here, ahcomm (ascomm) is the

hardware (software) area required to communicate one sample of data

across the hardware-software interface and tcomm is the number of cycles

required to transfer the data. The parameter ahcomm represents the area of

the interface glue logic and ascomm represents the size of the code that

sends orreceives the data. In our implementation we assume a self-timed

blocking memory-mapped interface. We neglect the communication costs

of software-to-software and hardware-tc-hardware interfaces.

3. The area and time estimates for the hardware and software implementation

bins ofevery node are assumed to be known. The specific techniques used

to compute these estimates are described in Section 3.4.1.

4. In this work we assume that there is no resource sharing between nodes

27

mapped to hardware. The issue is discussed further in Chapter 4.

3.1.2 Binary Partitioning

The binary partitioning problem (PI): Given a DAG, areaandtimeesti

mates for softwareand hardware mappings of all nodes, and communication costs,

subjectto resource capacity constraints anda deadline D, determine for each node

i, the hardware or software mapping (M,) andthestarttimefor theexecution of the

node (schedule f,), such that the totalareaoccupied by the nodes mapped to hard

ware is minimum.

PI is combinatorial in the number ofnodes (0(2,NI) by enumeration). PI

can be formulated exactly as an integer linear program (ILP) as shown in Appen

dix Al. It is shown to be NP-hard in Appendix A2.

3.13 Extended Partitioning

As discussed in Chapter 1, in addition to selectinga hardware or software

mapping for the nodes, there is yet another dimension of design flexibility —for a

particular mapping, a node can have different implementation alternatives. These

implementation alternatives correspond to different algorithms, transformations,

and synthesis mechanisms that can beused to implement a node. Figure 3.2shows

thePareto-optimal points in the area-time trade-off curves for thehardware imple

mentation of typical nodes. The nodes shown include a pulse shaper, a timing

recovery block, and anequalizer. The design points onthecurves represent differ

ent implementations for the node resulting from different synthesis techniques.

The sample period is shown on the X axis, and the corresponding hardware area

required to implement thenode is shown ontheY axis. Theleft-most point on the

X axis for each curve corresponds to the critical path of that node; it represents the

fastest possible implementation of the node. As the sample period increases, the

28

same node can be implemented in a smaller hardware area. The right-most point

on the X axis for eachcurve corresponds to the smallestpossiblearea; it represents

the point where only one resource of each type is used and the design cannot get

any smaller. Thus, the curverepresents the design space for the node fora particu

lar algorithm in a hardware mapping. We have generated each of these curves by

running a task-level Silage [Hilfinger85] description of the node through Hyper

[Rabaey91], a high-level synthesis system. The various design points for a given

node were obtained by computing the hardware area corresponding to different

sample periods.

Similarly, different software synthesis strategies can be used to implement

a given node in software, giving rise to similararea-time trade-off curves for soft

ware implementations. Forinstance, inlinedcode is faster than code using subrou

tine calls, but has a larger code size. Thus, there is a trade-off between code size

65

60 -

—I 1 1 1 1
Eh'SK-^ pulse shaper -0—
Cp fastest bin for equalizer node timing_rocovery -h-
• equalizer -Eh-

implementation bins for pulsejshaper

%.
slowest bin forequalizer node

j.
i i

40 ,60 . 14 80 % 100 120
sample period(cycles)

Figure 3.2. Typical hardware area-time trade-off curves, called hardware imple
mentation curves. The design points are called implementation bins.

29

(program and/or data memory) and execution time. Software for each nodecan be

synthesized using different optimization goals such as-throughput, program mem

ory, or data memory [Ritz93][Murthy94].

InFigure 3.2, acurve corresponds tovarious implementations of anode for

a particular algorithm. Each node can also be implemented using different algo

rithms and transformations. Figure 3.3 generalizes this. Thus, several implementa

tion alternatives (or implementation bins) exist for anode, within each mapping.

We assume that associated with every node i is ahardware implementation

curve CHt, and a software implementation curve CSt. The implementation curve

plots all the possible design alternatives for the node. CHt ={(ah/, th/), j€NH.},

where ah/ and th/ represent the area and execution time when node i is imple

mented in hardware bin ;, and NHt is the setof all the hardware implementation

bins (Figure 3.4). CS(={(as/, ts/), j € NS.}, where as/ and ts/represent the pro

gram size and execution time when node i is implemented in software bin j, and

NSj is the setof all the software implementation bins. The fastest implementation

bin is calledL bin, andthe slowest implementation bin is called H bin.

The extended partitioning problem (P2): Given a DAG, hardware and

software implementation curves for all the nodes, communication costs, resource

Node

JF\B)

/
Algorithm 1 Algorithm 2
(direct form) (cascade form)

J ^ \transform \. # transform k *

i \ i \ '"
fast • • • slow fast • • •slow

Algorithm m
(transpose form)

/ \
transform \.. transform k

i\ i \
fast • •jbIow fast •••slow

Figure 3.3. Implementation alternatives for a node within a mapping

30

areaA CHt
jm 1 NHiB ^ ofhardware implementation bins

CH,m{(ahl,thh. JtNH.)

/.bin th/

Figure 3.4. CHf. Hardware implementationcurve for node /. Each

bin corresponds to a possible design option for the node.

capacity constraints, and a required deadline D, find a hardware or softwaremap

ping (Ml), the implementation bin (£,*), andthe schedule (/,) for each node /, such

that the total area occupied by the nodes mapped to hardware is minimum.

It isobvious that />2 isamuch harder problem than PL Ithas (2B)^ alter

natives, given B implementation bins per mapping. P2 can be formulated exactly

as an integer linear program, similar to PI. An ILP formulation for P2 is given in

Appendix A3.

The motivation for solving the extended partitioning problem is two-fold.

First, the flexibility of selecting an appropriate implementation bin for a node,

instead of assuming a fixed implementation, is likely to reduce the overall hard

ware area. In this chapter, we investigate, with examples, the pay-off in using

extended partitioning over just mapping (binary partitioning). Secondly, from the

practical perspective of hardware (or software) synthesis, solution to P2 provides

us with the best sample period or algorithm to use for the synthesis of a given

node.

3.2 Related Work

The binary partitioning problem has received some attention recently. In

Section 3.2.1, we will discuss some of the other approaches used to solve the

31

binary partitioning problem.

As of this writing, we arenot aware of any work that formulates or solves

the extended partitioningproblem in system-level design. In Section 3.2.2, we will

briefly summarize the relatedwork in physical CAD and highlevel synthesis.

3.2.1 Binary Partitioning: Related Work

The hardware/software mapping and scheduling problem can be formu

lated as an integer linear program (ILP) and solved exactly. This formulation

becomes intractable even for moderately-sized applications (Appendix Al). Some

heuristics have been reported to solve the variantsof this problem*.

Gupta et al. [Gupta92] discuss a scheme where all nodes (except the data-

dependent tasks) are initially mapped to hardware. Nodes are at an instruction

level of granularity. Nodes are progressively moved from hardware to software

subject to timing constraints in amanner described next. A hardware-mapped node

is selected (this node is an immediate successor of the node previously moved to

software). The node is moved to software if the resultant solution is feasible

(meets specified throughput) and the cost of the new partition is smaller than the

earlier cost. The cost is a function of the hardware and software sizes. The algo

rithm is greedy and is not designed to find a globalminimum.

The scheme proposed by Henkel et al. [Henkel94] alsoassumes an instruc

tion level of granularity. All the nodes aremapped to software at the start. Nodes

are then moved to hardware (using simulated annealing) until timing constraints

are met. Due to the inherent nature of simulated annealing, this scheme requires

long run times and the quality of the solutiondepends on the cooling schedule.

2. Unless stateddifferently, the targetarchitecture assumedin these approaches consists of
a programmable processor and custom hardware modules mat communicate via shared
memory.

32

Baros et al. [Baros92] present a two-stage clustering approach to the map

ping problem. Clusters arecharacterized by attribute values (degreeof parallelism,

amount of data dependency, degree of repetitive computations, etc.) and are

assignedhardware and softwaremappingsbasedon their attribute values. Clusters

with a large number of repetitive computations are assigned to software. This

approach ignores precedences and scheduling information; it solves only themap

pingproblem. Scheduling the clusters after mapping themto hardware or software

leaves little flexibility in trying to achieve adesired throughput. Themapping pro

cess does not try to rninimize hardware area or rnaximize software utilization.

D'Ambrosio et al. [Ambrosio94] describe a branch and bound-based

approach for partitioning applications where each node has a deadline constraint

(instead of an overall throughput deadline). Each node has three attributes: the

deadline, the number of software instructions needed toexecute it,and the type of

hardware units it can be implemented on. The target architecture consists of a sin

gle software processor and aset ofdifferent hardware modules. The input specifi

cation is transformed into aset ofconstraints. The set ofconstraints issolved byan

optimizing tool called GOPS, which uses abranch and bound approach, to deter

mine the mapping. The approach suffers from limitations similarto those in a ILP

formulation, that is, solving even moderate-sized problems can become computa

tionally infeasible.

In the approach proposed by Hes et al. [Eles94], eachnode and arcin the

graph is annotated with aweight The weight of anode is aconvexcombination of

four terms: computation load (number of operations executed), uniformity (the

ratio of the number of operations in the node to the number of distinct types of

operations in the node), parallelism (the ratio of the number of operations in the

node to the length of the critical path of the node), and software-suitability (the

33

ratio of the number of software-suitable operations in the node to the number of

operations in the node. The software-suitable instructions include floating point

operations, file accesses, etc.). The coefficients of these factors aredecided by the

designer. They claim that a node with a high weight is better suited to hardware.

The weights on arcs correspond to the communication cost. The hardware-soft

ware partitioning problem is then formulated as the problem of partitioning the

graph into two sets such that the sum of the communication costs across the parti

tion is minimized, subject to the constraints that no node with a weight less

(greater) than wt (wh) is assigned to hardware (software). The parameters wt and

wh are set by the designer. The problem is solved by simulated annealing. Their

scheme ignores throughput constraints; it does not solve the schedulingproblem.

Jantsch et al. [Jantsch94] present an approach for improving the overall

performance of an application by moving parts to hardware, subjectto a constraint

on the size (number of gates) of the allowed hardware. Initially, all the nodes are

mapped to softwareand are assumed to executeaccording to a sequential schedule.

They restrict themselves to the problem of finding the set of nodes that can be

moved to hardware so as to get the maximum speedup, subject to the allowed

hardware capacity. The problem translates to theknapsack packing problem (given

k items, each with a utility andsize, selectthe set of items thatcanbe packedinto a

knapsack of a given capacity such that the totalutility is maximized) and is solved

using dynamic programming. Since they assume a schedule to be available, their

approach does not consider overlapped hardware and software execution and

hence could lead to poor resource utilization.

Thomas et al. [Thomas93] propose a manual partitioning approach for

task-level specifications. They discuss the properties of tasks thatrenderthem suit

able to either hardwareor software mapping, such as types of arithmetic operations

34

used, data parallelism, and existence of control structures. In their approach, the

designer has to qualitatively evaluate these properties and make a mapping deci

sion. As will be shown later, our approach notonly quantifies such properties, but

also incorporates mapping decisions based on algorithmic properties into an auto

mated partitioning approach.

We will now briefly discuss some work in related areas such as software

partitioning, hardware partitioning, and highlevel synthesis to evaluate the possi

bility of extending it to the binary partitioning problem.

The heterogeneous multiprocessor scheduling problem is to partition an

application into multiple processors. The processors could be heterogeneous, i.e.,

the execution times on the different processors vary. Approaches usedin the litera

ture [Hamada92][Sih93] to solve this problem ignore the area dimension while

selecting the mapping; they cannot be directly applied to the hardware/software

mapping and scheduling problem.

Considerable attention has been directed towards the hardware partitioning

problem in the highlevel hardware synthesis community. The goal in most cases is

to meet the chip capacity constraints; timing constraints are not considered. Most

of the proposed schemes (for example, [McFarland90b], [Lagnese91], and

[Vahid92]) use a clustering-based approach first presented by Camposano et al.

[Camposano87].

The approaches used to solve the throughput-constrained scheduling prob

lem in highlevel hardware synthesis, (such as force directed scheduling by Paulin

etal. fPaulin89]), do not extend tothe hardware/software mapping and scheduling

problem directly. Such approaches do not consider the area and time heterogeneity

that is offered by the possibility of hardware or software mappings. Also, they

solve only the scheduling problem — mapping (to aparticular type of hardware) is

35

assumed to be known. Decoupling the mapping and scheduling problems leaves

little flexibility in trying to achieve a desired throughput. Further, most of these

approaches use the notion of "slack" or "mobility", which is the difference

between the ASAP and ALAP schedules, for scheduling nodes. In the hardware-

software partitioning case, such ASAP and ALAP times cannot be determined

exactly since each node has two possible values of execution time (corresponding

to hardware and software mappings).

In Section 3.3, we will present an algorithm for automated hardware-soft

ware partitioning that overcomes most of the drawbacks of the approaches dis

cussed here. It operates on task-level specificationsand attempts to find a partition

that meets the throughput constraints, while approximately minimizing the hard

ware area and maximizing the software utilization. Itisan efficient (OLV12) heuris

tic that uses a combination ofglobal and local measures while making the mapping

and scheduling decisions. It also takes into account the inherent suitability of a

node to either a hardware or a software realization based on intrinsic algorithmic

properties. For the examples tested, the solutions generated by the algorithm are

found to be reasonablyclose to the corresponding optimal solutions.

3.2.2 Extended Partitioning: Related Work

The authors are not aware of any published work thatformulates or solves

the extended hardware-software partitioning problem in system-level design. The

problem of selecting an appropriate bin from the area-time trade-off curve is remi

niscent of the technology mapping problem in physical CAD [Brayton90], and the

module selection (also called resource-type selection) problem in highlevel syn

thesis [DeMicheli94], both of which are known to be NP-complete problems.

The technology mapping problem is to bind nodes in a Boolean network,

36

representing a combinational logic circuit, to gates in the library such that the area

of the circuit is minimized while meeting timing constraints. Gates with different

area and delay values are available in the library. Several approaches

([Chaudhary92], among others) have been presented to solve this problem.

The module selection problem is the search for the best resource type for

each operation. For instance, a multiply operation can be realized by different

implementations, e.g., fully parallel, serially parallel, or fully serial. These

resource types differ in area and execution times. A number of heuristics

([Ishikawa91], among others) have been proposed to solve this problem.

3.3 The Binary Partitioning Problem: GCLP Algorithm

In this section, we present the Global Criticality/Local Phase (GCLP) algo

rithm to solve the hardware/software mapping and scheduling problem (PI). The

notation used is summarized in Table 1.

3.3.1 Algorithm Foundation

The underlying scheduling framework in the GCLP algorithm is based on

list scheduling [Hu61]. The general approach in list scheduling is to serially

traverse a node list (usually from the source node to the sink node in the DAG3)

and for each node to select a mapping that minimizes an objective function. In the

context of PI, two possible objective functions could be used: (1) minimize

the finish time of the node (i.e., sum of the start time and the execution time), or (2)

rninimize the area of the node (i.e., the hardware area or software size). Neither of

these objectives by itself is geared toward solving PI, since PI aims to minimize

3. Notethatwe are notrestricted to asingle source (sink) node. If mereare multiple source
(sink) nodesin the DAG, they canallbe assumed to originate from (terminate into)a dum
my source (sink) node.

37

areaand meet timing constraints at the same time. Forexample, an objective func

tion that minimizes finish time drives the solution towards feasibility from the

viewpoint of deadline constraints. This solution is likely to be suboptimal

(increased area). On the other hand, if a node is always mapped such that area is

minimized, the final solution is quite likely infeasible. Thus a fixed objective func

tion is incapable of solving PI, a constrainedoptimization problem. There is also a

Notation Interpretation

Graph Parameters

G
DAG G = (ft,A), whereN is set ofnodes representing computations,andA
is set of arcsrepresenting precedences

D
Deadline(ormakespan) constraintThe execution time for the graph
should not exceed D cycles.

aht Hardware area estimate for node i

asj Software size estimate for node i

tk Hardware execution time estimate for node i

*i Software execution time estimate for node i

size; Size of node / (numberof atomicoperations)

Architectural Constraints

AH
Hardware capacity constraint (total area of nodesmappedto hardware can
not exceed AH)

AS
Software capacityconstraint (totalarea of nodes mapped to softwarecan
not exceed AS)

Q"comm
Hardware requiredfor the transfer of one datasamplebetween hardware
and software

^comm
Software requiredfor the transferofone datasample between hardware
and software

*comm
Numberof cycles required to transfer one sample of data betweenhard
ware and software

Algorithm Outputs

Mi Mapping for node / (0 for software, 1 for hardware)

'/ Stan time for the execution ofnode i (schedule)

Tablet Summary of notation

38

limitation with list scheduling; mapping based on serial traversal tends to be

greedy, and therefore globally suboptimal.

The GCLP algorithm tries to overcome these drawbacks. It adoptively

selects an appropriate mapping objective at each step4 to determine the mapping

and the schedule. As shown in Figure 3.5, the mapping objective for a particular

node is selected in accordance with:

1. Global Criticality (GC): GC is a global look-ahead measure that estimates

the time criticality at each step of the algorithm. GC is compared to a

threshold to determine if time is critical. If time is critical, an objective

function that minimizes finish time is selected, otherwise one that mini

mizes area is selected. GC may change at every step of the algorithm. The

adaptive selection of the mapping objective overcomes the problem associ

ated with a hardwired objective function. The "global" time criticality mea

sure also helps overcome the limitation of serial traversal.

GC

global (time)

criticality
measure

Obj1
v>r min(finish time)

\0^^ Obj2
rrrin(% resource consumed)

threshold

0.5

Local Phase delta

(nodal preference/

properties measure)

Phase 1 (Extremity)

Phase 2 (Repeller)

Phase 3 (Normal)

A

Figure 3.5. Selection of the mapping objective at each step of GCLP.

4. A step correspondsto the mappingof a particular node in the DAG.

39

2. Local Phase (LP): LP is a classification of nodes based on their heteroge

neity andintrinsic properties. Each nodeis classified as anextremity (local

phase 1), repeller (local phase 2), or normal (local phase 3) node. A mea

sure called local phase delta quantifies the local mapping preferences of

the node under consideration and accordingly modifies the threshold used

in GC comparison.

The flow of the GCLP algorithm is shown in Figure 3.6. N represents the

set of nodes in the graph. Ny(NM) is the set of unmapped(mapped) nodes at the

current step. Afy is initialized toN. The algorithm maps one node per step. At the

beginning of each step, the global time criticality measure GC is computed. GC is

a globalmeasure of time criticality ateachstepof the algorithm, basedon the cur

rently mapped and unmapped nodes and the deadline requirements. The details of

this computation will be given in Section 3.3.2. Unmapped nodeswhose predeces

sors have already been mapped and scheduled are called ready nodes. A node is

1 |A/u«rV,A/M«0

Select Node
Among Ready

Nodes

|A/| times

f Compute QC

Identify Local Phase
and Compute A

Select Mapping M,
Rnd start timet/

•

V update(Tremalning) J

^ \{Mhtl

no

{Mbtl

Figure 3.6. The GCLP Algorithm.

40

selected for mapping from thesetof ready nodes using an urgency criterion, i.e., a

ready node that lies on the critical path is selected for mapping. Details of this

selection are given in Section 3.3.4. The local phase of theselected node is identi

fied and thecorresponding local phase delta is computed. The details of this com

putation will be given in Section 3.3.3. GC and thelocal phase delta are then used

to selectthe mapping objective. Using this objective, the selected nodeis assigned

amapping (Mt). The mapping is also used to determine the start time for the node

(tj). The process is repeated \N\ times until nonodes are left unmapped.

Next, we describe the computation of the global time criticality.

3.3.2 Global Criticality (GC)

GC is &global lookahead measure that estimates time criticality at each

step of the algorithm. Figure 3.7 illustrates an example used forcomputing GC. At

a given step, the hardware/software mapping andschedule for the already mapped

nodes is known (Figure 3.7-a). Using this schedule and the required deadline D,

the remaining time Trem is first determined. Next, all the unmapped nodes (nodes 4

and 5 in thisexample) are mapped to software and thecorresponding finish time7*

is computed, as shown in Figure 3.7-b. Suppose that 7s exceeds the allowed dead

line D. Some of the unmapped nodes have to be moved from software to hardware

tomeet the deadline5. Define this to be the set Ns-+H- Suppose that in the example,

Ns-+H =(5}• The finish time (7^) is then recomputed as shown in Figure 3.7-c. GC

at this step of the algorithm is defined as the fraction of unmapped nodes that have

to be moved from software to hardware, so as to meet feasibility. A high value of

GC indicates that many as-yet unmapped nodes need to be mapped to hardware so

as to get a feasible solution, or in other words, time as a resource is more critical.

5. Assuming thereis at leastone feasible solution to PI satisfyingthe deadlines constraint.

41

(a)

(b)

(c)

s u

NM: mapped nodes ={1,2,3}
Nu: unmapped nodes - {4,5}

A/s-H

hw H
c 3 ?

sw 4 *

()
^r

VWTJ

D

hw i
lesw ml H *"

o t "
'nm

D

T^,, mremaining time

7s- finish time if A/^mapped
to software

/v^H« set of nodes that have to be
moved from software to

hardware to meet deadline

T"• finish time H/V$-»h Is
mapped to hardware

GC =
icJvT

size.

$-»//

42

y^ size.

Figure 3.7. Computation of Global Criticality

GC is thus a measure of global time criticality ateach step. The following proce

dure summarizes the computation of GC.

MMNMMMIIMmilllmimmMNIIIIMIIM^^

Procedure: Compute.GC

Input: Mapped (NM) and Unmapped (Nv) nodes, D, tsit thit sizeit Vi € N
Output: GC

S1. Find the setNS_>H of unmapped nodes thathaveto bemoved from software to
hardware to meet deadline D

51.1. Select a set of nodes in NUf usinga priority function Pf, to move from
software to hardware

51.2. Compute the actual finish time (1**) based on these Ns->H nodes being
mapped to hardware

51.3. If7^>DgotoSl.l

V size.

S2. GC = ^m ,0£GC£1

5*
size;

In S1.1, the set of nodes to be moved to hardware is selected on the basis of

a priority function Pf. One obvious Pfis to rank the nodes in the order of decreas

ing softwareexecution times tst. A secondpossibilityis to use (tSjfthi) as the func

tion to rank the nodes. This has the effect of first moving nodes with the greatest

relative gain in time when moved to hardware. A third possibility is to rank the

nodes in increasing order of ah{, nodes with smaller hardware areaaremoved out

of software first. Our experiments indicate that the (tsjth^ ordering gives the best

results.

SI.2 determines whethermoving this set NS^H to hardware meets feasibil

itybycomputing the actual finish time I**. The finish time can becomputed byan

0(L4I + \N\) algorithm, as shown in Appendix A4. If the result is infeasible, addi

tional nodes are moved by repeating steps S 1.1 to SI.3.

GC is computed in S2 as a ratio of the sum of the sizes of the nodes in

Ns_yH to the sum of the sizes of the nodes in Nv. The size of a node is taken to be

the number of elementary operations (add, multiply, etc.) in the node. Each node is

represented by its size since nodes can be heterogeneous in general.

As indicated earlier, GC is a measure of global time criticality; a high GC

indicates a high global time criticality. GC has yet another interpretation; it is a

measure of the probability (simplistically speaking) that any unmapped node is

mapped to hardware. This probability may change ateachstep of the algorithm.

43

333 Local Phase (LP)

GCis an averaged measure over all theunmapped nodes ateach step. This

desensitizes GC to the local properties of the node being mapped. To emphasize

thelocal characteristics of nodes, weclassify nodes as extremities (or local phase 1

nodes), repellers (or local phase 2 nodes), or normal nodes (or local phase 3

nodes).

3.33.1 Motivation for Local Phase Classification

Sincenodes are ata task levelof granularity, they are likely to exhibitarea

and time heterogeneity in hardware and software mappings. Nodes that consume a

disproportionately large amount of resource on one mapping as compared to the

other mapping are called extremities or local phase 1 nodes. For instance, a hard

ware extremity requires a large area when mapped to hardware, but could be

implemented inexpensively in software. The mapping preference of such nodes,

quantified by an extremity measure, modifies the threshold used in GC compari

son.

Once a feasible solution is obtained, it is usually possible to further swap

nodes between hardware and software so as to reduce the allocated hardware area.

GCLP uses the concept of repellers or local phase 2 nodes to perform on-line

swaps (asopposed to post-mapping swaps) of similar nodes betweenhardware and

software. To do this, we identify certain intrinsic nodal properties (called repeller

properties) that reflect the inherent suitability of a node to either a hardware or a

software mapping. For instance, bit operations are handled better in hardware,

while memory operations are better suited to software. As a result, a node with

manybitmanipulations, relative to other nodes, is asoftware repeller, whileanode

44

with a lot of memory operations, relative to other nodes, is a hardware repeller.

Moving a node with many bit manipulation operations out of software is thought

of as generating a repelling force from the softwaremapping. Hence the proportion

of bit manipulation operations in a node is a software repellerproperty. Similarly,

the proportion of memory operations in a node is a hardware repeller property. A

repeller property is quantified by a repeller value. The combined effect of all the

repeller properties in a node is expressed as the repeller measure of the node. All

nodes areranked accordingto theirrepellermeasures.Given two nodes Nl and N2

with similar software characteristics, if Nl hasa higher software repeller measure

than N2, and given the choice of mapping one of them to hardware, Nl is pre

ferred. The details of the computation of the repeller measure are deferred to

Section 3.3.3.3.

Let us seehow therepeller measures effect an on-line swap in GCLP. Sup

pose that the deadline constraint demands that only one of nodes Nl and N2 be

mapped to hardware. In this case, the node with a smaller hardware area (say Nl)

should be selected for hardware mapping. Consider the scenario when Nl is

mapped at an earlier step than N2 (due to the serial traversal of the graph). If time

is notcritical early onwhen Nl ismapped, mapping based onGCalone mightmap

Nl to software. Later as time becomes critical, N2 is mapped to hardware. Nl is,

however, a better candidate for hardware mapping than N2. In general, the prefer

ences of all the nodes get modified by serial traversal and possibly suboptimal

mapping choices are made. One way to address this is to swap nodes across map

pings after the algorithm is done. Alternatively, we usetherepeller measure of the

node being mapped as an on-line bias tomodify the threshold used in GC compar

ison. To use our example, the software repeller measure of Nl is used to bias its

mapping out of software (towards hardware), thereby making it possible for the

45

yet-unassigned node N2 to get mappedto software. The net effect of such on-line

swaps is a reduction in the total hardware area.

Normal nodes (local phase 3) do not modify the default threshold value;

their mapping is determined byGC consideration only.

In the following sections, weoutline procedures toclassify nodes into local

phases and quantify their local phase measures.

3.33.2 Local Phase 1 or Extremity nodes

The bottleneck resource in hardware is area, while the bottleneck resource

in software is time. Extremities are nodes thatconsume a disproportionately large

amount of the bottleneck resource on a particularmapping (relative to the other

mapping).

A hardware extremity nodeis defined as a nodethat consumes a large area

in hardware, but a relatively small amountof time in software. A software extrem

itynode is defined as a node that takes up a large amount of time in software, but a

relatively small amount of area when mapped to hardware. The rationale in mov

ing a hardware (software) extremity node to software(hardware) is obvious.

The disparity in the resources consumed by an extremity node i is quanti

fied by an extremity measure £,-. The extremity measure is used to modify the

threshold to which GC is compared when selecting the mapping objective (as

shown in Figure 3.5); i.e., Et is the local phase delta for an extremity node.

Extremity Measure

We now describe a procedure to identify extremity nodes in a graph and

compute the extremity measure £, for all such nodes.

46

Procedure: ComputeJBxtremityJvleastire
Input: tSj, ahi Vi € N, a, p percentiles

Output: Et, VieN, -0.5££,.£0.5

51. Compute the histograms of all the nodes with respect to their software execu
tion times (tSj) and hardware areas (aht)

52. Determine ts(a) and ah($) that correspond to a and p percentiles of the ts and
a/? histograms respectively

53. Classify nodes into software and hardware extremity sets EXS and EXh
respectively:

If (ts.^ts(a) and ah.<ah($)), i€ EXS (softwareextremity)

If (ah. Zah(fi) and ts.<ts(a)), i € EXh (hardware extremity)

54. Determine the extremity value X(for node i:

ts-/ts„„„ ahi/ahM„^.
Tr . _ w-.v i max •. i max
If i € EX_, jc_. = , . , , else jc. = ;

s l ah/ah * l ts/ts^^
i max i max

where te,^ = maxjffs,} and ahmax = max,{a/i,}

55. Order the nodes in EXS (EHf) by x. Denotethe maximum andminimum
extremity values as xs^^ (xhf^ andxsmin (xhmif^ respectively.

56. Compute the extremity measure £/ for node i:

If/€ EX .E, =-0.5X—- 2i2-,-05£E{£0
st xs -xs • l

max min

else if/e^,^. =0.5x-^ r—, 0££;£0.5
xnmax" *"min

In S1, we compute a distribution of the nodes with respect to their software

execution times tst and hardware areas aht. Parameters a and p represent percen

tile cut-offs for these distributions. For instance, in S3, a node i is classified as a

software extremity node if it lies above a percentile in the ts histogram

(ts. >ts(a)) and below p percentile in the ah histogram (ah. < ah (P)). Simi

larly, a node / is classified as a hardware extremity if it lies above p percentile in

the ah histogram (ah.>ah(f$)) and below a percentile in the ts histogram

(ts.<ts(a)). Figure 3.8 shows typical histograms and the identification of

47

number of nodes
perts

number of nodes
per an

EX

(hardware extremity)

above a percentile

ah{$) ah"

Figure 3.8. Hardware (EX/J and software (EXg) extremity sets

extremities. For the examples that we have considered, values of a and p in the

range (0.5, 0.75) are used. A value outside this range tends to reduce the number of

nodes that fit this behavior and consequently the extremities do not play a signifi

cant role in biasing the local preferences of nodes. The extremity value of a node is

computed in S4. The extremity measure £,• of a node i is computed in S6,

-0.5 ££.£0.5.
i

Threshold Modification using the Extremity Measure

Let GQ. denote the value of GC at step kwhen an extremity node i is to be

mapped. If £,- is ignored, the threshold assumes its set value of 0.5. Since GQ is

averaged over all unmapped nodes, mapping of node i in this case is based just on

GCk. This leads to:

1. Poor mapping: Suppose node i is a hardware extremity. If GC. ^ 0.5, Obj1

is selected in Figure 3.5 (minimize time), and i could get mapped to hard

ware based on time-criticality. However, i is a hardware extremity and

mapping it to hardware is an obviously poor choice for PL

2. Infeasible mapping: Suppose node i is a software extremity. If GC. < 0.5 ,

48

td(a) ts

EXg (software extremity)

ve ft percentile
4 I >

(b)

BUM

1"r" • scrambler

t IIR?il I.scrambler
0

12 3 4 5

nodes in graph

Figure 3.9. An example repeller property,

does not have any bit manipulations, andhence its BUM value is 0. The higher the

BUM value, the worse is the suitability of a node to software mapping.

Consider two nodes Ni and N2, with software (hardware) areas asj (ahj)

and as2 (ah2) respectively. Suppose BUM] > BLIM2. Now, if as^« as2, then ahj

< ahi (because bit-level operations can be typically done in a smaller area in hard

ware). Thus Ni is a softwarerepeller relative to N2, basedon the bit-level instruc

tion mix property. Based on the discussion in Section 3.3.1, given the choice of

mapping one of Nl or N2 to hardware, Nl is preferred for hardwaremapping on

the basis of the BUM property.

Other repeller properties mentioned earlierare similarly quantified through

their property values. The cumulative effect of all the repeller properties in a node

is considered when mapping a node. The repeller measure /?, of a node captures

this aggregate effect. It is expressed as a convex combination of all the repeller

property values of the node. The repellermeasure is used to modify the threshold

against which GC is compared when selecting the mapping objective (as shown in

Figure 3.5); i.e., Rt is the local phase delta for repeller nodes.

Repeller Measure

The procedure outlined below describes the computation of the repeller

measure (/?,) for each node z. Let/?// be the set ofhardware repeller properties,and

RS be the set of software repeller properties. Let P = RHuRS be the complete

50

Obj2 is selected in Figure 3.5 (minimize area) and i could get mapped to

software. Node / is a software extremity, however, and mapping it to soft

ware could exceed the deadline.

To overcome these problems, the extremity measure £,- is used to modify

the default threshold in the direction of the preferred mapping. The new threshold

is 0.5 + £,. GCk is compared to this modified threshold. For software extremities,

-0.5^£y^0, so that 0 £ Threshold £ 0.5, and for hardware extremities,

0 <, E{ <> 0.5, sothat 0.5 £ Threshold <> 1.

3.33.3 Local Phase 2 or Repeller Nodes

The use of repellers to effect on-line swaps and reduce the overall hard

ware area was discussed in Section 3.3.3.1. In this section, we quantify a repeller

node with a repeller measure and describe its use in GCLP.

Several repeller properties can be identified for each node. Bit-level

instruction mix and precision level are examples of software repeller properties;

while memory-intensive instructionmix and table-lookup instruction mix are pos

sible hardwarerepeller properties. Each propertyis quantified by a property value.

The cumulative effect of all the properties of a node is expressed by a repeller

measure.

Let us consider the bit-level instruction mix, a software repeller property,

in some detail. This property is quantified through its property value called BUM.

BUMi is defined as the ratio of bit-level instructions to the total instructions in a

node i (0 £ BLIMi <> 1). For instance, consider the DAG shown in Figure 3.9-a.

Suppose that node 2 in the graph is an ITR filter and node 5 is a scrambler. Figure

3.9-b shows the hypothetical BUM values plotted for all the nodes in the DAG in

Figure 3.9-a. Node 5, the scrambler, has a high BUM value. Node 2, the IIR filter,

49

set of repeller properties.

Procedure: Compute_RepeIler_Measure
Input: vip=value ofrepeller property p for node i,i€N,p£P
Output: Repeller measure /?,, V7 € N, -05 £ R(£ 0.5

S1. Compute for each propertyp:
2

a (vip) =variance of vijy over all i
min(vij}) =minimum ofv^ over all i
max{vi;p) =maximum of viiP over all /
LttRX = RHifp€RH orRX = RSif p£ RS

°2<<vi »>a_ = ^ =weight ofrepeller property p, jn an - 1,

p Z °\p> ptkx p
pzfix" <"')

52. Compute the normalized property value nv^ for each property p,ofnode i
v. -min(v.)

nvin = ¥—\ ^f-j.O^v.^l.
l'P max(v.)-min(v.) 1>P

53. Compute the repeller measureRt foreachnode i

''•i-<>fi.v"t>-,S,v^-^"''"-
The value vip of each repeller property p for node i is obtained by analyz

ing the node. Forinstance, consider the bit-level instruction mix property. The bit-

level operations (such as OR, AND, EXOR) are first identified in the node. The

BUM value of a node i is simply the ratio of the number of bit-level operations to

the total number of operations in that node. Otherrepellerpropertyvalues are sim

ilarly computed.6

In SI of the above procedure, the variance, minimum, and maximum of

each repeller property value arecomputed. The propertyvalues arenormalized in

S2. In S3, the repellermeasure foreachnode is computed as a convex combination

6.Guerra etal. [Guerra94] present techniques for the quantification of algorithmic properties such
as operatorconcurrency,temporaldensity, andregularity.

51

ofthe normalized repeller property values. The weight ap ofapropertyp ispropor

tional to the variance of its value. This deemphasizes properties with small vari

ances in their values. When the repeller measure is used to swap repeller nodes

with comparable property values, there is hardly any area reduction; they are not

worth swapping. The variance weightensures this.

Threshold Modification using the Repeller Measure

As described in Section3.3.3.1, repellers constitute an on-line swap to

reduce the overall hardware area — a post-mapping swap is avoided. Recall that

the repellermeasure is a measure of the swapping gain of two similar local phase 2

nodes between hardware and software mappings. Given a choice of mapping just

one of two nodes to hardware, the node with a higher softwarerepellermeasure is

chosen.

Given a phase 2 node i with a sufficiently high softwarerepeller measure,

the algorithm tries to achieve a relative shift of i out of software. It modifies the

threshold such that the objective selected will favor the complementary mapping.

This swap frees up the current resource for an as-yet unscheduled node with a

lower repellerpropertymeasure,thusreducingthe overallallocatedhardwarearea.

The repeller measure Rt is used to modify the threshold so that the new

threshold is 0.5 + Rt. For software repellers, -0.5£/?.£0, so that

0 £ Threshold £ 0.5, and for hardware repellers, 0£/?.£0.5 so that

0.5£Threshold£l.

333.4 Local Phase 3 or Normal Nodes

A node that is neither an extremity nor a repeller is defined to be a local

phase 3 node or a normal node. The thresholdis set to its default value (0.5) when

52

a normal node is mapped. Thus the mapping objective is governed by GC alone.

In summary, nodes are classified into three disjoint sets: extremity nodes,

repeller nodes, and normal nodes. The local preference of each node is quantified

by its measure, represented by a local phase delta (A). In particular, A = £,- for

extremity nodes, A = Ri for repeller nodes, and A = 0 for normal nodes. This

local phase delta is used to compute the modified threshold: threshold = 05 + A.

33.4 GCLP Algorithm

aHMMMMNCMNMMMNMWMtMMMMIMMHaiN^^

Algorithm: GCLP
Input: ahit asitthit tsit £, (extremity measure), andRit (repeller measure)

Vz€N

Communication costs: ahcomm, ascomm, and tcomm, and constraints:
AH, AS, and D.

Output: MappingMi(Mi € {hardware, software}), starttime ti$ Vi € N

Initialize: Ny = {unmapped nodes }=N,NM = {mapped nodes} =<|>.
Procedure:
while {1%I>0}{

51. Compute GC

52. Determine Nr, the set of ready nodes

53. Compute the effective execution time texec(i) for each node i

If ze Nv texec(i) =GC •th(+(1-GO •tSi

else if i € NM '«w:(0 =tni 'KMi = hw) +tst 'I(Mt = sw)7
54. Compute thelongest path longestPath(i), Vz € NR using texec(i)

55. Select node i, i € NR, for mapping: max(longestPath(i))

56. Determine mapping Mt for z:

S6.1. if(£z.*0) A = y£; (local phase 1)

where y is extremity measure weight, 0 £ y <> 1

else if(Rj*0) A = v-Ri Gocalphase2)

where v is repeller measure weight, 0 £ v £ 1

else A = 0; (local phase 3)

7. lifixpr) is an indicator function that evaluates to 1 when expr is true. 0 else.

53

}

56.2. Threshold = 0.5 + A, 0 £ Threshold £ 1

56.3. If (GO Threshold) m: minimize(Cto/7);
else m:minimize(Ofr/2);

56.4. Mi^m,Stt(ti\,Ny^Ny\{iy,NM<r- {/} ,8
Update(irpma/mng, AHnmofaijig, ASfgff^^g);

The algorithm maps one node per step. In SI, GC is computed using the

procedure described in Section 3.3.2. In S2, we determine the set of ready nodes,

i.e., the set of unmapped nodes whose predecessors have been mapped. One of

these ready nodes is selected for mapping in S5. In particular, we select the node

on the maximum longest path, the critical path of the graph. The critical pathgen

erally involves unmapped nodes; computing it can present problems sincethe exe

cution times of such nodes is not known at the current step. To overcome this

difficulty, we define the effective execution time (texec(i)) of an unmapped node i

as the mean execution time of the node, assuming it is mapped to hardware with

probability GC and to softwarewith probability (l-GQ. Here we use the notion of

GC as a node-invariant hardware mapping probability (see Section 3.3.2). In S6,

the mapping and schedule are determined for the selected node. If the node is an

extremity (or a repeller) its extremity (or repeller) measure is used to modify the

threshold. The contribution of the extremity and repeller measures can be varied

by weighting factors y and v. In Section 3.8.4, we discuss the tuning of these

weights. The mapping objective is selected in S6.3 by comparing GCagainst the

threshold. If time is critical, an objectivethatminimizes the finish time is selected,

otherwise one that minimizes resource consumption is selected. The objective

functions are:

8. Using set-theoretic notation, Nv =Ny\{i} means element i is deleted from set Nv, and NM <- {/}
meanselementi is added to set NM.

54

Objl: tfiffi, m), where m€ {software, hardware}

ftifrw) = maxbnaxp^tfinip) + tc(p,i)), tfuJjn)) + t(ijm)

where

P(f) = set of predecessors of node i,p€P (i)

tfinip) = finish time ofpredecessorp

'c(p'0 = communication time betweenpredecessorp and node i

tfiasfari) = finish time of the last node assigned to mapping m

= 0 if m corresponds to hardware

t(i,m) = execution time of node i on mappingm

t t0K , f i tot.

rkK"» ' comm ' v i comm '
Obj2: /(m = sw) + —— /(m = /iw)

Al3 At1remaining
Objl selects a mapping that minimizes the finish time of the node. A node

can begin execution only after all of its predecessors have finished execution and

the datahas beentransferred to it from its predecessors. Also, a nodecannot begin

execution on the software resource until the last node mapped to software has fin

ished execution.

Objl uses a "percentage resource consumption" measure. This measure is

the fraction of the resource areaof a node (nodal areapluscommunication area) to

the total resource area. The area ahconJot (a5commto/) takes into account the total

cost of communication (glue logic in hardware and code in software) between

node i in hardware (software) and all its predecessors. For the hardware resource,

the resource area required by the node is divided by the available hardware area

(AHremaining)- 0bJ2 mus favors software allocation as the algorithm proceeds.

As shown in Appendix A4, GCLP has a quadratic complexity in thenum

ber of nodes.The performance of the algorithm is analyzed in the next section.

55

3.4 Performance of the GCLP Algorithm

The examples used to analyze the algorithm performance are described in

Section 3.4.1. We present two sets of experiments. The first experiment

(Section 3.4.2) is acomparison of thesolution obtained withGCLP to theoptimal

solution generated by anILP formulation (described in Appendix Al). The second

experiment (Section 3.4.3)demonstrates theeffectiveness ofclassifyingnodesinto

extremities and repellers. Section 3.4.4 discusses the algorithm behaviorwith the

help of an example trace.

3.4.1 Examples

Two classes of examples are used to analyze the performance of the algo

rithm: practical examples, andrandomgraphs.

Practical Examples

We consider practical signal processing applications with periodic timing

constraints. Two examples are used: 32KHz 2-PSK modem, and 8 KHz bidirec

tional telephone channel simulator (TCS). These applications are specified as SDF

graphs in the Ptolemy [Buck94a] environment. Figure 3.10 shows the receiversec

tion of the modem example. A DAGis generated from the SDF graph representa

tion. Nodes in the DAG are at a task level of granularity. Typical nodes in the

modem include carrier recovery, timing recovery, equalizer, descrambler, etc. in

the receiver section, and pulse shaper, scrambler etc. in the transmittersection. The

nodes in the TCS include linear distortion filter, Gaussian noise generator, har

monic generator, etc. In themodem and TCS examples considered, the DAGs con

sist of27 and 15 nodes respectively9.

9. Much larger examples have been easily solved withtheGCLP algorithm (as will beshown in Section
3.4.3), Here, we consider these relatively small examples that can besolved byILPaswell. Theintent is
to compare theGCLP solution totheoptimal ILPsolution toevaluate thequality of theheuristic.

56

2-PSK Passband Receiver

Figure 3.10. Receiver section ofa modem, described in Ptolemy. Hierarchical
descriptions of the AGC andtiming recovery blocks areshown.

The area andtime estimates (in hardware andsoftware mappings) for each

node in these DAGs are obtained by using the Ptolemy and Hyper environments

(Figure 3.11). We assume a target architecture consisting of: (1) Motorola DSP

56000 [Motorola] for the software component, (2) standard-cell based custom

hardware generated by Hyper [Rabaey91], and (3) self-timed memory-mapped I/O

i SDF graph

Silage code
for each node

SDF to DAG converter

| DAG
Ptolemy Code Generator I

Hyper I Code prof3er |

la/),

)

Motorola 56000 assembly code

for each node

T
asj
tSj

Figure 3.11. Estimation of areaand timevalues in hardware and software.

57

for hardware-software communication. The code generation feature of Ptolemy is

used to synthesize 56000 assembly code [Pino95a] and Silage code [Kalavade93]

for each node in theDAG. Estimates of the software area (as,) and software execu

tion time (ft,) for each node i are obtained by using simple scripts thatanalyze the

generated DSP 56000 assemblycode. The Silage code for each node i is input to

Hyper, which generates estimates of the hardware execution time (tht) and hard

warearea {ahx) for the node.The hardware execution time is computedas the best-

case execution time (corresponding to the critical path of the control-dataflow

graph associated with the node10). The hardware area is computed by setting the

sample periodto the criticalpath. Further details of the estimationmechanisms can

be found in Appendix A8.

Random Examples

A random graph generator is usedto generate agraph with arandom topol

ogy for a given number of nodes (graph size). The hardware-software area and

time estimates of the nodes in the random graph are generated by taking into

account the trend observed in realexamples. Details of the techniques used to gen

erate the random graphs aregiven in Appendix A7. Foreach size, we generate 10

random graphs differing in topology and area and time metrics. The heuristic is

applied for each random graph and the average value of the result is reported for

that size.

3.4.2 Experiment 1: GCLP vs. ILP

Examples are first partitioned using theGCLP algorithm. The ILP formula

tion for these examples isthen solved using the ILP solver CPLEX11. Table 2 lists

the GCLP and ILP solutions for the modem and TCS examples. The total hard-

10. This control-dataflow graph isgenerated byHyper during thehardware synthesis process.
11.CPLEX is a commercially available optimization software.

58

example size algorithm total hardware area

(normalized with respect
to hardware arearequired

in ILP solution)

DSP utilization

(l-idk_time/D)*100
solution

time

modem 27 ILP 1.0 93.8% 19190 s

GCLP 1.1935 •84.89% 0.535 s

TCS 15 ILP 1.0 735% 6656 s

GCLP 1.0 115% 0.387 s

Table 2. Results from ILP and GCLP algorithm.

ware area (normalized with respect to the optimal solution), DSP utilization, and

solution time for all the cases arecompared. The solution time represents the CPU

time required to generate the solution on a SPARCstation 10. The total hardware

area obtained with the GCLP algorithm is quite close to the ILP solution. In the

modem example, the GCLP mapping has all but one node identical with the ILP

mapping. The GCLP mapping for the TCS is identicalto the ILP mapping.

Figure 3.12 compares the total hardware area obtained with the GCLP

algorithm to the optimal solution obtained with ILP formulation for a number of

random examples. For all tested examples the generated GCLP solution is within

30% of the optimal solution. Examples larger than 20 nodes could not be solved

by ILP in reasonable time12. GCLP has been used to solve examples with up to

1.5

1.4 -

0.9

t—i—i—i—i—i—i—r
gdp-araaA^-area 6-

H>-area i~
GCLP total hardware area

(normalized w.r.t ILP)

ILP total hardware area
I 1 1 I I I I I I I I I 1 1 1 +

J 1 I I I I I L
6 B 10 12 14 16 18 20

Staph «t» |N|

Figure 3.12. GCLP vs. ILP: Random examples

59

500 nodes with relative ease.

3.43 Experiment 2: GCLP with and without local phase nodes

To examine the effect of local phase nodeson the GCLP performance, the

GCLP algorithm is applied under three cases:

Case 1. The local phase classification is not used — all nodes are normal nodes

with A = 0. The objective function is selected by comparing GCwith the

default threshold = 0.5.

Case 2. Nodes are classified aseither repellers ornormal nodes. For repeller nodes

A = /?•, otherwise A = 0.

Case 3. Complete local phase classification, using extremities, repellers, and nor

mal nodes. For extremity nodes A = E-9 for repeller nodes A = /?,., and

for normal nodes A = 0.

In the modem example, it was found that:

1. Repellers reduce the hardware area through on-line swaps (the solution

obtained in case 2 is 13% smaller than the solution obtained in case 1).

2. Extremities areseen to match theirexpectedmappings (ex: PulseShaper, a

hardware extremity node, is mapped to software. Carrier Recovery, a soft

ware extremity node, is mapped to hardware).

3. Repeller nodes are also mapped to their intuitively expected mappings (ex:

Scrambler, a high BUM software repeller, is mapped to hardware).

Figure 3.13 plots the results of these three cases when applied to random

examples. The total hardware areas are normalized with respect to the total hard

ware area obtained in case 1. It is seen that the use of repellers (case 2) signifi

cantly reduces the hardware area as compared to a purely GC-based selection in

12.Some fine-tuning of theILP formulation could improve theILPsolution timeslightly.

60

1.1

0.9

0.8

07

0.6

T T 1 1 r
til notmai nodas ^~

npcteissndnoRnalnodts ±-
•xtrwntttos. rapcleis.*nd noonal notes Q'

case 1: hardware area (no local phase classification)
O OO000000O00OO00OO

case 2: GC-R hardware area (normalized w.r.t case 1)

* * * ' f71

/

%t
n

*\ /
•i / .

*

' "' YD

Vd-

» » <

•

Q
case 3: GCLP hardware area (normalized w.r.t case 1)

J. ±
20 40 60

graph Biz* |N|
60 100

Figure 3.13. Effect of local phase classification on GCLP performance:
case 1: mapping based on GC only, case 2: threshold modified for repel
lers, case 3: complete local phase classification.

case 1. This verifies our premise that repellers effect on-line swaps to reduce the

total hardwarearea. Using both extremity and repeller nodes further improves the

quality of the solution. On an average, the complete classification of local phase

nodes reduces the total hardwarearea by 16.82%, when compared with case 1.

3.4.4 Algorithm Trace

The behavior of GCLP with complete local phase classification of nodes is

quite complex. To understand the relation between node classification, threshold,

GC, and the actual mapping at each step of the algorithm, we illustrate these key

parameters in algorithm traces for specific examples.

Figure 3.14 illustrates the GC variation and the mapping at each step,

ignoring the local phase classification. When GC > 0.5, time is critical. Almost

always, nodesget mapped to hardware. Eventually, thisreduces the time criticality

61

r-

Mapping
oc

hardware
software

I IDDDIDDDIDI I I I I I LTD I BIT HI

10 is
algorithm s*p6

Figure 3.14. Algorithm trace: GC and the Mapping. All
normal nodes, threshold = 0.5.

and GC reduces. When it drops below 0.5, area niinimization is selected as the

objective. In most cases, this objective selects software mapping. Subsequently,

time becomes critical, GC increases, and further nodes get mapped to hardware.

Thus GC (and the mapping) adaptscontinually.

Figure 3.15 illustrates the effect of adding extremity nodes to the above

example. Nodes mapped in steps8 and 10are software extremities.In Figure 3.15-

a, the extremity measure is not considered, in Figure 3.15-b, it is. We assume that

nodes are mapped in the same order in both these cases. Mapping marked by a

cross means software mapping and by a square means hardware mapping. In Fig

ure 3.15-a, the extremity measures are not considered; the threshold assumes its

default value (0.5). The software extremity node mapped in step 8 (marked el)

gets mapped to software, hence, time criticality increases. When compared to the

corresponding mapping in Figure 3.15-b, nodes mapped subsequently in steps 15

and 16 (marked hi) get mapped to hardware. A similar effect is observed while

mapping nodes in steps 22,23, and24 (markedhi in Figure3.15-a).The generated

solution has a total hardware area of 1253, and 14 nodes are mapped to hardware.

Also, the sample mean of the GC over all steps is 0.50448. In Figure 3.15-b,

62

extremity measures are used to change the default threshold. The extremity mea

sure for nodes mapped in steps 8 and 10 lowers the threshold at the points marked

el and el in Figure 3.15-b. This induces ahardware mapping. Mapping these soft

wareextremitiesto hardware reduces time criticality. Subsequently, nodesmapped

in steps 15 and 16(marked si) getmapped to software. The total hardware area is

756, and 10 nodes are mapped to hardware. Thus by takinginto account the local

preference ofnodes8 and 10,the quality of the solution is improvedby 40%.Also,

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Mapping
K3EX-XXBX*X-

(a)

Threshotd = 0.5

10 15
algoftthm step

10 _ 15
atgortthm stop

20

Figure 3.15. GC and mapping: (a) without extremity measures (b) with
extremity measures.

63

the sample mean of the GC over all the stepsis 0.4288.

Figure 3.16 illustrates the effect of repellers on GC and mapping at each

step of the algorithm applied to a particular example. In this example, nodes

mapped in steps 6 and 10 are software repellers; the node mapped in step 6 has a

larger repellermeasure than the node mapped in step 10. In Figure3.16-a repellers

are not considered, in Figure 3.16-b, they are. We assume that nodes aremapped in

the same order in both the cases. In Figure 3.16-a, the repeller measures are not

considered when mapping — the threshold assumes its default value of 0.5. In this

(a)
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

/ n
GC

threshold
hardware
software

3 = c 3 >:»:<=i:ana::5;aci:<=>i< 3 s no-e:c

u

Threshold = 0.5

I L-
10 15 20

aJgorthmsrap

10 15 20
alQoctthrnstsp

Mapping

25 30

Figure 3.16. GC and mapping: (a) without repeller measures (b) with
repeller measures to change the threshold.

64

case, node mapped in step 6 ismapped tosoftware and the node mapped in step 10

is mapped to hardware. Clearly, mis mapping can be improved. In Figure 3.16-b,

repeller measures are taken into consideration; they modify the default threshold

andhencethe mapping. The repeller measure for the nodemappedin step6 lowers

the threshold at the point marked rl in Figure 3.16-b. This forces the node to get

mapped to hardware.The threshold for the node in step 10 is not lowered as much

and it gets mapped to software. The mapping of nodes in steps 6 and 10 is thus

exactly opposite to that in Figure 3.16-a. Thus nodes in steps 6 and 10 were in

effect swapped on-line in Figure 3.16-b — the node with a larger repeller measure

displaced the one with a smaller measure and this reduced the overall area (1803 in

Figure 3.16-a vs. 1677 in Figure 3.16-b, 17 nodes aremapped to hardware in both

cases).

3.4.5 Summary of the GCLP algorithm

We have so far discussed the Global Criticality/Local Phase algorithm to

solve the binary partitioning problem (PI). The key features of the algorithm can

be summarized as follows.

Global criticality is a global lookahead measure that quantifies the time

criticality at each step of the algorithm, taking into account the currently

unmapped nodes and the desired throughput requirements. GC is compared with a

threshold to select a mapping objective at each step of the algorithm. Nodes that

consume disproportionate amounts of resources in hardware and software map

pings are classified as extremities. The threshold used for mapping such nodes is

modified to account for their mapping preference. The total hardware area is fur

ther reduced by using the concept of on-line swaps between repeller nodes. Repel

ler nodes are classified and quantified on the basis of intrinsic nodal properties.

65

The threshold used for mapping repeller nodes is modified in accordance with their

relative "repulsion" for a mapping. The GCLP algorithm is computationally effi

cient (0(LV12)) with asolution quality comparable to the optimal.

3.5 Algorithm for Extended Partitioning: Design Objectives

The GCLP algorithm described so far solves the binary partitioning prob

lem PL The extended partitioning problem PI is to jointly optimizethe mapping

as well as implementation bin for each node. Consider the implementation-bin

curve of a node as shown in Figure 3.4. Denote L to be the fastest (left-most)

implementation bin, and H to be the slowest (right-most) implementation bin. As

the implementation-bin curve is traversed from bins L to //, the hardware area

required to implement the node decreases. From the viewpoint of minimizing

hardware area, each node mapped to hardware can besetatitsHbin(lowest area).

This might, however, be infeasible since the H bins correspond to the slowest

implementations. The extended partitioning problem is to select an "appropriate"

implementation binand mapping for each node such that thetotal hardware ismin

imized, subject to a deadline and resource constraints. This problem is obviously

far more complex than the mapping (binary partitioning) problem. Our goal is to

design an efficient algorithm to solvethe extended partitioning problem. There are

two guiding objectives usedin thedesign of thisalgorithm.

1. Design Objective 1: Complexity that scales reasonably: The binary parti

tioning problem has 2^ mapping possibilities for \N\ nodes in the graph.

Given B implementation bins within a mapping, the extended partitioning

problem has (TB)^ possibilities in the worst-case. The algorithm complex

ity should not scale withthedimensionality (number of design alternatives

66

per node) of the partitioning process, i.e., if abinary partitioning algorithm

has complexity 0(IM2), the extended partitioning algorithm should not

have complexity 0(\N?B)t since Bis typically in the range 5 to 10. Obvi

ously the binary partitioning algorithm cannot beextended directly to solve

the extended partitioning problem, since the implementation possibilities

explode.

2. Design Objective 2: Reuse of GCLP: Since we already have an efficient

algorithm for binary partitioning, the algorithm for extended partitioning

should reuse it. This suggests that extended partitioning can be decom

posed into two blocks: mapping and implementation-bin selection. GCLP

can be used for mapping.

It is not enough, however, to decompose theextended partitioning problem

into two isolated steps, namely that of mapping followed by implementation-bin

selection. The serial traversal of nodes in a graph means that the implementation

binof a particular node affects themapping of as-yet unmapped nodes. Since there

is acorrelation betweenmapping and implementation-bin selection, they cannot be

optimized in isolation. This dependence has to becaptured in the algorithm.

Our approach to solving the extended partitioning problem is summarized

in Figure 3.17. The heuristic is called MBS. In the final solution, each node in the

graph is characterized by three attributes: mapping, implementation bin, and

schedule. As the algorithm progresses, depending on the extent of informationthat

has been generated, each node in the DAG passes through a sequence of three

states: (1) free, (2) tagged, and (3) fixed. Before the algorithm begins, all three

attributes are unknown. Such nodes are called free nodes. Assuming median area

and time values, GCLP is first applied to get a mapping and schedule for all the

free nodes in the graph. A particular free node (called a tagged node) is then

67

3 i free nodes - N

Compute mapping and schedule for free nodes|
— Set median area-time values
-Apply GCLP

mapping for all free nodesI
Select tagged node 7with mapping Mj\

I
Find Implementation bin for 7within mapping MT~\

|Afl times n

free • free\T

fixed *-T
update(schedule)

ling, schedule, and implementation
bin for ell nodes

Figure 3.17. MIBS approach to solving extended partitioning

selected. Assuming its mapping to be that determined by GCLP, an appropriate

implementation bin is then chosen for the tagged node. In the following section,

we describe a bin selection procedure that tetermines the implementation bin for

the tagged node. Once the mapping and implementation bin are known, the tagged

node becomes &fixed node. GCLP is the applied on theremaining nodes and this

process is repeated until all nodes in the DAG become fixed; the MIBS algorithm

has INI steps13 for l/vl nodes in the DAG.

The MIBS approach subscribes closely to the design objectives outlined.

GCLP is used for mapping (according to Design Objective 2). Since GCLP and

binselection are applied alternately within each step of theMIBS algorithm, there

is continuous feedback between the mapping and implementation-bin selection

13. Each step ofthe MIBS algorithm constitutes the determination ofthe mapping, implementation bin, and
schedule of a node.

68

stages. The MTBS algorithm will be shown to be reasonably efficient (0(IAfl3 +

B*JVI), where B is the number of implementation bins per mapping. Thus it scales

polynomially with the dimensionality of the problem (Design Objective 1).

In the next section, we describe the bin selection procedure to solve the

implementation-bin selection problem.

3.6 Implementation-bin Selection

3.6.1 Overview

In the following, we restrict ourselves to the problem of selecting the

implementation bin for hardware-mapped nodes only. The concepts introduced

here can be extended to softwareimplementation-bin selectionas well.

Recall from Figure 3.17 that, in each step of the MTBS algorithm, GCLPis

first applied to determine the revised mapping of free nodes. Let the free nodes

mapped to hardware at the current step be called freeh nodes. A tagged node is

selected from thesetof free nodes. Assuming itsmapping tobethat determined by

GCLP, the bin selection procedure is applied to select an implementation bin for

the tagged node.

Figure 3.18 shows the flow of the bin selection procedure. The key idea is

to use alookahead measure tocorrelate the implementation bin of the tagged node

with the hardware area required for the/ree* nodes. It selects the most responsive

bin in thisrespect as the implementation bin for the tagged node.

Computing the lookahead measure can be very complex since the final

implementation bins of Hhtfreef1 nodes are not known at this step. To simplify mat

ters, we assume thai free11 nodes can be in either Lor Hbins14. AUfree^ nodes are

14. Afreeh node loses this restriction when itbecomes tagged later on.

69

assumed to be in their Hbins initially. The lookahead measure (called bin fraction

BFji) computes, for each bin; of the tagged node T, the fraction offree11 nodes that
need to be moved fromH bins to L binsin order to meet timingconstraints. A high

value ofBFji indicates that if the tagged node Twere to be implemented in bin;, a

large fraction offree11 nodes would likely get mapped to their fast implementations

(L bins), hence increasing the overall area. The bin fraction curve (BFCT) is the

collection of the all bin fraction values of the tagged node T.

Bin sensitivity is the gradient of BFCT. It reflects theresponsiveness of the

bin fraction to the bin motion of node T. Suppose that the maximum slope of the

bin fraction curveis between bins M and k (Figure 3.18). Moving the tagged node

from bin M to kshifts the largest fraction offree* nodes to their Lbins. Equiva

lent^, the ktoJt-1 motion for the tagged node results inthe largest reduction of the

area offree11 nodes. Hence the (M)th bin is selected as the implementation bin for

the tagged node (BT*). The computation of the BFC and bin sensitivity is

described next.

The notation used in the bin selection procedure is summarized Table 3.

fixed nodes
tagged node T free nodes ^

lLT *-1 kHTCompute BinFraction (BFCj) I

A . BS
Compute BinSensitivity

Select Bin (B/)

^7

1 1

J-Lt.\f *
area >BT*

time

Figure 3.18.The binselection procedure

70

Notation Interpretation

T Taggednode

fixed nodes Nodeswhosemapping aswell asimplementation binhasbeen fixed

free nodes Nodeswhosemapping and implementation binhavenot been fixed

free1* nodes Free nodes mapped tohardware by GCLP atany step in theMIBS
algorithm

CHj'(CSj-) Hardware (software) implementation curvefornodeT

NHT(NST) Set of hardware (software) implementation bins for nodeT

Lf(Hf) L (W)bin for node T.L (H) is me fastest (slowest) bin.

BT* Implementation bin finally selected fornodeT

BFj* Bin fraction computed whennodeT is implemented in bin;

BFCT Bin fraction curve for node T

BS/nax Maximum value of bin sensitivity

Table 3. Summary of notation used in bin selection procedure.

3.6.2 Bin Fraction Curve (BFC)

AssumingnodeT is implemented in bin;, BFj* is computed asthe fraction

of free" nodes that have to be moved from their H bins to their L bins in order to

meet feasibility. The bin fraction curve BFCjis theplotof thebin fraction BFj* for

each bin ; of the tagged node T. The procedure to compute the BFC is described

next. The underlying concept is similar to that used in GC calculation

(Section 3.3.2). For simplicity, we apply the bin selection procedure only for a

tagged node mapped to hardware by GCLP. A single implementation bin is

assumed when the tagged node is mapped to software.

Procedure:

Input:

Output:

Compute_BFC

Nfixed ={fixed nodes}, N^eJ1 ={free* nodes},
T=tagged node,withmapping MT (assumed hardware),
hardwareimplementation curve CHT

BFCT={(BFjij\\/jeNHT}

71

Initialize: nh-*l = ♦»'execW known for all fixed nodes p, p € iVyijccd.

forO =l;;^IN//rl,;++){

51. Set rexec(7) =rV

52. For aU k€N/ree*, set texec (k) =*V (all./re** nodes at Hbins)
53. Compute T^nish, given the mapping and ttxtc for all nodes

54. Find the set Nh-+L offree*1 nodes that need to be moved to their L bins in
order to meet deadline

54.1. NH^L<^next(Nfreeh)
54.2. texec(f) =thfLf V/e NH_^L (set to Lbins)
54.3. UpdateOjjBirt)

54.4. Jfr^sft>Z)gotoS4.1

V size,.

55. 5F/ = //"^L ,0<.BfJ^\
I .SJZe,-

}

The sequence SI to S5 outlines the procedure used to compute the bin frac

tion BFJ for aparticular bin;. Nf^d *s toe set °f fix^ nodes and N^J1 is the set of
free nodes that has been mapped to hardware by GCLP at the current step of the

MIBS algorithm. In SI, the execution time of the tagged node is set to the execu

tion time for the jth bin. In S2, the execution times for all thefree*1 nodes are set

corresponding to their respective H bins. The finish time for the DAG (7/mu/,) is

computed in S3. In S4, we compute NH-*L, the set offree*1 nodes that need to be

moved to their L bins in order to meet the timing constraints. Variousranking func

tions can be used to order thtjree*1 nodes. One obvious choice is to rank the nodes

in the order ofdecreasing Hbin execution times th{*. A second possibility isto use

(th^fth^) as the function to rank the nodes. This has the effect of moving nodes

72

with the greatest relativegain in time when moved from H to L bin.

BF-jl is computed in S5 as a ratio of the sum of the sizes of the nodes in

NH^Lt0 me sum of the sizes of the nodes in N^*1. Recall that the size of anode is
the number of elementary operations (add, multiply, etc.) in thenode.

In summary, a high value of the bin fraction for node T indicates that

selecting the /th implementation bin is likely toresult in a large fraction of free11

nodes being subsequentlyassigned to theirL bins.

3.63 Implementation-bin Selection

Figure 3.19-a plots a typical bin fraction curve for a tagged node T. Let

Lq{HT) denote the L(H) bin for node T. How is the desired binBT* to be selected

for this node? An intuitive choice is toset By* =H-p, since this corresponds to the

smallest hardware area for node T. AtHT, however, BFTH is high, i.e., alarge frac

tion of the free" nodes are inL bins so that the total hardware area might beunnec

essarily large. As the tagged node shifts from bin HT downwards, the resulting

decrease in BF implies that the fraction offree11 nodes at their Lbin decreases, and

consequently the allocated hardware area of/ree* nodes reduces. The slope of

BFCT represents how fast the free11 node area reduces with the (leftward) bin

motion of node T. This slope is called bin sensitivity BS; it reflects the correlation

between bin motion of the tagged node and the overall area reduction of thtfree*1

nodes. That is, BSJ =BFTW) -BFji, L£;'<. H- 1, where BSTH =0.

Let the maximum bin sensitivity be BS^ (Figure 3.19-b). The implemen

tation bin (BT*) for the tagged node Tis selected to be the bin with bin sensitivity

equal to B5ffUZX, if BS^ >0. IfBFCTis constant (Figure 3.19-c), then BS^ =0,

and the tagged node is mapped to its H bin, since moving it from its slowest to

fastest implementations does not affect the free11 nodes.

73

BFCT
(a) BFf

BFrL

^—i—h-H-
H-,

BFC1
(c)

-•—•-

i 1 1 I I »
H-,

(d)
Bin Sensitivity

BSmax

(b)
Bin Sensitivity es,max'

BFC

Bin sensitivity

! t 1tv
Lt Br*T "'

LT B2 B1 HT

Figure 3.20. Weighted Bin Sensitivity.

LT Br-HrT
selected binselected bin selected

Figure 3.19. Bin fraction and bin sensitivity for implementation-binselection

Consider the plot of bin sensitivity in Figure 3.20-a, where the regions

marked SI and S2 have identical slopes, i.e., same bin sensitivity. In this case, bin

B1 which is closer to the HT bin is preferred over bin B2 since it corresponds to a

smaller areaof node T. To incorporate this effect in general, the bin sensitivity val

ues areweighted by the area ofnode T. In particular, the weighted bin sensitivity is

plotted by multiplying the bin sensitivity at each bin; by ahTH/ahji (Figure 3.20-

c). BT* is then selectedto be the bin with themaximum weightedbin sensitivity. In

case of a tie for the maximum weighted bin sensitivity, the bin closer to Hj bin is

weighted
bin sensitivit

74

(c)

t^^rB,
selected bin

selected.

In summary, the strategy for implementation-bin selection is to plot the

weighted bin sensitivity and setBT* tobethe bin with the maximum bin sensitivity

that is closest to the HT bin. The bin selection procedure has complexity 0(fi • (Nl

+ L4I)), as shown in Appendix A5.Theprocedure is outlined below:

Procedure binjselection

Input Nfted ={fixed nodes}, Nfreeh ={free11 nodes}
T= tagged node, withmapping MT (assumed hardware),
hardware implementation curve CHj

Output BT*

51. ComputeBFCT(Section 3.6.2)

52. Compute bin sensitivity
53. Computeweighted bin sensitivity
54. Determine binBT* corresponding to the binwith themaximum weighted bin

sensitivity
M,nMgMWMM',wm,<NNNMnnNng*l(NMNNBWM*""*M<^^

In the nextsection, wepresent theMapping andImplementation Bin Selec

tion(MIBS) algorithm to solve theextended partitioning problem PI.

3.7 The Extended Partitioning Problem: MIBS Algorithm

Algorithm: MIBS

JnpVt: Vi € N: CH{, CSt, £, (extremity measure), and Rt (repeller mea
sure).

Software-hardware interfacecommunication costs: aha,^, ascommt
and tcomm. Constraints: AH,AS, and D.

Output V/€ N: mapping Mt (M. € {hardware, software}), implementa

tion bin £,*, and start time tt.

Initialization Nfixed = {fixed nodes} = 4,Nfiee ={free nodes} = {N}.
Compute median area and time values for all nodes in software and
hardware.

Procedure

75

while {IN^IXJH

51. Determine A/,- and f, for all i € N,

51.1. For all i € Njree, set area and time values to their median values

51.2. Use GCLP to compute M(and tt for i € /V,ree. (Section 3.3)

52. Determine the set of ready nodes NR

53. Select tagged node T(T€ NR) using urgency measures

54. Determine the implementation bin BT* for node Tassuming mapping MT

S4.1. Use the bin selectionprocedure to determine bin B-p (Section 3.6)

55. Nfree =Nfiee\{ T); Nfixed <- {T] ,Update tT based on the selected implemen

tation bin Bj .

}

free

Nrepresents the set ofnodes inthe graph. Np.ee is the set of free nodes; it is

initialized to N. Njfoj is the set of fixed nodes and is empty at start. The median

values of the area and time on hardware and softwaremappings are computed in

the initialization phase. For each step, the MIBS algorithmcomputes the mapping,

the implementation bin, andthe scheduleof one node. In SI of each step, the map

ping and schedule for all the free nodesis first computed. This is done by applying

GCLP over the set of free nodes assumingmedian area and time values. The set of

readynodes is determined in S2. This represents the set of nodeswhose predeces

sors are fixed nodes. One of theseready nodes is selected as a tagged node in S3.

In particular, we select a ready node on the critical path. In S4, the bin selection

procedure is applied to determine the implementation bin for this tagged node.

Finally, in S5, the schedule of the tagged nodeis updated depending on the imple

mentation bin selected. The tagged nodethenbecomes fixed. The sequence S1-S5

is repeated \N\ times until all the nodes in the graphbecome fixed.

Note that the mapping of all the nodes is not finalized at one shot in MIBS;

future mappings of theremaining free nodes are allowed to change depending on

76

the implementation bin selected for a tagged node. At any step, the known map

pings and implementation bins of the fixed nodes affect the mappings of the free

nodes. The complexity ofthe MTBS algorithm is 0(IM3 +B•INI2), where Bis the

number of implementation bins permapping (Appendix A6).

3.8 Performance of the MIBS Algorithm

The performance of the MIBS algorithm is examined in this section. As in

Section3.4, we will use both practical examples (themodem and TCS) as well as

random graphs to evaluate the performance.

The procedure used to generate the hardware implementation curve for

each node in the DAG is described in Section 3.8.1. In Section 3.8.2, the solutions

obtained with the MIBS algorithm are compared to the optimal solutions obtained

with the ILP formulation. In Section 3.8.3, we demonstrate the effectiveness of the

MIBS algorithm in reducing the hardware area relative to the GCLPalgorithm.

3.8.1 Estimation of the Hardware Implementation Curve

Silage code is generated for all thenodes in the DAG usingthe Silage code

generation feature of Ptolemy. The Hyper environment is used to generate the

hardware implementation curves as follows (see Figure 3.21). For each node, the

critical path Tc associated with its control-dataflow graph is first computed. The

hardware area required to implement the node at a sample period d equal to the

critical path is estimated (Appendix A8.1 discusses the estimation techniques in

detail). This sample periodcorresponds to the L implementationbin for the node.

The sample period is then increased in multiples of the sample period until the

required hardware reduces to just one resource of each type. This sample period

corresponds to the H implementation bin for the node; the hardware area cannot

77

sample period d nodal description

1 L_
Area Estimator

hardware area

(a)

nodal description

L ,
Compute critical pathTc I

°B 'c I nodal description
I(/.bin)

I ' *' implementation curve

(b)

Figure 3.21. (a) Estimation of the hardware area for a node, for a given sam
ple period (b) Computation of the hardware implementation curve for a node.

get any smaller using the particularsynthesis mechanism. Sample periods between

L and H bins correspond to the remaining implementation bins for the node.

The generation of the implementation curve for the random graphs is dis

cussed in Appendix A7.3.

3.8.2 Experiment 1: MIBS vs. ILP

ILP formulations of the modem and TCS examples become impossible to

solve in a reasonable time. A simplified version of the modem example with 15

nodes and 5 hardware implementation bins per node is considered here. The ILP

formulation for this example requires 718 constraints and 396 variables. Table 4

summarizes the solutions obtained with ILP and with MIBS algorithm. The close

ness of the solutions is encouraging, especially since ILP becomes formidable for

even slightly larger problems.

Figure 3.22 plots the MTBS and ILP hardware areas for a number of ran

dom examples. For the examples tested, the MTBS solution is within 18% of the

78

Scenario

ILP

MIBS

Comparison

hardware area

158

181

1.1456times bigger

solution time

35 hours

3 minutes

70 times faster

Table 4. Comparison of ILP and MIBS solutions.

optimal solution obtained by ILP. Larger examples could not be solved by ILP in

reasonable time. In these examples, ILP failed to give even asingle feasible inte

ger solution.

3.83 Experiment 2: Binary Partitioning vs. Extended Parti

tioning

Our next objective is to evaluate the effectiveness of the extended parti

tioning approach inreducing the total hardware area compared with binary parti

tioning. Three cases are considered. In the first case, mapping is done based on

GCLP, assuming that the execution times and areas for the nodes mapped to hard

ware are set to the values corresponding to their L bins. In the second case, this

mapping is recomputed, now with the area and execution time values correspond

ing to themedian implementation bins. In the third case, extended partitioning is

done based on the MIBS algorithm. Table 5 shows the results for the three cases

1.3

1.25

1.2

a

§ i.w

1 "
£ 1.05
E

1

0.95

0.9

mbs-arearttp-area £-
MIBS hardwarearea l*>area +"

- (normalized w.r.t ILP)

ILP hardware area

8 10 12
gnpfttbttN)

u 16

Figure 3.22. Comparison of MIBSand ILP solutions.

79

case Scenario hardware

area

area reduction

normalized with

respect to case 1

solution

time

1 GCLP,L implementation bin 736 1.0 0.0525s

2 GCLP.medianimplementation bin 530 0.7201 0.0525s

3 MIBS 362 0.4918 0.7974s

Table 5. Areaimprovement using MIBS vs. GCLP

applied to the modem example. The MIBS solution is observed to be much supe

rior to both the GCLPsolutions (50% less hardware compared to case 1,and 32%

less than case 2). This strengthens our premise that implementation flexibility can

be used at the partitioning level to reducethe overall hardware area.

In Figure 3.23, we compare, forrandom graphs, the hardware area obtained

with MTBS to that obtained with GCLP (medianarea and time values). On an aver

age, the area generated by MIBS is 26.4%smaller than thatgenerated by GCLP.

Figure 3.24-a shows the distribution of the nodes among the implementa

tion bins selected by the MIBS algorithm. This distribution is averaged over a

number ofrandom examples for a fixed graph size of 25 nodes. The bins areclassi

fied into 5 categories: L bin, L to median bin, median bin, median to H bin, and the

H bin. It is seen that the nodes in hardware are distributed among all the imple

mentation bins. This flexibility reduces time criticality at every mapping decision

11

0.9

0.8

0.7

0.6

1 1 1 1
QCLPwktiimdtan value A-

MIBS +-

oooooooooooooooooo
GCLP (median bins) hardware area

+*>/
" v\

20

.A K * -

I- MIBS hardware area ¥
(normalized w.r.t GCLP median)
_J I I I

40 60
0raptiste|N|

80 100

Figure 3.23. MIBS vs. GCLP (Extended Partitioning vs. Binary Partitioning)

80

dtaiHsinlonrtr

1 1
odM among bins —

-

"

1 '•' 1 , X~ir
L L-M M M-H

(a)

H

40 60
graphctz* |N|

(b)

Figure 3.24. (a) Node distribution among implementation bins, (b) Solution
time of MIBS algorithm averaged over random graphs per graph size.

and improves DSP utilization, i.e., the number of nodes mapped to software

increases. This combined effect (reduced number of hardware nodes andtheir dis

tribution over several bins) reduces the total hardware area. The MIBS solution

time is plotted as a function of the graph size inFigure 3.24-b. The algorithm has

complexity of0(IAfl3 +B. N\2).

3.8.4 Parameter Tuning

Several user-settable parameters come into play in the MIBS algorithm.

These include: (1) thecut-off percentiles (a, P)used for classifying extremities in

GCLP, (2) the extremity measure weight (y) and the repeller measure weight (v)

in GCLP, (3) the ranking function for GCcalculation (ts, tslth, orah), and (4) the

ranking function for BF calculation (tht1, thPlth1, or ah1).

Parameters a, P, y, and v are tuned by a simple binary search between 0

and 1.We have incorporated this automated search mechanism in our algorithm

implementation. Since the MIBS algorithm is extremely fast, such an exploration

is computationally viable. The ts/th and tfrw/r/rL ranking functions have been found

to perform best for GCand BF calculations respectively.

81

3.9 Summary

At the system-level, designs are typically represented modularly, with

moderate to large granularity. Each node can be implemented using a variety of

algorithms and/or synthesis mechanisms in hardware or software. These imple

mentations typically differ in area and execution time. We define extended parti

tioning as the joint problem of mapping nodes in a precedence graph to hardware

or software, scheduling, and selecting a particular implementation (called imple

mentationbin) for each node.The end-objective is to niinimize the totalhardware

area subject to throughput and resource constraints. The extended partitioning

problem is NP-hard; we proposed an efficient heuristic called MIBS to approxi

mately solve it. The MIBS algorithm has acomplexity of 0(1M3 +B•INI2), where

lAfl is the number of nodes, and B is the number of implementation options per

node, per mapping.

In this chapter, we first presented theGCLP algorithm to solve the binary

partitioning (mapping and scheduling) problem. It uses a global time criticality

measure to adaptively select amapping objective ateach step — if time is critical,

it selects a mapping that minimizes the finish time of the node, otherwise it mini

mizes the resource consumption. This time criticality measure overcomes the

inherent drawback with serial traversal. In addition to global consideration, local

optimality is sought by taking into account the preferences of nodes thatconsume

disproportionate amounts of resources in hardware and software mappings. This

effect is quantified by classifying nodes as extremities. The hardware area is fur

therreduced by usingaconcept of repellers toeffect on-line swaps between nodes.

Repellers take into account the relative preferences of nodes, based on intrinsic

algorithmic properties that dictate a preferred hardware or software mapping. The

82

GCLP algorithm is computationally efficient (0(INI2)). For the examples tested,

the GCLPsolution was found to benomore than 30% larger than the optimal solu

tion. Theeffectiveness of local phase nodes (extremities and repellers) inreducing

the overall hardware area was experimentally verified. On an average, the use of

localphasenodesreduces the hardware area by 17%, relative to solutions obtained

without using local phase classification of nodes.

The philosophy of the MIBS algorithm is to extend the GCLP heuristic for

extended partitioning without theassociated complexity buildup. The strategy is to

classify nodes in the graph as free, tagged, and fixed. Initially all nodes in the

graph are free —- their mappings and implementation bins areunknown. GCLP is

applied over the set of free nodes. A tagged node is then selected from this set; its

mapping is assumed to be that determined by GCLP. A bin selection procedure is

usedto compute an appropriate implementation bin for the tagged node. The pro

cedure uses a lookahead measure, called bin fraction, which estimates for each bin

of the node, the fraction of unmapped nodes that need to move to their fastest

implementations so that timing constraints are met. The bin fraction is used to

compute a bin sensitivitymeasure that correlates the implementation bin with the

overall hardware area reduction. The procedure selects the bin with maximum bin

sensitivity. The procedure simplifies this computation by assuming that the

remaining free nodes are either in their slowest or fastest implementations. The

tagged node becomes a fixed node once its implementation bin is determined.

GCLP is then applied over the remaining free nodes and the sequence is repeated

until all nodes in the graph become fixed. In the examples tested, the MIBS solu

tion is found to be within 18% of the optimal solution. Experimental results also

indicate thatimplementation bins can beusedeffectivelyto reduce the overall area

by as muchas 27% over solutions generated using binary partitioning.

83

4

COSYNTHESIS AND COSIMULATION

In Chapter 3, algorithms to partition an application into hardware and soft

ware were described. Partitioning makes three attributes available for each node in

the application: a hardware or software mapping, the type of implementation for

this mapping, and a schedule.

The next step in the design process is to synthesize the mixed hardware-

software system. The cosynthesis problem is to synthesize the hardware, software,

and interface components for the final implementation. In Section 4.1 we discuss

this problem. Based on the assumed target architecture, we develop an architec

tural model in Section 4.1.1. Our approach to synthesis is discussed in Section

4.1.2. We describe the particular mechanisms used to synthesize the hardware, the

software, and the interface in Sections 4.1.3 to 4.1.5. Some of the other approaches

to synthesis are discussed in Section 4.1.6.

Hardware-software cosimulation is the process of simulating the hardware

and software components of a mixed hardware-software system within a unified

environment. This includes simulation of the hardware modules, the processor,

and the software that the processor executes. The cosimulation problem is dis

cussed in Section 4.2. The requirements of a cosimulation environment are out-

84

lined. Ptolemy has an infrastructure that supports most of these requirements. The

relevant details of the Ptolemy environment are discussed in Section 4.2.1. Our

approach to hardware-software cosimulation within the Ptolemy environment is

presented with the help of an example in Section 4.2.2.

4.1 Cosynthesis

After partitioning, each node of the DAG is annotated with a mapping,

implementation bin, and schedule. We define cosynthesis as the problem of syn

thesizing the final implementation (hardware, software, and interface) from this

annotated DAG.

4.1.1 Architectural Model

A particular target architecture for the mixed hardware-software system

has been assumed in Chapter 2. As shown in Figure 4.1, the architecture consists

of a single programmable processor and multiple hardwaremodules connected to a

single system bus. Each node mapped to hardware is synthesized as a hardware

module1. A hardware module consists of adatapath and controller, and input and

system

inputs

Read/Write

Processor

Core

Data

Hardware
Module

Hardware
Module

Hardware
Module

mfy

Controller

Control

Figure 4.1. The target architecture.

85

system

outputs

output interfaces. The inputand output interfaces are responsible for thecommuni

cation between the hardware modules and the processor. The software component

of the architecture is the program thatruns on the programmable processor. This

includes the communicationcode, i.e., the device drivers thatmanagecommunica

tion of data between hardware and software. The architecture is assumed to be

non-pipelined, i.e., oneset of inputdata is processed completely beforethe second

set arrives into the system. We assume thatnodesin hardware and software com

municate via a memory-mapped, asynchronous, blocking communication mecha

nism2. By memory-mapped communication between the software and hardware,

we mean that data is communicated across the hardware-software boundary by

writingto and reading from a shared address space. The various components in the

architecture are configured as aglobally asynchronous locally synchronous model.

This means that each individualhardware module operates internally as a synchro

nous circuit, but the modules themselves communicate with each other and the

processor asynchronously. In other words, within a hardware module, a module

controlleractivates the variouscomponents of the datapath (ALUs, registers, mul

tiplexers, etc.) at predetermined clock cycles3. Communication between a hard

ware module and the processor or between hardware modules is asynchronous,

though. The reason is obvious. Since the schedule generated by partitioning is

based on execution-time estimates, it is not guaranteed to be cycle-accurate. That

is, we cannot exactly determine when a processor or hardware module should

1. We assume no hardware reuse between modules. This issue is further discussed in Sec
tion 4.1.3.
2. A systemmaycontain several typesof interfaces, suchasserial ports orcustom-designed
peripherals. All nodes need not communicate via the same mechanism An appropriate
communication marfumiwn may be selected for the different data transfers, depending on
various factors such as the size of the data (number ofwords and the bitwidth) and whether
the data is communicated on-chip or off-chip. In mis work we simplify matters by restrict
ing allnodes to use the same type ofcommunication mechanism.
3. The datapath andcontroller will be discussed in detailin Section4.1.3.

86

clock. The generated schedule is valuable, however, in that it can reliably indicate

the orderin which nodes execute. A global controller activates the hardware mod

ules in this order.

Architecture of a hardware module

The architecture of a hardware module is shown in Figure 4.2. We refer to

the datapath and controller collectively as the kernel of a hardware module. Each

kernel has two handshaking signals, ready andcompletion, in additionto the input

and outputdata signals.Each input and outputof the kernel is connectedto a data

latch. A latch has an inputenable (IE) and an outputenable (OE)control. The ker

nel begins its computation after it receives a ready signal, which indicates that

valid data is available on all of its inputs. On finishing computation, the kernel

raises a completion flag. The ready signal is a function of theinput enable signals

and the completion signal and is generated by combinational logic.

The details of the hardware-software, software-software, and hardware-

hardware interface are described next.

Hardware-software interface

In a memory-mapped scheme, eachinput andoutput of a hardware module

corresponds to a unique address in theshared address spaceof theprocessor. A tra

ditional implementation of memory-mapped communication requires an explicit

4t

system
data bus

Hardware Module

Kernel

Datapath
and

Controller

•-3[

latch H-4
latch

* latch

IE

Output interface
•i i-i ?

Figure 4.2. Architecture of a hardware module.

87

OUtp

^but,
OE,

OEk
put^

completion

system

data bus

Read/Write
H

Processor Stall
4

completion

Order of data transfers

n—rj
(input enable) (output enable)

Figure4.3. The global controller for the hardware-software interface.

address decoder that enables the appropriate input (output) of a hardware module

when a write (read) to that address arrives. As the number of modules increases,

the decoder tends to get quite large. To reduce the time overhead associated with

semaphore checking and area overhead associated with explicit address decoders,

we apply the ordered transactions principle, proposed by Lee et al. [Lee90]

[Sriram93]4. The hardware-software communication scheme works as follows.

The schedule (determined by partitioning) is analyzed to determine the order of

data transfers across the hardware-software interface. Each data transfer is

assigned a unique memory address. Thus, the sequence of hardware module-

addresses to which the processor sends read and write signals, is known apriori

from the schedule. Each of these addresses corresponds uniquely to an input or

output latch of a particular hardware module. A global controller, shown in

Figure 4.3, uses the orderinformation to activate the input andoutput latches of all

the hardware modules. When the processor issues a write request, the global con

troller knows the correspondinginput latch based on the order of transfers; it does

not need to explicitly decode the address. Accordingly, it enables the correspond

ing input latch and the data from the processor is latched into the hardware mod-

4. They propose mis principle in the context of shared-memory multiprocessor machines
running, SDF applications.

88

ule. Note that a hardware module's input data is always read before the next input

arrives, since the architecture is non-pipelined.When all the inputs to a kernel are

available, the combinational logic associated with the hardwaremodule, generates

a ready signal that notifies the kernel to begin execution. When the processor

issues a read request, the controller checks whether the corresponding hardware

module has set its completionsignal. If not, the controllerstalls the processoruntil

completiongets set. When completion is set, the controllerenables the correspond

ing output latch and the data from the hardware module is made available to the

processor. If the execution-time estimates are reasonably accurate, the ordered

transactions approach does not introduce a significant overhead (the ready or com

pletion signals are already set when the processorrequest arrives).

Software-software interface

Data transfers between two software nodes are assigned unique memory

addresses in the internal data memory of the processor. Communication between

two software nodes is achieved by writing the results to the corresponding loca

tions in the internal datamemory. Since the software executes sequentially accord

ing to the schedule, there is no need for semaphorechecking.

Hardware-hardware interface

Communication between two hardware modules is achieved by directly

connecting the output latch of the sending hardware module to the corresponding

input latch of the receiving hardware module. After the sending hardware module

finishes sending data, its completion signal enables the input latch of the receiving

module. The completion signal of the sending module is also used in the combina

tional logic that generates the ready signal for the receiving module.

89

4.1.2 The Cosynthesis Approach

The cosynthesis problem involves synthesizing the following components:

1. the datapath and controller for each hardwaremodule.

2. the program running on the programmable processor. This includes the

code to read from andwrite to the shared memory locations for communi

cation with the hardware modules.

3. the global controller, the input and output interfaces of the hardware mod

ules, andthe netlistconnecting the controller to the various hardware mod

ules and the processor.

Ourapproach to synthesis is shown in Figure 4.4.The application is speci

fied as an SDF graph. As discussed in Chapter 2, the SDF graph is first translated

to a directed acyclic graph representing data precedences. The DAG is an imple

mentation-independent specification of the application, i.e., nodes are at a task

level of granularity and have no commitment to a particular hardware or software

implementation. The partitioning tool (discussed in Chapter 3) annotates each

node of the DAG with amapping, implementation bin, andschedule.

This annotated graph is then passed to atechnology-dependent retargeting

tool. This tool replaces each node in the DAG (and all the nodes within its hierar

chy) with a technology-dependent representation corresponding to the mapping

and implementation binselected by thepartitioning tool. By technology-dependent

representation, we mean an assembly orC code representation for nodes mapped

to software, and aVHDL or Silage representation for nodes mapped tohardware5.

5.Note that the technology-dependent hardware description is still notthefinal implemen
tation; the hardware implementation (at the architecture orlayout-level) for anode isgen
erated by highlevelsynthesis toolsthatoperate on thisdescription. We assume suchatwo-
tiered approach because it is unreasonable toexpect full implementations of task-level el
ements to be available in a library, while library elements for Silage and VHDL descrip
tions arereadily available withinPtolemy.

90

Furthermore, if different implementations are available for a node (for instance,

cascade and transpose form IER filters, or inlined and subroutine-based software

representations), the retargeting tool selects the one corresponding to the imple

mentation bin selected by the partitioning tool. In the case of hardware-mapped

nodes, transformation andresource-level implementation options arealso possible,

as discussed in Chapter 1. Since these come into play only at a lower level, the cor

responding technology-dependent descriptionof a hardware-mappednode is anno-

[SDF Graph

r
Cosynthesis

Generate DAG |
™**XT)AGi
Partition (MIBS) |

annotated DAG

(mapping, implementation bin, schedule)

Retarget the DAG
(technology-dependent representation)!

1 technoIogy-depfflidentDAG

Generate communication addresses I

4 arcsassignedunique addresses

Generate software, hardware, and interface graphsI

Software graph Generate

order of

data transfers

oiderof s-h
data transfers

Interface

graph

Hardware graphs

Software synthesis I Interface synthesis

program controller
and

Interface
tog* u

layout and controller
{foreach hardware module)

Netlist Generator

91

system implementation

Figure 4.4. Cosynthesis approach

tated with the selected transformation and sample period. This information is then

used by the hardware synthesis tools.

This retargeting approach assumes the existence of a library for each tech

nology. For instance, suppose a node is an HR filter. We assume descriptions of the

IIR filter in C, VHDL, Motorola 56000 assembly code, etc. to be available. For

instance, within the Ptolemy environment, extensive libraries for the various tech

nologies, such as C, assembly code for various DSPs, VHDL, and Silage are avail

able. Also, multiple representations (corresponding to different values of the

implementation metrics) could be available for the same node within a given tech

nology.

An alternative to the library-based retargeting approach is to compile the

technology-independent representation of every node into its desired representa

tion. In this approach, the node is described in a highlevel language, such as C. The

C description for the node is then translated to an intermediate representation,

which is typically a variant of a control-dataflow graph [McFarland90a]. The inter

mediate representation is compiled to either VHDL, or assembly code, depending

on the desired synthesis technology. This compilation approach can be simplisti-

cally thought of as retargeting at the instruction level, accompanied by some tradi

tional compiler-like optimizations. Such a compilation approach is used in the

DSPStation [MentorGraphicsl] for synthesizing hardware or software from a

highlevel description based on Silage.

We have chosen the library-based retargeting approach. There are two

advantages to this approach. First, it is computationally efficient and retains modu

larity. If a node (or its mapping or implementation) changes, the corresponding

representation for the node is re-synthesized by simply selecting the new library

element. In the compilation approach, the intermediate graph would have to be

92

regenerated and compiled. Secondly, each module can be individually optimized

(when added tothe library), thereby improving the quality ofthe implementation.

The disadvantage ofthis approach is that itdepends on the richness ofthe library.

If a corresponding element does not exist in the library, the user is forced to

develop it.

After the retargeting step, each node in the DAG has been replaced by an

equivalent technology-dependent representation. The address generator assigns a

unique address to every data transfer involving a software and a hardware node,

i.e., every arc connecting a software node to a hardware node is assigned an

address in theprocessor's external address space.

The next step in the synthesis process is to generate the hardware, soft

ware, and interface graphs. Figure 4.5 shows typical hardware, software, and

interface graphs for a simple example. These graphs are fed to the hardware, soft

ware, and interface synthesis tools respectively. A separate hardware graph is

generated for each node mapped to hardware. Since a node could be represented

hierarchically in the original description, the hardware graph can, ingeneral, con

tain several subnodes. The hardware graph is annotated with the transformation

and sample period corresponding to the implementation bin selected for this node.

The hardware synthesis tool generates adatapath and controller for each hardware

graph as required by its implementation bin. For software nodes, the synthesis

technique is slightly different. All nodes mapped to software are combined in a

single software graph. Send and receive nodes are added wherever a hardware-

software communication occurs. Recall that the partitioning algorithm generates a

global schedule that determines the order in which all the nodes in the DAG begin

execution. The ordering between the nodes ofthe software graph is derived from

this global schedule. The software synthesis tool generates a single program from

93

the software graph. The program contains code for all the nodes in the software

graph, where the code is concatenated in the predetermined ordering.

The order generator determines the order of transfers between nodes

mapped to software andhardware. The interface synthesis tool generates the glc-

C^J hardware
lllll software
x: external memory

ordering: 1-2-3-4-5-6

generated by the
partitioning process

Hardware Graphs

hardware graph
for node 3

Software Graph

annotated DAG

:3

hierarchical representation of a node
(called subgraph)

hardwaregraph
lornode 4

/
hffldware graph

for node 6

ordering: 1,2,send1,send2.recv1,recv2,5,8end3 (derived from the global ordering)

Transfer Order

write xrl

write x:2

*eadx:3

readx:4

write x£

Interface Graphs

Ix:1H* 3 >h(x:3]

Figure 4.5. Hardware, software, and interface graphs. Each node in the hard
ware (software) graph contains a Silage or VHDL (C or assembly) description.

94

bal controller using this order of transfers. It also generates theinterface glue logic

(latches, combinational logic for generating theready signal, etc.) for thehardware

modules.

A netlistthatdescribes theconnectivity between the hardware modules,the

processor, and the global controller is next generated. Standard placement and

routing tools can then be used to synthesize thelayout for thecomplete system.

In the following sections we discuss the hardware and software synthesis

tools in more detail.

4.13 Hardware Synthesis

Given a hardware graph (for a node), we wish to synthesize its datapath

and controller. The general approach for hardware synthesis is to:

1. Generate asynthesizeable description of the hardware graph. A synthesize-

able description is typically in alanguage such asSilage orVHDL. Such a

description is generated by combining the technology-dependent descrip

tionof allthe subnodes in thehardware graph.

2. Feed this description to highlevel hardware synthesis tools to obtain the

implementation for the node. Several highlevel synthesis tools that operate

on such synthesizeable descriptions already exist— ourapproach is to use

them directly.

Figure 4.6 summarizes the hardware synthesis mechanism. We restrict our

selves to Silage6 descriptions for the hardware graph, and assume that the Hyper

6. Silage [Hilfinger85] isan applicative language mat iswell-suited toexpressing DSP ap
plications. Its key features include: dataflow semantics, multirate operators, manifest iter
ations, signal precision specification, and single-assignment Several research and
commercial synthesis systems use Silage as the specification language (for instance. Hyper
from UCBerkeley [Rabaey91], Cathedral from IMEC [Laneer91]. and DSPStation from
Mentor Graphics [MentarGraphicsl]).

95

hardware graph

Silage code generation
(Ptolemy)

Silage code

Highlevel hardware synthesis
(Hyper)

datapath and controller

Figure 4.6. Mechanism for hardware synthesis for a single node

system [Rabaey91] is used to synthesize the datapath and controller from this

Silage code.

Figure 4.7 illustrates the hardware synthesis mechanism with an example.

Figure 4.7-a shows a simple task-level description (specified in Ptolemy), where

oneof the nodes is a5th order IIR filter. Suppose that thisnode is mapped to hard

ware. Let us consider the synthesis of its implementation. Figure 4.7-b shows the

hierarchical description of this node (a cascade of two biquads and a first order

section). The first biquad is specified hierarchically in terms of elementary opera

tions as shown in Figure 4.7-c, and the second biquad and the first order section

are assumed to bemonolithic. Figure 4.7-d shows thehardware graph for thenode.

Each subnode in the hardware graph contains Silage code. A single Silage program

is generated by combiningthe Silage descriptions of the individual sub-nodes in the

hardware graph. We have developed a Silage code generation mechanism, within

Ptolemy, that generates Silage code starting from such a hardware graph (see

[Kalavade93] and [Ptolemy95, Chapter 17] for details on Silage code generation7).

7.The Silage code generation process includes: (1) generating aschedule for the subnodes
in the hardware graph (2) stitching together thecode from the individual subnodes in the
order specified by theschedule (this includes buffer management between themodules).

96

The generated Silage description for the IIR node in our example is shown in

Figure 4.7-e. This description, along with the transformation and sample period

values of the node (corresponding to its implementation bin) are used by Hyper to

generate the implementation. Figure 4.7-f shows the final layout of the datapath

and controller for the IIR filter.

Synthesis using Hyper

(transformation and sample period)

specification

hierarchical description of node

tTH^ (b)

firstOrder

hardware graph for node"5th Ordeil Filter"

out_0
tput.
tput.
tput.

output.
tput.

output,
output,
output.

tput.
output,

output,
output.

Silage code generation (Ptol< my)

gnn_S fix<16,14>(1.0)
g»in_6 fix<16,14>(l 0)
g«>n_7 fix<16,14>(1.0)
g»in_B fix<16,14>(l 0)
dl 9 fnx<5,0>(-1.14799988746643)
d?_9 fix<5,0>(0 41?79995441436E)
n0_9 fHx<5,0>(0 O674SS0533794678)
nl_9 fix<S,O>(0U499999O463?S7)
n?_9 fix<5,0>(0 067455O533794678)
al fix<16,14>(l 0)
a? fix<16,14>(l 0)
nui fix<16,14>

fix<16,ll>) out f-ix<5,0> -

«<16,ll>(output_l 1 » output 8
- fix<16,U>(output_4),
- fix<16,ll>(output_4),
- fix<16,ll>(output_?_l*l),
- fix<16,ll>(outpul_?_l«l),
• fix<16,ll>(output_?_l«l)l
- fix<16,ll><output_?_7«l),
- fix<16,ll>(output_?_?«l),
fix<16,ll>(in - output 6 - output 5),
fix<16,ll>{ output.3_2 • gnn_S),
fix<16,ll>(output_?_3 • grin 6),
fix<16,ll>(output~l 3 • gim_7),
fix<16,ll>< output!l_? • giin_8),

—o

output_7) ,

(e

?_1
1_2
?_?
3_?

A_3
J_3
_4 -
_5 -
_6 -
_7 .

8 -

/• it«r SilagtBiqumd) •/
ymx - 0,
y*»? - 0

97

•J - o,
- out_0 - nu«(dl_9 • >4R) - nu»<d?_9 •)•?),
itput_9 - nu-(nO._9 • y) - nuKnl_9 • y«) . n"«-<nJ_9 • y«?)

f* it«r Sil«girir»tOrx)«r •/
01-0,
- output_9 ♦ nm^Ml • x«l),

out - x . nu«<«? • rfl),

•ltd,

J'fifthQrdy.riV 47 1in«t, 1494 chjr«ct,rt
Figure 4.7. An example illustrating the hardware synthesis mechanism.

Hyper-generated Architecture

Figure 4.8 shows the generic architecture of the datapath and controller

generated for a single hardware graph. The datapath comprisesone or more execu

tion units (ALUs, multipliers, adders, etc.). Inputs to the execution units are

latched in registers. If an execution unit receives inputs from several sources, a

multiplexor is added. Outputs of the execution unit are latched in tristate buffers.

Data is communicated internally via a crossbar network. The datapathis controlled

by a module controller. Associated with each execution unit is a local controller;

the module controller controls the local controllers.

Note that the module controller generated by Hyper does not normally

include the ready and completion signals. It can be modified slightly to incorporate

in0 in1 ir^ ready completion outo out1 out|<
4 4

module controller

± ± I
crossbar network

iX ir irk

?
7

5^p ^pnuliif lexor

trtstate]
buffer

• • ♦

Figure 4.8. Architecture of the datapath and controller in a hardware module.
This is the underlying architecture generated by Hyper, augmented with the
ready and completion signals.

98

these signals. The module controller activates the execution units and the local

controllers only after receiving the ready signal. It sets the completion signal after

processing one set of inputs.

Hardware Reuse

A limitation of our current partitioning and synthesis mechanism is that it

does not allow reuse ofhardware between nodes. This is limiting especially inthe

case ofmultirate applications, where the DAG may contain several instances of a

particular node. In such a case, the partitioning algorithm can bemodified to take

reuse into account8. The synthesis process would then have to take this reuse into

account while generating the interface.

4.1.4 Software Synthesis

The software synthesis problem is togenerate a software implementation

(the program running on the programmable processor) corresponding toasoftware

graph. Although the software synthesis technique described here applies toany tar

get processor, our discussion assumes that the programmable processor used is a

Motorola DSP 56000.

Recall that a software graph contains all the nodes mapped to software,

augmented by send and receive nodes for communication. Each node in this graph

contains a technology-dependent representation, i.e., a codeblock representing the

functionality of the node. The software synthesis process essentially involves

stitching together these codeblocks togenerate a single program for the entire soft

waregraph.Topreserve the functionality of the system, the codeblocks need to be

put together according to the sequence generated by the partitioning tool. Note,

8.Asimplistic approach is toconsider the extremity and repeller measures ofanode with
multiple instances in the DAG and explicitly assign all the instances ofthe node to its pre
ferred mapping.

99

however, that the schedule generated by the partitioning tool is at the level of

nodes in the DAG; it does not contain any information on the sequence in which

the subnodes within a hierarchical node should be executed. As a result, we first

need to determine this sequence before we canstitch together the codeblocks. Such

a sequence is generated by standard list scheduling techniques available within

Ptolemy. The ordering of the nodes in the software graph is updated using this

sequence. The final orderingis referredto as theflattenedordering.The individual

pieces of code are then stitched together in the order specified by the flattened

ordering. Note that this includes the code for the send and receive nodes too. The

code for a sendnodecontains a "write" instruction; it writes the results generated

by the node connected to its input to the memory location assigned to its input arc.

Similarly, a receive node contains a "read" instruction to read from the memory

location assigned to its output arc. The endproduct is a program corresponding to

the software graph. Our approach for software synthesis is summarized in

Figure 4.9.

software graph I I ordering

— schedule each hierarchical node

— expand each hierarchical node according to its schedule

— update ordering to get flattened ordering

i flattened softwaregraph and its ordering

generate code for flattened softwaregraph

— add initialization code

— add communication code

— stitch code blockstogether according to ordering
(CG56 code generation mechanism in Ptolemy)

I program

Figure 4.9. Mechanism for software synthesis from the software graph.

100

We have augmented the DSP 56000 code generation capability within

Ptolemy ([Pino95a] and [Ptolemy95, Chapter 14]) to stitch together the code

according to a predefined schedule. This predefined schedule is the order derived

from theglobal schedule generated by the partitioning tool. Thegenerated code is

repeatedly executed by the DSP.

Figure 4.10 shows the software synthesis mechanism with the help of an

example. Figure 4.10-a shows thetask-level DAG annotated withthemapping and

the ordering for a simple application (chirp signal generation). Suppose that nodes

1 (constant generator), 3 (integrator), and 5 (xgraph) are mapped to software.

Suppose further that node 3 is represented hierarchically as shown in Figure 4.10-

b, while nodes 1 and 5 are monolithic. The software graph and the derived order

ing is shown in Figure 4.10-c. The flattened software graph and its ordering are

shown inFigure 4.10-d. The generated code (according tothe flattened ordering) is

listed in Figure 4.10-e.

4.1.5 Interface Synthesis

Interface synthesis involves synthesizing the global controller as well as

theinterface glue logic. A finite state machine description for theglobal controller

can be generated using the order of transfers. An implementation for thecontroller

can be synthesized using logic synthesis tools. The latches and other glue logic

surrounding a hardware module can be synthesized using a template-based

approach, such as that proposed by Sun etal. [Sun92]. The interface graphs can be

used to generate anetlist connecting the various hardware modules. Currently, the

interface synthesis is done manually, although the approach we have presented is

relatively simple to automate.

101

Task-level DAG annotated with mapping and ordering
H £_ H

ordering: 1,2,3,4,5

(generated by

the partitioning (°)
tool)

ordering

derived from (c)
global schedule
1,3.5 *

(d)

(e)

f>j*o3fe>J

software graph

*:4C94: XJ4095

4 5
(S: software.H: hardware)

hierarchical representation
for node 3
nodal schedule: 3-3,3-1,3-2

X:4096 3C4097

G>0 0^0(5K!)
ordering I,s1,r1,3, s2,r2,5

flattened software graph

*4094 x:4095 x:4096 J«4097

0*© 0*0*@K2K3)0*0
flattened ordering: 1,s1, rl,3-3r3-1,3-2, s2, i2,5

Q User: kalavade
Target: scheduled-COW
Universe chirp

START
initialization coda from star Const! (class CC56Const>

org x:l
dc 0.00199997425079346

org p:
main loop begins

LOOP
code from star swcgl.Constl (class CGSGConst)

code from star sendl
move x.l,xO
move x0,x:4094

code from star recvl
move x:4095,x0
move xO,x:2

code for integrator2
code from star Cainl (class GGS6Gain)

move x:4,xl
move #0.200000047683716,yl
mpyr xl.yl.a
move a,x:3

code from star Add.input-21 (class CGS6Add)
move x:2,xO , 1st input -> xO
move x:3,a ; 2nd input -> a
add xO,a
move a,x:4 ; this move saturates

code from star Fork.output-21 (class AnyAsmFork)

code from star send2
move x 4,x0
move x0,x:4096

code from star recv2
move x:4097,x0
move x0,x:5

code from star swcgl.Xgrephl (class CC56Xgr«ph)
move x:5,a
move a,y:l
jmp LOOP

———— main loop ends _________

Figure 4.10. Software synthesis for chirp signal generator.

102

(a)

4.1.6 Other Synthesis Approaches

In this section we discuss some of the other approaches to cosynthesis.

Systems that synthesize just hardware or just software from synthesizeable

descriptions have been around for a while. A comprehensive summary of these

tools exists elsewhere [Camposano91][Bier95a] and we will not discuss them here.

Instead,we will discuss a few representative systems that focus on the higher-level

cosynthesis problem.

Chiodo et al. [Chiodo94] focus on the cosynthesis of control-dominated

applications. An application is typically described in Esterel or VHDL. This is

translated to an internal representation consisting of a network of CFSMs (code-

sign finite state machines). CFSMs are similar to hierarchicalconcurrent FSMs. In

addition, they communicate by broadcast. Events can have arbitrary propagation

times, and do not necessarily follow the synchronoushypothesis. Each CFSM cor

responds to a component of the system beingmodeled and is manually assigned to

either hardware or software. Hardware is generated using logic synthesis tools. For

software synthesis, each node in the CFSM is translated to a thread and a run-time

scheduler controls the execution of threads. This is different from our approach,

where a run-time scheduler is not required since the schedule is known at compile

time. The key strength of the semantics of the CFSMs is that these systems can be

verified using formal verification techniques.

In the VULCAN system [Gupta93], an application is specified in Hard-

wareC and translated into a control-dataflow based internal representation. During

software synthesis, the internal representation is compiled to C code. Hardware is

synthesized by passing the internal representation through highlevel synthesis

tools.

The COSYMA system [Henkel94] starts with a C-like description of the

103

application, which gets translated to an internal syntax graph. After partitioning,

the internal graph is compiled to HardwareC and C representations for hardware

and software synthesis respectively.

Srivastava et al. [Srivastava91] have developed a framework, called

SIERRA, for synthesizing the hardware and software components for multi-board

systems. An application is described as ahierarchical network of communicating

sequential processes. The user maps the application onto a system architecture,

consisting ofmultiple boards with dedicated hardware modules and programmable

processors. They have developed techniques that automatically generate the netlist

for the system architecture. Software synthesis involves generating code for each

process; areal-time kernel on the processors manages the software execution. The

interface is synthesized using atemplate-based approach [Sun92].

Chou etal. [Chou92] address the problem of synthesizing the device driv

ers and glue logic for the hardware-software interface between microcontrollers

and hardware devices. Given alistof device ports that need to beconnected to the

microcontroller and alist of available microcontroller ports, they present aproce

dure for assigning device ports to controller ports.

Coelho et al. [Coelho94] present an interesting variant of the cosynthesis

problem. They address the problem ofresynthesizing the system when the specifi

cations change, while ensuring that hardware does not have to be resynthesized.

They present techniques toresynthesize software such that the timing constraints

imposed by the hardware are still met.

4.1.7 Summary

Cosynthesis is the problem of synthesizing the hardware, software, and

interface components of the system, starting with apartitioned DAG. Our synthe-

104

sis techniques target an architecture consisting ofasingle programmable processor

and multiple hardware modules. The architecture is assumed to be non-pipelined

and nodes mapped to hardware and software commumcate using a memory-

mapped, self-timed, blocking mechanism. Hardware-software communication is

managed efficiently using the ordered transactions principle.

Our approach to cosynthesis is to decompose the partitioned DAG into

hardware, software, and interface graphs, where each node in the hardware and

software graphs is a technology-dependent representation of the original node.

Pre-existing synthesis tools are used to generate the final implementation from

these graphs. The emphasis in our work has been on generating synthesizeable rep

resentations for the hardware and software components. We use preexisting syn

thesis tools (such as Hyper and Ptolemy) to generate the final implementation.

4.2 Cosimulation

Hardware-software cosimulation is the process of simulating the hardware

and software components of amixed hardware-software system within a unified

environment. This includes simulation of the hardware modules, the processor,

andthe software that the processor executes.

Hardware is typically simulated using discrete-event or cycle-driven simu

lators. The processor that executes the software can be modeled at various levels of

detail, depending on the desired accuracy and simulation speed. In general, there is

a spectrum of approaches for modeling a processor [Rowson94][Chang95]

[Becker92][Shanmugan94]. Possible approaches include:

*• Pstaited processor models: In principle, the processor components could

be modeled using a discrete-event model of their internal hardware archi-

105

tectures (datapath, instruction decoder, busses, memory management unit,

etc.) as they execute the embedded software. The processor internals are

modeled in a way typical of hardware systems, often using VHDL or Ver-

ilog. The interaction between models of individual processors and other

components is captured using the native event-driven simulation capability

supported by a hardware simulator. Unfortunately, most processor vendors

are reluctant to make such models available, because they reveal a great

deal about the internal processor design. Moreover, such models are

extremely slow to simulate.

2. Bus models: These are discrete-event shells that simulate the activity on

the periphery of a processor without executing the software associated with

the processor. This is useful for verifying very low-level interactions, such

as bus and memory interactions, but it is difficult to guarantee that the

model of activity on the periphery is accurate; it is also difficult to simulate

the interaction of the software with the hardware.

3. Instruction-set architecture models: The instruction set architecture can be

simulated efficiently by a C program. The C program is an interpreter for

the embedded software. It updates a representation of the processor state

and generates events to model the activities on the periphery of the proces

sor when appropriate. This type of modeling can be much more efficient

than detailed processor modeling because the internals of the processor do

not suffer the expense of discrete-event scheduling.

4. Compiled Simulation: Very fast processor models are achievable in princi

ple by translating the executable embedded software specification into

native code for the processordoing the simulating. Forexample, code for a

106

programmable DSP could be translated into Sparc assembly code for exe

cution on a workstation. This is called binary-to-binary translation. The

translated code has to include code segments that generate the events asso

ciated with the external interactions ofthe processor. In principle, such pro

cessor simulations can be extremely fast. The dominant cost of the

simulation becomes the discrete-event or cycle-based simulation of the

interaction between the components.

5. Hardware Models: If the processor exists in hardware form, the physical

hardware can often beused tomodel the processor inasimulation. Alterna

tively, the processor could be modeled using an FPGA prototype, for

instance, using Quickturn. The advantage ofthis sort ofprocessor model is

the simulation speed, while the disadvantage is that the physical processor

must be available.

Thus, depending on the desired simulation accuracy and speed, one of

these models can be used for simulating the processor inthe mixed hardware-soft

ware system. A cosimulation environment should allow the processor to be mod

eledusing anyof these approaches.

It is often useful to be able to simulate the system at different levels of

abstraction, throughout the entire design process. For instance, at the start of the

design process, the hardware components may not have been synthesized com

pletely. At this point, to study the interaction of the hardware and software, the

hardware could be modeled functionally. As the design evolves, and more imple

mentation-level details of the hardware become available, the functional model of

the hardware can be replaced byamore detailed model at the netlist level. On the

other hand, once the detailed operation of the hardware has been verified, one

could go back and replace the hardware components by a highlevel model to

107

increase the speed of the simulation. A cosimulation environment should support

this migration across levels of abstraction.

Some of the components in the mixed hardware-software system may be

off-the-shelf components, whose design is not part of the current design process.

Such components can be modeled by a functional representation through the entire

design process. It is not required to model the internal architectural details since

they can be assumed to be correct, besides, we have no control over changing the

model of such a component anyway.

In addition to the digital components, a system may also contain analog

components. The cosimulation environment should also be able to support the

modeling of such components and their interaction with the rest of the system. Fig

ure 4.11 summarizes these aspects of cosimulation.

Thus it is clear that a single simulator, such as a discrete-event hardware

simulator, cannot support all these requirements of hardware-software cosimula

tion. A framework that allows these different models to be mixed and matched is

required for effective cosimulation.

software hardware

Figure 4.11. Cosimulation.

108

Ptolemy [Buck94a] is a heterogeneous simulation and prototyping environ

ment, developed by the DSP Group at the University of California at Berkeley9.

Ptolemy has the uniquecapability of supporting the integrated simulation of differ

ent models of computation. It meets most of the above-mentioned requirements of

a cosimulation environment. We use Ptolemy for the cosimulation of mixed hard

ware-software systems.

In Section 4.2.1, we describe the features of Ptolemy that make it suitable

for simulating systems with such diverse components. The use of Ptolemy for

cosimulation is demonstrated with the helpof anexamplein Section4.2.2.

4.2.1 The Ptolemy Framework

Ptolemy is an environment for simulation and prototyping of heteroge

neous systems. It uses object-oriented software technology to model each sub

system in its most natural and efficient manner, and has mechanisms to integrate

heterogeneous subsystems into a whole.

Figure 4.12 shows the structural components of Ptolemy. The basicunit of

modularity in Ptolemy is the Block. The system being simulated (or designed) is

described as anetwork of Blocks. A Scheduler determines the operational seman

tics of a network of Blocks, i.e., it determines the order in which the Blocks are

executed. The operation of the Scheduler is governed by the semantics of the

underlying description. The lowest level (atomic) objects in Ptolemy are of the

type Star, derived from Block. A Star is described by a C++ description. The

description includes a function that gets invoked when a Block is initialized

("setupQ"), a function todescribe the run-time behavior of the Block ("goO"), and

9.While Ptolemy supports both simulation and synthesis ofsystems, werestrict the discus
sion inmis section tothe simulation aspects only. Complete details ofPtolemy canbefound
in [Ptolemy95]

109

a function that gets called at the termination of the simulation ("wrapupO"). A

Galaxy, also derived from Block, contains otherBlocks internally. A Galaxy may

internally contain both Galaxies and Stars.

Ptolemy accomplishes the goal of multiparadigm simulation by supporting

a plethora of different design styles encapsulated in objects called Domains. A

Domain realizes a computational model appropriate for a particular type of sub

system. Some of the simulation Domains that are currently supported include

'Synchronous Data Flow' (SDF), 'Dynamic Dataflow' (DDF), 'Discrete Event'

(DE), and the 'Digital Hardware Modeling Environment' (Thor).

A Domain in Ptolemy consists of a set of Blocks and Schedulers that con

form to a common computational model — the operational semantics that govern

how Blocks interact with one another. The Domain class by itself gives Ptolemy

the ability to model subsystems differently, using a model appropriate for each sub

system. It also supports mixing thesemodels at the system level to develop a heter

ogeneous system with different levels of abstraction. The mixture is hierarchical.

Block

• setupO
• 90()
• wrapup()

PortHole

• initializeO
• receiveDataO
• sendDataQ

Geodesic

• initializeO
• numlnitO
• setSourcePortO
• setDestPortO

PortHoleJ ^Joc^PoriHok

ParbclePartic,e
• reaoTypeO
• printO
• operator« 0
• doneO

Figure 4.12. Block objects in Ptolemy send and receive data
encapsulated in Particles to the outside world through Portholes.
Buffering and transport is handled by the Geodesic and garbage
collection by the Plasma.

110

Any model of computation can be used at the top level of the hierarchy. Within

each level of the hierarchy, it is possible to have Blocks containing foreign

Domains. This hierarchical heterogeneity is quite different from the concept of a

simulation backplane, implemented for example in Viewlogic's SimBus system. A

simulation backplane imposes a top-levelmodel of computation through which all

subsystems interact.

Figure 4.13 shows the top view of a system associated with a certain

Domain called "XXX", associated with which are XXXStars and a XXXSched-

uler. A foreign subsystem that belongs to Domain YYY, and has its own set of

YYYStars and a YYYScheduler is embedded in this XXXDomain system. This

foreign subsystem is contained entirely within an object called an XXXWormhole.

An XXXWormhole is a type of XXXStar — so at its external interface it obeys the

operational semantics of the external Domain, but internally it consists of an entire

foreign subsystem. A Wormhole can be introduced into the XXX Domain without

any need for the XXXScheduler to know of the existence of the YYY Domain.

The key to this interoperability is the interface between the internal structure of a

Top-level System

XXXDomainiTN

Figure 4.13. The universal EventHorizon provides an interface between
the external and internal Domains.

Ill

Wormhole and its external environment. This interface is called the EventHorizon.

The EventHorizon is a minimal interface that just supports exchange of data and

permits rudimentary standardized interaction between schedulers. Each Domain

provides an interface to the EventHorizon, and thus gains an interface to any other

Domain.

The Domain and the mechanism of coexistence of Domains are the pri

mary features that distinguish Ptolemy from otherwise comparable systems such

as Comdisco's SPW and Bones, Mentor Graphic's DSPstation, and the University

of New Mexico Khoros System [Rasure91].

We use the SDF and Thor simulation Domains for hardware-software

cosimulation. Some details of these Domains are discussed next.

Synchronous Data Flow (SDF) Domain: The SDF Domain is a data-

driven, statically scheduled Domain. "Data-driven" means that the availability of

data on the inputs of a Star enables it. Stars with no inputs ("sources") are always

enabled. "Statically scheduled" implies that the firing order of the Stars is deter

mined only once during the start-up phase and this schedule is periodic. The SDF

Domain supports simulation of algorithms, and also allows functional modeling of

components such as filters and signal generators.

Thor Domain: The Thor Domain implements the Thor simulator

[Thor86], which is a cycle-based register-transfer-level simulator for digital hard

ware. It supports the simulation of circuits from the gate level to the behavioral

level. The Thor Domain makes it possible to simulate digital components ranging

incomplexity from simple logic gates to programmable DSP chips10.

10.The Thor domainmight likely be replaced in thefutureby a VHDLdomain.

112

4.2.2 Cosimulation Using Ptolemy

Figure 4.14 shows an example of amixed hardware-software system being

simulated in Ptolemy. Figure 4.14-a shows the task-level SDF description of an

application (telephone channel simulator) thatis running on this system. Using the

partitioning techniques described in Chapter 3, this application can be partitioned

into hardware and software. The software synthesis mechanism described in Sec-

Telephone ChannelSimulator

GauMtsn noi*e

-f>

uftetf Dtftortion

>-&-&

(a)
iBptbtdSmil assembly

code

Figure 4.14. Hardware-software cosimulation using Ptolemy: system modeling

113

tion 4.1.4 is used to generate DSP assembly code corresponding to the nodes that

aremapped to software. Hardware modules aresynthesized for thenodes mapped

to hardware using techniques described in Section 4.1.3. The next step in the

design process is to simulate the interaction between the DSP (running thegener

ated code) and the hardware modules.

4.2.2.1 System-level Modeling

The top-level model of the system is represented in the Thor Domain in

Figure 4.14-b. The key components of the target architecture include theDSP, cus

tom hardware, and the glue logic.

Modeling the DSP

The DSP56000 ismodeled as a Star in the Thor Domain11. The "setupO"

method of the DSP Star establishes a socket connection with Sim56000, Motor

ola's stand-alone simulator for the DSP56000. Sim56000 is an instruction-set sim

ulator; it accurately models the behavior of each of the processor's signal pins,

while executing the code. During its "goO" method, this Star translates the logic

values present at the processor's pins into values meaningful to the simulator,

transfers them to Sim56000, and commands the simulator to advance the simula

tion byonestep. It waits for the simulator to transmit thenew logic values back to

the processor pins and continues with the rest of the simulation.

Functional model of the hardware

Nodes mapped to hardware can be modeled at different levels of abstrac

tion. In this example, wemodel the hardware atafunctional level. TheSilage code

for the hardware module is translated to C++ code. This code is nested inside an

11. Early work onencapsulation of the Motorola simulator for interfacing with a stand
alone Thor simulation was done by Bieretal. [Bier89]. We have extended their techniques
to encapsulate the simulator into a Ptolemy Star.

114

SDF Star and simulated as aWormhole within the parent Thor Domain, as shown

in Figure 4.14-e12. When this wormhole isrun, itmodels the functional behavior

of the hardware module. At the output of the hardware module is a "delay" block

that emulates the execution time of this hardware module13. Such amodel for the

hardware module allows us to model the timing associated with the interaction

between the hardware module and the rest of the system without having to go

through a slow architectural simulation of the module.

Alternatively, the hardware could be simulated at a structural level within

the same framework by replacing the functional model and the delay by a struc

tural VHDL description of the hardwaremodule.

Modeling the glue logic and the system I/O

The glue logic consisting of clock generators, decoders, and latches is eas

ily modeled in the Thor Domain.

Besides processors anddigital logic, it is often necessary to model analog

components such as A/D and D/A converters, and filters that operate in conjunc

tion with this digital hardware. These analog components can most conveniently

be represented by their"functional models" using the SDF Domain. Often abstract

functional modeling of components such as filters is sufficient — detailed behav

ioral modeling is not needed — particularly if an off-the-shelf component with

well-understood behavior will be used in the final implementation. The Wormhole

mechanism discussed earlier is used to mix the data-driven, statically-scheduled

SDF models of analog components with event-driven, logic-valued Thor models

of digital components within a single simulation. Figure 4.14-c shows a signal

source being modeled as a sine generator followed by an analog to digital con-

12.Chapter 17of [Ptdemy95] describes this Silageto C++ translation in some detail.
13.The execution time for ahardware module is determinedby synthesizing an implemen
tation for the node using hardware synthesis techniques discussed in Section4.1.3.

115

verter. The A/D converter is modeled functionally as a bandpass filter followed by

a quantizer, as shown inFigure 4.14-d. Afunctional model of this kind can beeas

ily generated from the available device specifications.

4.2.2.2 System Simulation

Figure 4.15 shows the run-time behavior of the system. The logic analyzer

Pu>Ia**/nw maltfar (afalyr.trgutx=^l> tjfcilater jUtagj nrmng

Figure 4.15. Hardware-software cosimulation using Ptolemy.

116

shown in Figure 4.15-a displays the traffic on the DSP bus. Figure4.15-c shows

the Motorola DSP simulator, which executes the generated assembly code. The

simulation can be halted at any time by interrupting the simulator window and

intermediate register contents can be examined. Data sent to the functional model

of the hardware is transformed and passedonto the rest of the simulation after the

delay equal to the execution time of that hardware module.

Thus the mixed hardware-software system can be simulated within the

Ptolemy environment. The different domains are used to model the interaction

between the components of the system at different levels of abstraction.

117

5

DESIGN SPACE EXPLORATION

In the previous chapters we have discussed specific solutions for automated

partitioning and synthesis. There we assumed a particular design objective and tar

get architecture. In general, the system-level design problem cannot be posed as a

single well-defined optimization problem from the designer's perspective. Typi

cally, the designer needs to explore the possible options, tools, and architectures,

choosing either automated tools or manually selecting his/her choices. This design

space is quite large. As shown in Figure 5.1, a large number of target architectures

and implementation technologies could be used to implement a system. Several

optimization objectives and constraints are possible. The user also has access to a

largenumber of design tools. The usermight experiment with the design parame

ters, the target architectures, the optimization criteria, the tools used, or the

sequence in which these tools are applied. As such, there is no hardwireddesign

methodology. System-level design requiresan infrastructure that supports efficient

design space exploration — such an infrastructure permits considerable flexibility

and at the same time relieves the user of the book-keeping.

As discussed in Chapter 1, tools that aid in design space exploration fall

into two categories: estimation and management. Estimation tools are primarily

118

used for what-ifanalysis, i.e., they give quick predictions on the outcome ofapply

ing certain synthesis or transformation tools. Management tools are required to

orchestrate the design process, i.e., for systematic control of the design data, tools,

and flow. In this chapter we focus on the management aspects of design space

exploration; this is often referred toas design methodology management1.

In Section 5.1, some of the related work in this areais discussed. In Section

5.2, we identify some of the requirements of a design methodology management

framework. Aninfrastructure that supports these requirements is proposed in Sec

tion 5.3. We have implemented this infrastructure within the Ptolemy environment.

cTarget architectures3SJ

| general-purpoi
DSP system

core-based ASIC

multiprocessor FPGA

x
DESIGN SPACE

Z
Design Tools }
manual partitioning, ILP, MIBS
%scheduler A. B, C

compiler v.1,v.2,v.3

Optimization Goals
Constraint MapJ

reuse

re^jrograrnmabilHy

power

time

/area

Figure 5.1.The design space.

1. Design methodology is defined as "the processes, techniques, or approaches employed
in the solution ofaproblem". Design methodology management (DMM) is formally de
fined as "definition, execution, and control ofdesign methodologies in aflexible and con
figurable way" [Kleinfelft94j.

119

Some details of the implementation arepresentedin Section 5.4. In Section 5.5, we

discuss the operation of the design methodology management framework with the

help of two representative design flows.

5.1 Related Work

Design methodology management (DMM) as such is not new; traditional

DMM systems (often referred to as "frameworks") are used quite extensively in

the physical VLSI design process. Kleinfelft et al. [Kleinfelft94] provide an

exhaustive summary of the various research activities in this area. We mention

only a few representative systems here.

The three main problems in design methodology management involve data

management, tool management, and flow management.

The DMM systems used in the physical VLSI design process focus prima

rily on data management (i.e., maintaining consistent versions of data)

[Harrison86] and tool management (i.e., invoking a user-specified tool after ensur

ing that the preconditions for enabling it are satisfied) [Chiuch90][Bosch91]

[Brockman91]. Commercial CAD frameworks such as the Falcon framework

[MentorGraphics2] also assist in tool and data management. The NELSIS frame

work [Bosch91][VanDerWolf93] provides a systematic representation and man

agement mechanism for data and tools within a semantic database. CFI [CFI]

defines standards for tool encapsulation and data models. As of this writing, no

standard for flow management has been proposed by CFI.

The MMS framework [Allen01] focusses on distributed tool execution and

multi-user environments. Recent efforts address the flow management problem.

Some efforts approach the flow management problem from an Al angle [Knapp86]

120

[Bushness89], wherethe methodology and firing rules are stored in a knowledge

base and an inference engine determines the tool execution sequence. Yoda

[Dewey89], a filter design system, has a knowledge-base of predictors (estima

tors). Predictors are used to determine the outcome of applying a particular tool

and the results from such an explorationareused to construct a design plan (simi

lar to a script), with feedback from the designer. The generated design planis then

automatically executed, where the actual tools are run. A trace-driven approach is

proposed in [Casotto90], wherea sample design session (the sequence of tools run

by the user) is saved and future design sessions canbe automatically controlled by

following this trace.

CODES [Buchenrieder92] is a framework forcodesign. It providesan open

architecture for the integration of commercial and proprietary tools. A graphical

representation of a design flow is translated to an internal Petri net representation.

This is analyzed to determine firing rules. A codesign manager invokes the tools

based on these firing rules.

Bentz et al. [Bentz95] present an information-based approach to design.

They combine some of the traditional design methodology management features

(such as data and tool management) with novel features for design space explora

tionvia a toolcalled Design Agent. The Design Agent assists theuser in collecting

and managing information about a design. The designer queries for specific feed

back (example: "what is the area of this FIR filter when implemented as an ASIC

in aparticular technology?", or "what is the code size when implemented onapar

ticular DSP?"), rather than explicitly performing tasks to obtain this information.

The Design Agent computes the information based on actions (sequence of tools)

specified its database. These actions are context-specific, that is, different sets of

actions apply todifferent design domains (such as ASIC design and DSP design).

121

5.2 Design Methodology Management: Requirements

Our focus is primarily on design flow specification and management. We

do not address issues of database management, multi-user operation, and distrib

uted tool execution. Our goal is to develop a framework that simplifies the

designer's tasks by (1) providing mechanisms that allow the design flow to be

specified in an intuitive way, (2) automatically invoking the tools in the design

flow whenever possible, and (3) managingthe infrastructure when the user decides

the sequence of tool execution. The key features required for this are discussed

next.

Flow Specification

Since tools involved in the system-level design process are often computa

tionally intensive, it is important to avoid unnecessary invocation of tools. This

requires that the design flow be specified in a modularway so that only the desired

tools may be invoked. It should also be possible to specify the design flow hierar

chically, in order to retain design modularity.

Specification of the flow also requires iterative and conditional constructs.

Consider an example where an application is to be mapped to a multiprocessor

system. Assume that the number of processors is not known apriori. The design

sequence usually is to (1) estimate the number of processors required, (2) schedule

the application onto these processors and compute the resultant throughput, (3) if

the throughput does not meet the desired throughput, repeat (1), else continue with

the remaining parts of the design such as code generationand netlist generation.To

express such a design flow, the flow specificationmechanism should support con

structs such as conditionals and iterations.

A number of design tools are available for each step in the design process.

122

Consider hardware-software partitioning for example. If the application involves

few components that have obvious mappings, partitioning could be done manually.

If the mappings are not obvious, an exact and time-consuming integer-linear pro

gramming approach could be used to determine the optimal mappings. On the

other hand, if the application is quite complex and there are several options avail

able for implementing the different components, an efficient heuristic (such as the

MIBS algorithm) could be used. If the design flow is parameterizeable, a new flow

need not be developed for each type of tool used. Depending on the design size,

the available design time, and the desired accuracy, one of the tools can be

selected. This selection can be done either by the user, or by embedding this design

choice within the flow.

Flow Execution

A designer should not have to keep track of the tools that have already run

and those that need to be run. When the parameters or the data associated with a

tool change, the entire design flow need not be re-run; only the affected tools

should be run again. Keeping track of the tools that need to be run is quite cumber

some. A mechanism that automatically determines the sequence of tool invoca

tions is needed. This calls for a mechanism much like a graphical "make" utility

[Feldman79].

Flow Management

Different types of tools, with varying input and output formats, areused in

the system-level design process. In the very least, a mechanism to automatically

detect incompatibilities between tools is required. Data translators could also be

invoked automatically.

Versions of tools and design flows also need to be maintained; it is not suf

ficient to just keep track of versions of data.

123

5.3 Infrastructure

We have developed an infrastructure that tries to support most of the

requirements discussed in the previous section. Details of the infrastructure are

discussed in this section. In Section 5.3.1, we present the underlying models used

to specify the design flow, tools, and data. We use the term dependency to qualify

the conditions that require a tool to be invoked for execution. In Section 5.3.2, we

identify different types of dependencies. The flow execution mechanism analyzes

the dependencies and automatically invokes tools within a design flow. Details of

the flow execution mechanism are presented in Section 5.3.3.

5.3.1 Flow, Tool, and Data Model

Figure 5.2 illustrates the user's view of the design flow and tools. The

design flow is specified as a directed graph, where nodes represent tools, and arcs

specify the ordering between tools2.

Tools encapsulate actual programs. Tool parameters specify the arguments

for these programs. A tool can have multiple input and output ports. The ports are

used to transfer filenames between tools. A "source" tool (such as asignal genera-

(a) DESIGN FLOW (b) TOOL

Toon

filename

S
Tool 2 ToolN

*'U
Too! J ToolK

Input Port 1
Input Port 2

*£

parameters

optional output port

Output Port M

1
TOOL J

program(arguments)

Figure5.2. User's view of the design flow and tools.

2.Certain restrictions are imposed onthe design flow inour implementation soas toavoid
possible nondetenninacy. Refer to Section5.4.

124

tor) has no input ports, while a "sink" tool (such as a display tool) has no output

ports.

Ports can be either required or optional. The difference between required

and optional input ports is that a tool cannot run unless it has data (valid filenames)

on all its required input ports. A tool can run even if data is absent on an optional

input port. When a tool is run, it generates data on all its required output ports, but

not necessarily on optional output ports. Optional ports facilitate the use of condi

tionals and iterations in flows3. To understand this, consider the multiprocessor

synthesis example mentioned earlier. The design problem is to synthesize a multi

processor system that meets a desired throughout with a minimum number of pro

cessors. A possible design flow is shown in Figure 5.3. The procjestimator

determines the number of processors required and is described hierarchically as

shown in the figure. The estimator tool estimates the number of processors needed.

The estimated number of processors num_procs_est is given to a scheduler that

computes the actual throughput for this number of processors. The comparator

compares the actual throughput to the desired throughput and sends feedback to

the estimator. The estimator has both a required input (port x), and an optional

application num_procs

source * proc_estimat code generator i_r
netlist generator •>

application num_procs

AS

X iL desiredthroughput

"-j estimator scheduler
—*

comparator
feetfoack TSB—m

y
nm

b
njprocsjast * stuaj .ftroughput

Figure 5.3. A design flow for the multiprocessor synthesis example.

3. Note that initial tokens canbe used on arcs to equivalently model the functionality of
fered by optional ports.

125

input (port y). Thtfeedback from the comparator is fed tothe optional port of the

estimator. Ifthere isnofeedback, the estimator estimates the number of processors

based on its own information. If there is feedback, it updates its earlier estimate.

Both output ports of the estimator are optional. When the estimation loop con

verges, the estimator generates data on the optional output port a,otherwise it gen

erates the data for the revised estimate on the other optional output port b.

While optional ports permit modeling of a wide variety of applications,

their use can potentially lead to nondeterminate behavior. In our implementation,

we handle nondeterminacy by imposing strict restrictions on the allowed design

flows for fully automated design flow execution. The flow scheduler identifies a

potential nondeterminacy in a design flow and alerts the user. In most cases, the

user knows what he/she had inmind when designing the design flow and can guide

thesystem accordingly. The details of our implementation are described in Section

5.4.

Figure 5.4 shows the internal model of the tools and the data associated

with a tool's input and output ports. Associated with each tool is a flag, called

ParamChangedFlag, which gets set when parameters of a tool are changed.

Associated with each port of a tool are several attributes: File_Namelast,

FileJJame^^ Timejtamp^, Timejtampn^ and Optional Flag.

File_NameiQStand Jlme_Stamplast attributes store the filename and the timestamp4

of the data on a port as of the earlier invocation of the tool. File^ame^ (and

7ime_Stampnew) represent the filename and the timestamp ofthe data updated on a

port in the current invocation ofthe tool. Optional_Flag indicates whether the port

is required or optional. The infrastructure stores the internal representation of the

design flow as shown in Figure 5.4-c.

4. The timestamp indicates when thedata associated withthe file was last modified.

126

(a)

TOOL MODEL (tod attributes)

Portl

(b)

DATA MODEL (port attributes)

Port 2. TOOL J

1

PortM
•

f port)

File^Nameiast

ParamjChangedJFlag Fi,e-Name'^Time_Stamp^st
TtmeJStampnew

(C) INTERNAL REPRESENTATION QP A DESIGN FLOW

^connectivity

oo

Optbnal_Flag

ToolN

(Param_Changed_Flag) Portl o o PortM

Warner
Name,ne\ (optionaLFIagj

Time_Stampiast
Time_$tampnt

3St\

Figure 5.4. Internal representation of the tools and data.

5.3.2 Dependencies

The ParamJ2hanged_Flag, and the filename and timestamp attributes are

used to determine whether atool needs to be run. For example, if the parameters of

atool have changed since its last invocation, the tool needs to be run. Similarly, if

the filename associated with the current invocation of a tool is different from the

filename associated with its previous invocation, this indicates achange in data,

and requires the tool to be run again. We use the term dependency to qualify this

behavior. Figure 5.5 shows three types ofdependencies that are supported.

A temporal dependency tracks the timestamps associated with the data on

the input ports ofatool. A tool needs to be run if its temporal dependency is alive,

i.e., if the timestamp on any ofits inputs is newer than the timestamp associated

with the previous invocation of the tool, or ifTimejtamp,^ >Time_Stamplast. A

127

parameters

for every ii

(Temporal)

Tool

m
*f File^Nameiasl)

|jj^ Time^Stampifxi)

for every input

(Data)
(Parametric)

. .„_ ,,„„. ...__ ms('
Time__Stampnew > 77me_Srampfasf Param__Changed_Flag « J

Figure 5.5. Dependencies used for tool management.

data dependency tracks changes in the filenames associatedwith the input ports of

the tool. A tool needs to be run if its data dependency is alive, i.e., if the filename

of the data associated with any input port is different from the filename associated

with the previous invocation of the tool, or equivalently if FileName^t !=

FileJ^ame^^. A parametric dependency tracks parameterchanges; a tool is run if

any parameter changes.

5.33 Flow Management

Automatic flow invocation is basedon analyzingthe tool dependencies and

executing tools as required. A tool is said to be enabled when all of its required

input ports have data. Absence of data on the optional input ports does not affect

enabling. Once enabled, a tool is checked for dependencies. A tool is invoked {run)

when at least one of its dependencies is alive. On execution, a tool generates data

on its requiredoutput ports, and possibly on its optional output ports.

As shown in Figure 5.6, two types of flow invocation mechanisms are

desired: data-driven, and demand-driven. In the data-driven approach, the flow

128

Data-Driven Flow Executk

Demand-Driven Row Execution

^—
Figure 5.6. Flow execution mechanisms,

scheduler traverses the flow according to precedences. The process halts when all

tools with live dependencies have been exhausted. In thedemand-driven mode, the

user selects atool for execution. The scheduler traverses thepredecessors and exe

cutes all tools with live dependencies on the path. The details of the scheduler are

given in the next section and in Appendix A9.

5.4 Implementation: DMM Domain within Ptolemy

We have implemented the design methodology management framework

within the Ptolemy environment as aseparate domain (called DMM domain). The

details of the flow specification andexecution mechanisms aredescribednext.

Flow Specification

The design flow is specified as agraphical netlist (through the Ptolemy user

interface, VEM). The netlist shows the connectivity between tools. In the current

implementation, the flow is restricted to having a single "source" tool; multiple

sources are not allowed. The flow can be described hierarchically. Figure 5.7

shows the design flow for the multiprocessor synthesis example described earlier.

This flow will be discussed in more detail in Section 5.5.1. Optional ports can be

used to define conditionals and iterations in the flow definition. However, this

129

could lead to nondeterminate flows. A following section on the flow schedulerdis

cusses the operation of the schedulerwhen this happens.

Tool Encapsulation

Tools are encapsulated within Stars (the atomic elements in Ptolemy,

described in Section 4.2.1). Tool encapsulation involves writing scripts that call

various programs. These programs could be either other Ptolemy functions or

stand-alone executables. Figure 5.8 shows an example of tool encapsulation. It

shows the Code Generator tool from the multiprocessor synthesis example. The

Code Generator generates a multiprocessor implementation (multiple programs)

for the input application. It uses a code generation routine within Ptolemy (ptk-

GenCode) to generate the code. The Code Generator has two inputs (both

required): the application description {graph) and the numberof processors {num-

Procs). The tool generates programs for all theprocessors. The outputof the tool is

specified as a file {codeFileNames) containing the names of the generated pro-

CodeGenerator targetArcK"

Simulator

\ iteration^JH^SeHS,

]cado{1...N).
H Art*

asm

Architecture

Generator
Source ••««• *irT Architecture Simulator
J | —J NurnPrecEttlmator n l—^JHI Operator \iumtumA

T1 AiMmbagfel fork fcrfr&rwttal FwffTc*

/ T2| iknughputX T8 modem.ptcl tomodan.ptcl to

OraphName)— £-Q

•*^-n- tLI
>" I ProcEattnoptional pol

eS
Scheduler

N Comparator

>75°/1

DesignMaker
Control pane! tot multiProcExampleS*

D

HowManagement

tvt'nrMmrttrtrfTiii-Tfttt

""•^ *

Dta Management

CZ5^5"*'**,~*!I
Design Management

iJSSJLUU1UIUIUWIU.

Figure 5.7. The design flow for the multiprocessor synthesis example, sped
fied within the DMM domain in Ptolemy.

130

grams. The Code Generator has a parameter {targetArch) that specifies the

assumed target architecture. The function "goQ" contains the code that gets exe

cuted when the tool is invoked. When invoked, the tool first reads in the name of

the file containing the graph {graphName). The functions getNameQ, getDomainQ

and getHandleQ obtain the identifiers for the application pointed to by graph-

Name. The number of processors is read into the variable numberProcs by scan

ning the input file procFileName. The Ptolemy routine that generates the code

graph

numProcs
Code Generator

J targetArch

codeFileNames
•

defstar{
name {CodeGenerator}
domain {DMM}
input {name i&aph}}
input { name {numProcs}}
output {name {codefileNames }}
state {name {targetArch} default {sharedMemory}}
«o{

//get application name and identifiers
graphName « graph.getRleName();
name « getName(graphName);
domain « getDomain{ graphName);
handle« getHandle(graphName);

// get number of processors
procRleName » numProcs^etReNameO;
fp =fopen(procRleName, V);
fscanf(fp, "%&, &numberProcs);

// run tclcommandfor code generation
Tcl^VarEvaKptklnterp, iptkGenCode*. name, domain, handle,

targetArch, numberProcs);
// generate output fie names

codeRJeNames.putRleNarne(tout);
fcioseffp);

Figure 5.8. An example of Tool encapsulation: CodeGenerator tool.

131

(ptkGenCode) is then calledwith the application identifiers, the target architecture,

and the number of processors. The result is written into the file codeFileNames.

Flow Scheduler (DesignMaker)

The tool writer need not worry about the underlying timestamps and filena

mes. The DMM attributes {Param_Changed_Flag, TimeJStampfaf, File^Namei^,

JimeStampnen, FileName^^ and OptionalFlag) and flow netlists are stored

within the Oct database [Harrison86]. The flow manager called DesignMaker ana

lyzes these attributes and automatically invokes the tools. Figure 5.9 shows the

control panel associated with DesignMaker. Thereare threepossible approaches to

executing the flow: (1) The user opts to run the entire design flow {Run All), or (2)

The user selects a certain tooluptowhichthe flow should be executed {Run Upto),

or (3) The user asks for a specific tool to be invoked {Run This).

In the Run All mode, the flow scheduler traverses the design flow, starting

with the source tool, executing tools as necessary. To do this, it maintains a list of

enabled tools. An enabled tool is checked for its dependencies and invoked for

execution if any of its dependencies is alive. On execution,the appropriate descen-

DesignMaker
Control panel for "multiProcExampleS"

D OrtpWetl Animation

O ToNtufJAnbration

FlowManagement

[Run Upto [
RunTMs

Data Management

[^^Ssvs Facet I

DesignManagement

R*Mt Design Status

DONE

Figure 5.9. Control panel in the DMM domain.

132

dents of the tool are identified, and their corresponding input port is marked. If all

the required input ports of a descendent tool are marked, the descendent tool is

added to the list of enabled tools. Further details are presented in Appendix A9.2.

As mentioned earlier, it is possible that a flow may have a nondeterminate

behavior5 due tothe presence ofoptional ports. Currently, the scheduler does very

strict checking and conservatively flags flows that are possibly nondeterminate.

The pseudocode for the algorithm fordetecting nondeterminacy is given in Appen

dix A9.2. Some of these flagged flows can be determinate if the user has taken

appropriate care in designing the flow. In such a case, the user can choose to use

our flow scheduler at his/her risk. Alternatively, the user can schedule the tools

manually in the sequence desired, by using the Run This mode.

In the Run Upto mode, the user selects a certain tool upto and including

which the flow should be executed. All the predecessors of the selected tool are

identified and tagged. The design flow is then traversed as in the Run All mode;

only the tagged tools are executed. In the current implementation, we support this

mode for acyclic flows only. The details of the scheduling algorithm are given in

Appendix A9.3.

As mentioned earlier, the user can choose to manually schedule the flow by

using the Run This mode. Details are given in Appendix A9.4.

5.5 Examples

The design methodology management domain and the operation of

DesignMaker are described next with the help of two examples.

5. The generateddatamight not be independentof the sequenceused to invoke the tools.

133

5.5.1 Multiprocessor System Design

Consider the design flow for the multiprocessor synthesis example, shown

in Figure 5.7. A dataflow graph G {GraphName) describing the application (ex:

music synthesis) and a specific interprccessor communication mechanism (tar

getArch, for example shared memory) are specified by theuser. The goal is to syn

thesize this multiprocessor systemwith the minimum number of processors such

that a required throughput is met. The synthesis process generates the hardware

components (netlist) and the software components (programs running on the pro

cessors).

We now run through a typical flow execution sequence. Suppose that the

required makespan (or l/throughput) is 320 cycles.

When the RunAll command is issued, the schedulerdetects a possible non

determinacy between tools T4 and T6 6and alerts the user accordingly. The control

panel in Figure 5.7 shows the query for continuing or aborting the run. We know,

however (by the way we have designedit), that the estimatortool T3 (ProcEstima-

tor) generates the output going to T6 only after T4 has finished. Hence, there is no

nondeterminacy. We can then select the "continue" option to use the automated

scheduling. The operation of the system under this selection is discussed next.

Suppose that the flow is run the very first time using Run All. Tools are

examined for active dependencies by traversing the flow according to precedence

ordering between tools. Source (Tl) outputs the dataflow graph G specified by

GraphName. NumProcEstimator (Tl) and Code Generator (77) are dependent on

Tl. Note thatTl is enabled, while 77 is not (the second inputN has not yet been

generated). Tl is a hierarchical description of the estimation process, which deter-

6. Since thenondeterminacy condition is (using thenotation defined in Appendix A9)
T4 o P(T6). T6 * PCT4), and T4 * OP(J6).

134

mines the minimum number of processors required to implement G at the desired

throughput by an iterative computation.The operation of the estimator is described

next.

ProcEstimator (T3) estimates the number of processors (N) required to

implement G. TS has anoptional inputthatreceives an indication as to whetheror

not the current N satisfies the throughput requirements. When this input is avail

able, T3 uses it to improve the estimate for N, andwhen it is not, T3 computes the

estimate from scratch. Note that the loop (T3-T4-T5) does not deadlock because

this input is optional. At the start the feedback input is not available since T5 has

not run. In this case, T3 computes the estimate based on its estimation algorithm.

Estimators of different accuracy can be selected by changing parameters of this

block.Consider a simpleestimator that computes the estimate assuming maximum

parallelism. Suppose that the sum of execution times of all the nodes in G is 900.

T3 estimates a lower bound of 3 (=900/320) processors. The Scheduler (T4) then

schedules G onto N (N=3) processors and determines the actual time required

(makespan M) to implement G. Different scheduling algorithms can beselected by

changing parameters of T4. Suppose it computes the makespan to be 350. The

Comparator (T5) compares the required makespan (320) and M (350) to generate

the control signal for T3. T3 is enabled by the input received onits optional input,

and refines its estimate of N to4. Note that upto this point, as the system is being

run the very first time, data dependencies are alive for all the blocks. For T4 how

ever, the data dependency is no longer active (since the same filename is retained),

but temporal dependency becomes alive. Recall that temporal dependencies detect

out-of-date data. As the timestamp on the input to T4 is newer than the timestamp

associated with the previous invocation of T4, T4 is re-run and it recomputes M

(say, 290). T5 sends a output of zero to T3. T3 detects convergence of the estima-

135

tion loop when the feedback from T5 is zero, and sends the computed number of

processors N to the fork T6. T6 merely copies its input data to its two outputs.

Since its second input is available, the Code Generator (77) is now

invoked. 77 synthesizes software for the N processors. T8 generates the netlist for

the system. The generated architectural model, where the processors run the syn

thesized software, is then simulated by the Simulator (T9). 79 has a parameter

(iterations) that indicates the number of cycles to simulatethe design for. After T9

runs, no live dependencies exist and the flow execution stops.

Subsequent changes to the flow or data could render parts of the flow

invalid. For instance, suppose that the parameter "iterations" to T9 is modified and

the Run All command is issued. A parametric dependency is activated for T9. As

no other dependencies are alive, only 79 is invoked. If die Run All command is

issued again, since no data files or parameters have changed, no tool is invoked.

Next, suppose that Run All is issued after GraphName is changed. Tl is first

invoked due to a parametric dependency. This activates a data dependency for Tl

as the input data (GraphName) changes, causing it to be invoked. Other tools on

the downstream flow that are data-dependent on 72 (the complete flow) are then

invoked by the scheduler.

5.5.2 Design Assistant

The Design Assistant, described in Chapter 2, is a framework for system-

level codesign. Figure 5.10 shows the Design Assistant implemented in the DMM

domain.

Source (Tl) outputs the SDF graph G specified by GraphName (say sim

ple.sdf). G is then partitioned into hardware and software. Currendy the Design

Assistant supports manual partitioning.

136

simple,sdf

Source
T1

Manual

Partitioning
T2

T4 Hardware
Synthesis-1

tm1.pt, 'Silage) hwtsil
hw2.sil

-Retargeting swpt
- Scheduling
- Synthesis Graph
Generation

T3

layout

Hardware
Synthesis-2

(Hyper)

T6

sw.asm

Software
Synthesis

(CG56)T5

Figure 5.10. The Design Assistant implemented in the DMM domain.

Figure 5.11 shows the behavior of T2 when configured for manual parti

tioning. The application, which is to be partitioned, is automatically displayed by

the partitioning tool (Figure 5.11-a). The partitioning tool also brings up a selec

tion panel to aid in manual partitioning (Figure 5.11-b). The user can then select

parts of the application and assign them to hardware or software.

The next tool in the design flow is T3. T3 first retargets the nodes in the

SDF description to technology-dependent nodes (CG56 for software-mapped

nodes, and Silage for hardware-mapped nodes). T3 then inserts the Send and

Receive nodes for communication across the hardware-software boundary. Since

we have done manual partitioning, a global schedule needs to begenerated. Given

IIDGaussian Gain

Ramp FIR

(a)

simple, sdf

Add
Select Hardware/Software Uapping

Salad atara (a);Gat-atar-namaa tN):Satact tmptamantatlon
• Software

D Hardware

D SlImulutMonllor

• rXtplay Partition(red:riw blua.-aw)

• ClaarHlghllghti

DONE
(b)

Figure 5.11. Run-time behavior of the Design Assistant with manual partitioning.

137

the assignment to hardware and software, T3 generates aglobal schedule7. Finally,

T3 generates the hardware andsoftware graphs using techniques described in Sec

tion 4.1.2. A separate hardware graph is generated for each node mapped to hard

ware. A single software graph is generated for all the nodes mapped to software.

The softwaregraph includesthe SendandReceive nodes.T3 uses the globalsched

ule to derive a schedule for the nodes mapped to software. Figure 5.12 shows the

outputs generated by T3 for the graph simple\sdf shown in Figure 5.11. Suppose

that the nodes lIDGaussian and FIR are mapped to software, and the nodes Gain

and Add are mapped to hardware. The nodes Ramp and Blackhole correspond to

the stimulus and monitor nodes which arenot actually synthesized. Figure 5.12 (a)

and (b) show the hardware graphs for the two hardware-mapped nodes.

Ctstt
sewn SOT
cafpslasy ccoelwn-sy-._oil (

tioaain Silagt
tsrcat defeult^Oaga
•tar coo*l_C_i-d Grm
•lias codel_out_»an04 codeljCainl output
alias cedel_in_receiv«3 codel_Geinl input

•.•rgtt default-SOF
•tar cod*l_n*syr_c»U cedaX.hu/nja1
•tar OuotyOutO Conct
contact Owm/XitO output ca9tl_h»yn_gell cod»l_in_rec-nv«3
rtir Ounylftl BlectHole
nuaporte Outvylnl input 1
comet cajel_hmj-_g.il <odel_put_s«nd4 Ouaytnl "inputev

eeaa'n SOt
rur 1

'cootl.iw.artari.pt* It iines, 46* characters

hw1.pt

hardware graphs

B*Mt
do-annSC*
at f galaxy <c0-~LNsyr_gal <

do-am Silage
target *rfau1t-5llagt
atar cede"JUd_input_21 Add
alias codel_out_aendS ccett?_/Wd_input_*l output
allu code2_i*cfaeeiva6 ceM2jkdd-input_21 inputai
alias code2_in_racaivi7 code*L*dd_input_a inputal

target default-SOF
•tar codt2_r«syn_g-ll cade?_rtr»)-^gel
atar Ou-nlnO BleckHole
«j-port* Otaa-ylnO input 1
connect coatUtayrupall code2_out_send$ Out-trlfiO "inputs."
star OuaayOutl Const
connect OueayCutl output codei.letsjn.QiU code2_in_raceive6
star Pu—|Oitl Const
connect Ou-anOut! output code}Je«sin_gs11 codel_in_receive7

dowlnSOf
njn 1

'code, h, flra-h.of .1 lines. 611 characters

hw2.pt

software graph software ordering
_ set
domain CC56
newuniverse codaO CG56
targat scheituled-CGS6
targatparaa schedLoadFile "codeO.scftad"

atar codaO.HOCausaianl IIDCauaaian
atar ecx)eO_FIRl FIR
atar cedeO.sa-tdO Sand
satstate codaO.aandO eutAddr "4096"
star eodaO_racaiv«l Receive
satstate codeO.raceival inMdr "4JW"
atar codcQ_sand2 Sand
satstate codeOL,aand2 eutAdttr "4112"
connect codeCLlXOGauasiard "output" cedaQ.a«ndO "Input'
connect cedeO_.FI"a "output* cadeQ_*end2 "Input"

5 9ooa0.coaaO_IIOCausaianl
codaO.codeO_sendO
cedaO. codeO_receivel
cooa0.cooaO_FIRl
codaO. codaO_aand2

"codeO.achad" 5 lines, 99 characters

run 1

connect cedeO_raca1val "output" codeO.FIRl "input*

codaO_iw_flrapri.pt* IT Unas. 513 characters

sw.pt
simple.sdf

Figure 5.12. Hardware and software graphsgenerated by 73.

7. If the automated partitioning mechanism described in Chapter 3 were used, this step
would not be needed since the automatedpartitioning algorithmgenerates the schedule.

138

Figure 5.12-(c) and (d) show the software graph and the software ordering respec

tively. Note the added Send and Receive nodes in the software graph and ordering.

T4 and T5 are the hardware and software synthesis tools. T4 generates

Silage code for each hardware graph. T5 generates a single assembly code file cor

responding to all the software-mapped nodes. It uses the schedule generated by T3

to order the nodes in the software graph. The outputs of T4 and T5 are shown in

Figure 5.13.

T6 uses the generated Silage code to generated the final layout for the hard

ware components by nuining Hyper.

The current implementation of the Design Assistant has some restrictions:

1. It supports a predefined target architecture consisting of a single program

mable processor and multiple hardware units. The current implementation

assumes a Motorola 56000 target processor and Silage-based hardware

hwl.sil

T5

SW synthesis
sw.asm

Target defeult-Silegt
Universe; codtUi«ty*_otl

•define true 1
•define false 0
•define gein_0 fi*«16,14>(0.7S)

rune a_in(codel_in_receive) fis«16,14>) codel_out_»end4 fis46,14>
begin

f star: cooU_rM«_gsl.codtl_Csinl (class: SilagsGein) •/
f>-<16.1<>(caotl_out_»twO« coOel_in_receive! • gairu.0),

cadel.sll* 14 lints, 471 characters

Target default-Silage
Universt: codt"_r-*yr_gtl

tunc aain(codt*_in_receive6 fix<16,14>, code2_in_receive7 fi*d6,14>)
code2_out_aendS fi*cl6,14> .

begin
/* star .code2.r_is)-<_gal.code2_ABa_1nput.2l (class SilagaUd) •/
code2_out_sendS • fia«16,14>(<ode?_,in_receive6 ♦ co0e~_in_r<eceive?),
end,
code?,ail* U lines. 456 char»cters

J Targtt scheduled-CCS6
, Universe' codeO

imtialixetion code froa star codeO.coaaO.IICEeussianl (class CtS&IIOGsjssian)
, initialization code frca rtt- coea0.codeO_F"Jtl (class CCSGTtA)

imtialiaation code froa star code0.codeO_sondO (class OCBGSend)
imtialization code froa star code0.cadeO_receivel (class CCURaceive)

, initialization code froa star codeO.ccdeCLsend? (class CSSend)
orgp

UXP.O
, code froa star code0.coo*0_."tt~aue*ian. (data OBeXOGauesian)

code froa star code0.codeO_sandO (class CCMSond)
code froa star codeO.codeD.receivel (class CCSOteceive)

, code froa star codeO.codeQ.FSa (class CCS6*TS)
, code froa stsr codeO.cadeCLsendZ(class CCSGSend)

Jsp UXP.O

Figure 5.13. Silage and CG56 assembly code generated by the hardware
and software synthesis tools.

139

• Alt«Tnati\vSuu-/Port/St;»U- tL< i

Port "slgnaJIn" does not exist In star "FfR1" In domain "CG56*

Enter alternative port name:

I input I

Done]

Figure 5.14. Support for retargeting,

synthesis, although it can be easily extended to support other processors or

VHDL-based synthesis. Also, as mentioned in Chapter 4, we do not con

sider hardware reuse.

2. T3 operates on a directed acyclic graph. It canbe extendedquite easily to

support the full SDF model by simply adding a tool that converts a SDF

graph to a directed acyclic graph.

3. The hardware-software interface is not automatically generated, although

the techniques described in Section 4.1.5 canbe automated quite easily.

4. The retargeting mechanism in T3 assumes the existence of Silage and

CG56 library elements for all the nodesin the SDF graph. We have imple

mented a rudimentary mechanism to query the user for alternative elements

if a certain element does not exist in the corresponding implementation.

The alternative element should, however, have the same number (names

can be different) of inputs and outputs as the SDF (technology-indepen

dent) model. Figure 5.14 shows a simple scenario where the FIR node in

simple.sdfis mapped to software.The names of the ports in the technology-

independent model (SDF) and the technology-dependent model (CG56)

are different (called signalln and signalOut in the SDF domain and input

and output in the CG56 domain). The system queries for an alternative port

name to look for when doing the retargeting. A similar mechanism queries

140

for an alternative star if one doesn't exist for thedesired implementation.

5.6 Summary

The system-level design space is quite large. *As the number of tools and

design possibilities increases, the design space explodes quite rapidly. Although a

number of CAD systems for system-level design are now emerging [Chou94]

[Kumar93][Theissinger94], most of them do not provide any support for managing

the complexity of the design process; they contain point tools and leavethe man

agement aspects to the designer. We believe that managing the design process

plays an equally important role in system-level design, as do the tools used for dif

ferent aspects of the design. To this end, we have developed a framework that sup

ports design methodology management. The design flow isconsidered apart of the

design itself.

In this chapter, we have presented an infrastructure that supports efficient

management of the design process, with emphasis on design flow management.

This infrastructure contains powerful constructs for flow definition, dependency

analysis, and automated flow execution. The infrastructure is developed as the

DMM domain within Ptolemy. A tool called DesignMaker is responsible for auto

mated flow management. Although DesignMaker derives its name from being a

"make" utility for designs, it ismuch more powerful than a"graphical" make util

ity. Specification of iterations, hierarchy, and conditionals in the design flow,

allowing optional inputs and outputs for tools, ensuring tool compatibility, and

detecting parameterchanges are some of the additional features.

We have integrated a number of point tools (such as tools for estimation,

hardware-software partitioning, cosynthesis, and cosimulation) into this frame-

141

work to form a complete codesign environment, which we call the Design Assis

tant.

142

6

CONCLUSION

This thesis studies a systematic approach to the system-level design of

embedded signal processing systems. The key ideas presented are summarized in

Section 6.1. In Section 6.2, we conclude with a discussion of some of the future

directions to this research.

6.1 Contribution

In this thesis we develop techniques for the design of embedded signal pro

cessing systems. The design of such systems is challenged by stringent cost, per

formance, and time-to-market constraints. Pure hardware or software

implementations often cannot meet these constraints; besides, some parts of these

applications are inherently better-suited to either hardware or software. Hence,

these applications tend to have mixed hardware and software implementations.

Due to their algorithmic complexity and also to avoid early corrimitment to a par

ticular hardware or software implementation, these applications are best specified

at a task level of granularity.

Our approach to designing such systems is to codesign the hardware and

143

software components. This allowsthe hardware andsoftwaredesigns to proceedin

parallel, with feedback and interaction between the two as the design progresses.

The codesign approach enables the exploration of a wide variety of implementa

tion options. Thus, the system can be optimized in its entirety.

Four key problems areidentified in the context of system-level codesign of

embedded systems: partitioning, synthesis, simulation, and design methodology

management. We attempt to provide solutions to all these problems. To enable

meeting this ambitious objective, we have chosen to focus on a class of signal pro

cessing systems that is specified using synchronous dataflow semantics.

At the system-level, designs are typically represented as task graphs, where

tasks have moderate to large granularity. Each task can be synthesized by a multi

plicity of algorithms. Each algorithm selection, can, in turn, be synthesized using

different transformations and resource-level options. The resulting implementa

tions typically differ in area and execution time. The objective in system-level

design is to select the "best" implementation for the system as a whole. The sys

tem-level designer is hence faced with the question of selecting the best design

option for each task from a considerably large number of design options. We

present a systematic approach to solving this problem by formulating the binary

partitioning and extended partitioning problems. The key contribution is summa

rized in Section 6.1.1.

In the context of mixed hardware-software systems, system-level design

offers even greater challenges. How do we take advantage of the inherently dis

tinct properties of hardware and software and still tightly couple their design pro

cesses? We present approaches to cosynthesis and cosimulation that address this

problem. The key ideas are summarized in Section 6.1.2.

The system-level design space is quite large. In general, the system-level

144

design problem cannot be posed as a single well-defined optimization problem

from the designer's perspective, 'typically, thedesigner needs to explore thepossi

ble options, tools, and architectures, choosing either automated tools or manually

selecting his/her choices. We believe that managing the design process plays an

equally important role in system-level design, as do the tools used for different

aspects of the design. To this end, we develop a framework that supports design

methodology management. The key aspects of this infrastructure are summarized

in Section 6.1.3.

6.1.1 Partitioning

Binary partitioning is the problem of deterrnining, for each node in the

application, a hardware or software mapping and schedule for execution. We

define extended partitioning as the joint problem of mapping nodes in a prece

dence graph to hardware or software, scheduling, and selecting a particular imple

mentation bin for each node. The end-objective in both cases is to rrnmmize the

total hardware area subject to throughput and resource constraints. Since both of

these problems are NP-hard, we develop efficient heuristics.

We present the GCLP heuristic to solve the binary partitioning problem.

This algorithm has several unique features:

1. Recognizing that binary partitioning is a constrained optimization prob

lem, GCLP uses a global time-criticality measure GC to adaptively select a

mapping objective at each step — if time is critical, it selects a mapping

that xninimizes the finish time of the node, otherwise it rmnimizes the

resource consumption. The global time criticality measure attempts to

overcome the inherent drawback of serial traversal.

2. In addition to global consideration, local preference is taken into account

145

in the case of a node that consumesdisproportionateamounts of resources

in hardware and softwaremappings. Such a node is classified as an extrem

ity and is quantified by an extremity measure. The extremity measure is

used to bias the mapping selectedby GCalone.The motivation in identify

ing extremities is to avoid infeasible or poor mappings that may arise if

these preferences are not taken into account.

3. We also identify several intrinsic properties (such as bit manipulation

operations and memory intensive operations) that make a node suited to

either hardware or software. The effect of these properties is quantified by

a repeller measure. The repeller measure is used in a novel way to effect

on-line swaps between nodes toreduce the hardware area. This avoids post

mapping swaps.

The GCLP algorithm is computationally efficient (0\N\2). For the examples

tested, thesolution from GCLP is reasonably close totheoptimal solution. We ver

ify with examples that quantifying the local phase of nodes (i.e., extremities and

repellers) helps improve the quality of the solution.

Theformulation and solution of the extended partitioning problem is an

original contribution of this thesis. We are not aware of any other work that

attempts to do this at the system level. Wepresent the MTBS heuristic to solve the

extended partitioning problem.

The philosophy of the MIBS algorithm is to extend the GCLP heuristicfor

extended partitioning without the associated complexity buildup. The strategy is to

classify nodes inthe graph as./ft?*?, tagged, andfixed. Initially allnodes in the graph

are free —their mappings and implementation bins are unknown. GCLP isapplied

over the set offree nodes. Atagged node is then selected from this set; itsmapping

is assumed to be that determined by GCLP. A bin selection procedure is used to

146

compute an appropriate implementation bin for the tagged node. It uses a looka

head measure, called the bin fraction, which estimates, for each bin of the node,

the fraction of unmapped nodesthatneed to move to their fastest implementations

so that timing constraints aremet. The bin fraction is used to compute a bin sensi

tivity measure that correlates the implementation bin with the overall hardware

area reduction. The bin selection procedure selects the bin with maximum bin sen

sitivity. The computation of bin sensitivity is simplified by assuming that the

remaining free nodes are either in their slowest or fastest implementations. The

tagged node becomes a fixed node once its implementation bin is deteimined.

GCLPis then applied over the remaining free nodes andthe sequence is repeated

until all nodes in the graph become fixed.

The MIBS algorithm is reasonably efficient and has acomplexity of0(IAfl3

+B -\N\2), where \N\ is the number of nodes, and Bis the number of implementa

tion options per node, permapping. In the examples tested, the MIBS solution is

reasonably close to the optimal solution. We also illustrate that implementation

bins can be used effectively to reduce the overall area over solutions generated

using binary partitioning.

6.1.2 Cosynthesis and Cosimulation

Cosynthesis is the problem of synthesizing the hardware, software, and

interface components of the system, starting with a partitioned DAG. Our synthe

sis techniques target an architecture consisting of a single programmable processor

and multiple hardware modules. The architecture is assumed to be non-pipelined

and nodes mapped to hardware and software communicate using a memory-

mapped, self-timed, blocking mechanism. An architecture for efficiently managing

hardware-software communication is described.

147

Our approach to cosynthesis is to decompose the partitioned DAG into

hardware, software, and interface graphs, where each node in the hardware and

software graphs is a technology-dependent representation of the original node.

Synthesis tools are used to generate the final implementation from these graphs.

The emphasis in our work is on generating synthesizeable representations for the

hardware and software components. We use pre-existing synthesis tools (such as

Hyper and Ptolemy) to generate the final implementation.

Hardware-software cosimulation is the process of simulating the hardware

and software components of a mixed hardware-software system within a unified

environment. This includes simulation of the hardware modules, the processor,

and the software that the processor executes.

We identifysomeof thekey requirements of acosimulation framework and

show, with the help of an example, how the Ptolemy environment is effectively

used for cosimulation.

6.13 Design Methodology Management

We present an infrastructure that supports efficient management of the

design process, with emphasis on design flow management. This infrastructure

contains powerful constructs for flow definition, dependency analysis, and auto

mated flow execution. The infrastructure is developed as the DMM domain within

Ptolemy. A tool called DesignMaker is responsible for automated flow manage

ment.

Design Assistant

The Design Assistant is a framework for unified system-level design. Fig

ure 6.1 illustrates the Design Assistant. It contains specific tools for partitioning,

synthesis, and simulation, which areconfiguredby the user to create a design flow.

148

/ " " ; \ (Design Constraints\ Des^n Specrficationj (JargQ{ Mt^same J CUser Input J
(Chapter 2.3) , r (Chapter 2.4)

fp&gga Assistant
raster?.)

111

,,v,vBSS:^.:;::;:-
>:x:::::;::::o::y::-:---::---x:-:-:

Design

Tools
Estimation (Appendix A8)

Partitioning (Chapter 3)

Synthesis (Chapter 4.1)

(Chapter 4.2)Simulation

Design

Methodology
Manager

(Chapters)

(System Implementation \

Figure 6.1. The Design Assistant

The Design Assistant operates in the DMM framework.

6.2 Future directions

6.2.1 Synthesis of Mixed Control-Dataflow Systems

The partitioning and synthesis techniques developed in this thesis apply to

a class of applications that can be described using the synchronous dataflow model

of computation. The SDF model is limiting in describing the dynamic behavior

and control structures that are required to model typical embedded systems. The

next obvious step is to extend ourdesign techniques to a larger domain of applica

tions. A good starting point is mixedcontrol and dataflow systems.

Several questions need to be answered. 1. How should these systems be

specified? Two opposite philosophies are emerging. One is a unified approach that

seeks a consistent semantics for specification of the complete system (for example,

boolean dataflow semantics [Buck94b], which allows specification of some control

149

structures within a primarily dataflow model). The other is the heterogeneous

approach that seeks to systematically combine disjoint semantics (for example, a

combination of dataflow andFSM semantics [Chang95], where each component of

the system is specified in a model best suited for it). 2. Once specified, how can

these systems be partitioned into hardware and software? 3. What is the best

approach for simulating such systems? Chang et al. discuss some of the issues

related to cosimulation in [Chang95].

6.2.2 System-level Low Power Synthesis

Our partitioning techniques have focussed on two metrics: area and time.

With the growing importance of low power systems, it is important to introduce a

third dimension of power consumption in the system-level design process. Low

power design techniques at the circuit and architecture level are gaining some

maturity [Chandrakasan95]. Can we extend them to the system level? This would

include developing techniques for mappingnodesinto differenthardware/software

implementations with the additional goal of miriirnizing the power consumption.

This would also involve developing new techniques for analyzing power con

sumption from high-level system specifications. Someresearch is underway in the

area of high-level power estimation [Mehra94] [Tiwari94]. The related hardware/

software interface also contributes to thepower and needs to becarefully designed.

Some insight into the issues involved in designing power-sensible C*-\D tools is

given by Singh et al. [Singh95].

6.23 Smart Frameworks

The design space exploration process can be further systematized to

develop "smart" frameworks. For instance, given a user-specified performance

constraint, the design methodology management system could automatically con-

150

figure a design flow. One way to achieve this is by using high-level performance

estimates to determine appropriate design flows.

A starting point in this direction is the "information-based" design

approach proposed by Bentz et al. [Bentz95]. Currently, this approach attempts to

provide the user with estimates.The next step is to develop techniques to allow the

system to use these estimates for configuringdesign flows.

151

REFERENCES

[Allen91]
W. Allen, D. Rosenthal, K. Fidule,"The MCC CAD Framework Methodol
ogy Management System", Proc. of the 18th Design Automation Confer
ence, San Francisco, C*A, USA, June 1991, pp. 694-698.

[Ambrosio94]
J. G. D'Ambrosio, X. Hu, "Configuration-level Hardware/Software Parti
tioning for Real-Time Embedded Systems", Proc. of CODESICASHE,
Third International Workshop on Hardware/Software Codesign, Grenoble,
France, Sept. 1994, pp. 34-41.

[Baros92]
E. Baros, W. Rosential, "A Method for Hardware/Software Partitioning",
Proc. ofCOMPEURO'91, IEEE Intl. Conference on Computer and Soft
ware Engineering, The Hague, The Netherlands, May 1992, pp. 580-585.

[Becker92]
D. Becker, R. K. Singh, S. G. Tell, "An Engineering Environment for hard
ware/software co-simulation", Proc. of the 19th Design Automation Con
ference, Anaheim, CA, USA, June 1992, pp. 129-134.

[Bentz95]
Ole Bentz, "Information Based Design", Presented at the Industrial Lia-
sion Program (ILP) Conference, Berkeley, C*A, US*A, March 8,1995.

[Bier89]
J. C. Bier, E. A. Lee, "Frigg: A Simulation Environment for Multiple-Pro
cessor DSP System Development", Proc. of the International Conference
on Computer Design, Cambridge, 1V1A, USA, Oct. 1989, pp. 280-3.

[Bier95a]
J. Bier, P. Lapsley, E. A. Lee, F. Weller, "DSP Design Tools and Methodol
ogies," Technical Report, Berkeley Design Technology, 39355 California
St., Suite 206, Fremont, CA 94538, USA, 1995.

[Bier95b]
J. C. Bier, "DSP Processors and Cores: The Options Multiply", Integrated
System Design, June 1995, pp. 56-67.

[Bosch91]
K. O. ten Bosch, P. Bingley, P. van der Wolf, "Design Row Management in
the Nelsis CAD Framework", Proc. ofthe 18th Design Automation Confer
ence, San Francisco, CA, USA, June 1991, pp. 711-716.

[Brayton90]
R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, "Multilevel
Logic Synthesis", Proceedings of the IEEE, Feb. 1990, vol. 78, no. 2, pp.
264-300.

[Brockman91]
Brockman, S. W. Director, "The Hercules CAD Task Management Sys-

152

tern", Proceedings of the International Conference on Computer Aided
Design (ICCAD), Santa Clara, CA, USA, Nov. 1991, pp. 254-247.

[Buchenrieder92]
K. Buchenrieder, C. Veith, "CoDES: A Practical Concurrent Design Envi
ronment", Handoutsofthe 1st Intl. Workshop on Hardware/Software Code-
sign, Estes Park, Colorado, USA, Sept. 1992.

[Buck94a]
J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, "Ptolemy: a Framework
for Simulating and Prototyping Heterogeneous Systems", International
Journal of Computer Simulation, special issue on "Simulation Software
Development," Apr. 1994, vol. 4, pp. 155-182.

[Buck94b]
J. T. Buck, "A Dynamic Dataflow Model Suitable for Efficient Mixed
Hardware and Software Implementations of DSP Applications", Proceed
ings ofCODESICASHE, Third International Workshop on Hardware/Soft
ware Codesign, Grenoble, France, Sept. 1994, pp. 165-172.

[Bushness89]
M. Bushnell, S. W. Director, "Automated Design Tool Execution in the
Ulysses Design Environment", IEEE Transactions on Computer Aided
Design ofIntegrated Circuits and Systems, March 1989, pp. 279-287.

[Camposano87]
R. Camposano, R. K. Brayton, "Partitioning before Logic Synthesis",
Proc. of the Intl. Conference on Computer Aided Design (ICCAD), Santa
Clara, CA, Nov. 1987, pp. 324-326.

[Camposano91]
High-level Synthesis, Edited by: R. Camposano,W. Wolf, Dordrecht, Klu-
wer Academic Publishers, 1991.

[Casotto90]
Andrea Casotto, A. R. Newton, "Design Management Based on Design
Traces", Proceedings of the 17th DesignAutomation Conference, Orlando,
Florida, USA, June 1990, pp. 136-141.

[CFI]
CAD Framework Initiative.

[Chandrakasan95]
A. P. Chandrakasan, R. W. Broderson, "Minimizing Power Consumption in
Digital CMOS Circuits", Proceedings of the IEEE, Apr. 1995, vol. 83, no.
4, pp. 498-523.

[Chang95]
W.-T. Chang, A. Kalavade, E. A. Lee, "Effective Heterogeneous Design
and Cosimulation", Proc. of NATO Advanced Study Institute Workshop on
Hardware/Software Codesign, Lake Como, Italy, June 1995.

[Chaudhari94]
5. Chaudhuri, R. Walker, "Computing Lower Bounds on Functional Units
before Scheduling", Proceedings of the 7th Intl. Symposium on High-level

153

Synthesis, Niagara-on-the-lake, Ontario, Canada, May 1994, pp. 36-41.
[Chaudhary92]

K. Chaudhary, M. Pedram, "A Near Optimal Algorithm for Technology
Mapping Mmimizing Area underDelayConstraints", Proc.of19th Design
Automation Conference, Anaheim, CA, US*A, June 1992,pp. 492-498.

[Chiodo94]
M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-Vincen-
telli, L. Lavagno, "Hardware-Software Codesign of Embedded Systems",
IEEE Micro, Aug. 1994, vol.14, no.4, pp.26-36.

[Chiuch90]
T. Chiuch, R. Katz, "A History Model for Managing theVLSI Design Pro
cess", Proceedings of the International Conference on Computer Aided
Design (ICCAD), Santa Clara, C*A, Nov. 1990, pp.358-361.

[Chou92]

P. Chou, R. Ortega, G. Borriello, "Synthesis of the Hardware/Software
Interface in Microcontroller-Based Systems", Proc. 1991 IEEE/ACM
International Conference on Computer-Aided Design, Santa Clara, CA,
USA, Nov. 1992, pp. 488-95.

[Chou94]

P.Chou, E. A. Walkup, G. Borriello, "Scheduling for Reactive Real-Time
Systems", IEEE Micro, Aug. 1994, pp. 37-47.

[Coelho94]

C.N. Coelho, C.-Y.J. Yang, V. Mooney, G. De. Micheli, "Redesigning
Hardware-Software Systems", Proceedings of CODESICASHE, Third
International Workshop on Hardware/Software Codesign, Grenoble,
France, Sept. 1994, pp. 116-123.

[CPLEX]

CPLEX Cr-ptirnkation, Inc., "Using the CPLEX Callable library", CPLEX
Optimization, Inc., Suite 279,930 Tahoe Blvd., Bldg. 802, Incline Village,
NV 89451-9436.

[DeMicheli86]

Design Systems for VLSI Circuits: Logic Synthesis and Silicon Compila
tion, edited by G. De Micheli, A. Sangiovanni-Vincentelly, P. Antognetti,
NATO Advanced Study Institute Series on Logic Synthesis and Silicon
Compilation for VLSI Design, Series E, iMUied Sciences, v.136,1986.

[DeMicheli94]

G. De Micheli, "Synthesis and Optimization of Digital Circuits", New
York, McGraw-Hill, 1994.

[Dewey89]
♦Alien Dewey, S. W. Director, "Yoda: A Framework for the Conceptual
Design of VLSI Systems", Proceedings ofthe International Conference on
Computer Aided Design (ICCAD), Santa Clara, CA, USaA, Nov. 1989, pp
380-383.

154

[Eles94]

P. Eles, Z. Peng, A. Daboli, "VHDL System-Level Specification andParti
tioning in a Hardware/Software Co-Synthesis Environment", Proceedings
of CODESICASHE, Third International Workshop on HardwarelSoftware
Codesign, Grenoble, France, Sept. 1994, pp. 49-55.

[Feldman79]
S. Feldman, "Make — A Program for Maintaining Computer Programs",
Software PracticeandExperience, 1979, Vol. 9, pp. 255-265.

[Franke91]
D. W. Franke, Martin K. Purvis, "Hardware/Software Codesign: A Per
spective", Proc. of13thIntl. Conference on Software Engineering, Austin,
Texas, US.A, May 1991, pp. 344-352.

[Garey79]
M. Garey, D. Johnson, "Computers andIntractability", W. H. Freeman and
Company, New York, 1979.

[Gong94]
J. Gong, D. D. Gajski, S. Narayan, "Software Estimation from Executable
Specifications", Journal of Computer and Software Engineering, 1994,
vol.2, no.3, pp. 239-58.

[Guerra94]

L. Guerra, M. Potkonjak, J. Rabaey, "System-level Design GuidanceUsing
Algorithm Properties", VLSI Signal Processing VII, Oct. 1994, Edited by
JanRabaey, Paul M. Chau, JohnEldon, IEEE, New York, pp. ??

[Gupta92]
R. Gupta, G. DeMicheli, "System-level Synthesis Using Re-programmable
Components", Proceedings of the European Conference on Design Auto
mation, Brussels, Belgium, Feb.1992, pp. 2-7.

[Gupta93]
R. K. Gupta, "Co-synthesis of Hardware and Software for Digital Embed
ded Systems", Ph. D. Dissertation, Stanford University, Dec. 1993.

[Hamada92]

T. Hamada, S. Banerjee, P. M. Chau, R. D. Fellman, "Macropir^lining
Based Heterogeneous Multiprocessor Scheduling", Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing
(1CASSP), San Francisco, CA, USA, March 1992,vol 5, pp. 597-600.

[Harrison86]

D. Harrison, P. Moore, R. Spickelmier, A. R. Newton, "Data Management
and Graphics Editing in the Berkeley Design Environment", Proceedings
of the International Conference on Computer Aided Design (ICCAD),
Santa Clara, CA, USA, Nov. 1986,pp. 24-27.

[Henkel94]
J. Henkel, T. Benner, R. Ernst, W. Ye, et al, "COSYMA: A Software-ori
ented Approach to Hardware/Software Codesign", Journal of Computer
and Software Engineering, 1994, vol. 2, no. 3, pp. 293-314.

155

[Herrmann94]
J. Herrmann, Henkel, R. Ernst, ".An .Approach to the .Adaptation of Esti
mated Cost Parameters in theCOSYMASystem", Proceedings ofCODES!
CASHE, Third International Workshop on HardwarelSoftware Codesign,
Grenoble, France, Sept. 1994, pp. 100-107.

[Hilfinger85]
P. Hilfinger, "A High-level Language and Silicon Compiler for Digital Sig
nal Processing", Proc. ofIEEE 1985 Custom Integrated Circuits Confer
ence, Portland, OR, USA, May 1985, pp.213-216.

[Hu61]
T. C. Hu, "Parallel Sequencing and Assembly line Problems", Operations
Research 9(6), Nov. 1961, pp. 841-848.

[Ishikawa91]
M. Ishikawa, G. De Micheli, "A Module Selection Algorithm for High-
level Synthesis", Proc. of1991 IEEE International Symposium on Circuits
andSystems, Singapore, June 1991, vol.3, pp. 1777-80.

[Ismail94]
T. B. Ismail, K. O'Brien, A. Jerraya, "Interactive System-level Partitioning
with PARTIF", Proceedings ofEDAC94, Paris, France, Feb. 1994, pp. 464-
468.

[Jantsch94]
A. Jantsch, P. EUervee, J. Oberg, A. Hemani, H. Tenhunen, "Hardware/
Software Partitioning and Minimizing Memory Interface", Proceedings of
EuroDAC94, Grenoble,France, Sept. 1994,pp. 226-31.

[Johnsonbaugh91]
R. Johnsonbaugh, M. Kalin, "A Graph Generation Software Package",
Proc. ofllnd SIGCSE Technical Symposium onComputer Science Educa
tion, San Antonio, TX, USA, March 1991, vol. 23, no 1,pp. 151-154.

[Kalavade92]
A. Kalavade, E. A. Lee, "Hardware/Software Codesign Using Ptolemy —
A Case Study", M. S. Report, Dec. 1991, Dept. of EECS, Univ. of Califor
nia, Berkeley, CA, 94720.

[Kalavade93]
A. Kalavade, E. A. Lee, "A Hardware/Software CodesignMethodology for
DSP applications", IEEE Design and Test of Computers, Sept. 1993, pp.
16-28.

[Kalavade94a]
A. Kalavade, E. A. Lee, "Manifestations of Heterogeneity in Hardware/
Software Codesign", Proc. of the 31stDesign Automation Conference, San
Diego, CA, USA, June 1994,pp. 437-438.

[Kalavade94b]
A. Kalavade, E. A. Lee, "A Global Criticality/ Local Phase Driven Algo
rithm for the Constrained Hardware/Software Partitioning Problem", Proc.
of CODESICASHE, Third International Workshop on HardwarelSoftware

156

Codesign, Grenoble, France, Sept. 1994, pp. 42-48.
[Kalavade95a]

A. Kalavade, Jose Pino, E. A. Lee, "Managing Complexity in Heteroge
neous System Specification, Simulation, and Synthesis", Proc. of Interna
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Detroit, Michigan, USA, May 1995, vol.5, pp. 2833-2836.

[Kalavade95b]
A. Kalavade, E. A. Lee, "The Extended Partitioning Problem: Hardware/
Software Mapping and Implementation-bin Selection", Proc. of Sixth
International Workshop onRapid System Prototyping, Chapel Hill, North
Carolina, USaA, June, 1995,pp. 12-18.

[Keutzer94]
K. Keutzer, "Hardware-Software Co-Design and ESDA", Proc. of 31st
Design Automation Conference, San Diego, CA, USA, June 1994, pp. 435-
6.

[Kleinfelft94]

S. Kleinfelft, M. Guiney, J. K. Miller, and M. Barnes, "Design Methodol
ogy Management", Proc. of the IEEE, vol. 82, no. 2, Feb. 1994, pp. 231-
250.

[Knapp86]
D. W. Knapp, A. Parker, "A Design Utility Manager: the aADaAM Planning
Engine", Proceedings of the 13rd Design Automation Conference, Las
Vegas, Nevada, USA, June 1986,pp. 48-54.

[Kumar93]
S. Kumar, J. H. Aylor, B. W. Johnson, W. A. Wulf, "A Framework for
Hardware/Software Codesign", Computer, Dec. 1993, vol. 26, no. 12, pp.
39-45.

[Kurdahi89]
F. J. Kurdahi, A. C. Parker, "Techniques for area estimation of VLSI Cir
cuits", IEEE Transactions on Computer-Aided Design of Integrated Cir
cuits and Systems, Jan 1989,vol. 8, no. 1, pp. 81-92.

[Lagnese91]
E. D. Lagnese, D. E. Thomas, "Architectural Partitioning for System-level
Synthesis of ICs", IEEE Transactions on Computer AidedDesign ofInte
gratedCircuits andSystems, July 1991, vol. 10,no.7, pp. 847-860.

[Laneer91]

D. Laneer, et al., ".Architectural Synthesis for Medium and High Through
put Signal Processing with the New CATHEDRAL Environment", High-
level VLSI Synthesis, edited by R. Camposano, W. Wolf, W. Dordrecht,
Kluwer Academic Publishers, 1991, pp 27-54.?*

[Lee87]
E. A. Lee,D.G. Messerschmitt, "Synchronous Data Flow", Proceedings of
theIEEE, September 1987, vol. 75, no.9, pp. 1235-1245.

157

[Lee90]
E. A. Lee, J. C. Bier, "aArchitectures for Statically Scheduled Dataflow",
Journal ofParallel and Distributed Computing, Dec. 1990, pp. 333-348.

[McFarland89]
M. C. McFarland,"A FastFloorplanning Algorithm for Architectural Eval
uation", Proceedings of International Conference on Computer Design,
Santa Clara, CA, USA, Oct. 1989, pp. 96-99.

[McFarland90a]
M. C. McFarland, A. C. Parker, R. Camposano, "The High-level Synthesis
of Digital Systems.", Proceedings ofthe IEEE, Feb. 1990, vol.78, no. 2, pp.
301-18.

[McFarland90b]
M. C. McFarland, T. J. Kowalski, "Incorporating Bottom-up Design into
Hardware Synthesis", IEEE Transactions on Computer Aided Design of
Integrated Circuitsand Systems, Sept. 1990,vol. 9, no. 9, pp. 938-950.

[Mehra94]

R. Mehra, J. Rabaey, "Behavioral Level Power Estimation and Explora
tion", Proc. ofInternational workshop onLowPower Design, NapaValley,
CA, USA, April 1994, pp. 197-202

[MentorGraphics1]
Mentor Graphics Tools, Mentor Graphics Corp., 1001 Ridder Park Drive,
San Jose, CA 95131-2314.

[MentorGraphics2]
Falcon Framework Reference Manual, Mentor Graphics Corp., 1001 Rid
der Park Drive, San Jose, CA 95131-2314.

[Motorola]
DSP56000/DSP56001 Digital Signal Processor, User's Manual, Motorola
Inc., 1990.

[Murthy94]
P. K. Murthy, S. S. Bhattacharyya, E. A. Lee, "Minimizing Memory
Requirements for Chain-structured Synchronous Dataflow Programs",
Proc. of International Conference on Acoustics, Speech, and Signal Pro
cessing (ICASSP 94), Adelaide, Australia, April 1994, vol. 2, pp.453-456.

[Papadamitriou82]
C. H. Papadamitriou, K. Steiglitz, "Combinatorial Optimization: Algo
rithms and Complexity", Prentice-Hall, Inc. 1982.

[Paulin89]
P. G. Paulin, J. P. Knight, "Force-Directed Scheduling for the Behavioral
Synthesis of aASICs", IEEE Transactions on Computer Aided Design of
Integrated Circuits andSystems, June 1989, vol. 8, no. 6, pp. 661-679.

[Paulin95]
P. G. Paulin, et al., "DSP Design Tool Requirements for Embedded Sys
tems: A Telecommunications Industrial Perspective", Journal of VLSI Sig
nalProcessing, Jan. 1995, vol. 9, no. 1-2,pp. 23-47.

158

[Pino95a]
J. L. Pino, S. Ha, E. A. Lee, J. T. Buck, "Software Synthesis for DSP using
Ptolemy", Journal of VLSI Signal Processing, Jan. 1995, vol. 9, no. 1-2,
pp. 7-21.

[Pino95b]
J. L. Pino, E. A. Lee, "Hierarchical Static Scheduling of Dataflow Graphs
onto Multiple Processors", Proc. of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 95), Detroit, MI, USA,
May 1995, vol. 4, pp 2643-2646.

[Potkonjak94]
M. Potkonjalc, J. Rabaey, "Optimizing Resource Utilization using Transfor
mations", IEEE Transactions ofComputer-Aided Design ofIntegrated Cir
cuits and Systems, March 1994,vol. 13, no. 3, pp. 277-292.

[Press88]
W. H. Press, B. P. Flannery, S. A. Teukolsky, W T. Vetterling, "Numerical
Recipes in C: The Art of Scientific Computing", Cambridge University
Press, 1988.

[Ptolemy95]
The Almagest: Ptolemy User's and Programmer's Manual, (http://
ptolemy.eecs.berkeley.edu/Almagest.html)

[Quantify]
Quantify manual pages, Pure Software Inc.

[Rabaey91]
J. M. Rabaey, C. Chu, P. Hoang, M. Potkonjak, "Fast Prototyping of datap
ath-intensive Architectures", IEEE Design and Test of Computers, pp. 40-
51, June 1991.

[Rabaey94]
J. Rabaey, M. Potkonjak, "Estimating Implementation Bounds for Real
Time DSPApplication Specific Circuits", IEEE Transactions onComputer
Aided Design ofIntegrated Circuitsand Systems, vol. 13, no. 6, June 1994,
pp. 669-683.

[Rabaey95]
J. Rabaey, L. Guerra, R. Mehra, "Design Guidance in the Power Dimen
sion", Proc. ofInternational Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Detroit, Michigan, USA, May 1995, vol. 5, pp.
2836-2839.

[Rasure91]

J. R. Rasure, C S. Williams, ".An Integrated Data Row Visual Language
and Software Development Environment", Journal of Visual Languages
and Computing, Sept. 1991, vol. 2, no. 3, pp 217-246.

[Ritz93]
S. Ritz, M. Pankert, V.Zivojinovic, H. Meyr, "High-level Software Synthe
sis for the Design of Communication Systems.", IEEE Journal on Selected
Areasin Communications, April 1993, vol.11, no.3, pp. 348-58.

159

[Rowson94]

J A. Rowson, "Hardware/Software Co-Simulation", Proceedings of the
31st Design Automation Conference, San Diego, CA, USA, June 1994, pp.
439-440.

[Sharma93]
A. Sharma, R. Jain, "Estimating Architectural Resources and Performance
for High-level Synthesis .Applications", IEEE Transactions on VLSI Sys
tems, June 1993, vol. 1, no. 2, pp. 175-190.

[Shanmugan94]
K. Sam Shanmugan, "Simulation and Implementation Tools for Signal
Processing and Communication Systems", IEEE Communications Maga
zine, July 1994, pp. 36-40.

[Sih91]
G. C. Sih, "MultiprocessorScheduling to Account for Interprocessor Com
munication", Ph. D. Thesis, ElectronicsResearchLaboratory, University of
California,Berkeley, UCB/ERL M91/29, April 1991.

[Sih93]
G. Sih, E. A. Lee, "A Compile-Time Scheduling Heuristic for Interconnec
tion-Constrained Heterogeneous Processor lArchitectures", IEEE Transac
tions on Parallel and Distributed Systems,Feb. 1993,vol. 4, no. 2, pp. 175-
187.

[Singh95]
D. Singh, J. M. Rabaey, M. Pedram, et al, "Power Conscious CAD Tools
and Methodologies: A Perspective", Proceedings of the IEEE, .Apr. 1995,
vol. 83, no. 4, pp. 570-94.

[Sriram93]
S. Sriram, E. A. Lee, "Design andImplementation of an Ordered Memory
Access Architecture", Proc. of IEEE Intl. Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Minneapolis, MN, April 1993,
vol 1., pp. 345-348.

[Srivastava91]
M. B. Srivastava, R. W Broderson, "Rapid-Prototyping of Hardware and
Software in a Unified Framework", Proc. IEEE Conference on Computer
Aided Design (ICCAD), SantaClara, CA, Nov. 1991, pp. 152-155.

[Sun92]
J. S. Sun, R. W. Brodersen, "Design of System Interface Modules", Proc.
ofIntl. Conference on Computer AidedDesign (ICCAD), Santa Clara, CA,
USA, Nov. 1992, pp 478-481.

[Synopsys]
Synopsys Tools, Synopsys Inc., 700 East Middlefield Rd., Mountain View,
CA 94043.

[Theissinger94]
M. Theissinger, P. Stravers, H. Veit, "Castie: aAn Interactive Environment
for HW-SW Co-Tte&i&rj'roceedings of CODESICASHE, Third Interna

ls

tional Workshop on HardwarelSoftware Codesign, Grenoble, France, Sept.
1994, pp. 203-9.

[Thomas93]
D. E. Thomas, J. K. Adams, H. Schmit, "A Model and Methodology for
Hardware/Software Codesign", IEEE Design and Test ofComputers, Sept.
1993, pp. 6-15.

[Thor86]
"ThorTutorial, VLSI/CAD Group, Stanford University, 1986.

[Tiwari94]
V. Tiwari, S. Malik, A. Wolfe, "Power Analysis of Embedded Software: A
First Step Towards Software Power Minimization", IEEE IVansactions on
VLSI Systems, Vol. 2, no. 4, Dec. 1994, pp 437-445.

[Vahid92]
F. Vahid, D. Gajski, "Specification Partitioning for System Design", Pro
ceedings of the 19th Design Automation Conference, June 1992, Anaheim,
CA, USA, pp. 219-224.

[VanDerWolf93]
Pieter van der Wolf, "aArchitecture of an Open and Efficient CAD Frame
work", Ph.D. Thesis, Delft University of Technology, May 1993.

[Verbauwhede94]
I. Verbauwhede, C. Sheers, J. Rabaey, "Specification and Support for
Multi-dimensional DSP in the SILAGE Language",Proc. ofthe Intl. Con
ference on Acoustics, Speech, and Signal Processing (ICASSP-94), Ade
laide, Australia, April 1994, pp. ??

[Wolf94]

W. H. Wolf, "Hardware-software Co-design of Embedded Systems", Pro
ceedings ofthe IEEE, July 1994, vol.82, no.7, pp. 965-89.

[Zimmerman88]
G. Zimmerman, "A New Area and Shape Function Estimation Technique
for VLSI Layouts", Proceedings 15th Design Automation Conference, June
1988, pp. 60-65.

161

7

APPENDIX

Al ILP Formulation for Problem PI

The hardware/software mapping and scheduling problem PI is formally

described by the following integer linear program:

Given:

1. A set of nodes N={1,2,...,}, representing the tasks in the algorithm.

2. Associated with each node i in N, are four non-negative integers: ahit asit

thj, and tsif representing the area and executiontime corresponding to the in

hardware and software mappings of node /.

3. A directed acyclic graph G = (Nj\). A is a set of arcs (ij), where ij € N.

An arc (ij) in A implies that task i must complete its execution before task

j can start its own execution.

4. Associated with each arc (ij) € A is anon-negative number /?»•, whichrep

resents the number of samples sent from node i to node j.

5. The source and sink nodes in thegraph G are identified as S and K respec

tively.

162

6. Six non-negative integer-valued parameters AH, AS, T, ahcomm, ascomm,

811(1 tcomm are specified. AH and AS are the capacities of the hardware and

the software resource respectively. The total area of all nodes mapped to

hardware (software) cannot exceed AH (AS). D is the deadline constraint,

i.e., the time between the start time of the source S and the finish time of

the sink K should beat most D. Parameters ahcomm, ascomm, and tcomm rep

resent thehardware area required, thesoftware area required, and thedelay

incurred when one sample of data is sent between two nodes mapped to

different resources respectively.

Variables:

1. For each ie N, define binary variables /*,- and $,- such that ht = 1if task i is

mapped to hardware, 0 otherwise; and $,- =1if task i ismapped to software,

0 otherwise. Obviously, ht + st = 1. We use the two variables to make the

formulation easier to read; only hi contributes to the variable count. (N

variables)

2. For each ie N, define anon-negative integer variable tt, the starting time

of task i. (N variables)

3. For each (ij) € A, define abinary variable by such that by=1ifboth iand

; are in hardware, 0 otherwise. (A variables)

4. For each (ij) € A, define abinary variable Cy, such that Cy =1if nodes i

and j are on different mappings, and 0 if on the same mapping1.

5. For each j, je N, define abinary variable dysuch thatdy =1if t.£ t., oth

erwise dy=0. (N(N-1) variables)

1. c^ will be defined in terms ofb^ and hence itisnot included in the variable count

163

Objective function F: minimize hardware area

rmmmize(£ A.xaft.+ V c.-Xp-xah^^)
i?N (ijteA J J comm

Subject to:

1. Hardware capacity constraint:

Yh.xahi+T CijxPijxahcomm^AH (1 constraint)

2. Software capacity constraint:

E six asi + X cij xPij x ascomm * AS (J constraint)
ieN (ijJiA J

3. Deadline constraint:

r£+ (hKxthK) +(^x^) -*<° (1 constraint)

4. Precedence constraints:

Regardless of the mappings, if (ij) € A, then; starts executing at the end

of/.

ti+ (h.xth} +lstxtst) +(cyxpyxtnijztj,
where (ij) €4 (A constraints)

*5f^. = 1 for (ij) e A (A constraints)

5. Processor overlap constraint:

No two jobscan be executed simultaneously on thesoftware processor. We

want to express the fact that if i and j are both on the software processor,

and j executes before i (i.e., (/» 0 € A), then t-+execution time of j £ t..

The variable dy is 1 if t^t-, and 0 otherwise. Define M = yts.. The
i

meaning of^ isexpressed bythe following constraints:

idij +dji) = 1 for ' <-/» ,'»-/= *••••»N- (N(N-l)/2 constraints)
fy—rr (M d.j) £0 foTi*j,i,j=l, ...,N. (N(N-1)constraints)

Since fy - tt<M for an optimal solution, the expression is restrictive only

164

for dy=0. If dy=0, then j starts no later than i. The overlap constraint can

now be specified as:

tj +(hjx thp +(Sj xtsp +yjk xPjk xtcomm -1^ M•(3 -dji -s(- sj)

fori *j ,ij=l,..., N, k such that (j,k) e A (N(N-l) constraints)

The expression is restrictive only for d^ =1and st= Sj=l, i.e., i and j are

both on software, and/ starts no later than /. In this case it guarantees that

tj+execution time ofi £ ti, as it should be.

6. Additional constraints: To account for costs incurred when two communi

cating nodes / and j are on different mappings, we use Cy, where Cy is

expressed as:

c(j = 1- (h(xhj) - ((1 -ht) x (1 -hp),where (ij)e A

Cij^hi +hj-lhfij

Note that this is a quadratic constraint in hi% and it can be linearized by

defining abinary variable by for all (i,j) in Asuch that by =hfy, where by
can be expressed by:

v.-

The original expression for Cy can now be replaced by:

cij = hi+hr2bij
Note that only by adds to the variable count (3A constraints); Cy is used

only to enhance readability; in the actual formulation Cy is replaced by

(h. +hj-2btj). (3Aconstraints)

A solution to the mapping and scheduling problem (PI) is specified com

pletely by^(mapping) and tt (schedule). The formulation has (N2 +N + A) vari-

165

ables and (-• Ar--• N+ 5A + 3) constraints, in addition to the integrality
2 2

constraints on the variables.

A2 Proof of NP-Completeness for Problem PI

LetTl be the decision (or recognition) version of PI, i.e., Tl is the prob

lem of finding afeasible mapping and schedule. We will first showthat Tl is NP-

complete. Since PI is at leastashard as Tl, it follows thatPI is NP-hard.

Claim: Tl is NP-complete.

Proof:

l.FJisinNP

A given solution (schedule and mapping) can be verified in polynomial

time.

2. Tl can be restricted to the Precedence Constrained Scheduling problem

(PCS)

The precedence constrained scheduling problem [Garey79] is as follows.

Instance: Set Y of tasks, each having length l(y) = 1, m processors, a partial

order < on Y, and a deadline D.

Question: Is there an m-processor schedule s for Y that meets the overall

deadline D and obeys the precedence constraints, i.e., such that yl < yl

implies s(y2) *>j(yl) +/(yl) =s(y7)+l?

Tl can berestricted toPCS, by setting theexecution times in hardware and

software to be equal (i.e., the tasks take the same execution time on all pro

cessors — hardware and software in this case).

The precedence constrained scheduling problem is NP-complete

166

([Garey79], pg. 239) for two processors and task lengths not all equal to l2. Thus,

a known NP-complete problem is a special case of Tl, and hence, by restriction

([Garey79], pg 63), TJis NP-complete.

Obviously, PI, the optimization version ofTl (find a feasible mapping and

schedule such that the hardware area is minimum), is at least as hard as the deci

sion version3. Thus, PI is NP-hard.

A3 ILP formulation for Problem P2

The extended partitioning problem can be formulated as an integer linear

problem. The formulation is similar to that of the binary partitioning problem.

Given:

1. A set of nodesN = {1,2,...,}, representing the tasks in the algorithm.

2. .Associated with each node ie N, are non-negative integers, ahy, thy,

where j = 1, ..., \NHti and asy, tsy, where7=1,..., IMS,!, representing the

hardware and software implementation curves.

3. A directed acyclic graph G = (AM). A is a set of arcs (ij), where i,j € N.

An arc (ij) in A implies that task i must complete its execution beforetask

j can start its own execution.

4. Associated with each arc (ij) e A is anon-negative numberpy, which rep

resents the number of samples sent from node i to node/

5. The source and sinknodes in thegraph G are identified as S and K respec

tively.

2. For theclassof heterogeneous task-level graphs thatwe are interested in, theexecution
times areobviously greaterthan 1.
3.PI isnotin NP, since agiven solution for PI cannot beverified inpolynomial time to
be the minimum solution.

167

6. Six non-negative integer valued parameters AH, AS, D, ahcomm, ascomm,

and tcomm are specified. AH and AS are the capacities of the hardware and

the software resource respectively. The total area of all nodes mapped to

hardware (software) cannot exceed AH (AS). D is the deadline constraint,

i.e., the time between the start time of the source S and the finish time of

the sink K shouldbe atmost D. Parameters ahcomm, ascomm, and tcomm rep

resent the hardware arearequired, the software arearequired, and the delay

incurred when one sample of data is sent between two nodes mapped to

different resources.

Variables:

1. For each i in N, define binary variables htand s,- such that fy = 1 if task / is

mapped to hardware, 0 otherwise; ands, = 1if task / is mapped to software,

0 otherwise. Obviously, fy + st = 1.We use the two variables to make the

formulation easier to read; only ht contributes to the variable count. (N

variables)

2. In addition to the variables indicatingthe mapping, additional variables for

selecting the optimal implementation bin areneeded. Define a set of binary

variables bhy (and bsy), where ie N, and je NHj (and ;e NSj). In par

ticular, bhy =1, if node i ismapped tohardware implemented bin/ In gen

eral, let B be the number of implementation bins per node per mapping.

(1BN variables)

3. Foreach ie N, define a non-negative integervariable tt, the starting time

of task i. (N variables)

4. For each (ij) e A, define abinary variable bysuch that by=1if both i and

j are in hardware, 0 otherwise. (A variables)

168

5. For each (ij) e A,define abinary variable cy, such that cy =1if nodes i

and j are on different mappings, and 0if on the same mapping. Cy will be

defined interms ofbyand is not included in the variable count.

6. For each i, je N, define abinary variable dy such that dy =1if r,. £ t,, oth

erwise dy=0.

(N(N-1) variables)

Objective function F: minimize hardware area.

minimize(Y Y bhiixahii+ y c{!xp;;xah„mm)
ihje^H. lJ lJ djhAtJ lJ comm

Subject to:

1. To ensure that only one implementation bin is selected for every node:

Y bhu+ y bsu = l.(Nconstraints)
jeltHi J jCbSi J

y bh^ , s. = y bsu. where ht (s() is 1if i is inhard-
jellHi jellS. J

Define /i. =

ware (software).

2. Hardware capacity constraint:

Y y bhiixahii+ y ciixpiixahrnmm^AH
itNje^H, lJ lJ ajftA lJ lJ comm
(1 constraint)

3. Software capacity constraint:

I I bsijxas.j+ y CyXp.jX
ieNjeftS; J J (ijfeA J J

(1 constraint)

4. Deadline constraint

bsitxas..+ y c::xp:.xas,.nm<AS
comm

169

*k+ I (bhKjxthKj)+ y (bsKjxtsK)^D
je7fHK J J jzNHK J J

(1 constraint)

5. Precedence constraints:

k€NHi keTlH. J J J

where (ij) € A (A constraints)

dtj = 1 for (ij) e A (A constraints)

6. Processor overlap constraint:

No two jobs can be executed simultaneously on the software processor. We

want to express the fact that if i and j are both on the software processor,

and j executes before / (i.e., (j, i) € A), then t.+execution time of j £ ti.

The variable dy is 1 if f,-•£*.•, and 0 otherwise. Define M = Vtt,-. The
i

meaning of dy is expressed by the following constraints:

(d.j +dj.) = 1 for i<j, i,j =1,..., N. (N(N-l)/2 constraints)

tj-tt- (Md.) £0 fox i*j,i,j=\,...,Y\ (N(N-1) constraints)

Since tj - tt<M for an optimal solution, the expression is restrictive only

for dy=0. If dy=0, then j starts no later than i. The overlap constraint can

now be specified as:

tj+timeh +times^^jkxPjkxtcomm-^M'^-djrsrsj^

v/hzre,timeh = y (bhjkxthjk) time$ = y (bSjkxtSjk) ,

170

si ' E ^.«nd j, = Y bsilr
kStS; lk J khs: Jk

1 j

fori *j, ij = 1,..., N, k such that (/,*) € A (N(N-l) constraints)

The expression is restrictive only for djt =1and Sj -Sj=l, i.e., / and./ are

both on software, and j starts no later than i. In this case it guarantees that

tj+execution time ofi £ t., as it should be.

7. Additional constraints:

To account for costs incurred when two communicating nodes / and j are

on different mappings, we use Cy. Cy is expressed as:

c.j = 1- (h^hj) - ((1 -/i.) x (l-hj)),where (ij)eA

cij = hi +hj-2hihj

Note that this is a quadratic constraint in ht, and it can be linearized by

defining abinary variable by for all (ij) in A. such that by=hfij. This can

be expressed by:

bfjU^+hj-l)

The original expression for Cy can nowbereplaced by:

cij = hi +hj-2bij
Note that only by adds to the variable count. Cy is used only to enhance

readability; in the actual formulation Cy is replaced by c•• = h. +h-2b...

The three expressions defining byadd 3Aconstraints. (3A constraints)

A solution to the extended partitioning problem is specified completely by

hi (mapping), bhy orbsy(implementation bin depending onthe mapping selected),

and t((schedule). The formulation has (w+N- (25+1) +A) variables and

171

5 J2 3
(z' w -z' N+ 5A + 3) constraints, in addition to the integrality constraints on

2 2

the variables.

A4 Complexity Analysis of the GCLP Algorithm

The run-time complexity for the GCLP algorithm iscomputed. Estimations

of area and time, and computations of the extremity and repeller measures are out

side of the main loop and are not included inthe complexity calculation. The com

plexity of each sub-step of the GCLP algorithm (described in Section 3.3) is

shown below:

«««««««••»»• mttim

Complexity(GCLP)

51. Compute GC: 0(WI + \N\)

S1.1.Estimate the setof nodes tomove tohardware: 0(1)

S1.2.Compute the actual finish time: 0(L4I + \N\)

52.Determine thesetof ready nodes: O(IAff)

53. Compute the effective execution time: 0(\N\)

54.Compute thelongest paths: 0(L4I)

55. Select aready node with maximum longest path: O(IAfl)

56. Determine the mapping and schedule: 0(1)
•U0tt»»MMMMMt*»MMWMM«MMttMMMtM*MMilttMMM*

mtmmmmmmamtm—mm—mmmmmi

mtmmmmmmmmmmmmmmtmimmmmmmmmmmmmmmmmt

The GC computation in SI involves the estimation ofamapping, followed

by the computation of the actual finish time for this mapping. The estimation in

S1.1 is done by selecting nodes from an ordered list and is done in constant time.

The actual finish time is computed in S1.2 by ignoring communication costs, using
the following procedure:

172

Procedure: Compute_actualFinishTime
Input: DAG with predetermined mapping and corresponding execution

time (J*e^c(0) for eachnode i
Output: Tfinish =finish time of the DAG
Initialization: dspFinishTime =0,Tfinisn =0:
51. Label all nodes with their indegree

52. Mark all nodes with 0 indegree as ready nodes

53. wliile(read'y nodes exist){

53.1. Select ready node i: 0(1)

53.2. FindWi): 0(1)

53.3. if(i in software) tstarfi) =max(max^i^-/ (/)), dspFinishJTime)
(j: inputs of node 0

if(/ in hardware) tstarfj) - max/<rOVfll7(/))

53.4. Update ^(0 =WO +WO: 0(1)
53.5. If / is in software:

dsp_FinishJUme =(dsp_Finish_Time > tfi^/ff)) ?
dsp_FinishJime: 1^(0

53.6. For each output kofnode i set t^^k) - /^^(O
53.7. For each output k of node i, access node/? connected to it

53.7.1. Decrease indegree of node p

53.7.2. If indegree ofp is 0, add p to list of ready nodes

53.8. Tfinish - (Tfinish > {/m«/i(0) ?Tym/di: tfimshff)
}: (0(141 + \N\)

Since each node and arc is traversed once, the complexity of the algorithm

is 0(\N\ + Wl). The longest path calculation (S4 of GCLP) is described with the

help of the following procedure. Note that as the graph is acyclic, a label setting

algorithm can be used.

Procedure: ComputeJongestPath

Input: G= (NrA),te;S(i)foTieN
Output: longest path d(i) for / € N (d(i) is the longest path from / to sink)

Initialization: counter c = 0, d(i) = 0 for i € N

SI. Reverse the directions of all the arcs in the graph: (0(L4I))

173

52. Topologically order the graph (an ordering where arc (ij) means node i is a
predecessor of node./)

52.1. Label all nodes with their indegree: (0(l/V1))

52.2. while (c<l/VI){

52.2.1. Identify a node / with indegree= 0.
52.2.2. Label/withe.

52.2.3. Decrease indegree of all nodes connected to /.

52.2.4. Delete node i and all arcs emanating from i.
52.2.5. c = c+l

}: (O(WI))

53. Negate effective execution times for all i € N. (t^i) =(-l)-r^z)): (O(INI))
54. Traverse graph in topological order: (O(WI))

54.1. d(i) =min(d(j)) +t^fj), where j € {predecessors ofi}

54.2. Negate d(i) to give longest path for each i, i € N : (O(LM))

"**M****gn"*<***«**"**>***>***>>*>***««*"'^^

Note that the longest path is computed as the shortest path on the graph

with negated execution times. The complexity of the algorithm is O(WI), since

each edge is visited once.

The actual mapping and schedule (S6 of GCLP) are computed in constant

time. Thus, thetotal complexity for one step of theGCLP algorithm is OflM + L4I).

The GCLP algorithm runs \N\ times, hence total complexity is 0(INI • (M + Ml)).

Typically, for DSP applications, |>4|«|N|, hence the worst case complexity of the

GCLP algorithm is 0(IN12).

A5 Complexity Analysis of the Bin Selection Procedure

The binselection procedure is applied onatagged node to select its imple

mentation bin. In general, let 5 be the number of implementation bins for each

node. The complexity of the binselection procedure is computed as follows:

174

Complexity(bin selection)

51. Compute BFC: 0(5 x (\N\ + \A\))

S1.1.For each bin,compute thebin fraction: 0(\N\ + L4I)

SI. 1.1.Estimate the nodes to move to L bins

S1.1.2.Compute actual finish time assuming this mapping and bin selec

tion

52. Compute bin sensitivity: 0(5)

53. Computeweightedbin sensitivity: 0(5)

54. Select bin: 0(5)
<* ' I ionium ~*****m:m%mtunMmmmmMm*mmmm^uumiMitw*m*Mmm*mmm*Mo*Hmmmmm»m*t»nmmmK

The bin fraction computation in S1.1 is similar to that usedin the computa

tion of GC. Hence, the complexity for computation of the bin fraction for apartic

ular bin is 0(\N\+ UI) (see Section 4). The complexity of SI is hence0(5 • (M +

UI)) for 5 implementation bins. The complexity of other steps is simply in the

order of the number of bins 5. The complexity of the bin selection procedure

hence 0(5 • (\N\ + UI)).

A6 Complexity Analysis of the MIBS Algorithm

The MIBS algorithm applies the GCLP-bin selection sequence \N\ times,

for all the nodes in the graph. The complexity for each sub-step in the MIBS algo

rithm is computed as follows:

ComplexJty(MIBS)

51. Detennine the mapping for all free nodes byrunning GCLP: 0(lAfl2)

52. Determine ready nodes: O(bVl)

175

53. Select tagged node: 0(\N\)

54. Compute implementation bin for tagged node using the bin selection proce

dure: 0(5 • (lAfl + UI))
etet*t**-et«ta-«e»*-»Mt«««t-«t«Mt*o-«-**t-4etM-ef*tea

The complexity ofone step ofthe MIBS algorithm is 0(IAfl2+5 •\N\). Each

step is repeated L/Vt times for the 17V1 nodes, hence the complexity of the MTBS algo

rithm is 0(l/vf +5 -IM2).

A7 Algorithm for Random Graph Generation

To get an estimate on the behavior of an algorithm in practice, empirical

studies can be performed. This involves devising a set of supposedly "typical"

instances, running the algorithm and its competitors on them, and comparing the

results. Of course, the usefulness of this technique depends on how "typical" the

sample instances are. Ideally we would like to run our algorithm on practical

examples. However, due to the absence of system-level benchmarks, and the lack

of time to generate a significant number of examples ourselves, we resort to gener

ating random examples. The following procedure presents themethodused to gen

erate random DAGs.

A7.1 Random DAG Generation

Procedure: Generate_Random_Graph
Inputs: size of graph N
Output: Directed, acyclic graph, without parallel edges.

51. A=random_int(Nfl2)* (number ofarcs)
52. Generate a random permutation of 1,..., N in thearray "perm"

S2.1. for(/=0; i<N; /++) [perm[i] = /;}

4.Therandom number generator randomJm\ltu) isused togenerate random integers with
in the range(l,u)and is adapted from [Press88].

176

S2.2. for(M); i<N; /++) {

S2.2.1.7 = random_int(Ofl-l);
52.2.2. tmp=perm[i\\

52.2.3. perm[i] =perm\J];
52.2.4. perm\j] = tmp;}

53. Generate "A" random edges of the form (perm[i], perm\j]), for / <j
53.1. for(/=0; i<A; /++) {

53.2. src=randomJnt(0, N~2);
53.3. dest = randomJnt(src+l, AM);
53.4. if(!exw/Mrc(5rc, ttesf)) add_arc(src, dest)}

54. Generate nodal information for each node 1:s/ze„ tsit thh asit aht.
54.1. Determine if node 1is an extremity, repeller, ornormal node

54.1.1. y = ranl()5
54.1.2. if((y >= 0) &&(y <0.33)) /: extremity
54.1.3. if(Cv >= 0.33) && (y<0.66)) 1: repeller
54.1.4. if((y >= 0.66) && (y <= 1)) 1: normal

54.2. Set area and time values based on the nature of node 1

55. Generate constraints: 7, AH, AS.

55.1. T= random_int(sum_th, sumjs)
55.2. AH =randomJnt(ah_low, ahjiigh)
55.3. AS =random_int(as_low, asjiigh)

Thenumber of arcs is first determined in SI. Togenerate adirected acyclic

graph [Johnsonbaugh91] with N nodes, a random permutation perm[0]

perm[N-l] is generated in S2. This random permutation serves as a topological

ordering for the graph. In S3, a set of random edges is generated of the form

(perm[i], perm{f\) with / </ This generates adirected acyclic graph.

A7.2 Generation of Hardware-Software Area-Time Values

The nodal information is next generated in S4. Traditionally, random

graphs have been used for testing out scheduling heuristics, where the only param-

5.ranlQ uses amultiplicative congruential method togenerate auniformly distributed ran
dom number in the range (0.1) [Press88].

177

eter associated with a node is its execution time. In that case, the execution time is

generated from a uniform distribution (see for example, [Sih91]). In our specific

problem, estimates for areaand time on hardware andsoftware are required. It is

obvious that there is a correlation between the area andtime values fora particular

realization. In addition, there is a correlation between the values across hardware

and software. Hence generating independent random values for allthe four quanti

ties will not model a realistic example. To overcome this problem, we have

devised a methodology for generating these values, based on practical observa

tions and realistic correlations. First, to model the nodal heterogeneity, a probabi

listic measureis used (S4.1) to mark a nodeasanextremity node, repeller node, or

normalnode. Secondly, the area and time values for the node are then set depend

ing on the nature of the node (S4.2). The following procedure illustrates the gen

eral methodology for generating the area and timeestimates for anextremity node.

Procedure: Generate_Extremity_Node
Input: tsmin, asmin, thmin, ahmin, ts^^, as^^, th^^ ah^ cutoff threshold
Output: ts, th, ah, as

51. Compute threshold values tsth, asth, th^, ahtn (for ex: tstn = tsmin + cutoff *

\tsmax " tsmin)J

52. Computemaximum andminimum extremity values
52.1. XSjnax^tSjMxl ahmin

52.2. xsmin = tsth/ahth

52.3. xhnax^ahnax/tSnin

52.4. xhmin = ahth/tsth

52.5. delta^xhnK'Xhnin

52.6. delta^XSnax'XSnin

53. Determine if the node is a hardware orsoftware extremity
53.1. z = ranl()

53.2. if(z <0.5) hardware_extremity; else software_.extremity;
54. Generatean extremity measurein the range (0,0.5) (ex=ran(0,0.5))
55. If hardware extremity:

178

55.1. ah = random_int(ahtn, ahmax)

55.2. ts =ahI ((2 * deltah * ex) +xh^)

55.3. as =randomJn^aSnin, asth)

55.4. r/t =randomJnt(thmin, thtn)

S6. If software extremity:

56.1. ts = randomJnt(tstn, tSmax)

56.2. ah = tsl ((2 * de/ta5 * ex)+^TOI/l)

56.3. <zs =random^Kas^^, as^)

56.4. fn = randomJnttyhmin, thtn)

The mechanism for the calculation of the area and time values for extremi

ties reverse engineers the mechanism used for extremity calculation described in

Section 3.3.3.2. The range of area and time values in hardware and software is

specified by the input parameters. In SI, the cut-off threshold is used to compute

the threshold values of area and time in hardware and software, similar to that

described in Section 3.3.3.2 for extremity identification. Tne maximum and mini

mum extremity values are computed in S2, using the definition of extremities. In

S3, the nodeis probabilistically set to be either ahardware ora software extremity,

and in S4 its extremity measure is generated as a random numberin the range (0,

0.5).The area andtime values are next generated in S5 and S6. If a node is a hard

ware extremity, its ah is set to a random number between (ahth, ah^, and its

extremity measure is then used set the ts value. The th and as are set to random

numbers in the ranges (thmin, thtn) and (as^n* asth) respectively. The area andtime

values for a software extremity are similarly generated, as shown in S6.

The procedure for generating area and time estimates forrepellers is as fol

lows:

•ONO0MMMMMMM

Procedure: Generate.Repeller.Node
Output: ts, th, as, ah

179

51. Generate TS and TH array values

52. Deteimineif the nodeis a hardware orsoftware repeller
52.1. z = ranl()

52.2. if(z <0.5) hardware_repeller; else softwarejrepeller;
53. Generate a repeller measure in therange (0,0.5) (r =ran(0,0.5))
54. If software repeller:

54.1. ts =TS[random_int(0,5)]
54.2. as = ts/2

54.3. ah = (1 - r) * as .

54.4. th = (1 + ranlQ) * ah

55. If hardware repeller:

55.1. th = TH[random_int(0,5)]
55.2. ah = th/2

55.3. as = (l~r)*ah

55.4. ts = (l+ranlQ)*th

Recall that repellers identify relative preferences, i.e., give two similar

software nodes, the software repeller measure is therelative area gain in hardware.

To takethe similarity of nodes intoaccount, in S1, a setof possible ts and th values

is generated. The ts (th) values for software (hardware) repellers are then selected

from this set TS (TH) so as to ensure that similar nodes are considered. In S2, a

node is probabilistically assigned to be either a hardware or a software repeller,

and in S3 its repeller measure is generated. If thenode is a software repeller, its ts

is selected to be oneof the setof possible values from the set TS. The as is related

to this ts. The value of ah is then generated from the as value using the repeller

measure. The area and time values for hardware repellers are similarly generated

inS5.

Procedure: Generate_NormaLNode
Output: ts, th, ah, as

51. ts-random_int(tsmin,tsth)

52. as = ts/2

180

53. th = ts/random_int(l,4)
54. ah = th/2

For a normal node, ts is generated as a random number between tsmin and

tsth. The value of this a fraction of the softwaretime; this fraction is a probabilistic

number from 1 to 4. The areas arecomputed as a fraction of the times so as to cor

relate the area and time values on agiven mapping.

Finally, in S5 of the graph generationalgorithm, the constraints are gener

ated. The deadline is set to a random value between the sum of hardware and soft

ware execution times. The hardware capacity is set to a random number between

ah{ow and ah^, where ahiow and ahnign are fractions of the sum of the hardware

sizes of all the nodes. The software capacityconstraint is similarly generated.

A7.3 Implementation Curve Generation

To generate the random graphs for the extended partitioning problem, hard

ware and software implementation curves are required for each node. A generic

implementation curve was obtained from practical observations of a number of

implementation curves. This curve gives the area and time values for various bins,

normalized with respect to the L bin values. The generic curve is of the form (r/,

af), where tf > 1, and af < 1, for the kbins.

The area and time values for a single implementation are generated for a

node, as discussed in Section 7.2. The generated values of ah and th are assumed

to correspond to the L bin (ah1, th1). The generic implementation curve is then

used to compute the area andtime values for other bins.The generated curve is of

the form (thk, ahk), where thk =#* * th1, ahk =qfk*ahL.

181

A8 Estimation of Area and Execution Time Parameters

The partitioning process relies heavily ontheestimates of thearea and exe

cution time on different hardware and software implementations. The usefulness

of the generated partition depends on how accurate the estimates are; if the actual

values obtained after synthesis are very different from the estimates, then the

resultant solution could be either infeasible or have an unnecessarily large hard

ware area. Accuracy of the estimated area and time values is directiy proportional

to the time spent on generating the estimates; the more accurate the estimate, the

longer it takes to derive it. In the limiting case, the best estimate is obtained after

actually synthesizing the implementation. Our philosophy in generating the esti

mates was to get fairly accurate estimates from behavioral specifications, without

going through theentire synthesis process.

In Section A8.1, some of therelated techniques in hardware estimation are

first briefly mentioned, followed by adiscussion of theestimation mechanism that

we use. In Section A8.2,thesoftware estimation techniques are discussed.

A8.1 Hardware Estimation

The hardware area required to implement anode consists of theactive area

of the datapath (i.e., execution units, registers, multiplexors, and buffers) as well

as the interconnect area. Several methods to estimate the active area have been

proposed [Chaudhari94][Kurdahi89][Rabaey94]. Since the interconnect area is

usually a significant fraction of the active area, considering only the active area is

inaccurate, the interconnect area also needs to be estimated. BUD

[McFarland90b], developed by McFarland et al., was one ofthe first highlevel syn-

6. We assume astandard-cell type hardware architecture; the extension to FPGAs is quite
straightforward.

182

Node

Generate Silage | (Ptolemy)

Silage
jfc.

Parse Silage^ (Hyper)
CDFG

sample period d « *Estimator | (Hyper)

i
area estimate

Figure A.l. Methodology for the estimation of hardware area required
for a node when implemented at a sample period d.

thesis tools that took the interconnect area intoaccount. The approach, however, is

based on doing an actual floorplanning of thegenerated modules to get anestimate

of the total area of the design. Zimmerman [Zimmerman88] describes slicing-

structure based mechanisms for estimating the floorplan areas. In the approach

proposed by Sharma et al. [Sharma93], thenumber of busses required in thedesign

is first estimated. This number is correlated to the interconnect area to estimate the

total area.

Mehra et al. [Mehra94] propose a statistical approach for computing the

total chip area (active plus interconnect) for a given sample period d. In this

scheme, the minimum bounds on the active area (A^ and the numberandsize of

buses (Nbus, Nbits) are first estimated using techniques proposed by Rabaey et al.

[Rabaey94], The total area is then given by a statistical model that uses these val-

ues: Atotal = al+ot2 Aact + a3'Nbus'Nbits'Aact> where ** parameters

al, a2, and ot3 have been determined by experimental analysis. These tech

niques have been implemented in the Hyper highlevel synthesis system

[Rabaey91]. We use the estimation techniques implemented in Hyper to generate

the hardware area estimates.

The overall methodology for obtaining the hardware area estimate for a

node, for a given sample period d, is summarized in Figure 8.1. Silage

183

[Hilfinger85] code is first generated for the node, using the approach described in

Chapter 4. This Silage codeis then parsed to get a control-dataflow graph (CDFG)

[Verbauwhede94], The estimator, using theestimation techniques implemented in

Hyper, operates on this CDFG to give the area estimate for this particular sample

period.

A8.2 Software Estimation

Software performanceestimationis usually a very difficult problem. Com

piler optimizations and operating system interaction make the area and time

requirements difficult to predict. Tools such as Quantify [Quantify] can be used to

get accurate estimates of the actual time spent in running the code. However, since

this requires running the software, code has to be generated, compiled, and run for

each node; the estimation times may be unacceptable. Besides, this gives only a

single trace, making it hard to estimate execution times when there is data depen

dency within a node. Other approaches for estimation have also been reported

[Gong94] [Tiwari94].

In our approach, the Motorola DSP 56000 is used as the target software

processor. Since the software model assumes no operating system, the estimates

generated by static profiling of the generated assembly code are fairly accurate.

Assembly code is generated for each node. A simple C program parses the gener

ated assembly code to compute the estimates of the software size (program and

data memory required) and software execution time.

Herrmann et al. [Herrmann94] describe techniques to move the estimation

process into the partitioning loop in order to improve the quality of the solution in

the cases where the estimates are inaccurate.

184

A9 Automated Flow Execution in the DMM Domain

In this section, the details of the flow execution mechanism are provided.

Some of the terms used in this section are first defined in A9.1. The scheduling

mechanisms used in the uRun All", uRun Upto", and uRun This" modes are

described in A9.2, A9.3, and*A9.4 respectively.

A9.1 Preliminaries

We define some of the terms used in the rest of this section:

Gji0W(NA) The design flow specified as agraph Gfl0W(NA)> where Nis
the set of nodes representing tools and A is the set of arcs

representing the connectivity between the tools.

Required Input Port The tool cannot run unless data is present on a required

input port.

Optional Input Port The presence of data on an optional input port is not essen

tial for execution of the tool. The behavior of the tool could

depend on whether or not data is present on an optional

input port.

Required Output Port Datais alwaysgenerated on a required output portwhen the

tool executes.

Optional OutputPort Data may or maynot be generated on an optional output

port.

Path A path from tool i to tool j is a sequence of arcs from tool i
to tool/

Predecessor / € P(f) (i is apredecessor of j) if there is a path from / to/

Ordered predecessor / € OP(f) (i is an ordered predecessor of j) if thereis atleast

one path from j to j that traverses all required input ports.

That is, i e OP(j) implies that/ cannot run without i.

Source A tool with no inputs.

Nondeterminacy The generated data is possibly not independent of the
Condition sequence used to invoke the tools.

185

A9.2 Run All mode

In this mode, the graph is traversed, starting with the sourcetool,executing

tools as needed. The following algorithmdescribes the mechanism.

runAll(G„0W(NA)) {
if (number of sources > 1)

£rror("Multiple sources not allowed");
for each tool i in N {

computej>redecessors(i)', /* set P(i) */
compute^orderedpredecessors(i); /* set OP(i)*/

}
/* check for possible nondeterminacy condition*/
for each tool i in N {

for each tool/ in P(i) {
if </€/><»){

\f((iZOP(j))8c&(jeOP(i))
£rror("Deadlock"); /* Fig. 8.2-a*/

if((i€OP(j))&&(j€OP(i))
£rror("Possible Nondeterminacy");

/*Fig.8.2-b*/

}
else if (i€P(j)){

if(j€OP(i))
£rror("Possible Nondeterminacy");

/*Fig.8.2-c*/

}

}
}
if (nondeterminacy)

Query^continue","run tool by tool","abort");
enabledToolsList.add(source);
for each tool /

initialize^', /* retrieve lastjilejiame and lastjime stamp
from Oct. Set paramchangedjlag if parameters
were changed */

runjsnabledtoolsQ; f* the mainprocedure */
}

astnsaaatamasf-SB-aaaaf«»BeaBBaeaBa»a«sta-aBaBaBBaa»BBaa

As discussed in Section 5.3, to avoid possible nondeterminacy, design

flows with multiple sources are not supported for automated scheduling. The pre-

186

(a) (b)
.optional input port

B

A-=P(B) B=P(A) A«P(B) BoP(A)
A«OP(B) B-OP(A) A*OP(B) B*OP(A) ^ggU C-^0%)

A-P(B) B*P(C)
A-OP(B) B*OP(C)

Deadlock Nondeterminacy Noradeterminacy
A-BorB-A? A-B-C or A-C-B?

Figure A.2. Illustration of possible nondeterminacy.

decessors and ordered predecessors for all the nodes are first computed. The algo

rithms for computing the predecessors and ordered predecessors of a node are

outlined below and are self-explanatory. The predecessors and ordered predeces

sors are used to detect possible nondeterminacy and deadlock. Figure 8.2 illus

trates some of the cases implying possiblenondeterminacy. If the schedulerdetects

possible nondeterminacy, the user has the option to either abort the run, or control

the flow execution by running a tool at a time. If the user has designed the tools so

as to avoid nondeterminate behavior, the user can ask the system to run anyway

and automated scheduling is used (procedure runjenabledtoolsQ).

Before calling the procedure runjenabledjoolsQ, the tools are first initial

ized. The filename and timestamp attributes for each port are loaded in from the

Oct database. If the tool has never run before, the last filename attribute is initial

ized to "DUMMY". The system also checks if a parameter has changed since the

previous invocation of this tool. The main routine for running the tools is

describedin the procedure runjsnabledjoolsQ.

compute^predecessors(i) {
for all tools { clearjagO; clean_mark_pn_allj>orts();}
tag_predecessors(i);

187

for each tool/ in N
if(is_tagged(f))add(P(i)j);

}

tagpredecessors(i) {
/* recursively tag predecessors */
tag(i);
for each input port p of i {

if(\is_marked(p)) {
mark(p);
j = connected_tool(p);
tag_predecessors(j);

}
}

}
mttmattttitmmtmttrimmrumtrtimrHic*

•MMMMmMMOC

compute_ordered_predecessors(i) {
for all tools { clearjagQ; clearjnark_on_all_ports();}
tag_required_predecessors(i)',
for each tool/ in N

msjagged(j)) add(OP(i)j);
}

MMMMHMMMMMHIMMHMMMMMMMMMntMaMMtMaMtMtMa^^

tagjequiredpredecessors(j) {
/* recursively tag required predecessors, i.e., predecessors connected to

required input ports*/
tag(i)\
for each required input port p of i {

if(\isjnarked(p)) {
mark(p);
j = connectedjool(p);
tagjequiredj>redecessors(j)\

}
}

}
••M*Mt«»MMMMMM»*?«-*-*»MeraOMMgMet*0*-*tSMM«t^

The following procedure shows the mechanism to run enabled tools. A tool

i is first removed from the head of the list of enabledtools. If there is a tool/ on the

188

listofenabled tools that isapredecessor to/, then i isnot run, but simply moved to

a slot after /. This tries to enforce an ordering where a predecessor is always run

first. This rule will enforce the A-C-B ordering for the graph shown inFigure 8.2-

c. If there is no predecessor on the list of enabled tools, the selected tool is exam

ined for live dependencies and executed if needed.

runjenabledjoolsQ {
whi\e(enabledToolsList !=empty) {

/ = enabledToolsList.headO;
nextTool = 0;
for each /in enabledToolsList {

ir«jeP(i))&&(i€P(j)){
enabledToolsList.move(ij); /* move i to after/ */
/* try to force a behavior by nuining/, which is a
predecessor to i, before running /. If there is a loop
between / and/, then we just run them in the order
on the list; we have already flagged to the user that
this could be a nondeterminate case. */

nextTool = 1;
break;

}
}
if(\nextTool) {

examine_dependency_and_runjf_needed(i);
enabledToolsList.removed);

}
}

}

The following procedure examines atool for live dependencies. If adepen

dency is alive, the tool is executed, the generated data is passed on to its descen

dents, and the descendents are enabled, otherwise the old data is propogated to its

descendents and the descendents are enabled.

examine_dependency_and_runjf_needed(i) {
if-(dependency_alive(i)) {

execute_tool(i);
sendjiew_output_data(i);

189

enable_descendents(i);
- update_status(i);

}
else {

send_oldj>utputjiata(i);
enablejiescendents(i);

}
}

The following procedure checks for live dependencies. A parametric

dependency is alive if paramchangedjlag is set. A source needs to run if it has

never run before, i.e., a required output port has attribute "DUMMY".

In general, after a tool finishes execution, the newly generated file name is

copied over to the descendent ports. If a tool does not generate data on a certain

output (because it is optional), it sends an explicit "DUMMY" to the descendent

port. As a result, for non-source tools, a new file name of "DUMMY" on an input

port indicates that no new data has been propogated by the predecessor tool to this

port. This is the reason for the first check comparing the new filename to

DUMMY. If this check holds, then the data and temporal dependencies are evalu

ated.

dependency_alive(i) {
if(param_changed(i))

return 1; /* parametric dependency */
if(is_source(i)) {

for each required output port p
if(strcmp(lastJilejuime(p),*V\JMbAY")==0)

return 1;

}
else{

for each input portp of / {
if(5rrc/rsp(newJi/e_nflm«?(p),,,DUMMY")!=0) {

if(strcmp(newjilenanw(p),h2st_file_name(p)) != 0)
return 1; /* data dependency */

if(last_time_stamp(p) < new_time_stamp(p))
return 1; /* temporal dependency */

}

190

}
}

}
•**>*>*>»*»»*i*im*i»mmmmmm*mmmmmmmmmmmmmmmmmmm»mmm*mtM

The following procedure calls the user-definedcode associated with a tool.

This operates on the new filenames associated with the input ports. A

datajchanged flag gets setforall the ports for which new data isgenerated during

this execution. The generated data is available in the new filename attribute.

execute_tool(i) {
execute the user-defined code associated with the tool;

for each output port/?of i
if (data is generatedonp)

set_data_changed_flag(p);
}

lewteteetewtewtte-egaiaaiaiiiiiiewetteteie-iewwQeieii

After a tool finishes execution, the next step in the procedure

examine_dependencyjind_runjfjieeded is to send the generated data to the con

nected ports, as shown in the following procedure sendjtew_output_data. For

required output ports, the corresponding descendent port is marked (as shown

shortly, this mark is used to identify whether a tool is enabled), while for an

optional output port p, the corresponding descendent port is marked only if p gen

erated new data. If the optional output port did not generate data, an explicit

"DUMMY" is sent to the descendent port.

HtMMMMMMMMMMMUnaHMaHHMMMMMMHMMMMMMHH^^

send_new_outputjiata(i) {
I* If new data is generated, send it to the connected input port, otherwise
send explicit DUMMY. Mark far port only if new data is sent. */
for each output port/? of i {

farPort = input port at the otherend of the arc originating fromp;
if(has_data_changed(p)) {

set_newJUejwme(farPort,newJile_name(p));
mark(farPort);

}
else {
/* p is an optional port that did not generate data in this iteration */

setjiewJilejiame(farPort, "DUMMY");

191

setjiew_file_name(p, "DUMMY");
clear_rnark(farPort);

}
}

1
•"•»»*4*»»*»*»»"»""»"""»*»""»*»"»*»*»-ete-»-ee

The following procedure examines all the descendents of a tool to check if

they are enabled. A tool is enabled only if all its required inputports are marked.

ei*tttMMtttt*Met*)eiaaHe*eiei*«eieMM(*eiieie^

enable_descendents(i) {
for each output portp {

farPort = input port at theother endof thearcoriginating from p;
descendent =tool containing fhtfarPort;
if(eachrequiredinput of descendent is marked)

enableaToolsList.put(descendent);
/* put only if not already there */

}
}

"'•M"""""g»''*«****«**»^"WW»'»'W»'*»»""^^

The following procedure is called to update the filename and timestamp

attributes in the Oct databasein preparation for the next run.

updatejstatus(i) {
for all ports {

lastjilejiame =newjilejiame;
last_time_stamp =newjimejstamp;

}
store in Oct database;

}
•MMt*lt*t*«*MMMO0tttl <m>,'»»**>»*>*»*>»>******o»*tM>>*>>>mmmmmmmmmmmmmmmmmmmmmmmm»

The following procedure is executed by a tool if it has no live dependen

cies. This procedure propagates the filenames to the descendent ports.

send_old_output_data(i) {
/* Senddatagenerated on theprevious invocation.
Mark only if not DUMMY */
for each outputport/? {

farPort =input port atthe other end ofthe arc originating from p;
set_new_file_name(farPort, lastjilejiame(p));
if(strcmp(lastJile_name(p);rDUMMY") != 0)

mark(farPort);
else

192

clearjnarkifarPori);

A9.3 Run Upto mode

In this mode, the user selects a certain tool upto which the flow should be

executed. .All the predecessors of the selected tool are identified and tagged. The

design flow is then traversed as in theRun Allmode; only the tagged predecessors

are executed. In the current implementation, we support this mode for acyclic

flows only.

(HgoeoooMacatMMtajtiateieeMMMetteaatieaeiaa^^

runUpto(Gfiow, i) {
/* run upto atool / in flow Gfiow */
if(Hsj2cyclic(Gfi0W))

£rror(**runUpto supported only on acyclic flows");
if (number of sources > 1)

£rror("Multiple sources not allowed");
for each tool/ inGflow

initialized; /* retrieve lastjilejiame and lastjimejstamp from
Oct. Set param_changed_flag if parameters were
changed */

compute^predecessors(i);
for each/ in P(i)

tag(J);
enableaToolsList.add(source);
whi\e(enabledToolsList != empty) {

k = enabledToolsList.headQ;
if(isjagged(k)) {

examine dependency andjunJfjieededQ;
}

}
}

"""""•••""""•"""•eieteteeitestete-e-eiieetieeiete-e^

A9.4 Run This mode

In this mode, a single user-selected tool is run. The selected tool is run if it

has valid input data. The tool operates onthedata generated by its predecessors in

193

their latest invocation.

runTool(i) {
/* Run one iteration of a selected tool. Operates on the last data generated
by predecessor tools. Doesn't run other tools */
for each tool i initialized);
/* read in last_file_name and last_time_stamp for tool i from Oct*/
for each input port p of i {

farPort = output port at the other end of the arc terrninating inp;
/* read in lastjilejiame and lastjimejtamp of ancestor */
set_new_file_name(p) = last_filejiame(farPort);
set_new_time_stamp(p) = lastjime_stamp(farPort);

}
for each required input port p of i {

if(strcmp(newJilejMme(p),'T)UMMY")==0)
£rror("Predecessors never run before, can't run.'.");

else

mark(p);
)
for each optional input port p of i {

if(strcmp(newJile_name(p),"D\MMY")\=0)
mark(p);

else

clear_mark(p);
}
if(dependency_cdive(i)) {

executejool(i);
update_status(i);

}
}

194

	Copyright notice 1995
	ERL-95-88 (1)
	ERL-95-88 (2)

